WorldWideScience

Sample records for warner bratzler shear

  1. Reproducibility and correlation between meat shear force measurements by Warner-Bratzler machine and a texturometer

    Directory of Open Access Journals (Sweden)

    Lucas Arantes-Pereira

    2016-10-01

    Full Text Available Tenderness has a prominent position on meat quality and is considered to be the sensory characteristic that most influences meat acceptance. Therefore, the aim of this study was to evaluate the accuracy and determine correlations among three different meat shear force techniques. Commercial samples of bovine Longissimus thoracis et lumborum (BLTL, Tensor fasciae latae (BTFL, Semitendinosus (BST, Psoas major (BPM, Biceps femoris (BBF and swine Longissimus thoracis et lumborum (PLTL were analyzed for pH, proximate composition, cooking loss and shear force with a classical Warner-Bratzler device and a TA-XT2 Texturometer equipped with shear blades 1 and 3 mm thick. The effect of different techniques in each studied muscle was statistically analyzed and regression curves were built. Results from the 1 mm blade were quite similar to the ones obtained with the Warner-Bratzler, however the results from 3 mm blade were overestimated (p<0.05. Significant correlation (p<0.01 among shear force technique using Warner-Bratzler and the ones using the Texturometer was observed (0.47 for 1 mm blade and 0.57 for the 3 mm blade. In conclusion, we found that the 1 mm blade and the Warner-Bratzler machine are reproducible for all tested muscles, while the 3 mm blade is not reproducible for the BTFL, BST, BPM, BBF, PLTL. There is a significant correlation between the results obtained by the classical Warner-Bratzler and the TA-XT2 Texturometer equipped with both blades. Therefore, TA-XT2 Texturometer equipped with the 1mm blade can perfectly replace the traditional Warner-Bratzler device.

  2. A comparison of technical replicate (cuts) effect on lamb Warner-Bratzler shear force measurement precision.

    Science.gov (United States)

    Holman, B W B; Alvarenga, T I R C; van de Ven, R J; Hopkins, D L

    2015-07-01

    The Warner-Bratzler shear force (WBSF) of 335 lamb m. longissimus lumborum (LL) caudal and cranial ends was measured to examine and simulate the effect of replicate number (r: 1-8) on the precision of mean WBSF estimates and to compare LL caudal and cranial end WBSF means. All LL were sourced from two experimental flocks as part of the Information Nucleus slaughter programme (CRC for Sheep Industry Innovation) and analysed using a Lloyd Texture analyser with a Warner-Bratzler blade attachment. WBSF data were natural logarithm (ln) transformed before statistical analysis. Mean ln(WBSF) precision improved as r increased; however the practical implications support an r equal to 6, as precision improves only marginally with additional replicates. Increasing LL sample replication results in better ln(WBSF) precision compared with increasing r, provided that sample replicates are removed from the same LL end. Cranial end mean WBSF was 11.2 ± 1.3% higher than the caudal end. PMID:25828163

  3. Estimation of Sensory Pork Loin Tenderness Using Warner-Bratzler Shear Force and Texture Profile Analysis Measurements

    OpenAIRE

    Choe, Jee-Hwan; Choi, Mi-Hee; Rhee, Min-Suk; Kim, Byoung-Chul

    2015-01-01

    This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other...

  4. Efficacy of performing Warner-Bratzler and slice shear force on the same beef steak following rapid cooking.

    Science.gov (United States)

    Lorenzen, C L; Calkins, C R; Green, M D; Miller, R K; Morgan, J B; Wasser, B E

    2010-08-01

    The ability to perform Warner-Bratzler and slice shear force on the same beef top loin steak was investigated. Three, 2.54-cm steaks from top loins (n=99) were allotted to either Warner-Bratzler only (WBS), slice shear force only (SSF), or Warner-Bratzler and slice shear force (WBS/SSF). Steaks were thawed at 2 degrees C for 48h prior to cooking. Steaks were cooked to 71 degrees C using a conveyor convection oven and allowed to cool at room temperature for a minimum of 4h. Steaks allotted to WBS used six 1.27-cm cores and steaks allotted for WBS/SSF used four cores. Steaks allotted to SSF and WBS/SSF used one, 1 cm x 5 cm slice. Correlations among WBS and SSF for all steaks ranged from 0.49 to 0.69 (Pcorrelations were generated for steak location within the top loin, the relationships among WBS and SSF performed in the same steak ranged from 0.53 to 0.70 (P<0.05). These results indicate that it may be feasible to conduct WBS and SSF on the same top loin steak, and that the steak taken 2.54 cm from the 13th rib is the optimal location for this combination of procedures.

  5. Pork tenderness estimation by taste panel, Warner-Bratzler shear force and on-line methods.

    Science.gov (United States)

    Van Oeckel, M J; Warnants, N; Boucqué, C V

    1999-12-01

    The extent to which modification of Warner-Bratzler shear force (WBSF) determinations, relating to storage and preparation of the meat, aperture of the V-shaped cutting blade and shearing velocity, improve the relationship with sensory tenderness perception of pork was studied. Additionally four on-line methods: pH1, FOP1 (light scattering), PQM1 (conductivity) and DDLT (Double Density Light Transmission), were evaluated for their ability to predict tenderness. Sensory tenderness evaluation was conducted on 120 frozen (at -18°C for several months) samples of m. longissimus thoracis et lumborum. After overnight thawing, the meat was grilled to an internal temperature of 74°C and scored on an eight-point scale, from extremely tough to extremely tender. The standard WBSF procedure (protocol A) consisted of heating fresh meat samples (stored for 48 h at 4°C post slaughter) at 75°C for 50 min, cooling in cold tap water for 40 min, taking cylindrical cores parallel to the fibre direction, and shearing at a velocity of 200 mm/min with a blade aperture of 60°. For the prediction of sensory tenderness, the WBSF standard procedure (protocol A) showed the lowest variance (R(2)=15%) and the highest standard error of the estimate (SEE=0.97 N) compared to the other WBSF protocols. A decrease in shearing velocity, from 200 to 100 mm/min and, a replacement of the cutting blade with an aperture of 60° by one with an aperture of 30° led to improvements of R(2) (respectively, 19% vs. 13% and 47% vs. 23%) and SEE (respectively, 0.93 N vs. 0.97 N and 0.80 N vs. 0.97 N) and thus were better predictors of tenderness. A blade aperture of 30° instead of 60° also led to considerably lower WBSF values (22.1 N vs. 30.0 N). Freezing, frozen storage and thawing of the meat, prior to WBSF measurement, resulted in higher shear force values (32.7 N vs. 28.7 N) and a better prediction of tenderness, R(2) (25% vs. 15%) and SEE (0.94 N vs. 1.00 N). Furthermore, preparing the frozen stored

  6. Pork tenderness estimation by taste panel, Warner-Bratzler shear force and on-line methods.

    Science.gov (United States)

    Van Oeckel, M J; Warnants, N; Boucqué, C V

    1999-12-01

    The extent to which modification of Warner-Bratzler shear force (WBSF) determinations, relating to storage and preparation of the meat, aperture of the V-shaped cutting blade and shearing velocity, improve the relationship with sensory tenderness perception of pork was studied. Additionally four on-line methods: pH1, FOP1 (light scattering), PQM1 (conductivity) and DDLT (Double Density Light Transmission), were evaluated for their ability to predict tenderness. Sensory tenderness evaluation was conducted on 120 frozen (at -18°C for several months) samples of m. longissimus thoracis et lumborum. After overnight thawing, the meat was grilled to an internal temperature of 74°C and scored on an eight-point scale, from extremely tough to extremely tender. The standard WBSF procedure (protocol A) consisted of heating fresh meat samples (stored for 48 h at 4°C post slaughter) at 75°C for 50 min, cooling in cold tap water for 40 min, taking cylindrical cores parallel to the fibre direction, and shearing at a velocity of 200 mm/min with a blade aperture of 60°. For the prediction of sensory tenderness, the WBSF standard procedure (protocol A) showed the lowest variance (R(2)=15%) and the highest standard error of the estimate (SEE=0.97 N) compared to the other WBSF protocols. A decrease in shearing velocity, from 200 to 100 mm/min and, a replacement of the cutting blade with an aperture of 60° by one with an aperture of 30° led to improvements of R(2) (respectively, 19% vs. 13% and 47% vs. 23%) and SEE (respectively, 0.93 N vs. 0.97 N and 0.80 N vs. 0.97 N) and thus were better predictors of tenderness. A blade aperture of 30° instead of 60° also led to considerably lower WBSF values (22.1 N vs. 30.0 N). Freezing, frozen storage and thawing of the meat, prior to WBSF measurement, resulted in higher shear force values (32.7 N vs. 28.7 N) and a better prediction of tenderness, R(2) (25% vs. 15%) and SEE (0.94 N vs. 1.00 N). Furthermore, preparing the frozen stored

  7. Estimation of Sensory Pork Loin Tenderness Using Warner-Bratzler Shear Force and Texture Profile Analysis Measurements.

    Science.gov (United States)

    Choe, Jee-Hwan; Choi, Mi-Hee; Rhee, Min-Suk; Kim, Byoung-Chul

    2016-07-01

    This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other hand, three parameters from texture profile analysis (TPA)-hardness, gumminess, and chewiness-were significantly correlated with all sensory evaluation variables. In particular, from the result of stepwise regression analysis, TPA hardness alone explained over 15% of variation in all sensory evaluation variables, with the exception of perceptible residue. Based on these results, TPA analysis was found to be better than WBS measurement, with the TPA parameter hardness likely to prove particularly useful, in terms of predicting pork loin tenderness as rated by trained panelists. However, sensory evaluation should be conducted to investigate practical pork tenderness perceived by consumer, because both instrumental measurements could explain only a small portion (less than 20%) of the variability in sensory evaluation. PMID:26954174

  8. Prediction equations for Warner-Bratzler shear force using principal component regression analysis in Brahman-influenced Venezuelan cattle.

    Science.gov (United States)

    Jerez-Timaure, N; Huerta-Leidenz, N; Ortega, J; Rodas-González, A

    2013-03-01

    A database consisting of 331 beef animals (Brahman-crossbred) was used to determine the multivariate relationships between carcass and beef palatability traits of Venezuelan cattle and to develop prediction equations for Warner-Bratzler shear force (WBSF). The first three principal components (PC) explained 77.53% of the standardized variance. Equations were obtained for each sex class and the total variability observed in WBSF could be explained by its orthogonal regression with carcass weight (CW), fat cover (FC), fat thickness (FT), and skeletal maturity (SM). Prediction equations were: WBSF(steers)=3.566+0.003(CW)-0.033(FC)-0.015(FT)+0.0004(SM); WBSF(heifers)=4.824+0.002(CW)-0.229(FC)+0.096(FT)-0.064(SM); WBSF(bulls)=3.516+0.009(CW)+0.154(FC)-0.129(FT)-0.006(SM). A higher proportion of the variation was explained by the PC when variables of greater weight were selected to define each PC. The equation set presented herein could become an important tool to improve the Venezuelan carcass grading system.

  9. Prediction equations for Warner-Bratzler shear force using principal component regression analysis in Brahman-influenced Venezuelan cattle.

    Science.gov (United States)

    Jerez-Timaure, N; Huerta-Leidenz, N; Ortega, J; Rodas-González, A

    2013-03-01

    A database consisting of 331 beef animals (Brahman-crossbred) was used to determine the multivariate relationships between carcass and beef palatability traits of Venezuelan cattle and to develop prediction equations for Warner-Bratzler shear force (WBSF). The first three principal components (PC) explained 77.53% of the standardized variance. Equations were obtained for each sex class and the total variability observed in WBSF could be explained by its orthogonal regression with carcass weight (CW), fat cover (FC), fat thickness (FT), and skeletal maturity (SM). Prediction equations were: WBSF(steers)=3.566+0.003(CW)-0.033(FC)-0.015(FT)+0.0004(SM); WBSF(heifers)=4.824+0.002(CW)-0.229(FC)+0.096(FT)-0.064(SM); WBSF(bulls)=3.516+0.009(CW)+0.154(FC)-0.129(FT)-0.006(SM). A higher proportion of the variation was explained by the PC when variables of greater weight were selected to define each PC. The equation set presented herein could become an important tool to improve the Venezuelan carcass grading system. PMID:23261538

  10. The interrelationship between sensory tenderness and shear force measured by the G2 Tenderometer and a Lloyd texture analyser fitted with a Warner-Bratzler head.

    Science.gov (United States)

    Hopkins, D L; Lamb, T A; Kerr, M J; van de Ven, R J

    2013-04-01

    A comparison of peak shear force results for a Lloyd texture analyser fitted with a Warner Bratzler type of shearing head and a G2 Tenderometer was undertaken using sheep meat. The G2 is a new version of the Tenderometer that uses an electric linear motor to compress the sample, but still retains the blunt wedge-shaped "tooth". Analysis of sheep meat samples (n=121) revealed that the average G2 Tenderometer shear force results were approximately 1.2 times those for the Lloyd based on the following model; Lloyd=1.561 Tenderometer(0.84). Both instruments explained low amounts of the variation (less than 20%) in the sensory traits tenderness and overall liking. The high values for the sensory traits indicate that a wider range of samples, including samples with lower sensory scores, is required to develop robust threshold estimates so that either instrument could be use as an auditing instrument for the processing industry. PMID:23305834

  11. Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner-Bratzler shear force, retail product yield, and growth rate.

    Science.gov (United States)

    Shackelford, S D; Koohmaraie, M; Cundiff, L V; Gregory, K E; Rohrer, G A; Savell, J W

    1994-04-01

    To estimate the heritability (h2) of postrigor calpastatin activity (CA), 555 steers were reared and processed conventionally. Breed-types included purebreds (Angus [A], Braunvieh [B], Charolais [C], Gelbvieh [G], Hereford [H], Limousin [L], Pinzgauer [P], Red Poll [RP], and Simmental [S]), composite populations (MARC I [1/4 C, 1/4 B, 1/4 L, 1/8 H, 1/8 A], MARC II [1/4 S, 1/4 G, 1/4 H, 1/4 A], and MARC III [1/4 RP, 1/4 H, 1/4 P, 1/4 A]), and F1 crosses (H, A, C, G, P, Shorthorn, Galloway, Longhorn, Nellore, Piedmontese, or Salers x H or A). Steers were serially slaughtered on an age-constant (across breed groups) basis. Heritability estimates for CA, i.m. fat content (IMF), Warner-Bratzler shear (WBS) force, retail product yield (RPY), and ADG were .65 +/- .19, .93 +/- .02, .53 +/- .15, .45 +/- .18, and .32 +/- .26, respectively. The genetic correlations (rg) of CA with WBS, RPY, and ADG were .50 +/- .22, .44 +/- .25, and -.52 +/- .37, respectively. The rg of IMF with WBS, RPY, and ADG were -.57 +/- .16, -.63 +/- .15, and -.04 +/- .11, respectively. These h2 and rg estimates indicate that it should be possible to select for improvements in CA, IMF, and WBS. However, selection against CA may be a more suitable approach for improving meat tenderness than selection for increased IMF because the level of genetic antagonism between CA and RPY was not as great as that between IMF and RPY.

  12. Effects of vascular infusion with a solution of saccharides; sodium chloride; phosphates; and vitamins C, E, or both on carcass traits, Warner-Bratzler shear force, and palatability traits of steaks and ground beef.

    Science.gov (United States)

    Yancey, E J; Dikeman, M E; Addist, P B; Katsanidis, E; Pullen, M

    2002-07-01

    Three groups of 12 high percentage Charolais steers were slaughtered on three dates. Steers (n = 27) were infused immediately after exsanguination at 10% of BW with a solution containing saccharides, NaCl, and phosphates (MPSC solution; MPSC, Inc., St. Paul, MN) plus either 500 ppm vitamin C (MPSC+C), 500 ppm vitamin E (MPSC+E), or 500 ppm vitamin C plus 500 ppm vitamin E (MPSC+C+E). Noninfused controls (CON) were 9 steers. The longissimus thoracis (LT), semitendinosus (ST), and quadriceps femoris muscles were removed at 48-h postmortem, vacuum-packaged, and aged until 14-d postmortem. Steaks 2.54-cm thick were cut from the LT and ST. The quadriceps was utilized for ground-beef production. Infused steers had higher dressing percentages and heavier heart and liver weights (P 0.05) on USDA yield and quality-grade traits, LT and ST Warner-Bratzler shear force, descriptive-attribute traits, and freshly cooked steak flavor-profile traits. Vascular infusion had little effect on the flavor-profile traits of warmed-over steaks. Therefore, the results of our study indicate that vascular infusion with vitamins C, E, or C plus E can increase dressing percentage and organ weights, but have minimal effects on descriptive-attribute and flavor-profile sensory panel ratings. PMID:12162658

  13. Phenotypic ranges and relationships among carcass and meat palatability traits for fourteen cattle breeds, and heritabilities and expected progeny differences for Warner-Bratzler shear force in three beef cattle breeds.

    Science.gov (United States)

    Dikeman, M E; Pollak, E J; Zhang, Z; Moser, D W; Gill, C A; Dressler, E A

    2005-10-01

    Carcass and Warner-Bratzler shear force (WBSF) data from strip loin steaks were obtained from 7,179 progeny of Angus, Brahman, Brangus, Charolais, Gelbvieh, Hereford, Limousin, Maine-Anjou, Red Angus, Salers, Shorthorn, Simbrah, Simmental, and South Devon sires. Trained sensory panel (TSP) evaluations were obtained on 2,320 steaks sampled from contemporary groups of progeny from one to five sires of each breed. Expected progeny differences for marbling and WBSF were developed for 103 Simmental sires from 1,295 progeny, 23 Shorthorn sires from 310 progeny, and 69 Hereford sires from 1,457 progeny. Pooled phenotypic residual correlations, including all progeny, showed that marbling was lowly correlated with WBSF (-0.21) and with TSP overall tenderness (0.18). The residual correlation between WBSF and TSP tenderness was -0.68, whereas residual correlations for progeny sired by the three Bos indicus breeds were only slightly different than for progeny sired by Bos taurus breeds. The phenotypic range of mean WBSF among sires across breeds was 6.27 kg, and the phenotypic range among breed means was 3.93 kg. Heritability estimates for fat thickness, marbling score, WBSF, and TSP tenderness, juiciness, and flavor were 0.19, 0.68, 0.40, 0.37, 0.46, and 0.07, respectively. Ranges in EPD for WBSF and marbling were -0.41 to +0.26 kg and +0.48 to -0.22, respectively, for Simmentals; -0.41 to +0.36 kg and 0.00 to -0.32, respectively, for Shorthorns; and -0.48 to +0.22 kg and +0.40 to -0.24, respectively, for Herefords. More than 20% of steaks were unacceptable in tenderness. Results of this study demonstrated that 1) selection for marbling would result in little improvement in meat tenderness; 2) heritability of marbling, tenderness, and juiciness are high; and 3) sufficient variation exists in WBSF EPD among widely used Simmental, Shorthorn, and Hereford sires to allow for genetic improvement in LM tenderness. PMID:16160060

  14. Phenotypic ranges and relationships among carcass and meat palatability traits for fourteen cattle breeds, and heritabilities and expected progeny differences for Warner-Bratzler shear force in three beef cattle breeds.

    Science.gov (United States)

    Dikeman, M E; Pollak, E J; Zhang, Z; Moser, D W; Gill, C A; Dressler, E A

    2005-10-01

    Carcass and Warner-Bratzler shear force (WBSF) data from strip loin steaks were obtained from 7,179 progeny of Angus, Brahman, Brangus, Charolais, Gelbvieh, Hereford, Limousin, Maine-Anjou, Red Angus, Salers, Shorthorn, Simbrah, Simmental, and South Devon sires. Trained sensory panel (TSP) evaluations were obtained on 2,320 steaks sampled from contemporary groups of progeny from one to five sires of each breed. Expected progeny differences for marbling and WBSF were developed for 103 Simmental sires from 1,295 progeny, 23 Shorthorn sires from 310 progeny, and 69 Hereford sires from 1,457 progeny. Pooled phenotypic residual correlations, including all progeny, showed that marbling was lowly correlated with WBSF (-0.21) and with TSP overall tenderness (0.18). The residual correlation between WBSF and TSP tenderness was -0.68, whereas residual correlations for progeny sired by the three Bos indicus breeds were only slightly different than for progeny sired by Bos taurus breeds. The phenotypic range of mean WBSF among sires across breeds was 6.27 kg, and the phenotypic range among breed means was 3.93 kg. Heritability estimates for fat thickness, marbling score, WBSF, and TSP tenderness, juiciness, and flavor were 0.19, 0.68, 0.40, 0.37, 0.46, and 0.07, respectively. Ranges in EPD for WBSF and marbling were -0.41 to +0.26 kg and +0.48 to -0.22, respectively, for Simmentals; -0.41 to +0.36 kg and 0.00 to -0.32, respectively, for Shorthorns; and -0.48 to +0.22 kg and +0.40 to -0.24, respectively, for Herefords. More than 20% of steaks were unacceptable in tenderness. Results of this study demonstrated that 1) selection for marbling would result in little improvement in meat tenderness; 2) heritability of marbling, tenderness, and juiciness are high; and 3) sufficient variation exists in WBSF EPD among widely used Simmental, Shorthorn, and Hereford sires to allow for genetic improvement in LM tenderness.

  15. Effects of vascular infusion with a solution of saccharides, sodium chloride, and phosphates with or without vitamin C on carcass traits, Warner-Bratzler shear force, flavor-profile, and descriptive-attribute characteristics of steaks and ground beef from Charolais cattle.

    Science.gov (United States)

    Yancey, E J; Dikeman, M E; Addis, P B; Katsanidis, E; Pullen, M

    2002-04-01

    Two groups of 18 grain-finished steers were utilized. Nine from one group were infused via the carotid artery immediately after jugular vein exsanguination with an aqueous solution containing saccharides, NaCl, and phosphates (MPSC; MPSC, Inc., Eden Prairie, MN, USA). Nine steers served as non-infused controls (CON). An additional 18 steers were infused with either MPSC (n=9) or MPSC plus 1000 ppm vitamin C (MPSC+C, n=9) solutions. Steers infused with MPSC had higher dressing percentages and organ weights than CON steers. Vascular infusion with MPSC had no effects on USDA yield or quality grade traits, descriptive-attribute sensory panel evaluations, or Warner-Bratzler shear force of longissimus lumborum and semitendinosus muscles. Vascular infusion with MPSC resulted in some significant, but inconsistent effects on flavor-profile characteristics of cooked beef. The addition of vitamin C to the MPSC solution did not provide any benefit. PMID:22063636

  16. Variation and pearson correlation coefficients of warner-bratzler shear force measurements within broiler breast fillets

    Science.gov (United States)

    Measurements of texture properties related to tenderness at different locations within deboned broiler breast fillets have been used to validate techniques for texture analysis and establish correlations between different texture evaluation methods. However, it has been demonstrated that meat text...

  17. ATP sensitive potassium channels in the skeletal muscle functions : involvement of the KCNJ11(Kir6.2 gene in the determination of Warner Bratzer shear force

    Directory of Open Access Journals (Sweden)

    Domenico eTricarico

    2016-05-01

    Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  18. SOUTH WARNER WILDERNESS, CALIFORNIA.

    Science.gov (United States)

    Duffield, Wendell A.; Weldin, Robert E.

    1984-01-01

    A mineral appraisal utilized geologic, geochemical, and geophysical data and an examination of mining claims in the South Warner Wilderness, California. Results of this study indicate that little promise for the occurrence of mineral resources exists within the area. Small veins of optical quality calcite occur on the east side of the area but, are not considered a resource.

  19. David Warner (1934 - 2003)

    CERN Multimedia

    2004-01-01

    It is with great sadness that we learned that our friend and former colleague, David Warner, passed away on Christmas Eve. The funeral was held the following Monday. David was a "linac man". His career centred around linacs, but with a multitude of different subjects. He began at CERN by building the 3 MeV linac in the extension of the South Hall. He did pioneering work on this machine, which paved the way towards the design of the Alvarez cavities for the CERN Linac 2, for which he was responsible. After this challenge was successfully finished, David was the first member of the small but growing team, that was in charge of building the LEP Injector Linacs (LIL). After having been recognised as a proton linac expert, he quickly converted to electron linacs where he soon became the respected key expert for the design, parameters and ultimate performance of LIL. His predilection for precise and detailed documentation, and his vision that the know-how acquired with LIL should be preserved a...

  20. 75 FR 71458 - Warner Brothers Entertainment, Inc., Warner Brothers Theatrical Enterprises, Including Workers of...

    Science.gov (United States)

    2010-11-23

    ... published in the Federal Register on November 17, 2009 (74 FR 59254). At the request of a company official... Employment and Training Administration Warner Brothers Entertainment, Inc., Warner Brothers Theatrical... Brothers Distributing, Inc., Warner Brothers Home Entertainment, Inc., Warner Brothers Studio...

  1. Collaboration: A Reply to Bowern & Warner's Reply

    Science.gov (United States)

    Robinson, Laura; Crippen, James

    2015-01-01

    Although Laura Robinson and James Crippen disagree strongly with a number of Bowern and Warner's [see EJ1075309] characterizations of their own paper ["In Defense of the Lone Wolf: Collaboration in Language Documentation" v7 p123-135 2013], Robinson and Crippen do agree with most of Bowern and Warner's assertions. In this reply, Robinson…

  2. Are shear force methods adequately reported?

    Science.gov (United States)

    Holman, Benjamin W B; Fowler, Stephanie M; Hopkins, David L

    2016-09-01

    This study aimed to determine the detail to which shear force (SF) protocols and methods have been reported in the scientific literature between 2009 and 2015. Articles (n=734) published in peer-reviewed animal and food science journals and limited to only those testing the SF of unprocessed and non-fabricated mammal meats were evaluated. It was found that most of these SF articles originated in Europe (35.3%), investigated bovine species (49.0%), measured m. longissimus samples (55.2%), used tenderometers manufactured by Instron (31.2%), and equipped with Warner-Bratzler blades (68.8%). SF samples were also predominantly thawed prior to cooking (37.1%) and cooked sous vide, using a water bath (50.5%). Information pertaining to blade crosshead speed (47.5%), recorded SF resistance (56.7%), muscle fibre orientation when tested (49.2%), sub-section or core dimension (21.8%), end-point temperature (29.3%), and other factors contributing to SF variation were often omitted. This base failure diminishes repeatability and accurate SF interpretation, and must therefore be rectified.

  3. Are shear force methods adequately reported?

    Science.gov (United States)

    Holman, Benjamin W B; Fowler, Stephanie M; Hopkins, David L

    2016-09-01

    This study aimed to determine the detail to which shear force (SF) protocols and methods have been reported in the scientific literature between 2009 and 2015. Articles (n=734) published in peer-reviewed animal and food science journals and limited to only those testing the SF of unprocessed and non-fabricated mammal meats were evaluated. It was found that most of these SF articles originated in Europe (35.3%), investigated bovine species (49.0%), measured m. longissimus samples (55.2%), used tenderometers manufactured by Instron (31.2%), and equipped with Warner-Bratzler blades (68.8%). SF samples were also predominantly thawed prior to cooking (37.1%) and cooked sous vide, using a water bath (50.5%). Information pertaining to blade crosshead speed (47.5%), recorded SF resistance (56.7%), muscle fibre orientation when tested (49.2%), sub-section or core dimension (21.8%), end-point temperature (29.3%), and other factors contributing to SF variation were often omitted. This base failure diminishes repeatability and accurate SF interpretation, and must therefore be rectified. PMID:27107727

  4. Effect of prolonged heat treatments at low temperature on shear force and cooking loss in cows and young bulls

    DEFF Research Database (Denmark)

    Christensen, L.; Andersen, L.; Løje, Hanne;

    2011-01-01

    Long term heat treatment at low temperature (LTLT) is known to decrease toughness of meat. However, the contribution from the connective tissue to the toughness of LTLT treated meat is not clear. The aim of the present study was to investigate the effect of LTLT treatments on shear force and cook......Long term heat treatment at low temperature (LTLT) is known to decrease toughness of meat. However, the contribution from the connective tissue to the toughness of LTLT treated meat is not clear. The aim of the present study was to investigate the effect of LTLT treatments on shear force...... and cooking loss in semitendinosus from cows (4-6 years) and young bulls (12-14 months), representing 2 categories of beef with varying thermal strength of connective tissue. Vacuum packed muscle samples were heat treated at 53°C, 55°C, 58°C and 63°C in water baths for 2½, 7½ and 19½ h. Cooking loss...... and Warner-Bratzler shear force were measured after heat treatment and subsequent cooling. Shear force of semitendinosus from young bulls heated at 53°C for 2½ h was significantly higher compared with all other heat treatments. A decrease of app. 40 N was observed when increasing the heating temperature from...

  5. High-angular Resolution Laser Threat Warner

    Directory of Open Access Journals (Sweden)

    Sushil Kumar

    2007-07-01

    Full Text Available In this paper, the design and development aspects of a high-angular resolution laser-threat Warner developed at the Laser Science & Technology Centre (LASTEC, Delhi are presented. It describes a high-angular resolution laser-threat warner capable of giving warning with a resolution of i 3" when it is exposed to laser radiation from visible and near-IR pulsed solid-state laser source. It has a field of view of 90' in the azimuth direction, whereas the elevation coverage is between -5" and + 25". It is capable of handling multiple types of laser threats covering wavelength from 400 nm to 1100 nm and has an operational range of 4 km for a Q-switched laser source energy (10 ns of 10 mJ/pulse and output beam divergence of 1 mrad. The paper also describes its simulated evaluation process and field-testing which it has undergone. The result of field-testing confirms that it meets all its performance specifications mentioned above.

  6. In-home consumer and shear force evaluation of steaks from the M. serratus ventralis thoracis.

    Science.gov (United States)

    Bagley, J L; Nicholson, K L; Pfeiffer, K D; Savell, J W

    2010-05-01

    The M. serratus ventralis thoracis was obtained from US Select arm chucks (n=87) to investigate if this underutilized muscle can be used as a steak alternative. Muscles were assigned randomly into three treatment groups: (1) control; (2) blade tenderization; and (3) injection, containing salt, phosphate, and papain. Steaks were cut from each muscle for in-home consumer evaluation (n=136) and Warner-Bratzler shear (WBS) force determination. The WBS values for injected steaks (13.1N) were lower (P<0.05) than for blade-tenderized (18.4N) and control (19.9N) steaks. Tenderness ratings for the injected steaks were higher (P<0.05) compared to the other treatments when steaks were grilled, oven prepared or were cooked in a skillet; however, this improvement did not significantly influence overall like scores for steaks that were oven prepared or cooked in a skillet. For the most part, degree of doneness did not significantly impact consumer evaluations of steaks prepared by the various cooking methods. However, there was a treatment x degree of doneness interaction for grilled-cooked steaks where increased doneness for blade-tenderized and injected steaks resulted in increased palatability ratings, whereas increased doneness for control steaks generally resulted in lowered palatability ratings. Consumer ratings and WBS values for the M. serratus ventralis thoracis indicate that merchandising steaks from this muscle may be a viable option in the marketplace, especially if blade tenderization or injection processes are used for further enhancement. PMID:20374872

  7. Atributos de qualidade da carne de paca (Agouti paca: perfil sensorial e força de cisalhamento Quality attributes of paca meat (Agouti paca: sensory profile and shear force

    Directory of Open Access Journals (Sweden)

    C. Gomes

    2013-04-01

    Full Text Available Avaliaram-se as características sensoriais e determinou-se a força de cisalhamento de cortes de carne de paca (Agouti paca. As análises foram realizadas nos cortes desossados de paleta, lombo e pernil de nove pacas, preparados por cocção até a temperatura interna de 70ºC. A avaliação de aspecto, cor, sabor, odor e maciez foi realizada pela aplicação de teste afetivo a 146 provadores, utilizando-se escala hedônica, e a força de cisalhamento foi determinada pela técnica Warner Bratzler. Na avaliação sensorial, os cortes de paleta, lombo e pernil de paca mostraram diferença significativa (p0,05 entre os cortes, que se mostraram igualmente macios. A carne de paca apresentou-se sensorialmente semelhante à carne suína e com boa aceitação pelos consumidores. O estudo evidenciou o potencial da paca como uma espécie silvestre para a produção comercial de carne para o mercado de carnes vermelhas ou exóticas.Sensory characteristics and shear force of paca meat (Agouti paca were assessed in this study. Analyses were performed in the bonelessshoulder,loin andhamobtained from nine paca carcassesprepared by cookinguntil reaching the internal temperatureof 70°C. The evaluation of flavor, aroma, color, appearance and tenderness was carried out by the application of an affective test using the hedonic scaleand a 146 consumer panel. Shear force was determined by the Warner-Bratzler technique. Shoulder, loin and ham had significant differences (p 0.05 among the cuts, which were similarly tender. Paca meat was found to resemble pork meat in sensory evaluation and had good acceptance by consumers. This study showed the potential of paca (Agouti paca asa wild species for meat production in the red or exotic meat market.

  8. Effect of vitamin D, zilpaterol hydrochloride supplementation, and postmortem aging on shear force measurements of three muscles in finishing beef steers.

    Science.gov (United States)

    Knobel-Graves, S M; Brooks, J C; Johnson, B J; Starkey, J D; Beckett, J L; Hodgen, J M; Hutcheson, J P; Streeter, M N; Thomas, C L; Rathmann, R J; Garmyn, A J; Miller, M F

    2016-06-01

    Vitamin D (D3) supplementation may be used to increase tenderness in beef from cattle fed zilpaterol hydrochloride (ZH). The study was arranged as a 2 × 2 factorial with fixed effects of ZH (no ZH or ZH fed at 8.3 mg/kg DM for 20 d with a 3-d withdrawal) and D3 (no D3 or 500,000 IU D3·steer·d for 10 d prior to harvest). Cattle ( = 466) were harvested in 2 blocks on the basis of BW with subsequent collection of carcass data. Full loins and inside rounds ( = 144 of each subprimal) were collected for fabrication of 5 steaks from the longissimus lumborum (LL), gluteus medius (GM), and semimembranosus (SM), which were aged for 7, 14, 21, 28, or 35 d. Warner-Bratzler shear force (WBSF) was used to evaluate mechanical tenderness of LL, GM, and SM steaks at all aging periods. Slice shear force (SSF) analysis was conducted on only 14- and 21-d LL steaks. No interactions ( > 0.05) between ZH and D3 occurred throughout the entire study. Supplementing ZH resulted in increased HCW ( marbling scores ( = 0.05). Supplementation with D3 increased calculated yield grade ( effect ( > 0.05) on WBSF or SSF of LL steaks. Like for WBSF, ZH supplementation increased SSF values at 14 and 21 d postmortem ( 0.05) on WBSF values of GM steaks. Feeding ZH did not alter WBSF of SM steaks, but at 28 d D3 increased ( = 0.04) WBSF values. Shear force in ZH steaks was not effectively reduced by feeding D3 for 10 d to steers prior to harvest. Aging, however, was an effective method of reducing initially greater shear force values in LL steaks and, to a lesser degree, GM steaks from ZH-fed cattle. PMID:27285939

  9. Warner International(Tongling) Electronic Materials Co.,Ltd.,Ten-thousand Tons Copper Project

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>The 10,000-ton high-end copper project initiated by Warner International(Tongling) Electronic Materials Co.,Ltd is expected to begin trial production by the end of July this year. Warner International(Tongling) Electronic Materials Co.,Ltd.is a joint venture established by Zhongyuan International Enterprise

  10. Semiclassical quantization of Rotating Strings in Pilch-Warner geometry

    CERN Document Server

    Dimov, H; Rashkov, R C; Viswanathan, K S

    2003-01-01

    Some of the recent important developments in understanding string/ gauge dualities are based on the idea of highly symmetric motion of ``string solitons'' in $AdS_5\\times S^5$ geometry originally suggested by Gubser, Klebanov and Polyakov. In this paper we study symmetric motion of certain string configurations in so called Pilch-Warner geometry. The two-form field $A_2$ breaks down the supersymmetry to $\\mathcal{N}=1$ but for the string configurations considered in this paper the classical values of the energy and the spin are the same as for string in $AdS\\times S^5$. Although trivial at classical level, the presence of NS-NS antisymmetric field couples the fluctuation modes that indicates changes in the quantum corrections to the energy spectrum. We compare our results with those obtained in the case of pp-wave limit in hep-th/0206045.

  11. Ecological investigation of a hazardous waste site, Warner Robins, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M. [Oak Ridge National Lab., TN (United States); Billig, P. [Camp Dresser and McKee, Inc., Denver, CO (United States)

    1993-05-01

    Landfill No. 4 and the sludge lagoon at Robins Air Force Base, Warner Robins, Georgia, were added to the United States Environmental Protection Agency (EPA) National Priorities List in 1987 because of highpotential for contaminant migration. Warner Robins is located approximately 90 miles southeast of Atlanta. In 1990 CH2M HILL conducted a Remedial Investigation at the base that recommended that further ecological assessment investigations be conducted (CH2M HILL 1990). The subject paper is the result of this recommendation. The ecological study was carried out by the Hazardous Waste Remedial Actions Program (HAZWRAP)Division of Martin Marietta Energy Systems, Inc., working jointly with its subcontractor CDM (CDM 1992a). The primary area of investigation (Zone 1) included the sludge lagoon, Landfill No. 4, the wetland area east of the landfill and west of Hannah Road (including two sewage treatment ponds), and the area between Hannah Road and Horse Creek (Fig. 1). The bottomland forest wetlands of Zone 1 extend from the landfill east to Horse Creek. Surface water and groundwater flow across Zone 1 is generally in an easterly direction toward Horse Creek. Horse Creek is a south-flowing tributary of the Ocmulgee River Floodplain. The objective of the study was to perform a quantitative analysis of ecological risk associated with the ecosystems present in Zone 1. This investigation was unique because the assessment was to be based upon many measurement endpoints resulting in both location-specific data and data that would assess the condition of the overall ecosystem. The study was segregated into five distinct field investigations: hydrology, surface water and sediment, aquatic biology, wetlands ecology, and wildlife biology.

  12. Time Warner veab aktsionäriga vägikaigast / Peeter Teder

    Index Scriptorium Estoniae

    Teder, Peeter

    2005-01-01

    Meediafirma Time Warner juhid tõrjuvad aktsionär Carl Icahni süüdistusi firma juhtkonna tegevusetuses ja halvas majandamises. Diagramm: Time Warneri aktsia. Vt. samas: Kes on miljardär Carl Icahn

  13. Evaluation of Student Engagement Assessment in Colorado State University's Warner College of Natural Resources

    Science.gov (United States)

    Holman, Debra Kaye

    2013-01-01

    The purpose of this mixed methods study was to conduct a participatory program evaluation of student engagement assessment in Colorado State University's (CSU) Warner College of Natural Resources (WCNR). The college requested the evaluation after completing two pilot studies of undergraduate engagement which led them to consider establishing the…

  14. On perturbative instability of Pope-Warner solutions on Sasaki-Einstein manifolds

    CERN Document Server

    Pilch, Krzysztof

    2013-01-01

    Given a Sasaki-Einstein manifold, M_7, there is the N=2 supersymmetric AdS_4 x M_7 Freund-Rubin solution of eleven-dimensional supergravity and the corresponding non-supersymmetric solutions: the perturbatively stable skew-whiffed solution, the perturbatively unstable Englert solution, and the Pope-Warner solution, which is known to be perturbatively unstable when M_7 is the seven-sphere or, more generally, a tri-Sasakian manifold. We show that similar perturbative instability of the Pope-Warner solution will arise for any Sasaki-Einstein manifold, M_7, admitting a basic, primitive, transverse (1,1)-eigenform of the Hodge-de Rham Laplacian with the eigenvalue in the range between 2(9-4\\sqrt 3) and 2(9+4\\sqrt 3). Existence of such (1,1)-forms on all homogeneous Sasaki-Einstein manifolds can be shown explicitly using the Kahler quotient construction or the standard harmonic expansion. The latter shows that the instability arises from the coupling between the Pope-Warner background and Kaluza-Klein scalar modes ...

  15. Mergers and acquisitions : the case of Comcast and Time Warner Cable

    OpenAIRE

    Chissamba, Victor Chia

    2014-01-01

    Comcast and Time Warner Cable (TWC) merger has been a daily headline in the US business press since the merger announcement in last February 13th of 2014. Meanwhile many questions are raised about the transaction, either in terms of legal issues or in terms related to the strategy fit and financial accretive. These questions are motivated due to the size of both companies in industry where they operate, that leads to witness the largest merger in such industry and the emergence of a potential...

  16. Walter Miles, Pop Warner, B. C. Graves, and the psychology of football.

    Science.gov (United States)

    Baugh, Frank G; Benjamin, Ludy T

    2006-01-01

    In 1926-1927, a graduate student, B. C. Graves, working with Stanford University psychologist Walter Miles and legendary football coach Pop Warner, conducted an investigation of variations in signal calling as they affected the charging times of football players. The study was one of two that involved Miles and the ingenious multiple chronograph that he had invented to time the reactions of seven players simultaneously. These studies represented a brief digression in the career of Miles, who certainly was no sport psychologist. They tell of an interesting collaboration between scientist and coaches that produced one of the richest studies in sport psychology in the first half of the twentieth century.

  17. Non-abelian T-duality of Pilch-Warner background

    CERN Document Server

    Dimov, H; Rashkov, R C; Vetsov, T

    2015-01-01

    In this work we obtain the non-abelian T-dual geometry of the well-known Pilch-Warner supergravity solution. We derive the dual metric and the NS two-form by gauging the isometry group of the initial theory and integrating out the introduced auxiliary gauge fields. Then we use the Fourier-Mukai transform from algebraic geometry to find the transformation rules of the R-R fields. Finally, we argue that the dual theory inherit the supersymmetry of the original one by considering the general dependence of the Killing spinor on the spacetime coordinates.

  18. Research Administration in History: The Development of OMB Circular A-110 through Joseph Warner's COGR Subcommittee, 1976-1979

    Science.gov (United States)

    Myers, Phillip E.; Smith, Marie F.

    2008-01-01

    Research administrators can be assisted in resolving issues with awareness of the critical period of policy formation divulged in the Joseph Warner Papers. He and his colleagues on the Subcommittee on Grants and Contracts Provisions of COGR adopted the philosophy that research administrators needed flexibility and reduced paperwork and costs.…

  19. Tenderness and taste qualification of red brangus beef in Mexico

    OpenAIRE

    Gaspar Manuel Parra-Bracamonte; Ana María Sifuentes-Rincón; Williams Arellano-Vera; Juan Gabriel Magaña-Monforte; José Alberto Ramírez-De León; Gonzalo Velázquez

    2014-01-01

    Beef tenderness is an important trait in consumer satisfaction and has been considered as the main trait for palatability, for which reason it is important to evaluate its variability in different cattle breeds. An experiment was designed to evaluate the Warner Bratzler Shear Force (WBSF) of Red Brangus cattle rib eye steaks and consumer acceptance. The tenderness of beef rib eye steaks was evaluated by the WBSF. A consumer preference evaluation test was carried out to quantitatively estimate...

  20. A reescrita de mitos femininos na obra de Marina Warner : metamorfose, género e identidade

    OpenAIRE

    Santos, Lucília Ramos dos

    2011-01-01

    Dissertação de mestrado em Estudos Ingleses O trabalho de Marina Warner é marcado pelo imperativo pós-moderno do “eternal return”, associado ao processo de recontar e de reescrita, por forma a criar um universo narrativo aberto à renovação e instabilidade ilimitadas. A linguagem mítica, com a sua fluidez e flexibilidade, mais a sua relevância na construção e desconstrução da realidade, pode ser considerada um recurso eficaz no processo de reescrita, na metamorfose de um mund...

  1. No more Black and Blue: Women Against Violence Against Women and the Warner Communications boycott, 1976-1979.

    Science.gov (United States)

    Bronstein, Carolyn

    2008-04-01

    In the mid-1970s, Women Against Violence Against Women (WAVAW), the first national feminist organization to protest mediated sexual violence against women, pressured the music industry to cease using images of violence against women in its advertising. This article presents a case study of WAVAW's national boycott of Warner Communications, Inc. and documents the activists' successful consumer campaign. The study reveals that media violence was central to feminist organizing efforts, and that WAVAW and related organizations helped establish a climate of concern about violence that motivated scientific research on the relationship between exposure to media violence and subsequent aggression. PMID:18359878

  2. Lateral shear interferometry with holo shear lens

    Science.gov (United States)

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.

    1984-12-01

    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  3. Some experimental constraints for spectral parameters used in the Warner and McIntyre gravity wave parameterization scheme

    Directory of Open Access Journals (Sweden)

    M. Ern

    2006-06-01

    Full Text Available In order to incorporate the effect of gravity waves (GWs on the atmospheric circulation most global circulation models (GCMs employ gravity wave parameterization schemes. To date, GW parameterization schemes in GCMs are used without experimental validation of the set of global parameters assumed for the GW launch spectrum. This paper focuses on the Warner and McIntyre GW parameterization scheme. Ranges of parameters compatible with absolute values of gravity wave momentum flux (GW-MF derived from CRISTA-1 and CRISTA-2 satellite measurements are deduced for several of the parameters and the limitations of both model and measurements are discussed. The findings presented in this paper show that the initial guess of spectral parameters provided by Warner and McIntyre (2001 are some kind of compromise with respect to agreement of absolute values and agreement of the horizontal structures found in both measurements and model results. Better agreement can be achieved by using a vertical wavenumber launch spectrum with a wider saturated spectral range and reduced spectral power in the unsaturated part. Still, even global features of the measurements remain unmatched, and it is inevitable to provide a globally varying source distribution in future.

  4. Injection of marinade with actinidin increases tenderness of porcine M. biceps femoris and affects myofibrils and connective tissue

    DEFF Research Database (Denmark)

    Christensen, M.; Torngren, M. A.; Gunvig, A.;

    2009-01-01

    BACKGROUND: Marination of beef muscles with brine solutions containing proteolytic enzymes from fruit extracts has been shown to tenderize meat. However, the effect of marination with actinidin on tenderness of pork muscles has not been investigated. Tenderness and eating quality of porcine M....... biceps femoris was investigated by Warner-Bratzler (WB) shear test and sensory evaluation after injection of brine containing up to 11 g L-1 actinidin-containing kiwi fruit powder and 2, 5 or 9 days of storage. RESULTS: actinidin decreased WB shear force, increased tenderness and did not affect flavour...... indicate that actinidin tenderizes pork M. biceps femoris by affecting both the myofibrils and connective tissue....

  5. The association of CAPN1 316 marker genotypes with growth and meat quality traits of steers finished on pasture

    OpenAIRE

    María C. Miquel; Edgardo Villarreal; Carlos Mezzadra; Lilia Melucci; Liliana Soria; Pablo Corva; Alejandro Schor

    2009-01-01

    The objective of this paper was to determine the association of a SNP in the μ-calpain gene at position 316 with growth and quality of meat traits of steers grown on pasture. Fifty-nine Brangus and 20 Angus steers were genotyped for CAPN1 316. Warner Bratzler shear force was measured in l. lumborum samples after a 7-day aging period. A multivariate analysis of variance was performed, including shear force (WBSF), final weight (FW), average daily gain (ADG), backfat thickness (BFT), average mo...

  6. Reduced shear power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  7. Hillary Clinton / Judith Warner

    Index Scriptorium Estoniae

    Warner, Judith

    1994-01-01

    Kõige mõjuvõimsam naine maailmas - algus EA 22. veebruar 1994. May/4,11,18,25 lk. 22;22;22;21; Jun/1,8,15,22,29 lk. 21; Jul/6,13,20,27 21; Aug/3,10,17,24,31 lk. 21; Sep/7,14,21,28 lk. 21; Oct/5,12,19 lk. 21

  8. Detection of quantitative trait loci for growth and carcass composition in cattle.

    Science.gov (United States)

    Casas, E; Shackelford, S D; Keele, J W; Koohmaraie, M; Smith, T P L; Stone, R T

    2003-12-01

    The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat tenderness measured as Warner-Bratzler shear force at 14 d postmortem on chromosomes 20 and 29. These results present a complete scan in all available progeny in this family. Regions underlying QTL need to be assessed in other populations.

  9. Detection of quantitative trait loci for growth and carcass composition in cattle.

    Science.gov (United States)

    Casas, E; Shackelford, S D; Keele, J W; Koohmaraie, M; Smith, T P L; Stone, R T

    2003-12-01

    The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives carcass weight, QTL were detected on chromosomes 10, 18, and 29. Four QTL for yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat tenderness measured as Warner-Bratzler shear force at 14 d postmortem on chromosomes 20 and 29. These results present a complete scan in all available progeny in this family. Regions underlying QTL need to be assessed in other populations.

  10. Effect of grilling and baking on physicochemical and textural properties of tilapia (Oreochromis niloticus) fish burger.

    Science.gov (United States)

    Bainy, Eduarda Molardi; Bertan, Larissa Canhadas; Corazza, Marcos Lucio; Lenzi, Marcelo Kaminski

    2015-08-01

    The influence of two common cooking methods, grilling and baking, on chemical composition, water retention, fat retention, cooking yield, diameter reduction, expressible water, color and mechanical texture of tilapia (Oreochromis niloticus) fish burgers was investigated. Texture analyses were performed using a Warner-Bratzler test. The fish burger had a softer texture with a lower shear force than other meat products reported in the literature. There were no significant differences in proximate composition, diameter reduction, fat retention and expressible water between the grilled and oven-baked fish burgers. Cooking methods did not affect the cooking times and cooking rates. Warner-Bratzler parameters and color were significantly influenced by the cooking method. Grilling contributed to a shear force and work of shearing increase due to the lower cooking yield and water retention. Raw burgers had the highest L* (69.13 ± 0.96) and lowest b* (17.50 ± 0.75) values. Results indicated that baking yielded a product with better cooking characteristics, such as a desired softer texture with lower shear values (4.01 ± 0.54) and increased water retention (95.82 ± 0.77). Additionally, the baked fish burgers were lighter (higher L*) and less red (lower a*) than the grilled ones. PMID:26243932

  11. Cross Shear Roll Bonding

    DEFF Research Database (Denmark)

    Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;

    1994-01-01

    The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....

  12. Shear-resistant behavior of light composite shear wall

    Institute of Scientific and Technical Information of China (English)

    李升才; 董毓利

    2015-01-01

    Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan. The analysis results show that this kind of composite wall panel works very well, and can be regarded as a solid panel. The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play. Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.

  13. Shear-Resistant Behavior Analysis of Light Composite Shear Walls

    Institute of Scientific and Technical Information of China (English)

    李升才; 江见鲸; 于庆荣

    2002-01-01

    Shear test results for a composite wall panel in a light composite structure system are compared with test results for shear walls in Japan in this paper. The analysis results show that this kind of composite wall panel works very well, and can be regarded as a solid panel. The composite wall panel with a hidden frame is essential for bringing its effect on shear resistance into full play. Comprehensive analysis of the shear-resistant behavior of the composite wall panel suggests that the shear of the composite shear wall panel can be controlled by the cracking strength of the web shearing diagonal crack.

  14. Free volume under shear

    Science.gov (United States)

    Maiti, Moumita; Vinutha, H. A.; Sastry, Srikanth; Heussinger, Claus

    2015-10-01

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems — particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior.

  15. Mixing through shear instabilities

    CERN Document Server

    Brüggen, M

    2000-01-01

    In this paper we present the results of numerical simulations of the Kelvin-Helmholtz instability in a stratified shear layer. This shear instability is believed to be responsible for extra mixing in differentially rotating stellar interiors and is the prime candidate to explain the abundance anomalies observed in many rotating stars. All mixing prescriptions currently in use are based on phenomenological and heuristic estimates whose validity is often unclear. Using three-dimensional numerical simulations, we study the mixing efficiency as a function of the Richardson number and compare our results with some semi-analytical formalisms of mixing.

  16. Development of conjugate shear bands during bulk simple shearing

    Science.gov (United States)

    Harris, L. B.; Cobbold, P. R.

    In rocks possessing a strong planar fabric, shear bands of constant shear sense and oriented at an oblique angle to the foliation are considered by many authors to be characteristic of a non-coaxial bulk deformation history, whereas conjugate shear bands are considered to indicate coaxial shortening. However, in two areas where bulk deformation history appears to be non-coaxial (Cap Corse, Corsica and Ile de Groix, Brittany), conjugate shear bands are observed. In order to investigate this problem, experiments were performed by bulk simple shearing using Plasticine as a rock analogue. When slip between layers of the model is permitted, shear bands of normal-fault geometry form with both the same and opposite shear sense as the bulk simple shearing at approximately the same angle with the layering (40°) irrespective of layer orientation in the undeformed state (for initial orientations of 50, 30 and 15°). Shear bands are initially formed within individual layers and may propagate across layer interfaces when further movement along these is inhibited. The existence of conjugate shear bands in Corsica and Ile de Groix is therefore not incompatible with a model of bulk simple shearing for these two regions. In field studies, one should perhaps exercise care in using shear bands to determine the kind of motion or the sense of bulk shearing.

  17. Sheared solid materials

    Indian Academy of Sciences (India)

    Akira Onuki; Akira Furukawa; Akihiko Minami

    2005-05-01

    We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume . For very small the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing , accumulation of around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.

  18. Shear Thinning of Noncolloidal Suspensions

    Science.gov (United States)

    Vázquez-Quesada, Adolfo; Tanner, Roger I.; Ellero, Marco

    2016-09-01

    Shear thinning—a reduction in suspension viscosity with increasing shear rates—is understood to arise in colloidal systems from a decrease in the relative contribution of entropic forces. The shear-thinning phenomenon has also been often reported in experiments with noncolloidal systems at high volume fractions. However its origin is an open theoretical question and the behavior is difficult to reproduce in numerical simulations where shear thickening is typically observed instead. In this letter we propose a non-Newtonian model of interparticle lubrication forces to explain shear thinning in noncolloidal suspensions. We show that hidden shear-thinning effects of the suspending medium, which occur at shear rates orders of magnitude larger than the range investigated experimentally, lead to significant shear thinning of the overall suspension at much smaller shear rates. At high particle volume fractions the local shear rates experienced by the fluid situated in the narrow gaps between particles are much larger than the averaged shear rate of the whole suspension. This allows the suspending medium to probe its high-shear non-Newtonian regime and it means that the matrix fluid rheology must be considered over a wide range of shear rates.

  19. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    -shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...

  20. The Elemental Shear Dynamo

    CERN Document Server

    McWilliams, James C

    2011-01-01

    A quasi-linear theory is presented for how randomly forced, barotropic velocity fluctuations cause an exponentially-growing, large-scale (mean) magnetic dynamo in the presence of a uniform shear flow, $\\vec{U} = S x \\vec{e}_y$. It is a "kinematic" theory for the growth of the mean magnetic energy from a small initial seed, neglecting the saturation effects of the Lorentz force. The quasi-linear approximation is most broadly justifiable by its correspondence with computational solutions of nonlinear magneto-hydrodynamics, and it is rigorously derived in the limit of large resistivity, $\\eta \\rightarrow \\infty$. Dynamo action occurs even without mean helicity in the forcing or flow, but random helicity variance is then essential. In a sufficiently large domain and with small wavenumber $k_z$ in the direction perpendicular to the mean shearing plane, a positive exponential growth rate $\\gamma$ can occur for arbitrary values of $\\eta$, the viscosity $\

  1. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  2. Mixing in sheared suspensions

    Science.gov (United States)

    Souzy, Mathieu; Abid, Nora Cherifa; Villermaux, Emmanuel; Metzger, Bloen

    2015-11-01

    Mixing occurs spontaneously in sheared suspensions, even at low Reynolds number. Under flow, successive collisions between particles deviate the laminar streamlines, and thus induce disturbances in the fluid phase, which produce very efficient mixing. We measure fluid velocity fields by performing high spatial resolution PIV experiments within a sheared suspension, and we numerically advect isolated scalar filaments in the flow using Diffusive Strip Method. Stretching law parameters are measured from the elongation of the filaments, and are used to fully characterize the process. The deformation statistics are found to be well modeled by a Langevin equation with multiplicative noise, which can be coupled with diffusion to infer the probability density function of the concentration in the medium.

  3. Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

    Directory of Open Access Journals (Sweden)

    Heecheul Kim

    2015-01-01

    Full Text Available This paper presents the shear capacities of concrete beams reinforced with glass fiber reinforced polymer (GFRP plates as shear reinforcement. To examine the shear performance, we manufactured and tested a total of eight specimens. Test variables included the GFRP strip-width-to-spacing ratio and type of opening array. The specimen with a GFRP plate with a 3×2 opening array showed the highest shear strength. From the test results, the shear strength increased as the strip-width-to-strip-spacing ratio increased. Also, we used the experimental results to evaluate whether the shear strength equations of ACI 318-14 and ACI 440.1R can be applied to the design of GFRP shear reinforcement. In the results, the ACI 440 equation underestimated the experimental results more than that of ACI 318.

  4. Micromechanics of shear banding

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  5. Functionality of the plastron in adults of Neochetina eichhorniae Warner (Coleoptera, Curculionidae: aspects of the integument coating and submersion laboratory experiments

    Directory of Open Access Journals (Sweden)

    Wesley Oliveira de Sousa

    2012-09-01

    Full Text Available The plastron theory was tested in adults of Neochetina eichhorniae Warner, 1970, through the analysis of the structure that coats these insects' integument and also through submersion laboratorial experiments. The tegument processes were recognized in three types: agglutinated scales with large perforations, plumose scales of varied sizes and shapes, and hairs. The experiments were carried out on 264 adult individuals which were kept submerged at different time intervals (n = 11 and in two types of treatment, natural non-aerated water and previously boiled water, with four repetitions for each treatment. The tests showed a maximum mortality after 24 hours of immersion in the previously boiled water treatment. The survival of the adults was negative and significantly correlated with the types of treatment employed and within the different time intervals. The values of oxygen dissolved in water (mg/l differed significantly within the types of treatment employed. They were positively correlated with the survival of the adults in the two types of treatment, although more markedly in the treatment with previously boiled water. The mortality of adults after 24 hours of submersion in the treatment with previously boiled water may be associated with the physical-chemical conditions of the non-tested water in this study, such as low surface tension and concentration of solutes. These results suggest plastron functionality in the adults of this species.

  6. Front tracking for shear bands in an antiplane shear model

    International Nuclear Information System (INIS)

    In this paper we describe a numerical algorithm for the study of shear band, formation and growth in two-dimensional antiplane shear. The constitutive model uses a non-associative flow rule. The numerical scheme is based on a Godunov method for updating the velocity, while the stress is updated via integration along particle paths. The scheme is coupled with a front tracking algorithm for careful evolution of the shear bands. The main challenges are the non-hyperbolicity of the shear band formation and growth (front tracking avoids the catastrophic effects of the loss of hyperbolicity in the Godunov-type numerical scheme), the existence of endpoints for the shear band (the tracked front does not separate the computational domain into disconnected regions), and the non-hyperbolic rate of growth of the shear band. We give examples of the success of the algorithm and show convergence tests. 69 refs., 13 figs

  7. The Elemental Shear Dynamo

    OpenAIRE

    Mcwilliams, James C.

    2011-01-01

    A quasi-linear theory is presented for how randomly forced, barotropic velocity fluctuations cause an exponentially-growing, large-scale (mean) magnetic dynamo in the presence of a uniform shear flow, $\\vec{U} = S x \\vec{e}_y$. It is a "kinematic" theory for the growth of the mean magnetic energy from a small initial seed, neglecting the saturation effects of the Lorentz force. The quasi-linear approximation is most broadly justifiable by its correspondence with computational solutions of non...

  8. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange....... The position of the crack in which sliding takes place is determined by the crack sliding model developed by Jin-Ping Zhang. The theoretical calculations are compared with test results reported in the literature. A good agreement has been found.A simplified method to calculate the shear capacity of T...

  9. Inductive shearing of drilling pipe

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  10. Shear viscosity of nuclear matter

    International Nuclear Information System (INIS)

    This paper reports my recent study[1] on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach. An isospin- and momentum-dependent interaction is used in the study. Dependence of density, temperature, and isospin asymmetry of nuclear matter on its shear viscosity have been discussed. Similar to the symmetry energy, the symmetry shear viscosity is defined and its density and temperature dependence are studied. (authors)

  11. Bayesian Lensing Shear Measurement

    CERN Document Server

    Bernstein, Gary M

    2013-01-01

    We derive an estimator of weak gravitational lensing shear from background galaxy images that avoids noise-induced biases through a rigorous Bayesian treatment of the measurement. The Bayesian formalism requires a prior describing the (noiseless) distribution of the target galaxy population over some parameter space; this prior can be constructed from low-noise images of a subsample of the target population, attainable from long integrations of a fraction of the survey field. We find two ways to combine this exact treatment of noise with rigorous treatment of the effects of the instrumental point-spread function and sampling. The Bayesian model fitting (BMF) method assigns a likelihood of the pixel data to galaxy models (e.g. Sersic ellipses), and requires the unlensed distribution of galaxies over the model parameters as a prior. The Bayesian Fourier domain (BFD) method compresses galaxies to a small set of weighted moments calculated after PSF correction in Fourier space. It requires the unlensed distributi...

  12. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  13. Shear Profiles and Velocity Distribution in Dense Shear Granular Flow

    Institute of Scientific and Technical Information of China (English)

    WANG Deng-Ming; ZHOU You-He

    2009-01-01

    We perform DEM simulations to investigate the influence of the packing fraction γ on the,shape of mean tan-gential velocity profile in a 2D annular dense shear granular flow. There is a critical packing fraction γc. For γ < γc, the mean tangential velocity profile shows a roughly exponential decay from the shearing boundary and is almost invariant to the imposed shear rate. However, for γ γc, the tangential velocity profile exhibits a rate-dependence feature and changes from linear to nonlinear gradually with the increasing shear rate. Fhrther-more, the distributions of normalized tangential velocities at different positions along radial direction exhibit the Gaussian or the composite Gaussian distributing features.

  14. Shear Banding of Complex Fluids

    Science.gov (United States)

    Divoux, Thibaut; Fardin, Marc A.; Manneville, Sebastien; Lerouge, Sandra

    2016-01-01

    Even in simple geometries, many complex fluids display nontrivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known for several decades, but in recent years, we have seen an upsurge in studies offering an ever-more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and soft glassy materials and highlight their similarities and disparities.

  15. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  16. Grafted polymer under shear flow

    Science.gov (United States)

    Kumar, Sanjiv; Foster, Damien P.; Giri, Debaprasad; Kumar, Sanjay

    2016-04-01

    A self-attracting-self-avoiding walk model of polymer chain on a square lattice has been used to gain an insight into the behaviour of a polymer chain under shear flow in a slit of width L. Using exact enumeration technique, we show that at high temperature, the polymer acquires the extended state continuously increasing with shear stress. However, at low temperature the polymer exhibits two transitions: a transition from the coiled to the globule state and a transition to a stem-flower like state. For a chain of finite length, we obtained the exact monomer density distributions across the layers at different temperatures. The change in density profile with shear stress suggests that the polymer under shear flow can be used as a molecular gate with potential application as a sensor.

  17. Application of exogenous enzymes to beef muscle of high and low-connective tissue.

    Science.gov (United States)

    Sullivan, G A; Calkins, C R

    2010-08-01

    Exogenous enzymes tenderize meat through proteolysis. Triceps brachii and Supraspinatus were randomly assigned to the seven enzyme treatments, papain, ficin, bromelain, homogenized fresh ginger, Bacillus subtilis protease, and two Aspergillus oryzae proteases or control to determine the extent of tenderization (Warner-Bratzler shear and sensory evaluation) and mode of action (myofibrillar or collagen degradation). Sensory evaluation showed improvement (P<0.0009) for tenderness and connective tissue component and all except ginger had a lower shear force than the control (P<0.003). Ginger produced more off-flavor than all other treatments (P<0.0001). Only papain increased soluble collagen (P<0.0001). Control samples were only significantly less than ficin for water soluble (P=0.0002) and A. oryzae concentrate for salt soluble proteins (P=0.0148). All enzyme treatments can increase tenderness via myofibrillar and collagenous protein degradation with no difference among high and low-connective tissue muscles.

  18. Effect on instrumental texture, expressible moisture and oxidative rancidity when oleogel was employed as fat replacer in cooked sausages

    Directory of Open Access Journals (Sweden)

    Toledo, Octavio

    2016-06-01

    Full Text Available Consumption of foods with saturated fats has been contributed to overweight in Mexican population. Saturated fat was replaced in 50 and 100% in cooked sausages to determinate differences in texture profile analysis ad shear tests with Warner-Bratzler blade and Meullenet-Owens razor blade. In same manner, expressible moisture and oxidative rancidity were studied. Saturated fat replacement by oleogel resulted in a softer but more cohesive texture. In shear tests, fat replacement resulted in the gradually decrease of the studied parameters, related to a less hard and easy to chew texture. Oleogel as fat replacer improved water retention, probably by the celluloses in oleogel, and decreased lipids oxidative rancidity by the unsaturated lipids present in oleogel vegetable oil. Results demonstrate that fat replacement with oleogel improved textural and nutritional properties of cooked sausages.

  19. Shear Banding of Complex Fluids

    OpenAIRE

    Divoux, Thibaut; Fardin, Marc-Antoine; Manneville, Sebastien; Lerouge, Sandra

    2015-01-01

    Even in simple geometries many complex fluids display non-trivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known since several decades, but the recent years have seen an upsurge of studies offering an ever more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales and with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many pheno...

  20. Functionality of the plastron in adults of Neochetina eichhorniae Warner (Coleoptera, Curculionidae: aspects of the integument coating and submersion laboratory experiments Funcionalidade do plastrão em adultos de Neochetina eichhorniae Warner (Coleoptera, Curculionidae: aspectos do revestimento tegumentar e experimentos laboratoriais de submersão

    Directory of Open Access Journals (Sweden)

    Wesley Oliveira de Sousa

    2012-09-01

    Full Text Available The plastron theory was tested in adults of Neochetina eichhorniae Warner, 1970, through the analysis of the structure that coats these insects' integument and also through submersion laboratorial experiments. The tegument processes were recognized in three types: agglutinated scales with large perforations, plumose scales of varied sizes and shapes, and hairs. The experiments were carried out on 264 adult individuals which were kept submerged at different time intervals (n = 11 and in two types of treatment, natural non-aerated water and previously boiled water, with four repetitions for each treatment. The tests showed a maximum mortality after 24 hours of immersion in the previously boiled water treatment. The survival of the adults was negative and significantly correlated with the types of treatment employed and within the different time intervals. The values of oxygen dissolved in water (mg/l differed significantly within the types of treatment employed. They were positively correlated with the survival of the adults in the two types of treatment, although more markedly in the treatment with previously boiled water. The mortality of adults after 24 hours of submersion in the treatment with previously boiled water may be associated with the physical-chemical conditions of the non-tested water in this study, such as low surface tension and concentration of solutes. These results suggest plastron functionality in the adults of this species.A teoria plastrão foi testada em adultos de Neochetina eichhorniae Warner, 1970, por meio da análise da estrutura que reveste o tegumento destes insetos e em experimentos laboratoriais de submersão. Os processos tegumentares foram reconhecidos em três tipos: escamas aglutinadas e com perfurações largas; escamas plumosas de tamanhos e formas variadas; e pêlos. Os experimentos realizados com 264 indivíduos adultos os quais permaneciam submersos por diferentes intervalos de tempo (n = 11 e em dois

  1. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed that w...

  2. Bicontinuous Microemulsions under Steady Shear Flow

    OpenAIRE

    Kodama, Hiroya; Komura, Shigeyuki

    1997-01-01

    Dynamic response of microemulsions to shear deformation on the basis of two-order-parameter time dependent Ginzburg-Landau model is investigated by means of cell dynamical system approach. Time evolution of anisotropic factor and excess shear stress under steady shear flow is studied by changing shear rate and total amount of surfactant. As the surfactant concentration is increased, overshoot peak height of the anisotropic factor increases whereas that of the excess shear stress is almost unc...

  3. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars;

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that dif......This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so...

  4. Shear loading of costal cartilage

    CERN Document Server

    Subit, Damien

    2014-01-01

    A series of tests were performed on a single post-mortem human subject at various length scales. First, tabletop tests were performed. Next, the ribs and intercostal muscles were tested with the view to characterize the load transfer between the ribs. Finally, the costal cartilage was tested under shear loading, as it plays an important in the transfer of the load between the ribs and the sternum. This paper reports the results of dynamic shear loading tests performed on three samples of costal cartilage harvested from a single post-mortem human subject, as well as the quantification of the effective Young's modulus estimated from the amount of cartilage calcification.

  5. Cosmic Shear Bias and Calibration in Cosmic Shear Studies

    CERN Document Server

    Taylor, A N

    2016-01-01

    With the advent of large-scale weak lensing surveys there is a need to understand how realistic, scale-dependent systematics bias cosmic shear and dark energy measurements, and how they can be removed. Here we describe how spatial variations in the amplitude and orientation of realistic image distortions convolve with the measured shear field, mixing the even-parity convergence and odd-parity modes, and bias the shear power spectrum. Many of these biases can be removed by calibration to external data, the survey itself, or by modelling in simulations. The uncertainty in the calibration must be marginalised over and we calculate how this propagates into parameter estimation, degrading the dark energy Figure-of-Merit. We find that noise-like biases affect dark energy measurements the most, while spikes in the bias power have the least impact, reflecting their correlation with the effect of cosmological parameters. We argue that in order to remove systematic biases in cosmic shear surveys and maintain statistica...

  6. Shear resistance of beams based on the effective shear depth

    NARCIS (Netherlands)

    Pruijssers, A.F.

    1986-01-01

    Despite extensive experimental and theoretical studies the shear resistance of beams with longitudinal reinforcement is described by empirical expressions. A reliable empirical formula is derived by Rafla [10]. This formula is based on 442 experimental results. In this report no experiments are desc

  7. Active Control of Shear Thickening in Suspensions

    CERN Document Server

    Lin, Neil Y C; Cates, Michael E; Sun, Jin; Cohen, Itai

    2016-01-01

    Shear thickening, an increase of viscosity with shear rate, is a ubiquitous phenomena in suspended materials that has implications for broad technological applications. Controlling this thickening behavior remains a major challenge and has led to empirical strategies ranging from altering the particle surfaces and shape to modifying the solvent properties. However, none of these methods allow for active control of flow properties during shear itself. Here, we demonstrate that by strategic imposition of a high-frequency and low-amplitude shear perturbation orthogonal to the primary shearing flow, we can largely eradicate shear thickening. The orthogonal shear effectively becomes a regulator for controlling thickening in the suspension, allowing the viscosity to be reduced by up to two decades on demand. In a separate setup, we show that such effects can be induced by simply agitating the sample transversely to the primary shear direction. Overall, the ability of in situ manipulation of shear thickening paves a...

  8. Models for providing shear resistance of reinforced concrete elements subjected to shear

    OpenAIRE

    Klemen, Eva

    2015-01-01

    Shear resistance of reinforced concrete elements subjected to shear were analyzed in this thesis. Firstly, shear stresses in reinforced concrete and influences which are important to determine shear resitance are presented. Later different procedures for determining shear resistance of members without and with shear reinforcement in Slovenian standard SIST EN 1992-1-1 and in model direction fib Model Code 2010 are discussed, respectively. Furher different analitical models on whic...

  9. Effect of two dietary concentrate levels on tenderness, calpain and calpastatin activities, and carcass merit in Waguli and Brahman steers.

    Science.gov (United States)

    Ibrahim, R M; Goll, D E; Marchello, J A; Duff, G C; Thompson, V F; Mares, S W; Ahmad, H A

    2008-06-01

    The objective of this study was to compare carcass characteristics of a newly introduced breed, the Waguli (Wagyu x Tuli), with the carcass characteristics of the Brahman breed. Brahman cattle are used extensively in the Southwest of the United States because of their tolerance to adverse environmental conditions. However, Brahman carcasses are discounted according to the height of their humps because of meat tenderness issues. The Waguli was developed in an attempt to obtain a breed that retained the heat tolerance of the Brahman but had meat quality attributes similar to the Wagyu. Twenty-four animals were used. Six steers from each breed were fed a 94% concentrate diet and 6 steers from each breed were fed an 86% concentrate diet. Eight steers, 2 from each group, were harvested after 128 d, after 142 d, and after 156 d on feed. Waguli steers had larger LM, greater backfat thickness, greater marbling scores, and greater quality grades than the Brahman steers (P meat, and these traits are also present in the Waguli. The Waguli had significantly lower Warner-Bratzler shear force values than the Brahman steers after 7 and 10 d of postmortem aging (P Brahman had increased to acceptable levels. Toughness of the Brahman has been associated with high levels of calpastatin in Brahman muscle, and the Waguli LM had significantly less calpastatin activity (P = 0.02) at 0 h postmortem than the Brahman LM. At 0-h postmortem, the total LM calpain activity did not differ between the Brahman and Waguli (P = 0.57). Neither diet nor days on feed had any significant effect on the 0-h postmortem calpain or at 0-h postmortem calpastatin activity, nor an effect on Warner-Bratzler shear-force values. In conclusion, LM muscle from the Waguli steers had a high degree of marbling, lower shear force values, and low calpastatin activity, all of which are related to more tender meat. PMID:18310491

  10. Shear-affected depletion interaction

    NARCIS (Netherlands)

    July, C.; Kleshchanok, D.; Lang, P.R.

    2012-01-01

    We investigate the influence of flow fields on the strength of the depletion interaction caused by disc-shaped depletants. At low mass concentration of discs, it is possible to continuously decrease the depth of the depletion potential by increasing the applied shear rate until the depletion force i

  11. Zipper and freeway shear zone junctions

    Science.gov (United States)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  12. Review of the Shearing Process for Sheet Steels and Its Effect on Sheared-Edge Stretching

    Science.gov (United States)

    Levy, B. S.; Van Tyne, C. J.

    2012-07-01

    Failure in sheared-edge stretching often limits the use of advanced high-strength steel sheets in automotive applications. The present study analyzes data in the literature from laboratory experiments on both the shearing process and the characteristics of sheared edges. Shearing produces a surface with regions of rollover, burnish, fracture, and burr. The effect of clearance and tensile strength on the shear face characteristics is quantified. Higher strength, lower ductility steels exhibit an increase in percent fracture region. The shearing process also creates a zone of deformation adjacent to the shear face called the shear-affected zone (SAZ). From an analysis of data in the literature, it is concluded that deformation in the SAZ is the dominant factor in controlling failure during sheared-edge stretching. The characteristics of the shear face are generally important for failures during sheared-edge stretching only as there is a correlation between the characteristics of the shear face and the characteristics of the SAZ. The effect of the shear burr on shear-edge stretching is also related to a correlation with the characteristics of the SAZ. In reviewing the literature, many shearing variables that could affect sheared-edge stretching limits are not identified or if identified, not quantified. It is likely that some of these variables could affect subsequent sheared-edge stretching limits.

  13. Developments in Plasticity Approach to Shear

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The paper deals with plastic methods applied to shear design of reinforced concrete beams. Emphasis is put on the recently developed crack sliding model applicable to non-shear reinforced and lightly shear reinforced beams and slabs. The model, which is an upper bound plasticity approach, takes...

  14. Shear instability of a gyroid diblock copolymer

    DEFF Research Database (Denmark)

    Eskimergen, Rüya; Mortensen, Kell; Vigild, Martin Etchells

    2005-01-01

    -induced destabilization is discussed in relation to analogous observations on shear-induced order-to-order and disorder-to-order transitions observed in related block copolymer systems and in microemulsions. It is discussed whether these phenomena originate in shear-reduced fluctuations or shear-induced dislocations....

  15. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...

  16. Shear viscosity of nuclear matter

    CERN Document Server

    Magner, A G; Grygoriev, U V; Plujko, V A

    2016-01-01

    Shear viscosity $\\eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent collision regime, the shear viscosity depends on the particle number density $n$ through the mean-field parameter $a$ which describes attractive forces in the VDW equation. In the temperature region $T=15\\div 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5\\div 1.5)\\,n^{}_0$, where $n^{}_0=0.16\\,$fm$^{-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $\\eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $\\eta/s\\gg 1$ are however found in both the low density, $n\\ll n^{}_0$, and high density, $n>2n^{}_0$, regions. This makes the ideal hydrodynamic approach ina...

  17. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-01-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals. PMID:27009331

  18. Kinematics and shear heat pattern of ductile simple shear zones with `slip boundary condition'

    Science.gov (United States)

    Mulchrone, Kieran F.; Mukherjee, Soumyajit

    2016-04-01

    Extrusion by Poiseuille flow and simple shear of hot lower crust has been deciphered from large hot orogens, and partial-slip boundary condition has been encountered in analogue models. Shear heat and velocity profiles are deduced from a simplified form of Navier-Stokes equation for simple shear together with extrusive Poiseuille flow and slip boundary condition for Newtonian viscous rheology. A higher velocity at the upper boundary of the shear zone promotes higher slip velocity at the lower boundary. The other parameters that affect the slip are viscosity and thickness of the shear zone and the resultant pressure gradient that drives extrusion. In the partial-slip case, depending on flow parameters (resultant pressure gradient, density and viscosity) and thickness of the shear zone, the velocity profiles can curve and indicate opposite shear senses. The corresponding shear heat profiles can indicate temperature maximum inside shear zones near either boundaries of the shear zone, or equidistant from them.

  19. Effect of a β-agonist on meat quality and myofibrillar protein fragmentation in bulls.

    Science.gov (United States)

    Fiems, L O; Buts, B; Boucqué, C V; Demeyer, D I; Cottyn, B G

    1990-01-01

    Three experiments were conducted to study the effect of cimaterol on meat quality and myofibrillar protein fragmentation of the Longissimus dorsi muscle. In two experiments (Experiments 1 and 2), conducted with 16 double-muscled Belgian white-blue bulls and 15 Charolais bulls, respectively, half of the animals received 60 μg cimaterol daily per kg liveweight in the diet, during 135 and 93 days, respectively. In a third experiment, 46 normal Belgian white-blue bulls received no or 4 ppm cimaterol in the diet for 246, 127 or 71 days on average. A withdrawal period of 6 days was always applied for cimaterol-treated animals. Ultimate pH, colour and waterholding capacity were not significantly affected. The effect of cimaterol on moisture content was variable, while protein content was increased and fat was reduced. Warner-Bratzler shear force values were increased by cimaterol P meat quality. PMID:22055115

  20. Carcass and meat quality characteristics of Brahman cross bulls and steers finished on tropical pastures in Costa Rica.

    Science.gov (United States)

    Rodriguez, Julio; Unruh, John; Villarreal, Milton; Murillo, Olger; Rojas, Sailim; Camacho, Jorge; Jaeger, John; Reinhardt, Chris

    2014-03-01

    Forty-eight male calves (3/4 Brahman×1/4 Charolais) were used to determine carcass cutability and meat tenderness of Longissimus lumborum (LL), Gluteus medius (GM), Semitendinosus (ST) and Psoas major (PM) steaks from lighter weight carcasses of bulls and steers castrated at 3, 7, or 12 mo of age grown under tropical pasture conditions. Steaks from steers had lower (more tender) LL Warner-Bratzler shear force (WBSF) values than those from bulls. Steaks from steers castrated at 3 mo had lower GM WBSF than those from bulls. For PM steaks, those aged 28 d had lower WBSF than those aged 2d. Steaks aged 28 d had the lowest LL and GM WBSF and steaks aged 2d had the highest LL, GM, and ST WBSF. Castration at younger ages is recommended because it provides improvement in LL and GM tenderness over bulls with no differences in carcass traits or subprimal yields. PMID:24342184

  1. Variation in meat quality characteristics between Sanga (Bos taurus africanus) and Sanga-derived cattle breeds and between Sanga and Brahman (Bos indicus).

    Science.gov (United States)

    Strydom, P E; Frylinck, L; Smith, M F

    2011-03-01

    Cattle breeds indigenous to Africa (Sanga) compare favourably to Bos indicus breeds with regard to adaptation to harsh environments. This study compared the meat quality of three Sanga breeds (Nguni, Tuli and Drakensberger), a Sanga-related breed (Bonsmara) and a B. indicus breed (Brahman) and supported these results with biochemical and histological measurements on the M. longissimus lumborum. Twelve young grain-fed steers of each breed were slaughtered and carcasses were electrically stimulated. All Sanga (and related) breeds, with the exception of the Tuli, had lower Warner-Bratzler shear force (SF) values at 2 and 21 days post mortem compared with the BR (P meat than BR, mainly due to favourable calpain-to-calpastatin ratios. Small differences in colour, drip loss and cooking properties were found among breeds (P < 0.05). PMID:22445415

  2. Relationship between commercially available DNA analysis and phenotypic observations on beef quality and tenderness.

    Science.gov (United States)

    Magolski, J D; Buchanan, D S; Maddock-Carlin, K R; Anderson, V L; Newman, D J; Berg, E P

    2013-11-01

    Warner-Bratzler shear force values from 560 mixed breed heifers and steers were used to determine estimates of genetic selection. Cattle were marketed from 2008 to 2011, and included five feedlot based research projects at the North Dakota State University-Carrington Research Extension Center. Samples were collected for IGENITY® analysis providing information that included selection indices and estimated breeding values for carcass traits. DNA-based test results were compared with actual carcass measurements. Marbling accounted for over 10% of the variation in WBSF while hot carcass weight was the second most influential carcass trait accounting for 4% (Pgrade, and fat thickness were low (R(2)=0.14, 0.02, 0.03, 0.03, and 0.02, respectively). Therefore selecting cattle for a higher degree of marbling and feeding a diet that meets or exceeds recommended nutrients for growth are the most important factors influencing beef tenderness and acceptability. PMID:23793083

  3. The Hypertrophic Marchigiana: physical and biochemical parameters for meat quality evaluation

    Directory of Open Access Journals (Sweden)

    F. M. Sarti

    2010-04-01

    Full Text Available The aim of this study was to evaluate the meat quality of double muscled Marchigiana young bulls characterized by different genotypes for the hypertrophy: normal and mutated (heterozygous. Calpain and calpastatin activities were determined to verify the state of aging meat on a sample of Longissimus thoracis muscle (XIII thoracic rib taken at slaughtering (0h and after 24 hours (24h. After 14 days of aging, another sample of muscle was taken to evaluate physical and chemical parameters of meat quality. The results showed a better meat quality of mutated animals respect normal animals. Another interesting result was the correlation between the biochemical parameters and some physical parameters, such as WBS (Warner Bratzler Shear Force, CL (Cooking loss. These results showed the relationship between the proteolytic activity of calpain system and meat tenderness.

  4. Effect of South African beef production systems on post-mortem muscle energy status and meat quality.

    Science.gov (United States)

    Frylinck, L; Strydom, P E; Webb, E C; du Toit, E

    2013-04-01

    Post-slaughter muscle energy metabolism meat colour of South African production systems were compared; steers (n=182) of Nguni, Simmental Brahman crossbreds were reared on pasture until A-, AB-, or B-age, in feedlot until A-AB-age. After exsanguination carcasses were electrically stimulated (400 V for 15 s). M. longissimus dorsi muscle energy samples were taken at 1, 2, 4 and 20 h. Post-mortem samples for meat quality studies were taken at 1, 7 and 14 days post-mortem. Production systems affected muscle glycogen, glucose, glucose-6-P, lactic acid, ATP, creatine-P glycolytic potential (P0.5) water holding capacity, drip loss, and Warner Bratzler shear force. Muscle energy only affected muscle contraction of the A-age-pasture system (shortest sarcomere length of 1.66 μm vs 1.75 μm highest WBS of 6 kg vs 5 kg 7 days post-mortem). PMID:23305833

  5. Application of exogenous enzymes to beef muscle of high and low-connective tissue.

    Science.gov (United States)

    Sullivan, G A; Calkins, C R

    2010-08-01

    Exogenous enzymes tenderize meat through proteolysis. Triceps brachii and Supraspinatus were randomly assigned to the seven enzyme treatments, papain, ficin, bromelain, homogenized fresh ginger, Bacillus subtilis protease, and two Aspergillus oryzae proteases or control to determine the extent of tenderization (Warner-Bratzler shear and sensory evaluation) and mode of action (myofibrillar or collagen degradation). Sensory evaluation showed improvement (Ppapain increased soluble collagen (P<0.0001). Control samples were only significantly less than ficin for water soluble (P=0.0002) and A. oryzae concentrate for salt soluble proteins (P=0.0148). All enzyme treatments can increase tenderness via myofibrillar and collagenous protein degradation with no difference among high and low-connective tissue muscles. PMID:20416788

  6. Effects of post-mortem aging time and type of aging on palatability of low marbled beef loins.

    Science.gov (United States)

    Lepper-Blilie, A N; Berg, E P; Buchanan, D S; Berg, P T

    2016-02-01

    The study objective was to evaluate the effect of post-mortem aging period (14 to 49days), dry vs. wet (D vs W) type of aging on the palatability of bone-in (BI) beef short loins (n=96) and boneless (BL) strip loins (n=96) possessing United States Department of Agriculture marbling scores between Slight and Small. Warner-Bratzler shear force (WBSF) scores decreased linearly over time (P=0.0001). WBSF was not influenced by aging method or loin type. Aged flavor was higher for DBL than for DBI with WBL and WBI intermediate. Dry aging strip loins increase aged flavor yet did not improve beefy flavor compared to wet aging. Based on objective data and panelist's scores for tenderness, juiciness and aged flavor, a boneless, 28days wet aged strip steak, cooked to 71°C would provide the best combination of eating satisfaction and value. PMID:26551359

  7. Effect of summer forage species grazed during finishing on animal performance, carcass quality, and meat quality.

    Science.gov (United States)

    Schmidt, J R; Miller, M C; Andrae, J G; Ellis, S E; Duckett, S K

    2013-09-01

    Angus-cross steers (n = 60) were used to assess the effect of forage species [alfalfa (AL; Medicago sativa L.), bermudagrass (BG; Cynodon dactylon), chicory (CH; Cichorium intybus L.), cowpea (CO; Vigna unguiculata L.), and pearl millet (PM; Pennisetum glaucum (L. R Br.)] in replicated 2-ha paddocks for finishing on cattle performance, carcass quality, and meat quality in a 2-yr study. Steers were blocked by BW and assigned randomly to finishing-forage treatments before the start of the experiment. Steers grazing AL and CH had greater (P 1 kg/d). Finishing on legumes (AL and CO) increased dressing percentage, reduced Warner-Bratzler shear force values, and increased consumers preference, whereas finishing on grasses (BG and PM) enhanced anticarcinogenic fatty acid concentrations. PMID:23825343

  8. Comparison of textural atributes of selected meat sausages using instrumental analysis

    Directory of Open Access Journals (Sweden)

    Vladimír Vietoris

    2013-03-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE The aim of the study was to compare textural atributes of selected meat sausages using instrumental analysis. For this purpose, seven different meat sausage samples were treated by instrumental analysis, by the use of Warner-Bratzler probe,  to find differences for two selected textural parameter firmness and work of shear. As expected, various values of mentioned atributes were obtained for different samples tested in fresh stage and after storage under controlled conditions (48 hrs., 30 °C temp., and 60 % R.H. before and after cooking. For statistical evaluation of results, paired T test was used, statistically significant differences were taken at pdoi:10.5219/273

  9. Carcass and meat quality characteristics of Brahman cross bulls and steers finished on tropical pastures in Costa Rica.

    Science.gov (United States)

    Rodriguez, Julio; Unruh, John; Villarreal, Milton; Murillo, Olger; Rojas, Sailim; Camacho, Jorge; Jaeger, John; Reinhardt, Chris

    2014-03-01

    Forty-eight male calves (3/4 Brahman×1/4 Charolais) were used to determine carcass cutability and meat tenderness of Longissimus lumborum (LL), Gluteus medius (GM), Semitendinosus (ST) and Psoas major (PM) steaks from lighter weight carcasses of bulls and steers castrated at 3, 7, or 12 mo of age grown under tropical pasture conditions. Steaks from steers had lower (more tender) LL Warner-Bratzler shear force (WBSF) values than those from bulls. Steaks from steers castrated at 3 mo had lower GM WBSF than those from bulls. For PM steaks, those aged 28 d had lower WBSF than those aged 2d. Steaks aged 28 d had the lowest LL and GM WBSF and steaks aged 2d had the highest LL, GM, and ST WBSF. Castration at younger ages is recommended because it provides improvement in LL and GM tenderness over bulls with no differences in carcass traits or subprimal yields.

  10. Two-, three-, and four-breed rotational crossbreeding of beef cattle: carcass traits.

    Science.gov (United States)

    DeRouen, S M; Franke, D E; Bidner, T D; Blouin, D C

    1992-12-01

    Carcass data from 1,494 straightbred and rotational crossbred steers were collected over four generations. Mating systems included straightbreds (Angus [A], Brahman [B], Charolais [C], and Hereford [H]); two-breed rotations (A-B, C-B, and H-B); three-breed rotations (A-B-C, A-B-H, and B-C-H); and a four-breed rotation (A-B-C-H). Steers were randomly allocated to one of four postweaning treatments that varied in length of grazing and feeding periods. Treatment and breed group (four straightbreds and seven rotational combinations) significantly influenced hot carcass weight (HCWT), retail yield (RY), longissimus muscle area (LM), fat thickness (FT), marbling score (MS), USDA quality grade (QG), and Warner-Bratzler shear force (WBS). Feeding for longer periods resulted in greater (P carcass traits except MS.

  11. Organoleptic properties of meat from Altamurana and Trimeticcio lambs slaughtered at two different ages

    Directory of Open Access Journals (Sweden)

    A. Girolami

    2010-04-01

    Full Text Available The experiment was performed with thirty-two Altamurana and Trimeticcio lambs slaughtered at 42 and at 70 days of age. Meat organoleptic characteristics were determined on samples of M. Longissimus lumborum and Longissimus thoracis. Colour parameters were not affected by genotype, while L* value and index of yellow decreased (P<0.01 and P<0.05, respectively as age of slaughtering increased. Meat from Altamurana lambs showed lower juiciness (P<0.01 and fatness (P<0.05 than Trimeticcio lambs. No genotype and age of slaughtering effects were found for Warner-Bratzler shear force (WBSF values. Meat from younger lambs was more tender and chewable (P<0.01 but less juicy (P<0.001 and fatty (P<0.05 than meat from lambs slaughterd at 70 days.

  12. Functional Genomic Analysis of Variation on Beef Tenderness Induced by Acute Stress in Angus Cattle

    Directory of Open Access Journals (Sweden)

    Chunping Zhao

    2012-01-01

    Full Text Available Beef is one of the leading sources of protein, B vitamins, iron, and zinc in human food. Beef palatability is based on three general criteria: tenderness, juiciness, and flavor, of which tenderness is thought to be the most important factor. In this study, we found that beef tenderness, measured by the Warner-Bratzler shear force (WBSF, was dramatically increased by acute stress. Microarray analysis and qPCR identified a variety of genes that were differentially expressed. Pathway analysis showed that these genes were involved in immune response and regulation of metabolism process as activators or repressors. Further analysis identified that these changes may be related with CpG methylation of several genes. Therefore, the results from this study provide an enhanced understanding of the mechanisms that genetic and epigenetic regulations control meat quality and beef tenderness.

  13. Shear Strength of Reinforced Concrete Shear Walls under Eccentric Tensile Axial Force

    OpenAIRE

    MIZOGUCHI, Mitsuo; ARAI, Yasuyuki; Hosoya, Koji

    2002-01-01

    Six reinforced concrete shear wall models were built and tested to investigate effects of cyclic lateral loading and an eccentric tensile axial force on their shear strength behavior. The following are confirmed from this test result. When the elongation at the bottom of the boundary column on the compression side for a lateral force is small, the shear strength of shear walls subjected to a tensile axial force at the boundary column can be evaluated by conventional shear strenght equations, ...

  14. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  15. Magnetic shear. II - Hale region 17244

    International Nuclear Information System (INIS)

    A B-gamma(delta) sunspot group with growing delta-spots of trailing polarity shows evidence in H-alpha filament structure of a transition from a state of weak magnetic shear to a state of strong shear. The shear develops in the chromosphere and transition region to the corona overlying the photospheric magnetic neutral line separating the delta-spots from the leading polarity at a time when the delta-spots are undergoing rapid growth. Several major flares occur along the sheared portion of the neutral line following the shear development. Other segments of the neutral line far removed from the delta-spots show similar evidence of shear in the H-alpha filament structure and in C IV velocity patterns as well. These quiescent regions of shear are relatively steady or decaying with time and show very little related activity. 11 references

  16. Effect of probiotics and thyme essential oil on the texture of cooked chicken breast meat

    Directory of Open Access Journals (Sweden)

    Ebrahim Alfaig

    2013-12-01

    Full Text Available Background. Texture is probably the single most critical quality factor associated with the consumers’ ultimate satisfaction with a poultry meat product and can be affected by several factors including the type of feed used for chickens fattening. The use of probiotics for meat and carcass quality improvement has been questioned, while the possibility of deposition of essential oils in various muscle tissues can alter the sensory attributes of the chicken’s meat. Material  and methods. Probiotics and thyme essential oil in the percentage of 0.05% were used as feed supplements for Ross 308 broiler chickens, as the broilers were reared in four separated groups based on the feed supplement as follows: control, probiotics, thyme essential oil and combination of probiotics and thyme essential oil group, while the fattening period was 42 days. TA.XT Plus-Texture analyser apparatus was used for determination of the texture profile and Warner Bratzler shear force for the cooked breast meat. Results. Warner Bratzler shear test results showed that the tested feed additives were not affecting the texture of the chicken breast meat, while probiotic appears to have moderately effect on the hardness, cohesiveness, springiness and chewiness attributes of the cooked breast meat compared with the other groups, this effect of probiotics considered as negligible, as the results showed that all the tested groups meat were very tender according to the tenderness scale. Conclusions. According to the obtained results it can be concluded the combination of probiotics and thyme group resulted in the lowest score for the hardness, cohesiveness, springiness and chewiness attributes, while probiotics group scored the highest compared with the control.

  17. Evaluation of reciprocal differences in Bos indicus x Bos taurus backcross calves produced through embryo transfer: II. Postweaning, carcass, and meat traits.

    Science.gov (United States)

    Amen, T S; Herring, A D; Sanders, J O; Gill, C A

    2007-02-01

    Angus (A) x Bos indicus (B; Brahman or Nellore) reciprocal backcross, embryo transfer calves belonging to 28 full-sib families were evaluated for differences in feedyard initial BW, feedyard final BW, carcass weight, LM area, adjusted fat thickness, intramuscular fat, and Warner-Bratzler shear force. Two methods of analysis were investigated; method I made no distinction between how the F(1) parents were produced, whereas method II distinguished the 2 types of F(1) parents (AB vs. BA, corresponding to A x B vs. B x A, respectively). No significant reciprocal differences for these weight and carcass traits were detected under method I analyses, although the same trend existed for subsequent BW rankings as for birth weight and weaning weight. For each weight phase, the cross that involved a larger proportion of B in the sire in relation to the amount in the dam (F(1) x A and B x F(1)) ranked heavier than the respective reciprocal cross (A x F(1) and F(1) x B). As a whole, A backcross calves had larger (P carcass (P < 0.001), and had larger LM area (P < 0.05) with less adjusted fat (P < 0.001). No difference existed between the sexes for Warner-Bratzler shear force or marbling. No interactions involving sex, sire type, and dam type were observed for any of these traits. The results were similar under methods I and II analyses, with the exception that a significant sire type x dam type interaction was observed for initial feedyard BW. Results from this study suggest that for weight-related traits, both the breed constitution of the embryo transfer calf and the cross that produces the calf play an important role in its ultimate performance for B crossbred calves. For body composition and meat-related traits, it appears that the breed makeup of the embryo transfer calf itself is more important to animal performance than the specific cross used to produce the calf.

  18. Assessment of nonpenetrating captive bolt stunning followed by electrical induction of cardiac arrest in veal calves.

    Science.gov (United States)

    Bartz, B; Collins, M; Stoddard, G; Appleton, A; Livingood, R; Sobcynski, H; Vogel, K D

    2015-09-01

    The purpose of this study was to evaluate the impact of nonpenetrating captive bolt stunning followed by electrical induction of cardiac arrest on veal calf welfare, veal quality, and blood yield. Ninety calves from the same farm were randomly assigned to 1 of 2 treatment groups in a balanced unpaired comparison design. The first treatment group (the "head-only" method-application of the pneumatic nonpenetrating stun to the frontal plate of the skull at the intersection of 2 imaginary lines extending from the lateral canthus to the opposite poll [CONTROL]) was stunned with a nonpenetrating captive bolt gun ( = 45). The second group ( = 45) was stunned with a nonpenetrating captive bolt gun followed by secondary electrical induction of cardiac arrest (the "head/heart" method-initial application of the pneumatic nonpenetrating captive bolt stun followed by 1 s application of an electrical stun to the ventral region of the ribcage directly caudal to the junction of the humerus and scapula while the stunned calf was in lateral recumbence [HEAD/HEART]). Stunning efficacy was the indicator of animal welfare used in this study. All calves were instantly rendered insensible by the initial stun and did not display common indicators of return to consciousness. For meat quality evaluation, all samples were collected from the 12th rib region of the longissimus thoracis. Meat samples were evaluated for color, drip loss, ultimate pH, cook loss, and Warner-Bratzler shear force. The L* values (measure of meat color lightness) were darker ( 0.05) observed in a* (redness) and b* (yellowness) values between treatments. No differences ( > 0.05) were observed in drip loss, ultimate pH, cook loss, and Warner-Bratzler shear force. The blood yield from the CONTROL group (7,217.9 ± 143.5 g) was greater ( veal calves. PMID:26440354

  19. Punching shear capacity of reinforced concrete slabs with headed shear studs

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Pop, Anamaria

    2015-01-01

    Punching shear in slabs is analogous to shear in beams. Despite this similarity, current design codes provide distinctly different methods for the design of shear reinforcement in the two situations. For example, the Eurocode method for beam shear design is founded on the theory of rigid plasticity....... To design shear reinforcement in slabs, on the other hand, the engineer must settle for an empirical equation. The aim of the study reported is to demonstrate that it is possible in a simple manner to design shear reinforcement in slabs based on the same rigid-plasticity foundation as for beam shear design....... For this purpose, an extension of the upper-bound crack sliding model is proposed. This involves analysis of sliding mechanisms in yield lines developed both within and outside the zone with shear reinforcement. Various types of headed shear studs were considered. The results obtained using the model were compared...

  20. Magnetogenesis through Relativistic Velocity Shear

    Science.gov (United States)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  1. Magnetorheological Shear Flow Near Jamming

    Science.gov (United States)

    Vågberg, Daniel; Tighe, Brian

    2015-03-01

    Flow in magnetorheological (MR) fluids and systems near jamming both display hallmarks of complex fluid rheology, including yield stresses and shear thinning viscosities. They are also tunable, which means that both phenomena can be used as a switching mechanism in ``smart'' fluids, i.e. fluids where properties can be tuned rapidly and reversibly by changing external parameters. We use numerical simulations to investigate the rheological properties of MR fluids close to the jamming transition as a function of the applied field and volume fraction. We are especially interested in the crossover region where both phenomena are needed to describe the observed dynamics. Funded by the Dutch Organization for Scientific Research (NWO).

  2. Mixing in shear thinning fluids

    Directory of Open Access Journals (Sweden)

    H. Ameur

    2012-06-01

    Full Text Available In the present study, a CFD characterization of the flow generated by curved-blade impellers in a cylindrical unbaffled vessel was carried out. The tank diameter was 300 mm, with a flat bottom. The liquid height was equal to the vessel diameter. The fluids simulated have a shear thinning behavior. Analyses concern the effect of the impeller speed, the fluid rheology and the number of impeller blades on the induced flow patterns and the power consumption. The predictions were compared with literature data and a satisfactory agreement was found.

  3. Shear-Induced Reactive Gelation.

    Science.gov (United States)

    Brand, Bastian; Morbidelli, Massimo; Soos, Miroslav

    2015-11-24

    In this work, we describe a method for the production of porous polymer materials in the form of particles characterized by narrow pore size distribution using the principle of shear-induced reactive gelation. Poly(styrene-co-divinylbenzene) primary particles with diameter ranging from 80 to 200 nm are used as building blocks, which are assembled into fractal-like clusters when exposed to high shear rates generated in a microchannel. It was found that independent of the primary particle size, it is possible to modulate the internal structure of formed fractal-like aggregates having fractal dimension ranging from 2.4 to 2.7 by varying the residence time in the microchannel. Thermally induced postpolymerization was used to increase the mechanical resilience of such formed clusters. Primary particle interpenetration was observed by SEM and confirmed by light scattering resulting in an increase of fractal dimension. Nitrogen sorption measurements and mercury porosimetry confirmed formation of a porous material with surface area ranging from 20 to 40 m(2)/g characterized by porosity of 70% and narrow pore size distribution with an average diameter around 700 nm without the presence of any micropores. The strong perfusive character of the synthesized material was confirmed by the existence of a plateau of the height equivalent to a theoretical plate measured at high reduced velocities using a chromatographic column packed with the synthesized microclusters. PMID:26488233

  4. Local Gravitational Instability of Magnetized Shear Flows

    CERN Document Server

    Howes, G G; McWilliams, J C; Howes, Gregory G.; Cowley, Steven C.; Williams, James C. Mc

    2001-01-01

    The effect of magnetic shear and shear flow on local gravitationally induced instabilities is investigated. A simple model is constructed allowing for an arbitrary entropy gradient and a shear plasma flow in the Boussinesq approximation. A transformation to shearing magnetic coordinates achieves a model with plasma flow along the magnetic field lines where the coordinate lines are coincident with the field lines. The solution for the normal modes of the system depends on two parameters: the Alfven Mach number of the plasma flow and the entropy gradient. The behavior of the unstable normal modes of this system is summarized by a stability diagram. Important characteristics of this stability diagram are the following: magnetic shear is stabilizing and the entropy gradient must exceed a threshold value for unstable mode growth to occur; flow acts to suppress mode growth in a substantially unstable regime as expected, yet near marginal stability it can lessen the stabilizing effect of magnetic shear and enhance t...

  5. Interfacial Slip in Sheared Polymer Blends

    OpenAIRE

    Lo, Tak Shing; Mihajlovic, Maja; Shnidman, Yitzhak; Li, Wentao; Gersappe, Dilip

    2004-01-01

    We have developed a dynamic self-consistent field theory, without any adjustable parameters, for unentangled polymer blends under shear. Our model accounts for the interaction between polymers, and enables one to compute the evolution of the local rheology, microstructure and the conformations of the polymer chains under shear self-consistently. We use this model to study the interfacial dynamics in sheared polymer blends and make a quantitative comparison between this model and Molecular Dyn...

  6. Periodic Exponential Shear of Complex Fluids

    OpenAIRE

    Kalelkar, Chirag; McKinley, Gareth

    2012-01-01

    We define a class of flows with exponential kinematics termed Periodic Exponential Shear (PES) flow which involve periodic exponential stretching of fluid elements along with their rotation. We exhibit analytical and numerical results for PES flow by using the Oldroyd-B model for viscoelastic fluids. We calculate the growth in the shear and the normal stresses analytically as well as demonstrate that repeated application of the flow leads to stable oscillatory shear and normal stresses. We de...

  7. Shear wall experiments and design in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Hofmayer, C.

    1994-12-01

    This paper summarizes the results of recent survey studies on the available experimental data bases and design codes/standards for reinforced concrete (RC) shear wall structures in Japan. Information related to the seismic design of RC reactor buildings and containment structures was emphasized in the survey. The seismic requirements for concrete structures, particularly those related to shear strength design, are outlined. Detailed descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  8. Dynamo efficiency with shear in helical turbulence .

    OpenAIRE

    Leprovost, Nicolas; Kim, Eun-Jin

    2009-01-01

    To elucidate the influence of shear flow on the generation of magnetic fields through the modification of turbulence property, we consider the case where a large-scale magnetic field is parallel to a large-scale shear flow without direct interaction between the two in the kinematic limit where the magnetic field does not backreact on the velocity. By nonperturbatively incorporating the effect of shear in a helically forced turbulence, we show that turbulence intensity and turbulent transport ...

  9. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals. The Case of the Lieberman-Warner Climate Security Act of 2007 (S. 2191)

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Sharon [OnLocation, Inc./ Energy Systems Consulting, Vienna, VA (United States); Wood, Frances [OnLocation, Inc./ Energy Systems Consulting, Vienna, VA (United States); Vimmerstedt, Laura [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-06-01

    The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

  10. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191)

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, S.; Wood, F.; Vimmerstedt, L.

    2010-06-01

    The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

  11. ON WALL SHEAR STRESS OF ARTERY

    Institute of Scientific and Technical Information of China (English)

    Liu Zhao-rong; Liu Bao-yu; Qin Kai-rong

    2003-01-01

    In this paper, a method was proposed that the wall shear stress of artery could be determined by measuring the centerline axial velocity and radial motion of arterial wall simultaneously.The method is simple in application and can get higher precision when it is used to determine the shear stress of arterial wall in vivo.As an example, the shear stress distribution in periodic oscillatory flow of human carotid was calculated and discussed.The computed results show that the shear stress distribution at any given instant is almost uniform and will be zero at the centerline and tends to maximum at the vessel wall.

  12. Determination of arterial wall shear stress

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The arteries can remodel their structure and function to adapt themselves to the mechanical environment. In various factors that lead to vascular remodeling, the shear stress on the arterial wall induced by the blood flow is of great importance. However, there are many technique difficulties in measuring the wall shear stress directly at present. In this paper, through analyzing the pulsatile blood flow in arteries, a method has been proposed that can determine the wall shear stress quantitatively by measuring the velocity on the arterial axis, and that provides a necessary means to discuss the influence of arterial wall shear stress on vascular remodeling.

  13. Periodically sheared 2D Yukawa systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Anikó Zsuzsa [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Hartmann, Peter [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Center for Astrophysics, Space Physics and Engineering Research (CASPER), One Bear Place 97310, Baylor University, Waco, Texas 76798 (United States); Donkó, Zoltán [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Physics Department, Boston College, Chestnut Hill, Massachusetts 20467 (United States)

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  14. Cyclic Shearing Deformation Behavior of Saturated Clays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay's strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The deformations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deformation and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.

  15. Shear Thickening in Concentrated Soft Sphere Colloidal Suspensions: A Shear Induced Phase Transition

    Directory of Open Access Journals (Sweden)

    Joachim Kaldasch

    2015-01-01

    Full Text Available A model of shear thickening in dense suspensions of Brownian soft sphere colloidal particles is established. It suggests that shear thickening in soft sphere suspensions can be interpreted as a shear induced phase transition. Based on a Landau model of the coagulation transition of stabilized colloidal particles, taking the coupling between order parameter fluctuations and the local strain-field into account, the model suggests the occurrence of clusters of coagulated particles (subcritical bubbles by applying a continuous shear perturbation. The critical shear stress of shear thickening in soft sphere suspensions is derived while reversible shear thickening and irreversible shear thickening have the same origin. The comparison of the theory with an experimental investigation of electrically stabilized colloidal suspensions confirms the presented approach.

  16. Shear Behavior of Reinforced Concrete Shear Walls under Tensile Axial Force with Eccentricity

    OpenAIRE

    MIZOGUCHI, Mitsuo; ARAI, Yasuyuki; KUCHIJI, Hideki

    2000-01-01

    A lateral loading test of six reinforced concrete shear walls subjected to an eccentric tensile axial force was carried out to examine their shear behavior. Next facts ware confirmed on the shear strength of the walls subjected to an eccentric tensile axial force. The test results can be evaluat by the shear strength equation [2] considering axial tensile stress. The calculated values given by the (AIJ "Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelasti...

  17. Shear Behavior Of Reinforced High-Strength Concrete Beams Without Shear Reinforcement

    OpenAIRE

    Wafa, Faisal F.

    1994-01-01

    Eighteen rectangular singly reinforced high-strength concrete beams without web reinforcement were tested in combined shear and flexure. The main variables were the longitudinal steel reinforcement ratio and the shear-span to effective depth ratio. The uniaxial compressive strength of concrete was about 93 MPa (13,500 psi). The experimental shear capacities were compared with the shear capacities predicted by different empirical equations presented in literatures. Two empirical equations have...

  18. Inverse Magnetic/Shear Catalysis

    CERN Document Server

    McInnes, Brett

    2015-01-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce ``inverse magnetic catalysis'', signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magne...

  19. Shear Viscosity from Lattice QCD

    CERN Document Server

    Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán

    2015-01-01

    Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented

  20. Dynamics of colloidal crystals in shear flow

    NARCIS (Netherlands)

    Derks, D.; Wu, Y.L.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We investigate particle dynamics in nearly hard sphere colloidal crystals submitted to a steady shear flow. Both the fluctuations of single colloids and the collective motion of crystalline layers as a whole are studied by using a home-built counter rotating shear cell in combination with confocal m

  1. On the shear instability of fluid interfaces

    OpenAIRE

    Alexakis, A.; Young, Y; Rosner, R

    2001-01-01

    We examine the linear stability of fluid interfaces subjected to a shear flow. Our main object is to generalize previous work to arbitrary Atwood number, and to allow for surface tension and weak compressibility. The motivation derives from instances in astrophysical systems where mixing across material interfaces driven by shear flows may significantly affect the dynamical evolution of these systems.

  2. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test

  3. Sheared Ising models in three dimensions

    Science.gov (United States)

    Hucht, Alfred; Angst, Sebastian

    2013-03-01

    The nonequilibrium phase transition in sheared three-dimensional Ising models is investigated using Monte Carlo simulations in two different geometries corresponding to different shear normals [A. Hucht and S. Angst, EPL 100, 20003 (2012)]. We demonstrate that in the high shear limit both systems undergo a strongly anisotropic phase transition at exactly known critical temperatures Tc which depend on the direction of the shear normal. Using dimensional analysis, we determine the anisotropy exponent θ = 2 as well as the correlation length exponents ν∥ = 1 and ν⊥ = 1 / 2 . These results are verified by simulations, though considerable corrections to scaling are found. The correlation functions perpendicular to the shear direction can be calculated exactly and show Ornstein-Zernike behavior. Supported by CAPES-DAAD through PROBRAL as well as by the German Research Society (DFG) through SFB 616 ``Energy Dissipation at Surfaces.''

  4. Numerical analysis of cross shear plate rolling

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Bay, Niels

    1997-01-01

    The rolling process is widely applied for industrial production of metal plates. In conventional plate rolling the two work rolls are rotating at the same peripheral speed. By introducing a specific difference in the speed of the two work rolls, cross shear rolling is introduced forming a central...... shear zone between the forward and backward slip zones in the deformation zone thus lowering the rolling load. A numerical analysis of the cross shear rolling process is carried out based on the slab method adopting Wanheim and Bay's general friction model. The pressure distribution along the contact...... are in the roll gap, the position and the size of the shear zone and the rolling load are calculated. Experimental results are presented verifying the calculations. The numerical analysis facilitates a better understanding of the mechanics in cross shear plate rolling....

  5. Squirming through shear-thinning fluids

    CERN Document Server

    Datt, Charu; Elfring, Gwynn J; Pak, On Shun

    2015-01-01

    Many microorganisms find themselves immersed in fluids displaying non-Newtonian rheological properties such as viscoelasticity and shear-thinning viscosity. The effects of viscoelasticity on swimming at low Reynolds numbers have already received considerable attention, but much less is known about swimming in shear-thinning fluids. A general understanding of the fundamental question of how shear-thinning rheology influences swimming still remains elusive. To probe this question further, we study a spherical squirmer in a shear-thinning fluid using a combination of asymptotic analysis and numerical simulations. Shear-thinning rheology is found to affect a squirming swimmer in nontrivial and surprising ways; we predict and show instances of both faster and slower swimming depending on the surface actuation of the squirmer. We also illustrate that while a drag and thrust decomposition can provide insights into swimming in Newtonian fluids, extending this intuition to problems in complex media can prove problemat...

  6. Trapped Electron Precession Shear Induced Fluctuation Decorrelation

    International Nuclear Information System (INIS)

    We consider the effects of trapped electron precession shear on the microturbulence. In a similar way the strong E x B shear reduces the radial correlation length of ambient fluctuations, the radial variation of the trapped electron precession frequency can reduce the radial correlation length of fluctuations associated with trapped electrons. In reversed shear plasmas, with the explicit dependence of the trapped electron precession shearing rate on B(subscript)theta, the sharp radial gradient of T(subscript)e due to local electron heating inside qmin can make the precession shearing mechanism more effective, and reduce the electron thermal transport constructing a positive feedback loop for the T(subscript)e barrier formation

  7. Simple shear of deformable square objects

    Science.gov (United States)

    Treagus, Susan H.; Lan, Labao

    2003-12-01

    Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear ( γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain ( RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.

  8. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.

    Science.gov (United States)

    Latorre-Ossa, Heldmuth; Gennisson, Jean-Luc; De Brosses, Emilie; Tanter, Mickaël

    2012-04-01

    The study of new tissue mechanical properties such as shear nonlinearity could lead to better tissue characterization and clinical diagnosis. This work proposes a method combining static elastography and shear wave elastography to derive the nonlinear shear modulus by applying the acoustoelasticity theory in quasi-incompressible soft solids. Results demonstrate that by applying a moderate static stress at the surface of the investigated medium, and by following the quantitative evolution of its shear modulus, it is possible to accurately and quantitatively recover the local Landau (A) coefficient characterizing the shear nonlinearity of soft tissues.

  9. Inverse magnetic/shear catalysis

    Science.gov (United States)

    McInnes, Brett

    2016-05-01

    It is well known that very large magnetic fields are generated when the Quark-Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce "inverse magnetic catalysis", signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.

  10. 大学生婚前性行为Warner模型下分层三阶段抽样调查分析%The stratified three-stage sample survey of undergraduates' premarital sex under the Warner model

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The premarital sex of senior students in some universities of Anhui province is investigated. To protect the privacy of respondents, applying randomized response technique and stratified three-stage method, the proportion of senior students premari-tal sex is studied using attribute characteristic Warner model. According to total probability formulas and variance's basic properties in Probability and Mathematical Statistics and the classical sampling theory of Cochran, the proportion and variance of senior college students premarital sex are deduced at all levels and stages. The survey reveals that the proportion of senior students premarital sex is high. Therefore, we should actively instruct the undergraduates to treat the issues of premarital sex properly and rationally.%对安徽省某高校大四学生婚前性行为进行抽样调查,为保护被调查对象的隐私,采用随机应答技术( Random-ized Response Technique,简写为RRT)结合分层三阶段抽样调查方法,利用属性特征敏感问题Warner模型分析该校大四学生发生婚前性行为的比例。运用全概率公式及方差的基本性质等概率论与数理统计知识,结合Cochran W. G的经典抽样理论,推导出各层各阶段大四学生发生婚前性行为的比例及其方差。调查结果显示大四学生婚前性行为发生比例高。为此,应该积极引导大学生理性正确的对待婚前性行为。

  11. The stratified three-stage sample survey of undergraduates' premarital sex under the Warner model%大学生婚前性行为Warner模型下分层三阶段抽样调查分析

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The premarital sex of senior students in some universities of Anhui province is investigated. To protect the privacy of respondents, applying randomized response technique and stratified three-stage method, the proportion of senior students premari-tal sex is studied using attribute characteristic Warner model. According to total probability formulas and variance's basic properties in Probability and Mathematical Statistics and the classical sampling theory of Cochran, the proportion and variance of senior college students premarital sex are deduced at all levels and stages. The survey reveals that the proportion of senior students premarital sex is high. Therefore, we should actively instruct the undergraduates to treat the issues of premarital sex properly and rationally.%对安徽省某高校大四学生婚前性行为进行抽样调查,为保护被调查对象的隐私,采用随机应答技术( Random-ized Response Technique,简写为RRT)结合分层三阶段抽样调查方法,利用属性特征敏感问题Warner模型分析该校大四学生发生婚前性行为的比例。运用全概率公式及方差的基本性质等概率论与数理统计知识,结合Cochran W. G的经典抽样理论,推导出各层各阶段大四学生发生婚前性行为的比例及其方差。调查结果显示大四学生婚前性行为发生比例高。为此,应该积极引导大学生理性正确的对待婚前性行为。

  12. IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Philippe Lopez

    2011-05-01

    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  13. Fan-structure waves in shear ruptures

    Science.gov (United States)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  14. Shear Reinforcements in the Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Moayyad M. Al-Nasra

    2013-10-01

    Full Text Available - This study focuses on the use of different types of shear reinforcement in the reinforced concrete beams. Four different types of shear reinforcement are investigated; traditional stirrups, welded swimmer bars, bolted swimmer bars, and u-link bolted swimmer bars. Beam shear strength as well as beam deflection are the main two factors considered in this study. Shear failure in reinforced concrete beams is one of the most undesirable modes of failure due to its rapid progression. This sudden type of failure made it necessary to explore more effective ways to design these beams for shear. The reinforced concrete beams show different behavior at the failure stage in shear compare to the bending, which is considered to be unsafe mode of failure. The diagonal cracks that develop due to excess shear forces are considerably wider than the flexural cracks. The cost and safety of shear reinforcement in reinforced concrete beams led to the study of other alternatives. Swimmer bar system is a new type of shear reinforcement. It is a small inclined bars, with its both ends bent horizontally for a short distance and welded or bolted to both top and bottom flexural steel reinforcement. Regardless of the number of swimmer bars used in each inclined plane, the swimmer bars form plane-crack interceptor system instead of bar-crack interceptor system when stirrups are used. Several reinforced concrete beams were carefully prepared and tested in the lab. The results of these tests will be presented and discussed. The deflection of each beam is also measured at incrementally increased applied load.

  15. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  16. Prediction of breeding values for tenderness of market animals from measurements on bulls.

    Science.gov (United States)

    Barkhouse, K L; Van Vleck, L D; Cundiff, L V; Koohmaraie, M; Lunstra, D D; Crouse, J D

    1996-11-01

    Data were tenderness measures on steaks from 237 bulls (Group II) slaughtered after producing freezable semen and on 1,431 related steers and heifers (market animals, Group I) from Angus, Hereford, Pinzgauer, Brahman, and Sahiwal crosses from the Germ Plasm Evaluation project at the U.S. Meat Animal Research Center. Tenderness was assessed through Warner-Bratzler Shear Force (SF), taste panel tenderness (TPT), marbling score (MS), and myofibrillar fragmentation index (MFI). For all traits, as fraction Bos indicus inheritance increased, implied tenderness decreased. Heritability estimates were generally not significantly different from zero. Genetic correlations generally indicated favorable associations among the traits. The range in predicted breeding values of bulls for market animal tenderness was small and from -.34 to .32 kg for market animal shear force. Because of low estimates of heritability for SF or TPT, results from this experiment indicate that selection based on tenderness of steaks sampled from intact or late castrate males slaughtered following collection of freezable quality semen would not be very effective in improving average tenderness of steaks from steers of heifer progeny. If a mean of heritability estimates reported in the literature of .27 for shear value was assumed for market steer and heifer progeny instead of .02 as found in the present study, then selection based on estimates of shear force in young bulls would be relatively more effective in improving shear force of market progeny. PMID:8923175

  17. Mesoscale Elucidation of Biofilm Shear Behavior

    CERN Document Server

    Barai, Pallab; Mukherjee, Partha P

    2015-01-01

    Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regions: a) initial increase in stiffness due to strain stiffe...

  18. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-04

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, in- dicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing struc- ture and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions.

  19. Wall Shear Rates in Taylor Vortex Flow

    Directory of Open Access Journals (Sweden)

    V. Sobolik

    2011-01-01

    Full Text Available Wall shear rate and its axial and azimuthal components were evaluated in stable Taylor vortices. The measurements were carried out in a broad interval of Taylor numbers (52-725 and several gap width (R1/R2 = 0.5 – 0.8 by two three-segment electrodiffusion probes and three single probes flush mounted in the wall of the outer fixed cylinder. The axial distribution of wall shear rate components was obtained by sweeping the vortices along the probes using a slow axial flow. The experimental results were verified by CFD simulations. The knowledge of local wall shear rates and its fluctuations is of primordial interest for industrial applications like tangential filtration, membrane reactors and bioreactors containing shear sensitive cells.

  20. Low Shear Strength and Shear-Induced Failure in Ti3SiC2

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Shear strength and shear-induced Hertzian contact damage in Ti3SiC2 were investigated using double-notched-beamspecimen and steel spherical indenter, respectively. The shear strength of 40 MPa that was only about 10% of bendingstrength was obtained for this novel ceramic. The SEM fractograph of specimens failed in shear test indicated acombination of intergranular and transgranular fracture. Under a contact load, plastic indent without cone crackcould be formed on the surface of Ti3SiC2 sample. Optical observation on side view showed half-circle cracks aroundthe damage zone below the indent, and the crack shape was consistent with the contrail of the principal shearingstress. The low shear strength and the shearing-activated intergranular sliding were confirmed being the key factorsfor failure in Ti3SiC2.

  1. Resistive interchange instability in reversed shear tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Masaru; Nakamura, Yuji; Wakatani, Masahiro [Graduate School of Energy Science, Kyoto University, Uji, Kyoto (Japan)

    1999-04-01

    Resistive interchange modes become unstable due to the magnetic shear reversal in tokamaks. In the present paper, the parameter dependences, such as q (safety factor) profile and the magnetic surface shape are clarified for improving the stability, using the local stability criterion. It is shown that a significant reduction of the beta limit is obtained for the JT-60U reversed shear configuration with internal transport barrier, since the local pressure gradient increases. (author)

  2. Assessment of Shear Strength in Silty Soils

    Directory of Open Access Journals (Sweden)

    Stefaniak Katarzyna

    2015-06-01

    Full Text Available The article presents a comparison of shear strength values in silty soils from the area of Poznań, determined based on selected Nkt values recommended in literature, with values of shear strength established on the basis of Nkt values recommended by the author. Analysed silty soils are characterized by the carbonate cementation zone, which made it possible to compare selected empirical coefficients both in normally consolidated and overconsolidated soils

  3. Liquid migration in sheared unsaturated granular media

    OpenAIRE

    Mani, Roman; Kadau, Dirk; Herrmann, Hans J.

    2012-01-01

    We show how liquid migrates in sheared unsaturated granular media using a grain scale model for capillary bridges. Liquid is redistributed to neighboring contacts after rupture of individual capillary bridges leading to redistribution of liquid on large scales. The liquid profile evolution coincides with a recently developed continuum description for liquid migration in shear bands. The velocity profiles which are linked to the migration of liquid as well as the density profiles of wet and dr...

  4. Dynamo quenching due to shear flow

    OpenAIRE

    Leprovost, Nicolas; Kim, Eun-Jin

    2008-01-01

    We provide a theory of dynamo ($\\alpha$ effect) and momentum transport in three-dimensional magnetohydrodynamics. For the first time, we show that the $\\alpha$ effect is severely reduced by the shear even in the absence of magnetic field. The $\\alpha$ effect is further suppressed by magnetic fields well below equipartition (with the large-scale flow) with different scalings depending on the relative strength of shear and magnetic field. The turbulent viscosity is also found to be significantl...

  5. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  6. The Radiation Hydrodynamics of Relativistic Shear Flows

    Science.gov (United States)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2016-07-01

    We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have “lost memory” of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or the τ ≃ 1 surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this τ ≃ 1 surface exactly conserves photon number, and we derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy–momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy–momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.

  7. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  8. Analysis of shear banding in twelve materials

    Science.gov (United States)

    Batra, R. C.; Kim, C. H.

    The problem of the initiation and growth of shear bands in 12 different materials, namely, OFHC copper, Cartridge brass, Nickel 200, Armco IF (interstitial free) iron, Carpenter electric iron, 1006 steel, 2024-T351 aluminum, 7039 aluminum, low alloy steel, S-7 tool steel, Tungsten alloy, and Depleted Uranium (DU -0.75 Ti) is studied with the objectives of finding out when a shear band initiates, and upon what parameters does the band width depend. The nonlinear coupled partial differential equations governing the overall simple shearing deformations of a thermally softening viscoplastic block are analyzed. It is assumed that the thermomechanical response of these materials can be adequately represented by the Johnson-Cook law, and the only inhomogeneity present in the block is the variation in its thickness. The effect of the defect size on the initiation and subsequent growth of the band is also studied. It is found that, for each one of these 12 materials, the deformation has become nonhomogeneous by the time the maximum shear stress occurs. Also the band width, computed when the shear stress has dropped to 85 percent of its peak value, does not correlate well with the thermal conductivity of the material. The band begins to grow rapidly when the shear stress has dropped to 90 percent of its maximum value.

  9. Shear time dependent viscosity of polystyrene-ethylacrylate based shear thickening fluid

    Science.gov (United States)

    Chen, Qian; Xuan, Shouhu; Jiang, Wanquan; Cao, Saisai; Gong, Xinglong

    2016-04-01

    In this study, the influence of the shear rate and shear time on the transient viscosity of polystyrene-ethylacrylate based shear thickening fluid (STF) is investigated. If the shear rate is stepwise changed, it is found that both the viscosity and critical shear rate are affected by the shear time. Above the critical shear rate, the viscosity of the STF with larger power law exponent (n) increases faster. However, the viscosity tends to decrease when the shear time is long enough. This phenomenon can be responsible for the reversible structure buildup and the break-down process. An effective volume fraction (EVF) mechanism is proposed to analyze the shear time dependent viscosity and it is found that viscosity changes in proportion to EVF. To further clarify the structure evolution, a structural kinetic model is studied because the structural kinetic parameter (λ) could describe the variation in the effective volume fraction. The theoretical results of the structural kinetic model agree well with the experimental results. With this model, the change in viscosity and EVF can be speculated from the variation of λ and then the structure evolution can be better illustrated.

  10. Shear Stress in MR Fluid with Small Shear Deformation in Bctlattic Structure

    Institute of Scientific and Technical Information of China (English)

    LIU Lisheng; RUAN Zhongwei; ZHAI Pengcheng; ZHANG Qingjie

    2008-01-01

    A theoretical model based on BCT lattice structure was developed.Resultant force in the BCT lattice structure was deduced,following the interaction force of two kinds of magnetic particles.According to empirical FroHlich-Kennelly law,the relationship between the magnetic induction and the magnetic field was discussed,and a predictive formula of shear stresses of the BCT lattice structure model was established for the case of small shear deformation.Compared with the experimental data for different particle volume fractions,the theoretical results of the shear stress indicate the effects of the saturation magnetization and the external magnetic field on the shear stress.

  11. Development of the Shear Bands in Saturated Soil

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper describes the development of shear bands in saturated soil under simple shear using a matching technique at the moving boundary of a shear band, and it is shown that the development of shear bands is affected by the coupling strain rate and pore pressure of material. Some numerical solutions have been presented.

  12. Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response

    Science.gov (United States)

    Bird, R. B.; Giacomin, A. J.; Schmalzer, A. M.; Aumnate, C.

    2014-02-01

    We examine the simplest relevant molecular model for large-amplitude shear (LAOS) flow of a polymeric liquid: the suspension of rigid dumbbells in a Newtonian solvent. We find explicit analytical expressions for the shear rate amplitude and frequency dependences of the first and third harmonics of the alternating shear stress response. We include a detailed comparison of these predictions with the corresponding results for the simplest relevant continuum model: the corotational Maxwell model. We find that the responses of both models are qualitatively similar. The rigid dumbbell model relies entirely on the dumbbell orientation to explain the viscoelastic response of the polymeric liquid, including the higher harmonics in large-amplitude oscillatory shear flow. Our analysis employs the general method of Bird and Armstrong ["Time-dependent flows of dilute solutions of rodlike macromolecules," J. Chem. Phys. 56, 3680 (1972)] for analyzing the behavior of the rigid dumbbell model in any unsteady shear flow. We derive the first three terms of the deviation of the orientational distribution function from the equilibrium state. Then, after getting the "paren functions," we use these for evaluating the shear stress for LAOS flow. We find the shapes of the shear stress versus shear rate loops predicted to be reasonable.

  13. Phase Coexistence of Complex Fluids in Shear Flow

    OpenAIRE

    Olmsted, Peter D; Lu, C-Y David

    1999-01-01

    We present some results of recent calculations of rigid rod-like particles in shear flow, based on the Doi model. This is an ideal model system for exhibiting the generic behavior of shear-thinning fluids (polymer solutions, wormlike micelles, surfactant solutions, liquid crystals) in shear flow. We present calculations of phase coexistence under shear among weakly-aligned (paranematic) and strongly-aligned phases, including alignment in the shear plane and in the vorticity direction (log-rol...

  14. Monotonic direct simple shear tests on sand under multidirectional loading

    OpenAIRE

    Li, Yao; Yang, Yunming; Yu, Hai-Sui; Roberts, Gethin Wyn

    2016-01-01

    Stress–strain responses of Leighton Buzzard sand are investigated under bidirectional shear. The tests are conducted by using the variable direction dynamic cyclic simple shear (VDDCSS), which is manufactured by Global Digital Systems (GDS) Instruments Ltd., U.K. Soil samples are anisotropically consolidated under a vertical normal stress and horizontal shear stress and then sheared in undrained conditions by applying a horizontal shear stress acting along a different direction from the conso...

  15. Molecular Dynamics Simulation of Shear Moduli for Coulomb Crystals

    CERN Document Server

    Horowitz, C J

    2008-01-01

    Torsional (shear) oscillations of neutron stars may have been observed in quasiperiodic oscillations of Magnetar Giant Flares. The frequencies of these modes depend on the shear modulus of neutron star crust. We calculate the shear modulus of Coulomb crystals from molecular dynamics simulations. We find that electron screening reduces the shear modulus by about 10% compared to previous Ogata et al. results. Our MD simulations can be extended to calculate the effects of impurities and or polycrystalline structures on the shear modulus.

  16. Analytical theory of forced rotating sheared turbulence: The Parallel case

    OpenAIRE

    Leprovost, Nicolas; Kim, Eun-Jin

    2008-01-01

    Forced turbulence combined with the effect of rotation and shear flow is studied. In a previous paper [N. Leprovost and E. J. Kim, Phys. Rev. E 78, 016301 (2008)], we considered the case where the shear and the rotation are perpendicular. Here, we consider the complementary case of parallel rotation and shear, elucidating how rotation and flow shear influence the generation of shear flow (e.g., the direction of energy cascade), turbulence level, transport of particles, and momentum. We show t...

  17. Shear-Driven Reconnection in Kinetic Models

    Science.gov (United States)

    Black, C.; Antiochos, S. K.; Germaschewski, K.; Karpen, J. T.; DeVore, C. R.; Bessho, N.

    2015-12-01

    The explosive energy release in solar eruptive phenomena is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by a downward tension due to overlying unsheared field. Magnetic reconnection disrupts this force balance; therefore, it is critical for understanding CME/flare initiation, to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is a trivial matter. However, kinetic effects are dominant in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is challenging, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. Plasma instabilities can arise nonetheless. In the work presented here, we show that we can control this instability and generate a predicted out-of-plane magnetic flux. This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356.

  18. Review article: Cosmology with cosmic shear observations

    CERN Document Server

    Kilbinger, Martin

    2014-01-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as ...

  19. Delayed shear enhancement in mesoscale atmospheric dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M.D. [Atmospheric Environment Service, Ontario (Canada); Pielke, R.A. [Colorado State Univ., Fort Collins, CO (United States)

    1994-12-31

    Mesoscale atmospheric dispersion (MAD) is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a much more important role on the mesoscale: horizontal dispersion can be enhanced and often dominated by vertical wind shear on these scales through the interaction of horizontal differential advection and vertical mixing. Just over 30 years ago, Pasquill suggested that this interaction need not be simultaneous and that the combination of differential horizontal advection with delayed or subsequent vertical mixing could maintain effective horizontal diffusion in spite of temporal or spatial reductions in boundary-layer turbulence intensity. This two-step mechanism has not received much attention since then, but a recent analysis of observations from and numerical simulations of two mesoscale tracer experiments suggests that delayed shear enhancement can play an important role in MAD. This paper presents an overview of this analysis, with particular emphasis on the influence of resolvable vertical shear on MAD in these two case studies and the contributions made by delayed shear enhancement.

  20. COMPUTATIONAL APPROACH TO PREDICT SOIL SHEAR STRENGTH

    Directory of Open Access Journals (Sweden)

    Rajeev Jain,

    2010-08-01

    Full Text Available The paper presents an artificial neural network technique to predict the shear strength parameters of medium compressibility soil, which influenced by basic properties of soil in unconsolidated undrained conditions. Obviously obtained the undisturbed samples of soil to determination of shear strength parameters is a tedious work. Commercial software’s MATLAB-7 was used for this study. Triaxial shear tests were conducted to obtain these parameters at different water contents and densities. The results were used to predict the strength parameters. A set of 198 experimental results were used to construct the ANN model out of which 120 for training , 39 for validation and 39 for testing or prediction of shear strength parameters ( Cohesion & Angle of internal friction were used. The correlation between the basic properties and shear strength parameters were obtained from the trained neural network. For trained the feed forward ANN models: multilayer perceptrons and radial basis function neural network, followings parameters were considered as input data – the compaction energy, degree of saturation, dry density and C & ф were output parameter. The regression coefficient and MSEwere 0.94, 0.76 and 0.0642, 0.253 respectively. In addition, the experimental results were compared to MLPN and RBF networks predicted results. It was concluded that the performance of the multilayer perceptron feed forward neural network model with three hidden layers is better than radial basis function neural network model.

  1. The radiation hydrodynamics of relativistic shear flows

    CERN Document Server

    Coughlin, Eric R

    2016-01-01

    We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have "lost memory" of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or $\\tau \\simeq 1$ surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this $\\tau \\simeq 1$ surface exactly conserves photon number, and derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy-momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy-momentum tensor in a covariant form that does...

  2. Pressure-shear experiments on granular materials.

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Thornhill, Tom Finley, III (, Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Alexander, C. Scott (Sandia National Laboratories, Albuquerque, NM)

    2011-10-01

    Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.

  3. Shear melting of confined solid monolayer films

    Energy Technology Data Exchange (ETDEWEB)

    Schoen, M. (Institut fuer Experimentalphysik, Naturwissenschaftliche Fakultaet, Universitaet Witten/Herdecke, Stockumer Str. 10, D-5810 Witten (Germany)); Diestler, D.J. (Richard B. Wetherill Laboratory of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States)); Cushman, J.H. (Lilly Hall of Life Sciences, Purdue University, West Lafayette, Indiana 47907 (United States))

    1993-03-01

    Strain-induced melting of solid phases in a prototypal slit pore [a monatomic fluid constrained between two plane-parallel walls made up like atoms fixed in the configuration of the (100) plane of the face-centered cubic lattice] is investigated by Monte Carlo calculations in the isostress-isostrain'' ensemble where the thermodynamic state of the pore phase is uniquely determined by a fixed number of molecules, constant load or normal stress and constant temperature. If the walls are properly aligned laterally, a commensurate solid phase can form epitaxially. Moving the walls out of alignment (shear strain) creates a distorted solid, which reacts (shear stress) by tending to realign the walls. If the shear strain is increased beyond a critical value, the solid begins to melt. However, melting is a continuous transition which does not immediately lead to a normal liquid, but rather a disordered phase that sustains a non-negligible shear stress. Shear melting is contrasted to ordinary melting at constant normal stress, which appears to be a first-order transition.

  4. On Shearing Fluids with Homogeneous Densities

    CERN Document Server

    Srivastava, D C; Kumar, Rajesh

    2016-01-01

    In this paper, we study shearing spherically symmetric homogeneous density fluids in comoving coordinates. It is found that the expansion of the four-velocity of a perfect fluid is homogeneous, whereas its shear is generated by an arbitrary function of time M(t), related to the mass function of the distribution. This function is found to bear a functional relationship with density. The field equations are reduced to two coupled first order ordinary differential equations for the metric coefficients, g 11 and g 22. We have explored a class of solutions assuming that M is a linear function of the density. This class embodies, as a subcase, the complete class of shear-free solutions. We have discussed the off quoted work of Kustaanheimo (1947) and have noted that it deals with shear-free fluids having anisotropic pressure. It is shown that the anisotropy of the fluid is characterized by an arbitrary function of time. We have discussed some issues of historical priorities and credentials related to shear-free sol...

  5. A Refined Shear Deformation Plate Theory

    Science.gov (United States)

    Liu, Yucheng

    2011-04-01

    An improved higher-order shear deformation theory of plates is presented in this paper. The theory is developed from the transverse shear deformation theory presented by Ambartsumian [11]. The present plate theory contains kinematics of higher-order displacement field of plates, a system of higher-order differential equilibrium equations in terms of the three generalized displacements of bending plates, and a system of boundary conditions at each edge of plate boundaries. The present shear deformation theory of plates is validated by applying it to solve torsional plates and simply supported plates. The obtained solutions using the present theory are compared with the solutions of other shear-deformation theories. A good agreement is achieved through these comparisons and the advantages of the present theory are clearly verified. The shear deformation plate theory presented here can be applied to the analysis of laminated composite plates to better predict their dynamic and static behaviors. The proposed theory should also be supplemented to the theory of finite element analysis for developing new shell elements.

  6. Hydrodynamic theory of tissue shear flow

    CERN Document Server

    Popović, Marko; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume

    2016-01-01

    We propose a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a constitutive equation for the shear rate due to topological rearrangements. We identify a novel rheological behaviour resulting from memory effects in the tissue. We show that anisotropic deformation of tissue and cells can arise from two distinct active cellular processes: generation of active stress in the tissue, and actively driven cellular rearrangements. These two active processes result in distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.

  7. Shear and Turbulence Effects on Lidar Measurements

    DEFF Research Database (Denmark)

    Courtney, Michael; Sathe, Ameya; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. It is known that lidar wind speed measure-ments are affected by both turbulence and wind shear. This report explains the mechanisms behind these sensitivities. For turbulence, it is found that errors in the scalar mean speed...... are usually only small. However, particularly in re-spect of a lidar calibration procedure, turbulence induced errors in the cup anemometer speed are seen to be signifi-cantly larger. Wind shear is shown to induce measurement errors both due to possible imperfections in the lidar sensing height and due...... to the averaging of a non-linear speed profile. Both effects in combination have to be included when modelling the lidar error. Attempts to evaluate the lidar error from ex-perimental data have not been successful probably due to a lack of detailed knowledge of both the wind shear and the actual lidar sensing...

  8. Shear viscosity in magnetized neutron star crust

    CERN Document Server

    Ofengeim, D D

    2015-01-01

    The electron shear viscosity due to Coulomb scattering of degenerate electrons by atomic nuclei throughout a magnetized neutron star crust is calculated. The theory is based on the shear viscosity coefficient calculated neglecting magnetic fields but taking into account gaseous, liquid and solid states of atomic nuclei, multiphonon scattering processes, and finite sizes of the nuclei albeit neglecting the effects of electron band structure. The effects of strong magnetic fields are included in the relaxation time approximation with the effective electron relaxation time taken from the field-free theory. The viscosity in a magnetized matter is described by five shear viscosity coefficients. They are calculated and their dependence on the magnetic field and other parameters of dense matter is analyzed. Possible applications and open problems are outlined.

  9. Magnetic shear. III - Hale region 17255

    International Nuclear Information System (INIS)

    Hale active region 17255, which in many respects was the most vigorous active region observed during the first operational period of SMM, appears to lie between two large areas of flow (observed in C IV) converging toward the major axis of the region. In the 6-day period from November 6-12, 1980, the major axis of the region rotates by about 25 deg. Several segments of the magnetic neutral line show C IV flow velocities of opposite sign on either side of the neutral line. Those segments whose orientation is favorable for measuring velocity components parallel to the neutral line show evidence that such flow is present, which is interpreted as evidence for magnetic shear. This, together with other evidence, suggests that magnetic shear is widespread in this region, as in the two previous regions studied. It is concluded that magnetic shear is often associated with flaring activity but is not a sufficient condition for flaring to occur. 8 references

  10. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  11. Wind Shear Target Echo Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Xiaoyang Liu

    2015-01-01

    Full Text Available Wind shear is a dangerous atmospheric phenomenon in aviation. Wind shear is defined as a sudden change of speed or direction of the wind. In order to analyze the influence of wind shear on the efficiency of the airplane, this paper proposes a mathematical model of point target rain echo and weather target signal echo based on Doppler effect. The wind field model is developed in this paper, and the antenna model is also studied by using Bessel function. The spectrum distribution of symmetric and asymmetric wind fields is researched by using the mathematical model proposed in this paper. The simulation results are in accordance with radial velocity component, and the simulation results also confirm the correctness of the established model of antenna.

  12. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid.......This paper reports on aging of the silicone oil MS704 for sudden changes of temperature from 210.5 to 209.0 K and from 207.5 to 209.0 K studied by continuously monitoring the instantaneous shear modulus G [infinity]. The results are interpreted within the Tool-Narayanaswamy formalism with a reduced...

  13. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  14. Encoding of Memory in Sheared Amorphous Solids

    Science.gov (United States)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2014-01-01

    We show that memory can be encoded in a model amorphous solid subjected to athermal oscillatory shear deformations, and in an analogous spin model with disordered interactions, sharing the feature of a deformable energy landscape. When these systems are subjected to oscillatory shear deformation, they retain memory of the deformation amplitude imposed in the training phase, when the amplitude is below a "localization" threshold. Remarkably, multiple persistent memories can be stored using such an athermal, noise-free, protocol. The possibility of such memory is shown to be linked to the presence of plastic deformations and associated limit cycles traversed by the system, which exhibit avalanche statistics also seen in related contexts.

  15. Shear viscosity coefficient of liquid lanthanides

    International Nuclear Information System (INIS)

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides

  16. Enhancing Rotational Diffusion Using Oscillatory Shear

    Science.gov (United States)

    Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai

    2013-05-01

    Taylor dispersion—shear-induced enhancement of translational diffusion—is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle’s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids.

  17. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  18. Halo abundances and shear in void models

    DEFF Research Database (Denmark)

    Alonso, David; García-Bellido, Juan; Haugbølle, Troels;

    2012-01-01

    We study the non-linear gravitational collapse of dark matter into halos through numerical N-body simulations of Lemaitre-Tolman-Bondi void models. We extend the halo mass function formalism to these models in a consistent way. This extension not only compares well with the simulated data at all...... times and radii, but it also gives interesting clues about the impact of the background shear on the growth of perturbations. Our results give hints about the possibility of constraining the background shear via cluster number counts, which could then give rise to strong constraints on general...

  19. A dynamic jamming point for shear thickening suspensions

    Science.gov (United States)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  20. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.;

    2000-01-01

    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data......, and suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively...... by stressmeasurements taken during inception of steady shear. Information taken from the model about chain stretching suggests thatnormal stress measurements are strong indications of stretching, whereas shear stress measurements are indicative of bothchain stretching and segment orientation....

  1. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi;

    2013-01-01

    a partially molten magma body (stoping). From the fluid dynamics perspective these shear zones can be regarded as low Reynolds number deformation zones within the wake of a body moving through a viscous medium. While compact moving bodies (aspect ratio 1:1:1) generate axial symmetric (cone like) shear zones......Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other...... or wakes, elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones or wakes. Unlike conventional shear zones across which shear indicators usually display consistent symmetries, shear indicators on either side of the shear zone or wake reported here show reverse...

  2. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, H.; Schmeling, H.; Burchardt, S.;

    2012-01-01

    magma body (stoping). From the fluid dynamics point of view these shear zones can be regarded as the low Reynolds number deformation zones within the wake of a body moving through a viscous medium. While compact (aspect ratio 1:1:1) moving bodies generate axial symmetric (cone like) shear zones......Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other......, elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones. Unlike conventional shear zones across which shear indicators ideally display consistent symmetries, shear indicators on either sides of the shear zone reported here show reverse kinematics. Thus profiles exhibit...

  3. Monotonic shear and shear fatigue of foam-core composite sandwich structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; Song, H.; Holmes, J.W. [Georgia Institute of Technology, School of Aerospace Eng., Materials and Advanced Structure Testing Lab., Atlanta, Georgia (United States)

    2006-07-01

    Details of a new test apparatus that allows direct shear testing of sandwich structures is discussed. In addition to monotonic and cyclic shear, the apparatus allows studying the shear-creep behavior of various sandwich structures and can be extended to investigate lap-joints and adhesive joints. The test apparatus can accommodate sandwich panels as large as 400 mm x 400 mm. In proof-of-concept experiments, the apparatus was used to investigate the effect of loading history on the ambient temperature monotonic shear and shear fatigue life of sandwich composites with a PVC foam core and fiberglass/epoxy face sheets. The fatigue experiments were performed at a loading frequency of 1 Hz and a stress ratio between 0.16 and 0.19. During fatigue, a progressive degradation in shear modulus occurs as well as considerable stress-strain hysteresis. Damage accumulated by the cycle-by-cycle extension of cracks along the face-sheet/core interface and shear-related damage to the PVC foam core. (au)

  4. Acute shear stress direction dictates adherent cell remodeling and verifies shear profile of spinning disk assays

    International Nuclear Information System (INIS)

    Several methods have been developed to quantify population level changes in cell attachment strength given its large heterogeneity. One such method is the rotating disk chamber or ‘spinning disk’ in which a range of shear forces are applied to attached cells to quantify detachment force, i.e. attachment strength, which can be heterogeneous within cell populations. However, computing the exact force vectors that act upon cells is complicated by complex flow fields and variable cell morphologies. Recent observations suggest that cells may remodel their morphology and align during acute shear exposure, but contrary to intuition, shear is not orthogonal to the radial direction. Here we theoretically derive the magnitude and direction of applied shear and demonstrate that cells, under certain physiological conditions, align in this direction within minutes. Shear force magnitude is also experimentally verified which validates that for spread cells shear forces and not torque or drag dominate in this assay, and demonstrates that the applied force per cell area is largely independent of initial morphology. These findings suggest that direct quantified comparison of the effects of shear on a wide array of cell types and conditions can be made with confidence using this assay without the need for computational or numerical modeling. (paper)

  5. A new method for shear wave speed estimation in shear wave elastography.

    Science.gov (United States)

    Engel, Aaron J; Bashford, Gregory R

    2015-12-01

    Visualization of mechanical properties of tissue can aid in noninvasive pathology diagnosis. Shear wave elastography (SWE) measures the elastic properties of soft tissues by estimation of local shear wave propagation speed. In this paper, a new robust method for estimation of shear wave speed is introduced which has the potential for simplifying continuous filtering and real-time elasticity processing. Shear waves were generated by external mechanical excitation and imaged at a high frame rate. Three homogeneous phantoms of varying elastic moduli and one inclusion phantom were imaged. Waves propagating in separate directions were filtered and shear wave speed was estimated by inversion of the 1-D first-order wave equation. Final 2-D shear wave speed maps were constructed by weighted averaging of estimates from opposite traveling directions. Shear wave speed results for phantoms with gelatin concentrations of 5%, 7%, and 9% were 1.52 ± 0.10 m/s, 1.86 ± 0.10 m/s, and 2.37 ± 0.15 m/s, respectively, which were consistent with estimates computed from three other conventional methods, as well as compression tests done with a commercial texture analyzer. The method was shown to be able to reconstruct a 2-D speed map of an inclusion phantom with good image quality and variance comparable to conventional methods. Suggestions for further work are given. PMID:26670851

  6. Application of in situ direct shear device to shear strength measurement of rockfill materials

    Institute of Scientific and Technical Information of China (English)

    Si-hong LIU

    2009-01-01

    A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields.In this test,a latticed shearing frame replaces the upper half of the shear box used in the conventional direct shear box test.The latticed shearing frame is directly embedded in the ground to be tested after a construction process and is pulled with a flexible chain while a constant dead load is applied to the sample in the shearing frame.This simplified in situ DST has been validated by comparing its results with those of triaxial tests on samples with parallel gradations under normal stresses less than 100 kPa.In this study,the DST was further validated by carrying out tests on samples with the same gradations,rather than on samples with parallel gradations,under normal stresses up to 880 kPa.In addition,the DST was performed inside fills in two applications.

  7. Laboratory Investigation on Shear Behavior of Rock Joints and a New Peak Shear Strength Criterion

    Science.gov (United States)

    Zhang, Xiaobo; Jiang, Qinghui; Chen, Na; Wei, Wei; Feng, Xixia

    2016-09-01

    In this study, shear tests on artificial rock joints with different roughness were conducted under five normal stress levels. Test results showed that the shear strength of rock joints had a positive correlation with roughness and the applied normal stress. Observation of joint specimens after shear tests indicated that asperity damage was mainly located in the steep areas facing the shear direction. The damaged joint surfaces tend to be rough, which implies that tensile failure plays an important role in shear behavior. As a result of the anisotropic characteristic of joint roughness, two quantitative 2D roughness parameters, i.e., the revised root-mean-square of asperity angle tan-1( Z 2r) and the maximum contact coefficient C m, were proposed considering the shear direction. The proposed roughness parameters can capture the difference of roughness in forward and reverse directions along a single joint profile. The normalized tensile strength and the proposed roughness parameters were used to perform a rational derivation of peak dilatancy angle. A negative exponential-type function was found to be appropriate to model the peak dilatancy angle. Using the new model of peak dilatancy angle, we obtained a new criterion for peak shear strength of rock joints. The good agreement between test results and predicted results by the new criterion indicated that the proposed criterion is capable of estimating the peak shear strength of rock joints. Comparisons between the new criterion and published models from available literature revealed that the proposed criterion has a good accuracy for predicting the peak shear strength of joints investigated in this study.

  8. Numerical Simulation of Tripolar Vortex in Dusty Plasma with Sheared Flow and Sheared Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Wang Ge; Chen Yinhua; Tan Liwei

    2005-01-01

    This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space plasma, we have simulated the dynamics of the tripolar vortex.The results show that the tripolar vortex is largely stable in most cases, but a strongly sheared magnetic field will make the structure less stable, and lead it to decays into single vortices with the large space scale. These results are consistent with findings from former research about the dipolar vortex.

  9. Instabilities in Pulsating Pipe Flow of Shear-Thinning and Shear-Thickening Fluids

    OpenAIRE

    Sadrizadeh, Sasan

    2012-01-01

    In this study, we have considered the modal and non-modal stability of fluids with shear-dependent viscosity flowing in a rigid straight pipe. A second order finite-difference code is used for the simulation of pipe flow in the cylindrical coordinate system. The Carreau-Yasuda model where the rheological parameters vary in the range of 0.3 < n < 1.5 and 0.1 < λ < 100 is represents the viscosity of shear- thinning and shear thickening fluids. Variation of the periodic pulsatile for...

  10. Analysis of shear test method for composite laminates

    Science.gov (United States)

    Bergner, H. W., Jr.; Davis, J. G., Jr.; Herakovich, C. T.

    1977-01-01

    An elastic plane stress finite element analysis of the stress distributions in four flat test specimens for in-plane shear response of composite materials subjected to mechanical or thermal loads is presented. The shear test specimens investigated include: slotted coupon, cross beam, losipescu, and rail shear. Results are presented in the form of normalized shear contour plots for all three in-plane stess components. It is shown that the cross beam, losipescu, and rail shear specimens have stress distributions which are more than adequate for determining linear shear behavior of composite materials. Laminate properties, core effects, and fixture configurations are among the factors which were found to influence the stress distributions.

  11. Self-organization in circular shear layers

    DEFF Research Database (Denmark)

    Bergeron, K.; Coutsias, E.A.; Lynov, Jens-Peter;

    1996-01-01

    Experiments on forced circular shear layers performed in both magnetized plasmas and in rotating fluids reveal qualitatively similar self-organization processes leading to the formation of patterns of coherent vortical structures with varying complexity. In this paper results are presented from...

  12. Red blood cell in simple shear flow

    Science.gov (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  13. Shear-free boundary in Stokes flow

    OpenAIRE

    Amaranath, T.; S. D. Nigam; Palaniappan, D.

    1996-01-01

    A theorem of Harper for axially symmetric flow past a sphere which is a stream surface, and is also shear-free, is extended to flow past a doubly-body ð”… consisting of two unequal, orthogonally intersecting spheres. Several illustrative examples are given. An analogue of Faxen's law for a double-body is observed.

  14. Axisymmetric Toroidal Equilibrium with Sheared Toroidal Flows

    Institute of Scientific and Technical Information of China (English)

    石秉仁

    2002-01-01

    Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow is involved. For standard tokamak equilibrium, general approximate solutions are analytically pursued for arbitrary current profile and non-circular cross-section. Equilibrium properties including the flow-induced density asymmetry are analyzed.

  15. Equilibrium states of homogeneous sheared compressible turbulence

    Science.gov (United States)

    Riahi, M.; Lili, T.

    2011-06-01

    Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT). The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS) of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997)] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995)] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St 10) in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.

  16. Equilibrium states of homogeneous sheared compressible turbulence

    Directory of Open Access Journals (Sweden)

    M. Riahi

    2011-06-01

    Full Text Available Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT. The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St 10 in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.

  17. Shear adhesion strength of aligned electrospun nanofibers.

    Science.gov (United States)

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities.

  18. Electrorheological Effects at High Shear Rate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Much attention has been given to electrorheological (ER) fluids because of the ER effect, which has been described by a large number of researchers as a notable increase in the apparent viscosity of a fluid upon the application of an electric field. The description of ER effects is, however, not accurate at high shear rates. To clarify the discrepancy, we analyze and compute the apparent viscosity as a function of shear rate for ER fluid flow between rotating coaxial cylinders in the presence of an electric field. The theoretical predictions show that the increase of electric intensity contributes little to the apparent viscosity enhancement at high shear rates, while ER effects for ER fluids with a higher polarization rate still exist and ER devices possess controllability in this regime. Description of the ER effect by the apparent viscosity leads to an unrealistic conclusion that ER effects disappear at high shear rates, because the apparent viscosity of ER fluids approaches the value for Newtonian fluids. Therefore, it is concluded that the proper description of ER effects, i.e., one that holds uniformly for any strain rate when ER effects exist, is manifested by a remarkable increase in the extra stress rather than in the apparent viscosity of ER fluids.

  19. Shearing DNA for genomic library construction.

    Science.gov (United States)

    Hengen, P N

    1997-07-01

    Methods and reagents is a unique monthly column that highlights current discussion in the newsgroup bionet.molibio.methds-reagnts, available on the internet. This month's column discusses the pros and cons of various techniques used to shear DNA for shotgun cloning. For details on how to partake in the newsgroup, see the accompanying box. PMID:9255070

  20. Shear deformation in thick auxetic plates

    International Nuclear Information System (INIS)

    This paper aims to understand the effect of auxeticity on shear deformation in thick plates. Three models for the shear correction factor of plates as a function of Poisson’s ratio were proposed: an analytical model, a cubic fit model and a modified model. Of these three, the cubic fit model exhibits the best accuracy over the entire range of Poisson’s ratio from −1 to 0.5. The extent of shear deformation is herein investigated using the example of uniformly loaded circular plates. It was found that the maximum deformation of such plates based on Mindlin theory approximates to those according to Kirchhoff theory when the Poisson’s ratio of the plate material is highly negative. When the Poisson’s ratio of the plate material is −1 and the edge of the plate is simply supported, the calculation of the maximum deflection by Mindlin theory simplifies into that by Kirchhoff theory. These results suggest that auxeticity reduces shear deformation in thick plates, permitting the use of classical plate theory for thick plates only if the plate material is highly auxetic. (paper)

  1. Spurious Shear in Weak Lensing with LSST

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.

    2012-09-19

    The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.

  2. Test and Analysis of a New Ductile Shear Connection Design for RC Shear Walls

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Olesen, John Forbes;

    2016-01-01

    This paper presents a new and construction-friendly shear connection for assembly of precast reinforced concrete shear wall elements. In the proposed design, the precast elements have indented interfaces and are connected by a narrow zone grouted with mortar and reinforced with overlapping U......-bar loops. Contrary to the classical shear connections, the planes of the U-bar loops are here parallel to the plane of the wall elements. This feature enables a construction-friendly installation of the elements without the risk of rebars clashing. The core of mortar inside each U-bar loop is reinforced...... with a transverse double T-headed bar to ensure transfer of tension between the overlapping U-bars. Push-off tests show that a significantly ductile load-displacement response can be obtained by the new solution as compared to the performance of the conventional keyed shear connection design. The influence...

  3. Molecular origins of higher harmonics in large-amplitude oscillatory shear flow: Shear stress response

    Science.gov (United States)

    Gilbert, P. H.; Giacomin, A. J.

    2016-10-01

    Recent work has focused on deepening our understanding of the molecular origins of the higher harmonics that arise in the shear stress response of polymeric liquids in large-amplitude oscillatory shear flow. For instance, these higher harmonics have been explained by just considering the orientation distribution of rigid dumbbells suspended in a Newtonian solvent. These dumbbells, when in dilute suspension, form the simplest relevant molecular model of polymer viscoelasticity, and this model specifically neglects interactions between the polymer molecules [R. B. Bird et al., "Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response," J. Chem. Phys. 140, 074904 (2014)]. In this paper, we explore these interactions by examining the Curtiss-Bird model, a kinetic molecular theory designed specifically to account for the restricted motions that arise when polymer chains are concentrated, thus interacting and specifically, entangled. We begin our comparison using a heretofore ignored explicit analytical solution [X.-J. Fan and R. B. Bird, "A kinetic theory for polymer melts. VI. Calculation of additional material functions," J. Non-Newtonian Fluid Mech. 15, 341 (1984)]. For concentrated systems, the chain motion transverse to the chain axis is more restricted than along the axis. This anisotropy is described by the link tension coefficient, ɛ, for which several special cases arise: ɛ = 0 corresponds to reptation, ɛ > 1/8 to rod-climbing, 1/5 ≤ ɛ ≤ 3/4 to reasonable predictions for shear-thinning in steady simple shear flow, and ɛ = 1 to the dilute solution without hydrodynamic interaction. In this paper, we examine the shapes of the shear stress versus shear rate loops for the special cases ɛ = (" separators=" 0 , 1 / 8 , 3 / 8 , 1 ) , and we compare these with those of rigid dumbbell and reptation model predictions.

  4. Insulation Impact on Shear Strength of Screw Connections and Shear Strength of Diaphragms

    OpenAIRE

    Lease, Adam R.

    2005-01-01

    Several thousand tests throughout the world have been conducted on the shear strength of screw connections in cold-formed steel, however, little to no research has been conducted on how various thicknesses of insulation placed between two sheets of steel, such as a steel panel and structural supporting member, affects a screw's shear strength. Elemental tests were conducted as part of this study at Virginia Tech where rolled fiberglass insulation was placed between two pieces of steel connec...

  5. Molecular Origins of Higher Harmonics in Large-Amplitude Oscillatory Shear Flow: Shear Stress Response

    Science.gov (United States)

    Gilbert, Peter; Giacomin, A. Jeffrey; Schmalzer, Andrew; Bird, R. B.

    Recent work has focused on understanding the molecular origins of higher harmonics that arise in the shear stress response of polymeric liquids in large-amplitude oscillatory shear flow. These higher harmonics have been explained using only the orientation distribution of a dilute suspension of rigid dumbbells in a Newtonian fluid, which neglects molecular interactions and is the simplest relevant molecular model of polymer viscoelasticity [R.B. Bird et al., J Chem Phys, 140, 074904 (2014)]. We explore these molecular interactions by examining the Curtiss-Bird model, a kinetic molecular theory that accounts for restricted polymer motions arising when chains are concentrated [Fan and Bird, JNNFM, 15, 341 (1984)]. For concentrated systems, the chain motion transverse to the chain axis is more restricted than along the axis. This anisotropy is described by the link tension coefficient, ɛ, for which several special cases arise: ɛ =0 corresponds to reptation, ɛ > 1 1 8 8 to rod-climbing, 1 1 2 2 >= ɛ >= 3 3 4 4 to reasonable shear-thinning predictions in steady simple shear flow, and ɛ =1 to a dilute solution of chains. We examine the shapes of the shear stress versus shear rate loops for the special cases, ɛ = 0 , 1 0 , 1 8 , 3 3 8 8 8 , 3 3 8 8 , 1 , of the Curtiss-Bird model, and we compare these with those of rigid dumbbell and reptation model predictions.

  6. Amorphous silicon under mechanical shear deformations: Shear velocity and temperature effects

    Science.gov (United States)

    Kerrache, Ali; Mousseau, Normand; Lewis, Laurent J.

    2011-04-01

    Mechanical shear deformations lead, in some cases, to effects similar to those resulting from ion irradiation. Here we characterize the effects of shear velocity and temperature on amorphous silicon (a-Si) modeled using classical molecular-dynamics simulations based on the empirical environment-dependent interatomic potential (EDIP). With increasing shear velocity at low temperature, we find a systematic increase in the internal strain leading to the rapid appearance of structural defects (fivefold-coordinated atoms). The impacts of externally applied strain can be almost fully compensated by increasing the temperature, allowing the system to respond more rapidly to the deformation. In particular, we find opposite power-law relations between the temperature and the shear velocity and the deformation energy. The spatial distribution of defects is also found to depend strongly on temperature and strain velocity. For low temperature or high shear velocity, defects are concentrated in a few atomic layers near the center of the cell, while with increasing temperature or decreasing shear velocity, they spread slowly throughout the full simulation cell. This complex behavior can be related to the structure of the energy landscape and the existence of a continuous energy-barrier distribution.

  7. Influence of material properties on the sheared impact process of shear-cap in squib valve

    International Nuclear Information System (INIS)

    Background: Squib valve is a key valve in the new generation nuclear power plant, which has not been localized and the research on the failure process of shear-cap is necessary. Purpose: This research aims to study the influence of material on the failure process of shear-cap in squib valve. Methods: The finite element method is used to simulate the shear-caps' sheared process of different materials-Inconel 690, 304 stainless steel and 321 stainless steel. Results: As a result, the failure time and the final speed of piston are shown at each impact speed. Conclusions: The shear-cap of Inconel 690 is hardest to shear. A method to get the critical impact speed in the open process of valve is proposed. It can be found that the residual kinetic energy of the piston has the common feature and is 25% of the initial kinetic energy. Piston's final speed has a linear relationship to its initial speed for all three materials. (authors)

  8. Adaptive Estimation of Intravascular Shear Rate Based on Parameter Optimization

    Science.gov (United States)

    Nitta, Naotaka; Takeda, Naoto

    2008-05-01

    The relationships between the intravascular wall shear stress, controlled by flow dynamics, and the progress of arteriosclerosis plaque have been clarified by various studies. Since the shear stress is determined by the viscosity coefficient and shear rate, both factors must be estimated accurately. In this paper, an adaptive method for improving the accuracy of quantitative shear rate estimation was investigated. First, the parameter dependence of the estimated shear rate was investigated in terms of the differential window width and the number of averaged velocity profiles based on simulation and experimental data, and then the shear rate calculation was optimized. The optimized result revealed that the proposed adaptive method of shear rate estimation was effective for improving the accuracy of shear rate calculation.

  9. Disentangling the role of structure and friction in shear jamming

    Science.gov (United States)

    Vinutha, H. A.; Sastry, Srikanth

    2016-06-01

    Amorphous sphere packings have been intensely investigated to understand mechanical and flow behaviour of dense granular matter and to explore universal aspects of the jamming transition, from fluid to structurally arrested states. Considerable recent research has focused on anisotropic packings of frictional grains generated by shear deformation leading to shear jamming, occurring below the jamming density for isotropic packings of frictionless grains. Here, with the aim of disentangling the role of shear-deformation-induced structures and friction in generating shear jamming, we computationally study sheared assemblies of frictionless spheres, over a wide range of densities. We demonstrate that shear deformation alone leads to the emergence of geometric features characteristic of jammed packings, with the increase of shear strain. We also show that such emergent geometry, together with friction, leads to mechanically stable, shear-jammed, packings above a threshold density that lies well below the isotropic jamming point.

  10. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  11. Turbulent transport across shear layers in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Shear layers modify the turbulence in diverse ways and do not only suppress it. A spatial-temporal investigation of gyrofluid simulations in comparison with experiments allows to identify further details of the transport process across shear layers. Blobs in and outside a shear layer merge, thereby exchange particles and heat and subsequently break up. Via this mechanism particles and heat are transported radially across shear layers. Turbulence spreading is the immanent mechanism behind this process

  12. Shear viscosity for a moderately dense granular binary mixture

    OpenAIRE

    Garzo, Vicente; Montanero, Jose Maria

    2003-01-01

    The shear viscosity for a moderately dense granular binary mixture of smooth hard spheres undergoing uniform shear flow is determined. The basis for the analysis is the Enskog kinetic equation, solved first analytically by the Chapman-Enskog method up to first order in the shear rate for unforced systems as well as for systems driven by a Gaussian thermostat. As in the elastic case, practical evaluation requires a Sonine polynomial approximation. In the leading order, we determine the shear v...

  13. Hysteresis and Lubrication in Shear Thickening of Cornstarch Suspensions

    OpenAIRE

    Chu, Clarence E.; Groman, Joel A.; Sieber, Hannah L.; Miller, James G.; Okamoto, Ruth J.; Katz, Jonathan I.

    2014-01-01

    Aqueous and brine suspensions of corn starch show striking discontinuous shear thickening. We have found that a suspension shear-thickened throughout may remain in the jammed thickened state as the strain rate is reduced, but an unjamming front may propagate from any unjammed regions. Transient shear thickening is observed at strain rates below the thickening threshold, and above it the stress fluctuates. The jammed shear-thickened state may persist to low strain rates, with stresses resembli...

  14. Reynolds stresses from hydrodynamic turbulence with shear and rotation

    OpenAIRE

    Snellman, J. E.; Käpylä, P. J.; Korpi, M. J.; Liljeström, A. J.

    2009-01-01

    To study the Reynolds stresses which describe turbulent momentum transport from turbulence affected by large-scale shear and rotation. Three-dimensional numerical simulations are used to study turbulent transport under the influences of large-scale shear and rotation in homogeneous, isotropically forced turbulence. We study three cases: one with only shear, and two others where in addition to shear, rotation is present. These cases differ by the angle (0 or 90\\degr) the rotation vector makes ...

  15. Shear Strength of R/C Beams with Spiral Reinforcement

    OpenAIRE

    市之瀬, 敏勝; 横尾, 慎一; イチノセ, トシカツ; Ichinose, Toshikatsu

    1992-01-01

    Based on the upper bound theorem, the shear strength of R/C beams with spiral reinforcement is discussed considering its pitch. Three dimensional failure pattern is considered. Conclusions are as follows : (1) Spiral reinforcement is more liable to yield than closed shear reinforcement if their pitch is the same ; (2) The shear strength of R/C beams with usual amount of spiral reinforcement is similar to that with the same amount of closed shear reinforcement. The difference appears when the ...

  16. Analytical theory of forced rotating sheared turbulence: The perpendicular case

    OpenAIRE

    Leprovost, Nicolas; Kim, Eun-Jin

    2008-01-01

    Rotation and shear flows are ubiquitous features of many astrophysical and geophysical bodies. To understand their origin and effect on turbulent transport in these systems, we consider a forced turbulence and investigate the combined effect of rotation and shear flow on the turbulence properties. Specifically, we study how rotation and flow shear influence the generation of shear flow (e.g., the direction of energy cascade), turbulence level, transport of particles and momentum, and the anis...

  17. Estimated genetic parameters for palatability traits of steaks from Brahman cattle.

    Science.gov (United States)

    Riley, D G; Chase, C C; Hammond, A C; West, R L; Johnson, D D; Olson, T A; Coleman, S W

    2003-01-01

    Heritabilities and genetic and phenotypic correlations were estimated from carcass and beef palatability data collected from Brahman calves (n = 504) born in central Florida from 1996 to 2000. Traits evaluated included Warner-Bratzler shear force (after 7, 14, and 21 d of aging), panel tenderness score, connective tissue amount, juiciness, flavor intensity, and off flavor (after 14 d of aging), percentages of raw and cooked lipids, and milligrams per gram of muscle calpastatin activity. Parameters were estimated using an animal model and derivative-free restricted maximum likelihood procedures. Estimated heritabilities for d 7, 14, and 21 shear force were 0.14,0.14, and 0.06, respectively, indicating that improvement in these traits by selection would be slow. Estimated heritabilities of sensory panel attributes were 0.11, 0.12, 0.05, 0.04, and 0.01 for tenderness, connective tissue amount, juiciness, flavor intensity, and off flavor, respectively. The estimated heritabilities for percentages of raw and cooked lipids, and calpastatin activity were 0.34, 0.17, and 0.07, respectively. Most of the estimated genetic correlations among palatability traits and for palatability traits with fat thickness, marbling score, and loin muscle area were consistent with other estimates from the literature. Results indicated that improvement in tenderness based on selection for favorable shear force, sensory panel tenderness, or calpastatin activity would be slow; therefore, postslaughter intervention programs should also be considered.

  18. Estimated genetic parameters for palatability traits of steaks from Brahman cattle.

    Science.gov (United States)

    Riley, D G; Chase, C C; Hammond, A C; West, R L; Johnson, D D; Olson, T A; Coleman, S W

    2003-01-01

    Heritabilities and genetic and phenotypic correlations were estimated from carcass and beef palatability data collected from Brahman calves (n = 504) born in central Florida from 1996 to 2000. Traits evaluated included Warner-Bratzler shear force (after 7, 14, and 21 d of aging), panel tenderness score, connective tissue amount, juiciness, flavor intensity, and off flavor (after 14 d of aging), percentages of raw and cooked lipids, and milligrams per gram of muscle calpastatin activity. Parameters were estimated using an animal model and derivative-free restricted maximum likelihood procedures. Estimated heritabilities for d 7, 14, and 21 shear force were 0.14,0.14, and 0.06, respectively, indicating that improvement in these traits by selection would be slow. Estimated heritabilities of sensory panel attributes were 0.11, 0.12, 0.05, 0.04, and 0.01 for tenderness, connective tissue amount, juiciness, flavor intensity, and off flavor, respectively. The estimated heritabilities for percentages of raw and cooked lipids, and calpastatin activity were 0.34, 0.17, and 0.07, respectively. Most of the estimated genetic correlations among palatability traits and for palatability traits with fat thickness, marbling score, and loin muscle area were consistent with other estimates from the literature. Results indicated that improvement in tenderness based on selection for favorable shear force, sensory panel tenderness, or calpastatin activity would be slow; therefore, postslaughter intervention programs should also be considered. PMID:12597372

  19. Control over colloidal crystallization by shear and electric fields

    NARCIS (Netherlands)

    Wu, Y.L.

    2007-01-01

    We used shear flow and an electric field to control colloidal crystallization. The structures were examined in situ with confocal microscopy. For experiments under shear, a new parallel plate shear cell was designed. It had a zero-velocity plane that was stationary with respect to the microscope. Th

  20. Seismic behavior of semi-supported steel shear walls

    DEFF Research Database (Denmark)

    Jahanpour, A.; Jönsson, J.; Moharrami, H.

    2012-01-01

    During the recent past decade semi-supported steel shear walls (SSSW) have been introduced as an alternative to the traditional type of steel plate shear walls. In this system the shear wall does not connect directly to the main columns of the building frame; instead it is connected to a pair...

  1. Shear effects on crystalline structures of poly(L-lactide)

    DEFF Research Database (Denmark)

    Xiao, Peitao; Li, Hongfei; Huang, Shaoyong;

    2013-01-01

    The shearing effects of sheared polymer melts on their finally formed crystalline structures of poly(L-lactide) (PLLA) were investigated by means of small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). The results of WAXD prove that shear has no effects on the crystal stru...

  2. Hyperscaling violation and the shear diffusion constant

    Science.gov (United States)

    Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.

    2016-09-01

    We consider holographic theories in bulk (d + 1)-dimensions with Lifshitz and hyperscaling violating exponents z , θ at finite temperature. By studying shear gravitational modes in the near-horizon region given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic exponents with d - z - θ > - 1, we find that the diffusion constant has power law scaling with the temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents satisfy d - z - θ = - 1, we find logarithmic behaviour. This relation is equivalent to z = 2 +deff where deff =di - θ is the effective boundary spatial dimension (and di = d - 1 the actual spatial dimension). It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly boosted black branes, and we comment on the corresponding analysis in that context.

  3. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J

    2006-01-01

    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  4. Stochastically driven instability in rotating shear flows

    CERN Document Server

    Mukhopadhyay, Banibrata

    2012-01-01

    Origin of hydrodynamic turbulence in rotating shear flows is investigated. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Such a mismatch between the linear theory and observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. The present work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disk. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities, and hence large energy dissipations of perturbation, which presumably generate instability. A ra...

  5. MECHANICAL BEHAVIOR OF AMORPHOUS POLYMERS IN SHEAR

    Institute of Scientific and Technical Information of China (English)

    张赟; 黄筑平

    2004-01-01

    Based on the non-equilibrium thermodynamic theory, a new thermo-viscoelastic constitutive model for an incompressible material is proposed. This model can be considered as a kind of generalization of the non-Gaussian network theory in rubber elasticity to include the viscous and the thermal effects. A set of second rank tensorial internal variables was introduced, and in order to adequately describe the evolution of these internal variables, a new expression of the Helmholtz free energy was suggested. The mechanical behavior of the thermo-viscoelastic material under simple shear deformation was studied, and the "viscous dissipation induced" anisotropy due to the change of orientation distribution of molecular chains was examined. Influences of strain rate and thermal softening produced by the viscous dissipation on the shear stress were also discussed. Finally, the model predictions were compared with the experimental results performed by G'Sell et al., thus the validity of the proposed model is verified.

  6. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)

    2010-11-15

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Bulk and Shear Viscosity in Hagedorn Fluid

    CERN Document Server

    Tawfik, A

    2010-01-01

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses $m<2\\,$GeV obeys the {\\it first-order} theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the {\\it in-medium} thermal effects on bulk and shear viscosities and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equlibrium thermodynamics and the cosmological models, which require thermo and hydrodynamics equations of state.

  8. Static inelastic analysis of RC shear walls

    Institute of Scientific and Technical Information of China (English)

    陈勤; 钱稼茹

    2002-01-01

    A macro-model of a reinforced concrete (RC) shear wall is developed for static inelastic analysis. The model iscomposed of RC column elements and RC membrane elements. The column elements are used to model the boundary zone andthe membrane elements are used to model the wall panel. Various types of constitutive relationships of concrete could beadopted for the two kinds of elements. To perform analysis, the wall is divided into layers along its height. Two adjacent layersare connected with a rigid beam. There are only three unknown displacement components for each layer. A method called singledegree of freedom compensation is adopted to solve the peak value of the capacity curve. The post-peak stage analysis isperformed using a forced iteration approach. The macro-model developed in the study and the complete process analysismethodology are verified by the experimental and static inelastic analytical results of four RC shear wall specimens.

  9. Hierarchical probabilistic inference of cosmic shear

    CERN Document Server

    Schneider, Michael D; Marshall, Philip J; Dawson, William A; Meyers, Joshua; Bard, Deborah J; Lang, Dustin

    2014-01-01

    Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the glo...

  10. Undulatory swimming in shear-thinning fluids

    CERN Document Server

    Gagnon, David A; Arratia, Paulo E

    2014-01-01

    The swimming behaviour of microorganisms can be strongly influenced by the rheology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer's kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode's speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation, and an increase in fluid velocity near the nematode's tail, compared to Newtonian fluids of similar effective viscosity. These findings are in good agreement with recent theoretical and numerical results.

  11. Flexible magnetic filaments in a shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Cebers, Andrejs [Institute of Physics, University of Latvia, Salaspils-1 LV-2169 (Latvia)]. E-mail: aceb@tesla.sal.lv

    2006-05-15

    By flexible magnetic filament model its behavior under the simultaneous action of the shear flow and the magnetic field is investigated. It is found that for magnetoelastic numbers larger as the critical value, which depends on the shear rate, the periodic regime is established. For the values of the magnetoelastic number close to the critical the periodical regime is characterized by a rather slow development of the buckling instability due to the action of magnetic torques with the subsequent stage of the fast straightening of the filament. For the magnetoelastic numbers below the critical slightly bent shape of the filament orientated along the flow is established. The application of the results for the description of the viscoelasticity of the magnetorheological suspensions is discussed.

  12. Drop impact of shear thickening liquids

    CERN Document Server

    Boyer, Francois; Dijksman, J Frits; Lohse, Detlef

    2013-01-01

    The impact of drops of concentrated non-Brownian suspensions (cornstarch and polystyrene spheres) onto a solid surface is investigated experimentally. The spreading dynamics and maxi- mal deformation of the droplet of such shear thickening liquids are found to be markedly different from the impact of Newtonian drops. A particularly striking observation is that the maximal de- formation is independent of the drop velocity and that the deformation suddenly stops during the impact phase. Both observations are due to the shear-thickening rheology of the suspensions, as is theoretically explained from a balance between the kinetic energy and the viscously-dissipated en- ergy, from which we establish a scaling relation between drop maximal deformation and rheological parameters of concentrated suspensions.

  13. Implications of Orientation in Sheared Cocoa Butter

    Science.gov (United States)

    Guthrie, Sarah E.; Mazzanti, Gianfranco; Marangoni, Alejandro; Idziak, Stefan H. J.

    2004-03-01

    We will present x-ray and mechanical studies of oriented phases of cocoa butter. The structural elements of foods play an important role in determining such things as quality and shelf stability. The specific structure and properties of cocoa butter, however, are complicated due to the ability of the cocoa butter to form crystals in six polymorphic forms. Recent work has shown that the application of shear not only accelerates the transitions to more stable polymorphs, but also causes orientation of the crystallites[1]. The implications of orientation on the structures formed under conditions of shear and cooling will be described using x-ray diffraction and mechanical measurements. 1 G. Mazzanti, S. E. Guthrie, E. B. Sirota et al., Crystal Growth & Design 3 (5), 721 (2003).

  14. Direct measurement of shear properties of microfibers

    Energy Technology Data Exchange (ETDEWEB)

    Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Skove, M. J.; Rao, A. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Oliveira, L. [School of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Serkiz, S. M. [Department of Physics and Astronomy, and Clemson Nanomaterials Center, Clemson University, Clemson, South Carolina 29634 (United States); Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2014-09-15

    As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar{sup ®} 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.

  15. Shear viscosity, cavitation and hydrodynamics at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Jitesh R., E-mail: jeet@prl.res.in [Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India); Mishra, Hiranmaya, E-mail: hm@prl.res.in [Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India); Sreekanth, V., E-mail: skv@prl.res.in [Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India)

    2011-10-25

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  16. Shear viscosity, cavitation and hydrodynamics at LHC

    CERN Document Server

    Bhatt, Jitesh R; Sreekanth, V

    2011-01-01

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid become invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early during the evolution of the hydrodynamics in time $\\lesssim 2 $fm/c. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal term used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  17. Shear instabilities in shallow-water magnetohydrodynamics

    CERN Document Server

    Mak, Julian; Hughes, D W

    2016-01-01

    Within the framework of shallow-water magnetohydrodynamics, we investigate the linear instability of horizontal shear flows, influenced by an aligned magnetic field and stratification. Various classical instability results, such as H{\\o}iland's growth rate bound and Howard's semi-circle theorem, are extended to this shallow-water system for quite general profiles. Two specific piecewise-constant velocity profiles, the vortex sheet and the rectangular jet, are studied analytically and asymptotically; it is found that the magnetic field and stratification (as measured by the Froude number) are generally both stabilising, but weak instabilities can be found at arbitrarily large Froude number. Numerical solutions are computed for corresponding smooth velocity profiles, the hyperbolic-tangent shear layer and the Bickley jet, for a uniform background field. A generalisation of the long-wave asymptotic analysis of Drazin & Howard (1962) is employed in order to understand the instability characteristics for both ...

  18. Reynolds stress and shear flow generation

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.;

    2001-01-01

    treatment of the pseudo-Reynolds stress, we present analytical and numerical results which demonstrate that the Reynolds stress in a plasma, indeed, generates a poloidal shear flow. The numerical simulations are performed both in a drift wave turbulence regime and a resistive interchange turbulence regime......The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding of...... improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method...

  19. Shear capacity of high-strength concrete beams with their point of inflection within the shear span

    OpenAIRE

    Islam, MS; Pam, HJ; Kwan, AKH

    1998-01-01

    The shear strength of concrete does not increase in proportion with the concrete grade. Thus, when high-strength concrete is used in place of normal-strength concrete, the shear capacity of the structure could become critical. In the study presented, the effect of concrete strength on the shear capacity of concrete beams was investigated. As previous research on normal-strength concrete beams has shown that the presence of an inflection point within the shear span can significantly influence ...

  20. Shear modulus of the neutron star crust

    International Nuclear Information System (INIS)

    Complete text of publication follows. The shear modulus of the solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with the uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative / T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. Additionally, the correction to the static lattice shear modulus due to the electron gas polarizability is evaluated. This effect is taken into account in the formalism of the dielectric function. Static zero temperature dielectric function of degenerate relativistic electron gas obtained in the Random Phase Approximation is used. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology. This work was partially supported by the Russian Foundation for Basic Research (grant 11-02-00253-a), by the State Program 'Leading Scientific Schools of Russian Federation' (grant NSh 3769.2010.2) and by the Ministry of Education and

  1. Stent implantation influence wall shear stress evolution

    Science.gov (United States)

    Bernad, S. I.; Totorean, A. F.; Bosioc, A. I.; Petre, I.; Bernad, E. S.

    2016-06-01

    Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. The impact of flow alterations around struts vary as the strut geometrical parameters change. Our results provide data regarding the hemodynamic parameters for the blood flow in both stenosed and stented coronary artery under physiological conditions, namely wall shear stress and pressure drop.

  2. Shear modulus titration in crystalline colloidal suspensions

    OpenAIRE

    Palberg, Thomas; Kottal, Johannes; Bitzer, Franz; Simon, Rolf; Würth, Mathias; Leiderer, Paul

    1995-01-01

    We present the first direct experimental access to the actual surface charge number Z of colloidal particles under conditions of strong electrostatic interaction. We further calculate a renormalized charge number Z *(Z) using the modified DLVO approximation and the dependence of the shear modulus G(Z*) on the concentration of neutral electrolyte ns. The excellent agreement of predicted and measured values provides an experimental verification of the renormalization concept under variation of ...

  3. Shear adhesion strength of aligned electrospun nanofibers.

    Science.gov (United States)

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities. PMID:25105533

  4. Stochastically driven instability in rotating shear flows

    International Nuclear Information System (INIS)

    The origin of hydrodynamic turbulence in rotating shear flows is investigated, with particular emphasis on the flows whose angular velocity decreases but whose specific angular momentum increases with the increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain the observed data. Such a mismatch between the linear theory and the observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. This work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow, which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disc. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities and hence large energy dissipations of perturbation, which presumably generate the instability. A range of angular velocity (Ω) profiles of the background flow, starting from that of a constant specific angular momentum (λ = Ωr2; r being the radial coordinate) to a constant circular velocity (vϕ = Ωr), is explored. However, all the background angular velocities exhibit identical growth and roughness exponents of their perturbations, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand the origin of instability and turbulence in three-dimensional Rayleigh stable rotating shear flows by introducing additive noise to the underlying linearized governing equations. This has important implications to resolve the turbulence problem in astrophysical hydrodynamic flows such as accretion discs. (paper)

  5. An implementation of Bayesian lensing shear measurement

    Science.gov (United States)

    Sheldon, Erin S.

    2014-10-01

    The Bayesian gravitational shear estimation algorithm developed by Bernstein & Armstrong can potentially be used to overcome multiplicative noise bias and recover shear using very low signal-to-noise ratio (S/N) galaxy images. In that work, the authors confirmed that the method is nearly unbiased in a simplified demonstration, but no test was performed on images with realistic pixel noise. Here, I present a full implementation for fitting models to galaxy images, including the effects of a point spread function (PSF) and pixelization. I tested the implementation using simulated galaxy images modelled as Sérsic profiles with n = 1 (exponential) and n = 4 (De Vaucouleurs'), convolved with a PSF and a flat pixel response function. I used a round Gaussian model for the PSF to avoid potential PSF-fitting errors. I simulated galaxies with mean observed, post-PSF full width at half-maximum equal to approximately 1.2 times that of the PSF, with lognormal scatter. I also drew fluxes from a lognormal distribution. I produced independent simulations, each with pixel noise tuned to produce different mean S/N ranging from 10-1000. I applied a constant shear to all images. I fitted the simulated images to a model with the true Sérsic index to avoid modelling biases. I recovered the input shear with fractional error Δg/g < 2 × 10-3 in all cases. In these controlled conditions, and in the absence of other multiplicative errors, this implementation is sufficiently unbiased for current surveys and approaches the requirements for planned surveys.

  6. Localized shear generates three-dimensional chaos

    OpenAIRE

    Smith, Lachlan D.; Rudman, Murray; Lester, Daniel R.; Metcalfe, Guy

    2016-01-01

    Understanding the mechanisms that control 3D fluid transport is central to many processes including mixing, chemical reaction and biological activity. Here a novel mechanism for 3D transport is uncovered where fluid particles are kicked between streamlines near a localized shear, which occurs in many flows and materials. This results in 3D transport similar to Resonance Induced Dispersion (RID); the new mechanism is more rapid and mutually incompatible with RID. We explore its governing impac...

  7. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  8. Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics

    Science.gov (United States)

    Miao, Hongchen; Dong, Shuxiang; Li, Faxin

    2016-05-01

    The fundamental shear horizontal (SH0) wave in plate-like structures is extremely useful for non-destructive testing (NDT) and structural health monitoring (SHM) as it is non-dispersive. However, currently, the SH0 wave is usually excited by electromagnetic acoustic transducers (EMAT) whose energy conversion efficiency is fairly low. The face-shear ( d 36 ) mode piezoelectrics is more promising for SH0 wave excitation, but this mode cannot appear in conventional piezoelectric ceramics. Recently, by modifying the symmetry of poled PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering, we realized the face-shear d 36 mode in both soft and hard PZT ceramics. In this work, we further improved the face-shear properties of PZT-4 and PZT-5H ceramics via lateral compression under elevated temperature. It was found that when bonded on a 1 mm-thick aluminum plate, the d 36 type PZT-4 exhibited better face-shear performance than PZT-5H. We then successfully excite SH0 wave in the aluminum plate using a face-shear PZT-4 square patch and receive the wave using a face-shear 0.72[Pb(Mg1/3Nb2/3)O3]-0.28[PbTiO3] (PMN-PT) patch. The frequency response and directionality of the excited SH0 wave were also investigated. The SH0 wave can be dominated over the Lamb waves (S0 and A0 waves) from 160 kHz to 280 kHz. The wave amplitude reaches its maxima along the two main directions (0° and 90°). The amplitude can keep over 80% of the maxima when the deviate angle is less than 30°, while it vanishes quickly at the 45° direction. The excited SH0 wave using piezoelectric ceramics could be very promising in the fields of NDT and SHM.

  9. Spurious Shear in Weak Lensing with LSST

    CERN Document Server

    Chang, C; Jernigan, J G; Peterson, J R; AlSayyad, Y; Ahmad, Z; Bankert, J; Bard, D; Connolly, A; Gibson, R R; Gilmore, K; Grace, E; Hannel, M; Hodge, M A; Jee, M J; Jones, L; Krughoff, S; Lorenz, S; Marshall, P J; Marshall, S; Meert, A; Nagarajan, S; Peng, E; Rasmussen, A P; Shmakova, M; Sylvestre, N; Todd, N; Young, M

    2012-01-01

    The Large Synoptic Survey Telescope (LSST) is one of the most powerful ground-based weak lensing survey telescopes in the upcoming decade. The complete 10-year survey will image $\\sim$ 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to $r\\sim27.5$, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of \\textit{additive} systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing ana...

  10. Shear sensitive silicon piezoresistive tactile sensor prototype

    Science.gov (United States)

    Wang, Lin; Beebe, David J.

    1998-09-01

    Shear sensing ability it important in many fields such as robotics, rehabilitation, teleoperation and human computer interfaces. A shear sensitive tactile sensor prototype is developed based on the principles of the piezoresistive effect in silicon, and using microfabrication technology. Analogous to the conventional silicon piezoresistive pressure sensor, piezoresistive resistors embedded in a silicon diaphragm are used to sense stress change. An additional mesa is fabricated on the top of the diaphragm and serves to transform an applied force to a stress. Both the shear and normal components of the force are resolved by measuring the resistance changes of the four resistors placed at the corners of a prism mesa. The prototype is tested both statically and dynamically when a spatial force of 0 - 300 gram is applied. Good linearity (R > 0.98) and high repeatability are observed. In this paper, the force sensing mechanism and force determination approach are described. The fabrication process is presented. The preliminary testing results are presented and discussed.

  11. Horizontal Shear Wave Imaging of Large Optics

    Energy Technology Data Exchange (ETDEWEB)

    Quarry, M J

    2007-09-05

    When complete the National Ignition Facility (NIF) will be the world's largest and most energetic laser and will be capable of achieving for the first time fusion ignition in the laboratory. Detecting optics features within the laser beamlines and sizing them at diameters of 0.1 mm to 10 mm allows timely decisions concerning refurbishment and will help with the routine operation of the system. Horizontally polarized shear waves at 10 MHz were shown to accurately detect, locate, and size features created by laser operations from 0.5 mm to 8 mm by placing sensors at the edge of the optic. The shear wave technique utilizes highly directed beams. The outer edge of an optic can be covered with shear wave transducers on four sides. Each transducer sends a pulse into the optic and any damage reflects the pulse back to the transmitter. The transducers are multiplexed, and the collected time waveforms are enveloped and replicated across the width of the element. Multiplying the data sets from four directions produces a map of reflected amplitude to the fourth power, which images the surface of the optic. Surface area can be measured directly from the image, and maximum depth was shown to be correlated to maximum amplitude of the reflected waveform.

  12. Shear modulus of neutron star crust

    CERN Document Server

    Baiko, D A

    2011-01-01

    Shear modulus of solid neutron star crust is calculated by thermodynamic perturbation theory taking into account ion motion. At given density the crust is modelled as a body-centered cubic Coulomb crystal of fully ionized atomic nuclei of one type with the uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative $\\propto T$ contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behavior is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for li...

  13. Shear modulus of neutron star crust

    Science.gov (United States)

    Baiko, D. A.

    2011-09-01

    The shear modulus of solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At a given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with a uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative ∝ T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.

  14. Singular eigenfunctions for shearing fluids I

    Energy Technology Data Exchange (ETDEWEB)

    Balmforth, N.J.; Morrison, P.J.

    1995-02-01

    The authors construct singular eigenfunctions corresponding to the continuous spectrum of eigenvalues for shear flow in a channel. These modes are irregular as a result of a singularity in the eigenvalue problem at the critical layer of each mode. They consider flows with monotonic shear, so there is only a single critical layer for each mode. They then solve the initial-value problem to establish that these continuum modes, together with any discrete, growing/decaying pairs of modes, comprise a complete basis. They also view the problem within the framework of Hamiltonian theory. In that context, the singular solutions can be viewed as the kernel of an integral, canonical transformation that allows us to write the fluid system, an infinite-dimensional Hamiltonian system, in action-angle form. This yields an expression for the energy in terms of the continuum modes and provides a means for attaching a characteristic signature (sign) to the energy associate with each eigenfunction. They follow on to consider shear-flow stability within the Hamiltonian framework. Next, the authors show the equivalence of integral superpositions of the singular eigenfunctions with the solution derived with Laplace transform techniques. In the long-time limit, such superpositions have decaying integral averages across the channel, revealing phase mixing or continuum damping. Under some conditions, this decay is exponential and is then the fluid analogue of Landau damping. Finally, the authors discuss the energetics of continuum damping.

  15. A comparison between magnetic shear and flare shear in a well-observed M-class flare

    Institute of Scientific and Technical Information of China (English)

    Tuan-Hui Zhou; Hai-Sheng Ji

    2009-01-01

    We give an extensive multi-wavelength analysis of an eruptive M1.0/1N class solar flare, which occurred in the active region NOAA 10044 on 2002 July 26. Our empha-sis is on the relationship between magnetic shear and flare shear. Flare shear is defined as the angle formed between the line connecting the centroids of the two ribbons of the flare and the line perpendicular to the magnetic neutral line. The magnetic shear is computed from vector magnetograms observed at Big Bear Solar Observatory (BBSO), while the flare shear is computed from Transition Region and Coronal Explorer (TRACE) 1700A images. By a detailed comparison, we find that: 1) The magnetic shear and the flare shear of this event are basically consistent, as judged from the directions of the transverse mag-netic field and the line connecting the two ribbons' centroids. 2) During the period of the enhancement of magnetic shear, flare shear had a fast increase followed by a fluctuated decrease. 3) When the magnetic shear stopped its enhancement, the fluctuated decreasing behavior of the flare shear became very smooth. 4) Hard X-ray (HXR) spikes are well correlated with the unshearing peaks on the time profile of the rate of change of the flare shear. We give a discussion of the above phenomena.

  16. Heterogeneity of variances for carcass traits by percentage Brahman inheritance.

    Science.gov (United States)

    Crews, D H; Franke, D E

    1998-07-01

    Heterogeneity of carcass trait variances due to level of Brahman inheritance was investigated using records from straightbred and crossbred steers produced from 1970 to 1988 (n = 1,530). Angus, Brahman, Charolais, and Hereford sires were mated to straightbred and crossbred cows to produce straightbred, F1, back-cross, three-breed cross, and two-, three-, and four-breed rotational crossbred steers in four non-overlapping generations. At weaning (mean age = 220 d), steers were randomly assigned within breed group directly to the feedlot for 200 d, or to a backgrounding and stocker phase before feeding. Stocker steers were fed from 70 to 100 d in generations 1 and 2 and from 60 to 120 d in generations 3 and 4. Carcass traits included hot carcass weight, subcutaneous fat thickness and longissimus muscle area at the 12-13th rib interface, carcass weight-adjusted longissimus muscle area, USDA yield grade, estimated total lean yield, marbling score, and Warner-Bratzler shear force. Steers were classified as either high Brahman (50 to 100% Brahman), moderate Brahman (25 to 49% Brahman), or low Brahman (0 to 24% Brahman) inheritance. Two types of animal models were fit with regard to level of Brahman inheritance. One model assumed similar variances between pairs of Brahman inheritance groups, and the second model assumed different variances between pairs of Brahman inheritance groups. Fixed sources of variation in both models included direct and maternal additive and nonadditive breed effects, year of birth, and slaughter age. Variances were estimated using derivative free REML procedures. Likelihood ratio tests were used to compare models. The model accounting for heterogeneous variances had a greater likelihood (P yield, and Warner-Bratzler shear force, indicating improved fit with percentage Brahman inheritance considered as a source of heterogeneity of variance. Genetic covariances estimated from the model accounting for heterogeneous variances resulted in genetic

  17. Heterogeneity of variances for carcass traits by percentage Brahman inheritance.

    Science.gov (United States)

    Crews, D H; Franke, D E

    1998-07-01

    Heterogeneity of carcass trait variances due to level of Brahman inheritance was investigated using records from straightbred and crossbred steers produced from 1970 to 1988 (n = 1,530). Angus, Brahman, Charolais, and Hereford sires were mated to straightbred and crossbred cows to produce straightbred, F1, back-cross, three-breed cross, and two-, three-, and four-breed rotational crossbred steers in four non-overlapping generations. At weaning (mean age = 220 d), steers were randomly assigned within breed group directly to the feedlot for 200 d, or to a backgrounding and stocker phase before feeding. Stocker steers were fed from 70 to 100 d in generations 1 and 2 and from 60 to 120 d in generations 3 and 4. Carcass traits included hot carcass weight, subcutaneous fat thickness and longissimus muscle area at the 12-13th rib interface, carcass weight-adjusted longissimus muscle area, USDA yield grade, estimated total lean yield, marbling score, and Warner-Bratzler shear force. Steers were classified as either high Brahman (50 to 100% Brahman), moderate Brahman (25 to 49% Brahman), or low Brahman (0 to 24% Brahman) inheritance. Two types of animal models were fit with regard to level of Brahman inheritance. One model assumed similar variances between pairs of Brahman inheritance groups, and the second model assumed different variances between pairs of Brahman inheritance groups. Fixed sources of variation in both models included direct and maternal additive and nonadditive breed effects, year of birth, and slaughter age. Variances were estimated using derivative free REML procedures. Likelihood ratio tests were used to compare models. The model accounting for heterogeneous variances had a greater likelihood (P carcass weight, longissimus muscle area, weight-adjusted longissimus muscle area, total lean yield, and Warner-Bratzler shear force, indicating improved fit with percentage Brahman inheritance considered as a source of heterogeneity of variance. Genetic

  18. Drawing Recognition for Automatic Dimensioning of Shear-Walls

    Institute of Scientific and Technical Information of China (English)

    任爱珠; 喻强; 许云

    2002-01-01

    In computer-aided structural design, the drawing of shear-walls cannot be easily automated; however, dimensioning of the shear-walls provides a method to automate the drawing. This paper presents a drawing recognition method for automatic dimensioning of shear-walls. The regional relationship method includes a graphic shape template library that can learn new shear-wall shapes. The automatic dimensioning of shear-walls is then realized by matching the templates. The regional relationship method for graph recognition effectively describes the topological relationships for graphs to significantly increase the recognition efficiency.

  19. Granular dynamic shear strength and its influencing factors

    Institute of Scientific and Technical Information of China (English)

    吴爱祥; 孙业志

    2002-01-01

    The granular dynamic shear strength is the same as that of the static one in nature, as found from numerous experiments and investigations. The shear strength is equal to the sum of the internal frictional force and the cohesive force. The influences of type, shape, size distribution, pore ratio, moisture content and variation of vibration velocity on the dynamic shear strength of granules were studied. Based on numerous vibration shear experiments, the authors investigate the mechanism of dynamic shear strength in granules in terms of the fundamental principle and the relevant theory of modern tribology.

  20. Seismic Behavior of Dual Function Slitted Shear Wall

    Institute of Scientific and Technical Information of China (English)

    叶列平; 康胜

    2001-01-01

    The concept of seismic structural control was used to design a new type reinforced concrete shear wall, the dual function slitted shear wall. Connectors are installed in vertical slits in the slitted shear wall to provide the dual function slitted shear wall with greater stiffness and capacity for small and moderate earthquake intensities. The wall becomes a slitted wall with the ductile flexure failure mode when the connectors fail during severe earthquakes. Seven specimens were tested to study the seismic behavior of the dual function slitted shear wall, The results showed that the connector controlled function well and provided better seismic behavior.

  1. Fluid migration in ductile shear zones

    Science.gov (United States)

    Fusseis, Florian; Menegon, Luca

    2014-05-01

    Fluid migration in metamorphic environments depends on a dynamically evolving permeable pore space, which was rarely characterised in detail. The data-base behind our understanding of the 4-dimensional transport properties of metamorphic rocks is therefore fragmentary at best, which leaves conceptual models poorly supported. Generally, it seems established that deformation is a major driver of permeability generation during regional metamorphism, and evidence for metamorphic fluids being channelled in large scale shear zones has been found in all depth segments of the continental crust. When strain localizes in ductile shear zones, the microfabric is modified until a steady state mylonite is formed that supports large deformations. A dynamic porosity that evolves during mylonitisation controls the distinct transport pathways along which fluid interacts with the rock. This dynamic porosity is controlled by a limited number of mechanisms, which are intrinsically linked to the metamorphic evolution of the rock during its deformational overprint. Many mid- and lower-crustal mylonites comprise polyphase mixtures of micron-sized grains that show evidence for deformation by dissolution/precipitation-assisted viscous grain boundary sliding. The establishment of these mineral mixtures is a critical process, where monomineralic layers are dispersed and grain growth is inhibited by the heterogeneous nucleation of secondary mineral phases at triple junctions. Here we show evidence from three different mid- and lower-crustal shear zones indicating that heterogeneous nucleation occurs in creep cavities. Micro- and nanotomographic observations show that creep cavities provide the dominant form of porosity in these ultramylonites. They control a "granular fluid pump" that directs fluid migration and hence mass transport. The granular fluid pump operates on the grain scale driven by viscous grain boundary sliding, and requires only small amounts of fluid. The spatial arrangement of

  2. Nucleation in a Sheared Liquid Binary Mixture.

    Science.gov (United States)

    Min, Kyung-Yang

    When a binary liquid mixture of lutidine plus water (LW) is quenched to a temperature T and is exposed to a continuous shear rate S, the result is a steady-state droplet distribution. This steady state can be probed by measuring the unscattered intensity I_{f}, or the scattered intensity I_{s}, as a function of delta T and S. In the experiments described here, S is fixed and delta T is varied in a step-wise fashion. The absence of hysteresis was probed in two separate experiments: First, I_{f} was measured as a function of S for a given delta T. Next, I_{f} was measured as a function of delta T for a given S. In either case, the hysteresis associated with the shear-free nucleation is absent. In addition, a flow-history dependent hysteresis was studied. In the 2-dimensional parameter space consisting of S and delta T, the onset of nucleation uniquely determines a cloud point line. A plot of the cloud point line exhibits two segments of different slopes with a cross-over near the temperature corresponding to the Becker-Doring limit. The classical picture of a free energy barrier was reformulated to explain this cross-over behavior. Next, photon correlation spectroscopy was used to study the dependence of the transient nucleation behavior on the initial states. A unique feature of this study is that this initial state can be conveniently adjusted by varying the shear rate S to which the mixture is initially exposed. The shear is then turned off, and the number density N(t), as well as the mean radius of the growing droplets, is monitored as a function of time. It was possible to measure the droplet density at a very early stage of phase separation where the nucleation rate J was close to zero. The measurement reveals that N(t) depends critically on the initial state of the metastable system. When the shear is large enough to rupture the droplets as small as the critical size, N(t) increases very slowly. Measurements of the nucleation rates vs. the square of the

  3. A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs.

    Science.gov (United States)

    Rotenberg, Menahem Y; Ruvinov, Emil; Armoza, Anna; Cohen, Smadar

    2012-08-01

    Tissue engineering research is increasingly relying on the use of advanced cultivation technologies that provide rigorously-controlled cell microenvironments. Herein, we describe the features of a micro-fabricated Multi-Shear Perfusion Bioreactor (MSPB) designed to deliver up to six different levels of physiologically-relevant shear stresses (1-13 dyne cm(-2)) to six cell constructs simultaneously, during a single run. To attain a homogeneous fluid flow within each construct, flow-distributing nets photo-etched with a set of openings for fluid flow were placed up- and down-stream from each construct. Human umbilical vein endothelial cells (HUVECs) seeded in alginate scaffolds within the MSPB and subjected to three different levels of shear stress for 24 h, responded accordingly by expressing three different levels of the membranal marker Intercellular Adhesion Molecule 1 (ICAM-1) and the phosphorylated endothelial nitric oxide synthetase (eNOS). A longer period of cultivation, 17 d, under two different levels of shear stress resulted in different lengths of cell sprouts within the constructs. Collectively, the HUVEC behaviour within the different constructs confirms the feasibility of using the MSPB system for simultaneously imposing different shear stress levels, and for validating the flow regime in the bioreactor vessel as assessed by the computational fluid dynamic (CFD) model. PMID:22622237

  4. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    Science.gov (United States)

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  5. Stiffness matrix for beams with shear deformation and warping torsion

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, K.; Pilkey, W. [Univ. of Virginia, Charlottesville, VA (United States)

    1995-12-31

    A beam model which considers the warping effect in beams with arbitrary cross sections is discussed. This model takes into account bending, shear, and warping torsion. The derivation builds on a result in beam theory that, if shear is considered, for arbitrary cross sections the deflections in the different coordinate directions are not uncoupled as has been widely assumed. This conclusion follows from the calculation of the shear coefficients from an elasticity solution using an energy formulation. The shear coefficients form a symmetric tensor. The principal axes for this tensor are called principal shear axes. In Reference 2 structural matrices for the shear problem are derived using these shear coefficients. This paper extends these matrices to warping torsion. St. Venant`s semi-inverse method is applied to calculate warping shear stresses. The usual assumptions of the beam theory are made. The material is linear elastic. The loads may consist of shear forces, axial loads and twisting moments. Small deformations are considered. The cross section of the beam can be of arbitrary shape, thin-walled or solid. A deformation coefficient matrix is calculated which describes the relations between the deformations and the different load cases such as shear, torsion, and warping torsion. Numerical results for warping shear stresses and deformations are given. Also, a method to derive a stiffness matrix for a beam of arbitrary cross section under combined loading including warping torsion is presented.

  6. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  7. Systematic tests for position-dependent additive shear bias

    CERN Document Server

    van Uitert, Edo

    2016-01-01

    We present new tests to identify stationary position-dependent additive shear biases in weak gravitational lensing data sets. These tests are important diagnostics for currently ongoing and planned cosmic shear surveys, as such biases induce coherent shear patterns that can mimic and potentially bias the cosmic shear signal. The central idea of these tests is to determine the average ellipticity of all galaxies with shape measurements in a grid in the pixel plane. The distribution of the absolute values of these averaged ellipticities can be compared to randomized catalogues; a difference points to systematics in the data. In addition, we introduce a method to quantify the spatial correlation of the additive bias, which suppresses the contribution from cosmic shear and therefore eases the identification of a position-dependent additive shear bias in the data. We apply these tests to the publicly available shear catalogues from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) and the Kilo Degree Su...

  8. Shear behavior of sand-expanded polystyrene beads lightweight fills

    Institute of Scientific and Technical Information of China (English)

    邓安; 肖杨

    2008-01-01

    Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials’ shear behavior were investigated. Hyperbolic curves were used to fit relationship between shear stress and shear displacement. The shear behavior is marginally associated with the EPS ratios and normal/confining stresses. Increases of EPS ratios and decreases of normal/confining stresses result in shear strength decreases. The shapes of Mohr-Coulomb’s envelope include linear and piecewise linear types, which are basically determined by the EPS ratio. Such difference is thought related to the embedding or apparent cohesion effect under relatively high EPS ratio conditions. Shear strength parameters can be used for further modeling and design purposes.

  9. Magnetic shear. IV - Hale regions 16740, 16815, and 16850

    International Nuclear Information System (INIS)

    Dopplergrams made in C IV 1548 A are studied for evidence of velocity shear near H-alpha dark filaments and for large-scale flow convergent on active regions. The three regions studied support earlier conclusions that shear is a common property of active regions and that active regions may be the foci of converging plasma flow. Flow patterns near filaments show divergence or convergence as well as shear. Also the sense of the shear can be either cyclonic or anticyclonic. No preference is noted for convergence or divergence or for a particular sense of shear, and there appears to be no correlation between the sense of the shear and the sign of the velocity gradient normal to the filament. The close association of H-alpha dark filaments with shear lines leads to the suggestion that the filaments may arise from a cooling instability induced by the Bernoulli effect. 12 references

  10. Shear-accelerated crystallization in a supercooled atomic liquid.

    Science.gov (United States)

    Shao, Zhen; Singer, Jonathan P; Liu, Yanhui; Liu, Ze; Li, Huiping; Gopinadhan, Manesh; O'Hern, Corey S; Schroers, Jan; Osuji, Chinedum O

    2015-02-01

    A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disk. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the nondeformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate γ̇(c)≈0.3 s(-1) which corresponds to Péclet number, Pe∼O(1). The observation of shear-accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of nontrivial shear-related effects during thermoplastic deformation of similar systems.

  11. Shear crack formation and propagation in reinforced Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    This paper describes an experimental investigation of the shear behaviour of beams consisting of steel reinforced Engineered Cementitious Composites (R/ECC). Based on the strain hardening and multiple cracking behaviour of ECC, this study investigates the extent to which ECC influences the shear...... capacity of beams loaded primarily in shear. The experimental program consists of ECC with short randomly distributed polyvinyl alcohol (PVA) fiber beams with different stirrup arrangements and conventional reinforced concrete (R/C) counterparts for comparison. The shear crack formation mechanism of ECC...... is investigated in detail and can be characterized by an opening and sliding of the crack. Photogrammetry was utilized to monitor the shear deformations of the specimens. Multiple shear cracking and strain hardening of ECC was observed under shear loading and based upon photogrammetric results fundamental...

  12. Phenomenon of transformed adiabatic shear band surrounded by deformed adiabatic shear band of ductile metal

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-bin

    2008-01-01

    The coexistent phenomenon of deformed and transformed adiabatic shear bands(ASBs) of ductile metal was analyzed using the JOHNSON-COOK model and gradient-dependent plasticity(GDP). The effects of melting point, density, heat capacity and work to heat conversion factor were investigated. Higher work to heat conversion factor, lower density, lower heat capacity and higher melting point lead to wider transformed ASB and higher local plastic shear deformation between deformed and transformed ASBs. Higher work to heat conversion factor, lower density, lower heat capacity and lower melting point cause higher local plastic shear deformation in the deformed ASB. Three reasons for the scatter in experimental data on the ASB width were pointed out and the advantages of the work were discussed. If the transformed ASB width is used to back-calculate the internal length parameter in the GDP, undoubtedly, the parameter will be extremely underestimated.

  13. Measurement of surface shear stress vector distribution using shear-sensitive liquid crystal coatings

    Institute of Scientific and Technical Information of China (English)

    Ji-Song Zhao; Peter Scholz; Liang-Xian Gu

    2012-01-01

    The global wall shear stress measurement technique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements.Simple and common everyday equipment is used in the measurement; in particular a tungsten-halogen light bulb provides illumination and a saturation of SSLC coating color change with time is found.Spatial wall shear stress distributions of several typical flows are obtained using this technique,including wall-jet flow,vortex flow generated by a delta wing and junction flow behind a thin cylinder,although the magnitudes are not fully calibrated.The results demonstrate that SSLC technique can be extended to wind tunnel measurements with no complicated facilities used.

  14. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.

    Science.gov (United States)

    Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael

    2011-02-01

    The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r² = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts. PMID:21342822

  15. Analytical solution of transverse shear strain vibration of gas detonation loaded tube near second critical speed (shear group velocity)

    International Nuclear Information System (INIS)

    Analytical solution of transverse shear strain vibration of a tube caused by internal gaseous detonation near the second critical speed (shear group velocity) is not reported in the literature. It is performed based on a steady state model and first order shear deformation theories (model I and II) in this paper, and the results are verified through comparison with the finite element results reported in the literature. There are no known experimental ways of directly measuring dynamic transverse shear strain and only theoretical results and numerical data are available. The finite element method is very time consuming compared with the analytical solution. It is shown in this paper that the resonance phenomenon of the transverse shear strain vibration near the second critical speed can be predicted by steady state model and first order shear deformation theories. The first order shear deformation theory (model II) has a good agreement with finite element results in prediction of dynamic amplification factors and critical speeds.

  16. Fibre-reinforced plastic composites - Determination of the in-plane shear stress/shear strain response, including the in-plane shear modulus and strength, by the plus or minus 45 degree tension test method

    CERN Document Server

    International Organization for Standardization. Geneva

    1997-01-01

    Fibre-reinforced plastic composites - Determination of the in-plane shear stress/shear strain response, including the in-plane shear modulus and strength, by the plus or minus 45 degree tension test method

  17. Evolution of thermal ion transport barriers in reversed shear/optimised shear plasmas

    International Nuclear Information System (INIS)

    The effects of the magnetic and ExB rotation shears on the thermal ion transport in advanced tokamak scenarios are analyzed through the predictive modelling of the evolution of internal transport barriers. Such a modelling is performed with an experimentally validated L-mode thermal diffusivity completed with a semi-empirical shear correction which is based on simple theoretical arguments from turbulence studies. A multi-machine test of the model on relevant discharges from the ITER Data Base (TFTR, DIII-D and JET) is presented. (author)

  18. Dynamics of flexible fibers in shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Słowicka, Agnieszka M.; Wajnryb, Eligiusz; Ekiel-Jeżewska, Maria L., E-mail: mekiel@ippt.pan.pl [Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw (Poland)

    2015-09-28

    Dynamics of flexible non-Brownian fibers in shear flow at low-Reynolds-number are analyzed numerically for a wide range of the ratios A of the fiber bending force to the viscous drag force. Initially, the fibers are aligned with the flow, and later they move in the plane perpendicular to the flow vorticity. A surprisingly rich spectrum of different modes is observed when the value of A is systematically changed, with sharp transitions between coiled and straightening out modes, period-doubling bifurcations from periodic to migrating solutions, irregular dynamics, and chaos.

  19. Shear viscosity of a hadronic gas mixture

    OpenAIRE

    Itakura, Kazunori; Morimatsu, Osamu; Otomo, Hiroshi

    2007-01-01

    We discuss in detail the shear viscosity coefficient eta and the viscosity to entropy density ratio eta/s of a hadronic gas comprised of pions and nucleons. In particular, we study the effects of baryon chemical potential on eta and eta/s. We solve the relativistic quantum Boltzmann equations with binary collisions (pi pi, pi N, and NN) for a state slightly deviated from thermal equilibrium at temperature T and baryon chemical potential mu. The use of phenomenological amplitudes in the collis...

  20. Shear forces in molecularly thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schoen, M. (Universitaet Witten-Herdecke, Stockumer Strasse (Germany, F.R.)); Rhykerd, C.L. Jr.; Diestler, D.J.; Cushman, J.H. (Purdue Univ., West Lafayette, IN (USA))

    1989-09-15

    Monte Carlo and molecular dynamics methods have been used to study the shearing behavior of an atomic fluid between two plane-parallel solid surfaces having the face-centered cubic (100) structure. A distorted, face-centered cubic solid can form epitaxially between surfaces that are separated by distances of one to five atomic diameters. Under these conditions a critical stress must be overcome to initiate sliding of the surfaces over one another at fixed separation, temperature, and chemical potential. As sliding begins, a layer of solid exits the space between the surfaces and the remaining layers become fluid. 18 refs., 2 figs.

  1. Propagation of waves in shear flows

    CERN Document Server

    Fabrikant, A L

    1998-01-01

    The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside

  2. Plasticity Approach to HSC Shear Wall Design

    DEFF Research Database (Denmark)

    Liu, Lunying; Nielsen, Mogens Peter

    1998-01-01

    of concrete. The reduced strength is named the effective strength. The paper describes simple lower bound solutions. They consist of pure strut action or strut action combined with diagonal compression fields outside the struts. Near moment maximum and near supports the stress fields are modified to save...... to 140 MPa and reinforcement yield strengths up to 1420 MPa. The work was carried out as a Ph.D. study by the first author, the second author supervising the study.Keywords: shear wall, plasticity, strut and tie, load-carrying capacity, concrete, reinforcement....

  3. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.

    2013-12-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  4. From supersonic shear wave imaging to full-field optical coherence shear wave elastography

    Science.gov (United States)

    Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.

    2013-12-01

    Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.

  5. Tensile-shear correlations obtained from shear punch test technique using a modified experimental approach

    Science.gov (United States)

    Karthik, V.; Visweswaran, P.; Vijayraghavan, A.; Kasiviswanathan, K. V.; Raj, Baldev

    2009-09-01

    Shear punch testing has been a very useful technique for evaluating mechanical properties of irradiated alloys using a very small volume of material. The load-displacement data is influenced by the compliance of the fixture components. This paper describes a modified experimental approach where the compliances of the punch and die components are eliminated. The analysis of the load-displacement data using the modified setup for various alloys like low carbon steel, SS316, modified 9Cr-1Mo, 2.25Cr-1Mo indicate that the shear yield strength evaluated at 0.2% offset of normalized displacement relates to the tensile YS as per the Von Mises yield relation ( σys = 1.73 τys). A universal correlation of type UTS = mτmax where m is a function of strain hardening exponent, is seen to be obeyed for all the materials in this study. The use of analytical models developed for blanking process are explored for evaluating strain hardening exponent from the load-displacement data. This study is directed towards rationalizing the tensile-shear empirical correlations for a more reliable prediction of tensile properties from shear punch tests.

  6. Shear Behaviour of Reinforced Concrete Members without Shear Reinforcement: a New Look at an Old Problem

    NARCIS (Netherlands)

    Yang, Y.

    2014-01-01

    Shear loading on structures has been recognized as one of the most relevant actions determining structural safety since the 19th century. In the case of reinforced concrete structures, despite the great efforts that have been made through experimental and theoretical research over many years, the na

  7. Acceleration Statistics in Rotating and Sheared Turbulence

    Science.gov (United States)

    Jacobitz, Frank; Schneider, Kai; Bos, Wouter; Farge, Marie

    2012-11-01

    Acceleration statistics are of fundamental interest in turbulence ranging from theoretical questions to modeling of dispersion processes. Direct numerical simulations of sheared and rotating homogeneous turbulence are performed with different ratios of Coriolis parameter to shear rate. The statistics of Lagrangian and Eulerian acceleration are studied with a particular focus on the influence of the rotation ratio and also on the scale dependence of the statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian acceleration show a strong and similar influence on the rotation ratio. The flatness further quantifies its influence and yields values close to three for strong rotation. For moderate and vanishing rotation, the flatness of the Eulerian acceleration is larger than that of the Lagrangian acceleration, contrary to previous results for isotropic turbulence. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian acceleration increases as scale decreases. For strong rotation, the Eulerian acceleration is more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation.

  8. Nonlinear stability of relativistic sheared planar jets

    CERN Document Server

    Perucho, M; Hanasz, M

    2005-01-01

    The linear and non-linear stability of sheared, relativistic planar jets is studied by means of linear stability analysis and numerical hydrodynamical simulations. Our results extend the previous Kelvin-Hemlholtz stability studies for relativistic, planar jets in the vortex sheet approximation performed by Perucho et al. (2004a,b) by including a shear layer between the jet and the external medium and more general perturbations. The models considered span a wide range of Lorentz factors ($2.5-20$) and internal energies ($0.08 c^2-60 c^2$) and are classified into three classes according to the main characteristics of their long-term, non-linear evolution. We observe a clear separation of these three groups in a relativistic Mach-number Lorentz-factor plane. Jets with a low Lorentz factor and small relativistic Mach number are disrupted after saturation. Those with a large Lorentz factor and large relativistic Mach number are the stablest, due to the appearance of short wavelength resonant modes which generate l...

  9. An Implementation of Bayesian Lensing Shear Measurement

    CERN Document Server

    Sheldon, Erin S

    2014-01-01

    The Bayesian gravitational shear estimation algorithm developed by Bernstein and Armstrong (2014) can potentially be used to overcome noise bias and recover shear using very low signal-to-noise ratio (S/N) galaxy images. In that work the authors confirmed the method is sufficiently unbiased for planned surveys (fractional error less than 2 x 10^{-3}) in a simplified demonstration, but no test was performed on images. Here I present a full implementation for fitting models to galaxy images, including the effects of a point spread function (PSF) and pixelization. I tested the implementation using simulated galaxy images modeled as Sersic profiles with n=1 (exponential) and n=4 (De Vaucouleurs'), convolved with a PSF and a flat pixel response function. I used a round Gaussian model for the PSF to avoid potential PSF-fitting errors. I simulated galaxies with mean observed, post-PSF full-width at half maximum equal to approximately 1.2 times that of the PSF, with log-normal scatter. I also drew fluxes from a log-n...

  10. Resonant instability of supersonic shear layers

    Science.gov (United States)

    Tam, C. K. W.; Lele, S. K.

    1990-01-01

    A computer simulation of possible resonant instability of a supersonic shear layer is carried out. The resonance of two acoustic duct modes of the flow induced by periodic Mach waves generated by a wavy wall is sought. Results of the simulations are reported. Simulations are unable to document a resonant instability and the mixing characteristics remain unchanged. Possible weakness of the present simulations are discussed. A second set of simulations involving a mixing layer separating a supersonic and a subsonic stream were performed. A wavy wall placed adjacent to the supersonic stream to produce a set of periodic Mach waves terminating at the shear layer is modelled. The entire flow field is similar to that of an imperfectly expanded supersonic jet discharging into a subsonic coflowing stream for which enhanced mixing due to the onset of screech (feedback instability) is known to occur. The purpose of these simulations is to see if enhanced mixing and feedback instability would, indeed, take place. Some evidence of feedback oscillations is found in the simulated flow.

  11. Simulations of Reversed Shear Configuration in EAST

    Institute of Scientific and Technical Information of China (English)

    NIU Xingping; WU Bin

    2007-01-01

    The reversed shear (RS) mode is one of the advanced configurations being considered in EAST.Predictive simulations of EAST reversed shear configuration are carried out using an 1.5D equilibrium evolution code.In order to have the desired monotonic q-profile during a tokamak discharge,a successful preparation phase is required.In our simulation,the plasma current is ramped up from 100 kA to a flat-top maximum of 1.0 MA for four seconds.An ICRH power of 1 MW is applied until the plasma shape is formed at the moment of 4 s,and then the power is raised to 3 MW.A LHCD power of 3.5 MW is applied from is to optimize the plasma current density profile.A series of simulations are performed to study the influence of the time of applying the auxiliary heating on the plasma parameters.Based on these simulations,a scheme is proposed and tested for the control of the safety factor profile,which is very useful in real time profile control in tokamak experiments.

  12. Hyperscaling violation and the shear diffusion constant

    CERN Document Server

    Kolekar, Kedar S; Narayan, K

    2016-01-01

    We consider holographic theories in bulk $(d+1)$-dimensions with Lifshitz and hyperscaling violating exponents $z,\\theta$ at finite temperature. By studying shear gravitational modes in the near-horizon region given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic exponents with $d-z-\\theta>-1$, we find that the diffusion constant has power law scaling with the temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents satisfy $d-z-\\theta=-1$, we find logarithmic behaviour. This relation is equivalent to $z=2+d_{eff}$ where $d_{eff}=d_i-\\theta$ is the effective boundary spatial dimension (and $d_i=d-1$ the actual spatial dimension). It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly boosted black branes, and we comment on the corresponding analysis in that cont...

  13. Shearing of Materials with Intermittent Joints

    Science.gov (United States)

    Gerolymatou, Eleni; Triantafyllidis, Theodoros

    2016-07-01

    The strength of fractures is much lower as a rule than that of intact rock. As a result they play a controlling part in the mechanical behaviour in general and the failure in particular of rock mass. Though a large volume of experimental data is available on the shear resistance of joints, as well as on the propagation of single cracks, the same is not true for the mechanical behaviour of intermittent joints. The experimental data available in this case are limited and the strength of rock mass with intermittent joints is usually modelled using averaged values of cohesion or assuming the fractures to be continuous. In the present work, the results of simple shear tests on a series of gypsum specimens with pre-existing cracks are presented. Twelve different crack orientations and two normal stresses were tested. The hypothesis of averaged cohesion and the theory of fracture mechanics are used to reproduce the results. It is found that fracture mechanics provides a more suitable model for the experimental results, especially when crack interaction is taken into account.

  14. Anisotropy and Heterogeneity Interaction in Shear Zones

    Science.gov (United States)

    Dabrowski, M.; Schmid, D. W.

    2009-04-01

    Rocks are heterogeneous on many different scales and deformation may introduce a coexistence of heterogeneity and anisotropy in shear zones. A competent inclusion embedded in a laminated matrix is a typical example. Indisputably, the presence of a mechanical heterogeneity leads to a flow perturbation and consequently to a deflection of the lamination in its vicinity. Assuming a passive response of the matrix phase, the pattern formation around rigid objects has been modeled in two and three dimensions using analytical solutions. Yet, the laminas may be mechanically distinct, leading to an effectively anisotropic rheology of the matrix. The feedback of an evolving matrix structure on the inclusion motion cannot be precluded in this case. In our study elliptical inclusions of varying aspect ratios are embedded in a laminated linear viscous host and subject to a large simple shear deformation in finite element numerical simulations. Increasing the viscosity ratio of the weak and strong lamina significantly changes the pattern characteristics in the matrix. The structural evolution around an inclusion proves to have a major impact on the inclusion motion, leading to the stabilization of elongated inclusions at antithetic orientations. We provide a comparison of two different modeling approaches. In the first approach discrete layers are introduced in the matrix and the large strain evolution of individual minute layers is resolved. Next, the matrix is modeled as an anisotropic medium using an evolving director field that locally describes the anisotropy direction. The length scale of layering can be restored in this model using the micropolar medium formulation.

  15. Shear-induced instabilities in layered liquids

    Science.gov (United States)

    Auernhammer, Günter K.; Brand, Helmut R.; Pleiner, Harald

    2002-12-01

    Motivated by the experimentally observed shear-induced destabilization and reorientation of smectic-A-like systems, we consider an extended formulation of smectic-A hydrodynamics. We include both, the smectic layering (via the layer displacement u and the layer normal pcirc) and the director ncirc of the underlying nematic order in our macroscopic hydrodynamic description and allow both directions to differ in nonequilibrium situations. In an homeotropically aligned sample the nematic director does couple to an applied simple shear, whereas the smectic layering stays unchanged. This difference leads to a finite (but usually small) angle between ncirc and pcirc, which we find to be equivalent to an effective dilatation of the layers. This effective dilatation leads, above a certain threshold, to an undulation instability of the layers. We generalize our earlier approach [G. K. Auernhammer, H. R. Brand, and H. Pleiner, Rheol. Acta 39, 215 (2000)] and include the cross couplings with the velocity field and the order parameters for orientational and positional order and show how the order parameters interact with the undulation instability. We explore the influence of various material parameters on the instability. Comparing our results to recent experiments and molecular dynamic simulations, we find a good qualitative agreement.

  16. Determination of arterial wall shear stress

    Institute of Scientific and Technical Information of China (English)

    LIU; Zhaorong

    2001-01-01

    [1]Langille, B. L., 7Donnell, F., Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent, Science, 1986, 231: 405—407.[2]Langer, R., Vacanti, J. P., Tissue engineering, Science, 1993, 260: 920—926.[3]Kamiya, A., Togawa, T., Adaptive regulation of wall shear stress to flow change in the canine carotid artery, Am. J. Physiol. (Heart Circ. Physiol.), 1980, 239: H14—H21.[4]Fung, Y. C., Biomechanics: Motion, Flow, Stress, and Growth, New York: Springer-Verlag, 1990.[5]Liu, S. Q., Biomechanical basis of vascular tissue engineering, Critical Reviews in Biomedical Engineering, 1999, 27: 75—148.[6]Ando, J., Kamiya, A., Blood flow and vascular endothelium cell function, Frontiers Med. Biological Eng., 1993, 5: 245—264.[7]Ku, D. N., Giddens, D. P., Zarins, D. K. et al., Pulsatile flow and atherosclerosis in the human carotid bifurcation-positive correlation between plaque location and low and oscillating shear stress, Atherosclerosis, 1985, 5: 293—302.[8]Liu Zhaorong, Li Xixi, Theory and Method on Hemodynamics (in Chinese), Shanghai: Fudan University Press, 1997.

  17. Coupling effects in multiphase free shear flows

    International Nuclear Information System (INIS)

    The primary goal of this research program is to examine the effects of two-way multiphase coupling on the development of organized vortex structures in free shear flows and the resultant multiphase dispersion. Previous research studies have determined that one-way coupled particle dispersion in free shear flows is strongly dependent on the vortex structures present in these flows and their interactions as well as the ratio of the particle aerodynamic response time to the time scale of the dominant vortex structures. Current research efforts are directed towards exploring the effects that two-way momentum, mass and energy coupling have on the multiphase dispersion processes previously uncovered. These efforts involve analytical, numerical and experimental investigations. Recent analytical and numerical results indicate that momentum coupling effects can significantly alter the global stability and potentially the large scale features of the multiphase flow field. These multiphase coupling effects may have significant importance with regard to predicting the performance of many energy conversion systems

  18. Viscous shear heating instabilities in a 1-D viscoelastic shear zone

    Science.gov (United States)

    Homburg, J. M.; Coon, E. T.; Spiegelman, M.; Kelemen, P. B.; Hirth, G.

    2010-12-01

    Viscous shear instabilities may provide a possible mechanism for some intermediate depth earthquakes where high confining pressure makes it difficult to achieve frictional failure. While many studies have explored the feedback between temperature-dependent strain rate and strain-rate dependent shear heating (e.g. Braeck and Podladchikov, 2007), most have used thermal anomalies to initiate a shear instability or have imposed a low viscosity region in their model domain (John et al., 2009). By contrast, Kelemen and Hirth (2007) relied on an initial grain size contrast between a predetermined fine-grained shear zone and coarse grained host rock to initiate an instability. This choice is supported by observations of numerous fine grained ductile shear zones in shallow mantle massifs as well as the possibility that annealed fine grained fault gouge, formed at oceanic transforms, subduction related thrusts and ‘outer rise’ faults, could be carried below the brittle/ductile transition by subduction. Improving upon the work of Kelemen and Hirth (2007), we have developed a 1-D numerical model that describes the behavior of a Maxwell viscoelastic body with the rheology of dry olivine being driven at a constant velocity at its boundary. We include diffusion and dislocation creep, dislocation accommodated grain boundary sliding, and low-temperature plasticity (Peierls mechanism). Initial results suggest that including low-temperature plasticity inhibits the ability of the system to undergo an instability, similar to the results of Kameyama et al. (1999). This is due to increased deformation in the background allowing more shear heating to take place, and thus softening the system prior to reaching the peak stress. However if the applied strain rate is high enough (e.g. greater than 0.5 x 10-11 s-1 for a domain size of 2 km, an 8 m wide shear zone, a background grain size of 1 mm, a shear zone grain size of 150 μm, and an initial temperature of 650°C) dramatic

  19. Shear banding deformation in Cu/Ta nano-multilayers

    International Nuclear Information System (INIS)

    Highlights: → Formation of shear bands in Cu/Ta multilayers is layer thickness dependent. → Unique layer-morphology with prevalent mismatched laminate structure was observed. → A new physical mechanism that dominates shear band formation is suggested. - Abstract: Nanoscale Cu/Ta multilayers with individual layer thickness ranging from 3 to 70 nm were deformed under nanoindentation at room temperature. Shear bands can be observed only when individual layer thickness is reduced to 9 nm or below, indicating formation of shear bands in the Cu/Ta multilayers is layer thickness dependent. By observing the cross sectional transmission electron microscope images of the indentation fabricated through focused ion beam technique, shear banding deformation causing a unique layer-morphology with prevalent mismatched laminate structure has been reported for the first time. By capturing and analyzing a series of typical indentation-induced deformed microstructures, a new physical mechanism of shear banding behavior in metallic nano-multilayers is suggested.

  20. Effects of shear elasticity on sea bed scattering: numerical examples.

    Science.gov (United States)

    Ivakin, A N; Jackson, D R

    1998-01-01

    It is known that marine sediments can support both compressional and shear waves. However, published work on scattering from irregular elastic media has not examined the influence of shear on sea bed scattering in detail. A perturbation model previously developed by the authors for joint roughness-volume scattering is used to study the effects of elasticity for three sea bed types: sedimentary rock, sand with high shear speed, and sand with "normal" shear wave speed. Both bistatic and monostatic cases are considered. For sedimentary rock it is found that shear elasticity tends to increase the importance of volume scattering and decrease the importance of roughness scattering relative to the fluid case. Shear effects are shown to be small for sands.

  1. Transport Bifurcation Induced by Sheared Toroidal Flow in Tokamak Plasmas

    CERN Document Server

    Highcock, E G; Parra, F I; Schekochihin, A A; Roach, C M; Cowley, S C

    2011-01-01

    First-principles numerical simulations are used to describe a transport bifurcation in a differentially rotating tokamak plasma. Such a bifurcation is more probable in a region of zero magnetic shear, where the component of the sheared toroidal flow that is perpendicular to the magnetic field has the strongest suppressing effect on the turbulence, than one of finite magnetic shear. Where the magnetic shear is zero, there are no growing linear eigenmodes at any finite value of flow shear. However, subcritical turbulence can be sustained, owing to the transient growth of modes driven by the ion temperature gradient (ITG) and the parallel velocity gradient (PVG). Nonetheless, in a parameter space containing a wide range of temperature gradients and velocity shears, there is a sizeable window where all turbulence is suppressed. Combined with the relatively low transport of momentum by collisional (neoclassical) mechanisms, this produces the conditions for a bifurcation from low to high temperature and velocity gr...

  2. Investigation into ferrofluid magnetoviscous effects under an oscillating shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, M., E-mail: marcos.pinho.etu@univ-lemans.fr [LAUM - Laboratoire d' Acoustique de l' Universite du Maine UMR CNRS 6613 (France); Brouard, B.; Genevaux, J.M. [LAUM - Laboratoire d' Acoustique de l' Universite du Maine UMR CNRS 6613 (France); Dauchez, N. [LISMMA - Institut Superieur de Mecanique de Paris (SUPMECA), 93407 Saint Ouen (France); Volkova, O. [Centre de micro et nanorheometrie, Universite de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice-cedex2 (France); Meziere, H.; Collas, P. [LAUM - Laboratoire d' Acoustique de l' Universite du Maine UMR CNRS 6613 (France)

    2011-10-15

    The use of ferrofluid seals in mechanical systems can lead to viscous damping that affects their dynamic behavior. This paper describes an investigation into local viscous properties in the case of an axial harmonic force. The influence of magnetic field level, shear stress amplitude and frequency are studied. Even for ferrofluid particles in a highly saturated magnetic field, it is shown that viscosity increases with magnetic intensity, decreases with the frequency of harmonic excitation and is not sensitive to shear rate amplitude. Viscosity is lower for oscillatory flows than for steady flows. - Highlights: > Extension of the magnetoviscous effect of ferrofluids to the oscillatory shear flow. > Influence of magnetic field level, shear stress amplitude and frequency is studied. > Ferrofluid viscosity is lower for oscillatory than for steady flow shearing. > Ferrofluid viscosity is not sensitive to shear rate amplitude. > Negative-viscosity effect occurs even for a null magnetic field.

  3. A void coalescence model for combined tension and shear

    Science.gov (United States)

    Butcher, C.; Chen, Z. T.

    2009-03-01

    The influence of shear loading on damage development in Gurson-based models has long been neglected resulting in inadequate fracture strain predictions at low triaxiality where shear effects become significant. The plastic limit-load fracture criterion used in advanced Gurson models neglects the influence of shear loading and overestimates the fracture strain and porosity at low triaxiality. In this paper, we extend the recently proposed shear damage model of Xue [1] to provide a stronger physical foundation by removing the simplifying assumptions. Then we directly modify the plastic limit-load fracture criterion by coupling with the extended shear damage model to account for shear weakening and failure of the intervoid ligament in void coalescence. We apply the modified plastic limit-load criterion to predict the necking of sheet tensile specimens and find very good agreement with the available experimental results.

  4. Shear Strengthening of Reinforced Concrete Beams Using GFRP Wraps

    Directory of Open Access Journals (Sweden)

    M. A. A. Saafan

    2006-01-01

    Full Text Available The objective of the experimental work described in this paper was to investigate the efficiency of GFRP composites in strengthening simply supported reinforced concrete beams designed with insufficient shear capacity. Using the hand lay-up technique, successive layers of a woven fiberglass fabric were bonded along the shear span to increase the shear capacity and to avoid catastrophic premature failure modes. The strengthened beams were fabricated with no web reinforcement to explore the efficiency of the proposed strengthening technique using the results of control beams with closed stirrups as a  web reinforcement. The test results of 18 beams are reported, addressing the influence of different shear strengthening schemes and variable longitudinal reinforcement ratios on the structural behavior. The results indicated that significant increases in the shear strength and improvements in the overall structural behavior of beams with insufficient shear capacity could be achieved by proper application of GFRP wraps.

  5. Development of Shear Connections in Steelconcrete Composite Structures

    OpenAIRE

    Biegus Antoni; Lorenc Wojciech

    2015-01-01

    Different types of shear connectors and modelling techniques are presented. Basic research conducted or presented after year 2000 is taken into consideration, following the idea of concrete dowel implemented in the form of perfobond strip at the beginning of the 1980s by F. Leonhardt. The latest research in the field of continuous shear connectors applied in bridges is highlited with special focus at the composite dowel shear connection, as it seems to be the most modern solution being strong...

  6. Buckling and failure characteristics of graphite-polyimide shear panels

    Science.gov (United States)

    Shuart, M. J.; Hagaman, J. A.

    1983-01-01

    The buckling and failure characteristics of unstiffened, blade stiffened, and hat stiffened graphite-polyimide shear panels are described. The picture frame shear test is used to obtain shear stress-strain data at room temperature and at 316 deg C. The experimental results are compared with a linear buckling analysis, and the specimen failure modes are described. The effect of the 316 deg C test temperature on panel behavior are discussed.

  7. Crystallization of amorphous silicon induced by mechanical shear deformations

    OpenAIRE

    Kerrache, Ali; Mousseau, Normand; Lewis, Laurent J.

    2011-01-01

    We have investigated the response of amorphous silicon (a-Si), in particular crystallization, to external mechanical shear deformations using classical molecular dynamics (MD) simulations and the empirical Environment Dependent Inter-atomic Potential (EDIP) [Phys. Rev. B 56, 8542 (1997)]. In agreement with previous results we find that, at low shear velocity and low temperature, shear deformations increase disorder and defect density. At high temperatures, however, the deformations are found ...

  8. Segregation by thermal diffusion in granular shear flows

    OpenAIRE

    Garzó, Vicente; Reyes, Francisco Vega

    2010-01-01

    Segregation by thermal diffusion of an intruder immersed in a sheared granular gas is analyzed from the (inelastic) Boltzmann equation. Segregation is induced by the presence of a temperature gradient orthogonal to the shear flow plane and parallel to gravity. We show that, like in analogous systems without shear, the segregation criterion yields a transition between upwards segregation and downwards segregation. The form of the phase diagrams is illustrated in detail showing that they depend...

  9. Rheological properties for inelastic Maxwell mixtures under shear flow

    OpenAIRE

    Garzo, Vicente; Trizac, Emmanuel

    2009-01-01

    The Boltzmann equation for inelastic Maxwell models is considered to determine the rheological properties in a granular binary mixture in the simple shear flow state. The transport coefficients (shear viscosity and viscometric functions) are {\\em exactly} evaluated in terms of the coefficients of restitution, the (reduced) shear rate and the parameters of the mixture (particle masses, diameters and concentration). The results show that in general, for a given value of the coefficients of rest...

  10. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  11. Fractal Description of the Shearing-Surface of Tools

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-cheng; JING Chang; REN Zhao-hui; REN Li-yi

    2004-01-01

    In this paper, the basic methods are introduced to calculate the fractal dimensions of the shearing surface of some tools. The fractal dimension of the shearing surface of experimental sampling is obtained and the fractal characteristics are also discussed. We can apply the fractal method to identify types of tools used by burglars and to do the job of individual recognition. New theories and methods are provided to measure and process the shearing surface profile of tools.

  12. Shear-induced assembly of lambda-phage DNA.

    OpenAIRE

    Haber, C.; Wirtz, D

    2000-01-01

    Recombinant DNA technology, which is based on the assembly of DNA fragments, forms the backbone of biological and biomedical research. Here we demonstrate that a uniform shear flow can induce and control the assembly of lambda-phage DNA molecules: increasing shear rates form integral DNA multimers of increasing molecular weight. Spontaneous assembly and grouping of end-blunted lambda-phage DNA molecules are negligible. It is suggested that shear-induced DNA assembly is caused by increasing th...

  13. On the nature of shear thinning in nanoscopically confined films

    OpenAIRE

    Manias, E; Bitsanis, I.; Hadziioannou, G.; Brinke, G. ten

    1996-01-01

    Non-Equilibrium Molecular Dynamics (NEMD) computer simulations were employed to study films in nanometer confinements under shear. Focusing on the response of the viscosity, we found that nearly all the shear thinning takes place inside the solid-oligomer interface and that the adsorbed layers are more viscous than the middle part of the films. Moreover, the shear thinning inside the interfacial area is determined by the wall affinity and is largely insensitive to changes of the film thicknes...

  14. Seismic damage analysis including inelastic shear-flexure interaction

    OpenAIRE

    Mergos, P.E.; Kappos, A. J.

    2010-01-01

    The paper focusses on seismic damage analysis of reinforced concrete (R/C) members, accounting for shear-flexure interaction in the inelastic range. A finite element of the beam-column type for the seismic analysis of R/C structures is first briefly described. The analytical model consists of two distributed flexibility sub-elements which interact throughout the analysis to simulate inelastic flexural and shear response. The finite element accounts for shear strength degradation with inelasti...

  15. On the route to shear jamming, are fragile states real?

    OpenAIRE

    Zhang, Ling; Zheng, Jie; Jie ZHANG

    2015-01-01

    Starting from an unjammed initial state, applying shear to a granular material of a fixed packing fraction below $\\phi_J$, i.e. the isotropic jamming density of frictionless spheres can produce shear jamming states, as have been discovered recently. In addition, it has also been discovered that the system will first experience a bulk fragile state before evolving into a shear jammed state. Due to the existence of friction between the system and the third dimension in the previous studies, it ...

  16. Shear induced electrical behaviour of conductive polymer composites

    OpenAIRE

    Stary, Zdenek; Krückel, Johannes; Schubert, Dirk W.

    2013-01-01

    The time-dependent electrical resistance of polymethylmethacrylate containing carbon black was measured under oscillatory shear in the molten state. The electrical signal was oscillating exactly at the doubled frequency of the oscillatory shear deformation. Moreover, the experimental results gave a hint to the development of conductive structures in polymer melts under shear deformation. It was shown that the flow induced destruction of conductive paths dominates over the flow induced build-u...

  17. Inherent Shear-Dilatation Coexistence in Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    JIANG Min-Qiang; JIANG Si-Yue; DAI Lan-Hong

    2009-01-01

    Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [Nature Mater. 2 (2003) 449, Intermetallics 14 (2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.

  18. Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields

    Science.gov (United States)

    Lee, Ji-Seok; Song, Ki-Won

    2015-11-01

    The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.

  19. Validation of commercial DNA tests for quantitative beef quality traits.

    Science.gov (United States)

    Van Eenennaam, A L; Li, J; Thallman, R M; Quaas, R L; Dikeman, M E; Gill, C A; Franke, D E; Thomas, M G

    2007-04-01

    Associations between 3 commercially available genetic marker panels (GeneSTAR Quality Grade, GeneSTAR Tenderness, and Igenity Tender-GENE) and quantitative beef traits were validated by the US National Beef Cattle Evaluation Consortium. Validation was interpreted to be the independent confirmation of the associations between genetic tests and phenotypes, as claimed by the commercial genotyping companies. Validation of the quality grade test (GeneSTAR Quality Grade) was carried out on 400 Charolais x Angus crossbred cattle, and validation of the tenderness tests (GeneSTAR Tenderness and Igenity Tender-GENE) was carried out on over 1,000 Bos taurus and Bos indicus cattle. The GeneSTAR Quality Grade marker panel is composed of 2 markers (TG5, a SNP upstream from the start of the first exon of thyroglobulin, and QG2, an anonymous SNP) and is being marketed as a test associated with marbling and quality grade. In this validation study, the genotype results from this test were not associated with marbling score; however, the association of substituting favorable alleles of the marker panel with increased quality grade (percentage of cattle grading Choice or Prime) approached significance (P meat tenderness, as assessed by Warner-Bratzler shear force. These marker panels share 2 common mu-calpain SNP, but each has a different calpastatin SNP. In both panels, there were highly significant (P < 0.001) associations of the calpastatin marker and the mu-calpain haplotype with tenderness. The genotypic effects of the 2 tenderness panels were similar to each other, with a 1 kg difference in Warner-Bratzler shear force being observed between the most and least tender genotypes. Unbiased and independent validation studies are important to help build confidence in marker technology and also as a potential source of data required to enable the integration of marker data into genetic evaluations. As DNA tests associated with more beef production traits enter the marketplace, it will

  20. Evaluation of Meat Color and Physiochemical Characteristics in Forequarter Muscles of Holstein Steers.

    Science.gov (United States)

    Moon, Sung Sil; Seong, Pil-Nam; Jeong, Jin Young

    2015-01-01

    The beef forequarter muscle comprises approximately 52% of carcass weight. The objective of this study was to evaluate the physiochemical characteristics and meat color from forequarter muscle of Holstein steers. Fifteen forequarter muscles were trimmed of external connective tissue and fat. An experimental group of eight Holstein steers was assessed using meat color, water-holding capacity, drip loss, and Warner-Bratzler shear force value at the same quality grade. The M. omotransversarius (0.45 kg) had the highest (p<0.05) lightness (L*) value, whereas the M. teres major (0.4 kg) and M. triceps brachii (caput laterale) (0.52 kg) had the lowest (p<0.05) values. The M. semispanitus capitus (1.48 kg), which is a neck muscle, had the highest values for both redness (a*) and yellowness (b*), whereas the lowest (p<0.05) values were for the M. teres major. The M. omotransversarius, M. latissimus dorsi (1.68 kg), and M. rhomboideus (1.2 kg) were ranked high (p<0.05) in water-holding capacity. The drip loss value was the highest for the M. longissimus dorsi thoracis (p<0.05; 1.86 kg), while the M. infraspinatus (2.28 kg), M. supraspinatus (1.38 kg), M. brachiocephalicus (1.01 kg), and M. pectoralis superficialis (1.18 kg) had the lowest (p<0.05). The Warner-Bratzler shear force value indicated that the M. pectoralis profundus (3.39 kg), M. omotransversarius, and M. brachiocephalicus were the toughest (p<0.05), whereas the M. subscapularis (0.86 kg), M. longissimus dorsi thoracis, M. teres major, and M. infraspinatus were the most tender cuts (p<0.05). Here, muscle type explained most of the variability in the forequarter physiochemical characteristics. Thus, our findings suggest that these muscle profile data will allow for more informed decisions when selecting individual muscles to produce value-added products from Holstein steers. PMID:26761893

  1. Manipulation of dietary calcium concentration to potentiate changes in tenderness of beef from heifers supplemented with zilpaterol hydrochloride.

    Science.gov (United States)

    Van Bibber-Krueger, C L; Miller, K A; Drouillard, J S

    2015-04-01

    Dietary Ca concentrations were manipulated during supplementation of zilpaterol hydrochloride (ZH) to evaluate impact on feedlot performance, carcass characteristics, and beef tenderness using 96 heifers (BW 392 kg ± 3.2). We hypothesized that temporary depletion followed by repletion of dietary Ca before harvest would increase intracellular Ca concentrations, thus stimulating postmortem activity of Ca-dependent proteases to effect changes in tenderness. Heifers were stratified by initial BW and randomly assigned, within strata (block), to treatments consisting of a finishing diet in which Ca was added in the form of limestone (+Ca) or removed (-Ca) during ZH supplementation. Cattle were fed a common diet, including limestone, before ZH supplementation, and 28 d before slaughter, ZH was added to the diet with and without supplemental Ca. Calcium content of the diets during ZH supplementation was 0.74% or 0.19% (diet DM) for +Ca and -Ca, respectively. Zilpaterol hydrochloride was fed for 25 d then removed from the diet 3 d before harvest. The final 3 d before harvest, all cattle were fed Ca at 0.74% of diet DM. Heifers were housed in concrete-surfaced pens with 8 animals/pen (6 pens/treatment). At the end of the finishing phase, animals were weighed and transported to an abattoir in Holcomb, KS. Severity of liver abscesses and HCW were collected the day of harvest, and after 48 h of refrigeration, USDA yield and quality grades, KPH, LM area, and 12th-rib subcutaneous fat thickness were determined. Boneless loin sections were also collected for Warner-Bratzler shear force determination. Removal of Ca did not affect Warner-Bratzler shear force values (P = 0.64). In addition, ADG, DMI, final BW, and feed efficiency were unaffected by treatment (P > 0.05). Carcass measurements also were unaffected by the temporary decrease in dietary Ca (P > 0.05). In conclusion, temporary depletion of dietary Ca during ZH supplementation did not alter beef tenderness, live animal

  2. Development of Shear Connections in Steelconcrete Composite Structures

    Directory of Open Access Journals (Sweden)

    Biegus Antoni

    2015-03-01

    Full Text Available Different types of shear connectors and modelling techniques are presented. Basic research conducted or presented after year 2000 is taken into consideration, following the idea of concrete dowel implemented in the form of perfobond strip at the beginning of the 1980s by F. Leonhardt. The latest research in the field of continuous shear connectors applied in bridges is highlited with special focus at the composite dowel shear connection, as it seems to be the most modern solution being strongly introduced to the industry. Final shape of composite dowel shear connection is presented.

  3. Vibrational shear flow of anisotropic viscoelastic fluid with small amplitudes

    Institute of Scientific and Technical Information of China (English)

    韩式方

    2008-01-01

    Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.

  4. Notes on shear viscosity bound violation in anisotropic models

    CERN Document Server

    Ge, Xian-Hui

    2015-01-01

    The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound using causality and thermodynamics analysis. The results show that no stringent constraints can be imposed. The diffusion bound in anisotropic phases is also studied. Ultimately, it is concluded that shear viscosity violation always occurs in cases where the equation of motion of the metric fluctuations cannot be written in a form identical to that of the minimally coupled massless scalar fields.

  5. Single low shear stress results in atherosclerosis in vivo

    Institute of Scientific and Technical Information of China (English)

    HUANG Rong-guo; LIU Hou-qi; YANG Xiang-qun; ZHANG Chuan-sen; KANG Bin; JIANG Zong-lai

    2005-01-01

    Objective: Whether single low shear stress can result in atherosclerosis without hyperliposis-diet in vivo or not is unknown. Methods: Based on an electromagnetic blood flow meter and a method to determine the pulsatile shear stress from blood flow rate waveform and its software,we developed an in vivo pulsatile blood flow rate-shear stress determining system.The left external carotid arteries of 20 adult New Zealand white rabbits were ligated and the rabbits were fed with a standard chow for 2,4,8 or 12 weeks,then the common carotid arteries of 2 sides in each rabbit were harvested for morphologic test. Results: The ligation reduced pulsatile shear stress of left common carotid significantly,for example,τmean changed from(21.16±7.17) dynes/cm2 to(3.13±2.28) dynes/cm2(p=2.176E-21),meanwhile,the pulsatile shear stress of right common carotid did not change significantly,which lasted more than 12 weeks.Atherosclerotic plaques were found after 8 and 12 weeks in pulsatile-low-shear-stress left(not normal-shear-stress right) common carotid arteries.Conclusion:Single pulsatile low shear stress can result in atherosclerosis.It supports the pulsatile low shear stress(not hypolipidemia) is the key risk factor for atherosclerosis.

  6. Aerosol penetration through a seismically loaded shear wall

    International Nuclear Information System (INIS)

    An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 μm monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs

  7. Shear wave elastography with a new reliability indicator

    Science.gov (United States)

    Dong, Yi

    2016-01-01

    Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731

  8. Three dimensional simulations of the parallel velocity shear instability

    International Nuclear Information System (INIS)

    The authors have performed fully nonlinear three-dimensional fluid simulations of the electrostatic parallel velocity shear instability as applied to a tokamak edge plasma. In the present study a source terms in the parallel momentum equation drives the sheared parallel flow. Studied are the effects of magnetic shear on the turbulence of the mode and the associated fluctuation levels. The inclusion of the nonlinear polarization drift in the perpendicular dynamics is found to significantly affect the final nonlinear state. Dependence of the anomalous momentum transport on the magnetic shear and the gyroradius parameter, associated with the polarization drift, are presented

  9. Compression Enhanced Shear Yield Stress of Electrorheological Fluid

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min-Liang; TIAN Yu; JIANG Ji-Le; ZHU Xu-Li; MENG Yong-Gang; WEN Shi-Zhu

    2009-01-01

    @@ Shear tests of an electrorheological fluid with pre-applied electric field and compression along the field direction are carried out. The results show that pre-compressions can increase the shear yield stress up to ten times. Under the same external electric field strength, a higher compressive strain corresponds to a larger shear yield stress enhancement but with slight current density decrease, which shows that the particle interaction potentials are not increased by compressions but the compression-induced chain aggregation dominates the shear yield stress improvement. This pre-compression technique might be useful [or developing high performance flexible ER or magnetorheological couplings.

  10. Large-scale direct shear testing of geocell reinforced soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height).Three types of specimens,silty gravel soil,geoceli reinforced silty gravel soil and geoceli reinforood cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior,the shear strength and the strengthening mechanism of geocell reinforced soils.The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well.The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement.The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa.The tests with the reinforcement of geocell result in an increase of 244% in cohesion,and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil.The friction angle does not change markedly.The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.

  11. Analytical large deformation shear strength for bolted rough discontinuous rock

    Institute of Scientific and Technical Information of China (English)

    LIU Bo(刘波); TAO Long-guang(陶龙光); YUE Zhong-qi(岳中琦)

    2004-01-01

    Presented a new analytical model for studying the shear-tensile large deformation behavior near the vicinity of joint interface for bolted rough discontinuous rock, and presented the formulation estimating global shear strength for bolted joints under shearing-tensile loads. The analytical strength curves of bolts contribution on reinforced discontinuous rocks as the function of joint displacements or deformation angle of a bolt at rock joints was obtained. Based on Barton's equation on JRC roughness profiles, the theoretical shearing strength of bolted rough joints was also established. Test results on bolted granite and marble specimen confirm the validity of the analytical approach.

  12. Diagonal Cracking and Shear Strength of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Zhang, Jin-Ping

    1997-01-01

    found by the usual plastic theory, a physical explanation is given for this phenomenon and a way to estimate the shear capacity of reinforced concrete beams, based on the theory of plasticity, is described. The theoretical calculations are shown to be in fairly good agreement with test results from......The shear failure of non-shear-reinforced concrete beams with normal shear span ratios is observed to be governed in general by the formation of a critical diagonal crack. Under the hypothesis that the cracking of concrete introduces potential yield lines which may be more dangerous than the ones...

  13. Combining two proven mechanical tenderness measurements in one steak.

    Science.gov (United States)

    Callahan, Z D; Belk, K E; Miller, R K; Morgan, J B; Lorenzen, C L

    2013-09-01

    This research was performed to determine the true efficacy of measuring both Warner-Bratzler shear force (WBSF) and slice shear force (SSF) in the same steak. The objectives were to compare cooking methods commonly used in preparing steaks for WBSF and SSF procedures and compare them at different cooling times. United States Department of Agriculture select strip loins (n = 240) were aged for either 7 or 14 d to increase the variation in tenderness. Each strip loin was then frozen and cut into 2.54-cm steaks. Steaks were then cooked to an internal temperature of 71°C using a convection conveyor oven (conveyor), a convection oven, clamshell grill, or an open hearth grill. Steaks were allotted to 4 different cooling times to create the combinations of: WBSF 4 h/SSF 0 h, WBSF 4 h/SSF 4 h, WBSF 24 h/SSF 0 h, WBSF 24 h/SSF 24 h. Five 1.25-cm cores were used for WBSF and one 1- by 5-cm slice for SSF. The WBSF from steaks cooked with conveyor were tougher than convection oven cooked steaks [51.9 Newtons (N) vs. 46.1 N; P Correlations for WBSF and SSF performed in the same steak ranged from 0.51 to 0.88 (P correlation values but the magnitude of the relationship is dependent on the combination of cooking method and cooling time.

  14. Tenderization of beef with bacterial collagenase.

    Science.gov (United States)

    Allen Foegeding, E; Larick, D K

    1986-01-01

    The feasibility of using a purified collagenase produced by Clostridium histolyticum as a meat tenderizer was studied. Experiments were conducted with enzymes in model systems to compare collagenase with the currently used plant proteinases, papain, bromelain and ficin. Collagenase was shown to have a greater activity in hydrolyzing insoluble collagen than salt-soluble-protein (SSP) and highest activity between 40° and 60°C, with little to no activity above 60°C. Collagenase was added to raw steaks and steaks were placed in bags and cooked in a water bath to 6.5°C. Tenderness was evaluated by analyzing components of Warner-Bratzler shear-deformation curves. The results suggested that addition of NaCl or a combination of CaCl(2), NaCl and collagenase would cause equivalent tenderization. The lack of a significant tenderization due to collagenase could be related to a lack of sensitivity in the shear evaluation or an effect on the enzyme activity due to the meat environment.

  15. The effect of breed of sire and age at feeding on muscle tenderness in the beef chuck.

    Science.gov (United States)

    Christensen, K L; Johnson, D D; West, R L; Marshall, T T; Hargrove, D D

    1991-09-01

    Steers (n = 59) produced from the mating of Braford, Simbrah, Senepol, and Simmental bulls to Brahman- and Romana Red-sired cows and Brahman bulls to Angus cows were used in this study. Effects of sire breed and age at feeding on muscle tenderness in the major muscles of the chuck when steers were fed to 1.0 cm 12th rib fat were determined. There were no muscle tenderness effects due to sire breed group, with the exception of the serratus ventralis muscle, which was more tender in Brahman- and Braford-sired steers than in Simmental-sired steers. Additionally, the supraspinatus muscle from the yearlings was lower in shear value than that from the calves. The Brahman-sired steers had serratus ventralis muscles with higher percentages (P less than .05) of intramuscular fat than those of Braford-, Simbrah-, and Simmental-sired steers. Fat deposited within the muscle or between muscles in the chuck was not related to muscle tenderness as measured by Warner-Bratzler shear values. Also, percentages of intramuscular fat of the triceps brachii, serratus ventralis, or supraspinatus muscles were not influenced (P greater than .05) by age at feeding. PMID:1938650

  16. Tenderization of beef with bacterial collagenase.

    Science.gov (United States)

    Allen Foegeding, E; Larick, D K

    1986-01-01

    The feasibility of using a purified collagenase produced by Clostridium histolyticum as a meat tenderizer was studied. Experiments were conducted with enzymes in model systems to compare collagenase with the currently used plant proteinases, papain, bromelain and ficin. Collagenase was shown to have a greater activity in hydrolyzing insoluble collagen than salt-soluble-protein (SSP) and highest activity between 40° and 60°C, with little to no activity above 60°C. Collagenase was added to raw steaks and steaks were placed in bags and cooked in a water bath to 6.5°C. Tenderness was evaluated by analyzing components of Warner-Bratzler shear-deformation curves. The results suggested that addition of NaCl or a combination of CaCl(2), NaCl and collagenase would cause equivalent tenderization. The lack of a significant tenderization due to collagenase could be related to a lack of sensitivity in the shear evaluation or an effect on the enzyme activity due to the meat environment. PMID:22055648

  17. Differences in quality characteristics of normal, PSE and DFD pork.

    Science.gov (United States)

    van der Wal, P G; Bolink, A H; Merkus, G S

    1988-01-01

    Differences in water-holding capacity, colour and tenderness/toughness were studied in 21 pork loins belonging to three quality categories, i.e. dark firm dry (DFD), normal and pale soft exudative (PSE). The division into the three groups was based upon the ultimate pH-values of the loins ( 6·4). The PSE loins were characterized by a poor waterholding capacity, higher cooking loss and paler colour in contrast to the DFD category. The normal loins took an intermediate position. Neither sarcomere length, determined on fresh muscle tissue, nor Armour tenderometer values showed significant differences between the various quality categories. This was in contrast to the Warner-Bratzler (W-B) shear force values, determined on cooked loins, which had the lowest values in the DFD category. A strong relationship between the W-B values and the cooking losses was found. It was concluded that neither sarcomere length nor Armour tenderometer measurements were able to predict the shear force values of cooked pork loins.

  18. The effect of breed of sire and age at feeding on muscle tenderness in the beef chuck.

    Science.gov (United States)

    Christensen, K L; Johnson, D D; West, R L; Marshall, T T; Hargrove, D D

    1991-09-01

    Steers (n = 59) produced from the mating of Braford, Simbrah, Senepol, and Simmental bulls to Brahman- and Romana Red-sired cows and Brahman bulls to Angus cows were used in this study. Effects of sire breed and age at feeding on muscle tenderness in the major muscles of the chuck when steers were fed to 1.0 cm 12th rib fat were determined. There were no muscle tenderness effects due to sire breed group, with the exception of the serratus ventralis muscle, which was more tender in Brahman- and Braford-sired steers than in Simmental-sired steers. Additionally, the supraspinatus muscle from the yearlings was lower in shear value than that from the calves. The Brahman-sired steers had serratus ventralis muscles with higher percentages (P less than .05) of intramuscular fat than those of Braford-, Simbrah-, and Simmental-sired steers. Fat deposited within the muscle or between muscles in the chuck was not related to muscle tenderness as measured by Warner-Bratzler shear values. Also, percentages of intramuscular fat of the triceps brachii, serratus ventralis, or supraspinatus muscles were not influenced (P greater than .05) by age at feeding.

  19. Genome scan for meat quality traits in Nelore beef cattle.

    Science.gov (United States)

    Tizioto, P C; Decker, J E; Taylor, J F; Schnabel, R D; Mudadu, M A; Silva, F L; Mourão, G B; Coutinho, L L; Tholon, P; Sonstegard, T S; Rosa, A N; Alencar, M M; Tullio, R R; Medeiros, S R; Nassu, R T; Feijó, G L D; Silva, L O C; Torres, R A; Siqueira, F; Higa, R H; Regitano, L C A

    2013-11-01

    Meat quality traits are economically important because they affect consumers' acceptance, which, in turn, influences the demand for beef. However, selection to improve meat quality is limited by the small numbers of animals on which meat tenderness can be evaluated due to the cost of performing shear force analysis and the resultant damage to the carcass. Genome wide-association studies for Warner-Bratzler shear force measured at different times of meat aging, backfat thickness, ribeye muscle area, scanning parameters [lightness, redness (a*), and yellowness] to ascertain color characteristics of meat and fat, water-holding capacity, cooking loss (CL), and muscle pH were conducted using genotype data from the Illumina BovineHD BeadChip array to identify quantitative trait loci (QTL) in all phenotyped Nelore cattle. Phenotype count for these animals ranged from 430 to 536 across traits. Meat quality traits in Nelore are controlled by numerous QTL of small effect, except for a small number of large-effect QTL identified for a*fat, CL, and pH. Genomic regions harboring these QTL and the pathways in which the genes from these regions act appear to differ from those identified in taurine cattle for meat quality traits. These results will guide future QTL mapping studies and the development of models for the prediction of genetic merit to implement genomic selection for meat quality in Nelore cattle.

  20. Tenderness, sensory, and color attributes of two muscles from the M. quadriceps femoris when fabricated using a modified hot-boning technique.

    Science.gov (United States)

    Jenschke, B E; Swedberg, B J; Calkins, C R

    2008-10-01

    The M. quadriceps femoris from USDA Choice (n = 12) and USDA Select (n = 12) carcasses were fabricated traditionally (COLD) or innovatively (HOT), in which the seams it shares with the top round and bottom round were separated prerigor to evaluate positional and locational effects on Warner-Bratzler shear force (WBSF), sensory attributes, and objective color. At slaughter, paired USDA Choice and USDA Select carcasses were alternately assigned either the HOT or COLD treatment. At 48 h postslaughter, subprimals were removed, vacuum-packaged, and aged for an additional 5 d. After aging, the M. quadriceps femoris was cut into 2.54-cm-thick steaks and allowed to bloom 1 h. For the M. rectus femoris (REC) and M. vastus lateralis (VAL), L* values significantly (P moving from the proximal to distal position within the muscle. Similarly, a* and b* values decreased in the VAL when moving from the proximal to the distal aspect. After color measurement, steaks were vacuum-packaged and frozen (-26 degrees C) until shear and sensory data were collected. Significant position (proximal to distal) and location effects (cranial to caudal) were noted for both muscles. However, treatment did not affect WBSF of the VAL. Although intramuscular variation existed, WBSF and sensory panel tenderness ratings were acceptable for the REC. Although WBSF values were greater and tenderness ratings were less than the REC, the VAL were not extremely tough and therefore could be used in enhancement applications. PMID:18539844

  1. In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis

    Science.gov (United States)

    Helfenstein-Didier, C.; Andrade, R. J.; Brum, J.; Hug, F.; Tanter, M.; Nordez, A.; Gennisson, J.-L.

    2016-03-01

    The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N  =  10, p  clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.

  2. Probing the shear-band formation in granular media with sound waves

    OpenAIRE

    KHIDAS, Yacine; Jia, X.

    2012-01-01

    We investigate the mechanical responses of dense granular materials, using a direct shear box combined with simultaneous acoustic measurements. Measured shear wave speeds evidence the structural change of the material under shear, from the jammed state to the flowing state. There is a clear acoustic signature when the shear band is formed. Subjected to cyclic shear, both shear stress and wave speed show the strong hysteretic dependence on the shear strain, likely associated with the geometry ...

  3. Shear dynamo, turbulence, and the magnetorotational instability

    Science.gov (United States)

    Squire, Jonathan

    The formation, evolution, and detailed structure of accretion disks remain poorly understood, with wide implications across a variety of astrophysical disciplines. While the most pressing question --- what causes the high angular momentum fluxes that are necessary to explain observations? --- is nicely answered by the idea that the disk is turbulent, a more complete grasp of the fundamental processes is necessary to capture the wide variety of behaviors observed in the night sky. This thesis studies the turbulence in ionized accretion disks from a theoretical standpoint, in particular focusing on the generation of magnetic fields in these processes, known as dynamo. Such fields are expected to be enormously important, both by enabling the magnetorotational instability (which evolves into virulent turbulence), and through large-scale structure formation, which may transport angular momentum in different ways and be fundamental for the formation of jets. The central result of this thesis is the suggestion of a new large-scale dynamo mechanism in shear flows --- the "magnetic shear-current effect" --- which relies on a positive feedback from small-scale magnetic fields. As well as being a very promising candidate for driving field generation in the central regions of accretion disks, this effect is interesting because small-scale magnetic fields have historically been considered to have a negative effect on the large-scale dynamo, damping growth and leading to dire predictions for final saturation amplitudes. Given that small-scale fields are ubiquitous in plasma turbulence above moderate Reynolds numbers, the finding that they could instead have a positive effect in some situations is interesting from a theoretical and practical standpoint. The effect is studied using direct numerical simulation, analytic techniques, and novel statistical simulation methods. In addition to the dynamo, much attention is given to the linear physics of disks and its relevance to

  4. Deformation of footwall rock of Phulad Shear Zone, Rajasthan: Evidence of transpressional shear zone

    Science.gov (United States)

    Choudhury, Manideepa Roy; Das, Subhrajyoti; Chatterjee, Sadhana M.; Sengupta, Sudipta

    2016-07-01

    Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e., the hanging wall contains a variety of rocks namely calc-silicates, pelites and amphibolites and the southwestern unit, i.e., the footwall unit contains only granitic rocks. Systematic investigation of the granites of the southwestern unit indicate a gradual change in the intensity of deformation from a distance of about 1 km west of the shear zone to the shear zone proper. The granite changes from weakly deformed granite to a mylonite/ultramylonite as we proceed towards the PSZ. The weakly deformed granite shows a crude foliation with the same attitude of mylonitic foliation of the PSZ. Microscopic study reveals the incipient development of C and S fabric with angle between C and S varying from 15 ∘ to 24 ∘. The small angle between the C and S fabric in the least deformed granite variety indicates that the deformation has strong pure shear component. At a distance of about 1 m away from the PSZ, there is abrupt change in the intensity of deformation. The granite becomes intensely foliated with a strong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite shows stretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. The angle between the C and S fabric is further reduced and finally becomes nearly parallel. In most places, S fabric is gradually replaced by C fabric. Calculation of sectional kinematic vorticity number ( W n) from the protomylonitic and mylonite/ultramylonite granites varies from 0.3 ± 0.03 to 0.55 ± 0.04 indicating a strong component of pure shear. The similarity of the geometry of structures in the PSZ and the granites demonstrates that the

  5. Deformation of footwall rock of Phulad Shear Zone, Rajasthan: Evidence of transpressional shear zone

    Indian Academy of Sciences (India)

    Manideepa Roy Choudhury; Subhrajyoti Das; Sadhana M Chatterjee; Sudipta Sengupta

    2016-07-01

    Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zonewith a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformationin the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeasternunit, i.e., the hanging wall contains a variety of rocks namely calc-silicates, pelites and amphibolites andthe southwestern unit, i.e., the footwall unit contains only granitic rocks. Systematic investigation ofthe granites of the southwestern unit indicate a gradual change in the intensity of deformation from adistance of about 1 km west of the shear zone to the shear zone proper. The granite changes from weaklydeformed granite to a mylonite/ultramylonite as we proceed towards the PSZ. The weakly deformedgranite shows a crude foliation with the same attitude of mylonitic foliation of the PSZ. Microscopicstudy reveals the incipient development of C and S fabric with angle between C and S varying from15◦ to 24◦. The small angle between the C and S fabric in the least deformed granite variety indicatesthat the deformation has strong pure shear component. At a distance of about 1 m away from the PSZ,there is abrupt change in the intensity of deformation. The granite becomes intensely foliated with astrong downdip lineation and the rock becomes a true mylonite. In mesoscopic scale, the granite showsstretched porphyroclasts in both XZ and YZ sections indicating a flattening type of deformation. Theangle between the C and S fabric is further reduced and finally becomes nearly parallel. In most places,S fabric is gradually replaced by C fabric. Calculation of sectional kinematic vorticity number (Wn) fromthe protomylonitic and mylonite/ultramylonite granites varies from 0.3 ± 0.03 to 0.55 ± 0.04 indicatinga strong component of pure shear. The similarity of the geometry of structures in the PSZ and thegranites demonstrates that the deformation of the two units is

  6. Localization of shear strain and shear band formation induced by deformation in semi-solid Al-Cu alloys

    Science.gov (United States)

    Nagira, T.; Morita, S.; Yasuda, H.; Gourlay, C. M.; Yoshiya, M.; Sugiyama, A.; Uesugi, K.

    2015-06-01

    In situ observation of deformation in globular Al-Cu samples at a solid fraction of ∼⃒50% and a global shear strain rate of 10-1 s-1 was performed using time-resolved X-ray imaging. The solid particle motion during shear was quantitatively analysed. The force was transmitted though the contacts between solid particles over a long distance parallel to the shear plane (18 mean grain size, d) after only a 1d increment of the Al2O3 push-plate motion. On the other hand, the distance of transmitted force in the perpendicular direction to the shear plane was restricted to approximately 11d even for a high displacement of the Al2O3 push-plate. A relatively high shear strain rate became localized at the shear domain after a small amount of deformation (a 1d increment). The solid fraction decreased in the region of localized shear strain rate. The shear band width, where the shear strain was localized and the solid fraction decreased, remained mostly unchanged over a 4 d increment of Al2O3 push-plate motion.

  7. Seismic shear waves as Foucault pendulum

    Science.gov (United States)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko

    2016-03-01

    Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.

  8. Localized shear generates three-dimensional chaos

    CERN Document Server

    Smith, Lachlan D; Lester, Daniel R; Metcalfe, Guy

    2016-01-01

    Understanding the mechanisms that control 3D fluid transport is central to many processes including mixing, chemical reaction and biological activity. Here a novel mechanism for 3D transport is uncovered where fluid particles are kicked between streamlines near a localized shear, which occurs in many flows and materials. This results in 3D transport similar to Resonance Induced Dispersion (RID); the new mechanism is more rapid and mutually incompatible with RID. We explore its governing impact with a simple model and model fluid flow. We show that transitions from 1D to 2D and 2D to 3D transport occur based on the relative magnitudes of streamline jumps in two transverse directions.

  9. Cosmic Shear Measurement using Autoconvolved Images

    CERN Document Server

    Li, Xiangchong

    2016-01-01

    We study the possibility of using quadrupole moments of auto-convolved galaxy images to measure cosmic shear. The autoconvolution of an image corresponds to the inverse Fourier transformation of its power spectrum. The new method has the following advantages: the smearing effect due to the Point Spread Function (PSF) can be corrected by subtracting the quadrupole moments of the auto-convolved PSF; the centroid of the auto-convolved image is trivially identified; the systematic error due to noise can be directly removed in Fourier space; the PSF image can also contain noise, the effect of which can be similarly removed. With a large ensemble of simulated galaxy images, we show that the new method can reach a sub-percent level accuracy in general conditions, albeit with increasingly large stamp size for galaxies of less compact profiles.

  10. Direct observation of dynamic shear jamming in dense suspensions

    Science.gov (United States)

    Peters, Ivo R.; Majumdar, Sayantan; Jaeger, Heinrich M.

    2016-04-01

    Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared. These phenomena include solidification during rapid impact, as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity. Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity, even a strongly shear-thickened state still flows and thus cannot be fully jammed. Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density. Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient. As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems. This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming. This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process.

  11. Elasto-plastic impact response analysis of shear-failure-type RC beams with shear rebars

    International Nuclear Information System (INIS)

    In this paper, to establish a simple elasto-plastic impact analysis method for shear-failure-type reinforced concrete (RC) beams, falling-weight impact tests and three-dimensional finite element (FE) analyses were conducted. Here, twelve simply supported rectangular RC beams were used, each with dimensions of (width x depth x length) 200 x 400 x 2,400 mm. Shear rebar ratio and impact velocity were taken as variables. Impact load was applied at the mid-span of RC beam by dropping a 400 kg steel weight from pre-determined position. LS-DYNA nonlinear transient finite element analysis code was used for this research. From this study, it is seen that the time histories of impact force, reaction force and mid-span displacement, and crack patterns on the side-surface of RC beam can be predicted accurately by using the proposed FE analysis method

  12. Shear resistance of oil palm shell concrete beams with and without shear reinforcement

    OpenAIRE

    Chin, Mei Yun

    2014-01-01

    In recent years, the use of Oil Palm kernel Shell (OPS) aggregate as coarse aggregate in concrete has received increasing attention due to its environmental and economic benefits. To date, considerable amount of research have been carried out to aid the understanding of its concrete mixture designs and its material properties, but, only limited amount of works have been carried out to aid the current understanding with respect to its shear resistance. The main objective of this research w...

  13. Earthquake-induced shear concentration in shear walls above transfer structures

    OpenAIRE

    Su, RKL; Cheng, MH

    2009-01-01

    Due to various architectural constraints and multi-functional requirements for modern buildings, combined structural forms, which typically include shear wall systems in higher zones and moment-resisting frames together with core walls in lower zones, are commonly used for these buildings. Transfer structures are often introduced to transfer the loads from higher to lower zones. Previous experimental and numerical studies have demonstrated that the exterior walls above the transfer structure ...

  14. Shear stresses and mean flow in shoaling and breaking waves

    NARCIS (Netherlands)

    Stive, M.J.F.; De Vriend, H.J.

    1994-01-01

    We investigate the vertical, wave averaged distributions of shear stresses and Eulerian flow in normally incident, shoaling and breaking waves. It is found that shear stresses are solely due to wave amplitude variations, which can be caused by shoaling, boundary layer dissipation and/or breaking wav

  15. Ordering fluctuations in a shear-banding wormlike micellar system

    DEFF Research Database (Denmark)

    Angelico, R.; Rossi, C. Oliviero; Ambrosone, L.;

    2010-01-01

    We present a first investigation about the non-linear flow properties and transient orientational-order fluctuations observed in the shear-thinning lecithin–water–cyclohexane wormlike micellar system at a concentration near to the zero-shear isotropic–nematic phase transition. From rheological...

  16. Conductivity measurements in a shear-banding wormlike micellar system.

    Science.gov (United States)

    Photinos, Panos J; López-González, M R; Hoven, Corey V; Callaghan, Paul T

    2010-07-01

    Shear banding in the cetylpyridinium chloride/sodium salicylate micellar system is investigated using electrical conductivity measurements parallel to the velocity and parallel to the vorticity in a cylindrical Couette cell. The measurements show that the conductivity parallel to the velocity (vorticity) increases (decreases) monotonically with applied shear rate. The shear-induced anisotropy is over one order of magnitude lower than the anisotropy of the N(c) nematic phase. The steady-state conductivity measurements indicate that the anisotropy of the shear induced low-viscosity (high shear rate) phase is not significantly larger than the anisotropy of the high viscosity (low shear rate) phase. We estimate that the micelles in the shear induced low viscosity band are relatively short, with a characteristic length to diameter ratio of 5-15. The relaxation behavior following the onset of shear is markedly different above and below the first critical value γ1, in agreement with results obtained by other methods. The transient measurements show that the overall anisotropy of the sample decreases as the steady state is approached, i.e., the micellar length/the degree of order decrease.

  17. Shear band formation in sub-microcrystalline Ni

    Energy Technology Data Exchange (ETDEWEB)

    Beausir, Benoit; Hollang, Lutz; Skrotzki, Werner [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Dey, Suhash Ranjan [Department of Materials Science and Engineering, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram-502205, Andhra Pradesh (India); Hieckmann, Ellen [Institut fuer Angewandte Physik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2011-07-01

    The stability of sub-microcrystalline nickel produced by pulsed electrodeposition without any additives was investigated during cyclic deformation at very high plastic strain amplitude of 1% at room temperature. The initial microstructure having an average grain size of 160 nm in the growth plane and a weak <110> fibre texture along the growth direction undergoes considerable grain growth during cyclic loading without significant changes in texture. After a certain number of loading cycles the specimen suddenly developed a single macro shear band. The shear band appeared in the tensile half cycle under 45 to the loading axis and acts as crack starter. Investigations in the scanning electron microscope using electron backscatter diffraction revealed that the main macro shear band consists of relaxed grains elongated along the shear plane displaying a texture induced by shear. The texture in the shear band was reproduced with the viscoplastic self-consistent polycrystal model using {l_brace}111{r_brace}<110> slip systems. Detailed investigations of the surrounding of the macro shear band reveal the existence of a large number of regularly spaced micro shear bands.

  18. Rheology and Structure of Quenched Binary Mixtures Under Oscillatory Shear

    Institute of Scientific and Technical Information of China (English)

    XU Ai-Guo

    2003-01-01

    We applied the D2Q9 BGK lattice Boltzmann method to study the rheology and structure of the phaseseparating binary fluids under oscillatory shear in the diffusive regime. The method is suitable for simulating systemswhose dynamicsis described by the Navier-Stokes equation and convection-diffusion equation. The shear oscillationinduces different rheological patterns from those under steady shear. With the increasing of the frequency of the shearthe system shows more isotropic behavior, while with the decreasing of the frequency we find more configurations similarto those under steady shear. By decreasing the frequency of the shear, the period of the applied flow becomes thesame order of the relaxation time of the shear velocity profile, which is inversely proportional to the viscosity, and moreanisotropic effects become observable. The structure factor and the velocity profile contribute to the understanding ofthe configurations and the kinetic process. Oscillatory shear induces nonlinear pattern of the horizontal velocity profile.Therefore, configurations are found where lamellar order close to the wall coexists with isotropic domains in the middleof the system. For very slow frequencies, the morphology of the domains is characterized by lamellar order everywherethat resembles what happens in the case of steady shear.

  19. Domino boudinage under layer-parallel simple shear

    Science.gov (United States)

    Dabrowski, Marcin; Grasemann, Bernhard

    2014-11-01

    The boudin segments of a torn competent layer experience synthetic rotation in layer-parallel simple shear. As long as the individual segments in a boudin train are constrained by their neighbors, even a highly viscous boudin deforms internally to create the necessary space for rotation. The rotation rate is then much smaller compared to the case of an isolated segment. Hence, a small tilt of boudin segments is not indicative of low strain. The rotation rate at this stage largely depends on the aspect ratio of the boudin segments and the scaled gap width. Once the tilted boudins are no longer constrained by their neighbors, the rotation rate greatly accelerates. In the case of a low viscosity ratio between the boudins and the host, the boudin segments develop complex shapes, which may give an impression of shear-band boudins forming under the opposite shear sense. We furthermore investigate the behavior of boudin trains of finite length. The terminal segments are displaced out of the shear plane, deforming into isoclinal folds, and separate into groups of boudin segments that rotate into the shear direction and eventually lead to an overall chaotic appearance of the structure. Natural examples of domino boudinage from a high shear -strain detachment zone in the Western Cyclades (Greece) show many similarities with the modeled structures suggesting that, under simple shear deformation, the rotation and separation of boudin segments is an indicator for high shear strain.

  20. Simulation of cohesive fine powders under a plane shear

    NARCIS (Netherlands)

    Takada, Satohsi; Saitoh, K.; Hayakawa, H.

    2014-01-01

    Three-dimensional molecular-dynamics simulations of cohesive dissipative powders under a plane shear are performed. We find the various phases depending on the dimensionless shear rate and the dissipation rate as well as the density. We also find that the shape of clusters depends on the initial con

  1. Measurement and modeling of bed shear stress under solitary waves

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Guard, P.A.; Baldock, T.E.

    ) < ~ 10 sup (5)). Measurements were carried out where the wave height to water depth (h/d) ratio varied between 0.12 and 0.68; maximum near bed velocity varied between 0.16 m/s and 0.51 m/s and the maximum total shear stress (sum of skin shear stress...

  2. Simulation of phase separation in quiescent and sheared liquids

    NARCIS (Netherlands)

    Thakre, Amol Kumar

    2008-01-01

    In this thesis we report on molecular dynamics simulations of phase separation of simple and complex binary liquids in sheared and non-sheared systems. The separation of milk into liquid whey and solid curd is a very common example of phase separation observed in daily life. The phenomenon finds its

  3. Research Concerning the Shearing Strength of Black Locust Wood

    Directory of Open Access Journals (Sweden)

    Mihaela POROJAN

    2011-06-01

    Full Text Available The paper presents the experimental resultsobtained for the shearing strength of black locustwood (Robinia pseudacacia L. harvested from twogeographical areas (North and South of Romania.Wood is subjected to shearing stress when usedwithin different fields, and especially inconstructions. Tangential stresses are produced inthe shearing sections and they are influenced by thestructure of wood through the position of theshearing plane and of the force direction towards thegrain. Accordingly, several shearing types arepossible. The shearing strengths for the three mainshearing types, both on radial and tangentialdirection were determined within the present study.The evaluation of data was achieved by using theANOVA analysis, in order to test the level ofsignificance depending on the shearing planeorientation and the harvesting area. The obtainedresults were compared to the values mentionedwithin reference literature for this wood species andtwo other hardwood species with similar density. It isworth to be mentioned that the shearing strengths ofblack locust wood from Romania (both from Northand South are generally higher than those indicatedby reference literature for oak and beech. Thisrecommends black locust wood as constructionwood and for other applications where wood issubjected to shearing stress.

  4. Steady-shear viscosity of stirred yogurts with varying ropiness

    NARCIS (Netherlands)

    Marle, van M.E.; Ende, van den D.; Kruif, de C.G.; Mellema, J.

    1999-01-01

    Stirred yogurt was viewed as a concentrated dispersion of aggregates consisting of protein particles. The steady-shear behavior of three types of stirred yogurt with varying ropiness was investigated experimentally. To describe the shear-dependent viscosity, a microrheological model was used which w

  5. Shear initiated reactions in energetic and reactive materials

    NARCIS (Netherlands)

    Meuken, B.; Martinez Pacheco, M.; Verbeek, H.J.; Bouma, R.H.B.; Katgerman, L.

    2006-01-01

    Deformation of energetic materials may cause undesired reactions and therefore hazardous situations. The deformation of an energetic material and in particular shear deformation is studied in this paper. Understanding of the phenomena leading to shear initiation is not only necessary to explain for

  6. Critical wall shear stress for the EHEDG test method

    DEFF Research Database (Denmark)

    Jensen, Bo Boye Busk; Friis, Alan

    2004-01-01

    In order to simulate the results of practical cleaning tests on closed processing equipment, based on wall shear stress predicted by computational fluid dynamics, a critical wall shear stress is required for that particular cleaning method. This work presents investigations that provide a critical...

  7. On the nature of shear thinning in nanoscopically confined films

    NARCIS (Netherlands)

    Manias, E.; Bitsanis, I.; Hadziioannou, G.; Brinke, G. ten

    1996-01-01

    Non-Equilibrium Molecular Dynamics (NEMD) computer simulations were employed to study films in nanometer confinements under shear. Focusing on the response of the viscosity, we found that nearly all the shear thinning takes place inside the solid-oligomer interface and that the adsorbed layers are m

  8. Shear banding and yield stress in soft glassy materials

    NARCIS (Netherlands)

    P.C.F. Møller; S. Rodts; M.A.J. Michels; D. Bonn

    2008-01-01

    Shear localization is a generic feature of flows in yield stress fluids and soft glassy materials but is incompletely understood. In the classical picture of yield stress fluids, shear banding happens because of a stress heterogeneity. Using recent developments in magnetic resonance imaging velocime

  9. Coalescence in semiconcentrated emulsions in simple shear flow

    NARCIS (Netherlands)

    Korobko, A.V.; Ende, van den H.T.M.; Agterof, W.G.M.; Mellema, J.

    2005-01-01

    The coalescence frequency in emulsions containing droplets with a low viscosity (viscosity ratio ∼ 0.005) in simple shear flow has been investigated experimentally at several volume fractions of the dispersed phase (2%–14%) and several values of the shear rate (0.1–10 s−1). The evolution of the size

  10. Interaction of monopoles, dipoles, and turbulence with a shear flow

    Science.gov (United States)

    Marques Rosas Fernandes, V. H.; Kamp, L. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.

    2016-09-01

    Direct numerical simulations have been conducted to examine the evolution of eddies in the presence of large-scale shear flows. The numerical experiments consist of initial-value-problems in which monopolar and dipolar vortices as well as driven turbulence are superposed on a plane Couette or Poiseuille flow in a periodic two-dimensional channel. The evolution of the flow has been examined for different shear rates of the background flow and different widths of the channel. Results found for retro-grade and pro-grade monopolar vortices are consistent with those found in the literature. Boundary layer vorticity, however, can significantly modify the straining and erosion of monopolar vortices normally seen for unbounded domains. Dipolar vortices are shown to be much more robust coherent structures in a large-scale shear flow than monopolar eddies. An analytical model for their trajectories, which are determined by self-advection and advection and rotation by the shear flow, is presented. Turbulent kinetic energy is effectively suppressed by the shearing action of the background flow provided that the shear is linear (Couette flow) and of sufficient strength. Nonlinear shear as present in the Poiseuille flow seems to even increase the turbulence strength especially for high shear rates.

  11. SHEAR STRENGTH OF REINFORCED CONCRETE T-BEAMS WITHOUT STIRRUPS

    Directory of Open Access Journals (Sweden)

    RENDY THAMRIN

    2016-04-01

    Full Text Available This paper presents the test results of experimental study on shear strength of reinforced concrete beams without stirrups. The test variables in this study were type of beam cross section and ratio of longitudinal reinforcement. Six simple supported beams, consisting of three beams with rectangular cross section and three beams with T section, subjected to two point load were tested until failure. During the test, the values of the diagonal crack load and the maximum load were observed as well as the deformation of the beams. Existing empirical equations for shear strength of concrete presented in the literature and design codes were used and then compared to that value obtained from the test. Comparison between test results and theoretical shear capacity show that all of equations conservatively estimate the occurrence of shear failure with the values of the test results 10 to 90% higher than the theoretical values. It was confirmed from the test that the shear capacity of T-beams were higher than for rectangular beams, with the values ranging from 5 to 25%, depending on the ratio of longitudinal reinforcement. Also, it was observed that ratio of longitudinal reinforcement influences the shear capacity of the beam as well as the angle of diagonal shear crack. In addition, based on the test results, a simple model for predicting the contribution of flange to shear capacity in T-beam was presented.

  12. Shear Capacity of Concrete Beams under Sustained Loading

    NARCIS (Netherlands)

    Sarkhosh, R.; Walraven, J.C.; Den Uijl, J.A.; Braam, C.R.

    2013-01-01

    Long-term tests on large-scale concrete beams without shear reinforcement, which are tested for more than two years under sustained loading close to the ultimate shear capacity (load ratio ranging from 87% to 95%) under climate controlled condition, show that sustained loading has no significant eff

  13. Midbroken Reinforced Concrete Shear Frames Due to Earthquakes

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Cakmak, A. S.; Nielsen, Søren R. K.

    A non-linear hysteretic model for the response and local damage analyses of reinforced concrete shear frames subject to earthquake excitation is proposed, and, the model is applied to analyse midbroken reinforced concrete (RC) structures due to earthquake loads. Each storey of the shear frame...

  14. Shear Strength of Concrete I-Beams - Contributions of Flanges

    DEFF Research Database (Denmark)

    Teoh, B. K.; Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The contribution of flanges to the shear strength of reinforced concrete beams has up to now either been neglected or evaluated by very simple empirical formulas. However, the contribution may sometimes be large, up to 20-30%. In this paper the flange contribution for shear reinforced I-beams has...

  15. Comment on shear-rotation mechanism for martensitic transformations

    Institute of Scientific and Technical Information of China (English)

    CHEN Zi; GUO Zhenghong

    2004-01-01

    The "shear-rotation mechanism" for f.c.c.→b.c.c.(b.c.t.) martensitic transformation is further discussed in this paper. Although "shear-rotation mechanism" involves some valuable ideas which is based on the Nishiyama's model, the concept of "rotation" in "shear-rotation mechanism" may not be consistent with the general definition in crystallography. In addition, the mathematical expression of this mechanism is questionable. Furthermore, a detailed mathematical analysis given in the present paper indicates that the nature of "shear-rotation mechanism" is equivalent to the first two steps of Nishiyama's model, I.e. It is an invariant line strain (ILS) rather than an invariant plane strain (IPS). In other words, it is difficult to obtain the IPS based on the "shear-rotation mechanism" even though the isotropic contraction is involved. Therefore, a new method should be developed to explain the IPS based on Nishiyama's model.

  16. Shearrate diffusion and constitutive relations during transients in simple shear

    Science.gov (United States)

    Ries, Alexander; Brendel, Lothar; Wolf, Dietrich E.

    2016-07-01

    Granular matter, consisting of hard, frictional, cohesionless spheres, sheared in a simple shear geometry with smooth walls undergoes a velocity driven transition from a jammed or creeping state (low wall velocity) to a flow state with a finite shear rate in the bulk (high wall velocity). In the flow state, the state variables volume fraction ν , inertial number I and the macroscopic friction μ of the bulk follow an exponential transient. The characteristic time of this progression grows with the wall velocity and the system size and is typically large compared to the inverse shear rate. It is shown that I, first being stationary in the shear zones, spreads diffusively into the bulk. The other state variables follow according to the constitutive laws, well known from the steady state.

  17. Shear band in sand with spatially varying density

    Science.gov (United States)

    Borja, Ronaldo I.; Song, Xiaoyu; Rechenmacher, Amy L.; Abedi, Sara; Wu, Wei

    2013-01-01

    Bifurcation theory is often used to investigate the inception of a shear band in a homogeneously deforming body. The theory predicts conjugate shear bands that have the same likelihood of triggering. For structures loaded symmetrically the choice of which of the two conjugate shear bands will persist is arbitrary. In this paper we show that spatial density variation could be a determining factor for the selection of the persistent shear band in a symmetrically loaded localizing sand body. We combine experimental imaging on rectangular sand specimens loaded in plane strain compression with mesoscale finite element modeling on symmetrically loaded sand specimens to show that spatial heterogeneity in density does have a profound impact on the persistent shear band.

  18. The DES Science Verification weak lensing shear catalogues

    Science.gov (United States)

    Jarvis, M.; Sheldon, E.; Zuntz, J.; Kacprzak, T.; Bridle, S. L.; Amara, A.; Armstrong, R.; Becker, M. R.; Bernstein, G. M.; Bonnett, C.; Chang, C.; Das, R.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Gangkofner, C.; Gruen, D.; Hirsch, M.; Huff, E. M.; Jain, B.; Kent, S.; Kirk, D.; MacCrann, N.; Melchior, P.; Plazas, A. A.; Refregier, A.; Rowe, B.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Suchyta, E.; Troxel, M. A.; Vikram, V.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Clampitt, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nord, B.; Ogando, R.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.

    2016-08-01

    We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies, respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-yr DES, which is expected to cover 5000 square degrees.

  19. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    Science.gov (United States)

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  20. The DES Science Verification weak lensing shear catalogues

    Science.gov (United States)

    Jarvis, M.; Sheldon, E.; Zuntz, J.; Kacprzak, T.; Bridle, S. L.; Amara, A.; Armstrong, R.; Becker, M. R.; Bernstein, G. M.; Bonnett, C.; Chang, C.; Das, R.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler, T. F.; Gangkofner, C.; Gruen, D.; Hirsch, M.; Huff, E. M.; Jain, B.; Kent, S.; Kirk, D.; MacCrann, N.; Melchior, P.; Plazas, A. A.; Refregier, A.; Rowe, B.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Suchyta, E.; Troxel, M. A.; Vikram, V.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Clampitt, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nord, B.; Ogando, R.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.

    2016-08-01

    We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees.

  1. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    Science.gov (United States)

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere. PMID:24606251

  2. The DES Science Verification Weak Lensing Shear Catalogs

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, M. [Univ. of Pennsylvania, Philadelphia, PA (United States). et al.

    2015-07-20

    We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.

  3. MEMS-based shear characterization of soft hydrated samples

    Science.gov (United States)

    Higgs, Gadryn C.; Simmons, Chelsey S.; Gao, Yingning; Fried, Andrew T.; Park, Sung-Jin; Chung, Cindy; Pruitt, Beth L.

    2013-08-01

    We have designed, fabricated, calibrated and tested actuators for shear characterization to assess microscale shear properties of soft substrates. Here, we demonstrate characterization of dry silicone and hydrated polyethylene glycol. Microscale tools, including atomic force microscopes and nanoindenters, often have limited functionality in hydrated environments. While electrostatic comb-drive actuators are particularly susceptible to moisture damage, through chemical vapor deposition of hexamethyldisiloxane, we increase the hydrophobicity of our electrostatic devices to a water contact angle 90 ± 3°. With this technique, we determine the effective shear stiffness of both dry and hydrated samples for a range of soft substrates. Using computational and analytical models, we compare our empirically determined effective shear stiffness with existing characterization methods, rheology, and nanoindentation, for samples with shear moduli ranging from 5-320 kPa. This work introduces a new approach for microscale assessment of synthetic materials that can be used on biological materials for basic and applied biomaterials research.

  4. Probabilistic Cosmological Mass Mapping from Weak Lensing Shear

    CERN Document Server

    Schneider, Michael D; Dawson, William A; Marshall, Philip J; Meyers, Joshua; Bard, Deborah J

    2016-01-01

    We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a spatial process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear or Gaussian distributed shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we expect our algorithm to require parallel high-performance computing resources for application to ongoing wide field lensing surveys.

  5. Suppression of a kinematic dynamo by large shear

    CERN Document Server

    Sood, Aditi; Kim, Eun-jin

    2016-01-01

    We numerically solve the magnetic induction equation in a spherical shell geometry, with a kinematically prescribed axisymmetric flow that consists of a superposition of a small-scale helical flow and a large-scale shear flow. The small-scale flow is chosen to be a local analog of the classical Roberts cells, consisting of strongly helical vortex rolls. The large-scale flow is a shearing motion in either the radial or the latitudinal directions. In the absence of large-scale shear, the small-scale flow is an efficient dynamo, in agreement with previous results. Adding increasingly large shear flows strongly suppresses the dynamo efficiency, indicating that shear is not always a favourable ingredient in dynamo action.

  6. Weak gravitational shear and flexion with polar shapelets

    CERN Document Server

    Massey, R; Réfrégier, A; Berge, J; Massey, Richard; Rowe, Barnaby; Refregier, Alexandre; Berge, David J. Bacon & Joel

    2006-01-01

    We derive expressions, in terms of "polar shapelets", for the image distortion operations associated with weak gravitational lensing. Shear causes galaxy shapes to become elongated, and is sensitive to the second derivative of the projected gravitational potential; flexion bends galaxy shapes into arcs, and is sensitive to the third derivative. Polar shapelets provide a natural representation, in which both shear and flexion transformations appear compact. Through this tool, we understand progress in several weak lensing methods. We then exploit various symmetries of shapelets to construct a range of shear estimators with useful properties. Through an analogous investigation, we also explore several flexion estimators. In particular, some of the estimators can be measured simultaneously and independently for every galaxy, and will provide unique checks for systematics in future weak lensing analyses. Using simulated images from the Shear TEsting Programme (STEP), we show that we can recover input shears with ...

  7. The DES Science Verification Weak Lensing Shear Catalogs

    CERN Document Server

    Jarvis, M; Zuntz, J; Kacprzak, T; Bridle, S L; Amara, A; Armstrong, R; Becker, M R; Bernstein, G M; Bonnett, C; Chang, C; Das, R; Dietrich, J P; Drlica-Wagner, A; Eifler, T F; Gangkofner, C; Gruen, D; Hirsch, M; Huff, E M; Jain, B; Kent, S; MacCrann, N; Melchior, P; Plazas, A A; Refregier, A; Rowe, B; Rykoff, E S; Samuroff, S; Sánchez, C; Suchyta, E; Troxel, M A; Vikram, V; Abbott, T; Abdalla, F B; Allam, S; Annis, J; Benoit-Lévy, A; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Castander, F J; Crocce, M; Cunha, C E; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Doel, P; Neto, A Fausti; Flaugher, B; Fosalba, P; Frieman, J; Gaztanaga, E; Gerdes, D W; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Lima, M; March, M; Martini, P; Miquel, R; Mohr, J J; Neilsen, E; Nord, B; Ogando, R; Reil, K; Romer, A K; Roodman, A; Sako, M; Sanchez, E; Scarpine, V; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Walker, A R; Wechsler, R H

    2015-01-01

    We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.

  8. Effect of shear on failure waves in soda lime glass

    International Nuclear Information System (INIS)

    By means of in-material stress gauges, failure waves in shock-compressed soda lime glass have been shown to be distinguished by a marked reduction in shear stress. To explore further the relation between failure waves and shearing resistance, a series of pressure-shear impact experiments have been performed involving the impact of a glass plate by a steel flyer plate and vice versa. The latter configuration is designed to allow direct measurements of the shearing resistance of the failed material. In both configurations, the normal and transverse motion of the free surface of the target is monitored using laser interferometry. The transverse velocity-time profiles show a pronounced loss in shearing resistance of the glass at impact velocities above the threshold for failure waves to occur

  9. Triad resonance between gravity and vorticity waves in vertical shear

    Science.gov (United States)

    Drivas, Theodore D.; Wunsch, Scott

    2016-07-01

    Weakly nonlinear theory is used to explore the effect of vertical shear on surface gravity waves in three dimensions. An idealized piecewise-linear shear profile motivated by wind-driven profiles and ambient currents in the ocean is used. It is shown that shear may mediate weakly nonlinear resonant triad interactions between gravity and vorticity waves. The triad results in energy exchange between gravity waves of comparable wavelengths propagating in different directions. For realistic ocean shears, shear-mediated energy exchange may occur on timescales of minutes for shorter wavelengths, but slows as the wavelength increases. Hence this triad mechanism may contribute to the larger angular spreading (relative to wind direction) for shorter wind-waves observed in the oceans.

  10. Plastic response and correlations in athermally sheared amorphous solids

    Science.gov (United States)

    Puosi, F.; Rottler, J.; Barrat, J.-L.

    2016-09-01

    The onset of irreversible deformation in low-temperature amorphous solids is due to the accumulation of elementary events, consisting of spatially and temporally localized atomic rearrangements involving only a few tens of atoms. Recently, numerical and experimental work addressed the issue of spatiotemporal correlations between these plastic events. Here, we provide further insight into these correlations by investigating, via molecular dynamics (MD) simulations, the plastic response of a two-dimensional amorphous solid to artificially triggered local shear transformations. We show that while the plastic response is virtually absent in as-quenched configurations, it becomes apparent if a shear strain was previously imposed on the system. Plastic response has a fourfold symmetry, which is characteristic of the shear stress redistribution following the local transformation. At high shear rate we report evidence for a fluctuation-dissipation relation, connecting plastic response and correlation, which seems to break down if lower shear rates are considered.

  11. On acoustic wave generation in uniform shear flow

    Science.gov (United States)

    Gogoberidze, G.

    2016-07-01

    The linear dynamics of acoustic waves and vortices in uniform shear flow is studied. For flows with very low shear rates, the dynamics of perturbations is adiabatic and can be described by the WKB approximation. However, for flows with moderate and high shear rates the WKB approximation is not appropriate, and alternative analysis shows that two important phenomena occur: acoustic wave over-reflection and wave generation by vortices. The later phenomenon is a known linear mechanisms for sound generation in shear flows, a mechanism that is related to the continuous spectrum that arises in linear shear flow dynamics. A detailed analytical study of these phenomena is performed and the main quantitative and qualitative characteristics of the radiated acoustic field are obtained and analyzed.

  12. Shear strength of steel fiber-reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    Daniel de Lima Araújo

    2014-02-01

    Full Text Available This study analyzed the mechanical behavior of shear strength of steel fiber-reinforced concrete beams. Six beams subjected to shear loading were tested until failure. Additionally, prisms were tested to evaluate fiber contribution to the concrete shear strength. Steel fibers were straight, hook-ended,35 mmlong and aspect ratio equal to 65. Volumetric fractions used were 1.0 and 2.0%. The results demonstrated a great contribution from steel fibers to shear strength of reinforced concrete beams and to reduce crack width, which can reduce the amount of stirrups in reinforced concrete structures. Beam capacity was also evaluated by empirical equations, and it was found that these equations provided a high variability, while some of them have not properly predicted the ultimate shear strength of the steel fiber-reinforced concrete beams.

  13. A Laboratory Shear Cell Used for Simulation of Shear Strength and Asperity Degradation of Rough Rock Fractures

    Science.gov (United States)

    Asadi, M. S.; Rasouli, V.; Barla, G.

    2013-07-01

    Different failure modes during fracture shearing have been introduced including dilation, sliding, asperity cut-off and degradation. Several laboratory studies have reported the complexity of these failure modes during shear tests performed under either constant normal load (CNL) or constant normal stiffness (CNS) conditions. This paper is concerned with the mechanical behaviour of synthetic fractures during direct shear tests using a modified shear cell and related numerical simulation studies. The modifications made to an existing true triaxial stress cell (TTSC) in order to use it for performing shear tests under CNL conditions are presented. The large loading capacity and the use of accurate hydraulic pumps capable of applying a constant shear velocity are the main elements of this cell. Synthetic mortar specimens with different fracture surface geometries are tested to study the failure modes, including fracture sliding, asperity degradation, and to understand failure during shearing. A bonded particle model of the direct shear test with the PFC2D particle flow code is used to mimic the tests performed. The results of a number of tests are presented and compared with PFC2D simulations. The satisfactory results obtained both qualitatively and quantitatively are discussed.

  14. In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis

    Science.gov (United States)

    Helfenstein-Didier, C.; Andrade, R. J.; Brum, J.; Hug, F.; Tanter, M.; Nordez, A.; Gennisson, J.-L.

    2016-03-01

    The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N  =  10, p  SSI was always lower than C55 and the difference increased with the ankle dorsiflexion. However, shear modulus values provided by both methods were highly correlated (R  =  0.84), indicating that the conventional shear wave elastography technique (SSI technique) can be used to compare tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.

  15. Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue.

    Science.gov (United States)

    Schmidt, J L; Tweten, D J; Benegal, A N; Walker, C H; Portnoi, T E; Okamoto, R J; Garbow, J R; Bayly, P V

    2016-05-01

    Mechanical anisotropy is an important property of fibrous tissues; for example, the anisotropic mechanical properties of brain white matter may play a key role in the mechanics of traumatic brain injury (TBI). The simplest anisotropic material model for small deformations of soft tissue is a nearly incompressible, transversely isotropic (ITI) material characterized by three parameters: minimum shear modulus (µ), shear anisotropy (ϕ=µ1µ-1) and tensile anisotropy (ζ=E1E2-1). These parameters can be determined using magnetic resonance elastography (MRE) to visualize shear waves, if the angle between the shear-wave propagation direction and fiber direction is known. Most MRE studies assume isotropic material models with a single shear (µ) or tensile (E) modulus. In this study, two types of shear waves, "fast" and "slow", were analyzed for a given propagation direction to estimate anisotropic parameters µ, ϕ, and ζ in two fibrous soft materials: turkey breast ex vivo and aligned fibrin gels. As expected, the speed of slow shear waves depended on the angle between fiber direction and propagation direction. Fast shear waves were observed when the deformations due to wave motion induced stretch in the fiber direction. Finally, MRE estimates of anisotropic mechanical properties in turkey breast were compared to estimates from direct mechanical tests. PMID:26920505

  16. Experimental investigations into the shear behavior of self-compacting RC beams with and without shear reinforcement

    Directory of Open Access Journals (Sweden)

    Ammar N. HANOON

    2014-12-01

    Full Text Available Self-compacting concrete (SCC is a new generation of high-performance concrete, known for its excellent deformability and high resistance to segregation and bleeding. Nonetheless, SCC may be incapable of resisting shear because the shear resistance mechanisms of this concrete are uncertain, especially the aggregate interlock mechanism. This uncertainty is attributed to the fact that SCC contains a smaller amount of coarse aggregates than normal concrete (NC does. This study focuses on the shear strength of self-compacting reinforced concrete (RC beams with and without shear reinforcement. A total of 16 RC beam specimens was manufactured and tested in terms of shear span-to-depth ratio and flexural and shear reinforcement ratio. The test results were compared with those of the shear design equations developed by ACI, BS, CAN and NZ codes. Results show that an increase in web reinforcement enhanced cracking strength and ultimate load. Shear-tension failure was the control failure in all tested beams.

  17. Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell

    Energy Technology Data Exchange (ETDEWEB)

    Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout [Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The (Netherlands)

    2004-09-29

    We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked.

  18. COHERENT STRUCTURES IN COUNTERCURRENT AXISYMMETRIC SHEAR FLOWS

    Institute of Scientific and Technical Information of China (English)

    谢锡麟; 麻伟巍; 周慧良

    2003-01-01

    The dynamical behaviors of coherent structures in countercurrent axisymmetric shear flows are experimentally studied. The forward velocity U1 and the velocity ratio R = (U1 - U2)/(U1 +U2), where U2 denotes the suction velocity, are considered as the control parameters. Two kinds of vortex structures, i.e., axisymmetric and helical structures, were discovered with respect to different regimes in the R versus U1 diagram. In the case of U1 ranging from 3 to 20 m/s and R from 1 to 3, the axisymmetric structures play an important role. Based on the dynamical behaviors of axisymmetric structures, a critical forward velocity Ucr1 = 6.8 m/s was defined, subsequently, the subcritical velocity regime: U1 > Ucr1 and the supercritical velocity regime: U1 < Ucr1. In the subcritical velocity regime,the flow system contains shear layer self-excited oscillations in a certain range of the velocity ratio with respect to any forward velocity. In the supercritical velocity regime, the effect of the velocity ratio could be explained by the relative movement and the spatial evolution of the axisymmetric structure undergoes the following stages: (1) Kelvin-Helmholtz instability leading to vortex rolling up, (2) first time vortex agglomeration, (3) jet column self-excited oscillation, (4) shear layer self-excited oscillation,(5) "ordered tearing", (6) turbulence in the case of U1 < 4 m/s (the "ordered tearing" does not exist when U1 > 4m/s), correspondingly, the spatial evolution of the temporal asymptotic behavior of a dynamical system can be described as follows: (1) Hopf bifurcation, (2) subharmonic bifurcation, (3)reversed superharmonic bifurcation, (4) superharmonic bifurcation, (5) chaos ("weak turbulence") in the case of U1 < 4 m/s (superharmonic bifurcation does not exist when U1 > 4 m/s). The proposed new terms, superharmonic and reversed superharmonic bifurcations, are characterized of the frequency doubling rather than the period doubling. A kind of unfamiliar

  19. Shear friction capacity of recycled concretes

    Directory of Open Access Journals (Sweden)

    Eiras, J.

    2010-09-01

    Full Text Available The aim of this research was to determine the behavior of recycled concrete in response to the phenomenon of shear transfer. To perform it, a conventional control concrete and a concrete with 50% recycled coarse aggregate were designed. An additional goal was to shed light on how this behavior is modified with a pozzolanic addition, silica fume. Therefore, two types of concrete were designed, a conventional and a recycled concrete, both made with 8% of silica fume. In conclusion, a reduction of shear friction capacity was observed in recycled concretes, considerably higher in the case of the specimen without reinforcement. The addition of silica fume improved the behavior of recycled concretes. The results obtained were compared with the formulations of the different authors. In all cases, these were found to be conservative. However, the safety margins offered by recycled concretes are lower than those obtained with conventional concretes.

    En esta investigación se estudió el comportamiento de los hormigones reciclados frente al fenómeno de transmisión de cortante. Para ello se diseñó un hormigón convencional de control y un hormigón con el 50% del árido grueso reciclado. Adicionalmente, para determinar cómo este comportamiento se ve modificado con la incorporación de una adición puzolánica (humo de sílice, se procedió al diseño de un hormigón convencional y su correspondiente reciclado con un 8% de humo de sílice. Los resultados indicaron una disminución de la capacidad frente a este fenómeno en los hormigones reciclados, más acusada en ausencia de armadura pasante. La adición de humo de sílice mejora el comportamiento de este material. Los resultados experimentales obtenidos se compararon con formulaciones teóricas de diversos autores, concluyéndose que éstas son, en todos los casos, conservadoras, aunque reducen el margen de seguridad en los hormigones reciclados.

  20. Recrystallization fabrics of sheared quartz veins with a strong pre-existing crystallographic preferred orientation from a seismogenic shear zone

    Science.gov (United States)

    Price, Nancy A.; Song, Won Joon; Johnson, Scott E.; Gerbi, Christopher C.; Beane, Rachel J.; West, David P.

    2016-07-01

    Microstructural investigations were carried out on quartz veins in schist, protomylonite, and mylonite samples from an ancient seismogenic strike-slip shear zone (Sandhill Corner shear zone, Norumbega fault system, Maine, USA). We interpret complexities in the microstructural record to show that: (1) pre-existing crystallographic preferred orientations (CPO) in the host rock may persist in the new CPO patterns of the shear zone and (2) the inner and outer parts of the shear zone followed diverging paths of fabric development. The host rocks bounding the shear zone contain asymmetrically-folded quartz veins with a strong CPO. These veins are increasingly deformed and recrystallized with proximity to the shear zone core. Matrix-accommodated rotation and recrystallization may position an inherited c-axis maximum in an orientation coincident with rhomb or basal slip. This inherited CPO likely persists in the shear zone fabric as a higher concentration of poles in one hemisphere of the c-axis pole figure, leading to asymmetric crossed girdle or paired maxima c-axis patterns about the foliation plane. Three observed quartz grain types indicate a general trend of localization with decreasing temperature: (1) large (> 100 μm), low aspect ratio (<~5) and (2) high aspect ratio (~ 5-20) grains overprinted by (3) smaller (<~80 μm), low aspect ratio (<~4) grains through subgrain rotation-dominated recrystallization. In the outer shear zone, subgrain rotation recrystallization led to a well-developed c-axis crossed girdle pattern. In the inner shear zone, the larger grains are completely overprinted by smaller grains, but the CPO patterns are relatively poorly developed and are associated with distinctively different misorientation angle histogram profiles ("flat" neighbor-pair profile with similar number fraction for angles from 10 to 90°). This may reflect the preferential activation of grain size sensitive deformation processes in the inner-most part of the shear zone

  1. On the persistence of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Bassim M.N.

    2012-08-01

    Full Text Available It is generally agreed that the initiation and development of adiabatic shear bands (ASBs are manifestations of damage in metallic materials subjected to high strain rates and large strains as those due to impact in a Hopkinson Bar system. Models for evolution of these bands have been described in the literature. One question that has not received attention is how persistent these bands are and whether their presence and effect can be reversed or eliminated by using a process of thermal (heat treatment or thermo-mechanical treatment that would relieve the material from the high strain associated with ASBs and their role as precursors to crack initiation and subsequent failure. Since ASBs are more prevalent and more defined in BCC metals including steels, a study was conducted to investigate the best conditions of generating ASBs in a heat treatable steel, followed by determining the best conditions for heat treatment of specimens already damaged by the presence of ASBs in order to relieve the strains due to ASBs and restore the material to an apparent microstructure without the “scars” due to the previous presence of ASBs. It was found that heat treatment achieves the curing from ASBs. This presentation documents the process undertaken to achieve this objective.

  2. Shear alignment of lamellar mesophase systems

    Science.gov (United States)

    Jaju, S. J.; Kumaran, V.

    2015-11-01

    Mixtures of oil, water and surfactants form different microphases. Some of these phases, e.g. lamellar, hexagonal phases, lead to complex rheological behaviour at macroscale due to inherent anisotropy and irregularities in the microstructures. We present a comprehensive simulation study to examine the structure-rheology relationship in lamellar phase flow. At mesoscale, Reynolds number (Re), Schmidt number (Sc), Ericksen number (Er), extent of segregation between hydrophilic and hydrophobic components (r), ratio of viscosity of the two components (Δμ /μ0), and system size to layer width ratio (L / λ) complete the lamellar phase description. We have used lattice Boltzmann simulations to study a two dimensional lamellar phase system of moderate size. The domains and grain boundaries seen at low Sc are replaced by isolated edge dislocations at high Sc. The alignment mechanism does not change with changes in layer bending moduli (Er), viscosity contrast or r. Increasing segregation, increases disorder; this however does not lead to higher resistance to flow. At high Er, the shear tries homogenise the concentration field and disrupt layer formation. We see significantly higher peak viscosity at low Er at high viscosity contrast and due to defect pinning. The authors would like to thank the Department of Science and Technology, Government of India for financial support, and Supercomputer Education and Research Centre at Indian Institute of Science for the computational resources.

  3. Shear viscosity of a hadronic gas mixture

    CERN Document Server

    Itakura, Kazunori; Otomo, Hiroshi

    2007-01-01

    We discuss in detail the shear viscosity coefficient eta and the viscosity to entropy density ratio eta/s of a hadronic gas comprised of pions and nucleons. In particular, we study the effects of baryon chemical potential on eta and eta/s. We solve the relativistic quantum Boltzmann equations with binary collisions (pi pi, pi N, and NN) for a state slightly deviated from thermal equilibrium at temperature T and baryon chemical potential mu. The use of phenomenological amplitudes in the collision terms, which are constructed to reproduce experimental data, greatly helps to extend the validity region in the T-mu plane. The total viscosity coefficient eta(T,mu)=eta^pi + eta^N increases as a function of T and mu, indirectly reflecting energy dependences of binary cross sections. The increase in mu direction is due to enhancement of the nucleon contribution eta^N while the pion contribution eta^pi diminishes with increasing mu. On the other hand, due to rapid growth of entropy density, the ratio eta/s becomes a de...

  4. Shearing Wind Helicity and Thermal Wind Helicity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Helicity is defined as H=V.ω, where V and ω are the velocity and vorticity vectors, respectively.Many works have pointed out that the larger the helicity is, the longer the life cycle of the weather system is. However, the direct relationship of the helicity to the evolution of the weather system is not quite clear. In this paper, the concept of helicity is generalized as shearing wind helicity (SWH). Dynamically,it is found that the average SWH is directly related to the increase of the average cyclonic rotation of the weather system. Physically, it is also pointed out that the SWH, as a matter of fact, is the sum of the torsion terms and the divergence term in the vorticity equation. Thermal wind helicity (TWH), as a derivative of SWH, is also discussed here because it links the temperature field and the vertical wind field. These two quantities may be effective for diagnosing a weather system. This paper applies these two quantities in cylindrical coordinates to study the development of Hurricane Andrew to validate their practical use. Through analyzing the hurricane, it is found that TWH can well describe the characteristics of the hurricane such as the strong convection and release of latent heat. SWH is not only a good quantity for diagnosing the weather system, but also an effective one for diagnosing the development of the hurricane.

  5. Symmetry related dynamics in parallel shear flows

    CERN Document Server

    Kreilos, Tobias

    2013-01-01

    Parallel shear flows come with continuous symmetries of translation in the downstream and spanwise direction. Flow states that differ in their spanwise or downstream location but are otherwise identical are dynamically equivalent. In the case of travelling waves, this trivial degree of freedom can be removed by going to a frame of reference that moves with the state, thereby turning the travelling wave in the laboratory frame to a fixed point in the co-moving frame of reference. Further exploration of the symmetry suggests a general method by which the translational displacements can be removed also for more complicated and dynamically active states. We will describe the method and discuss its relation to general symmetry reductions and to the Taylor frozen flow hypothesis. We will demonstrate the method for the case of the asymptotic suction boundary layer. When applied to the oscillatory edge state with its long period, the method allows to find local phase speeds which remove the fast oscillations so that ...

  6. Electromagnetic effects in the stabilization of turbulence by sheared flow

    Science.gov (United States)

    Cole, M. D. J.; Newton, S. L.; Cowley, S. C.; Loureiro, N. F.; Dickinson, D.; Roach, C.; Connor, J. W.

    2014-01-01

    We have extended our study of the competition between the drive and stabilization of plasma microinstabilities by sheared flow to include electromagnetic effects at low plasma β (the ratio of plasma to magnetic pressure). The extended system of characteristic equations is formulated, for a dissipative fluid model developed from the gyrokinetic equation, using a twisting mode representation in sheared slab geometry and focusing on the ion temperature gradient mode. Perpendicular flow shear convects perturbations along the field at the speed we denote as Mcs (where cs is the sound speed). M \\gt 1/ \\sqrt{\\beta} is required to make the system characteristics unidirectional and inhibit eigenmode formation, leaving only transitory perturbations in the system. This typically represents a much larger flow shear than in the electrostatic case, which only needs M > 1. Numerical investigation of the region M \\lt 1/\\sqrt{\\beta} shows the driving terms can conflict, as in the electrostatic case, giving low growth rates over a range of parameters. Also, at modest drive strengths and low β values typical of experiments, including electromagnetic effects does not significantly alter the growth rates. For stronger flow shear and higher β, geometry characteristic of the spherical tokamak mitigates the effect of an instability of the shear Alfvén wave, driven by the parallel flow shear.

  7. Numerical experiments on dynamo action in sheared and rotating turbulence

    CERN Document Server

    Yousef, T A; Rincon, F; Schekochihin, A A; Kleeorin, N; Rogachevskii, I; Cowley, S C; McWilliams, J C

    2008-01-01

    Numerical simulations of forced turbulence in elongated shearing boxes are carried out to demonstrate that a nonhelical turbulence in conjunction with a linear shear can give rise to a mean-field dynamo. Exponential growth of magnetic field at scales larger than the outer (forcing) scale of the turbulence is found. Over a range of values of the shearing rate S spanning approximately two orders of magnitude, the growth rate of the magnetic field is proportional to the imposed shear, gamma ~ S, while the characteristic spatial scale of the field is l_b ~ S^(-1/2). The effect is quite general: earlier results for the nonrotating case by Yousef et al. 2008 (PRL 100, 184501) are extended to shearing boxes with Keplerian rotation; it is also shown that the shear dynamo mechanism operates both below and above the threshold for the fluctuation dynamo. The apparently generic nature of the shear dynamo effect makes it an attractive object of study for the purpose of understanding thegeneration of magnetic fields in ast...

  8. Depth Dependence of Shear Properties in Articular Cartilage

    Science.gov (United States)

    Buckley, Mark; Gleghorn, Jason; Bonassar, Lawrence; Cohen, Itai

    2007-03-01

    Articular cartilage is a highly complex and heterogeneous material in its structure, composition and mechanical behavior. Understanding these spatial variations is a critical step in designing replacement tissue and developing methods to diagnose and treat tissue affected by damage or disease. Existing techniques in particle image velocimetry (PIV) have been used to map the shear properties of complex materials; however, these methods have yet to be applied to understanding shear behavior in cartilage. In this talk, we will show that confocal microscopy in conjunction with PIV techniques can be used to determine the depth dependence of the shear properties of articular cartilage. We will show that the shear modulus of this tissue varies by over an order of magnitude over its depth, with the least stiff region located about 200 microns from the surface. Furthermore, our data indicate that the shear strain profile of articular cartilage is sensitive to both the degree of compression and the total applied shear strain. In particular, we find that cartilage strain stiffens most dramatically in a region 200-500 microns below the surface. Finally, we will describe a physical model that accounts for this behavior by taking into account the local buckling of collagen fibers just below the cartilage surface and present second harmonic generation (SHG) imaging data addressing the collagen orientation before and after shear.

  9. Variable-amplitude oscillatory shear response of amorphous materials

    Science.gov (United States)

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  10. Quasi phase transition model of shear bands in metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zengqian [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Ran, E-mail: liran@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang Gang [Department of Materials Science and Engineering, Shanghai University, Shanghai (China); Wu Sujun; Lu Xuyang [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Zhang Tao, E-mail: zhangtao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance, School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2011-11-15

    A quasi phase transition model of shear bands in metallic glasses (MGs) is presented from the thermodynamic viewpoint. Energy changes during shear banding in a sample-machine system are analyzed following fundamental energy theorems. Three characteristic parameters, i.e. the critical initiation energy {Delta}G{sub c}, the shear band stability index k{sub 0}, and the critical shear band length l{sub c}, are derived to elucidate the initiation and propagation of shear bands. The criteria for good plasticity in MGs with predominant thermodynamic arrest of shear bands are proposed as low {Delta}G{sub c}, large k{sub 0}, and small l{sub c}. The model, combined with experimental results, is used to analyze some controversial phenomena of deformation behavior in MGs, such as the size effect, the effect of testing machine stiffness and the relationship between elastic modulus and plasticity. This study has important implications for a fundamental understanding of shear banding as well as deformation mechanisms in MGs and provides a theoretical basis for improving the ductility of MGs.

  11. Polar Mohr diagram method and its application in calculating the shear displacements of general shear zones with volume loss--With the Sangshuyuanzi ductile shear zone as an example

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The main problem,in determining the shear displacement of a general shear zone with volume change using the available formula,is that it is hard to know the initial angle between the planes (or lines) in the plane of shear.A planar deformation analysis of this kind of ductile shear zone is carried out with the polar Mohr diagram.If the volume change is induced by homogeneous contraction in the Z direction of the shear zone,there are sufficient conditions for constructing a polar Mohr diagram regardless of sequence of the simple shear and volume change.Therefore,the angle between a line and the shear direction before and after the deformation can be measured.Making use of these lines the shear strain and the volume change can be calculated and the shear displacement can be determined.

  12. Polar Mohr diagram method and its application in calculating the shear displacements of general shear zones with volume loss——With the Sangshuyuanzi ductile shear zone as an example

    Institute of Scientific and Technical Information of China (English)

    李海; 郭召杰; 刘瑞洵; 刘树文; 张志诚

    2000-01-01

    The main problem, in determining the shear displacement of a general shear zone with volume change using the available formula, is that it is hard to know the initial angle between the planes (or lines) in the plane of shear. A planar deformation analysis of this kind of ductile shear zone is carried out with the polar Mohr diagram. If the volume change is induced by homogeneous contraction in the Z direction of the shear zone, there are sufficient conditions for constructing a polar Mohr diagram regardless of sequence of the simple shear and volume change. Therefore, the angle between a line and the shear direction before and after the deformation can be measured. Making use of these lines the shear strain and the volume change can be calculated and the shear displacement can be determined.

  13. In vivo wall shear measurements within the developing zebrafish heart.

    Directory of Open Access Journals (Sweden)

    R Aidan Jamison

    Full Text Available Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  14. Wall shear stress in intracranial aneurysms and adjacent arteries

    Institute of Scientific and Technical Information of China (English)

    Fuyu Wang; Bainan Xu; Zhenghui Sun; Chen Wu; Xiaojun Zhang

    2013-01-01

    Hemodynamic parameters play an important role in aneurysm formation and growth. However, it is difficult to directly observe a rapidly growing de novo aneurysm in a patient. To investigate possible associations between hemodynamic parameters and the formation and growth of intracranial aneurysms, the present study constructed a computational model of a case with an internal carotid artery aneurysm and an anterior communicating artery aneurysm, based on the CT angiography findings of a patient. To simulate the formation of the anterior communicating artery aneurysm and the growth of the internal carotid artery aneurysm, we then constructed a model that virtually removed the anterior communicating artery aneurysm, and a further two models that also progressively decreased the size of the internal carotid artery aneurysm. Computational simulations of the fluid dynamics of the four models were performed under pulsatile flow conditions, and wall shear stress was compared among the different models. In the three aneurysm growth models, increasing size of the aneurysm was associated with an increased area of low wall shear stress, a significant decrease in wall shear stress at the dome of the aneurysm, and a significant change in the wall shear stress of the parent artery. The wall shear stress of the anterior communicating artery remained low, and was significantly lower than the wall shear stress at the bifurcation of the internal carotid artery or the bifurcation of the middle cerebral artery. After formation of the anterior communicating artery aneurysm, the wall shear stress at the dome of the internal carotid artery aneurysm increased significantly, and the wall shear stress in the upstream arteries also changed significantly. These findings indicate that low wall shear stress may be associated with the initiation and growth of aneurysms, and that aneurysm formation and growth may influence hemodynamic parameters in the local and adjacent arteries.

  15. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.

    Directory of Open Access Journals (Sweden)

    Melissa Li

    Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.

  16. High-Frequency Shear Viscosity of Low-Viscosity Liquids

    Science.gov (United States)

    Kaatze, U.; Behrends, R.

    2014-11-01

    A thickness shear quartz resonator technique is described to measure the shear viscosity of low-viscosity liquids in the frequency range from 6 MHz to 130 MHz. Examples of shear-viscosity spectra in that frequency range are presented to show that various molecular processes are accompanied by shear-viscosity relaxation. Among these processes are conformational variations of alkyl chains, with relaxation times of about 0.3 ns for -pentadecane and -hexadecane at 25 C. These variations can be well represented in terms of a torsional oscillator model. Also featured briefly are shear-viscosity relaxations associated with fluctuations of hydrogen-bonded clusters in alcohols, for which values between 0.3 ns (-hexanol) and 1.5 ns (-dodecanol) have been found at 25 C. In addition, the special suitability of high-frequency shear-viscosity spectroscopy to the study of critically demixing mixtures is demonstrated by some illustrative examples. Due to slowing, critical fluctuations do not contribute to the shear viscosity at sufficiently high frequencies of measurements so that the non-critical background viscosity of critical systems can be directly determined from high-frequency shear-viscosity spectroscopy. Relaxations in appear also in the shear-viscosity spectra with, for example, 2 ns for the critical triethylamine-water binary mixture at temperatures between 10 C and 18 C. Such relaxations noticeably influence the relaxation rate of order parameter fluctuations. They may be also the reason for the need of a special mesoscopic viscosity when mutual diffusion coefficients of critical polymer solutions are discussed in terms of mode-coupling theory.

  17. Simple shear experiments on magnetized wax-hematite samples

    Science.gov (United States)

    Cogné, Jean-Pascal; Canot-Laurent, Sandrine

    1992-08-01

    We present the results of a series of simple shear experiments on hematite-bearing paraffin wax samples. Homogeneous and continuous deformation was obtained up to a shear strain value of γ = 1.4, by deforming the samples in a temperature-controlled bath, and at a constant strain rate of 9 × 10-5 s-1. During deformation, henatite platelets progressively rotate, which has been checked by measuring the anisotropy of magnetic susceptibility (AMS). Pricipal susceptibility directions tend to paralled the corresponding principal strain directions, and AMS instensity increases with increasing strain. This supports the idea that the hematite population develops a preferred orientation by progressive rigid rotation within the paraffin matrix. Before each deformation step, an isothermal remanent magnetization (IRM) was given to the samples, within the λ1λ3 finite strain plane (the plane containing the shear direction, and normal to the shear plane), with various initial angles to the shear direction ranging from 0° to 180°. After each deformation step, the IRM was measured. I showed no deflection towards the λ2 finite strain direction. In contrast, it did show a systematic rotation within the λ1λ3 plane, always in the same sense as the rotation of strain axes (e.g. counterclockwise in sinistral shear). Furthermore, IRM deviation is of the same order of magnitude for each initial direction from 0° to 180°. This contradicts the passive model that has previously been shown to hold for IRM in coaxially deformed samples. Finally, we show that, in the shear strain range of out experiments (γ = 0 to 1.4), the deviation of IRM depends only on the shear value, and not on its initial direction, and that this deviation is equal to the rigid rotation angle of the shear strain tensor.

  18. Profile control studies for JET optimised shear regime

    International Nuclear Information System (INIS)

    This report summarises the profile control studies, i.e. preparation and analysis of JET Optimised Shear plasmas, carried out during the year 1999 within the framework of the Task-Agreement (RF/CEA/02) between JET and the Association Euratom-CEA/Cadarache. We report on our participation in the preparation of the JET Optimised Shear experiments together with their comprehensive analyses and the modelling. Emphasis is put on the various aspects of pressure profile control (core and edge pressure) together with detailed studies of current profile control by non-inductive means, in the prospects of achieving steady, high performance, Optimised Shear plasmas. (authors)

  19. Profile control studies for JET optimised shear regime

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X.; Becoulet, A.; Eriksson, L.G.; Fuchs, V.; Huysmans, G.; How, J.; Moreau, D.; Rochard, F.; Tresset, G.; Zwingmann, W. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint-Paul-lez-Durance (France); Bayetti, P.; Joffrin, E.; Maget, P.; Mayorat, M.L.; Mazon, D.; Sarazin, Y. [JET Abingdon, Oxfordshire (United Kingdom); Voitsekhovitch, I. [Universite de Provence, LPIIM, Aix-Marseille 1, 13 (France)

    2000-03-01

    This report summarises the profile control studies, i.e. preparation and analysis of JET Optimised Shear plasmas, carried out during the year 1999 within the framework of the Task-Agreement (RF/CEA/02) between JET and the Association Euratom-CEA/Cadarache. We report on our participation in the preparation of the JET Optimised Shear experiments together with their comprehensive analyses and the modelling. Emphasis is put on the various aspects of pressure profile control (core and edge pressure) together with detailed studies of current profile control by non-inductive means, in the prospects of achieving steady, high performance, Optimised Shear plasmas. (authors)

  20. Coherent structures in compressible free-shear-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center

    1997-08-01

    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  1. Shear waves in vegetal tissues at ultrasonic frequencies

    Science.gov (United States)

    Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J. J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T. E.

    2013-03-01

    Shear waves are investigated in leaves of two plant species using air-coupled ultrasound. Magnitude and phase spectra of the transmission coefficient around the first two orders of the thickness resonances (normal and oblique incidence) have been measured. A bilayer acoustic model for plant leaves (comprising the palisade parenchyma and the spongy mesophyll) is proposed to extract, from measured spectra, properties of these tissues like: velocity and attenuation of longitudinal and shear waves and hence Young modulus, rigidity modulus, and Poisson's ratio. Elastic moduli values are typical of cellular solids and both, shear and longitudinal waves exhibit classical viscoelastic losses. Influence of leaf water content is also analyzed.

  2. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)

    2011-01-01

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  3. Shear waves in a fluid saturated elastic plate

    Indian Academy of Sciences (India)

    A Pradhan; S K Samal; N C Mahanti

    2002-12-01

    In the present context, we consider the propagation of shear waves in the transverse isotropic fluid saturated porous plate. The frequency spectrum for SH-modes in the plate has been studied. It is observed that the frequency of the propagation is damped due to the two-phase character of the porous medium. The dimensionless phase velocities of the shear waves have also been calculated and presented graphically. It is interesting to note that the frequency and phase velocity of shear waves in porous media differ significantly in comparison to that in isotropic elastic media.

  4. A shear stabilized biaxial texture in a lamellar block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Polis, D.L.; Pinheiro, B.S.; Winey, K.I.; Lakis, R.E. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1996-12-31

    Block copolymers spontaneously self-assemble into a variety of morphologies. Recent studies have produced a biaxial texture in poly(styrene-b-ethylene propylene), SEP, diblock copolymers by applying oscillatory shear. This biaxial texture consists of {open_quotes}parallel{close_quotes} lamellae (normal to lamellae aligned perpendicular to shearing surfaces) and {open_quotes}transverse{close_quotes} lamellae (normal to lamellae aligned parallel to shearing direction) according to small-angle X-ray scattering, SAXS. The present study has determined how these two populations of lamellae are arranged and how they relax upon quiescent annealing by examining the superstructure via FE-SEM.

  5. Performance testing of a Savonius windmill rotor in shear flows

    Science.gov (United States)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteady behavior on the power generation capability of a Savonius wind turbine rotor are assessed in view of measurements conducted, both in two statistically steady shear flows and in the wind, of rotor tip speed and torque at a number of streamwise stations for each of four values of the rotor bucket overlap ratio. It is found that, even in the absence of shear, the power coefficient of a Savonius wind turbine rotor is most strongly dependent on tip speed ratio.

  6. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.

    2008-11-17

    We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.

  7. Testing of Undrained Shear Strength in a Hollow Cylinder Apparatus

    Directory of Open Access Journals (Sweden)

    Wrzesiński Grzegorz

    2015-06-01

    Full Text Available The paper presents the results of tests performed in a Torsional Shear Hollow Cylinder Apparatus on undisturbed cohesive soils. The tests were performed on lightly overconsolidated clay (Cl and sandy silty clay (sasiCl. The main objective of the tests was to determine the undrained shear strength at different angles of rotation of the principal stress directions. The results of laboratory tests allow assessing the influence of rotation of the principal stress directions on the value of undrained shear strength that should be used during designing structure foundations

  8. Shear viscosities of photons in strongly coupled plasmas

    Science.gov (United States)

    Yang, Di-Lun; Müller, Berndt

    2016-09-01

    We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N = 4 super Yang-Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon-parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  9. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    International Nuclear Information System (INIS)

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm2. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  10. Suppression of a kinematic dynamo by large shear

    OpenAIRE

    Sood, Aditi; Hollerbach, Rainer; Kim, Eun-Jin

    2016-01-01

    We numerically solve the magnetic induction equation in a spherical shell geometry, with a kinematically prescribed axisymmetric flow that consists of a superposition of a small-scale helical flow and a large-scale shear flow. The small-scale flow is chosen to be a local analog of the classical Roberts cells, consisting of strongly helical vortex rolls. The large-scale flow is a shearing motion in either the radial or the latitudinal directions. In the absence of large-scale shear, the small-...

  11. Self-shearing retentive pins: a laboratory evaluation of pin channel penetration before shearing.

    Science.gov (United States)

    Barkmeier, W W; Cooley, R L

    1979-09-01

    This laboratory study determined the depth reached by self-shearing pins in dentin pin channels. Pin channels were prepared with the self-limiting shoulder twist drill for each of the four systems tested. Mean channel depth reached for the various pin systems was: Stabilok (small), 2.31 mm; Stabilok (medium), 1.78 mm; Reten Pin, 1.40 mm; and TMS (Regular), 2.04 mm. A coparison was also made by calculating the mean percent of penetration in relation to the depth of prepared pin channel: Stabilok (small), 92.50%; Stabilok (medium), 63.62%; Reten Pin, 66.67%; and TMS (Regular) 81.75%.

  12. Shear bands in a bulk metallic glass after large plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Qu, D.D.; Wang, Y.B.; Liao, X.Z.; Shen, J. (Harbin); (Sydney)

    2012-10-23

    A transmission electron microscopy investigation is conducted to trace shear bands in a Zr{sub 53}Cu{sub 18.7}Ni{sub 12}Al{sub 16.3} bulk metallic glass after experiencing 4% plastic deformation. Shear band initiation, secondary shear band interactions, mature shear band broadening and the interactions of shear bands with shear-induced nanocrystals are captured. Results suggest that the plasticity of the bulk metallic glass is enhanced by complex shear bands and their interactions which accommodate large plastic strain and prevent catastrophic shear band propagation.

  13. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    International Nuclear Information System (INIS)

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization

  14. Computations of supersonic flows: Shears, shocks, and detonations

    International Nuclear Information System (INIS)

    This paper describes some of the basic features of and physical mechanisms controlling two types of supersonic flows: detonations and supersonic shear layers. Gas-phase detonations are supersonic flows in which a leading shock is driven through an energetic material by local energy release. The material behind the leading shock front of a detonation is highly disturbed and contains many interacting shocks, shears layers, and reaction zones that produce cell-like patterns on the chamber containing the flow. Supersonic shear layers often are extremely irregular and noisy and show strong interactions between shocks and vortical structures. This paper first discusses the roll of shocks in suppressing mixing and vortex merging in shear flows, and then discusses the effects of shock interactions on pattern formation and vorticity generation behind propagating detonations

  15. Shear-wave splitting of Sichuan Regional Seismic Network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-jiu; GAO Yuan; SHI Yu-tao; CHENG Wan-zheng

    2008-01-01

    Using seismic data recorded by the Chengdu Digital Seismic Network from May 1, 2000 to December 31, 2006, we obtain the dominant polarization directions of fast shear-waves at eight digital seismic stations adopting the SAM technique. The results show that the dominant directions of polarizations of fast shear-waves at most of sta- tions are mainly in nearly NE,-SW or NW-SE direction in Sichuan. The dominant polarization directions of the fast shear-waves at stations located at the active faults or intersection of several active faults are consistent with the strikes of active faults which control the earthquakes used in the analysis, and are basically consistent with the directions of regional compression axis. However, several stations show that the fast shear-waves are not consis- tent with the strikes of active faults and the directions of regional compression axis, due to the influence of local complicated crustal structure.

  16. Modification of premixed combustion in shear layers by grid turbulence

    Institute of Scientific and Technical Information of China (English)

    MU Kejin; WANG Yue; ZHANG Zhedian; NIE Chaoqun

    2007-01-01

    The influence of grid turbulence on the shear layer of a jet and the premixed flames embedded in it was investigated in the present study. The velocity field of the jet was measured by using hot-wire anemometry. It was found that grid turbulence reduced turbulence intensities in the shear layer and suppressed low frcquency fluctuation. Moreover, the energy contained in small-scale fluctuation was increased and turbulence became homogeneous. The results indicate that grid turbulence inhibits the formation of a large-scale coherent structure in the shear layer. Flame temperature was measured by using a compensated free-wire thermocouple. It was found that grid turbulence reduced low frequency fluctuation of thc flame fronts, increased the small-scale wrinkles and elevated the mean temperature of the flame zone. The results show that grid turbulence can enhance and stabilize premixed flames in shear flow.

  17. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    A new code demonstrates the stabilization of MHD ballooning modes by sheared toroidal rotation. A shifted-circle model is used to elucidate the physics, and numerically reconstructed equilibria are used to analyze DIII-D discharges. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and, in the shifted circle model, direct stable access to the second stability regime occurs when this frequency is a fraction of the Alfven frequency, ωA = VA/qR. Shear stabilization is also demonstrated for an equilibrium reconstruction of a DIII-D VH-mode. (author). 9 refs, 3 figs

  18. Shear-stress sensitive lenticular vesicles for targeted drug delivery

    Science.gov (United States)

    Holme, Margaret N.; Fedotenko, Illya A.; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas

    2012-08-01

    Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.

  19. Self-assembly of Janus particles under shear.

    Science.gov (United States)

    Nikoubashman, Arash; Bianchi, Emanuela; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-05-21

    We investigate the self-assembly of colloidal Janus particles under shear flow by employing hybrid molecular dynamics simulations that explicitly take into account hydrodynamic interactions. Under quiescent conditions, the amphiphilic colloids form spherical micellar aggregates of different sizes, where the solvophobic hemispheres are directed towards the core and the solvophilic caps are exposed to the solvent. When sufficiently strong shear is applied, the micelles disaggregate with a consequent decay of the average cluster size. Nonetheless, we find an intermediate shear rate regime where the balance between rearrangement and dissociation favors the growth of the aggregates. Additionally, our simulations show that clusters composed of either 6 or 13 particles are the most stable towards the shear flow due to their high geometric symmetry. Our findings open up a new range of applications for Janus particles, ranging from biotechnology to sensor systems.

  20. Prediction of residual shear strength of corroded reinforced concrete beams

    Science.gov (United States)

    Imam, Ashhad; Azad, Abul Kalam

    2016-09-01

    With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and four un-corroded beams are presented. Corrosion damage was induced by accelerated corrosion induction through impressed current. Test results show that loss of shear strength of beams is mostly attributable to two important damage factors namely, the reduction in stirrups area due to corrosion and the corrosion-induced cracking of concrete cover to stirrups. Based on the test data, a method is proposed to predict the residual shear strength of corroded reinforced concrete beams in which residual shear strength is calculated first by using corrosion-reduced steel area alone, and then it is reduced by a proposed reduction factor, which collectively represents all other applicable corrosion damage factors. The method seems to yield results that are in reasonable agreement with the available test data.

  1. Tokamak resistive magnetohydrodynamic ballooning instability in the negative shear regime

    Institute of Scientific and Technical Information of China (English)

    Shi Bing-Ren; Lin Jian-Long; Li Ji-Quan

    2007-01-01

    Improved confinement of tokamak plasma with central negative shear is checked against the resistive ballooning mode. In the negative shear regime, the plasma is always unstable for purely growing resistive ballooning mode. For a simplest tokamak equilibrium model, the s-α model, characteristics of this kind of instability are fully clarified by numerically solving the high n resistive magnetohydrodynamic ballooning eigen-equation. Dependences of the growth rate on the resistivity, the absolute shear value, the pressure gradient are scanned in detail. It is found that the growth rate is a monotonically increasing function of a while it is not sensitive to the changes of the shear s, the initial phase θ0 and the resistivity parameter εR.

  2. Large-scale ordering of nanoparticles using viscoelastic shear processing

    Science.gov (United States)

    Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.

    2016-06-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.

  3. Segregation by thermal diffusion in granular shear flows

    International Nuclear Information System (INIS)

    Segregation by thermal diffusion of an intruder immersed in a sheared granular gas is analyzed from the (inelastic) Boltzmann equation. Segregation is induced by the presence of a temperature gradient orthogonal to the shear flow plane and parallel to gravity. We show that, like in analogous systems without shear, the segregation criterion yields a transition between upwards segregation and downwards segregation. The form of the phase diagrams is illustrated in detail showing that they depend sensitively on the value of gravity relative to the thermal gradient. Two specific situations are considered: (i) absence of gravity and (ii) homogeneous temperature. We find that both mechanisms (upwards and downwards segregation) are stronger and more clearly separated when compared with segregation criteria in systems without shear

  4. Digital speckle pattern shearing interferometry: Limitations and prospects

    DEFF Research Database (Denmark)

    Owner-Petersen, Mette

    1996-01-01

    requires optical processing of double exposed interferograms. Hence the technique is not in real time. This paper explores the possibilities and limitations for real time shearing fringe observation using the electronic speckle pattern interferometry technique. Prospects for quantitative determination...

  5. Shear viscosity relaxation of a critical binary liquid.

    Science.gov (United States)

    Behrends, Ralph; Kaatze, Udo

    2003-07-01

    Two series of diffusion coefficients D are reported for the triethylamine-water binary critical mixture. One has been obtained from quasielastic light scattering measurements, the other one has been derived from broadband ultrasonic spectra, yielding the relaxation rate of order parameter fluctuations, and shear viscosity data. Using high frequency shear impedance spectrometry in the range 20-130 MHz, relaxations in the background part of the viscosity, resulting in viscoelastic mixture properties, have been found. Both series of D data agree either if a half-attenuation frequency distinctly smaller than the theoretical value Omega(1/2)=2.1 is used in the Bhattacharjee-Ferrell scaling function or if the viscosity extrapolated from the shear impedance measurements to low frequencies is applied to the Kawasaki-Ferrell relation. This extrapolated viscosity is smaller than the static shear viscosity measured with capillary viscosimeters. PMID:12935130

  6. Experimental study on concrete shear wall behavior under seismic loading

    International Nuclear Information System (INIS)

    An experimental program has been undertaken on the dynamic behavior of shear walls with and without openings. The experimental set-up, the test program and the main results will be detailed in the paper

  7. On the behaviour of gelled fibre suspensions in steady shear

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Bettina [Unilever Corporate Research, Bedford (United Kingdom); University of Nottingham, Division of Food Sciences, Loughborough (United Kingdom); White, Duncan; Melrose, John R.; Frith, William J. [Unilever Corporate Research, Bedford (United Kingdom)

    2007-03-15

    The shear rheological properties of suspensions of gelled agar fibres in a low viscosity Newtonian matrix fluid were investigated. Two classes of fibres, low aspect ratio fibres and high aspect ratio fibres with an aspect ratio of the order of 10 and 100 respectively were included in the investigations. For all fibre phase volumes investigated, from as low as 0.01 upwards, the flow curves are characterised by an apparent yield stress followed by shear-thinning which was independent of the fibre aspect ratio. Based on our analysis of the flow curves, we conclude that the high aspect ratio fibres behave like flexible threads in contrast to the low aspect ratio fibres whose high shear relative viscosity is successfully described by a relation for long rigid rods. These findings are supported by flow visualisation using an optical shearing stage coupled to a light microscope. (orig.)

  8. Extending the LCDM model through shear-free anisotropies

    CERN Document Server

    Pereira, Thiago S

    2016-01-01

    If the spacetime metric has anisotropic spatial curvature, one can afford to expand the universe isotropically, provided that the energy-momentum tensor satisfy a certain con- straint. This leads to the so-called shear-free metrics, which have the interesting property of violating the cosmological principle while still preserving the isotropy of the cosmic mi- crowave background (CMB) radiation. In this work we show that shear-free cosmologies correspond to an attractor solution in the space of models with anisotropic spatial curva- ture. Through a rigorous definition of linear perturbation theory in these spacetimes, we show that shear-free models represent a viable alternative to describe the large-scale evo- lution of the universe, leading, in particular, to a kinematically equivalent Sachs-Wolfe effect. Alternatively, we discuss some specific signatures that shear-free models would imprint on the temperature spectrum of CMB.

  9. Shear Zone Development and Rheology in the Deep Orogenic Crust

    Science.gov (United States)

    Marsh, J. H.; Johnson, S. E.; Gerbi, C. C.; Culshaw, N. G.

    2008-12-01

    Within the Central Gneiss Belt (CGB) of the southwestern Grenville Province, Ontario, Canada, a number of allocthonous lithotectonic domains are juxtaposed along crustal-scale shear zones. Extensive exposure of variably reworked granulites of the interior Parry Sound domain (iPSD) has enabled investigation of the structural and petrologic character of domain-bounding shear zones within the deep orogenic crust. Recent detailed mapping and structural data collected along the southwestern margin of the iPSD is consistent with the suggestion of Culshaw et al. (in prep) that spaced outcrop-scale shear zones have coalesced and progressively reworked layered granulites into a transposed amphibolite-facies tectonite. The tectonites comprise the Twelve Mile Bay Shear Zone (TMBSZ), which separates the iPSD from para-autocthonous rocks to the south. This study investigates the grain- and outcrop-scale mechanisms involved in shear zone development and attempts to quantify the associated changes in rock rheology. Northwest of TMBSZ, samples collected across individual outcrop-scale shear zones (i.e., across large strain gradients) have distinct differences in mineralogy and microstructure. In mafic layers the original granulite texture and cpx + opx + pl + hbl +/- grt assemblage is commonly retained away from the shear zones within unsheared "panels". With proximity to the shear zones pyroxenes and garnet are progressively consumed in hydration reactions producing hornblende and biotite, which define a new planar foliation within the highly attenuated and deflected layering. Felsic layers generally have only minor mineralogical changes across the zones, but develop an increasingly intense and recrystallized structural fabric into the sheared margin. The shear zones are commonly cored by variably deformed pegmatite dikes that were emplaced prior to, or during the early stages of shearing. Evidence for incipient shear zone formation along mineralized fracture sets that cut

  10. Electromagnetic effects in the stabilization of turbulence by sheared flow

    CERN Document Server

    Cole, M D J; Cowley, S C; Loureiro, N F; Dickinson, D; Roach, C; Connor, J W

    2013-01-01

    We have extended our study of the competition between the drive and stabilization of plasma microinstabilities by sheared flow to include electromagnetic effects at low plasma $\\beta$ (the ratio of plasma to magnetic pressure). The extended system of characteristic equations is formulated, for a dissipative fluid model developed from the gyrokinetic equation, using a twisting mode representation in sheared slab geometry and focusing on the ion temperature gradient mode. Perpendicular flow shear convects perturbations along the field at the speed we denote as $Mc_s$ (where $c_s$ is the sound speed). $M > 1/ \\sqrt{\\beta}$ is required to make the system characteristics unidirectional and inhibit eigenmode formation, leaving only transitory perturbations in the system. This typically represents a much larger flow shear than in the electrostatic case, which only needs $M>1$. Numerical investigation of the region $M < 1/\\sqrt{\\beta}$ shows the driving terms can conflict, as in the electrostatic case, giving low ...

  11. Influence of Grain Size Coarse Soil on Shear Strength

    Directory of Open Access Journals (Sweden)

    Moulay smaîne Ghembaza

    2014-04-01

    Full Text Available The geo- mechanical behavior of coarse soils is difficult to grasp by geotechnical methods , mainly due to the presence of large elements that disrupt or prevent the tests . Our work presents a study of the mechanical behavior of two coarse soils of different types namely Tuff MEKKEDRA and crushed gravel SIDI ALI- Benyoub west of Algeria by observing the effect of the size of diameters of the grains on the shear strength. Two aspects are considered. The first relates to a state of the art parameters which have a direct influence on the shear strength of coarse material . The second part concerns a presentation and analysis of the results of direct shear tests of materials prepared for Optimum Proctor. It is noted that the grain size affects in a significant way the properties of the shear strength. The bigger the diameter, the greater the angle of friction is important. However, the cohesion decreases with increasing grain size.

  12. Interfacial stresses in strengthened beam with shear cohesive zone model

    Indian Academy of Sciences (India)

    Zergua Abdesselam

    2015-02-01

    The failure of strengthened beams with fibre-reinforced polymer (FRP) materials is due to high stress concentration of FRP–concrete interface. Understanding the cause and mechanism of the debonding of the FRP plate and the prediction of the stress distribution at the concrete–FRP interface are important for more effective strengthening technique. This paper presents an analytical solution, based on Smith and Teng’s equations, for interfacial shear and normal stresses in reinforced concrete (RC) beams strengthened with a fibre reinforced polymer (FRP) plate. However, the shear stress–strain relationship is considered to be bilinear curve. The effects of the shear deformations are calculated in an RC beam, an adhesive layer, and an FRP plate. The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses.

  13. Shear-induced amyloid fibrillization: the role of inertia.

    Science.gov (United States)

    McBride, Samantha A; Sanford, Sean P; Lopez, Juan M; Hirsa, Amir H

    2016-04-14

    Agitation of protein is known to induce deleterious effects on protein stability and structure, with extreme agitation sometimes resulting in complete aggregation into amyloid fibrils. Many mechanisms have been proposed to explain how protein becomes unstable when subjected to flow, including alignment of protein species, shear-induced unfolding, simple mixing, or fragmentation of existing fibrils to create new seeds. Here a shearing flow was imposed on a solution of monomeric human insulin via a rotating Couette device with a small hydrophobic fluid interface. The results indicate that even very low levels of shear are capable of accelerating amyloid fibril formation. Simulations of the flow suggest that the shear enhances fibrillization kinetics when flow inertia is non-negligible and the resulting meridional circulation allows for advection of bulk protein to the hydrophobic interface. PMID:26956731

  14. In vitro analysis of self-shearing retentive pins.

    Science.gov (United States)

    Collard, E W; Caputo, A A; Standlee, J P; Duncanson, M G

    1981-02-01

    Combining stress, analysis, microscopic examination, mechanical testing of the shear mechanism, and retention of the Reten Pin leads to the following conclusions: 1. The suggested 0.006 inch pin-channel mismatch induces high lateral and apical stresses. Microscopically, this was seen to correlate with injury to the dentin. 2. The degree of retention was increased by using a smaller pin-channel mismatch. This correlates with smaller stresses and reduced dentinal damage. 3. The shear mechanism acts in a uniform manner, with a relatively small variation from the mean. It is suggested that for the best results the manufacturer should supply larger twist drills and pins with a somewhat deeper self-shearing groove to minimize apical involvement during shearing of the handle from the pin.

  15. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    Science.gov (United States)

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-06-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs.

  16. United Airlines wind shear incident of May 31, 1984

    Science.gov (United States)

    Mccarthy, John

    1987-01-01

    An incident involving wind shear which occured on 31 May 1984 on a United Airlines aircraft is discussed by a member of the National Center for Atmospheric Research. The meteorological parameters important to this incident are detailed.

  17. Bulk and shear viscosities of hot and dense hadron gas

    CERN Document Server

    Kadam, Guru Prakash

    2014-01-01

    We estimate bulk and shear viscosity at finite temperature and baryon densities of hadronic matter within hadron resonance gas model. For bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons.

  18. Production of functional proteins: balance of shear stress and gravity

    Science.gov (United States)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2011-01-01

    A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  19. Study on the shear strength of deep reconstituted soils

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-dong; ZHOU Guo-qing; TIAN Qiu-hong

    2009-01-01

    Based on analytical methods of strength studies for deep soils, direct shear tests were carried out to investigate the shear strength of deep reconstituted soils at different initial dry densities and amounts of water. The results indicate that the shear strength of deep reconstituted soils for identical amounts of water below the plastic limit is enhanced with increasing dry density and but reduced sharply at the critical density, the point at which coarse particles break down. Moreover, the shear strength for identical dry density decreases with additional amounts of water and the rate of degradation is the greatest at the critical density, This is because the friction resistance between coarse particles reduces with increasing amounts of water higher than the plastic limit. In order to obtain reliable strength of deep reconstituted soils, suitable dry densities and amounts of water are necessary.

  20. Magnetic-Field Generation by Randomly Forced Shearing Waves

    CERN Document Server

    Schekochihin, A A; Kleeorin, N; Lesur, G; Mallet, A; McWilliams, J C; Rogachevskii, I; Yousef, T A

    2008-01-01

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of Rm << Re << 1. This is a minimal proof-of-concept calculation aiming to put the shear dynamo, a new effect recently reported in a number of numerical experiments, on a firm physical and analytical footing. Numerically observed scalings of the wavenumber and growth rate of the fastest growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo may be a generic property of shear flows -- with ubiquitous relevance to astrophysical systems.

  1. Shear capacity of reinforced concrete columns strengthened with CFRP sheet

    Institute of Scientific and Technical Information of China (English)

    XIE Jian; LIU Xue-mei; ZHAO Tong

    2005-01-01

    This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several suggestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.

  2. Finite element analyses for Seismic Shear Wall International Standard Problem

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.; Hofmayer, C. [Brookhaven National Lab., Upton, NY (United States); Chokshi, N. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-04-01

    In the seismic design of shear wall structures, e.g., nuclear reactor buildings, a linear FEM analysis is frequently used to quantify the stresses under the design loading condition. The final design decisions, however, are still based on empirical design rules established over decades from accumulated laboratory test data. This paper presents an overview of the state-of-the-art on the application of nonlinear FEM analysis to reinforced concrete (RC) shear wall structures under severe earthquake loadings based on the findings obtained during the Seismic Shear Wall International Standard Problem (SSWISP) Workshop in 1996. Also, BNL`s analysis results of the International Standard Problem (ISP) shear walls under monotonic static, cyclic static and dynamic loading conditions are described.

  3. Colloidal Suspensions in Shear Flow : a Real Space Study

    OpenAIRE

    Derks, D.

    2006-01-01

    We investigate the effect of shear flow on the microstructure of colloidal suspensions by means of microscopy. Systems of nearly equally sized particles are used, whose interactions and phase behavior are predominantly determined by their size and shape, and can further be tuned by the addition of polymers. Recently, a new type of shear cell was developed to study flowing suspensions in real space. The key property of this setup is the counter-rotating principle of the cone and plate, opening...

  4. Behaviour of RC beams shear strengthening with NSM CFRP laminates

    OpenAIRE

    Dias, Salvador J. E.; Barros, Joaquim A. O.

    2008-01-01

    The effectiveness of the Near Surface Mounted (NSM) technique with Carbon Fiber Reinforced Polymer (CFRP) laminates for the shear strengthening of T cross section reinforced concrete (RC) beams is assessed by experimental research. The influence of the percentage and inclination of CFRP laminates on the shear strengthening contribution was evaluated. The experimental program also includes beams strengthened according to the externally bonded reinforcement (EBR) technique in ord...

  5. Shear banding of colloidal glasses - a dynamic first order transition?

    OpenAIRE

    Chikkadi, V.; Miedema, D. M.; Nienhuis, B.; Schall, P.

    2014-01-01

    We demonstrate that application of an increasing shear field on a glass leads to an intriguing dynamic first order transition in analogy to equilibrium transitions. By following the particle dynamics as a function of the driving field in a colloidal glass, we identify a critical shear rate upon which the diffusion time scale of the glass exhibits a sudden discontinuity. Using a new dynamic order parameter, we show that this discontinuity is analogous to a first order transition, in which the ...

  6. On Howard's Conjecture in Heterogeneous Shear Flow Problem

    Indian Academy of Sciences (India)

    R G Shandil; Jagjit Singh

    2003-11-01

    Howard's conjecture, which states that in the linear instability problem of inviscid heterogeneous parallel shear flow growth rate of an arbitrary unstable wave must approach zero as the wave length decreases to zero, is established in a mathematically rigorous fashion for plane parallel heterogeneous shear flows with negligible buoyancy force $g \\ll 1$ (Miles J W, J. Fluid Mech. 10 (1961) 496–508), where is the basic heterogeneity distribution function).

  7. Generalized transport coefficients for inelastic Maxwell mixtures under shear flow.

    Science.gov (United States)

    Garzó, Vicente; Trizac, Emmanuel

    2015-11-01

    The Boltzmann equation framework for inelastic Maxwell models is considered to determine the transport coefficients associated with the mass, momentum, and heat fluxes of a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. The Boltzmann equation is solved by means of a Chapman-Enskog-type expansion around the (local) shear flow distributions f(r)(0) for each species that retain all the hydrodynamic orders in the shear rate. Due to the anisotropy induced by the shear flow, tensorial quantities are required to describe the transport processes instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled equations, which can be analytically solved as functions of the shear rate a, the coefficients of restitution α(rs), and the parameters of the mixture (masses, diameters, and composition). Since the reference distribution functions f(r)(0) apply for arbitrary values of the shear rate and are not restricted to weak dissipation, the corresponding generalized coefficients turn out to be nonlinear functions of both a and α(rs). The dependence of the relevant elements of the three diffusion tensors on both the shear rate and dissipation is illustrated in the tracer limit case, the results showing that the deviation of the generalized transport coefficients from their forms for vanishing shear rates is in general significant. A comparison with the previous results obtained analytically for inelastic hard spheres by using Grad's moment method is carried out, showing a good agreement over a wide range of values for the coefficients of restitution. Finally, as an application of the theoretical expressions derived here for the transport coefficients, thermal diffusion segregation of an intruder immersed in a granular gas is also studied. PMID:26651684

  8. Comment on "Accelerating cosmological expansion from shear and bulk viscosity"

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    In a recent Letter [Phys. Rev. Lett. 114 091301 (2105)] the cause of the acceleration of the present Universe has been identified with the shear viscosity of an imperfect relativistic fluid even in the absence of any bulk viscous contribution. The gist of this comment is that the shear viscosity, if anything, can only lead to an accelerated expansion over sufficiently small scales well inside the Hubble radius.

  9. Simulation of phase separation in quiescent and sheared liquids

    OpenAIRE

    Thakre, Amol Kumar

    2008-01-01

    In this thesis we report on molecular dynamics simulations of phase separation of simple and complex binary liquids in sheared and non-sheared systems. The separation of milk into liquid whey and solid curd is a very common example of phase separation observed in daily life. The phenomenon finds its application in various fields of science and technology, ranging from metals, semiconductors, superconductors to simple and complex fluids such as polymers, surfactants, colloids, emulsions and bi...

  10. Wall Shear Stress Distribution in Patient Specific Coronary Artery Bifurcation

    Directory of Open Access Journals (Sweden)

    Vahab Dehlaghi

    2010-01-01

    Full Text Available Problem statement: Atherogenesis is affected by hemodynamic parameters, such as wall shear stress and wall shear stress spatial gradient. These parameters are largely dependent on the geometry of arterial tree. Arterial bifurcations contain significant flow disturbances. Approach: The effects of branch angle and vessel diameter ratio at the bifurcations on the wall shear stress distribution in the coronary arterial tree based on CT images were studied. CT images were digitally processed to extract geometrical contours representing the coronary vessel walls. The lumen of the coronary arteries of the patients was segmented using the open source software package (VMTK. The resulting lumens of coronary arteries were fed into a commercial mesh generator (GAMBIT, Fluent Inc. to generate a volume that was filled with tetrahedral elements. The FIDAP software (Fluent Corp. was used to carry out the simulation by solving Navier-Stokes equations. The FIELDVIEW software (Version 10.0, Intelligent Light, Lyndhurst, NJ was used for the visualization of flow patterns and the quantification of wall shear stress. Post processing was done with VMTK and MATLAB. A parabolic velocity profile was prescribed at the inlets and outlets, except for 1. Stress free outlet was assigned to the remaining outlet. Results: The results show that for angle lower than 90°, low shear stress regions are observed at the non-flow divider and the apex. For angle larger than 90°, low shear stress regions only at the non-flow divider. By increasing of diameter of side branch ratio, low shear stress regions in the side branch appear at the non-flow divider. Conclusion: It is concluded that not only angle and diameter are important, but also the overall 3D shape of the artery. More research is required to further quantify the effects angle and diameter on shear stress patterns in coronaries.

  11. TRANSIENT AND STEADY-STATE DYNAMICS OF GRANULAR SHEAR FLOWS

    OpenAIRE

    Losert, W.; Kwon, G.

    2001-01-01

    The initiation and steady-state dynamics of granular shear flow are investigated experimentally in a Couette geometry with independently moveable outer and inner cylinders. The motion of particles on the top surface is analyzed using fast imaging. During steady state rotation of both cylinders at different rates, a shear band develops close to the inner cylinder for all combinations of speeds of each cylinder we investigated. Experiments on flow initiation were carried out with one of the cyl...

  12. Transport bifurcation induced by sheared toroidal flow in tokamak plasmasa)

    Science.gov (United States)

    Highcock, E. G.; Barnes, M.; Parra, F. I.; Schekochihin, A. A.; Roach, C. M.; Cowley, S. C.

    2011-10-01

    First-principles numerical simulations are used to describe a transport bifurcation in a differentially rotating tokamak plasma. Such a bifurcation is more probable in a region of zero magnetic shear than one of finite magnetic shear, because in the former case the component of the sheared toroidal flow that is perpendicular to the magnetic field has the strongest suppressing effect on the turbulence. In the zero-magnetic-shear regime, there are no growing linear eigenmodes at any finite value of flow shear. However, subcritical turbulence can be sustained, owing to the existence of modes, driven by the ion temperature gradient and the parallel velocity gradient, which grow transiently. Nonetheless, in a parameter space containing a wide range of temperature gradients and velocity shears, there is a sizeable window where all turbulence is suppressed. Combined with the relatively low transport of momentum by collisional (neoclassical) mechanisms, this produces the conditions for a bifurcation from low to high temperature and velocity gradients. A parametric model is constructed which accurately describes the combined effect of the temperature gradient and the flow gradient over a wide range of their values. Using this parametric model, it is shown that in the reduced-transport state, heat is transported almost neoclassically, while momentum transport is dominated by subcritical parallel-velocity-gradient-driven turbulence. It is further shown that for any given input of torque, there is an optimum input of heat which maximises the temperature gradient. The parametric model describes both the behaviour of the subcritical turbulence (which cannot be modelled by the quasi-linear methods used in current transport codes) and the complicated effect of the flow shear on the transport stiffness. It may prove useful for transport modelling of tokamaks with sheared flows.

  13. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    Science.gov (United States)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  14. Shear wave propagation in anisotropic soft tissues and gels

    OpenAIRE

    Namani, Ravi; Bayly, Philip V.

    2009-01-01

    The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) [1] to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized...

  15. Structural studies of lamellar surfactant systems under shear

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Recent experimental studies on concentrated surfactant systems are reviewed. Particular attention is focused on the transformation from planar lamellar sheets to multilamellar vesicles. It is discussed whether both of these states are thermodynamic stable, or if the MLV is an artifact of shear...... induced factors. Recent studies includes the dependence on shear, and dependence on salt and cosurfactants, and thereby related lamellar defects. The review include moreover the demonstration that polymeric amphiphiles dramatically enhance the quality of classical surfactants. (C) 2001 Elsevier Science...

  16. Shear-Wave Elastography of Segmental Infarction of the Testis

    OpenAIRE

    Kantarci, Fatih; Cebi Olgun, Deniz; Mihmanli, Ismail

    2012-01-01

    Segmental testicular infarction (STI) is a rare cause of acute scrotum. The spectrum of findings on gray-scale and color Doppler ultrasonography differ depending on the time between the onset of testicular pain and the ultrasonography examination. We are not aware of the usefulness of shear-wave elastography for the diagnosis of STI. We report the shear-wave elastography features in a case of STI and discuss the role of this diagnostic modality in the differential diagnosis.

  17. Modeling Bearing and Shear Forces in Molecularly Thin Lubricants

    OpenAIRE

    Vakis, Antonis I.; Eriten, Melih; Polycarpou, Andreas A.

    2011-01-01

    Under the effects of high shear rate and confinement between solid surfaces, the behavior of a thin lubricant film deviates from that of the bulk, resulting in significant increases of lubricant viscosity and interfacial slip. A semi-empirical model accounting for the breakdown of continuum theory at the nanoscale is proposed—based on film morphology and chemistry from available experimental and molecular dynamics simulation data—to describe lubricant behavior under shear. Viscosity stiffenin...

  18. An experimental investigation for external RC shear wall applications

    Science.gov (United States)

    Kaltakci, M. Y.; Ozturk, M.; Arslan, M. H.

    2010-09-01

    The strength and rigidity of most reinforced concrete (RC) buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls) in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools). This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application) and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam). Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.

  19. Vacuum Shear Force Microscopy Application to High Resolution Work

    Science.gov (United States)

    Polonski, Vitali; Yamamoto, Yoh; White, Jonathon; Kourogi, Motonobu; Ohtsu, Motoichi

    1999-07-01

    A new technique—Vacuum Shear Force Microscopy (VSFM)—is introduced as a reliable method for maintaining a constant separation between a probe and sample. Elimination of many of the instabilities observed when applying the shear force mechanism to imaging under ambient conditions, allows for routine nanometer lateral and sub-nanometer normal resolution. In this paper this technique is applied, firstly, to the imaging of microtubules (biology) and, secondly, to the patterning and subsequent imaging of nanoscale metal lines (nanofabrication).

  20. Logarithmic Wind Profile: A Stability Wind Shear Term

    CERN Document Server

    Sakagami, Yoshiaki; Haas, Reinaldo; Passos, Julio C; Taves, Frederico F

    2014-01-01

    A stability wind shear term of logarithmic wind profile based on the terms of turbulent kinetic energy equation is proposed. The fraction influenced by thermal stratification is considered in the shear production term. This thermally affected shear is compared with buoyant term resulting in a stability wind shear term. It is also considered Reynolds stress as a sum of two components associated with wind shear from mechanical and thermal stratification process. The stability wind shear is responsible to Reynolds stress of thermal stratification term, and also to Reynolds stress of mechanical term at no neutral condition. The wind profile and its derivative are validated with data from Pedra do Sal experiment in a flat terrain and 300m from shoreline located in northeast coast of Brazil. It is close to the Equator line, so the meteorological condition are strongly influenced by trade winds and sea breeze. The site has one 100m tower with five instrumented levels, one 3D sonic anemometer, and a medium-range wind...