WorldWideScience

Sample records for warm-season annual forages

  1. Annual warm-season grasses vary for forage yield, quality, and competitiveness with weeds

    Science.gov (United States)

    Warm-season annual grasses may be suitable as herbicide-free forage crops. A two-year field study was conducted to determine whether tillage system and nitrogen (N) fertilizer application method influenced crop and weed biomass, water use, water use efficiency (WUE), and forage quality of three war...

  2. Small mammal use of native warm-season and non-native cool-season grass forage fields

    Science.gov (United States)

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  3. Forage yield and nitrogen nutrition dynamics of warm-season native forage genotypes under two shading levels and in full sunlight

    OpenAIRE

    Barro,Raquel Santiago; Varella,Alexandre Costa; Lemaire,Gilles; Medeiros,Renato Borges de; Saibro,João Carlos de; Nabinger,Carlos; Bangel,Felipe Villamil; Carassai,Igor Justin

    2012-01-01

    The successful achievement of a highly productive understorey pasture in silvopastoral systems depends on the use of well-adapted forage genotypes, showing good agronomic performance and persistence under shading and grazing. In this study, the herbage dry matter yield (DMY) and nitrogen nutrition dynamics were determined in three native warm-season grasses (Paspalum regnellii, Paspalum dilatatum and Paspalum notatum) and a forage legume (Arachis pintoi) under two shading levels compared with...

  4. The importance of warm season warming to western U.S. streamflow changes

    Science.gov (United States)

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  5. Latitudinal range influences the seasonal variation in the foraging behavior of marine top predators.

    Directory of Open Access Journals (Sweden)

    Stella Villegas-Amtmann

    Full Text Available Non-migratory resident species should be capable of modifying their foraging behavior to accommodate changes in prey abundance and availability associated with a changing environment. Populations that are better adapted to change will have higher foraging success and greater potential for survival in the face of climate change. We studied two species of resident central place foragers from temperate and equatorial regions with differing population trends and prey availability associated to season, the California sea lion (Zalophus californianus (CSL whose population is increasing and the endangered Galapagos sea lion (Zalophus wollebaeki (GSL whose population is declining. To determine their response to environmental change, we studied and compared their diving behavior using time-depth recorders and satellite location tags and their diet by measuring C and N isotope ratios during a warm and a cold season. Based on latitudinal differences in oceanographic productivity, we hypothesized that the seasonal variation in foraging behavior would differ for these two species. CSL exhibited greater seasonal variability in their foraging behavior as seen in changes to their diving behavior, foraging areas and diet between seasons. Conversely, GSL did not change their diving behavior between seasons, presenting three foraging strategies (shallow, deep and bottom divers during both. GSL exhibited greater dive and foraging effort than CSL. We suggest that during the warm and less productive season a greater range of foraging behaviors in CSL was associated with greater competition for prey, which relaxed during the cold season when resource availability was greater. GSL foraging specialization suggests that resources are limited throughout the year due to lower primary production and lower seasonal variation in productivity compared to CSL. These latitudinal differences influence their foraging success, pup survival and population growth reflected in

  6. Forage yield and nitrogen nutrition dynamics of warm-season native forage genotypes under two shading levels and in full sunlight

    Directory of Open Access Journals (Sweden)

    Raquel Santiago Barro

    2012-07-01

    Full Text Available The successful achievement of a highly productive understorey pasture in silvopastoral systems depends on the use of well-adapted forage genotypes, showing good agronomic performance and persistence under shading and grazing. In this study, the herbage dry matter yield (DMY and nitrogen nutrition dynamics were determined in three native warm-season grasses (Paspalum regnellii, Paspalum dilatatum and Paspalum notatum and a forage legume (Arachis pintoi under two shading levels compared with full sun. The experiment was conducted in the Campanha region, Bagé, state of Rio Grande do Sul, Brazil, during two evaluation cycles (2008/2009 and 2009/2010. Three shade cloth levels (0%, 50% and 80% of light restriction were applied to the forage genotypes in a split plot design, in which shading levels were the main plot and forage genotypes were the subplots, with three replications. P. regnellii showed the highest accumulated DMY (1500 and 1700 g m-2, respectively, for the first and second evaluation cycles at all shading levels and showed no DMY decreased under the heavy shade (80%. Average DMY over the four genotypes under the 50% shade level was higher or equal compared with full sun. Influence of rainfall was observed on the DMY performance of all genotypes: the positive effect of moderate shading (50% on P. dilatatum and P. notatum DMY was associated to a low soil water availability status. Increased shading level resulted in high nitrogen nutrition index values on grasses, in comparison with full sun. All genotypes performed well under the moderate shading level, but the DMY of both P. regnellii and P. dilatatum and the herbage N content in P. notatum and A. pintoi of all genotypes stood out, showing that those main genotypes are promising to grow in silvopastoral systems at the Campanha region in southern Brazil.

  7. Regional seasonal warming anomalies and land-surface feedbacks

    Science.gov (United States)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  8. Responses of Seasonal Precipitation Intensity to Global Warming

    Science.gov (United States)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia

    2016-04-01

    Under global warming, the water vapor increases with rising temperature at the rate of 7%/K. Most previous studies focus on the spatial differences of precipitation and suggest that wet regions become wetter and dry regions become drier. Our recent studies show a temporal disparity of global precipitation, which the wet season becomes wetter and dry season becomes drier; therefore, the annual range increases. However, such changes in the annual range are not homogeneous globally, and in fact, the drier trend over the ocean is much larger than that over the land, where the dry season does not become drier. Such precipitation change over land is likely because of decreased omega at 500hPa (more upward motion) in the reanalysis datasets from 1980 to 2013. The trends of vertical velocity and moist static energy profile over the increased precipitation regions become more unstable. The instability is most likely attributed to the change in specific humility below 400hPa. Further, we will use Coupled Model Intercomparison Project Phase 5 (CMIP5) archives to investigate whether the precipitation responses in dry season are different between the ocean and land under global warming.

  9. Annual forage cropping-systems for midwestern ruminant livestock production

    OpenAIRE

    McMillan, John Ernest

    2016-01-01

    Annual forage cropping systems are a vital aspect of livestock forage production. One area where this production system can be enhanced is the integration of novel annual forages into conventional cropping systems. Two separate projects were conducted to investigate alternative forage options in annual forage production. In the first discussed research trial, two sets of crops were sown following soft red winter wheat (Triticum aestivum L.) grain harvest, at two nitrogen application rates 56 ...

  10. Nitrogen Fertilization Effect on Phosphorus Remediation Potential of Three Perennial Warm-Season Forages

    NARCIS (Netherlands)

    Newman, Y.C.; Agyin-Birikorang, S.; Adjei, M.B.; Scholberg, J.M.S.; Silveira, M.L.; Vendramini, J.M.B.; Rechcigl, J.E.; Sollenberger, L.E.

    2009-01-01

    Warm-season C-4 grasses are capable of removing excess soil nutrients because of their high Yield potential and nutrient uptake efficiency. Bahiagrass (Paspalum notatum Flugge), limpograss [Hemarthria altissima (Poir.) Stapf& Hubb], and stargrass (Cynodon nlemfuensis Vanderyst), three commonly

  11. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland.

    Science.gov (United States)

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes

    2018-01-18

    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C

  12. Foraging strategy switch of a top marine predator according to seasonal resource differences

    Directory of Open Access Journals (Sweden)

    Malcolm Daniel O'Toole

    2015-04-01

    Full Text Available The spatio-temporal variability in marine resources influences the foraging behaviour and success of top marine predators. However, little is known about the links between these animals and ocean productivity, specifically, how plankton density influences their foraging behaviour. Southern elephant seals (Mirounga leonina have two annual at-sea foraging trips: a two month post-breeding foraging trip (Nov – Jan that coincides with elevated summer productivity; and an eight month post-moulting foraging trip (Feb – Oct over winter, when productivity is low. Physical parameters are often used to describe seal habitat, whereas information about important biological parameters is lacking. We used electronic tags deployed on elephant seals during both trips to determine their movement and foraging behaviour. The tags also recorded light, which measured the bio-optical properties of the water column, the bulk of which is presumably influenced by phytoplankton. We investigated the relationship between plankton density and seal foraging behaviour; comparing trends between summer and winter trips. We found a positive relationship between plankton density and foraging behaviour, which did not vary seasonally. We propose that profitable concentrations of seal prey are more likely to coincide with planktonic aggregations, but we also acknowledge that trophic dynamics may shift in response to seasonal trends in productivity. Seal prey (mid-trophic level and plankton (lower-trophic level are expected to overlap in space and time during summer trips when peak phytoplankton blooms occur. In contrast, aggregated patches of lower trophic levels are likely to be more dispersed during winter trips when plankton density is considerably lower and heterogeneous. These results show that southern elephant seals are able to exploit prey resources in different ways throughout the year as demonstrated by the variation observed between seal foraging behaviour and trophic

  13. Seasonal Food Scarcity Prompts Long-Distance Foraging by a Wild Social Bee.

    Science.gov (United States)

    Pope, Nathaniel S; Jha, Shalene

    2018-01-01

    Foraging is an essential process for mobile animals, and its optimization serves as a foundational theory in ecology and evolution; however, drivers of foraging are rarely investigated across landscapes and seasons. Using a common bumblebee species from the western United States (Bombus vosnesenskii), we ask whether seasonal decreases in food resources prompt changes in foraging behavior and space use. We employ a unique integration of population genetic tools and spatially explicit foraging models to estimate foraging distances and rates of patch visitation for wild bumblebee colonies across three study regions and two seasons. By mapping the locations of 669 wild-caught individual foragers, we find substantial variation in colony-level foraging distances, often exhibiting a 60-fold difference within a study region. Our analysis of visitation rates indicates that foragers display a preference for destination patches with high floral cover and forage significantly farther for these patches, but only in the summer, when landscape-level resources are low. Overall, these results indicate that an increasing proportion of long-distance foraging bouts take place in the summer. Because wild bees are pollinators, their foraging dynamics are of urgent concern, given the potential impacts of global change on their movement and services. The behavioral shift toward long-distance foraging with seasonal declines in food resources suggests a novel, phenologically directed approach to landscape-level pollinator conservation and greater consideration of late-season floral resources in pollinator habitat management.

  14. Produção de forragem de gramíneas anuais semeadas no verão Forage yield of annual grasses seeded on the summer

    Directory of Open Access Journals (Sweden)

    Rafael Orth

    2012-09-01

    worsen by frosts. A 2-yr split-plot experiment on randomized complete block design with three replications compared yield, yield distribution, and nutritive value in three seeding dates (January, February, and March allocated on main plots, and five forage grasses cultivars (common pearl millet, teosinte, sudangrass, and BRS 800 and AG 2501C sorghum hybrids on subplots. The two first seeding dates had the highest forage yield, about 6.0Mg ha-1 of DM than March seeding date of high nutritive value forage (>150g kg-1 MS. Sorghum-hybrids genotypes yield more than teosinte and sudangrass. Pearl millet, sudangrass and teosinte had more tillering. Pearl millet had high CP (200g kg-1 DM, and lower FDA (350g kg-1 DM concentrations on leaf blades compared to sorghums and teosinte. It is possible minimize fall forage shortage seeding annual forage grasses until end of February in the Planalto region of RS state, and extend the productive period, an additional 30 to 60-d, during a time of year when warm-season perennial grasses have low forage allowance or low nutritive value, and annual winter forages are not established.

  15. The impact of global warming on seasonality of ocean primary production

    Directory of Open Access Journals (Sweden)

    S. Henson

    2013-06-01

    Full Text Available The seasonal cycle (i.e. phenology of oceanic primary production (PP is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in annual mean PP. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming regions, typically found at high latitudes, into weakly seasonal (non-bloom regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate-change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. Monthly resolution model output is found to be inadequate for resolving phenological changes. We conclude that analysis of phytoplankton seasonality is not necessarily a shortcut to detecting climate change impacts on ocean productivity.

  16. Economic and conservation implications of converting exotic forages to native warm-season grass

    Directory of Open Access Journals (Sweden)

    Adrian P. Monroe

    2017-07-01

    Full Text Available Intensive agriculture can have negative environmental consequences such as nonpoint source pollution and the simplification of biotic communities, and land sharing posits that conservation can be enhanced by integrating agricultural productivity and biodiversity on the same land. In the Southeastern United States, native warm-season grasses (NWSG may be a land sharing alternative to exotic forages currently in production because of greater livestock gains with lower fertilizer inputs, and habitat for grassland birds. However, uncertainty regarding costs and risk poses an important barrier to incorporating NWSG in livestock operations. We evaluated the economic and conservation implications of NWSG conversion among small, operational-scale pastures (6.8–10.5 ha during 2011–2012 at the Prairie Research Unit in Monroe Co., Mississippi (USA. We used partial budgets to compare the marginal rate of return (MRRe from converting exotic grass pastures to either a NWSG monoculture of Indiangrass (Sorghastrum nutans or a NWSG mix of Indiangrass, little bluestem (Schizachyrium scoparium, and big bluestem (Andropogon gerardii. We similarly compared changes in productivity of dickcissels (Spiza americana, a grassland bird specializing in tall structure. Average daily gain (ADG of steers and revenue were consistently higher for NWSG treatments than exotic grass pasture, but ADG declined between years. Indiangrass pastures yielded consistently positive MRRe, indicating producers would receive 16–24% return on investment. Marginal rate of return was lower for mixed NWSG (−12 to 3%, driven by slightly lower livestock ADG and higher establishment costs than for Indiangrass. Sensitivity analyses indicated that MRRe also was influenced by cattle selling price. Conversely, mixed NWSG increased dickcissel productivity by a greater degree than Indiangrass per amount invested in NWSG conversion, suggesting a tradeoff between livestock and dickcissel production

  17. Blue Oak Canopy Effect on Seasonal Forage Production and Quality

    Science.gov (United States)

    William E. Frost; Neil K. McDougald; Montague W. Demment

    1991-01-01

    Forage production and forage quality were measured seasonally beneath the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range. At the March and peak standing crop sampling dates forage production was significantly greater (p=.05) beneath blue oak compared to open grassland. At most sampling dates, the...

  18. Effects of seasonal advancement on the forage availability, quality ...

    African Journals Online (AJOL)

    Effects of seasonal advancement on the forage availability, quality and acceptability by grazing gudali cattle in the humid zone of Nigeria. ... There were significant (p<0.05) differences in the dry matter (DM), crude protein (CP) and neutral detergent fibre (NDF) contents of all the forages. DM content ranged from 9.6% (Tridax ...

  19. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  20. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  1. Effects of foraging mode and season on the energetics of the Marine Iguana, Amblyrhynchus cristatus

    NARCIS (Netherlands)

    Drent, J; Lichtenbelt, WDV; Wikelski, M

    1, Marine Iguanas (Amblyrhynchus cristatus) inhabiting the rocky shores of the Galapagos Islands apply two foraging strategies, intertidal and subtidal foraging, in a seasonal climate. Effects of both foraging strategy and seasonality on the daily energy expenditure (DEE) were measured using doubly

  2. Effect of season on the quality of forages selected by sheep in citrus plantations in Ghana

    Directory of Open Access Journals (Sweden)

    Leonard K. Adjorlolo

    2014-09-01

    Full Text Available The study aimed at assessing the effects of season on chemical composition of forages selected by sheep grazing in a citrus plantation. Forage species growing in a sweet orange (Citrus sinensis plantation were identified and sampled monthly for 2 years. Samples were bulked on monthly basis for chemical analysis. The average dry matter content of the forages increased from the rainy to the dry season but effects of season on the chemical components were inconsistent. Some species, such as Asystasia gangetica, had a higher crude protein concentration in the dry season, whereas for others, such as Panicum repens, the reverse occurred. However, average concentrations of crude protein, detergent fiber and components of fiber for all species for the rainy season were not significantly different from the dry season values. It was concluded that there were differences among forage species in their responses to changing seasons, such that grazing ruminants may select a diet to enable them to meet their nutritional requirements, provided forage biomass is adequate.Keywords: Crop-livestock integration, tree plantations, chemical composition, seasonal effects, forage quality.DOI: 10.17138/TGFT(2271-277

  3. Foraging decisions, patch use, and seasonality in egrets (Aves: ciconiiformes)

    Science.gov (United States)

    Erwin, R.M.

    1985-01-01

    Feeding snowy (Egretta thula) and great (Casmerodius albus) egrets were observed during 2 breeding seasons in coastal New Jersey and 2 brief winter periods in northeast Florida (USA). A number of tests based on assumptions of foraging models, predictions from foraging theory, and earlier empirical tests concerning time allocation and movement in foraging patches was made. Few of the expectations based on foraging theory and/or assumptions were supported by the empirical evidence. Snowy egrets fed with greater intensity and efficiency during the breeding season (when young were being fed) than during winter. They also showed some tendency to leave patches when their capture rate declined, and they spent more time foraging in patches when other birds were present nearby. Great egrets showed few of these tendencies, although they did leave patches when their intercapture intervals increased. Satiation differences had some influence on feeding rates in snowy egrets, but only at the end of feeding bouts. Some individuals of both species revisited areas in patches that had recently been exploited, and success rates were usually higher after the 2nd visit. Apparently, for predators of active prey, short-term changes in resource availability ('resource depression') may be more important than resource depletion, a common assumption in most optimal foraging theory models.

  4. Grazing management and supplementation effects on forage and dairy cow performance on cool-season pastures in the southeastern United States.

    Science.gov (United States)

    Macoon, B; Sollenberger, L E; Staples, C R; Portier, K M; Fike, J H; Moore, J E

    2011-08-01

    Cool-season annual forages provide high-quality herbage for up to 5 mo in the US Gulf Coast states, but their management in pasture-based dairy systems has received little attention. Objectives of this study were to evaluate pasture and animal responses when lactating Holstein cows (n=32, mean DIM=184±21) grazed either N-fertilized rye (Secale cereale L.)-annual ryegrass (Lolium multiflorum Lam.) mixed pastures or rye-annual ryegrass-crimson clover (Trifolium incarnatum L.)-red clover (Trifolium pratense L.) pastures at 2 stocking rates (5 vs. 2.5 cows/ha) and 2 rates of concentrate supplementation [0.29 or 0.40 kg of supplement (as is)/kg of daily milk production]. Two cows paired by parity (one multiparous and one primiparous) were assigned randomly to each pasture. The 2 × 2 × 2 factorial arrangement of treatments was replicated twice in a completely randomized design. Forage mixture and supplementation rate did not affect milk production during three 28-d periods. Greater milk production occurred at the low (19.7 kg/d) than the high (14.7 kg/d) stocking rate during periods 2 and 3, but production was similar during period 1. Despite lower production per cow, milk production per hectare was generally greater at the high stocking rate (81.6 vs. 49.5 kg/ha). Generally, greater pregraze herbage mass on pastures at the lower stocking rate (1,400 vs. 1,150 kg/ha) accounted for greater herbage allowance. Both forage (8.0 vs. 5.9 kg/d) and total (14.1 vs. 11.6) organic matter intake were greater at the low stocking rate. Cows fed less supplement had greater forage organic matter intake (8.0 vs. 6.1 kg/d). Greater herbage mass was associated with the greater intake and subsequent greater milk production. Differences in forage nutritive value, blood metabolites and milk composition, although showing some response to treatments, may not be of sufficient magnitude to affect choice of pasture species or other management practices. Animal performance was not improved by

  5. Dry season mapping of savanna forage quality, using the hyperspectral Carnegie

    NARCIS (Netherlands)

    Knox, N.; Skidmore, A.K.; Prins, H.H.T.; Asner, P.; Werff, van der H.M.A.; Boer, de W.F.; Waal, van der C.; Knegt, de H.J.; Kohi, E.; Slotow, R.; Grant, R.C.

    2011-01-01

    Forage quality within an African savanna depends upon limiting nutrients (nitrogen and phosphorus) and nutrients that constrain the intake rates (non-digestible fibre) of herbivores. These forage quality nutrients are particularly crucial in the dry season when concentrations of limiting nutrients

  6. Quality of the forage apparently consumed by beef calves in natural grassland under fertilization and oversown with cool season forage species

    Directory of Open Access Journals (Sweden)

    Denise Adelaide Gomes Elejalde

    2012-06-01

    Full Text Available The objective of this study was to evaluate the chemical composition of the forage apparently consumed by steers in a natural grassland on region of Campanha, in Rio Grande do Sul, Brazil, subjected or not to different inputs: NP - natural pasture without inputs; FNP - fertilized natural pasture and INP - improved natural grassland with fertilization and over-seeded with cultivated winter species. Three Angus steers testers and a variable number of regulator animals per experimental unit were utilized in order to maintain 13 kg of DM/100 kg of live weight (LW as forage allowance. One time at each season, hand plucking samples were performed along the daily grazing time simulating forage harvested by the animals. The collected samples after drying and grind were submitted to chemical analysis to determine the forage quality. Except in winter and spring, the values of neutral detergent fiber were higher than the critical value of 550 g/kg of DM, which could limit forage intake, demonstrating that the values of forage on offer provided (15.6; 13.7; 13.5; 15.8 kg of DM/100 kg of LW/day in summer, autumn, winter and spring, respectively were not restrictive to intake. The oversowing of winter cultivated species or fertilization positively alter the degradable fiber content. The seasons had marked influence on the chemical composition of forage apparently consumed; positively increasing some fractions of forage chemical composition in the seasons in which native or cultivated winter species increased their participation. The forage chemical composition is the determining factor in animal performance in natural pasture.

  7. Disentangling Seasonality and Mean Annual Precipitation in the Indo-Pacific Warm Pool: Insights from Coupled Plant Wax C and H Isotope Measurements

    Science.gov (United States)

    Galy, V.; Oppo, D.; Dubois, N.; Arbuszewski, J. A.; Mohtadi, M.; Schefuss, E.; Rosenthal, Y.; Linsley, B. K.

    2016-12-01

    There is ample evidence suggesting that rainfall distribution across the Indo-Pacific Warm Pool (IPWP) - a key component of the global climate system - has substantially varied over the last deglaciation. Yet, the precise nature of these hydroclimate changes remains to be elucidated. In particular, the relative importance of variations in precipitation seasonality versus annual precipitation amount is essentially unknown. Here we use a set of surface sediments from the IPWP covering a wide range of modern hydroclimate conditions to evaluate how plant wax stable isotope composition records rainfall distribution in the area. We focus on long chain fatty acids, which are exclusively produced by vascular plants living on nearby land and delivered to the ocean by rivers. We relate the C (δ13C) and H (δD) isotope composition of long chain fatty acids preserved in surface sediments to modern precipitation distribution and stable isotope composition in their respective source area. We show that: 1) δ13C values reflect vegetation distribution (in particular the relative abundance of C3 and C4 plants) and are primarily recording precipitation seasonality (Dubois et al., 2014) and, 2) once corrected for plant fractionation effects, δD values reflect the amount-weighted average stable isotope composition of precipitation and are primarily recording annual precipitation amounts. We propose that combining the C and H isotope composition of long chain fatty acids thus allows independent reconstructions of precipitation seasonality and annual amounts in the IPWP. The practical implications for reconstructing past hydroclimate in the IPWP will be discussed.

  8. Seasonal and inter-annual temperature variability in the bottom waters over the western Black Sea shelf

    Directory of Open Access Journals (Sweden)

    G. I. Shapiro

    2011-09-01

    Full Text Available Long-term changes in the state of the Bottom Shelf Water (BSW on the Western shelf of the Black Sea are assessed using analysis of intra-seasonal and inter-annual temperature variations. For the purpose of this study the BSW is defined as such shelf water mass between the seabed and the upper mixed layer (bounded by the σθ = 14.2 isopycnal which has limited ability to mix vertically with oxygen-rich surface waters during the warm season due to formation of a seasonal pycnocline. A long-term time series of temperature anomalies in the BSW is constructed from in-situ observations taken over the 2nd half of the 20th century. The BSW is shown to occupy nearly half of the shelf area during the summer stratification period (May–November.The results reveal a warm phase in the 1960s/70s, followed by a cold phase between 1985 and 1995 and a further warming after 1995. The transition between the warm and cold periods coincides with a regime shift in the Black Sea ecosystem. While it was confirmed that the memory of winter convection is well preserved over the following months in the deep sea, the signal of winter cooling in the BSW significantly reduces during the warm season. The potential of the BSW to ventilate horizontally during the warm season with the deep-sea waters is assessed using isopycnic analysis of temperature variations. It is shown that temperature in the BSW is stronger correlated with the temperature of Cold Intermediate Waters (CIW in the deep sea than with the severity of the previous winters, thus indicating that the isopycnal exchanges with the deep sea are more important for inter-annual/inter-decadal variability of the BSW on the western Black Sea shelf than effects of winter convection on the shelf itself.

  9. Forage fish quality: seasonal lipid dynamics of herring (Clupea harengus L.) and sprat (Sprattus sprattus L.) in the Baltic Sea

    DEFF Research Database (Denmark)

    Røjbek, Maria; Tomkiewicz, Jonna; Jacobsen, Charlotte

    2013-01-01

    seasonally with high levelstowards the end of the annual zooplankton production cycle, succeeded by a decline. Lipid content and fatty acid composition differed significantly between sprat and herring. Sprat lipid content was higher than herring, increasing with fish size and characterized by large......This study investigates lipid content and fatty acid composition of two important forage fish, sprat (Sprattus sprattus) and herring (Clupea harengus) in the Baltic Sea ecosystem. Seasonal variation in lipids was studied during three periods following the annual reproductive cycle considering...... potential differences relating to fish size, sex, and reproductive status. The isopod Saduria entomon, being at times an important prey for predatory fish, was included for comparison. In both sprat and herring, lipid content and absolute contents of essential polyunsaturated fatty acids (PUFAs) varied...

  10. Temporal effects of hunting on foraging behavior of an apex predator: Do bears forego foraging when risk is high?

    Science.gov (United States)

    Hertel, Anne G; Zedrosser, Andreas; Mysterud, Atle; Støen, Ole-Gunnar; Steyaert, Sam M J G; Swenson, Jon E

    2016-12-01

    Avoiding predators most often entails a food cost. For the Scandinavian brown bear (Ursus arctos), the hunting season coincides with the period of hyperphagia. Hunting mortality risk is not uniformly distributed throughout the day, but peaks in the early morning hours. As bears must increase mass for winter survival, they should be sensitive to temporal allocation of antipredator responses to periods of highest risk. We expected bears to reduce foraging activity at the expense of food intake in the morning hours when risk was high, but not in the afternoon, when risk was low. We used fine-scale GPS-derived activity patterns during the 2 weeks before and after the onset of the annual bear hunting season. At locations of probable foraging, we assessed abundance and sugar content, of bilberry (Vaccinium myrtillus), the most important autumn food resource for bears in this area. Bears decreased their foraging activity in the morning hours of the hunting season. Likewise, they foraged less efficiently and on poorer quality berries in the morning. Neither of our foraging measures were affected by hunting in the afternoon foraging bout, indicating that bears did not allocate antipredator behavior to times of comparably lower risk. Bears effectively responded to variation in risk on the scale of hours. This entailed a measurable foraging cost. The additive effect of reduced foraging activity, reduced forage intake, and lower quality food may result in poorer body condition upon den entry and may ultimately reduce reproductive success.

  11. Effect of Lactic Acid Lactobacillus Preservative and Moisture Level at Baling on In-situ Digestibility of Crabgrass Hay by Heifers.

    Science.gov (United States)

    Common crabgrass (Digitaria ciliaris [Retz.] Koel.) is a warm-season annual that offers an advantage over many perennial warm-season grasses because of its greater nutritive value and high palatability. However, little is known about how baling crabgrass hay at high moisture affects ruminal forage ...

  12. Global warming related transient albedo feedback in the Arctic and its relation to the seasonality of sea ice

    Science.gov (United States)

    Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco

    2015-04-01

    The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates

  13. Elevated CO2 and warming induce substantial and persistent declines in forage quality irrespective of warming in mixed grass prairie

    Science.gov (United States)

    Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...

  14. Nongrowing season methane emissions-a significant component of annual emissions across northern ecosystems.

    Science.gov (United States)

    Treat, Claire C; Bloom, A Anthony; Marushchak, Maija E

    2018-03-22

    Wetlands are the single largest natural source of atmospheric methane (CH 4 ), a greenhouse gas, and occur extensively in the northern hemisphere. Large discrepancies remain between "bottom-up" and "top-down" estimates of northern CH 4 emissions. To explore whether these discrepancies are due to poor representation of nongrowing season CH 4 emissions, we synthesized nongrowing season and annual CH 4 flux measurements from temperate, boreal, and tundra wetlands and uplands. Median nongrowing season wetland emissions ranged from 0.9 g/m 2 in bogs to 5.2 g/m 2 in marshes and were dependent on moisture, vegetation, and permafrost. Annual wetland emissions ranged from 0.9 g m -2  year -1 in tundra bogs to 78 g m -2  year -1 in temperate marshes. Uplands varied from CH 4 sinks to CH 4 sources with a median annual flux of 0.0 ± 0.2 g m -2  year -1 . The measured fraction of annual CH 4 emissions during the nongrowing season (observed: 13% to 47%) was significantly larger than that was predicted by two process-based model ensembles, especially between 40° and 60°N (modeled: 4% to 17%). Constraining the model ensembles with the measured nongrowing fraction increased total nongrowing season and annual CH 4 emissions. Using this constraint, the modeled nongrowing season wetland CH 4 flux from >40° north was 6.1 ± 1.5 Tg/year, three times greater than the nongrowing season emissions of the unconstrained model ensemble. The annual wetland CH 4 flux was 37 ± 7 Tg/year from the data-constrained model ensemble, 25% larger than the unconstrained ensemble. Considering nongrowing season processes is critical for accurately estimating CH 4 emissions from high-latitude ecosystems, and necessary for constraining the role of wetland emissions in a warming climate. © 2018 John Wiley & Sons Ltd.

  15. Effect of lactic acid-lactobacillus preservative and moisture concentration at baling on intake and digestibility of crabgrass hay by lambs and in-situ digestibility by heifers

    Science.gov (United States)

    Crabgrass is a warm-season annual forage that has greater nutritive value than most other warm-season grasses and is highly palatable, but curing time for crabgrass hay is typically longer than for bermudagrass. Crabgrass hay was either not treated or treated with a lactic acid-lactobacillus preserv...

  16. Comparative growth analysis of cool- and warm-season grasses in a cool-temperate environment

    International Nuclear Information System (INIS)

    Belesky, D.P.; Fedders, J.M.

    1995-01-01

    Using both cool-season (C3) and warm-season (C4) species is a viable means of optimizing herbage productivity over varying climatic conditions in temperate environments. Despite well-documented differences in water, N, and radiation use, no consistent evidence demonstrates productivity differences among C3 and C4 perennial grass species under identical management. A field study was conducted to determine relative growth rates (RGR), nitrogen productivity (NP), and mean radiation productivity (RP) (dry matter production as a function of incident radiation) of cool- and warm-season grasses managed identically. Results were used to identify management practices thd could lead to optimal productivity in combinations or mixtures of cool- and warm-season grasses. Dry matter yields of warm-season grasses equaled or surpassed those of cool-season grasses, despite a 40% shorter growth interval. Certain cool- and warm-season grasses appear to be suitable for use in mixtures, based on distribution of herbage production; however, actual compatibility may be altered by defoliation management. Relative growth rates varied among years and were about 40% lower for canopies clipped to a 10-cm residue height each time 20-cm of growth accumulated compared with other treatments. The RGR of warm-season grasses was twice that of cool-season grasses Nitrogen productivity (g DM g-1 N d -1) and mean radiation productivity (g DM MJ-1) for warm-season grasses was also more than twice that of cool-season grasses. Radiation productivity of cool-season grasses was dependent on N, while this was not always the case for warm-season grasses. The superior production capability of certain warm-season compared with cool-season grasses in a cool-temperate environment can be sustained under a range of defoliation treatments and demonstrates suitability for use in frequently defoliated situations

  17. Seasonal nutrient yield and digestibility of deer forage from a young pine plantation

    Science.gov (United States)

    Robert M. Blair; Henry L. Short; E.A. Epps

    1977-01-01

    Six classes of current herbaceous and woody forage were collected seasonally from a 5-year-old mixed loblolly (Pinus taeda)-shortleaf pine (Pinus echinata) plantation (in Texas) and subjected to nutrient analyses and nylon bag dry-matter digestion trials. Forages were most nutritious and digestible in the spring when tissues were succulent and growing rapidly. Browse...

  18. Forage Potential of Photoperiod-Sensitive millet ( Pennisetum ...

    African Journals Online (AJOL)

    To determine its potential as an annual forage, 'Maiwa', which is a short-day photoperiod-sensitive millet (Pennisetum americanum (Linn.) ... Improvement in the level and seasonal distribution of 'maiwa' herbage production as well as quality can be realised through suitable agronomic practices as well as breeding.

  19. Positive feedback of greenhouse gas balances to warming is determined by non-growing season emissions in an alpine meadow

    Science.gov (United States)

    Niu, S.; Wang, J.; Quan, Q.; Chen, W.; Wen, X.; Yu, G.

    2017-12-01

    Large uncertainties exist in the sources and sinks of greenhouse gases (CO2, CH4, N2O) in response to climate warming and human activity. So far, numerous previous studies have evaluated the CO2 budget, but little attention has paid to CH4 and N2O budgets and the concurrent balance of these three gases in combination, especially in the non-growing season. Here, we synthesized eddy covariance measurement with the automatic chamber measurements of CO2, CH4, and N2O exposed to three levels of temperature treatments (ambient, +1.5 °C, +2.5 °C) and two disturbance treatments (ummowing, mowing) in an alpine meadow on the Tibetan Plateau. We have found that warming caused increase in CH4 uptake and decrease in N2O emission offset little of the enhancement in CO2 emission, triggering a positive feedback to climate warming. Warming switches the ecosystem from a net sink (-17 ± 14 g CO2-eq m-2 yr-1) in the control to a net source of greenhouse gases of 94 ± 36 gCO2-eq m-2 yr-1 in the plots with +1.5 °C warming treatment, and 177 ± 6 gCO2-eq m-2 yr-1 in the plots with +2.5 °C warming treatment. The changes in the non-growing season balance, rather than those in the growing season, dominate the warming responses of annual greehouse gas balance. And this is not changed by mowing. The dominant role of responses of winter greenhouse gas balance in the positive feedback of ecosystem to climate warming highlights that greenhouse gas balance in cold season has to be considered when assessing climate-carbon cycle feedback.

  20. Forage mass and the nutritive value of pastures mixed with forage peanut and red clover

    Directory of Open Access Journals (Sweden)

    Ricardo Lima de Azevedo Junior

    2012-04-01

    Full Text Available The objective of this research was to estimate three pasture-based systems mixed with elephantgrass + spontaneous growth species, annual ryegrass, for pasture-based system 1; elephantgrass + spontaneous growth species + forage peanut, for pasture-based system 2; and elephantgrass + spontaneous growth species + annual ryegrass + red clover, for pasture-based system 3. Elephantgrass was planted in rows 4 m apart from each other. During the cool-season, annual ryegrass was sown in the alleys between the rows of elephantgrass; forage peanut and red clover were sown in the alleys between the elephantgrass according to the respective treatment. The experimental design was totally randomized in the three treatments (pasture-based systems, two replicates (paddocks in completely split-plot time (grazing cycles. Holstein cows receiving 5.5 kg-daily complementary concentrate feed were used in the evaluation. Pre-grazing forage mass, botanical composition and stocking rate were evaluated. Samples of simulated grazing were collected to analyze organic matter (OM, neutral detergent fiber (NDF, crude protein (CP and organic matter in situ digestibility (OMISD. Nine grazing cycles were performed during the experimental period (341 days. The average dry matter values for pre-grazing and stocking rate were 3.34; 3.46; 3.79 t/ha, and 3.28; 3.34; 3.60 AU/ha for each respective pasture-based system. Similar results were observed between the pasture-based systems for OM, NDF, CP and OMISD. Considering forage mass, stocking rate and nutritive value, the pasture-based system intercropped with forage legumes presented better performance.

  1. Performances of some warm-season turfgrasses under ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... Main characteristics of mediterranean climate are represented by mild, rainy ... the warm-season turfgrasses with low water use rate and. *Corresponding ..... Lawns and Golf, Sleeping Bear Press, Chelsea, MI. Busey P (2003).

  2. Seasonal and inter-annual temperature variability in the bottom waters over the Black Sea shelf

    Science.gov (United States)

    Shapiro, G. I.; Wobus, F.; Aleynik, D. L.

    2011-02-01

    Long-term changes in the state of the Bottom Shelf Water (BSW) on the Western shelf of the Black Sea are assessed using analysis of intra- and inter-annual variations of temperature as well as their relations to physical parameters of both shelf and deep-sea waters. First, large data sets of in-situ observations over the 20th century are compiled into high-resolution monthly climatology at different depth levels. Then, the temperature anomalies from the climatic mean are calculated and aggregated into spatial compartments and seasonal bins to reveal temporal evolution of the BSW. For the purpose of this study the BSW is defined as such shelf water body between the seabed and the upper mixed layer (bounded by the σθ = 14.2 isopycnal) which has limited ability to mix vertically with oxygen-rich surface waters during the warm season (May-November) due to the formation of a seasonal pycnocline. The effects of atmospheric processes at the surface on the BSW are hence suppressed as well as the action of the "biological pump". The vertical extent of the near- bottom waters is determined based on energy considerations and the structure of the seasonal pycnocline, whilst the horizontal extent is controlled by the shelf break, where strong along-slope currents hinder exchanges with the deep sea. The BSW is shown to occupy nearly half of the area of the shelf during the summer stratification period. The potential of the BSW to ventilate horizontally during the warm season with the deep-sea waters is assessed using isopycnic analysis of temperature variations. A long-term time series of temperature anomalies in the BSW is constructed from observations during the May-November period for the 2nd half of the 20th century. The results reveal a warm phase in the 1960s/70s, followed by cooling of the BSW during 1980-2001. The transition between the warm and cold periods coincides with a regime shift in the Black Sea ecosystem. While it was confirmed that the memory of winter

  3. Harvesting Effects on Species Composition and Distribution of Cover Attributes in Mixed Native Warm-Season Grass Stands

    Directory of Open Access Journals (Sweden)

    Vitalis W. Temu

    2015-05-01

    Full Text Available Managing grasslands for forage and ground-nesting bird habitat requires appropriate defoliation strategies. Subsequent early-summer species composition in mixed stands of native warm-season grasses (Indiangrass (IG, Sorghastrum nutans, big bluestem (BB, Andropogon gerardii and little bluestem (LB, Schizachyrium scoparium responding to harvest intervals (treatments, 30, 40, 60, 90 or 120 d and durations (years in production was assessed. Over three years, phased May harvestings were initiated on sets of randomized plots, ≥90 cm apart, in five replications (blocks to produce one-, two- and three-year-old stands. Two weeks after harvest, the frequencies of occurrence of plant species, litter and bare ground, diagonally across each plot (line intercept, were compared. Harvest intervals did not influence proportions of dominant plant species, occurrence of major plant types or litter, but increased that of bare ground patches. Harvest duration increased the occurrence of herbaceous forbs and bare ground patches, decreased that of tall-growing forbs and litter, but without affecting that of perennial grasses, following a year with more September rainfall. Data suggest that one- or two-year full-season forage harvesting may not compromise subsequent breeding habitat for bobwhites and other ground-nesting birds in similar stands. It may take longer than a year’s rest for similar stands to recover from such changes in species composition.

  4. Forage plants of an Arctic-nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology

    NARCIS (Netherlands)

    Lameris, T.K.; Jochems, Femke; van der Graaf, A.J.; Andersson, M.; Limpens, J.; Nolet, B.A.

    2017-01-01

    During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen-rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be

  5. Pollen foraging in colonies of Melipona bicolor (Apidae, Meliponini): effects of season, colony size and queen number.

    Science.gov (United States)

    Hilário, S D; Imperatriz-Fonseca, V L

    2009-01-01

    We evaluated the ratio between the number of pollen foragers and the total number of bees entering colonies of Melipona bicolor, a facultative polygynous species of stingless bees. The variables considered in our analysis were: seasonality, colony size and the number of physogastric queens in each colony. The pollen forager ratios varied significantly between seasons; the ratio was higher in winter than in summer. However, colony size and number of queens per colony had no significant effect. We conclude that seasonal differences in pollen harvest are related to the production of sexuals and to the number of individuals and their body size.

  6. Effect of sociality and season on gray wolf (Canis lupus) foraging behavior: implications for estimating summer kill rate.

    Science.gov (United States)

    Metz, Matthew C; Vucetich, John A; Smith, Douglas W; Stahler, Daniel R; Peterson, Rolf O

    2011-03-01

    Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA) for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging). We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf) decreased from 8.4±0.9 kg (mean ± SE) in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  7. Unusually Warm Spring Temperatures Magnify Annual CH4 Losses From Arctic Ecosystems

    Science.gov (United States)

    Goodrich, J. P.; Oechel, W. C.; Gioli, B.; Murphy, P.; Zona, D.

    2015-12-01

    The relatively fast pace of Northern high latitude warming puts the very large permafrost soil C pool at a higher risk of being lost to the atmosphere as CH4. Estimates for the Arctic tundra's contribution to the global wetland CH4 emissions range from 15-27 TgCH4 y-1 (8-14% of total). However, these estimates are largely based on data from the growing season, or from boreal systems underlain by discontinuous permafrost with different physical, hydrological, and biogeochemical dynamics than continuous permafrost zones. Recent data from a transect of eddy covariance flux towers across the North Slope of Alaska revealed the importance of cold season emissions to the annual CH4 budget, which may not correlate with summer flux patterns. However, understanding of the controls and inter-annual variability in fluxes at these different sites is lacking. Here, we present data from ~3 years at 5 tundra ecosystems along this Arctic transect to show the influence of earlier and deeper spring active layer thaw on timing and magnitude of CH4 fluxes. This year's warm spring led to significantly greater thaw depths and lower water tables than the previous year. Substantial CH4 emissions in 2015 were recorded at the wettest sites >20 days earlier than in the more meteorologically normal previous year. Since the soil remained saturated despite a lowered water table, total spring CH4 emissions more than doubled at these wet sites. At the drier sites, soil moisture declined with water table during the warmer spring, resulting in similar emissions to the previous year. However, deeper thaw depths prolonged fall and early winter emissions during the 'zero-curtain' soil temperature freezing phase, particularly at the drier site. In general, warmer spring temperatures in the Arctic may result in large increases in early season CH4 losses at wet sites and prolonged steady losses at the upland sites, enhancing the feedback between changing climate and tundra CH4 emissions at all sites.

  8. Extreme Effects of Season on the Foraging Activities and Colony Productivity of a Stingless Bee (Melipona asilvai Moure, 1971 in Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Daniela Lima do Nascimento

    2012-01-01

    Full Text Available This study reports the influence of season on foraging activities and internal colonial parameters of Melipona asilvai in an Atlantic forest area of northeast Brazil. We used video cameras connected to a PC to monitor all departures and returns of foragers and the types of materials they carried. Foraging activities decreased almost 90% from dry to rainy seasons, but temperature and humidity were not the main factors influencing departures. Observed honey storage and an extreme cutback in activities during the rainy period suggest a seasonal diapause in this species.

  9. Rendimento de forragem e valor nutritivo de gramíneas anuais de estação fria submetidas a sombreamento por Pinus elliottii e ao sol pleno Forage yield and nutritive value of cool-season annual forage grasses shaded by Pinus elliottii trees and at full-sun

    Directory of Open Access Journals (Sweden)

    Raquel Santiago Barro

    2008-10-01

    Full Text Available Avaliou-se o efeito do sombreamento provocado por duas densidades arbóreas em uma floresta de Pinus elliottii Engelm. com 10 anos de idade sobre o rendimento e o valor nutritivo da forragem de três gramíneas de ciclo hibernal. Como tratamentos, avaliou-se a combinação de dois fatores (3 x 3 em um delineamento experimental de parcelas subdivididas com três repetições, no qual as parcelas foram as condições luminosas (proporcionadas por duas densidades arbóreas: 555 e 333 árvores/ha e luz solar plena e as subparcelas as espécies forrageiras azevém-anual (Lolium multiflorum Lam.; aveia-preta (Avena strigosa Schreb.; e aveia-branca (A. sativa L. cv. Fapa 2. A semeadura foi realizada entre 25/7/2005 e 5/8/2005 e entre 26 e 27/4/2006. O rendimento de matéria seca foi estimado em avaliações durante o estádio vegetativo (aos 104 dias após a semeadura em 2006 e em pleno florescimento (aos 132 e 170 dias, em 2005 e 2006, respectivamente. O valor nutritivo da forragem foi avaliado considerando os teores médios de proteína bruta (PB e a digestibilidade in vitro da matéria orgânica (DIVMO. O sombreamento moderado reduziu em 57% o rendimento médio de forragem dos três genótipos avaliados, mas aumentou em 2,3% o teor de proteína bruta (PB e em 5,5% a digestibilidade in vitro (DIVMO quando as plantas estavam em florescimento pleno. Entre as espécies forrageiras avaliadas, a aveia-branca e a aveia-preta apresentam maior potencial para utilização em sistemas silvipastoris na Região Sul.It was evaluated the shading effect induced by two tree densities of a ten-year-old slash pine (Pinus elliottii Engelm. forest, and at full sun, on forage dry matter yield and nutritive value of three cool-season annual grasses. Treatments were a combination of two main factors: a three light conditions induced by two tree densities (333 e 555 stems/ha and at full sun; b three cool-season annual forage grasses: Italian ryegrass (Lolium multiflorum Lam

  10. Effect of sociality and season on gray wolf (Canis lupus foraging behavior: implications for estimating summer kill rate.

    Directory of Open Access Journals (Sweden)

    Matthew C Metz

    Full Text Available BACKGROUND: Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. METHODOLOGY/PRINCIPAL FINDINGS: For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging. We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf decreased from 8.4±0.9 kg (mean ± SE in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  11. Warm-season severe wind events in Germany

    Science.gov (United States)

    Gatzen, Christoph

    2013-04-01

    A 15-year data set of wind measurements was analyzed with regard to warm season severe wind gusts in Germany. For April to September of the years 1997 to 2011, 1035 wind measurements of 26 m/s or greater were found. These wind reports were associated with 268 wind events. In total, 252 convective wind events contributed to 837 (81%) of the wind reports, 16 non-convective synoptic-scale wind events contributed to 198 reports (19%). Severe wind events were found with synoptic situations characterized by rather strong mid-level flow and advancing mid-level troughs. Severe convective wind events were analyzed using radar images and classified with respect to the observed radar structure. The most important convective mode was squall lines that were associated with one third of all severe wind gusts, followed by groups, bow echo complexes, and bow echoes. Supercells and cells were not associated with many wind reports. The low contribution of isolated cells indicates that rather large-scale forcing by synoptic-scale features like fronts is important for German severe wind events. Bow echoes were found to be present for 58% of all wind reports. The movement speed of bow echoes indicated a large variation with a maximum speed of 33 m/s. Extreme wind events as well as events with more than 15 wind reports were found to be related to higher movement speeds. Concentrating on the most intense events, derechos seem to be very important to the warm season wind threat in Germany. Convective events with a path length of more than 400 km contributed to 36% of all warm-season wind gusts in this data set. Furthermore, eight of nine extreme gusts exceeding 40 m/s were recorded with derecho events.

  12. Forage mass and stocking rate of elephant grass pastures managed under agroecological and conventional systems

    OpenAIRE

    Clair Jorge Olivo; Carlos Alberto Agnolin; Priscila Flôres Aguirre; Cláudia Marques de Bem; Tiago Luís da Ros de Araújo; Michelle Schalemberg Diehl; Gilmar Roberto Meinerz

    2014-01-01

    The objective was to evaluate elephant grass (Pennisetum purpureum Schum.) pastures, under the agroecological and conventional systems, as forage mass and stocking rate. In the agroecological system, the elephant grass was established in rows spaced by 3.0 m from each other. During the cool season ryegrass (Lolium multiflorum Lam.) was established between these rows, which allowed the development of spontaneous growth species during the warm season. In the conventional system the elephant gra...

  13. Soil warming for utilization and dissipation of waste heat in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.; Chapura, A.M. Jr.

    1978-01-01

    The feasibility of using soil warming for utilization and dissipation of reject heat from power plants was demonstrated in a year-long test operation of a field prototype in Pennsylvania. A parallel network of 5-mm-diam polyethylene pipes was buried at a 0.3-m depth and with 0.6-m spacing in the soil covering a 15- x 60-m area to convey hot water simulating condenser cooling water from a power plant. Crop response to the heated soil varied: Snap beans and warm season forage crops such as sudangrass responded with increased yields, while cool season forage crops experienced decreased yields. Winter wheat yields were also increased, but winter barley was winter-killed due to delayed development of cold tolerance in the warm soil. Heat dissipation from the buried pipes was primarily by thermal conduction to the soil surface. Rates of heat loss from the buried pipes were most accurately predicted using an equation that included an explicit term for heat conduction below the pipes. Estimated soil warming land area necessary to dissipate all the reject heat from a 33% efficiency, 1500-MW electrical power plant based on minimum measured summer heat loss rates was 76 km 2 compared to the economic optimum of 18.2 km 2 determined as the least-cost system

  14. Seasonal variation and annual trends of metals and metalloids in the blood of the Little Penguin (Eudyptula minor).

    Science.gov (United States)

    Finger, Annett; Lavers, Jennifer L; Orbell, John D; Dann, Peter; Nugegoda, Dayanthi; Scarpaci, Carol

    2016-09-15

    Little Penguins (Eudyptula minor) are high-trophic coastal feeders and are effective indicators of bioavailable pollutants in their foraging zones. Here, we present concentrations of metals and metalloids in blood of 157 Little Penguins, collected over three years and during three distinct seasons (breeding, moulting and non-breeding) at two locations: the urban St Kilda colony and the semi-rural colony at Phillip Island, Victoria, Australia. Penguin metal concentrations were foremostly influenced by location (St Kilda>Phillip Island for non-essential elements) and differed among years and seasons at both locations, reflecting differences in seasonal metal bioaccumulation or seasonal exposure through prey. Mean blood mercury concentrations showed an increasing annual trend and a negative correlation with flipper length at St Kilda. Notably, this study is the first to report on blood metal concentrations during the different stages of moult, showing the mechanism of non-essential metal mobilisation and detoxification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dry season forages for improving dairy production in smallholder systems in Uganda

    Directory of Open Access Journals (Sweden)

    Jolly Kabirizi

    2013-12-01

    Full Text Available Economically feasible strategies for year-round feed supply to dairy cattle are needed to improve feed resource availability, milk yield and household income for the smallholder dairy farming systems that predominate in the rural Eastern and Central African region. Currently, Napier grass (Pennisetum purpureum is the major forage in zero-grazing production systems, but dry-season production is often constrained. Our results from 24 farms show that sowing forage legumes, including Centrosema molle (formerly C. pubescens and Clitoria ternatea, with Napier grass and Brachiaria hybrid cv. Mulato improved both yield of forage and protein concentration. Sowing of 0.5 ha Napier-Centro plus 0.5 ha of Mulato-Clitoria increased milk yield by 80% and household income by 52% over 0.5 ha Napier grass monoculture. Possible income foregone from the crops which could have been grown on the additional 0.5 ha must be considered in assessing the economic viability of the system.

  16. Ruminally undegradable protein content and digestibility for forages using the mobile bag in situ technique.

    Science.gov (United States)

    Buckner, C D; Klopfenstein, T J; Rolfe, K M; Griffin, W A; Lamothe, M J; Watson, A K; MacDonald, J C; Schacht, W H; Schroeder, P

    2013-06-01

    Four experiments were conducted to evaluate RUP content and digestibility for smooth bromegrass, subirrigated meadow, upland native range, and warm-season grasses. Samples were collected from esophageally cannulated cows or ruminally cannulated steers. Forages were ruminally incubated in in situ bags for durations of time based on 75% of total mean retention time, which was based on IVDMD and rate of passage calculations. One-half of the bags were duodenally incubated and excreted in the feces, and NDIN was analyzed on all bags for RUP calculations. Crude protein was numerically greater early in the growing cycle for grasses compared with later as grasses matured (P ≤ 0.32). The RUP was 13.3%, 13.3%, and 19.7% of CP for smooth bromegrass, subirrigated meadow, and upland native range, respectively. These values tended to be lower early in the growth cycle and increased (linear P ≤ 0.13) as forages matured for warm-season grasses and subirrigated meadows. Because both CP and RUP content change throughout the growing season, expressing RUP as a percentage of DM gives more consistent averages compared with RUP as a percentage of CP. Coefficient of variation values for RUP as a percentage of DM averaged 0.21 over all 4 experiments compared with 0.26 for RUP as a percentage of CP. Average RUP as a percentage of DM was 2.03%, 1.53%, and 1.94% for smooth bromegrass, subirrigated meadow, and upland native range, respectively. Total tract indigestible protein (TTIDP) linearly increased with maturity for subirrigated meadow samples (P RUP varied considerably, ranging from 25% to 60%. Subirrigated meadow, native range, and smooth bromegrass samples tended to have linear decreases (P ≤ 0.11) in RUP digestibility throughout the growing season. The amount of digested RUP was fairly consistent across experiments and averages for smooth bromegrass, subirrigated meadow, and upland native range were 0.92%, 0.64%, and 0.49% of DM, respectively. Warm-season grasses in Exp. 2 had

  17. FORAGE PRODUCTIVITY IN AGROECOSYSTEMS USING TRADITIONAL AND ROTATIONAL CATTLE GRAZING IN PASO DE OVEJAS, VERACRUZ, MEXICO

    Directory of Open Access Journals (Sweden)

    Marcelo Bautista-Tolentino

    2011-11-01

    Full Text Available Forage biomass and chemical composition of Megathyrsus maximus (Jacq. B.K. Simon & S.W.L. Jacobs were assessed in monoculture (P or associated with trees of Guazuma ulmifolia Lam. (PGu or Gliricidia sepium (Jacq. Kunth ex Walp (PGs, under traditional (TG or rotational (RG cattle grazing regimes, by season of the year (windy: October-February, dry: March-June, and rainy: July-September and annually. Annual forage production (kg DM ha-1 under RG and TG was 8049±586 and 4170±319, respectively; 5441±2225 in P-TG, 2022±82 in PGs-TG, 12326±2094 in PGu-TG, 9612±1331 in PGs-RG, and 7976±737 in PGu-RG. Gliricidia sepium produced 1448±2 and 1660±3 kg DM ha-1 year-1 under PGs-TG and PGs-RG, respectively. Forage yield across plant associations and grazing regimes was higher in the rainy season (5333.6±56.7 kg DM ha-1, and decreased in the windy (2462±349.0 kg DM ha-1 and dry seasons (252.9±2 kg DM ha-1. The PGu system had the highest crude protein content annually (21.8 % and by season (23.1 %, windy, and also showed the least neutral detergent fiber content during the year (55.2 % and by season (55.2 %, rainy. Biomass production and chemical composition of M. maximus in monoculture or associated with G. ulmifolia and G. sepium can be increased by modifying the traditional grazing regimes to a more intensive rotational system during the growth period of the year.

  18. Pronounced Seasonal Changes in the Movement Ecology of a Highly Gregarious Central-Place Forager, the African Straw-Coloured Fruit Bat (Eidolon helvum.

    Directory of Open Access Journals (Sweden)

    Jakob Fahr

    Full Text Available Straw-coloured fruit bats (Eidolon helvum migrate over vast distances across the African continent, probably following seasonal bursts of resource availability. This causes enormous fluctuations in population size, which in turn may influence the bats' impact on local ecosystems. We studied the movement ecology of this central-place forager with state-of-the-art GPS/acceleration loggers and concurrently monitored the seasonal fluctuation of the colony in Accra, Ghana. Habitat use on the landscape scale was assessed with remote sensing data as well as ground-truthing of foraging areas.During the wet season population low (~ 4000 individuals, bats foraged locally (3.5-36.7 km in urban areas with low tree cover. Major food sources during this period were fruits of introduced trees. Foraging distances almost tripled (24.1-87.9 km during the dry season population peak (~ 150,000 individuals, but this was not compensated for by reduced resting periods. Dry season foraging areas were random with regard to urban footprint and tree cover, and food consisted almost exclusively of nectar and pollen of native trees.Our study suggests that straw-coloured fruit bats disperse seeds in the range of hundreds of meters up to dozens of kilometres, and pollinate trees for up to 88 km. Straw-coloured fruit bats forage over much larger distances compared to most other Old World fruit bats, thus providing vital ecosystem services across extensive landscapes. We recommend increased efforts aimed at maintaining E. helvum populations throughout Africa since their keystone role in various ecosystems is likely to increase due to the escalating loss of other seed dispersers as well as continued urbanization and habitat fragmentation.

  19. Pronounced Seasonal Changes in the Movement Ecology of a Highly Gregarious Central-Place Forager, the African Straw-Coloured Fruit Bat (Eidolon helvum).

    Science.gov (United States)

    Fahr, Jakob; Abedi-Lartey, Michael; Esch, Thomas; Machwitz, Miriam; Suu-Ire, Richard; Wikelski, Martin; Dechmann, Dina K N

    2015-01-01

    Straw-coloured fruit bats (Eidolon helvum) migrate over vast distances across the African continent, probably following seasonal bursts of resource availability. This causes enormous fluctuations in population size, which in turn may influence the bats' impact on local ecosystems. We studied the movement ecology of this central-place forager with state-of-the-art GPS/acceleration loggers and concurrently monitored the seasonal fluctuation of the colony in Accra, Ghana. Habitat use on the landscape scale was assessed with remote sensing data as well as ground-truthing of foraging areas. During the wet season population low (~ 4000 individuals), bats foraged locally (3.5-36.7 km) in urban areas with low tree cover. Major food sources during this period were fruits of introduced trees. Foraging distances almost tripled (24.1-87.9 km) during the dry season population peak (~ 150,000 individuals), but this was not compensated for by reduced resting periods. Dry season foraging areas were random with regard to urban footprint and tree cover, and food consisted almost exclusively of nectar and pollen of native trees. Our study suggests that straw-coloured fruit bats disperse seeds in the range of hundreds of meters up to dozens of kilometres, and pollinate trees for up to 88 km. Straw-coloured fruit bats forage over much larger distances compared to most other Old World fruit bats, thus providing vital ecosystem services across extensive landscapes. We recommend increased efforts aimed at maintaining E. helvum populations throughout Africa since their keystone role in various ecosystems is likely to increase due to the escalating loss of other seed dispersers as well as continued urbanization and habitat fragmentation.

  20. Warm season chloride concentrations in stream habitats of freshwater mussel species at risk

    International Nuclear Information System (INIS)

    Todd, Aaron K.; Kaltenecker, M. Georgina

    2012-01-01

    Warm season (May–October) chloride concentrations were assessed in stream habitats of freshwater mussel species at risk in southern Ontario, Canada. Significant increases in concentrations were observed at 96% of 24 long-term (1975–2009) monitoring sites. Concentrations were described as a function of road density indicating an anthropogenic source of chloride. Linear regression showed that 36% of the variation of concentrations was explained by road salt use by the provincial transportation ministry. Results suggest that long-term road salt use and retention is contributing to a gradual increase in baseline chloride concentrations in at risk mussel habitats. Exposure of sensitive mussel larvae (glochidia) to increasing chloride concentrations may affect recruitment to at risk mussel populations. - Highlights: ► Warm season chloride concentrations were assessed in habitats of mussel species at risk. ► Concentrations increased significantly at 96% of 24 long-term monitoring sites. ► Concentrations increased with increases in road density and road salt use. ► Retention of road salt likely contributed to elevated warm season concentrations. ► Glochidia exposure to increasing concentrations may affect mussel reproduction. - Warm season chloride concentrations increased in southern Ontario streams with road salt use, such that reproduction of freshwater mussel species at risk may be affected.

  1. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations

    Science.gov (United States)

    Dai, Aiguo; Rasmussen, Roy M.; Liu, Changhai; Ikeda, Kyoko; Prein, Andreas F.

    2017-08-01

    Climate models project increasing precipitation intensity but decreasing frequency as greenhouse gases increase. However, the exact mechanism for the frequency decrease remains unclear. Here we investigate this by analyzing hourly data from regional climate change simulations with 4 km grid spacing covering most of North America using the Weather Research and Forecasting model. The model was forced with present and future boundary conditions, with the latter being derived by adding the CMIP5 19-model ensemble mean changes to the ERA-interim reanalysis. The model reproduces well the observed seasonal and spatial variations in precipitation frequency and histograms, and the dry interval between rain events over the contiguous US. Results show that overall precipitation frequency indeed decreases during the warm season mainly due to fewer light-moderate precipitation (0.1 2.0 mm/h) events, while heavy (2 10 mm/h) events increase. Dry spells become longer and more frequent, together with a reduction in time-mean relative humidity (RH) in the lower troposphere during the warm season. The increased dry hours and decreased RH lead to a reduction in overall precipitation frequency and also for light-moderate precipitation events, while water vapor-induced increases in precipitation intensity and the positive latent heating feedback in intense storms may be responsible for the large increase in intense precipitation. The size of intense storms increases while their number decreases in the future climate, which helps explain the increase in local frequency of heavy precipitation. The results generally support a new hypothesis for future warm-season precipitation: each rainstorm removes ≥7% more moisture from the air per 1 K local warming, and surface evaporation and moisture advection take slightly longer than currently to replenish the depleted moisture before the next storm forms, leading to longer dry spells and a reduction in precipitation frequency, as well as

  2. Predicting foraging wading bird populations in Everglades National Park from seasonal hydrologic statistics under different management scenarios

    Science.gov (United States)

    Kwon, Hyun-Han; Lall, Upmanu; Engel, Vic

    2011-09-01

    The ability to map relationships between ecological outcomes and hydrologic conditions in the Everglades National Park (ENP) is a key building block for their restoration program, a primary goal of which is to improve conditions for wading birds. This paper presents a model linking wading bird foraging numbers to hydrologic conditions in the ENP. Seasonal hydrologic statistics derived from a single water level recorder are well correlated with water depths throughout most areas of the ENP, and are effective as predictors of wading bird numbers when using a nonlinear hierarchical Bayesian model to estimate the conditional distribution of bird populations. Model parameters are estimated using a Markov chain Monte Carlo (MCMC) procedure. Parameter and model uncertainty is assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the average dry season water level, and the numbers of reversals from the dry season recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of foraging bird numbers showing low frequency oscillations in response to decadal fluctuations in hydroclimatic conditions. Simulations of water levels at the index location used in the Bayesian model under alternative water management scenarios allow the posterior probability distributions of the number of foraging birds to be compared, thus providing a mechanism for linking management schemes to seasonal rainfall forecasts.

  3. Striking Seasonality in the Secular Warming of the Northern Continents: Structure and Mechanisms

    Science.gov (United States)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    The linear trend in twentieth-century surface air temperature (SAT)—a key secular warming signal— exhibits striking seasonal variations over Northern Hemisphere continents; SAT trends are pronounced in winter and spring but notably weaker in summer and fall. The SAT trends in historical twentieth-century climate simulations informing the Intergovernmental Panel for Climate Change's Fifth Assessment show varied (and often unrealistic) strength and structure, and markedly weaker seasonal variation. The large intra-ensemble spread of winter SAT trends in some historical simulations was surprising, especially in the context of century-long linear trends, with implications for the detection of the secular warming signal. The striking seasonality of observed secular warming over northern continents warrants an explanation and the representation of related processes in climate models. Here, the seasonality of SAT trends over North America is shown to result from land surface-hydroclimate interactions and, to an extent, also from the secular change in low-level atmospheric circulation and related thermal advection. It is argued that the winter dormancy and summer vigor of the hydrologic cycle over middle- to high-latitude continents permit different responses to the additional incident radiative energy from increasing greenhouse gas concentrations. The seasonal cycle of climate, despite its monotony, provides an expanded phase space for the exposition of the dynamical and thermodynamical processes generating secular warming, and an exceptional cost-effective opportunity for benchmarking climate projection models.

  4. Seasonal weather-related decision making for cattle production in the Northern Great Plains

    Science.gov (United States)

    High inter-annual variability of seasonal weather patterns can greatly affect forage and therefore livestock production in the Northern Great Plains. This variability can make it difficult for ranchers to set yearly stocking rates, particularly in advance of the grazing season. To better understand ...

  5. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland

    Energy Technology Data Exchange (ETDEWEB)

    Rillig, M.C.; Wright, S.F.; Shaw, M.R.; Field, C.B.

    2002-04-01

    Despite the importance of arbuscular mycorrhizae to the functioning of terrestrial ecosystems (e.g. nutrient uptake, soil aggregation), and the increasing evidence of global warming, responses of arbuscular mycorrhizal fungi (AMF) to climate warming are poorly understood. In a field experiment using infrared heaters, we found effects of warming on AMF after one growing season in an annual grassland, in the absence of any effects on measured root parameters (weight, length, average diameter). AMF soil hyphal length was increased by over 40% in the warmed plots, accompanied by a strong trend for AMF root colonization increase. In the following year, root weight was again not significantly changed, and AMF root colonization increased significantly in the warmed plots. Concentration of the soil protein glomalin, a glycoprotein produced by AMF hyphae with importance in soil aggregation, was decreased in the warmed plots. Soil aggregate water stability, measured for five diameter size classes, was also decreased significantly. In the following year, soil aggregate weight in two size classes was decreased significantly, but the effect size was very small. These results indicate that ecosystem warming may have stimulated carbon allocation to AMF. Other factors either influenced glomalin decomposition or production, hence influencing the role of these symbionts in soil aggregation. The observed small changes in soil aggregation, if widespread among terrestrial ecosystems, could have important consequences for soil carbon storage and erosion in a warmed climate, especially if there are cumulative effects of warming. (au)

  6. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    Science.gov (United States)

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  7. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function

    Directory of Open Access Journals (Sweden)

    P. A. Fay

    2011-10-01

    Full Text Available Precipitation and temperature drive many aspects of terrestrial ecosystem function. Climate change scenarios predict increasing precipitation variability and temperature, and long term experiments are required to evaluate the ecosystem consequences of interannual climate variation, increased growing season (intra-annual rainfall variability, and warming. We present results from an experiment applying increased growing season rainfall variability and year round warming in native tallgrass prairie. During ten years of study, total growing season rainfall varied 2-fold, and we found ~50–200% interannual variability in plant growth and aboveground net primary productivity (ANPP, leaf carbon assimilation (ACO2, and soil CO2 efflux (JCO2 despite only ~40% variation in mean volumetric soil water content (0–15 cm, Θ15. Interannual variation in soil moisture was thus amplified in most measures of ecosystem response. Differences between years in Θ15 explained the greatest portion (14–52% of the variation in these processes. Experimentally increased intra-annual season rainfall variability doubled the amplitude of intra-annual soil moisture variation and reduced Θ15 by 15%, causing most ecosystem processes to decrease 8–40% in some or all years with increased rainfall variability compared to ambient rainfall timing, suggesting reduced ecosystem rainfall use efficiency. Warming treatments increased soil temperature at 5 cm depth, particularly during spring, fall, and winter. Warming advanced canopy green up in spring, increased winter JCO2, and reduced summer JCO2 and forb ANPP, suggesting that the effects of warming differed in cooler versus warmer parts of the year. We conclude that (1 major ecosystem processes in this grassland may be substantially altered by predicted changes in

  8. Scavengers on the move: behavioural changes in foraging search patterns during the annual cycle.

    Directory of Open Access Journals (Sweden)

    Pascual López-López

    Full Text Available BACKGROUND: Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. METHODOLOGY/PRINCIPAL FINDINGS: We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding. Our results show that vultures followed a brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. CONCLUSIONS/SIGNIFICANCE: Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects could play an important role. Our results support the growing

  9. Season and landscape composition affect pollen foraging distances and habitat use of honey bees.

    Science.gov (United States)

    Danner, Nadja; Molitor, Anna Maria; Schiele, Susanne; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2016-09-01

    Honey bees (Apis mellifera L.) show a large variation in foraging distances and use a broad range of plant species as pollen resources, even in regions with intensive agriculture. However, it is unknown how increasing areas of mass-flowering crops like oilseed rape (Brassica napus; OSR) or a decrease of seminatural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. We studied pollen foraging of honey bee colonies in 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km and used waggle dances and digital geographic maps with major land cover types to reveal the distance and visited habitat type on a landscape level. Mean pollen foraging distance of 1347 decoded bee dances was 1015 m (± 26 m; SEM). In spring, increasing area of flowering OSR within 2 km reduced mean pollen foraging distances from 1324 m to only 435 m. In summer, increasing cover of SNH areas close to the colonies (within 200 m radius) reduced mean pollen foraging distances from 846 to 469 m. Frequency of pollen foragers per habitat type, measured as the number of dances per hour and hectare, was equally high for SNH, grassland, and OSR fields, but lower for other crops and forests. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating that pollen resources in such simple agricultural landscapes are more limited. Overall, we conclude that SNH and mass-flowering crops can reduce foraging distances of honey bee colonies at different scales and seasons with possible benefits for the performance of honey bee colonies. Further, mixed agricultural landscapes with a high proportion of SNH reduce foraging densities of honey bees in SNH and thus possible competition for pollen resources. © 2016 by the Ecological Society of America.

  10. Monitoring Forage Production of California Rangeland Using Remote Sensing Observations

    Science.gov (United States)

    Liu, H.; Jin, Y.; Dahlgren, R. A.; O'Geen, A. T.; Roche, L. M.; Smith, A. M.; Flavell, D.

    2016-12-01

    Pastures and rangeland cover more than 10 million hectares in California's coastal and inland foothill regions, providing feeds to livestock and important ecosystem services. Forage production in California has a large year-to-year variation due to large inter-annual and seasonal variabilities in precipitation and temperature. It also varies spatially due to the variability in climate and soils. Our goal is to develop a robust and cost-effective tool to map the near-real-time and historical forage productivity in California using remote sensing observations from Landsat and MODIS satellites. We used a Monteith's eco-physiological plant growth theory: the aboveground net primary production (ANPP) is determined by (i) the absorbed photosynthetically active radiation (APAR) and the (ii) light use efficiency (LUE): ANPP = APAR * LUEmax * f(T) * f(SM), where LUEmax is the maximum LUE, and f(T) and f(SM) are the temperature and soil moisture constrains on LUE. APAR was estimated with Landsat and MODIS vegetation index (VI), and LUE was calibrated with a statewide point dataset of peak forage production measurements at 75 annual rangeland sites. A non-linear optimization was performed to derive maximum LUE and the parameters for temperature and soil moisture regulation on LUE by minimizing the differences between the estimated and measured ANPP. Our results showed the satellite-derived annual forage production estimates correlated well withcontemporaneous in-situ forage measurements and captured both the spatial and temporal productivity patterns of forage productivity well. This remote sensing algorithm can be further improved as new field measurements become available. This tool will have a great importance in maintaining a sustainable range industry by providing key knowledge for ranchers and the stakeholders to make managerial decisions.

  11. Projecting pest population dynamics under global warming: the combined effect of inter- and intra-annual variations.

    Science.gov (United States)

    Zidon, Royi; Tsueda, Hirotsugu; Morin, Efrat; Morin, Shai

    2016-06-01

    The typical short generation length of insects makes their population dynamics highly sensitive not only to mean annual temperatures but also to their intra-annual variations. To consider the combined effect of both thermal factors under global warming, we propose a modeling framework that links general circulation models (GCMs) with a stochastic weather generator and population dynamics models to predict species population responses to inter- and intra-annual temperature changes. This framework was utilized to explore future changes in populations of Bemisia tabaci, an invasive insect pest-species that affects multiple agricultural systems in the Mediterranean region. We considered three locations representing different pest status and climatic conditions: Montpellier (France), Seville (Spain), and Beit-Jamal (Israel). We produced ensembles of local daily temperature realizations representing current and future (mid-21st century) climatic conditions under two emission scenarios for the three locations. Our simulations predicted a significant increase in the average number of annual generations and in population size, and a significant lengthening of the growing season in all three locations. A negative effect was found only in Seville for the summer season, where future temperatures lead to a reduction in population size. High variability in population size was observed between years with similar annual mean temperatures, suggesting a strong effect of intra-annual temperature variation. Critical periods were from late spring to late summer in Montpellier and from late winter to early summer in Seville and Beit-Jamal. Although our analysis suggested that earlier seasonal activity does not necessarily lead to increased populations load unless an additional generation is produced, it is highly likely that the insect will become a significant pest of open-fields at Mediterranean latitudes above 40° during the next 50 years. Our simulations also implied that current

  12. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects

    DEFF Research Database (Denmark)

    Gallo, Antonio; Giubert, Gianluca; Frisvad, Jens Christian

    2015-01-01

    Ruminant diets include cereals, protein feeds, their by-products as well as hay and grass, grass/legume, whole-crop maize, small grain or sorghum silages. Furthermore, ruminants are annually or seasonally fed with grazed forage in many parts of the World. All these forages could be contaminated...

  13. Annual cycle solar energy utilization with seasonal storage. Part 8. Study on periodic steady state of the annual cycle energy system at a practical operation; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 8

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1997-11-25

    A study was made of the periodic steady state of the annual cycle solar energy system with seasonal heat storage at a practical operation. Cold heat in winter and warm heat in summer are stored in the seasonal storage tank, and these are each used in shift until when demand for cold/warm heat appears. Moreover, gap in quantity of cold/warm heat going in/out of the heat storage tank during a year is filled by natural energy such as solar energy, so that the system can be operated in annual cycles. Studies were conducted of the periodic unsteady term and the problem on lowering of performance during the term such as the periodic unsteady term of water temperature inside the seasonal heat storage tank and temperature of the soil around the storage tank, and the level of lowering of performance during the term, necessity of additional operation/control at the start of operation and aged deterioration of the system. Within the assumption, even if starting operation in any time of the year, the system could show the performance almost expected from the first operation year with no additional system operation and control required only at the start of operation. It is thought that the heat source selection control of heat pump largely contributes to this. 4 refs., 5 figs., 3 tabs.

  14. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume haylages or soybean meal.

    Science.gov (United States)

    Foster, J L; Adesogan, A T; Carter, J N; Blount, A R; Myer, R O; Phatak, S C

    2009-09-01

    The high cost of commercial supplements necessitates evaluation of alternatives for ruminant livestock fed poor quality warm-season grasses. This study determined how supplementing bahiagrass haylage (Paspalum notatum Flügge cv. Tifton 9) with soybean [Glycine max (L.) Merr.] meal or warm-season legume haylages affected the performance of lambs. Forty-two Dorper x Katadhin lambs (27.5 +/- 5 kg) were fed for ad libitum intake of bahiagrass haylage (67.8% NDF, 9.6% CP) alone (control) or supplemented with soybean meal (18.8% NDF, 51.4% CP) or haylages of annual peanut [Arachis hypogaea (L.) cv. Florida MDR98; 39.6% NDF, 18.7% CP], cowpea [Vigna unguiculata (L.) Walp. cv. Iron clay; 44.1% NDF, 16.0% CP], perennial peanut (Arachis glabrata Benth. cv. Florigraze; 40.0% NDF, 15.8% CP), or pigeonpea [Cajanus cajan (L.) Millsp. cv. GA-2; 65.0% NDF, 13.7% CP]. Haylages were harvested at the optimal maturity for maximizing yield and nutritive value, wilted to 45% DM, baled, wrapped in polyethylene plastic, and ensiled for 180 d. Legumes were fed at 50% of the dietary DM, and soybean meal was fed at 8% of the dietary DM to match the average CP concentration (12.8%) of legume haylage-supplemented diets. Lambs were fed each diet for a 14-d adaptation period and a 7-d data collection period. Each diet was fed to 7 lambs in period 1 and 4 lambs in period 2. Pigeonpea haylage supplementation decreased (P haylages increased (P haylage, all supplements increased (P haylage supplementation, but unaffected (P = 0.05) by other supplements. Efficiency of microbial protein synthesis was unaffected (P = 0.05) by diet. Ruminal ammonia concentration was increased (P = 0.01) by all supplements, but only soybean meal and annual peanut haylage increased (P haylages are promising protein supplements for growing lambs.

  15. Nutritive value, fermentation characteristics, and in situ disappearance kinetics of ensiled warm-season legumes and bahiagrass.

    Science.gov (United States)

    Foster, J L; Carter, J N; Sollenberger, L E; Blount, A R; Myer, R O; Maddox, M K; Phatak, S C; Adesogan, A T

    2011-04-01

    This study determined the nutritive value, ensiling characteristics, and in situ disappearance kinetics of bahiagrass (Paspalum notatum Flügge 'Tifton 9'), perennial peanut (Arachis glabrata Benth. 'Florigraze'), annual peanut [Arachis hypogaea (L.) 'FL MDR 98'], cowpea [Vigna unguiculata (L.) Walp. 'Iron clay'], and pigeonpea [Cajanus cajan (L.) Millsp. 'GA-2']. All forages were harvested at maturity stages that optimized dry matter (DM) yield and nutritive value. After harvest, forages were wilted to 45% DM, and 4 replicate bales of each legume and 8 bales of bahiagrass were wrapped in polyethylene and ensiled for 180 d. After each bale was opened, the forage was thoroughly mixed, and representative subsamples were taken for laboratory analysis and in situ incubation. Wilting and ensiling decreased the rumen-undegradable protein, water-soluble carbohydrate, crude protein (CP), and in vitro true digestibility (IVTD) of bahiagrass, perennial peanut, and cowpea, and increased their neutral detergent fiber (NDF) concentrations. Among haylages, CP concentration was greatest for annual peanut, followed by perennial peanut and cowpea, and least for bahiagrass. In contrast, NDF concentration was greater in bahiagrass than in legumes. Pigeonpea had the greatest NDF concentration among legumes and lowest IVTD of all haylages. All haylages were aerobically stable for at least 84 h, but pH was lower in perennial peanut and cowpea than in pigeonpea. Ammonia-N concentrations tended to be greater in legume haylages than in bahiagrass haylage. Butyrate concentration was greater in annual and perennial peanut than in bahiagrass. Total VFA concentration was greater in annual and perennial peanut and cowpea haylages than in bahiagrass haylage. Undegradable DM fractions were greater and extent of DM degradation was lower in bahiagrass and pigeonpea than in other haylages but lag time and degradation rates did not differ. Annual and perennial peanut and cowpea haylages were as

  16. Optimal foraging in seasonal environments: implications for residency of Australian flying foxes in food-subsidized urban landscapes.

    Science.gov (United States)

    Páez, David J; Restif, Olivier; Eby, Peggy; Plowright, Raina K

    2018-05-05

    Bats provide important ecosystem services such as pollination of native forests; they are also a source of zoonotic pathogens for humans and domestic animals. Human-induced changes to native habitats may have created more opportunities for bats to reside in urban settings, thus decreasing pollination services to native forests and increasing opportunities for zoonotic transmission. In Australia, fruit bats ( Pteropus spp. flying foxes) are increasingly inhabiting urban areas where they feed on anthropogenic food sources with nutritional characteristics and phenology that differ from native habitats. We use optimal foraging theory to investigate the relationship between bat residence time in a patch, the time it takes to search for a new patch (simulating loss of native habitat) and seasonal resource production. We show that it can be beneficial to reside in a patch, even when food productivity is low, as long as foraging intensity is low and the expected searching time is high. A small increase in the expected patch searching time greatly increases the residence time, suggesting nonlinear associations between patch residence and loss of seasonal native resources. We also found that sudden increases in resource consumption due to an influx of new bats has complex effects on patch departure times that again depend on expected searching times and seasonality. Our results suggest that the increased use of urban landscapes by bats may be a response to new spatial and temporal configurations of foraging opportunities. Given that bats are reservoir hosts of zoonotic diseases, our results provide a framework to study the effects of foraging ecology on disease dynamics.One contribution of 14 to a theme isssue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).

  17. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    Science.gov (United States)

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  18. Elevated CO2 induces substantial and persistent declines in forage digestibility and protein content irrespective of warming in mixed-grass prairie

    Science.gov (United States)

    Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...

  19. Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird.

    Directory of Open Access Journals (Sweden)

    Françoise Amélineau

    Full Text Available The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.

  20. Subalpine bumble bee foraging distances and densities in relation to flower availability.

    Science.gov (United States)

    Elliott, Susan E

    2009-06-01

    Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.

  1. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    Science.gov (United States)

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  2. Diet variability of forage fishes in the Northern California Current System

    Science.gov (United States)

    Hill, Andrew D.; Daly, Elizabeth A.; Brodeur, Richard D.

    2015-06-01

    As fisheries management shifts to an ecosystem-based approach, understanding energy pathways and trophic relationships in the Northern California Current (NCC) will become increasingly important for predictive modeling and understanding ecosystem response to changing ocean conditions. In the NCC, pelagic forage fishes are a critical link between seasonal and interannual variation in primary production and upper trophic groups. We compared diets among dominant forage fish (sardines, anchovies, herring, and smelts) in the NCC collected in May and June of 2011 and June 2012, and found high diet variability between and within species on seasonal and annual time scales, and also on decadal scales when compared to results of past studies conducted in the early 2000s. Copepoda were a large proportion by weight of several forage fish diets in 2011 and 2012, which differed from a preponderance of Euphausiidae found in previous studies, even though all years exhibited cool ocean conditions. We also examined diet overlap among these species and with co-occurring subyearling Chinook salmon and found that surf smelt diets overlapped more with subyearling Chinook diets than any other forage fish. Herring and sardine diets overlapped the most with each other in our interdecadal comparisons and some prey items were common to all forage fish diets. Forage fish that show plasticity in diet may be more adapted to ocean conditions of low productivity or anomalous prey fields. These findings highlight the variable and not well-understood connections between ocean conditions and energy pathways within the NCC.

  3. By the Light of the Moon: North Pacific Dolphins Optimize Foraging with the Lunar Cycle

    Science.gov (United States)

    Simonis, Anne Elizabeth

    The influence of the lunar cycle on dolphin foraging behavior was investigated in the productive, southern California Current Ecosystem and the oligotrophic Hawaiian Archipelago. Passive acoustic recordings from 2009 to 2015 were analyzed to document the presence of echolocation from four dolphin species that demonstrate distinct foraging preferences and diving abilities. Visual observations of dolphins, cloud coverage, commercial landings of market squid (Doryteuthis opalescens) and acoustic backscatter of fish were also considered in the Southern California Bight. The temporal variability of echolocation is described from daily to annual timescales, with emphasis on the lunar cycle as an established behavioral driver for potential dolphin prey. For dolphins that foraged at night, the presence of echolocation was reduced during nights of the full moon and during times of night that the moon was present in the night sky. In the Southern California Bight, echolocation activity was reduced for both shallow- diving common dolphins (Delphinus delphis) and deeper-diving Risso's dolphins (Grampus griseus) during times of increased illumination. Seasonal differences in acoustic behavior for both species suggest a geographic shift in dolphin populations, shoaling scattering layers or prey switching behavior during warm months, whereby dolphins target prey that do not vertically migrate. In the Hawaiian Archipelago, deep-diving short-finned pilot whales (Globicephala macrorhynchus) and shallow-diving false killer whales (Pseudorca crassidens) also showed reduced echolocation behavior during periods of increased lunar illumination. In contrast to nocturnal foraging in the northwestern Hawaiian Islands, false killer whales in the main Hawaiian Islands mainly foraged during the day and the lunar cycle showed little influence on their nocturnal acoustic behavior. Different temporal patterns in false killer whale acoustic behavior between the main and northwestern Hawaiian

  4. Predation risk and optimal foraging trade-off in the demography and spacing of the George River Herd, 1958 to 1993

    Directory of Open Access Journals (Sweden)

    Arthur T. Bergerud

    2003-04-01

    Full Text Available The behavior options of feeding animals lie on a continuum between energy maximization and minimization of predation risk. We studied the distribution, mobility, and energy budgets of the George River herd, Ungava from 1974 to 1993. We arranged the annual cycle into 6 phases where we argue that the importance between the priorities of optimal foraging and predation risk change between periods. At calving, risk is more important than foraging for females but males take more risk to optimally forage. During the mosquito season, insect avoidance takes priority over risk and for¬aging. Optimal foraging takes precedent over risk in the late summer and fall and it is at this time that the herd expanded its range relative to numbers and forage abundance. In the winter (December to mid-March animals sought restricted localized ranges with low snow cover to reduce predation risk. The spring migration of females may have increased risk during the interval the females were moving back to the tundra to give birth to their neonates on the low risk calv¬ing ground. In May, females sought early greens near treeline, which may have increased risk in order to provide maximum nutrition to their fetuses in the last weeks of pregnancy. The ancestors of the George River Herd during the Pleistocene, 18 000 yr. BP may have reduced predation risk by spacing-out in the Appalachian Mountains, removed from the major specie of the megafauna in the lowlands. With global warming, it is argued the major problem for caribou will be increased wolf predation rather than changing forage and nutritional regimes. It is essential that First Nation residents of the North maintain their option to manage wolf numbers if excessive predation in the future adversely affects the migratory herds of the Northwest Territories and Ungava.

  5. Winter Season Mortality: Will Climate Warming Bring Benefits?

    Science.gov (United States)

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  6. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Directory of Open Access Journals (Sweden)

    Guo-Liang Xu

    Full Text Available Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm increased, but the percentage of large mites (body length >0.40 mm decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  7. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  8. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  9. Seasonal variation of the Cs137 contamination of the tree forage of wild hoofed animals of the Pripyat National Park

    International Nuclear Information System (INIS)

    Uglyanets, A.V.

    2011-01-01

    In the conditions of the Republic of Belarus there were presented the results of studies of the 137Cs contamination of the tree forage of wild hoofed animals in the Pripyat national park. The parameters of this radioisotope accumulation in the shoots of different trees, shrubs, dwarf shrubs and bushes were studied in the seasonal and edaphic aspects, and their influencing factors were specified. The 137Cs contamination of the tree forage of wild hoofed animals was determined to be dependent on the soil pollution degree, growth conditions and species composition of plants and their proportion in the phytocenosis, as well as on the edaphic conditions and a season of the year

  10. Effects of Grazing Management in Brachiaria grass-forage Peanut Pastures on Canopy Structure and Forage Intake.

    Science.gov (United States)

    Gomes, F K; Oliveira, M D B L; Homem, B G C; Boddey, R M; Bernardes, T F; Gionbelli, M P; Lara, M A S; Casagrande, D R

    2018-06-13

    Maintenance of mixed grass-legume pastures for stand longevity and improved animal utilization is a challenge in warm-season climates. The goal of this study was to assess grazing management on stand persistence, forage intake, and N balance of beef heifers grazing mixed pastures of Brachiaria brizantha and Arachis pintoi. A two-year experiment was carried out in Brazil, where four grazing management were assessed: rest period interrupted at 90%, 95%, and 100% of light interception (LI) and a fixed rest period of 42 days (90LI, 95LI, 100LI, and 42D, respectively). The LI were taken at 50 points at ground level and at five points above the canopy for each paddock using a canopy analyzer. For all treatments, the post-grazing stubble height was 15 cm. Botanical composition and canopy structure characteristics such as canopy height, forage mass, and vertical distribution of the morphological composition were evaluated pre-and post-grazing. Forage chemical composition, intake, and microbial synthesis were also determined. A randomized complete block design was used, considering the season of the year as a repeated measure over time. Grazing management and season were considered fixed, while block and year were considered random effects. In the summer, legume mass accounted for 19% of the canopy at 100LI, which was less than other treatments (a mean of 30%). The 100LI treatment had a greater grass stem mass compared with other treatments. In terms of vertical distribution for 100LI, 38.6% of the stem mass was above the stubble height, greater than the 5.7% for other treatments. The canopy structure limited neutral detergent fiber intake (P = 0.007) at 100LI (1.02% of BW/d), whereas 42D, 90LI, and 95LI treatments had NDF intake close to 1.2% of BW/d. The intake of digestible organic matter (OM; P = 0.007) and the ratio of crude protein/digestible OM (P < 0.001) were less at 100LI in relation to the other treatments. The production of microbial N (P < 0.001) and efficiency

  11. Quality and yield of seven forages grown under partial shading of a simulated silvopastoral system in east Texas

    Science.gov (United States)

    J. Hill; K. Farrish; B. Oswald; L. Young; A. Shadow

    2016-01-01

    The goal of this project is to evaluate the growth and nutritional characteristics of seven forages, including various warm season native grasses, grown under simulated partial shading (50 percent typical of a loblolly pine silvopastoral system in east Texas. The results are from year two of a three year study. In order to meet the overall objective, individual,...

  12. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos).

    Science.gov (United States)

    McLellan, Michelle L; McLellan, Bruce N

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C) and hot (27.9-40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  13. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Michelle L McLellan

    Full Text Available Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C and hot (27.9-40.1°C days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  14. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    Science.gov (United States)

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  15. Changes in the seasonality of Arctic sea ice and temperature

    Science.gov (United States)

    Bintanja, R.

    2012-04-01

    Observations show that the Arctic sea ice cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic sea ice will quickly diminish. However, at temperatures well below freezing, the sea ice cover during winter will exhibit a much weaker decline. In the future, the sea ice seasonal cycle will be no ice in summer, and thin one-year ice in winter. Hence, the seasonal cycle in sea ice cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in sea ice have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer sea ice reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in sea ice. This suggests that changes in the seasonal cycle in Arctic sea ice and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.

  16. Chronic environmental stress enhances tolerance to seasonal gradual warming in marine mussels.

    Directory of Open Access Journals (Sweden)

    Ionan Marigómez

    Full Text Available In global climate change scenarios, seawater warming acts in concert with multiple stress sources, which may enhance the susceptibility of marine biota to thermal stress. Here, the responsiveness to seasonal gradual warming was investigated in temperate mussels from a chronically stressed population in comparison with a healthy one. Stressed and healthy mussels were subjected to gradual temperature elevation for 8 days (1°C per day; fall: 16-24°C, winter: 12-20°C, summer: 20-28°C and kept at elevated temperature for 3 weeks. Healthy mussels experienced thermal stress and entered the time-limited survival period in the fall, became acclimated in winter and exhibited sublethal damage in summer. In stressed mussels, thermal stress and subsequent health deterioration were elicited in the fall but no transition into the critical period of time-limited survival was observed. Stressed mussels did not become acclimated to 20°C in winter, when they experienced low-to-moderate thermal stress, and did not experience sublethal damage at 28°C in summer, showing instead signs of metabolic rate depression. Overall, although the thermal threshold was lowered in chronically stressed mussels, they exhibited enhanced tolerance to seasonal gradual warming, especially in summer. These results challenge current assumptions on the susceptibility of marine biota to the interactive effects of seawater warming and pollution.

  17. Projections of Seasonal Patterns in Temperature- Related Deaths for Manhattan, New York

    Science.gov (United States)

    Li, Tiantian; Horton, Radley M.; Kinney, Patrick L.

    2013-01-01

    Global average temperatures have been rising for the past half-century, and the warming trend has accelerated in recent decades. Further warming is expected over the next few decades, with significant regional variations. These warming trends will probably result in more frequent, intense and persistent periods of hot temperatures in summer, and generally higher temperatures in winter. Daily death counts in cities increase markedly when temperatures reach levels that are very high relative to what is normal in a given location. Relatively cold temperatures also seem to carry risk. Rising temperatures may result in more heat-related mortality but may also reduce cold-related mortality, and the net impact on annual mortality remains uncertain. Here we use 16 downscaled global climate models and two emissions scenarios to estimate present and future seasonal patterns in temperature-related mortality in Manhattan, New York. All 32 projections yielded warm-season increases and cold-season decreases in temperature-related mortality, with positive net annual temperature-related deaths in all cases. Monthly analyses showed that the largest percentage increases may occur in May and September. These results suggest that, over a range of models and scenarios of future greenhouse gas emissions, increases in heat-related mortality could outweigh reductions in cold-related mortality, with shifting seasonal patterns.

  18. On the shortening of Indian summer monsoon season in a warming scenario

    Science.gov (United States)

    Sabeerali, C. T.; Ajayamohan, R. S.

    2018-03-01

    Assessing the future projections of the length of rainy season (LRS) has paramount societal impact considering its potential to alter the seasonal mean rainfall over the Indian subcontinent. Here, we explored the projections of LRS using both historical and Representative Concentration Pathways 8.5 (RCP8.5) simulations of the Coupled Model Intercomparison Project Phase5 (CMIP5). RCP8.5 simulations project shortening of the LRS of Indian summer monsoon by altering the timing of onset and withdrawal dates. Most CMIP5 RCP8.5 model simulations indicate a faster warming rate over the western tropical Indian Ocean compared to other regions of the Indian Ocean. It is found that the pronounced western Indian Ocean warming and associated increase in convection results in warmer upper troposphere over the Indian Ocean compared to the Indian subcontinent, reducing the meridional gradient in upper tropospheric temperature (UTT) over the Asian summer monsoon (ASM) domain. The weakening of the meridional gradient in UTT induces weakening of easterly vertical wind shear over the ASM domain during first and last phase of monsoon, facilitate delayed (advanced) monsoon onset (withdrawal) dates, ensues the shortening of LRS of the Indian summer monsoon in a warming scenario.

  19. Grassland bird productivity in warm season grass fields in southwest Wisconsin

    Science.gov (United States)

    Byers, Carolyn M.; Ribic, Christine; Sample, David W.; Dadisman, John D.; Guttery, Michael

    2017-01-01

    Surrogate grasslands established through federal set-aside programs, such as U.S. Department of Agriculture's Conservation Reserve Program (CRP), provide important habitat for grassland birds. Warm season grass CRP fields as a group have the potential for providing a continuum of habitat structure for breeding birds, depending on how the fields are managed and their floristic composition. We studied the nesting activity of four obligate grassland bird species, Bobolink (Dolichonyx oryzivorus), Eastern Meadowlark (Sturnella magna), Grasshopper Sparrow (Ammodramus savannarum), and Henslow's Sparrow (A. henslowii), in relation to vegetative composition and fire management in warm season CRP fields in southwest Wisconsin during 2009–2011. Intraspecific variation in apparent nest density was related to the number of years since the field was burned. Apparent Grasshopper Sparrow nest density was highest in the breeding season immediately following spring burns, apparent Henslow's Sparrow nest density was highest 1 y post burn, and apparent Bobolink and Eastern Meadowlark nest densities were higher in post fire years one to three. Grasshopper Sparrow nest density was highest on sites with more diverse vegetation, specifically prairie forbs, and on sites with shorter less dense vegetation. Bobolink, Eastern Meadowlark, and Henslow's Sparrow apparent nest densities were higher on sites with deeper litter; litter was the vegetative component that was most affected by spring burns. Overall nest success was 0.487 for Bobolink (22 d nesting period), 0.478 for Eastern Meadowlark (25 d nesting period), 0.507 for Grasshopper Sparrow (22 d nesting period), and 0.151 for Henslow's Sparrow (21 d nesting period). The major nest predators were grassland-associated species: thirteen-lined ground squirrel (Ictidomys tridecemlineatus), striped skunk (Mephitis mephitis), milk snake (Lampropeltis triangulum), American badger (Taxidea taxus), and western fox snake (Elaphe vulpina). Overall

  20. Relict Mountain Permafrost Area (Loess Plateau, China) Exhibits High Ecosystem Respiration Rates and Accelerating Rates in Response to Warming

    Science.gov (United States)

    Mu, Cuicui; Wu, Xiaodong; Zhao, Qian; Smoak, Joseph M.; Yang, Yulong; Hu, Lian; Zhong, Wen; Liu, Guimin; Xu, Haiyan; Zhang, Tingjun

    2017-10-01

    Relict permafrost regions are characterized by thin permafrost and relatively high temperatures. Understanding the ecosystem respiration rate (ERR) and its relationship with soil hydrothermal conditions in these areas can provide knowledge regarding the permafrost carbon cycle in a warming world. In this study, we examined a permafrost area, a boundary area, and a seasonally frozen ground area within a relict permafrost region on the east edge of the Qinghai-Tibetan Plateau, China. Measurements from July 2015 to September 2016 showed that the mean annual ecosystem CO2 emissions for the boundary area were greater than the permafrost area. The Q10 value of the ERRs in the seasonally frozen ground area was greater than the permafrost area, indicating that the carbon emissions in the nonpermafrost areas were more sensitive to warming. The 1 year open-top chamber (OTC) warming increased soil temperatures in both the permafrost and seasonally frozen ground areas throughout the year, and the warming increased the ERRs by 1.18 (0.99-1.38, with interquartile range) and 1.13 (0.75-1.54, with interquartile range) μmol CO2 m-2 s-1 in permafrost and seasonally frozen ground areas, respectively. The OTC warming increased annual ERRs by approximately 50% for both permafrost and seasonally frozen ground areas with half the increase occurring during the nongrowing seasons. These results suggest that the ERRs in relict permafrost are high in comparison with arctic regions, and the carbon balance in relict permafrost areas could be greatly changed by climate warming.

  1. Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Liu, H.; Jin, Y.; Devine, S.; Dahlgren, R. A.; Covello, S.; Larsen, R.; O'Geen, A. T.

    2017-12-01

    California rangelands cover 23 million hectares and support a $3.4 billion annual cattle industry. Rangeland forage production varies appreciably from year-to-year and across short distances on the landscape. Spatially explicit and near real-time information on forage production at a high resolution is critical for effective rangeland management, especially during an era of climatic extremes. We here integrated a multispectral MicaSense RedEdge camera with a 3DR solo quad-copter and acquired time-series images during the 2017 growing season over a topographically complex 10-hectare rangeland in San Luis Obispo County, CA. Soil moisture and temperature sensors were installed at 16 landscape positions, and vegetation clippings were collected at 36 plots to quantify forage dry biomass. We built four centimeter-level models for forage production mapping using time series of sUAS images and ground measurements of forage biomass and soil temperature and moisture. The biophysical model based on Monteith's eco-physiological plant growth theory estimated forage production reasonably well with a coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 424 kg/ha when the soil parameters were included, and a R2 of 0.79 and a RMSE of 510 kg/ha when only remote sensing and topographical variables were included. We built two empirical models of forage production using a stepwise variable selection technique, one with soil variables. Results showed that cumulative absorbed photosynthetically active radiation (APAR) and elevation were the most important variables in both models, explaining more than 40% of the spatio-temporal variance in forage production. Soil moisture accounted for an additional 29% of the variance. Illumination condition was selected as a proxy for soil moisture in the model without soil variables, and accounted for 18% of the variance. We applied the remote sensing-based models to map daily forage production at 30-cm resolution for the

  2. A phenological timetable of oak growth under experimental drought and air warming.

    Directory of Open Access Journals (Sweden)

    Thomas M Kuster

    Full Text Available Climate change is expected to increase temperature and decrease summer precipitation in Central Europe. Little is known about how warming and drought will affect phenological patterns of oaks, which are considered to possess excellent adaptability to these climatic changes. Here, we investigated bud burst and intra-annual shoot growth of Quercus robur, Q. petraea and Q. pubescens grown on two different forest soils and exposed to air warming and drought. Phenological development was assessed over the course of three growing seasons. Warming advanced bud burst by 1-3 days °C⁻¹ and led to an earlier start of intra-annual shoot growth. Despite this phenological shift, total time span of annual growth and shoot biomass were not affected. Drought changed the frequency and intensity of intra-annual shoot growth and advanced bud burst in the subsequent spring of a severe summer drought by 1-2 days. After re-wetting, shoot growth recovered within a few days, demonstrating the superior drought tolerance of this tree genus. Our findings show that phenological patterns of oaks are modified by warming and drought but also suggest that ontogenetic factors and/or limitations of water and nutrients counteract warming effects on the biomass and the entire span of annual shoot growth.

  3. Seasonal changes in chemical composition and nutritive value of native forages in a spruce-hemlock forest, southeastern Alaska.

    Science.gov (United States)

    Thomas A. Hanley; Jay D. McKendrick

    1983-01-01

    Twenty-two forages from Admiralty Island, southeastern Alaska, were monitored bimonthly for one year to assess seasonal changes in their chemical composition: neutral detergent fiber, acid detergent fiber, cellulose, lignin/cutin, invitro dry-matter digestibility, total nitrogen, phosphorus, potassium, calcium, magnesium, sodium, copper, manganese, iron, and zinc....

  4. Seasonal/Interannual Variations of Carbon Sequestration and Carbon Emission in a Warm-Season Perennial Grassland

    OpenAIRE

    Deepa Dhital; Tomoharu Inoue; Hiroshi Koizumi

    2014-01-01

    Carbon sequestration and carbon emission are processes of ecosystem carbon cycling that can be affected while land area converted to grassland resulting in increased soil carbon storage and below-ground respiration. Discerning the importance of carbon cycle in grassland, we aimed to estimate carbon sequestration in photosynthesis and carbon emission in respiration from soil, root, and microbes, for four consecutive years (2007–2010) in a warm-season perennial grassland, Japan. Soil carbon emi...

  5. Birth seasonality and offspring production in threatened neotropical primates related to climate

    Science.gov (United States)

    Wiederholt, R.; Post, E.

    2011-01-01

    Given the threatened status of many primate species, the impacts of global warming on primate reproduction and, consequently, population growth should be of concern. We examined relations between climatic variability and birth seasonality, offspring production, and infant sex ratios in two ateline primates, northern muriquis, and woolly monkeys. In both species, the annual birth season was delayed by dry conditions and El Ni??o years, and delayed birth seasons were linked to lower birth rates. Additionally, increased mean annual temperatures were associated with lower birth rates for northern muriquis. Offspring sex ratios varied with climatic conditions in both species, but in different ways: directly in woolly monkeys and indirectly in northern muriquis. Woolly monkeys displayed an increase in the proportion of males among offspring in association with El Ni??o events, whereas in northern muriquis, increases in the proportion of males among offspring were associated with delayed onset of the birth season, which itself was related, although weakly, to warm, dry conditions. These results illustrate that global warming, increased drought frequency, and changes in the frequency of El Ni??o events could limit primate reproductive output, threatening the persistence and recovery of ateline primate populations. ?? 2011 Blackwell Publishing Ltd.

  6. Integrated rice-duck farming mitigates the global warming potential in rice season.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Yu, Xichen; Hang, Yuhao

    2017-01-01

    Integrated rice-duck farming (IRDF), as a mode of ecological agriculture, is an important way to realize sustainable development of agriculture. A 2-year split-plot field experiment was performed to evaluate the effects of IRDF on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and its ecological mechanism in rice season. This experiment was conducted with two rice farming systems (FS) of IRDF and conventional farming (CF) under four paddy-upland rotation systems (PUR): rice-fallow (RF), annual straw incorporating in rice-wheat rotation system (RWS), annual straw-based biogas residues incorporating in rice-wheat rotation system (RWB), and rice-green manure (RGM). During the rice growing seasons, IRDF decreased the CH 4 emission by 8.80-16.68%, while increased the N 2 O emission by 4.23-15.20%, when compared to CF. Given that CH 4 emission contributed to 85.83-96.22% of global warming potential (GWP), the strong reduction in CH 4 emission led to a significantly lower GWP of IRDF as compared to CF. The reason for this trend was because IRDF has significant effect on dissolved oxygen (DO) and soil redox potential (Eh), which were two pivotal factors for CH 4 and N 2 O emissions in this study. The IRDF not only mitigates the GWP, but also increases the rice yield by 0.76-2.43% compared to CF. Moreover, compared to RWS system, RF, RWB and RGM systems significantly reduced CH 4 emission by 50.17%, 44.89% and 39.51%, respectively, while increased N 2 O emission by 10.58%, 14.60% and 23.90%, respectively. And RWS system had the highest GWP. These findings suggest that mitigating GWP and improving rice yield could be simultaneously achieved by the IRDF, and employing suitable PUR would benefit for relieving greenhouse effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Progress report, November 1, 1977--October 31, 1978

    International Nuclear Information System (INIS)

    Hanna, W.W.; Burton, G.W.

    1978-05-01

    Progress is reported on plant breeding programs for the genetic improvement of warm season grasses using irradiation as a tool. Data are included from studies on alteration of the protein quantity and quality in pearl millet grain by irradiation and mutation breeding; the effects of nitrogen and genotype on pearl millet grain; the effects of seed size on quality in pearl millet; irradiation breeding of sterile triploid turf Bermuda grasses; irradiation breeding of sterile coastcross-1, a forage grass, to increase winter hardiness; use of irradiation to induce resistance to rust disease; and an economic assessment of irradiation-induced mutants for plant breeding programs

  8. Urban gardens promote bee foraging over natural habitats and plantations.

    Science.gov (United States)

    Kaluza, Benjamin F; Wallace, Helen; Heard, Tim A; Klein, Alexandra-Maria; Leonhardt, Sara D

    2016-03-01

    Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.

  9. Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica

    Science.gov (United States)

    Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.

    2011-01-01

    We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins, Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.

  10. Na and K Levels in forage species from the communal grazing lands during the dry season at some locations in the Northern Region of Ghana

    International Nuclear Information System (INIS)

    Gomda, Y.M.; Osae, E.K.; Akaho, E.H.K.; Fianu, F.K.; Karbo, N.

    1999-04-01

    Forage species were taken, during the dry season, from five districts in the Northern Region of Ghana and analysed for Na and K using the Neutron Activation Analysis (NAA) technique. The Na level varied in plants species as well as location. The level ranged between 0.049 g/kg DM and 1.14 g/kg DM. This was found to be inadequate for the animals and require supplementation during the dry season. Potassium level in the forage species was between 7.8 to 91.3g/kg DM and appeared to be adequate for the grazing animals. (author)

  11. Observed decreases in the Canadian outdoor skating season due to recent winter warming

    International Nuclear Information System (INIS)

    Damyanov, Nikolay N; Mysak, Lawrence A; Damon Matthews, H

    2012-01-01

    Global warming has the potential to negatively affect one of Canada’s primary sources of winter recreation: hockey and ice skating on outdoor rinks. Observed changes in winter temperatures in Canada suggest changes in the meteorological conditions required to support the creation and maintenance of outdoor skating rinks; while there have been observed increases in the ice-free period of several natural water bodies, there has been no study of potential trends in the duration of the season supporting the construction of outdoor skating rinks. Here we show that the outdoor skating season (OSS) in Canada has significantly shortened in many regions of the country as a result of changing climate conditions. We first established a meteorological criterion for the beginning, and a proxy for the length of the OSS. We extracted this information from daily maximum temperature observations from 1951 to 2005, and tested it for significant changes over time due to global warming as well as due to changes in patterns of large-scale natural climate variability. We found that many locations have seen a statistically significant decrease in the OSS length, particularly in Southwest and Central Canada. This suggests that future global warming has the potential to significantly compromise the viability of outdoor skating in Canada. (letter)

  12. Observed decreases in the Canadian outdoor skating season due to recent winter warming

    Science.gov (United States)

    Damyanov, Nikolay N.; Damon Matthews, H.; Mysak, Lawrence A.

    2012-03-01

    Global warming has the potential to negatively affect one of Canada’s primary sources of winter recreation: hockey and ice skating on outdoor rinks. Observed changes in winter temperatures in Canada suggest changes in the meteorological conditions required to support the creation and maintenance of outdoor skating rinks; while there have been observed increases in the ice-free period of several natural water bodies, there has been no study of potential trends in the duration of the season supporting the construction of outdoor skating rinks. Here we show that the outdoor skating season (OSS) in Canada has significantly shortened in many regions of the country as a result of changing climate conditions. We first established a meteorological criterion for the beginning, and a proxy for the length of the OSS. We extracted this information from daily maximum temperature observations from 1951 to 2005, and tested it for significant changes over time due to global warming as well as due to changes in patterns of large-scale natural climate variability. We found that many locations have seen a statistically significant decrease in the OSS length, particularly in Southwest and Central Canada. This suggests that future global warming has the potential to significantly compromise the viability of outdoor skating in Canada.

  13. Observed changes in seasonal heat waves and warm temperature extremes in the Romanian Carpathians

    Science.gov (United States)

    Micu, Dana; Birsan, Marius-Victor; Dumitrescu, Alexandru; Cheval, Sorin

    2015-04-01

    Extreme high temperature have a large impact on environment and human activities, especially in high elevation areas particularly sensitive to the recent climate warming. The climate of the Romanian Carpathians became warmer particularly in winter, spring and summer, exibiting a significant increasing frequency of warm extremes. The paper investigates the seasonal changes in the frequency, duration and intensity of heat waves in relation to the shifts in the daily distribution of maximum temperatures over a 50-year period of meteorological observations (1961-2010). The paper uses the heat wave definition recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) and exploits the gridded daily dataset of maximum temperature at 0.1° resolution (~10 km) developed in the framework of the CarpatClim project (www.carpatclim.eu). The seasonal changes in heat waves behavior were identified using the Mann-Kendall non-parametric trend test. The results suggest an increase in heat wave frequency and a lengthening of intervals affected by warm temperature extremes all over the study region, which are explained by the shifts in the upper (extreme) tail of the daily maximum temperature distribution in most seasons. The trends are consistent across the region and are well correlated to the positive phases of the East Atlantic Oscillation. Our results are in good agreement with the previous temperature-related studies concerning the Carpathian region. This study was realized within the framework of the project GENCLIM, financed by UEFISCDI, code PN-II 151/2014.

  14. A switch in the Atlantic Oscillation correlates with inter-annual changes in foraging location and food habits of Macaronesian shearwaters (Puffinus baroli) nesting on two islands of the sub-tropical Atlantic Ocean

    Science.gov (United States)

    Ramos, Jaime A.; Isabel Fagundes, Ana; Xavier, José C.; Fidalgo, Vera; Ceia, Filipe R.; Medeiros, Renata; Paiva, Vitor H.

    2015-10-01

    Changes in oceanographic conditions, shaped by changes in large-scale atmospheric phenomena such as the North Atlantic Oscillation (NAO), alters the structure and functioning of marine ecosystems. Such signals are readily captured by marine top predators, given that their use of foraging habitats and diets change when the NAO changes. In this study we assessed sexual, seasonal and annual (2010/11-2012/13) differences in diet, trophic and isotopic niche (using δ15N and δ13C values of whole blood, 1st primary, 8th secondary and breast feathers), foraging locations and oceanographic variation within foraging areas for Macaronesian shearwaters' (Puffinus baroli) during two years of contrasting NAO values, and between two sub-tropical islands 330 km apart in the North Atlantic Ocean, Cima Islet and Selvagem Grande. These two locations provide contrasting oceanographic foraging regimes for the birds, because the second colony is much closer to the African coast (375 vs 650 km), and, therefore, to the upwelling area of the Canary Current. There was a marked environmental perturbation in 2010/2011, related with a negative NAO Index and lower marine productivity (lower concentration of Chlorophyll a). This event corresponded to the Macaronesian shearwaters feeding farther north and west, which was readily seen in change of both δ15N and δ13C values, and in a higher intake of cephalopods. Diet and stable isotopes did not differ between sexes. Regurgitation analysis indicate a dominance of cephalopods in both islands, but prey fish were important for Selvagem Grande in 2012 and cephalopods for Cima Islet in 2011. Both δ15N and δ13C values were significantly higher for Cima Islet than for Selvagem Grande, irrespective of year, season and tissue sampled. SIBER analysis showed smaller isotopic niches for the breeding period. Our study suggests that during years of poor environmental conditions Macaronesian shearwaters shift their foraging location to more pelagic waters

  15. Na and K Levels in forage species from the communal grazing lands during the dry season at some locations in the Northern Region of Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Gomda, Y M; Osae, E K; Akaho, E H.K. [Ghana Atomic Energy Commission, Accra (Ghana); Fianu, F K [University of Ghana, Legon, Accra, (Ghana); Karbo, N [Animal Research Institute, Nyankpala (Ghana)

    1999-09-01

    Forage species were taken, during the dry season, from five districts in the Northern Region of Ghana and analysed for Na and K using the Neutron Activation Analysis (NAA) technique. The Na level varied in plants species as well as location. The level ranged between 0.049 g/kg DM and 1.14 g/kg DM. This was found to be inadequate for the animals and require supplementation during the dry season. Potassium level in the forage species was between 7.8 to 91.3g/kg DM and appeared to be adequate for the grazing animals. (author) Technical report for year ending 1998. 2 tabs.; 18 refs.

  16. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    Science.gov (United States)

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  17. Comparing and contrasting Holocene and Eemian warm periods with greenhouse-gas-induced warming

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Kutzbach, J.

    1990-01-01

    Periods of the past that are estimated to have been warmer than present are of great potential interest for comparison with simulations of future climates associated with greenhouse-gas-induced warming. Certain features of the climates of the mid-Holocene and Eemian periods, both interglacial maxima, are described. The simulated climatic responses to both types of forcing, in terms of land/ocean and latitudinal averages, are also compared. The zonal average and annual (or seasonal) average radiation fluxes associated with the different-from-present orbital conditions that existed for those interglacials are compared to the radiation flux associated with CO 2 -induced warming. There are some similarities but also significant differences in the two types of radiation flux perturbations, and there are both similarities and differences in the simulated climatic responses

  18. Seasonal body size reductions with warming covary with major body size gradients in arthropod species

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2017-01-01

    experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature–size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic...... and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air...

  19. Comparison of common lignin methods and modifications on forage and lignocellulosic biomass materials.

    Science.gov (United States)

    Goff, Ben M; Murphy, Patrick T; Moore, Kenneth J

    2012-03-15

    A variety of methods have been developed for estimating lignin concentration within plant materials. The objective of this study was to compare the lignin concentrations produced by six methods on a diverse population of forage and biomass materials and to examine the relationship between these concentrations and the portions of these materials that are available for utilisation by livestock or for ethanol conversion. Several methods produced lignin concentrations that were highly correlated with the digestibility of the forages, but there were few relationships between these methods and the available carbohydrate of the biomass materials. The use of Na₂SO₃ during preparation of residues for hydrolysis resulted in reduced lignin concentrations and decreased correlation with digestibility of forage materials, particularly the warm-season grasses. There were several methods that were well suited for predicting the digestible portion of forage materials, with the acid detergent lignin and Klason lignin method giving the highest correlation across the three types of forage. The continued use of Na₂SO₃ during preparation of Van Soest fibres needs to be evaluated owing to its ability to reduce lignin concentrations and effectiveness in predicting the utilisation of feedstuffs and feedstocks. Because there was little correlation between the lignin concentration and the biomass materials, there is a need to examine alternative or develop new methods to estimate lignin concentrations that may be used to predict the availability of carbohydrates for ethanol conversion. Copyright © 2011 Society of Chemical Industry.

  20. Moisture Concentration Variation of Silages Produced on Commercial Farms in the South-Central USA

    Directory of Open Access Journals (Sweden)

    K. J. Han

    2014-10-01

    Full Text Available Preservation of forage crops as silage offers opportunity to avoid the high risk of rain-damaged hay in the humid south-central USA. Recent developments with baled silage or baleage make silage a less expensive option than typical chopped silage. Silage has been important in the region primarily for dairy production, but baleage has become an option for the more extensive beef cattle industry in the region. Silage samples submitted to the Louisiana State University Agricultural Center Forage Quality Lab from 2006 through 2013 were assessed for dry matter (DM and forage nutritive characteristics of chopped silage and baleage of the different forage types from commercial farms primarily in Louisiana and Mississippi. Of the 1,308 silage samples submitted, 1,065 were annual ryegrass (AR with small grains (SG, the warm-season annual (WA grasses, sorghums and pearl millet, and the warm-season perennial (WP grasses, bermudagrass and bahiagrass, providing the remaining samples. Concentration of DM was used to indicate an effective ensiling opportunity, and AR silage was more frequently within the target DM range than was the WA forage group. The AR samples also indicated a high-quality forage with average crude protein (CP of 130 g/kg and total digestible nutrient (TDN near 600 g/kg. The cooler winter weather at harvest apparently complicated harvest of SG silage with chopped SG silage lower in both CP and TDN (104 and 553 g/kg, respectively than either AR silage or baleage of SG (137 and 624 g/kg for CP and TDN, respectively. The hot, humid summer weather along with large stems and large forage quantities of the WA grasses and the inherently higher fiber concentration of WP grasses at harvest stage indicate that preservation of these forage types as silage will be challenging, although successful commercial silage samples of each forage type and preservation approach were included among samples of silages produced in the region.

  1. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    Science.gov (United States)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  2. Seasonal variations in methane fluxes in response to summer warming and leaf litter addition in a subarctic heath ecosystem

    Science.gov (United States)

    Pedersen, Emily Pickering; Elberling, Bo; Michelsen, Anders

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas controlled by both biotic and abiotic processes. Few studies have investigated CH4 fluxes in subarctic heath ecosystems, and climate change-induced shifts in CH4 flux and the overall carbon budget are therefore largely unknown. Hence, there is an urgent need for long-term in situ experiments allowing for the study of ecosystem processes over time scales relevant to environmental change. Here we present in situ CH4 and CO2 flux measurements from a wet heath ecosystem in northern Sweden subjected to 16 years of manipulations, including summer warming with open-top chambers, birch leaf litter addition, and the combination thereof. Throughout the snow-free season, the ecosystem was a net sink of CH4 and CO2 (CH4 -0.27 mg C m-2 d-1; net ecosystem exchange -1827 mg C m-2 d-1), with highest CH4 uptake rates (-0.70 mg C m-2 d-1) during fall. Warming enhanced net CO2 flux, while net CH4 flux was governed by soil moisture. Litter addition and the combination with warming significantly increased CH4 uptake rates, explained by a pronounced soil drying effect of up to 32% relative to ambient conditions. Both warming and litter addition also increased the seasonal average concentration of dissolved organic carbon in the soil. The site was a carbon sink with a net uptake of 60 g C m-2 over the snow-free season. However, warming reduced net carbon uptake by 77%, suggesting that this ecosystem type might shift from snow-free season sink to source with increasing summer temperatures.

  3. Seasonal and diel patterns in cetacean use and foraging at a potential marine renewable energy site.

    Science.gov (United States)

    Nuuttila, Hanna K; Bertelli, Chiara M; Mendzil, Anouska; Dearle, Nessa

    2018-04-01

    Marine renewable energy (MRE) developments often coincide with sites frequented by small cetaceans. To understand habitat use and assess potential impact from development, echolocation clicks were recorded with acoustic click loggers (C-PODs) in Swansea Bay, Wales (UK). General Additive Models (GAMs) were applied to assess the effects of covariates including month, hour, tidal range and temperature. Analysis of inter-click intervals allowed the identification of potential foraging events as well as patterns of presence and absence. Data revealed year-round presence of porpoise, with distinct seasonal and diel patterns. Occasional acoustic encounters of dolphins were also recorded. This study provides further evidence of the need for assessing temporal trends in cetacean presence and habitat use in areas considered for development. These findings could assist MRE companies to monitor and mitigate against disturbance from construction, operation and decommissioning activities by avoiding times when porpoise presence and foraging activity is highest in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  5. Disruption of the European climate seasonal clock in a warming world

    Science.gov (United States)

    Cattiaux, J.; Cassou, C.

    2015-12-01

    Strength and inland penetration of the oceanic westerly flow over Europe control a large part of the temperature variability over most of the continent. Reduced westerlies, linked to high-pressure anomalies over Scandinavia, induce cold conditions in winter and warm conditions in summer. Here we propose to define the onset of these two seasons as the calendar day where the daily circulation/temperature relationship over Western Europe switches sign. According to this meteorologically-based metrics assessed from several observational datasets, we provide robust evidence for an earlier summer onset by ~10 days between the 1960s and 2000s. Results from model ensemble simulations dedicated to detection-attribution show that this calendar advance is incompatible with the sole internal climate variability and can be attributed to anthropogenic forcings. Late winter snow disappearance over Eastern Europe affects cold air intrusion to the West when easterlies blow, and is mainly responsible for the observed present-day and near-future summer advance. Our findings agree with phenological-based trends (earlier spring events) reported for many living species over Europe, for which they provide a novel dynamical interpretation beyond the traditionally evoked global warming effect. Based on business-as-usual scenario, a seasonal shift of ~25 days is expected by 2100 for summer onset, while no clear signal arises for winter onset.

  6. Forage mass and stocking rate of elephant grass pastures managed under agroecological and conventional systems

    Directory of Open Access Journals (Sweden)

    Clair Jorge Olivo

    2014-06-01

    Full Text Available The objective was to evaluate elephant grass (Pennisetum purpureum Schum. pastures, under the agroecological and conventional systems, as forage mass and stocking rate. In the agroecological system, the elephant grass was established in rows spaced by 3.0 m from each other. During the cool season ryegrass (Lolium multiflorum Lam. was established between these rows, which allowed the development of spontaneous growth species during the warm season. In the conventional system the elephant grass was established singularly in rows spaced 1.4 m from each other. Organic and chemical fertilizers were applied at 150 kg of N/ha/year with in the pastures under agroecological and conventional systems, respectively. Lactating Holstein cows which received 5.0 kg/day supplementary concentrate feed were used for evaluation. The experimental design was completely randomized, with two treatments (agroecological and conventional systems two replications (paddocks and independent evaluations (grazing cycles. The pastures were used during the whole year for the agroecological system and for 195 days in the conventional year. The average values of forage mass were 3.5 and 4.2 t/ha and the stocking rates were 2.08 and 3.23 AU/ha for the respective systems. The results suggest that the use of the elephant grass under the agroecological system allows for best distribution of forage and stocking rate to be more uniform throughout the year than the use of elephant grass in conventional system.

  7. The foraging behavior of Japanese macaques Macaca fuscata in a forested enclosure: Effects of nutrient composition, energy and its seasonal variation on the consumption of natural plant foods

    Directory of Open Access Journals (Sweden)

    M. Firoj JAMAN, Michael A. HUFFMAN, Hiroyuki TAKEMOTO

    2010-04-01

    Full Text Available In the wild, primate foraging behaviors are related to the diversity and nutritional properties of food, which are affected by seasonal variation. The goal of environmental enrichment is to stimulate captive animals to exhibit similar foraging behavior of their wild counterparts, e.g. to extend foraging time. We conducted a 12-month study on the foraging behavior of Japanese macaques in a semi-naturally forested enclosure to understand how they use both provisioned foods and naturally available plant foods and what are the nutritional criteria of their consumption of natural plants. We recorded time spent feeding on provisioned and natural plant foods and collected the plant parts ingested of their major plant food species monthly, when available. We conducted nutritional analysis (crude protein, crude lipid, neutral detergent fiber-‘NDF’, ash and calculated total non-structural carbohydrate – ‘TNC’ and total energy of those food items. Monkeys spent 47% of their feeding time foraging on natural plant species. The consumption of plant parts varied significantly across seasons. We found that leaf items were consumed in months when crude protein, crude protein-to-NDF ratio, TNC and total energy were significantly higher and NDF was significantly lower, fruit/nut items in months when crude protein and TNC were significantly higher and crude lipid content was significantly lower, and bark items in months when TNC and total energy were higher and crude lipid content was lower. This preliminary investigation showed that the forested enclosure allowed troop members to more fully express their species typical flexible behavior by challenging them to adjust their foraging behavior to seasonal changes of plant item diversity and nutritional content, also providing the possibility for individuals to nutritionally enhance their diet [Current Zoology 56 (2: 198–208, 2010].

  8. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    Science.gov (United States)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  9. Evaluation of new hybrid brachiaria lines in Thailand. 1. Forage production and quality

    Directory of Open Access Journals (Sweden)

    Michael D. Hare

    2015-05-01

    Full Text Available Forty-three new hybrid bracharia lines were evaluated for forage accumulation and nutritive value in Northeast Thailand from 2006 to 2011 in experiments at 2 sites, using Mulato II hybrid brachiaria as a standard for comparison. The parameters evaluated were wet and dry season dry matter (DM accumulation, leaf:stem ratio, crude protein (CP concentration and fiber level [acid detergent fiber (ADF and neutral detergent fiber (NDF]. No lines consistently displayed superior dry season forage accumulation and leaf:stem ratio over Mulato II. In the wet seasons, 14 lines produced more DM than Mulato II but in only one wet season each. Mulato II produced forage with high leaf:stem ratio in all seasons. Many lines did have significantly higher CP concentrations and lower levels of ADF and NDF than Mulato II, but their forage accumulation and leaf:stem ratio were inferior. Four lines (BR02/1718, BR02/1752, BR02/1794 and BR02/0465 were granted Plant Variety Rights in 2011.Keywords: Cayman, Cobra, crude protein, dry matter yields, forage regrowth,  Mulato II.DOI: 10.17138/TGFT(383-93 

  10. Forage seeding in rangelands increases production and prevents weed invasion

    Directory of Open Access Journals (Sweden)

    Josh Davy

    2017-07-01

    Full Text Available Increasing forage productivity in the Sierra foothill rangelands would help sustain the livestock industry as land availability shrinks and lease rates rise, but hardly any studies have been done on forage selections. From 2009 to 2014, in one of the first long-term and replicated studies of seeding Northern California's Mediterranean annual rangeland, we compared the cover of 22 diverse forages to determine their establishment and survivability over time. Among the annual herbs, forage brassica (Brassica napus L. and chicory (Cichorium intybus L. proved viable options. Among the annual grasses, soft brome (Bromus hordeaceus and annual ryegrass (Lolium multiflorum performed well. However, these species will likely require frequent reseeding to maintain dominance. Long-term goals of sustained dominant cover (> 3 years are best achieved with perennial grasses. Perennial grasses that persisted with greater than 50% cover were Berber orchardgrass (Dactylis glomerata, Flecha tall fescue (Lolium arundinaceum and several varieties of hardinggrass (Phalaris aquatica L., Perla koleagrass, Holdfast, Advanced AT. In 2014, these successful perennials produced over three times more dry matter (pounds per acre than the unseeded control and also suppressed annual grasses and yellow starthistle (Centaurea solstitialis L. cover.

  11. Seasonal Changes in Central England Temperatures

    DEFF Research Database (Denmark)

    Proietti, Tommaso; Hillebrand, Eric

    The aim of this paper is to assess how climate change is reflected in the variation of the seasonal patterns of the monthly Central England Temperature time series between 1772 and 2013. In particular, we model changes in the amplitude and phase of the seasonal cycle. Starting from the seminal work...... by Thomson (“The Seasons, Global Temperature and Precession”, Science, 7 April 1995, vol 268, p. 59–68), a number of studies have documented a shift in the phase of the annual cycle implying an earlier onset of the spring season at various European locations. A significant reduction in the amplitude...... and stochastic trends, as well as seasonally varying autocorrelation and residual variances. The model can be summarized as containing a permanent and a transitory component, where global warming is captured in the permanent component, on which the seasons load differentially. The phase of the seasonal cycle...

  12. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen.

    Directory of Open Access Journals (Sweden)

    Nadja Danner

    Full Text Available The availability of pollen in agricultural landscapes is essential for the successful growth and reproduction of honey bee colonies (Apis mellifera L.. The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment, we rotated 16 honey bee colonies across 16 agricultural landscapes, used traps to collect samples of collected pollen and observed intra-colonial dance communication to gain information about foraging distances. DNA metabarcoding was applied to analyze mixed pollen samples. Neither the amount of collected pollen nor pollen diversity was related to landscape diversity. However, we found a strong seasonal variation in the amount and diversity of collected pollen in all sites independent of landscape diversity. The observed increase in foraging distances with decreasing landscape diversity suggests that honey bees compensated for lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. Our results underscore the importance of a diverse pollen diet for honey bee colonies. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes.

  13. Seasonal use of a New England estuary by foraging contingents of migratory striped bass

    Science.gov (United States)

    Mather, Martha E.; Pautzke, Sarah M.; Finn, John T.; Deegan, Linda A.; Muth, Robert M.

    2011-01-01

    Using acoustic telemetry on migratory striped bass Morone saxatilis in Plum Island Estuary (PIE), Massachusetts, we found that striped bass (335–634 mm total length) tagged in the spring and summer of 2005 (n = 14) and 2006 (n = 46) stayed in the estuary for an average of 66.0 d in 2005 and 72.2 d in 2006. Striped bass spent the most time in two specific reaches: middle Plum Island Sound and lower Rowley River. In both years, three different use-groups of striped bass were observed in PIE. Short-term visitors (n = 24) stayed in the estuary only briefly (range = 5–20 d). Two groups of seasonal residents stayed for more than 30 d, either in the Rowley River (n = 14) or in Plum Island Sound (n = 22). Within PIE, the two seasonal-resident use-groups may be foraging contingents that learn how to feed efficiently in specific parts of the estuary. These distinct within-estuary use patterns could have different implications for striped bass condition and prey impact.

  14. Dietary composition and spatial patterns of polar bear foraging on land in western Hudson Bay.

    Science.gov (United States)

    Gormezano, Linda J; Rockwell, Robert F

    2013-12-21

    Flexible foraging strategies, such as prey switching, omnivory and food mixing, are key to surviving in a labile and changing environment. Polar bears (Ursus maritimus) in western Hudson Bay are versatile predators that use all of these strategies as they seasonally exploit resources across trophic levels. Climate warming is reducing availability of their ice habitat, especially in spring when polar bears gain most of their annual fat reserves by consuming seal pups before coming ashore in summer. How polar bears combine these flexible foraging strategies to obtain and utilize terrestrial food will become increasingly important in compensating for energy deficits from lost seal hunting opportunities. We evaluated patterns in the composition of foods in scat to characterize the foraging behaviors that underpin the diet mixing and omnivory observed in polar bears on land in western Hudson Bay. Specifically, we measured diet richness, proportions of plant and animal foods, patterns in co-occurrence of foods, spatial composition and an index of temporal composition. Scats contained between 1 and 6 foods, with an average of 2.11 (SE = 0.04). Most scats (84.9%) contained at least one type of plant, but animals (35.4% of scats) and both plants and animals occurring together (34.4% of scats) were also common. Certain foods, such as Lyme grass seed heads (Leymus arenarius), berries and marine algae, were consumed in relatively higher proportions, sometimes to the exclusion of others, both where and when they occurred most abundantly. The predominance of localized vegetation in scats suggests little movement among habitat types between feeding sessions. Unlike the case for plants, no spatial patterns were found for animal remains, likely due the animals' more vagile and ubiquitous distribution. Our results suggest that polar bears are foraging opportunistically in a manner consistent with maximizing intake while minimizing energy expenditure associated with movement. The

  15. Stable isotopes (δ13C, δ15N combined with conventional dietary approaches reveal plasticity in central-place foraging behaviour of little penguins (Eudyptula minor

    Directory of Open Access Journals (Sweden)

    Andre eChiaradia

    2016-01-01

    Full Text Available Marine top and meso predators like seabirds are limited by the need to breed on land but forage on limited or patchily distributed resources at sea. Constraints imposed by such central-place foraging behaviour change during breeding or even disappear outside the breeding period when there is no immediate pressure to return to a central place. However, central place foraging is usually factored as an unchanging condition in life history studies. Here we used little penguin Eudyptula minor, a resident bird with one of the smallest foraging range among seabirds, to examine the different degree of pressure/constraints of being a central-place forager. We combined data on isotopic composition (δ13C and δ15N, conventional stomach contents and body mass of little penguins breeding at Phillip Island, Australia over nine years (2003-11. We explored relationships between diet and body mass in each stage of the breeding season (pre-laying, incubation, guard, and post-guard in years of high and low reproductive success. Values of δ13C and δ15N as well as isotopic niche width had similar patterns among years, with less variability later in the season when little penguins shorten their foraging range at the expected peak of their central-place foraging limitation. Body mass peaked before laying and hatching in preparation for the energetically demanding periods of egg production and chick provisioning. An increase of anchovy and barracouta in the diet, two major prey for little penguins, occurred at the critical stage of chick rearing. These intra-annual trends could be a response to imposed foraging constraints as reproduction progresses, while inter-annual trends could reflect their ability to match or mismatch the high energy demanding chick rearing period with the peak in availability of high-quality prey such as anchovy. Our findings underline the key advantages of using a stable isotope approach combined with conventional dietary reconstruction to

  16. An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS

    Science.gov (United States)

    Lupo, Kevin

    2012-01-01

    Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.

  17. Extreme precipitation variability, forage quality and large herbivore diet selection in arid environments

    Science.gov (United States)

    Cain, James W.; Gedir, Jay V.; Marshal, Jason P.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Jansen, Brian; Morgart, John R.

    2017-01-01

    Nutritional ecology forms the interface between environmental variability and large herbivore behaviour, life history characteristics, and population dynamics. Forage conditions in arid and semi-arid regions are driven by unpredictable spatial and temporal patterns in rainfall. Diet selection by herbivores should be directed towards overcoming the most pressing nutritional limitation (i.e. energy, protein [nitrogen, N], moisture) within the constraints imposed by temporal and spatial variability in forage conditions. We investigated the influence of precipitation-induced shifts in forage nutritional quality and subsequent large herbivore responses across widely varying precipitation conditions in an arid environment. Specifically, we assessed seasonal changes in diet breadth and forage selection of adult female desert bighorn sheep Ovis canadensis mexicana in relation to potential nutritional limitations in forage N, moisture and energy content (as proxied by dry matter digestibility, DMD). Succulents were consistently high in moisture but low in N and grasses were low in N and moisture until the wet period. Nitrogen and moisture content of shrubs and forbs varied among seasons and climatic periods, whereas trees had consistently high N and moderate moisture levels. Shrubs, trees and succulents composed most of the seasonal sheep diets but had little variation in DMD. Across all seasons during drought and during summer with average precipitation, forages selected by sheep were higher in N and moisture than that of available forage. Differences in DMD between sheep diets and available forage were minor. Diet breadth was lowest during drought and increased with precipitation, reflecting a reliance on few key forage species during drought. Overall, forage selection was more strongly associated with N and moisture content than energy content. Our study demonstrates that unlike north-temperate ungulates which are generally reported to be energy-limited, N and moisture

  18. Late Noachian Icy Highlands climate model: Exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures

    Science.gov (United States)

    Palumbo, Ashley M.; Head, James W.; Wordsworth, Robin D.

    2018-01-01

    The nature of the Late Noachian climate of Mars remains one of the outstanding questions in the study of the evolution of martian geology and climate. Despite abundant evidence for flowing water (valley networks and open/closed basin lakes), climate models have had difficulties reproducing mean annual surface temperatures (MAT) > 273 K in order to generate the ;warm and wet; climate conditions presumed to be necessary to explain the observed fluvial and lacustrine features. Here, we consider a ;cold and icy; climate scenario, characterized by MAT ∼225 K and snow and ice distributed in the southern highlands, and ask: Does the formation of the fluvial and lacustrine features require continuous ;warm and wet; conditions, or could seasonal temperature variation in a ;cold and icy; climate produce sufficient summertime ice melting and surface runoff to account for the observed features? To address this question, we employ the 3D Laboratoire de Météorologie Dynamique global climate model (LMD GCM) for early Mars and (1) analyze peak annual temperature (PAT) maps to determine where on Mars temperatures exceed freezing in the summer season, (2) produce temperature time series at three valley network systems and compare the duration of the time during which temperatures exceed freezing with seasonal temperature variations in the Antarctic McMurdo Dry Valleys (MDV) where similar fluvial and lacustrine features are observed, and (3) perform a positive-degree-day analysis to determine the annual volume of meltwater produced through this mechanism, estimate the necessary duration that this process must repeat to produce sufficient meltwater for valley network formation, and estimate whether runoff rates predicted by this mechanism are comparable to those required to form the observed geomorphology of the valley networks. When considering an ambient CO2 atmosphere, characterized by MAT ∼225 K, we find that: (1) PAT can exceed the melting point of water (>273 K) in

  19. Breeding short-tailed shearwaters buffer local environmental variability in south-eastern Australia by foraging in Antarctic waters.

    Science.gov (United States)

    Berlincourt, Maud; Arnould, John P Y

    2015-01-01

    Establishing patterns of movements of free-ranging animals in marine ecosystems is crucial for a better understanding of their feeding ecology, life history traits and conservation. As central place foragers, the habitat use of nesting seabirds is heavily influenced by the resources available within their foraging range. We tested the prediction that during years with lower resource availability, short-tailed shearwaters (Puffinus tenuirostris) provisioning chicks should increase their foraging effort, by extending their foraging range and/or duration, both when foraging in neritic (short trips) and distant oceanic waters (long trips). Using both GPS and geolocation data-loggers, at-sea movements and habitat use were investigated over three breeding seasons (2012-14) at two colonies in southeastern Australia. Most individuals performed daily short foraging trips over the study period and inter-annual variations observed in foraging parameters where mainly due to few individuals from Griffith Island, performing 2-day trips in 2014. When performing long foraging trips, this study showed that individuals from both colonies exploited similar zones in the Southern Ocean. The results of this study suggest that individuals could increase their foraging range while exploiting distant feeding zones, which could indicate that short-tailed shearwaters forage in Antarctic waters not only to maintain their body condition but may also do so to buffer against local environmental stochasticity. Lower breeding performances were associated with longer foraging trips to distant oceanic waters in 2013 and 2014 indicating they could mediate reductions in food availability around the breeding colonies by extending their foraging range in the Southern Ocean. This study highlights the importance of foraging flexibility as a fundamental aspect of life history in coastal/pelagic marine central place foragers living in highly variable environments and how these foraging strategies are use to

  20. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system.

    Directory of Open Access Journals (Sweden)

    Thomas Ohde

    Full Text Available We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS for the 2002-2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area. The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone

  1. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system.

    Science.gov (United States)

    Ohde, Thomas; Dadou, Isabelle

    2018-01-01

    We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS) for the 2002-2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area). The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone, increased mass

  2. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.

    Science.gov (United States)

    Richardson, Andrew D; Hollinger, David Y; Dail, D Bryan; Lee, John T; Munger, J William; O'keefe, John

    2009-03-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO(2) exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux sites. All phenological measures, including CO(2) source-sink transition dates, could be well predicted on the basis of a simple two-parameter spring warming model, indicating good potential for improving the representation of phenological transitions and their dynamic responsiveness to climate variability in land surface models. The date at which canopy-scale photosynthetic capacity reached a threshold value of 12 micromol m(-2) s(-1) was better correlated with spring and annual flux integrals than were either deciduous or coniferous bud burst dates. For all phenological indicators, earlier spring onset consistently, but not always significantly, resulted in higher gross primary productivity (GPP) and ecosystem respiration (RE) for both seasonal (spring months, April-June) and annual flux integrals. The increase in RE was less than that in GPP; depending on the phenological indicator used, a one-day advance in spring onset increased springtime net ecosystem productivity (NEP) by 2-4 g C m(-2) day(-1). In general, we could not detect significant differences between the two forest types in response to earlier spring, although the response to earlier spring was generally more pronounced for Harvard Forest than for Howland Forest, suggesting that future climate warming may favor deciduous species over coniferous species, at least in this region. The effect of earlier spring tended to be about twice as large when annual rather than springtime flux integrals were considered. This result is suggestive of both immediate and lagged effects of earlier spring onset on ecosystem C cycling, perhaps as a result of accelerated N cycling

  3. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    Science.gov (United States)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  4. Soil-surface CO2 flux and growth in a boreal Norway spruce stand: Effects of soil warming and nutrition

    International Nuclear Information System (INIS)

    Stroemgren, M.

    2001-01-01

    Global warming is predicted to affect the carbon balance of forests. A change in the carbon balance would give a positive or negative feedback to the greenhouse effect, which would affect global warming. The effects of long-term soil warming on growth, nutrient and soil-surface CO 2 flux (R) dynamics were studied in irrigated (I) and irrigated-fertilised (IL) stands of Norway spruce in northern Sweden. Soil temperature on heated plots (Ih and ILh) was maintained 5 deg C above that on unheated plots (Ic and ILc) from May to October, by heating cables. After six years' soil warming, stemwood production increased by 100% and 50% in the I and IL treatment, respectively. The main production increase occurred at the beginning of the season, probably as an effect of the earlier increase in soil temperature. In the 1h treatment, however, the growth increase was evident during the entire season. The effect of increased nitrogen (N) mineralisation on annual growth appeared to be stronger than the direct effect of warming. From 1995-2000, the total amount of N stored in aboveground tree parts increased by 100 and 475 kg N/ha on Ic and ILc plots, respectively. During the same period, 450 kg N fertiliser was added to the ILc plot. Soil warming increased the total amount of N stored in aboveground tree parts by 50 kg N/ha, independently of nutrient treatment. Soil warming did not significantly increase R, except in early spring, when R was 30-50% higher on heated compared to unheated plots. The extended growing season, however, increased annual respiration (RA) by 12-30% throughout. RA losses were estimated to be 0.6-0.7 kg C/ha/year. Use of relationships between R and soil temperature, derived from unheated plots, overestimated RA on heated plots by 50-80%. These results suggest that acclimation of root or microbial respiration or both to temperature had occurred, but the exact process(es) and their relative contribution are still unclear. In conclusion, the study showed that

  5. At site and regional analysis of maximum annual and seasonal discharges and precipitation depths in the upper Hron region

    International Nuclear Information System (INIS)

    Kohnova, S.; Hlavcova, K.

    2004-01-01

    In this presentation authors deal with the regional analysis of maximum annual and seasonal discharges and precipitation depths in the upper Hron region (Slovak Republic). This work has two objectives: (1) At site and regional analysis of annual and seasonal maximum design discharges in the upper Hron region; (2) Analysis of annual and seasonal maximum design precipitations in the connection of extreme runoff condition in the upper Hron region

  6. A further contribution to the seasonal variation of weighted mean temperature

    Science.gov (United States)

    Ding, Maohua; Hu, Wusheng

    2017-12-01

    The weighted mean temperature Tm is a variable parameter in the Global Navigation Satellite System (GNSS) meteorology and the Askne-Nordius zenith wet delay (ZWD) model. Some parameters about the Tm seasonal variation (e.g. the annual mean value, the annual range, the annual and semi-annual amplitudes, and the long-term trend) were discussed before. In this study, some additional results about the Tm seasonal variation on a global scale were found by using the Tm time series at 309 global radiosonde sites. Periodic signals of the annual and semi-annual variations were detected in these Tm time series by using the Lomb-Scargle periodogram. The annual variation is the main component of the periodic Tm in non-tropical regions, while the annual variation or the semiannual variation can be the main component of the periodic Tm in tropics. The mean annual Tm almost keeps constant with the increasing latitude in tropics, while it decreases with the increasing latitude in non-tropical regions. From a global perspective, Tm has an increasing trend of 0.22 K/decade on average, which may be caused by the global warming effects. The annual phase is almost found in about January for the non-tropical regions of the Southern Hemisphere and in about July for the non-tropical regions of the Northern Hemisphere, but it has no clear symmetry in tropics. Unlike the annual phase, the geographical distributions of semi-annual phase do not follow obvious rules. In non-tropical regions, the maximum and minimum Tm of the seasonal model are usually found in respective summer and winter days while the maximum and minimum Tm are distributed over a whole year but not in any fixed seasons for tropical regions. The seasonal model errors increase with the increasing value of annual amplitude. A primary reason for the irregular seasonal variation in tropics is that Tm has rather small variations in this region.

  7. Occurrence of annual growth rings in Rhizophora mangle in a region with low climate seasonality

    Directory of Open Access Journals (Sweden)

    BRUNNA T. SOUZA

    2016-01-01

    Full Text Available ABSTRACT The formation of annual growth rings has been confirmed for several mangrove species in the last decade, among which is the Rhizophora mangle. However, the record of annual rings for this species was made in a region with high hydric seasonality, a widely recognized induction factor of annual rings in tropical species. In this sense, the present study aimed to verify the occurrence of annual growth rings in R. mangle in the mangroves of Guaratiba (Rio de Janeiro, Southeastern Brazil, a region with low hydric seasonality. For this purpose, the crossdating technique was applied in ten trees collected with known age (seven years. The growth rings are characterized by alternating layers of low vessel density (earlywood and high vessel density (latewood. Multiple regression analysis indicated that growth rings width variation is driven by precipitation, water surplus, water deficit and water storage. Crossdating analysis confirmed the existence of annual growth rings in the R. mangle in Guaratiba. This discovery in a region with low hydric seasonality increases the dendrocronological potential of this species and suggests the importance of biological factors (eg. phenological behavior as complementary inductors for the formation of growth rings in this species.

  8. Persistence of forage fish ‘hot spots’ and its association with foraging Steller sea lions (Eumetopias jubatus) in southeast Alaska

    Science.gov (United States)

    Gende, Scott M.; Sigler, Michael F.

    2006-02-01

    Whereas primary and secondary productivity at oceanic 'hotspots' may be a function of upwelling and temperature fronts, the aggregation of higher-order vertebrates is a function of their ability to search for and locate these areas. Thus, understanding how predators aggregate at these productive foraging areas is germane to the study of oceanic hot spots. We examined the spatial distribution of forage fish in southeast Alaska for three years to better understand Steller sea lion ( Eumetopias jubatus) aggregations and foraging behavior. Energy densities (millions KJ/km 2) of forage fish were orders of magnitude greater during the winter months (November-February), due to the presence of schools of overwintering Pacific herring ( Clupea pallasi). Within the winter months, herring consistently aggregated at a few areas, and these areas persisted throughout the season and among years. Thus, our study area was characterized by seasonally variable, highly abundant but highly patchily distributed forage fish hot spots. More importantly, the persistence of these forage fish hot spots was an important characteristic in determining whether foraging sea lions utilized them. Over 40% of the variation in the distribution of sea lions on our surveys was explained by the persistence of forage fish hot spots. Using a simple spatial model, we demonstrate that when the density of these hot spots is low, effort necessary to locate these spots is minimized when those spots persist through time. In contrast, under similar prey densities but lower persistence, effort increases dramatically. Thus an important characteristic of pelagic hot spots is their persistence, allowing predators to predict their locations and concentrate search efforts accordingly.

  9. Seasonal and Annual Survival of East-Atlantic Pale-Bellied Brent Geese Branta hrota Assessed by Capture-Recapture Analysis

    DEFF Research Database (Denmark)

    Clausen, P.; Frederiksen, M.; Percival, S. M.

    2001-01-01

    areas by intensive field studies. In this paper we use standard capture-recapture analysis to investigate seasonal and annual survival rates of the population. We divided the year into three periods with different spatial distribution of the geese, autumn (September-December), winter (Jan...... spring to autumn (0.982 MSR), -resulting in an overall annual survival rate of 0.870. We discuss the variation in seasonal and annual mortality rates in relation to constraints faced by the birds such as seasonal changes in availability of food resources, severe winters, long-distance migration...

  10. Effect of corn dry distiller grains plus solubles supplementation level on performance and digestion characteristics of steers grazing native range during forage growing season.

    Science.gov (United States)

    Martínez-Pérez, M F; Calderón-Mendoza, D; Islas, A; Encinias, A M; Loya-Olguín, F; Soto-Navarro, S A

    2013-03-01

    Two experiments were conducted to evaluate effects of corn dry distiller grains plus condensed solubles (DDGS) supplementation level on performance digestion characteristics of steers grazing native range during the forage growing season. In the performance study, 72 (206 ± 23.6 kg; 2008) and 60 (230 ± 11.3 kg; 2009) English crossbred steer calves were used in a randomized complete block design replicated over 2 yr. The grazing periods lasted 56 and 58 d and started on August 11 and 18 for 2008 and 2009, respectively. Each year, steers were blocked by BW (light, medium, and heavy), stratified by BW within blocks, and randomly assigned to 1 of 4 grazing groups. Each grazing group (6 steers in 2008 and 5 in 2009) was assigned to a DDGS supplementation levels (0, 0.2, 0.4, and 0.6% BW). Grazing group served as the experimental unit with 12 groups per year receiving 1 of 4 treatments for 2 yr (n = 6). In the metabolism study, 16 English crossbred steers (360 ± 28.9 kg) fitted with ruminal cannulas grazing native range during the summer growing season were used in a completely randomized design to evaluate treatment effects on forage intake and digestion. The experiment was conducted during the first and second weeks of October 2008. Steers were randomly assigned to supplement level (0, 0.2, 0.4, and 0.6% BW; n = 4) and grazed a single native range pasture with supplements offered individually once daily at 0700 h. In the performance study, ADG (0.64, 0.75, 0.80, and 0.86 ± 0.03 kg/d for 0, 0.2, 0.4, and 0.6% BW, respectively) increased linearly (P = 0.01) with increasing DDGS supplementation level. In the metabolism study, forage OM, NDF, CP, and ether extract (EE) intake decreased (P ≤ 0.05) linearly with increasing DDGS supplementation level. Total CP and EE intake increased (P ≤ 0.002) with increasing DDGS supplementation level. Digestibility of OM, NDF, and EE increased (linear; P ≤ 0.008) whereas the soluble CP fraction of forage masticate sample

  11. Effects of maturity and harvest season of grass-clover silage and of forage-to-concentrate ratio on milk production of dairy cows.

    Science.gov (United States)

    Alstrup, L; Søegaard, K; Weisbjerg, M R

    2016-01-01

    This study examined the effects of maturity and season of harvest of grass-clover silages and forage:concentrate ratio (FCR) on feed intake, milk production, chewing activity, digestibility, and fecal consistency of Holstein dairy cows. Comparison included 2 cuts in spring season (early and late) and 2 cuts in summer season (early and late) combined with high FCR (80:20; HFCR) and low FCR (50:50; LFCR). The experiment included 24 lactating Holstein cows arranged as 2 repeated 4 × 4 Latin squares with four 21-d periods and included measurements of feed composition, feed intake, milk production and composition, chewing activities, digestibilities, and fecal dry matter (DM) concentration and scoring. Forages were fed as two-thirds grass-clover and one-third corn silage supplemented with either 20 or 50% concentrate. Rations were fed ad libitum as total mixed rations. Early maturity cuts were more digestible than late maturity cuts, which was also reflected in a lower concentration of neutral detergent fiber (NDF) in early maturity cuts, whereas summer cuts had a higher crude protein concentration than spring cuts. Increased maturity decreased the intake of DM and energy, increased NDF intake, and decreased the yield of energy-corrected milk (ECM). Summer cuts increased the ECM yield compared with spring cuts. Milk yield (kg and kilogram of ECM) was numerically higher for cows fed early summer cut, independent of FCR in the ration. Milk protein concentration decreased, or tended to decrease, with maturity. For LFCR, the milk fat concentration increased with maturity resulting in a decreased protein:fat ratio. At HFCR, increased maturity increased the time spent chewing per kilogram of DM. Digestibility of silages was positively correlated with the fecal DM concentration. The DM intake and ECM yield showed no significant response to FCR in the ration, but the milk composition was affected. The LFCR decreased the milk fat percentage and increased the milk protein

  12. Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.

    2017-01-01

    Climate warming is expected to increase stream temperatures in mountainous regions of western North America, yet the degree to which future climate change may influence seasonal patterns of stream temperature is uncertain. In this study, a spatially explicit statistical model framework was integrated with empirical stream temperature data (approximately four million bi-hourly recordings) and high-resolution climate and land surface data to estimate monthly stream temperatures and potential change under future climate scenarios in the Crown of the Continent Ecosystem, USA and Canada (72,000 km2). Moderate and extreme warming scenarios forecast increasing stream temperatures during spring, summer, and fall, with the largest increases predicted during summer (July, August, and September). Additionally, thermal regimes characteristic of current August temperatures, the warmest month of the year, may be exceeded during July and September, suggesting an earlier and extended duration of warm summer stream temperatures. Models estimate that the largest magnitude of temperature warming relative to current conditions may be observed during the shoulder months of winter (April and November). Summer stream temperature warming is likely to be most pronounced in glacial-fed streams where models predict the largest magnitude (> 50%) of change due to the loss of alpine glaciers. We provide the first broad-scale analysis of seasonal climate effects on spatiotemporal patterns of stream temperature in the Crown of the Continent Ecosystem for better understanding climate change impacts on freshwater habitats and guiding conservation and climate adaptation strategies.

  13. Hydrological changes impacts on annual runoff distribution in seasonally dry basins

    Science.gov (United States)

    Viola, F.; Caracciolo, D.; Feng, X.

    2017-12-01

    Runoff is expected to be modified in the next future by climate change as well as by land use change. Given its importance for water supply and ecosystem functioning, it is therefore imperative to develop adaptation strategies and new policies for regional water resources management and planning. To do so, the identification and attribution of natural flow regime shifts as a result of climate and land use changes are of crucial importance. In this context, the Budyko's curve has begun to be widely adopted to separate the contributions of climate and land use changes to the variation of runoff over long-term periods by using the multi-year averages of hydrological variables. In this study, a framework based on Fu's equation is proposed and applied to separate the impacts of climate and land use changes on the future annual runoff distribution in seasonally dry basins, such as those in Mediterranean climates. In particular, this framework improves a recently developed method to obtain annual runoff probability density function (pdf) in seasonally dry basins from annual rainfall and potential evapotranspiration statistics, and from knowledge of the Fu's equation parameter ω. The effect of climate change has been taken into account through the variation of the first order statistics of annual rainfall and potential evapotranspiration, consistent with general circulation models' outputs, while the Fu's equation parameter ω has been changed to represent land use change. The effects of the two factors of change (i.e., climate and land use) on the annual runoff pdf have been first independently and then jointly analyzed, by reconstructing the annual runoff pdfs for the current period and, based on likely scenarios, within the next 100 years. The results show that, for large basins, climate change is the dominant driver of the decline in annual runoff, while land use change is a secondary but important factor.

  14. Trends and homogeneity of monthly, seasonal, and annual rainfall over arid region of Rajasthan, India

    Science.gov (United States)

    Meena, Hari Mohan; Machiwal, Deepesh; Santra, Priyabrata; Moharana, Pratap Chandra; Singh, D. V.

    2018-05-01

    Knowledge of rainfall variability is important for regional-scale planning and management of water resources in agriculture. This study explores spatio-temporal variations, trends, and homogeneity in monthly, seasonal, and annual rainfall series of 62 stations located in arid region of Rajasthan, India using 55 year (1957-2011) data. Box-whisker plots indicate presence of outliers and extremes in annual rainfall, which made the distribution of annual rainfall right-skewed. Mean and coefficient of variation (CV) of rainfall reveals a high inter-annual variability (CV > 200%) in the western portion where the mean annual rainfall is very low. A general gradient of the mean monthly, seasonal, and annual rainfall is visible from northwest to southeast direction, which is orthogonal to the gradient of CV. The Sen's innovative trend test is found over-sensitive in evaluating statistical significance of the rainfall trends, while the Mann-Kendall test identifies significantly increasing rainfall trends in June and September. Rainfall in July shows prominently decreasing trends although none of them are found statistically significant. Monsoon and annual rainfall show significantly increasing trends at only four stations. The magnitude of trends indicates that the rainfall is increasing at a mean rate of 1.11, 2.85, and 2.89 mm year-1 in August, monsoon season, and annual series. The rainfall is found homogeneous over most of the area except for few stations situated in the eastern and northwest portions where significantly increasing trends are observed. Findings of this study indicate that there are few increasing trends in rainfall of this Indian arid region.

  15. GPS-tracking and colony observations reveal variation in offshore habitat use and foraging ecology of breeding Sandwich Terns

    Science.gov (United States)

    Fijn, R. C.; de Jong, J.; Courtens, W.; Verstraete, H.; Stienen, E. W. M.; Poot, M. J. M.

    2017-09-01

    Breeding success of seabirds critically depends on their foraging success offshore. However, studies combining at-sea tracking and visual provisioning observations are scarce, especially for smaller species of seabirds. This study is the first in which breeding Sandwich Terns were tracked with GPS-loggers to collect detailed data on foraging habitat use in four breeding seasons. The maximum home range of individual Sandwich Terns comprised approximately 1900 km2 and the average foraging range was 27 km. Trip durations were on average 135 min with average trip lengths of 67 km. Actual foraging behaviour comprised 35% of the time budget of a foraging trip. Substantial year-to-year variation was found in habitat use and trip variables, yet with the exception of 2012, home range size remained similar between years. Food availability, chick age and environmental conditions are proposed as the main driving factors between inter- and intra-annual variations in trip variables. Our multi-method approach also provided geo-referenced information on prey presence and we conclude that future combining of colony observations and GPS-loggers deployments can potentially provide a near complete insight into the feeding ecology of breeding Sandwich Terns, including the behaviour of birds at sea.

  16. Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in Coupled Climate-Vegetation Regional Model

    Directory of Open Access Journals (Sweden)

    Flavio Justino

    2016-01-01

    Full Text Available Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly modified under greenhouse warming conditions, with the annual cycle becoming dominant throughout the Amazon basin, increasing differences between the dry and wet seasons. In particular, there are substantial changes in the annual cycle of temperature due to the increase in the temperature of the warmest month, but the lengthening of the dry season is believed to be particularly important for vegetation-climate feedbacks. Harmonic analysis performed to regional climate model simulations yields results that differ from the global climate model that it is forced from, with the regional model being more sensitive to changes in the seasonal cycle.

  17. Seasonal behavioral responses of an arid-zone passerine in a hot environment.

    Science.gov (United States)

    Pattinson, Nicholas B; Smit, Ben

    2017-10-01

    Many arid-zone animals have to forage under extremely hot conditions to maintain water and energy balance. The effect of high air temperatures (T air ) on the behavioral patterns of small endothermic animals-characterized by their high energy and water demands-will provide a valuable framework for understanding species vulnerability to climate warming. We determined the seasonal behavioral responses to changes in T air in a~10-g arid-zone passerine, the rufous-eared warbler (Malcorus pectoralis), in the Karoo semi-desert, South Africa. Rufous-eared warblers showed significant temperature-dependence in their behavior in summer, but not in winter. During summer, the warblers frequently experienced T air exceeding 40°C in the shade. For all observations 36°C, the warblers showed reductions in preening (40% decrease), foraging effort (56% decrease), and foraging success (15% decrease), as well as a significant increase in time spent engaged in evaporative cooling behavior. Moreover, as T air increased the warblers shifted increasingly off the ground and out of the full sun, into microsites in the shade (131% increase) and in shrubs (23% increase). In this regard, behavior varied seasonally, with the time spent in the shade 23% higher, and foraging effort 28% higher, in summer compared to winter across a range of moderate T air (15-30°C). Our findings emphasize the link between behavior and temperature in small birds inhabiting hot, arid environments, as well as the importance of understanding these responses for predicting biologically meaningful responses (and hence, vulnerability) of arid-zone avian communities to climactic shifts. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Science.gov (United States)

    Burke, Chantelle M; Montevecchi, William A; Regular, Paul M

    2015-01-01

    Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge), where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15) and males (n = 9) during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  19. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Directory of Open Access Journals (Sweden)

    Chantelle M Burke

    Full Text Available Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge, where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15 and males (n = 9 during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  20. Variations in plant forage quality in the range of the Porcupine caribou herd

    Directory of Open Access Journals (Sweden)

    Jill Johnstone

    2002-06-01

    Full Text Available Understanding potential impacts of vegetation change on caribou energetics requires information on variations in forage quality among different plant types and over time. We synthesized data on forage quality (nitrogen, neutral detergent fiber and dry matter digestibility for 10 plant growth forms from existing scientific literature and from field research in the Arctic National Wildlife Refuge, Alaska. These data describe forage quality of plant species in habitats found within the summer and winter range of the Porcupine caribou herd in northwestern Canada and northern Alaska, U.S.A. We compared mean levels of summer forage quality among growth forms and, where possible, estimated seasonal changes in forage quality. Preferred forage groups (deciduous shrubs, forbs, and cottongrass flowers had higher nitrogen and digestibility, and lower fiber content, than other growth forms. Nitrogen concentration in green biomass peaked at the onset of the growing season in forbs and deciduous shrubs, whereas graminoids reached peak nitrogen concentrations approximately 15-30 days after growth initiation. In vitro dry matter digestibility (IVDMD and concentration of neutral detergent fiber (NDF of green biomass differed among growth forms, but did not show strong seasonal changes. IVDMD and NDF concentrations were correlated with nitrogen concentrations in studies that had paired sampling.

  1. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L; Baldocchi, D

    2004-05-01

    Understanding how environmental variables affect the processes that regulate the carbon flux over grassland is critical for large-scale modeling research, since grasslands comprise almost one-third of the earth's natural vegetation. To address this issue, fluxes of CO{sub 2} (F{sub c}, flux toward the surface is negative) were measured over a Mediterranean, annual grassland in California, USA for 2 years with the eddy covariance method. To interpret the biotic and abiotic factors that modulate F{sub c} over the course of a year we decomposed net ecosystem CO{sub 2} exchange into its constituent components, ecosystem respiration (R{sub eco}) and gross primary production (GPP). Daytime R{sub eco} was extrapolated from the relationship between temperature and nighttime F{sub c} under high turbulent conditions. Then, GPP was estimated by subtracting daytime values of F{sub c} from daytime estimates of R{sub eco}. Results show that most of carbon exchange, both photosynthesis and respiration, was limited to the wet season (typically from October to mid-May). Seasonal variations in GPP followed closely to changes in leaf area index, which in turn was governed by soil moisture, available sunlight and the timing of the last frost. In general, R{sub eco} was an exponential function of soil temperature, but with season-dependent values of Q{sub 10}. The temperature-dependent respiration model failed immediately after rain events, when large pulses of R{sub eco} were observed. Respiration pulses were especially notable during the dry season when the grass was dead and were the consequence of quickly stimulated microbial activity. Integrated values of GPP, R{sub eco}, and net ecosystem exchange (NEE) were 867, 735, and -132g C m{sup -2}, respectively, for the 2000-2001 season, and 729, 758, and 29g C m{sup -2} for the 2001-2002 season. Thus, the grassland was a moderate carbon sink during the first season and a weak carbon source during the second season. In contrast to a

  2. Seasonal foraging ecology of non-migratory cougars in a system with migrating prey.

    Directory of Open Access Journals (Sweden)

    L Mark Elbroch

    Full Text Available We tested for seasonal differences in cougar (Puma concolor foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus and moose (Alces alces than females, while females killed greater proportions of bighorn sheep (Ovis canadensis, pronghorn (Antilocapra americana, mule deer (Odocoileus hemionus and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1 elevation decreased, 2 distance to edge habitat decreased, 3 distance to large bodies of water decreased, and 4 steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1 elevation decreased, 2 distance to edge habitat decreased, and 3 distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.

  3. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Annual report, August 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1977-08-01

    New techniques of using irradiation in the genetic improvement of several warm season grasses are described. The economic value of radiation induced plant mutants and the genetic and cytogenetic effects of these treatments are discussed. Alterations in protein quality in pearl millet grain and improved varieties of Bermuda grass following radiation treatment are reported

  4. Seasonal and annual precipitation time series trend analysis in North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.

    2014-02-01

    The present study performs the spatial and temporal trend analysis of the annual and seasonal time-series of a set of uniformly distributed 249 stations precipitation data across the state of North Carolina, United States over the period of 1950-2009. The Mann-Kendall (MK) test, the Theil-Sen approach (TSA) and the Sequential Mann-Kendall (SQMK) test were applied to quantify the significance of trend, magnitude of trend, and the trend shift, respectively. Regional (mountain, piedmont and coastal) precipitation trends were also analyzed using the above-mentioned tests. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation of precipitation data series. The application of the above-mentioned procedures has shown very notable statewide increasing trend for winter and decreasing trend for fall precipitation. Statewide mixed (increasing/decreasing) trend has been detected in annual, spring, and summer precipitation time series. Significant trends (confidence level ≥ 95%) were detected only in 8, 7, 4 and 10 nos. of stations (out of 249 stations) in winter, spring, summer, and fall, respectively. Magnitude of the highest increasing (decreasing) precipitation trend was found about 4 mm/season (- 4.50 mm/season) in fall (summer) season. Annual precipitation trend magnitude varied between - 5.50 mm/year and 9 mm/year. Regional trend analysis found increasing precipitation in mountain and coastal regions in general except during the winter. Piedmont region was found to have increasing trends in summer and fall, but decreasing trend in winter, spring and on an annual basis. The SQMK test on "trend shift analysis" identified a significant shift during 1960 - 70 in most parts of the state. Finally, the comparison between winter (summer) precipitations with the North Atlantic Oscillation (Southern Oscillation) indices concluded that the variability and trend of precipitation can be explained by the

  5. Diallel analysis of maize hybrids for agronomic and bromatological forage traits

    Directory of Open Access Journals (Sweden)

    Matheus Henrique Silveira Mendes

    2015-05-01

    Full Text Available The aim of this study was to evaluate a diallel of maize hybrids for traits related to forage production and nutritional value. Six commercial hybrids were used as parents. The crosses were made according to a complete diallel design, obtaining the F1 and reciprocal crosses. The evaluations were performed in the main and second crop seasons in the 2010/2011 crop year at the Center for Technological Development in Agriculture of the Federal University of Lavras, located in Lavras, Minas Gerais State, Brazil. The experimental precision indicated by the coefficient of variation was good for all the traits measured. Significant differences were not observed among the crosses for traits related to the nutritional value of the forage. For fresh matter yield and dehusked ear yield, the general combining ability (GCA and specific combining ability (SCA effects were significant. Sowing in the second crop season reduced the yield and nutritional value of the forage. The interaction among the crosses and sowing seasons was not significant. For the beginning of an intrapopulational breeding program, the parent BM 3061 stands out by showing high estimates of GCA for the grain and forage yields.

  6. [Characteristics and adaptation of seasonal drought in southern China under the background of climate change. V. Seasonal drought characteristics division and assessment in southern China].

    Science.gov (United States)

    Huang, Wan-Hua; Sui, Yue; Yang, Xiao-Guang; Dai, Shu-Wei; Li, Mao-Song

    2013-10-01

    Zoning seasonal drought based on the study of drought characteristics can provide theoretical basis for formulating drought mitigation plans and improving disaster reduction technologies in different arid zones under global climate change. Based on the National standard of meteorological drought indices and agricultural drought indices and the 1959-2008 meteorological data from 268 meteorological stations in southern China, this paper analyzed the climatic background and distribution characteristics of seasonal drought in southern China, and made a three-level division of seasonal drought in this region by the methods of combining comprehensive factors and main factors, stepwise screening indices, comprehensive disaster analysis, and clustering analysis. The first-level division was with the annual aridity index and seasonal aridity index as the main indices and with the precipitation during entire year and main crop growing season as the auxiliary indices, dividing the southern China into four primary zones, including semi-arid zone, sub-humid zone, humid zone, and super-humid zone. On this basis, the four primary zones were subdivided into nine second-level zones, including one semi-arid area-temperate-cold semi-arid hilly area in Sichuan-Yunnan Plateau, three sub-humid areas of warm sub-humid area in the north of the Yangtze River, warm-tropical sub-humid area in South China, and temperate-cold sub-humid plateau area in Southwest China, three humid areas of temperate-tropical humid area in the Yangtze River Basin, warm-tropical humid area in South China, and warm humid hilly area in Southwest China, and two super-humid areas of warm-tropical super-humid area in South China and temperate-cold super-humid hilly area in the south of the Yangtze River and Southwest China. According to the frequency and intensity of multiple drought indices, the second-level zones were further divided into 29 third-level zones. The distribution of each seasonal drought zone was

  7. The influence of the bottom cold water on the seasonal variability of the Tsushima warm current

    Science.gov (United States)

    Isobe, Atsuhiko

    1995-06-01

    Previous studies have concluded that the volume transport and surface current velocity of the Tsushima Warm Current are at a maximum between summer and autumn and at a minimum between winter and spring. Each study has obtained these results indirectly, using the sea level difference across the Tsushima-Korea Strait or dynamic calculation. Numerical experiments are performed to estimate the seasonal variability in the sea level difference caused by the Bottom Cold Water (BCW), which intrudes from the Sea of Japan along the Korean coast in the bottom layer. These experiments basically treat the baroclinic adjustment problem of the BCW in a rectangular cross section perpendicular to the axis (northeast-southwest direction) of the Tsushima-Korea Strait. It is a five-layer model for summer and a two-layer model for winter. The initial conditions and parameters in models are chosen so as to match the calculated velocity-density fields with the observed velocity-density fields [Isobe A., S. Tawara, A. Kaneko and M. Kawano (1994) Continental Shelf Research, 14, 23-35.]. Consequently, the experiments prove that the observed seasonal variability in the sea level difference across the Tsushima-Korea Strait largely contains the baroclinic motion caused by the BCW. It should be noted that the position of the BCW also plays an important role in producing a considerable seasonal variation of the sea level difference. It is critical to remove the baroclinic contribution from the observed sea level differences across the Tsushima-Korea Strait in order to estimate the seasonal variation in the volume transport of the Tsushima Warm Current.

  8. Enteric methane production and ruminal fermentation from forage brassica diets fed in continuous culture

    Science.gov (United States)

    Brassicas provide forage for livestock during the late fall when traditional perennial cool-season forages are not productive. However, little research exists on ruminal fermentation and methane(CH4) production of brassicas fed as forage. A continuous culture fermentor system was used to assess nutr...

  9. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Science.gov (United States)

    Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  10. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    Science.gov (United States)

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  11. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Directory of Open Access Journals (Sweden)

    Jay V Gedir

    Full Text Available Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons and moisture (autumn and winter during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains, female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental

  12. Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators?

    Directory of Open Access Journals (Sweden)

    Sean A Rands

    Full Text Available As well as nutritional rewards, some plants also reward ectothermic pollinators with warmth. Bumble bees have some control over their temperature, but have been shown to forage at warmer flowers when given a choice, suggesting that there is some advantage to them of foraging at warm flowers (such as reducing the energy required to raise their body to flight temperature before leaving the flower. We describe a model that considers how a heat reward affects the foraging behaviour in a thermogenic central-place forager (such as a bumble bee. We show that although the pollinator should spend a longer time on individual flowers if they are warm, the increase in total visit time is likely to be small. The pollinator's net rate of energy gain will be increased by landing on warmer flowers. Therefore, if a plant provides a heat reward, it could reduce the amount of nectar it produces, whilst still providing its pollinator with the same net rate of gain. We suggest how heat rewards may link with plant life history strategies.

  13. Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran

    Science.gov (United States)

    Amini, Heresh; Taghavi-Shahri, Seyed-Mahmood; Henderson, Sarah B.; Hosseini, Vahid; Hassankhany, Hossein; Naderi, Maryam; Ahadi, Solmaz; Schindler, Christian; Künzli, Nino; Yunesian, Masud

    2016-09-01

    Very few land use regression (LUR) models have been developed for megacities in low- and middle-income countries, but such models are needed to facilitate epidemiologic research on air pollution. We developed annual and seasonal LUR models for ambient oxides of nitrogen (NO, NO2, and NOX) in the Middle Eastern city of Tehran, Iran, using 2010 data from 23 fixed monitoring stations. A novel systematic algorithm was developed for spatial modeling. The R2 values for the LUR models ranged from 0.69 to 0.78 for NO, 0.64 to 0.75 for NO2, and 0.61 to 0.79 for NOx. The most predictive variables were: distance to the traffic access control zone; distance to primary schools; green space; official areas; bridges; and slope. The annual average concentrations of all pollutants were high, approaching those reported for megacities in Asia. At 1000 randomly-selected locations the correlations between cooler and warmer season estimates were 0.64 for NO, 0.58 for NOX, and 0.30 for NO2. Seasonal differences in spatial patterns of pollution are likely driven by differences in source contributions and meteorology. These models provide a basis for understanding long-term exposures and chronic health effects of air pollution in Tehran, where such research has been limited.

  14. Impact of Environmental Changes and Global Warming on Temperature in Pakistan

    Directory of Open Access Journals (Sweden)

    Ishtiaq Hassan

    2011-01-01

    Full Text Available Environmental changes and global warming have direct impact on human life. Estimation of these changes in various parameters of hydrologic cycle is necessary for future planning and development of a country. In this paper the impact of environmental changes and global warming on temperatures of Pakistan has been studied. The temperature changes in Pakistan have been extracted from simulations made using EdGCM model developed at Columbia University. Simulation study to the end of 21st century is executed using the model for GHG (Greenhouse Gases scenario with doubled_CO2 and scenario of Modern_Predicted SST (Sea Surface Temperature. The model analysis has been carried out for seasonal and annual changes for an average of last 5 years period from 2096-2100. Maps are generated to depict global temperature variations. The study divides Pakistan into five (05 main areas for twenty six (26 stations. A part-plan of globe focusing Pakistan is generated showing the five divisions for twenty six (26 data stations of Pakistan. This part plan is made compatible with grid-box resolution of EdGCM. Eagle-Point Engineering software has been used to generate isohyets of interval (0.5oC for downscaling GCM (Global Climate Model grid data to data stations. The station values of different seasons and annual changes are then compared with the values of base period data to determine changes in temperature. It is observed that impact of global environmental changes on temperature are higher (i.e. there is an increase in annual temperature for double_CO2 experiment at places near the Arabian Sea than areas located away from this sea. It is also observed that the temperature increase will be more in winter than that in other seasons for Pakistan.

  15. Annual and seasonal CO2 fluxes from Russian southern taiga soils

    International Nuclear Information System (INIS)

    Kurganova, I.; Lopes De Gerenyu, V.; Rozanova, L.; Sapronov, D.; Myakshina, T.; Kudeyarov, V.

    2003-01-01

    Annual and seasonal characteristics of CO 2 emission from five different ecosystems were studied in situ (Russia, Moscow Region) from November 1997 through October 2000. The annual behaviour of the soil respiration rate is influenced by weather conditions during a particular year. Annual CO 2 fluxes from the soils depend on land use of the soils and averaged 684 and 906 g C/m 2 from sandy Albeluvisols (sod-podzolic soils) under forest and grassland, respectively. Annual emission from clay Phaeozems (grey forest soils) was lower and ranged from 422 to 660 g C/m 2 ; the order of precedence was arable 2 fluxes caused by weather conditions ranged from 18% (forest ecosystem on Phaeozems) to 31% (agro-ecosystem). The contribution from the cold period (with snow, November-April) to the annual CO 2 flux was substantial and averaged 21% and 14% for natural and agricultural ecosystems, respectively. The CO 2 fluxes comprised approximately 48-51% in summer, 23-24% in autumn, 18-20% in spring and 7-10% in winter of the total annual carbon dioxide flux

  16. Development of new techniques of using irradiation in the genetic improvement of warm season grasses, the assessment of their genetic and cytogenetic effects and biomass production from grass. Annual progress report, November 1, 1979 to October 31, 1980

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1980-01-01

    New techniques are described for using irradiation and chemical mutagens in the genetic improvement of several warm season grasses. Genetic and cytogenetic effects of these treatments are also being studied

  17. Amplification of obliquity forcing through mean annual and seasonal atmospheric feedbacks

    Directory of Open Access Journals (Sweden)

    S.-Y. Lee

    2008-10-01

    Full Text Available Pleistocene benthic δ18O records exhibit strong spectral power at ~41 kyr, indicating that global ice volume has been modulated by Earth's axial tilt. This feature, and weak spectral power in the precessional band, has been attributed to the influence of obliquity on mean annual and seasonal insolation gradients at high latitudes. In this study, we use a coupled ocean-atmosphere general circulation model to quantify changes in continental snowfall associated with mean annual and seasonal insolation forcing due to a change in obliquity. Our model results indicate that insolation changes associated with a decrease in obliquity amplify continental snowfall in three ways: (1 Local reductions in air temperature enhance precipitation as snowfall. (2 An intensification of the winter meridional insolation gradient strengthens zonal circulation (e.g. the Aleutian low, promoting greater vapor transport from ocean to land and snow precipitation. (3 An increase in the summer meridional insolation gradient enhances summer eddy activity, increasing vapor transport to high-latitude regions. In our experiments, a decrease in obliquity leads to an annual snowfall increase of 25.0 cm; just over one-half of this response (14.1 cm is attributed to seasonal changes in insolation. Our results indicate that the role of insolation gradients is important in amplifying the relatively weak insolation forcing due to a change in obliquity. Nonetheless, the total snowfall response to obliquity is similar to that due to a shift in Earth's precession, suggesting that obliquity forcing alone can not account for the spectral characteristics of the ice-volume record.

  18. Dynamic optimal foraging theory explains vertical migrations of bigeye tuna

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Sommer, Lene; Evans, Karen

    2016-01-01

    Bigeye tuna are known for remarkable daytime vertical migrations between deep water, where food is abundant but the water is cold, and the surface, where water is warm but food is relatively scarce. Here we investigate if these dive patterns can be explained by dynamic optimal foraging theory...... behaves such as to maximize its energy gains. The model therefore provides insight into the processes underlying observed behavioral patterns and allows generating predictions of foraging behavior in unobserved environments...

  19. Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata, Tropiduridae in a caatinga area of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo B. Ribeiro

    2011-09-01

    Full Text Available This study aimed to analyze the seasonal variation in diet composition and foraging behavior of Tropidurus hispidus (Spix, 1825 and T. semitaeniatus (Spix, 1825, as well as measurement of the foraging intensity (number of moves, time spent stationary, distance traveled and number of attacks on prey items in a caatinga patch on the state of Rio Grande do Norte, Brazil. Hymenoptera/Formicidae and Isoptera predominated in the diet of both species during the dry season. Opportunistic predation on lepidopteran larvae, coleopteran larvae and adults, and orthopteran nymphs and adults occurred in the wet season; however, hymenopterans/Formicidae were the most important prey items. The number of food items was similar between lizard species in both seasons; however the overlap for number of prey was smaller in the wet season. Preys ingested by T. hispidus during the wet season were also larger than those consumed by T. semitaeniatus. Seasonal comparisons of foraging intensity between the two species differed, mainly in the wet season, when T. hispidus exhibited less movement and fewer attacks on prey, and more time spent stationary if compared to T. semitaeniatus. Although both lizards are sit-and-wait foragers, T. semitaeniatus is more active than T. hispidus. The diet and foraging behavior of T. hispidus and T. semitaeniatus overlap under limiting conditions during the dry season, and are segregative factors that may contribute to the coexistence of these species in the wet season.

  20. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    Science.gov (United States)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  1. Resource selection by Indiana bats during the maternity season

    Science.gov (United States)

    Kathryn M. Womack; Sybill K. Amelon; Frank R. Thompson

    2013-01-01

    Little information exists on resource selection by foraging Indiana bats (Myotis sodalis) during the maternity season. Existing studies are based on modest sample sizes because of the rarity of this endangered species and the difficulty of radio-tracking bats. Our objectives were to determine resource selection by foraging Indiana bats during the maternity season and...

  2. Foraging strategies of Antarctic Fulmarine petrels

    NARCIS (Netherlands)

    Creuwels, J.C.S.; Engelhard, G.A.; Franeker, van J.A.; Veer, van der W.; Hasperhoven, J.G.; Ruiterman, W.

    2010-01-01

    During breeding, procellariiform seabirds are typical central-place foragers, depending on distant pelagic resources. Especially in polar environments, where there is only a short time window to complete the breeding season, high chick provisioning rates are needed to allow chicks to fledge

  3. Cold season emissions dominate the Arctic tundra methane budget

    Science.gov (United States)

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y-1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  4. Warm season grass establishment (in one year without the weeds)

    International Nuclear Information System (INIS)

    Downing, D.

    1998-01-01

    Native warm season grasses, big bluestem and indian, were established by the broadcast method on a relatively large area (130 acres) of reclaimed coal surface-mined land in Perry County, Illinois. Existing vegetation was controlled using two quarts of Round-Up and 12 ounces of Plateau per acre the first week of May. Five pounds of pure live seed of both species were applied by airflow using 100 pounds per acre of 0-46-0 and 100 pounds per acre of 0-0-60, primarily to carry the seed. The surface was cultipacked to insure good seed to soil contact. Planting was initiated and completed the last week of June. An estimated 95% to 100% ground cover was evident by mid to late August. By mid September, numerous big blue stem flower/seed stalks were noticeable

  5. Significance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern Sweden

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Jonasson, S.

    2007-01-01

    While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ...... ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially, increased frequency of freeze-thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R-2-values ranging from 0.81 to 0.......85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold...

  6. Annual and Seasonal Mean Net Evaporation Rates of the Red Sea Water during Jan 1958 - Dec 2007

    OpenAIRE

    Nassir, Sahbaldeen Abdulaziz

    2012-01-01

    Data set including sea level, temperature, salinity, and current from Simple Ocean Data Assimilation (SODA) is used in this study to estimate the mean net annually and seasonally evaporation rates. Then wind data is used to examine its impact on the evaporation. This work calculated the seasonal and annual evaporation rates based on assumption of that there is no net mass transport (balanced). Hence, the difference in the transport supposed to be equal to the water that has eva...

  7. Effects of maturity and harvest season of grass-clover silage and of forage-to-concentrate ratio on milk production of dairy cows

    DEFF Research Database (Denmark)

    Alstrup, L; Søegaard, K; Weisbjerg, M R

    2016-01-01

    This study examined the effects of maturity and season of harvest of grass-clover silages and forage:concentrate ratio (FCR) on feed intake, milk production, chewing activity, digestibility, and fecal consistency of Holstein dairy cows. Comparison included 2 cuts in spring season (early and late......) and 2 cuts in summer season (early and late) combined with high FCR (80:20; HFCR) and low FCR (50:50; LFCR). The experiment included 24 lactating Holstein cows arranged as 2 repeated 4 × 4 Latin squares with four 21-d periods and included measurements of feed composition, feed intake, milk production...... digestible than late maturity cuts, which was also reflected in a lower concentration of neutral detergent fiber (NDF) in early maturity cuts, whereas summer cuts had a higher crude protein concentration than spring cuts. Increased maturity decreased the intake of DM and energy, increased NDF intake...

  8. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    Science.gov (United States)

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  9. Foraging strategy of little auks during chick rearing in northwest Greenland

    DEFF Research Database (Denmark)

    Mosbech, Anders; Møller, Eva Friis; Johansen, Kasper Lambert

    of the ongoing warming of the Arctic. Here we present the first results from GPS tracking of breeding little auks in northwest Greenland, involving data from four different breeding colonies. We examine time budgets, foraging trip patterns and habitat preferences at foraging areas, including comparison......Foraging strategy of little auks during chick rearing in northwest Greenland Anders Mosbech, Kasper Johansen, Eva Friis Møller & Peter Lyngs Department of Biology and Arctic Center, Aarhus University, Denmark An estimated 80 % of the global little auk population breeds in the coastal landscape...... bordering the north water polynya in high Arctic northwest Greenland, and from this main breeding area very little is known on foraging behavior. Little auks are feeding on lipid-rich copepods associated with cold artic waters, and are potentially important for monitoring and assessing the impact...

  10. Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe.

    Directory of Open Access Journals (Sweden)

    Yanhui Hou

    Full Text Available To better understand how warming, increased precipitation and their interactions influence community structure and composition, a field experiment simulating hydrothermal interactions was conducted at an annual forb dominated desert steppe in northern China over 2 years. Increased precipitation increased species richness while warming significantly decreased species richness, and their effects were additive rather than interactive. Although interannual variations in weather conditions may have a major affect on plant community composition on short term experiments, warming and precipitation treatments affected individual species and functional group composition. Warming caused C4 grasses such as Cleistogenes squarrosa to increase while increased precipitation caused the proportions of non-perennial C3 plants like Artemisia capillaris to decrease and perennial C4 plants to increase.

  11. Variability in the Foraging Distribution and Diet of Cape Gannets between the Guard and Post-guard Phases of the Breeding Cycle

    Directory of Open Access Journals (Sweden)

    Jonathan A. Botha

    2018-02-01

    Full Text Available During breeding, seabirds are central place foragers and are sensitive to changes in local prey availability. As the breeding season progresses, foraging behavior and distribution is expected to change in response to possible changes in local prey availability. In addition, adult gender, and the increasing nutritional demands of a growing chick may also influence the foraging behavior of individuals. At present, relatively few studies have assessed the foraging behavior of adult birds during the late post-guard stages of chick rearing. Through a combination of GPS tracking and diet sampling we investigated the foraging distances, spatial distribution, and prey composition of adult Cape gannets (Morus capensis during the guard and post-guard stages of chick rearing. We found no clear evidence for consistent sex-specific differences in foraging distances and spatial distribution during the guard stage, although marginal differences in the location of core foraging areas during the post-guard stage were apparent. Results, however, revealed a clear increase in foraging range from the early guard to the late post-guard stage of chick rearing. During December the diet was comprised almost exclusively of anchovy (Engraulis encrasicolus, the proportion of which had decreased significantly in the diet by January. This was mirrored by a substantial increase in the proportion of saury (Scomberesox saurus. These results suggest that Cape gannets show flexibility in the foraging behavior and diet, which may be related to changes in the abundance and distribution of prey or may reflect changes in the energetic requirements of the growing offspring. This study provides the first assessment of Cape gannet foraging behavior and spatial distribution during the post-guard stage of chick rearing. The importance of considering intra-annual variability in foraging distribution when using seabird tracking data in trophic and marine spatial planning studies are

  12. Humpback whale song and foraging behavior on an antarctic feeding ground.

    Directory of Open Access Journals (Sweden)

    Alison K Stimpert

    Full Text Available Reports of humpback whale (Megaptera novaeangliae song chorusing occurring outside the breeding grounds are becoming more common, but song structure and underwater behavior of individual singers on feeding grounds and migration routes remain unknown. Here, ten humpback whales in the Western Antarctic Peninsula were tagged in May 2010 with non-invasive, suction-cup attached tags to study foraging ecology and acoustic behavior. Background song was identified on all ten records, but additionally, acoustic records of two whales showed intense and continuous singing, with a level of organization and structure approaching that of typical breeding ground song. The songs, produced either by the tagged animals or close associates, shared phrase types and theme structure with one another, and some song bouts lasted close to an hour. Dive behavior of tagged animals during the time of sound production showed song occurring during periods of active diving, sometimes to depths greater than 100 m. One tag record also contained song in the presence of feeding lunges identified from the behavioral sensors, indicating that mating displays occur in areas worthy of foraging. These data show behavioral flexibility as the humpbacks manage competing needs to continue to feed and to prepare for the breeding season during late fall. This may also signify an ability to engage in breeding activities outside of the traditional, warm water breeding ground locations.

  13. Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Luan D. Lima

    2013-12-01

    Full Text Available Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae. Foraging activity may be limited by temperature, humidity, radiation, wind, and other abiotic factors, all of which can affect energy costs during foraging. Ectatomma vizottoi's biology has only recently been studied, and no detailed information is available on its foraging patterns or diet in the field. For this reason, and because foraging activity is an important part of the ecological success of social insects, the present study aimed to investigate E. vizottoi's foraging strategies and dietary habits. First, we determined how abiotic factors constrained E. vizottoi's foraging patterns in the field by monitoring the foraging activity of 16 colonies on eight different days across two seasons. Second, we characterized E. vizottoi's diet by monitoring another set of 26 colonies during peak foraging activity. Our results show that E. vizottoi has foraging strategies that are similar to those of congeneric species. In spite of having a low efficiency index, colonies adopted strategies that allowed them to successfully obtain food resources while avoiding adverse conditions. These strategies included preying on other ant species, a foraging tactic that could arise if a wide variety of food items are not available in the environment or if E. vizottoi simply prefers, regardless of resource availability, to prey on other invertebrates and especially on other ant species.

  14. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a south European estuary: improved feeding conditions for northward migrants.

    Directory of Open Access Journals (Sweden)

    Ricardo C Martins

    Full Text Available During the annual cycle, migratory waders may face strikingly different feeding conditions as they move between breeding areas and wintering grounds. Thus, it is of crucial importance that they rapidly adjust their behaviour and diet to benefit from peaks of prey abundance, in particular during migration, when they need to accumulate energy at a fast pace. In this study, we compared foraging behaviour and diet of wintering and northward migrating dunlins in the Tagus estuary, Portugal, by video-recording foraging birds and analysing their droppings. We also estimated energy intake rates and analysed variations in prey availability, including those that were active at the sediment surface. Wintering and northward migrating dunlins showed clearly different foraging behaviour and diet. In winter, birds predominantly adopted a tactile foraging technique (probing, mainly used to search for small buried bivalves, with some visual surface pecking to collect gastropods and crop bivalve siphons. Contrastingly, in spring dunlins generally used a visual foraging strategy, mostly to consume worms, but also bivalve siphons and shrimps. From winter to spring, we found a marked increase both in the biomass of invertebrate prey in the sediment and in the surface activity of worms and siphons. The combination of these two factors, together with the availability of shrimps in spring, most likely explains the changes in the diet and foraging behaviour of dunlins. Northward migrating birds took advantage from the improved feeding conditions in spring, achieving 65% higher energy intake rates as compared with wintering birds. Building on these results and on known daily activity budgets for this species, our results suggest that Tagus estuary provides high-quality feeding conditions for birds during their stopovers, enabling high fattening rates. These findings show that this large wetland plays a key role as a stopover site for migratory waders within the East

  15. Lagging adaptation to warming climate in Arabidopsis thaliana.

    Science.gov (United States)

    Wilczek, Amity M; Cooper, Martha D; Korves, Tonia M; Schmitt, Johanna

    2014-06-03

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species' native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species' native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation.

  16. Effects of Global Warming on Predatory Bugs Supported by Data Across Geographic and Seasonal Climatic Gradients

    Science.gov (United States)

    Schuldiner-Harpaz, Tarryn; Coll, Moshe

    2013-01-01

    Global warming may affect species abundance and distribution, as well as temperature-dependent morphometric traits. In this study, we first used historical data to document changes in Orius (Heteroptera: Anthocoridae) species assemblage and individual morphometric traits over the past seven decades in Israel. We then tested whether these changes could have been temperature driven by searching for similar patterns across seasonal and geographic climatic gradients in a present survey. The historical records indicated a shift in the relative abundance of dominant Orius species; the relative abundance of O. albidipennis, a desert-adapted species, increased while that of O. laevigatus decreased in recent decades by 6 and 10–15 folds, respectively. These shifts coincided with an overall increase of up to 2.1°C in mean daily temperatures over the last 25 years in Israel. Similar trends were found in contemporary data across two other climatic gradients, seasonal and geographic; O. albidipennis dominated Orius assemblages under warm conditions. Finally, specimens collected in the present survey were significantly smaller than those from the 1980’s, corresponding to significantly smaller individuals collected now during warmer than colder seasons. Taken together, results provide strong support to the hypothesis that temperature is the most likely driver of the observed shifts in species composition and body sizes because (1) historical changes in both species assemblage and body size were associated with rising temperatures in the study region over the last few decades; and (2) similar changes were observed as a result of contemporary drivers that are associated with temperature. PMID:23805249

  17. Foraging and metabolic consequences of semi-anadromy for an endangered estuarine fish.

    Directory of Open Access Journals (Sweden)

    Bruce G Hammock

    Full Text Available Diadromy affords fish access to productive ecosystems, increasing growth and ultimately fitness, but it is unclear whether these advantages persist for species migrating within highly altered habitat. Here, we compared the foraging success of wild Delta Smelt-an endangered, zooplanktivorous, annual, semi-anadromous fish that is endemic to the highly altered San Francisco Estuary (SFE-collected from freshwater (<0.55 psu and brackish habitat (≥0.55 psu. Stomach fullness, averaged across three generations of wild Delta Smelt sampled from juvenile through adult life stages (n = 1,318, was 1.5-fold higher in brackish than in freshwater habitat. However, salinity and season interacted, with higher fullness (1.7-fold in freshwater than in brackish habitat in summer, but far higher fullness in brackish than freshwater habitat during fall/winter and winter/spring (1.8 and 2.0-fold, respectively. To examine potential causes of this interaction we compared mesozooplankton abundance, collected concurrently with the Delta Smelt, in freshwater and brackish habitat during summer and fall/winter, and the metabolic rate of sub-adult Delta Smelt acclimated to salinities of 0.4, 2.0, and 12.0 psu in a laboratory experiment. A seasonal peak in mesozooplankton density coincided with the summer peak in Delta Smelt foraging success in freshwater, and a pronounced decline in freshwater mesozooplankton abundance in the fall coincided with declining stomach fullness, which persisted for the remainder of the year (fall, winter and spring. In brackish habitat, greater foraging 'efficiency' (prey items in stomachs/mesozooplankton abundance led to more prey items per fish and generally higher stomach fullness (i.e., a higher proportion of mesozooplankton detected in concurrent trawls were eaten by fish in brackish habitat. Delta Smelt exhibited no difference in metabolic rate across the three salinities, indicating that metabolic responses to salinity are unlikely to have

  18. Physiology, phenology and behavioural strategies of forage fish

    DEFF Research Database (Denmark)

    Frisk, Christina

    Forage fish are small individuals, and are very abundant in numbers and can form dense schools. Forage fish are important within the food webs of the oceans, as they are at the lower trophic levels. Forage fish prey on zooplankton and they are themselves preyed on by piscivore fish. The individual...... forage fish and its growth dynamics are governed by an interplay between physiological rates, e.g. metabolism and consumption and the ambient environment as the rates are temperature dependent. The topic of this thesis is to describe the strong link between the individual and the environment through....... The model includes an additional structure pool; gonads, to which energy is transferred during the spawning season. During periods of poor feeding, energy to cover metabolic costs are firstly taken from the reserve pool and secondly, if the reserves are depleted, from the somatic tissue pool. The model...

  19. Aridity changes in the Tibetan Plateau in a warming climate

    International Nuclear Information System (INIS)

    Gao, Yanhong; Li, Xia; Xu, Jianwei; Ruby Leung, L.; Chen, Deliang

    2015-01-01

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of increasing climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of precipitation to potential evapotranspiration (P/PET) as an aridity index, we used observed meteorological records at 83 stations in the TP to calculate PET using the Penman–Monteith algorithm and the ratio. Spatial and temporal changes of P/PET in 1979–2011 were analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter, and half of the stations in the semi-humid eastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with the change patterns of precipitation, sunshine duration and diurnal temperature range. Temporal correlations between the annual P/PET ratio and other meteorological variables confirm the significant correlation between aridity and the three variables, with precipitation being the dominant driver of P/PET changes at the interannual time scale. Annual PET are insignificantly but negatively correlated with P/PET in the cold season. In the warm season, however, the correlation between PET and P/PET is significant at the confidence level of 99.9% when the cryosphere near the surface melts. Significant correlation between annual wind speed and aridity occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring. (letter)

  20. Seasonal Changes in the Caste Distribution of Foraging Populations of Formosan Subterranean Termite in New Orleans, Louisiana.

    Science.gov (United States)

    Cornelius, Mary L; Osbrink, Weste L A; Gallatin, Erin M

    2015-01-01

    This study examined the relationship between temperature, precipitation, soil composition, levels of feeding damage, and the caste distribution (workers, soldiers, nymphs) of the Formosan subterranean termite, Coptotermes formosanus Shiraki, collected in underground monitoring stations over a 12 mo period. Because nymphs are the caste that develops into alates, the seasonal abundance of nymphs was examined over a 5 yr period. Numbers of workers, soldiers, and soldier/worker ratio were significantly affected by month. Recruitment and retention of foraging termites in stations was significantly affected by the level of feeding damage. The number of nymphs collected in monitoring stations was highly variable. In the 12 mo test, there was a significant correlation between numbers of nymphs and level of feeding damage, temperature, precipitation, and soil composition. Over a 5 yr period, significantly more nymphs were collected in 2011 than in 2007 and 2008. Peak nymph collections varied from year to year. Overall, peak nymph collections were more likely to occur in Mar., Sept., and Oct. Increasing our knowledge of the environmental factors that influence recruitment and retention of foraging termites in monitoring stations could influence termite bait placement and improve baiting strategies for termite control. Identifying the key factors that cause aggregations of nymphs in underground stations could increase our ability to predict the intensity and location of alate swarms. © Crown copyright 2015.

  1. Lifetime Stable isotopes profiles in whale earplug: assessment of foraging and migrations in the Northern Hemisphere

    Science.gov (United States)

    Mansouri, F.; Crain, D.; Winfield, Z.; Trumble, S.; Usenko, S.

    2017-12-01

    Whale earplugs, historically used for aging, were used to reconstruct lifetime stable isotope profiles for carbon (δ13C) and nitrogen (δ15N) for individual whales by delaminating lamina within the earplug. These stable isotope profile, which provide Continuous lifetime records of feeding, foraging ecology, and migration, were determined for 20 individuals from 4 baleen species including fin, minke, humpback, and blue whales spanning more than a century (1869 - 2014) using stable isotope analysis. Approximately 1 mg tissue from each lamina (n=1200) was analyzed for carbon and nitrogen stable isotope using continuous flow isotope ratio mass spectrometer (CF-IRMS). This research using whale earplugs have combined age estimates with stable isotope measurements to reconstruct lifetime foraging profiles with a 6-month resolution, providing an unprecedented opportunity to assess periods and trends in dietary fluctuations as well as migration between different foraging area which have distinct isotope values. Trends with these profiles suggest long-term changing in migration, while annual variability highlights seasonal fasting and feeding. Isotopic ratios were also used to identify subpopulations of Atlantic fin whales, which enabled us to assign unidentified humpback and minke whales to the Atlantic or Pacific Oceans. This historical archive of data provides us an unprecedented tool to assess long term marine ecosystem and subsequently marine organism transition to alternate foraging area and shed light on the whale's population status in the Northern hemisphere.

  2. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    Science.gov (United States)

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  3. Feeding of wild boar (Sus scrofa L.) in the exclusion zone of the Chernobyl accident in the territory of Ukraine

    International Nuclear Information System (INIS)

    Petrov, M.F.

    1996-01-01

    Investigations of seasonal feed choice of a wild boar have been carried out during a 3-year period on the basis of the stomach content. Results of the investigations are given. A list of forage plants and forage animals is presented. Seasonal intensity of their consumption is evaluated. Main plant assemblages of the exclusion zone of the Chernobyl accident are analyzed for their significance in the diet of a wild boar. Special attention is paid to the role of underground forage (35% of average annual forage), and to consumption of Oenotera biennis roots comprising 26% of average annual forage. Recent state of the forage base and of the wild boar population is estimated. An attempt to predict its dynamics for the nearest 10-15 years is made

  4. How Do Grass Species, Season and Ensiling Influence Mycotoxin Content in Forage?

    Directory of Open Access Journals (Sweden)

    Adam Nawrath

    2013-11-01

    Full Text Available Mycotoxins are secondary metabolites produced by fungal species that have harmful effects on mammals. The aim of this study was to assess the content of mycotoxins in fresh-cut material of selected forage grass species both during and at the end of the growing season. We further assessed mycotoxin content in subsequently produced first-cutting silages with respect to the species used in this study: Lolium perenne (cv. Kentaur, Festulolium pabulare (cv. Felina, Festulolium braunii (cv. Perseus, and mixtures of these species with Festuca rubra (cv. Gondolin or Poa pratensis (Slezanka. The mycotoxins deoxynivalenol, zearalenone and T-2 toxin were mainly detected in the fresh-cut grass material, while fumonisin and aflatoxin contents were below the detection limits. July and October were the most risky periods for mycotoxins to occur. During the cold temperatures in November and December, the occurrence of mycotoxins in fresh-cut material declined. Although June was a period with low incidence of mycotoxins in green silage, contents of deoxynivalenol and zearalenone in silages from the first cutting exceeded by several times those determined in their biomass collected directly from the field. Moreover, we observed that use of preservatives or inoculants did not prevent mycotoxin production.

  5. Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads.

    Science.gov (United States)

    Qi, Weixiao; Müller, Beat; Pernet-Coudrier, Benoit; Singer, Heinz; Liu, Huijuan; Qu, Jiuhui; Berg, Michael

    2014-02-15

    Twenty percent of the water run-off from China's land surface drains into the Yangtze River and carries the sewage of approximately 400 million people out to sea. The lower stretch of the Yangtze therefore offers the opportunity to assess the pollutant discharge of a huge population. To establish a comprehensive assessment of micropollutants, river water samples were collected monthly from May 2009 to June 2010 along a cross-section at the lowermost hydrological station of the Yangtze River not influenced by the tide (Datong Station, Anhui province). Following a prescreening of 268 target compounds, we examined the occurrence, seasonal variation, and annual loads of 117 organic micropollutants, including 51 pesticides, 43 pharmaceuticals, 7 household and industrial chemicals, and 16 polycyclic aromatic hydrocarbons (PAHs). During the 14-month study, the maximum concentrations of particulate PAHs (1-5 μg/g), pesticides (11-284 ng/L), pharmaceuticals (5-224 ng/L), and household and industrial chemicals (4-430 ng/L) were generally lower than in other Chinese rivers due to the dilution caused of the Yangtze River's average water discharge of approximately 30,000 m(3)/s. The loads of most pesticides, anti-infectives, and PAHs were higher in the wet season compared to the dry season, which was attributed to the increased agricultural application of chemicals in the summer, an elevated water discharge through the sewer systems and wastewater treatment plants (WWTP) as a result of high hydraulic loads and the related lower treatment efficiency, and seasonally increased deposition from the atmosphere and runoff from the catchment. The estimated annual load of PAHs in the river accounted for some 4% of the total emission of PAHs in the whole Yangtze Basin. Furthermore, by using sucralose as a tracer for domestic wastewater, we estimate a daily disposal of approximately 47 million m(3) of sewage into the river, corresponding to 1.8% of its average hydraulic load. In summary

  6. Comparison of wet brewers' grains or dried distillers' grains as supplements to conserved bermudagrass forage as winter feeding options for beef cows.

    Science.gov (United States)

    Thomas, M V; Hersom, M J; Thrift, T A; Yelich, J V

    2017-01-01

    The objective of this study was to examine the use of 2 byproduct supplements and conserved warm-season forage as winter feeding options for primiparous beef cows. Gestating Angus ( = 48) and Brangus ( = 24) 2-yr-old cows were stratified by BW and breed to 1 of 12 pens. Pens were randomly assigned 1 of 2 supplements, wet brewers' grains (WBG) or dried distillers' grains (DDG). Coastal bermudagrass hay or round bale silage (RBS) was fed free choice (6 pens each) and cows received WBG or DDG supplements at a daily rate of 0.05% BW (DM basis) prorated for feeding 3 d/wk. Total BW and BCS changes did not differ ( = 0.65 and = 0.93, respectively) between DDG- and WBG-supplemented cows. Total amount of forage DM offered and mean calculated daily forage DM offered did not differ ( = 0.59 and = 0.20, respectively) between supplement treatments. Estimated daily mean and total supplement DM offered was greater ( forage sources were used in an unbalanced 6 × 4 design to measure intake, digestibility, and rumen parameters in ruminally fistulated steers. Supplement did not affect forage DMI of hay ( = 0.31) or RBS ( = 0.63). Total DMI was not different ( = 0.37 and = 0.73) for hay-based and RBS-based diets, respectively. Total tract digestibility tended to be greater ( = 0.06) for DDG than for WBG in hay diets but was not different ( = 0.76) for RBS diets. Daily mean ruminal pH was greater ( = 0.03) for WBG than for DDG when supplemented to hay-based diets. In RBS diets, a supplement × hour interaction ( = 0.05) existed for ruminal pH. Daily mean ruminal ammonia N concentration was greater ( forage. High-moisture forage sources can be coupled with high-moisture byproduct supplements.

  7. Important Considerations When Choosing Forage Grasses - Research Developments on Quality and Management

    Science.gov (United States)

    Seasonal changes in forage productivity and nutritive value will influence pasture management and ration balancing decisions by the producer. We determined seasonal yield and quality changes in the leaf and stem fraction of 10 temperate perennial grasses at two Wisconsin locations. After reaching ...

  8. Boreal and temperate trees show strong acclimation of respiration to warming.

    Science.gov (United States)

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  9. Foraging behaviour of pink-footed geese (Anser brachyrhynchus) during spring migration

    DEFF Research Database (Denmark)

    Chudzińska, Magda Ewa

    and their energetic consequences are therefore of great importance to these birds. In this thesis, I have aimed to address some aspects of the foraging decisions and behaviour of pink-footed geese during their spring migration to the Arctic breeding area. I combined field techniques with telemetry technology as well...... as modelling tools to address questions about how geese forage and fuel during their spring migration. The first three presented manuscripts focus on changes in goose foraging behaviour and energetics over the course of the day, a stopover season and the entire migration. They also focus on variety of factors...... the question: which foraging decision do geese make at the Mid-Norway stopover site....

  10. Seasonal Changes in Atmospheric Noise Levels and the Annual Variation in Pigeon Homing Performance

    Science.gov (United States)

    Hagstrum, J. T.; McIsaac, H. P.; Drob, D. P.

    2015-12-01

    The remarkable navigational ability of homing pigeons (Columba livia) is influenced by a number of factors, an unknown one of which causes the "Wintereffekt"1 or annual variation in homing performance. Minima in homeward orientation and return speeds have been observed in winter, with maxima in summer, during repetitive pigeon releases from single sites near experimental lofts in Wilhelmshaven, Göttingen, and Munich, Germany, and near Pisa, Italy1-4. Overall the annual variation is more pronounced in northern Germany than Italy4, and both mature and juvenile cohorts respond to this seasonal factor. Older, more experienced pigeons are better at compensating for its effects than naïve ones, but are still affected after numerous releases. The narrow low-frequency band of atmospheric background noise (microbaroms; 0.1-0.3 Hz) also varies with an annual cycle that generally has higher amplitudes in winter than in summer depending on location5. In addition, homing pigeons, and possibly other birds, apparently use infrasonic signals of similar frequency as navigational cues6, and a seasonal variation in background noise levels could cause corresponding changes in signal-to-noise ratios and thus in homing performance. The annual variation in homing performance, however, was not observed during long-term pigeon releases at two sites in eastern North America. The annual and geographic variability in homing performance in the northern hemisphere can be explained to a first order by seasonal changes in infrasonic noise sources related to ocean storm activity, and to the direction and intensity of stratospheric winds. In addition, increased dispersion in departure bearings of individual birds for some North American releases were likely caused by additional infrasonic noise associated with severe weather events during tornado and Atlantic hurricane seasons. 1Kramer, G. & von Saint Paul, U., J. Ornithol. 97, 353-370 (1956); 2Wallraff, H. G., Z. Tierpsychol. 17, 82-113 (1960

  11. Dynamics behind warming of the southeastern Arabian Sea and its interruption based on in situ measurements

    Science.gov (United States)

    Mathew, Simi; Natesan, Usha; Latha, Ganesan; Venkatesan, Ramasamy

    2018-05-01

    A study of the inter-annual variability of the warming of the southeastern Arabian Sea (SEAS) during the spring transition months was carried out from 2013 to 2015 based on in situ data from moored buoys. An attempt was made to identify the roles of the different variables in the warming of the SEAS (e.g., net heat flux, advection, entrainment, and thickness of the barrier layer during the previous northeast monsoon season). The intense freshening of the SEAS (approximately 2 PSU) occurring in each December, together with the presence of a downwelling Rossby wave, supports the formation of a thick barrier layer during the northeast monsoon season. It is known that the barrier layer thickness, varying each year, plays a major role in the spring warming of the SEAS. Interestingly, an anomalously thick barrier layer occurred during the northeast monsoon season of 2012-2013. However, the highest sea surface temperature (31 °C) was recorded during the last week of April 2015, while the lowest sea surface temperature (29.7 °C) was recorded during the last week of May 2013. The mixed layer heat budget analysis during the spring transition months proved that the intense warming has been mainly supported by the net heat flux, not by other factors like advection and entrainment. The inter-annual variability analysis of the net heat flux and its components, averaged over a box region of the SEAS, showed a substantial latent heat flux release and a reduction in net shortwave radiation in 2013. Both factors contributed to the negative net heat flux. Strong breaks in the warming were also observed in May due to the entrainment of cold sub-surface waters. These events are associated with the cyclonic eddy persisting over the SEAS during the same time. The entrainment term, favoring the cooling, was stronger in 2015 than that in 2013 and 2014. The surface temperatures measured in 2013 were lower than those in 2014 and 2015 despite the presence of a thick barrier layer. The

  12. Spatio-temporal variations of vegetation indicators in Eastern Siberia under global warming

    Science.gov (United States)

    Varlamova, Eugenia V.; Solovyev, Vladimir S.

    2017-11-01

    Study of spatio-temporal variations of NDVI (Normalized Difference Vegetation Index) and phenological parameters of Eastern Siberia vegetation cover under global warming was carried out on AVHRR/NOAA data (1982-2014). Trend maps of NDVI and annual variations of phenological parameters and NDVI are analyzed. A method based on stable transition of air temperature through +5°C was used to estimate the beginning, end and the length of the growing season. Correlation between NDVI and phenological parameters, surface air temperature and precipitation are discussed.

  13. On tropical cyclone frequency and the warm pool area

    Directory of Open Access Journals (Sweden)

    R. E. Benestad

    2009-04-01

    Full Text Available The proposition that the rate of tropical cyclogenesis increases with the size of the "warm pool" is tested by comparing the seasonal variation of the warm pool area with the seasonality of the number of tropical cyclones. An analysis based on empirical data from the Northern Hemisphere is presented, where the warm pool associated with tropical cyclone activity is defined as the area, A, enclosed by the 26.5°C SST isotherm. Similar analysis was applied to the temperature weighted area AT with similar results.

    An intriguing non-linear relationship of high statistical significance was found between the temperature weighted area in the North Atlantic and the North-West Pacific on the one hand and the number of cyclones, N, in the same ocean basin on the other, but this pattern was not found over the North Indian Ocean. A simple statistical model was developed, based on the historical relationship between N and A. The simple model was then validated against independent inter-annual variations in the seasonal cyclone counts in the North Atlantic, but the correlation was not statistically significant in the North-West Pacific. No correlation, however, was found between N and A in the North Indian Ocean.

    A non-linear relationship between the cyclone number and temperature weighted area may in some ocean basins explain both why there has not been any linear trend in the number of cyclones over time as well as the recent upturn in the number of Atlantic hurricanes. The results also suggest that the notion of the number of tropical cyclones being insensitive to the area A is a misconception.

  14. Variations of annual and seasonal runoff in Guangdong Province, south China: spatiotemporal patterns and possible causes

    Science.gov (United States)

    Zhang, Qiang; Xiao, Mingzhong; Singh, Vijay P.; Xu, Chong-Yu; Li, Jianfeng

    2015-06-01

    In this study, we thoroughly analyzed spatial and temporal distributions of runoff and their relation with precipitation changes based on monthly runoff dataset at 25 hydrological stations and monthly precipitation at 127 stations in Guangdong Province, south China. Trends of the runoff and precipitation are detected using Mann-Kendall trend test technique. Correlations between runoff and precipitation are tested using Spearman's and Pearson's correlation coefficients. The results indicate that: (1) annual maximum monthly runoff is mainly in decreasing tendency and significant increasing annual minimum monthly runoff is observed in the northern and eastern Guangdong Province. In addition, annual mean runoff is observed to be increasing at the stations located in the West and North Rivers and the coastal region; (2) analysis of seasonal runoff variations indicates increasing runoff in spring, autumn and winter. Wherein, significant increase of runoff is found at 8 stations and only 3 stations are dominated by decreasing runoff in winter; (3) runoff changes of the Guangdong Province are mainly the results of precipitation changes. The Guangdong Province is wetter in winter, spring and autumn. Summer is coming to be drier as reflected by decreasing runoff in the season; (4) both precipitation change and water reservoirs also play important roles in the increasing of annual minimum monthly streamflow. Seasonal shifts of runoff variations may pose new challenges for the water resources management under the influences of climate changes and intensifying human activities.

  15. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    Science.gov (United States)

    Freund, Mandy; Henley, Benjamin J.; Karoly, David J.; Allen, Kathryn J.; Baker, Patrick J.

    2017-11-01

    Australian seasonal rainfall is strongly affected by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April-September) and warm (October-March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997-2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought

  16. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    Directory of Open Access Journals (Sweden)

    M. Freund

    2017-11-01

    Full Text Available Australian seasonal rainfall is strongly affected by large-scale ocean–atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April–September and warm (October–March season rainfall in eight natural resource management (NRM regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997–2009 appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental

  17. Comparative Foraging Efficiency of Two Sympatric Jackals, Silver-Backed Jackals (Canis mesomelas and Golden Jackals (Canis aureus, in the Ngorongoro Crater, Tanzania

    Directory of Open Access Journals (Sweden)

    S. E. Temu

    2016-01-01

    Full Text Available The foraging efficiency of two sympatric species of jackals, silver-backed jackals (Canis mesomelas and golden jackals (Canis aureus, was studied in the Ngorongoro crater from July 2014 through May 2015. The focal animal observation method was used and individuals of both species were followed as they foraged from morning to evening. Observations of individuals of both jackal species were made from a vehicle using binoculars and a spotting scope. Three major parameters were used for determination of foraging efficiency: distance travelled while foraging, time spent foraging, and amount of food secured in foraging period. The Mann–Whitney U test showed no significant difference (P>0.05 in distance travelled per unit time of foraging between the two species in the dry and wet seasons, respectively. Golden jackals secured a significantly higher amount of food than the silver-backed jackals in the wet season (Mann–Whitney U test, P<0.05, U=1035.4. Hunting of prey larger than Thomson’s gazelle (Eudorcas thomsonii fawns was not common. Both species mainly fed on smaller prey such as invertebrates and rodents and scavenged opportunistically. Efficient foraging is crucial for both jackal species especially during their breeding season when they are provisioning dependent pups.

  18. Hive Relocation Does Not Adversely Affect Honey Bee (Hymenoptera: Apidae Foraging

    Directory of Open Access Journals (Sweden)

    Fiona C. Riddell Pearce

    2013-01-01

    Full Text Available Honey bees, Apis mellifera, face major challenges including diseases and reduced food availability due to agricultural intensification. Additionally, migratory beekeeping may subject colonies to a moving stress, both during the move itself and after the move, from the bees having to forage in a novel environment where they have no knowledge of flower locations. This study investigated the latter. We moved three colonies housed in observation hives onto the campus from a site 26 km away and compared their foraging performance to three similarly sized colonies at the same location that had not been moved. We obtained data on (1 foraging performance by calculating distance by decoding waggle dances, (2 hive foraging rate by counting forager departure rate, (3 forage quality by assessing sugar content of nectar from returning foragers, and (4 forager success by calculating the proportion of bees returning to the nest entrance with nectar in their crop. We repeated this 3 times (August 2010, October 2010, and June 2011 to encompass any seasonal effects. The data show no consistent difference in foraging performance of moved versus resident hives. Overall the results suggest that moving to a new location does not adversely affect the foraging success of honey bees.

  19. Seasonal hydroclimatic impacts of Sun Corridor expansion

    International Nuclear Information System (INIS)

    Georgescu, M; Mahalov, A; Moustaoui, M

    2012-01-01

    Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona’s Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C). Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for

  20. Antarctica: Cooling or Warming?

    Science.gov (United States)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  1. Global warming in the context of 2000 years of Australian alpine temperature and snow cover.

    Science.gov (United States)

    McGowan, Hamish; Callow, John Nikolaus; Soderholm, Joshua; McGrath, Gavan; Campbell, Micheline; Zhao, Jian-Xin

    2018-03-13

    Annual resolution reconstructions of alpine temperatures are rare, particularly for the Southern Hemisphere, while no snow cover reconstructions exist. These records are essential to place in context the impact of anthropogenic global warming against historical major natural climate events such as the Roman Warm Period (RWP), Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Here we show for a marginal alpine region of Australia using a carbon isotope speleothem reconstruction, warming over the past five decades has experienced equivalent magnitude of temperature change and snow cover decline to the RWP and MCA. The current rate of warming is unmatched for the past 2000 years and seasonal snow cover is at a minimum. On scales of several decades, mean maximum temperatures have undergone considerable change ≈ ± 0.8 °C highlighting local scale susceptibility to rapid temperature change, evidence of which is often masked in regional to hemisphere scale temperature reconstructions.

  2. Projected poleward shift of king penguins' (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean.

    Science.gov (United States)

    Péron, Clara; Weimerskirch, Henri; Bost, Charles-André

    2012-07-07

    Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies.

  3. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  4. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data

    Science.gov (United States)

    Chen, Xingchao; Zhao, Kun; Xue, Ming

    2014-11-01

    This study examines the temporal and spatial characteristics and distributions of convection over the Pearl River Delta region of Guangzhou, China, during the May-September warm season, using, for the first time for such a purpose, 3 years of operational Doppler radar data in the region. Results show that convective features occur most frequently along the southern coast and the windward slope of the eastern mountainous area of Pearl River Delta, with the highest frequency occurring in June and the lowest in September among the 5 months. The spatial frequency distribution pattern also roughly matches the accumulated precipitation pattern. The occurrence of convection in this region also exhibits strong diurnal cycles. During May and June, the diurnal distribution is bimodal, with the maximum frequency occurring in the early afternoon and a secondary peak occurring between midnight and early morning. The secondary peak is much weaker in July, August, and September. Convection near the coast is found to occur preferentially on days when a southerly low-level jet (LLJ) exists, especially during the Meiyu season. Warm, moist, and unstable air is transported from the ocean to land by LLJs on these days, and the lifting along the coast by convergence induced by differential surface friction between the land and ocean is believed to be the primary cause for the high frequency along the coast. In contrast, the high frequency over mountainous area is believed to be due to orographic lifting of generally southerly flows during the warm season.

  5. Trends in annual, seasonal, and monthly streamflow characteristics at 227 streamgages in the Missouri River watershed, water years 1960-2011

    Science.gov (United States)

    Norton, Parker A.; Anderson, Mark T.; Stamm, John F.

    2014-01-01

    The Missouri River and its tributaries are an important resource that serve multiple uses including agriculture, energy, recreation, and municipal water supply. Understanding historical streamflow characteristics provides relevant guidance to adaptive management of these water resources. Streamflow records in the Missouri River watershed were examined for trends in time series of annual, seasonal, and monthly streamflow. A total of 227 streamgages having continuous observational records for water years 1960–2011 were examined. Kendall’s tau nonparametric test was used to determine statistical significance of trends in annual, seasonal, and monthly streamflow. A trend was considered statistically significant for a probability value less than or equal to 0.10 that the Kendall’s tau value equals zero. Significant trends in annual streamflow were indicated for 101 out of a total of 227 streamgages. The Missouri River watershed was divided into six watershed regions and trends within regions were examined. The western and the southern parts of the Missouri River watershed had downward trends in annual streamflow (56 streamgages), whereas the eastern part of the watershed had upward trends in streamflow (45 streamgages). Seasonal and monthly streamflow trends reflected prevailing annual streamflow trends within each watershed region.

  6. Mean Annual Temperature Drives Microbial Nitrogen Cycling and Fine Root Nutrient Foraging Across a Tropical Montane Wet Forest Elevation Gradient

    Science.gov (United States)

    Pierre, S.; Litton, C. L. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P. M.; Hewson, I.; Fahey, T. J.

    2017-12-01

    Mean annual temperature (MAT) is positively correlated with rates of primary production and carbon (C) turnover in forests globally, but the underlying biotic drivers of these relationships remain poorly resolved. We hypothesized that (1) MAT increases nitrifier abundance and thereby nitrate (NO-) bioavailability in soils and (2) increased NO- bioavailability reduces fine root nitrogen (N) demand. We used an ecologically well-constrained natural elevation gradient (13˚C -18˚C) in a tropical wet motane forest on the Island of Hawaii to study to role of MAT in situ. Our previous work showed that MAT drives increased soil NO- bioavailability in situ (r²=0.79, P=0.003), and indicated that the abundance of ammonia oxidizing archaea is strongly and positively correlated with MAT in situ (r²=0.34, Preduce fine root foraging effort. Further, higher MAT and greater N fertility in soils may reduce the C limitation of AM fungal colonization. We conclude that MAT drives N-rich conditions, which allow for lower N foraging effort, but greater C investment in P acquisition through AM fine root colonization.

  7. Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore.

    Science.gov (United States)

    Albon, Steve D; Irvine, R Justin; Halvorsen, Odd; Langvatn, Rolf; Loe, Leif E; Ropstad, Erik; Veiberg, Vebjørn; van der Wal, René; Bjørkvoll, Eirin M; Duff, Elizabeth I; Hansen, Brage B; Lee, Aline M; Tveraa, Torkild; Stien, Audun

    2017-04-01

    The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause 'icing', restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a 'barometer' of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to 'rain-on-snow' events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important 'missing' mechanistic link in the current understanding of the population biology of a

  8. Seasonal changes in stable carbon isotope ratios within annual growth rings of Pinus radiata

    International Nuclear Information System (INIS)

    Walcroft, A.; Silvester, W.; Whitehead, D.; Kelliher, F.

    1997-01-01

    The stable isotope composition of photosynthetically assimilated carbon (δ 13 C) is determined by the ratio of the leaf internal CO 2 concentration (c i ) to that of the ambient air (c a ), and so reflects the contribution of both stomatal conductance (g s ) and the rate of photosynthesis (A). Assimilated carbon which is subsequently laid down as wood in annual growth rings may therefore represent a time integrated record of physiological responses by the whole tree to seasonal changes in the environmental variables regulating growth. We analysed the stable carbon isotope composition of Pinus radiata wood collected from two plantation forest sites in New Zealand which differ markedly in temperature, rainfall and soil characteristics. For both sites, discs were cut from the stem of several trees near ground level and whole wood samples were taken from within individual annual growth rings over a number of years. At one site, diameter bands were installed over the 1994 - 1996 growing seasons in order to date precisely the formation of wood during that time. Trees at each site consistently showed a seasonal pattern in the stable isotope composition of wood within individual growth rings. The amplitude of seasonal δ 13 C variation at the wet and dry sites were 1-2 per thousand and 4 per thousand respectively. Mean δ 13 C values from the wet site were 3 per thousand more 13 C depleted than those from the dry site implying lower water-use efficiency (carbon assimilation per unit transpiration). A process-based, model of stomatal conductance and CO 2 assimilation was combined with a soil-water balance model to estimate the average daily leaf-level intercellular CO 2 concentration (c i ). Over two growing seasons at each site there was generally good agreement between mean canopy-level c i derived from the tree-ring δ 13 C data and modelled leaf-level c i levels. Further, the ratio of annual CO 2 assimilation to transpiration estimated by the model for each site

  9. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Science.gov (United States)

    Moore, Todd W.

    2018-06-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  10. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Science.gov (United States)

    Moore, Todd W.

    2017-08-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  11. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2008-05-01

    The ability to map the relationship between ecological outcomes and hydrologic conditions in the Everglades National Park is a key building block for the restoration program, a primary goal of which is to improve habitat for wading bird species and to promote nesting. This paper reports on a model linking wading bird foraging numbers to hydrologic conditions in the Park We demonstrate that seasonal hydrologic statistics derived from a single water level recording site are a) well correlated with water depths throughout most areas of the Park, and b) are effective as predictors of Great Egret and White Ibis foraging numbers at the end of the nesting season when using a nonlinear Bayesian Hierarchical model that permits the estimation of a conditional distribution of bird populations given the seasonal statistics of stage at the index location. Model parameters are estimated using a Markov Chain Monte Carlo procedure. Parameter and model uncertainty are both assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the recession rate, and the numbers of reversals in the recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the seasonal production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of wading bird foraging numbers showing low frequency oscillations in response to decadal and multi-decadal fluctuations in hydroclimatic conditions.

  12. The Role of Non-Foraging Nests in Polydomous Wood Ant Colonies.

    Science.gov (United States)

    Ellis, Samuel; Robinson, Elva J H

    2015-01-01

    A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.

  13. Emergent Sandbar Construction for Least Terns on the Missouri River: Effects on Forage Fishes in Shallow-Water Habitats

    Science.gov (United States)

    Stucker, J.H.; Buhl, D.A.; Sherfy, M.H.

    2011-01-01

    Emergent sandbars on the Missouri River are actively managed for two listed bird species, piping plovers and interior least terns. As a plunge-diving piscivore, endangered least terns rely on ready access to appropriately sized slender-bodied fish: nesting habitat for plovers and terns, the U.S. Army Corps of Engineers mechanically created several emergent sandbars on the Missouri River. However, it was unknown whether sandbar construction is a benefit or a detriment to forage abundance for least terns. Therefore, we studied the shallowwater (nesting seasons (2006-2008). We sampled every 2 weeks each year from late May to July within 15-16 areas to document the relative abundance, species richness and size classes of fish. Fish relative abundance was negatively related to depth. Catches were dominated by schooling species, including emerald shiner, sand shiner, spotfin shiner and bigmouth buffalo. Significant inter-annual differences in relative abundance were observed, with generally increasing trends in intra-seasonal relative abundance of shiners and the smallest size classes of fish (<34 mm). Significant differences in the fish communities between the sandbar types were not detected in this study. Results suggest that mechanical sandbar habitats host comparable fish communities at similar levels of relative abundance. Further analyses are required to evaluate if the levels of fish relative abundance are adequate to support least tern foraging and reproduction.

  14. Seasonal patterns in soil N availability in the arctic tundra in response to accelerated snowmelt and warming

    Science.gov (United States)

    Darrouzet-Nardi, A.; Wallenstein, M. D.; Steltzer, H.; Sullivan, P.; Melle, C.; Segal, A.; Weintraub, M. N.

    2010-12-01

    Arctic soils contain large stocks of carbon (C) and may act as a significant CO2 source in response to climate warming. However, nitrogen (N) availability limits both plant growth and decomposition in many Arctic sites, and may thus be a key constraint on climate-carbon feedbacks. While current models of tundra ecosystems and their responses to climate change assume that N limits plant growth and C limits decomposition, there is strong evidence to the contrary showing that N can also limit decomposition. For example, the production of both new microbial biomass and enzymes that degrade organic matter appear to be limited by N during the summer. N availability is strongly seasonal: we have previously observed relatively high availability early in the growing season followed by a pronounced crash in tussock tundra soils. To investigate the drivers of N availability throughout the season, we used a field manipulation of tussock tundra growing season length (~4 days acceleration of snowmelt) and air temperature (open top chambers) and a laboratory soil N addition in both early and late season. Nutrient availability throughout the field season was measured at high temporal resolution (25 measurements from soil thaw through early plant senescence). Results from a laboratory experiment in which N was added to early season and late season soils suggests that soil respiration is in fact N limited at both times of the season, though this limitation is temperature dependent with effects most pronounced at 10°C. High-resolution measurements of nutrients in the soil solution and extractable N throughout the season showed that although a nutrient crash in N can be observed mid-season, N availability can still fluctuate later in the season. Finally, effects of the extended growing season and increased air temperature have so far had few effects on soil nutrient N dynamics throughout the summer growing season, suggesting either an insensitivity of N availability to these

  15. Seasonal regulation of condensed tannin consumption by free-ranging goats in a semi-arid savanna

    Science.gov (United States)

    Heitkӧnig, Ignas M. A.; Scogings, Peter F.; Hattas, Dawood; Dziba, Luthando E.; Prins, Herbert H. T.; de Boer, Willem F.

    2018-01-01

    Although condensed tannins (CTs) are known to reduce forage intake by mammalian herbivores in controlled experiments, few studies have tested these effects in the field. Thus the role of CTs on foraging ecology of free-ranging herbivores is inadequately understood. To investigate the effects of CTs under natural savanna conditions, we pre-dosed groups of goats with polyethylene glycol (PEG, a CT-neutralising chemical), CT powder or water before observing their foraging behaviour. While accounting for the effects of season and time of the day, we tested the hypothesis that herbivores forage in ways that reduce the intake rate (g DM per minute) of CTs. We expected pre-dosing goats with CTs to reduce CT intake rates by (1) consuming diets low in CTs, (2) reducing bite rates, (3) increasing the number of foraging bouts, or (4) reducing the length of foraging bouts. Lastly, (5) expected CT to have no influence the number of dietary forage species. In both wet and dry seasons, pre-dosing goats with CTs resulted in lower CT consumption rates compared to PEG goats which seemed relieved from the stress associated with CT consumption. During dry season, the number of dietary forage species was similar across treatments, although goats that were dosed with PEG significantly increased this number in the wet season. Dosing goats with PEG increased the number and length of browsing bouts compared to goats from the other treatments. Pre-loading goats with PEG also tended to increase bite rates on browse forages, which contributed to increased consumption rates of CTs. Based on the behavioural adjustments made by goats in this study and within the constraints imposed by chemical complexity in savanna systems, we concluded that herbivores under natural conditions foraged in ways that minimised CTs consumption. More research should further elucidate the mechanism through which CTs regulated feeding behaviour. PMID:29293513

  16. Breeding success of a marine central place forager in the context of climate change: A modeling approach.

    Directory of Open Access Journals (Sweden)

    Lauriane Massardier-Galatà

    Full Text Available In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS, including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella, which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups' growth and survival while female body length should increase.

  17. Yield and nutritive quality of forage legumes on reclaimed surface mined land

    International Nuclear Information System (INIS)

    Ditsch, D.C.; Collins, M.

    1998-01-01

    Legumes are important in the long-term nitrogen economy of surface mined lands and for establishing and maintaining quality livestock forage. Little information is available to reclamation specialists for use in selection of forage legume species based on productivity potential, persistence and nutritive quality for livestock. A study was initiated at two sites in the Appalachian coal fields of Kentucky to evaluate monocultures of alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.) and birdsfoot trefoil (Lotus corniculatus L.) under management regimes suitable for livestock production. Legumes were harvested at the early bloom stage throughout the growing season for dry matter (DM) yield determination. Forage quality was determined by measuring crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose (CEL) and acid detergent lignin (ADL). High DM yields were produced by all species during the first production season (range 6.2-9.2 Mg ha -1 ) but yields of all species declined rapidly by year three. Birdsfoot trefoil demonstrated slightly greater drought tolerance during mid-season (July/August) than alfalfa and red clover. With the exception of site number-sign 1 in 1992 (4 harvests), no more than 3 harvests were made during a single growing season. Crude protein concentration of these forage legumes was found to be within the range commonly measured on undisturbed lands. However, high NDF and ADF values were observed above those reported by others for the same species. These results indicate that it may be difficult to maintain a high level of productivity throughout the five-year bonding period under hay management. Management practices such as summer stockpiling may be necessary to compensate for the rapid and wide fluctuations in DM yield and quality due to low water-holding capacity of mine spoils. 15 refs., 2 figs., 7 tabs

  18. Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California

    Directory of Open Access Journals (Sweden)

    K. N. Musselman

    2017-12-01

    Full Text Available In a warmer climate, the fraction of annual meltwater produced at high melt rates in mountainous areas is projected to decline due to a contraction of the snow-cover season, causing melt to occur earlier and under lower energy conditions. How snowmelt rates, including extreme events relevant to flood risk, may respond to a range of warming over a mountain front is poorly known. We present a model sensitivity study of snowmelt response to warming across a 3600 m elevation gradient in the southern Sierra Nevada, USA. A snow model was run for three distinct years and verified against extensive ground observations. To simulate the impact of climate warming on meltwater production, measured meteorological conditions were modified by +1 to +6 °C. The total annual snow water volume exhibited linear reductions (−10 % °C−1 consistent with previous studies. However, the sensitivity of snowmelt rates to successive degrees of warming varied nonlinearly with elevation. Middle elevations and years with more snowfall were prone to the largest reductions in snowmelt rates, with lesser changes simulated at higher elevations. Importantly, simulated warming causes extreme daily snowmelt (99th percentiles to increase in spatial extent and intensity, and shift from spring to winter. The results offer insight into the sensitivity of mountain snow water resources and how the rate and timing of water availability may change in a warmer climate. The identification of future climate conditions that may increase extreme melt events is needed to address the climate resilience of regional flood control systems.

  19. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient

    DEFF Research Database (Denmark)

    Penuelas, J.; Gordon, C.; Llorens, L.

    2004-01-01

    -limited. In the water-stressed southern site, there was no increase in total aboveground plant biomass growth as expected since warming increases water loss, and temperatures in those ecosystems are already close to the optimum for photosynthesis. The southern site presented instead the most negative response...... a 15% increase in total aboveground plant biomass growth in the UK site. Both direct and indirect effects of warming, such as longer growth season and increased nutrient availability, are likely to be particularly important in this and the other northern sites which tend to be temperature...... to the drought treatment consisting of a soil moisture reduction at the peak of the growing season ranging from 33% in the Spanish site to 82% in The Netherlands site. In the Spanish site there was a 14% decrease in total aboveground plant biomass growth relative to control. Flowering was decreased by drought...

  20. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management.

    Science.gov (United States)

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-04-27

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  1. Effects of recent warm and cold spells on European plant phenology

    Science.gov (United States)

    Menzel, A.; Estrella, N.; Seifert, H.

    2009-04-01

    Numerous studies have concurrently documented a progressively earlier start for vegetation activity in spring and a lengthening of the growing season during the last 2 to 5 decades in the temperate northern hemisphere. In contrast to climatic factors influencing autumn phenology, the climate signal controlling spring and summer phenology is fairly well understood: nearly all phenophases correlate with temperatures in the preceding 1 to 3 months. The changes currently experienced by emergence of vegetation may reach 6 to 8 d per °C. But how will this well-known, often linearly described relationship change in case of more frequent and more stronger temperature extremes? We thus studied the temperature response of European phenological records to cold and warm spells using the COST725 data base (www.cost725.org). We restricted our analysis to the time period 1951-2006 due to the relatively better coverage of Europe by phenological records. Up to now, 20 European countries contributed more than 7 Mio. phenological observations to this data base including 64 species and 22 different phases. The phenological observations compiled originated from different sources and phenological networks. Unfortunately there is no entire coverage and the data are very lumped. Cold and warm spells were identified using daily mean temperature data (1951-2006) on a 0.5° grid for Europe provided by the EU-FP6 project ENSEMBLES (http://www.ensembles-eu.org, http://eca.knmi.nl). The study area covered Europe and was limited to 40°E. For the whole study period, mean monthly and seasonal mean temperatures well as the corresponding standard deviations were calculated for each grid point. The annual monthly or seasonal temperature at a grid point was defined as cold (very cold, warm, very warm) by its deviation from the long-term average (more than 1.5 or 3sd, respectively). Warm and cold spells were selected when either the percentages of crossing 1.5sd were greater than 50% for the total

  2. Seasonal and inter-annual photosynthetic response of representative C4 species to soil water content and leaf nitrogen concentration across a tropical seasonal floodplain

    NARCIS (Netherlands)

    Mantlana, K.B.; Arneth, A.; Veenendaal, E.M.; Wohland, P.; Wolski, P.; Kolle, O.; Lloyd, J.

    2008-01-01

    We examined the seasonal and inter-annual variation of leaf-level photosynthetic characteristics of three C4 perennial species, Cyperus articulatus, Panicum repens and Imperata cylindrica, and their response to environmental variables, to determine comparative physiological responses of plants

  3. Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season

    Directory of Open Access Journals (Sweden)

    Karina F. Hisatugo

    2014-01-01

    Full Text Available In aquatic ecosystems, bacteria are controlled by several organisms in the food chain, such as protozoa, that use them as food source. This study aimed to quantify the ingestion and clearance rates of bacteria by ciliates and heterotrophic nanoflagellates (HNF in a subtropical freshwater reservoir (Monjolinho reservoir -São Carlos -Brazil during one year period, in order to verify their importance as consumers and controllers of bacteria in two seasons, a dry/cold and a rainy/warm one. For this purpose, in situ bacterivory experiments were carried out bimonthly using fluorescently labeled bacteria with 5-(4,6 diclorotriazin-2yl aminofluorescein (DTAF. Although ciliates have shown the highest individual ingestion and clearance rates, bacterivory was dominated by HNF, who showed higher population ingestion rates (mean of 9,140 bacteria h-1mL-1 when compared to ciliates (mean of 492 bacteria h-1mL-1. The greater predation impact on bacterial communities was caused mainly by the small HNF (< 5 µm population, especially in the rainy season, probably due to the abundances of these organisms, the precipitation, trophic index state and water temperature that were higher in this period. Thus, the protozoan densities together with environmental variables were extremely relevant in determining the seasonal pattern of bacterivory in Monjolinho reservoir.

  4. Analysis of Inter- and Intra-individual Variation in Foraging Habits of the Endangered Hawaiian Petrel Using Stables Isotopes

    Science.gov (United States)

    Morra, K. E.; Ostrom, P. H.; Wiley, A. E.; James, H. F.; Stricker, C. A.; Gandhi, H.

    2014-12-01

    Stable isotope analysis of the endangered Hawaiian petrel's (Pterodroma sandwichensis, HAPE) feathers provides otherwise intractable information regarding non-breeding season foraging habits. Adult HAPE spend 3.5-6 months at sea during the non-breeding season, at which time they sequentially molt their flight feathers. Because feathers are metabolically inert once synthesized, they capture isotopic signals while they are grown, providing an opportunity to study foraging habits over time. Here we use stable hydrogen (δD), carbon (δ13C) and nitrogen (δ15N) isotopes to assess variation in foraging habits within and between individuals, and among four breeding colonies. δD is an indicator of prevalence of fish vs. invertebrates in the diet. In one analysis, we observed large variation in feather δD (125‰), with adults from Maui and Kauai having significantly higher δD values than corresponding hatch-year birds, indicating significant dietary differences between age groups. In a second analysis, we utilized δ13C and δ15N of Hawaii, Maui and Lanai adults, values which vary with trophic level and also at the base of the food web across HAPE's foraging range, potentially revealing information about feeding location, as well as diet. Furthermore, because the sequence of molt is known, we are able to determine whether individual foraging specialization (continued use of the same foraging behavior over time) exists in this species. To do this, we analyzed two primary feathers, P1 and P6, which reflect the beginning and the middle of the non-breeding season, respectively. We did not find significant differences in δ13C or δ15N between P1 and P6, suggesting consistent foraging habits within individuals over time. This provides evidence that individual foraging specialization exists within these populations. Analysis of a secondary feather grown late in the molt sequence would further illuminate the extent of foraging specialization. Finally, δ15N differs

  5. Annual and seasonal distribution of intertidal foraminifera and stable carbon isotope geochemistry, Bandon Marsh, Oregon, USA

    Science.gov (United States)

    Milker, Yvonne; Horton, Benjamin; Vane, Christopher; Engelhart, Simon; Nelson, Alan R.; Witter, Robert C.; Khan, Nicole S.; Bridgeland, William

    2014-01-01

    We investigated the influence of inter-annual and seasonal differences on the distribution of live and dead foraminifera, and the inter-annual variability of stable carbon isotopes (d13C), total organic carbon (TOC) values and carbon to nitrogen (C/N) ratios in bulk sediments from intertidal environments of Bandon Marsh (Oregon, USA). Living and dead foraminiferal species from 10 stations were analyzed over two successive years in the summer (dry) and fall (wet) seasons. There were insignificant inter-annual and seasonal variations in the distribution of live and dead species. But there was a noticeable decrease in calcareous assemblages (Haynesina sp.) between live populations and dead assemblages, indicating that most of the calcareous tests were dissolved after burial; the agglutinated assemblages were comparable between constituents. The live populations and dead assemblages were dominated by Miliammina fusca in the tidal flat and low marsh, Jadammina macrescens, Trochammina inflata and M. fusca in the high marsh, and Trochamminita irregularis and Balticammina pseudomacrescens in the highest marsh to upland. Geochemical analyses (d13C, TOC and C/N of bulk sedimentary organic matter) show no significant influence of inter-annual variations but a significant correlation of d13C values (R = 20.820, p , 0.001), TOC values (R = 0.849, p , 0.001) and C/N ratios (R = 0.885, p , 0.001) to elevation with respect to the tidal frame. Our results suggest that foraminiferal assemblages and d13C and TOC values, as well as C/N ratios, in Bandon Marsh are useful in reconstructing paleosea-levels on the North American Pacific coast.

  6. Seasonal and inter-annual turbidity variability in the Rio de la Plata from 15 years of MODIS: El Niño dilution effect

    OpenAIRE

    Dogliotti, A.I.; Ruddick, K.; Guerrero, R.

    2016-01-01

    Spatio-temporal variability of turbidity in the Río de la Plata (RdP) estuary (Argentina) at seasonal and inter-annual timescales is analyzed from 15 years (2000–2014) of MODIS data and explained in terms of river discharges and the El Niño Southern Oscillation (ENSO). Satellite estimates were first validated using in situ turbidity measurements and then the time series of monthly averages were analyzed to assess the seasonal and inter-annual variability of turbidity. A strong seasonal variab...

  7. Timing of breeding and reproductive performance in murres and kittiwakes reflect mismatched seasonal prey dynamics

    Science.gov (United States)

    Shultz, M.T.; Piatt, John F.; Harding, A.M.A.; Kettle, Arthur B.; van Pelt, Thomas I.

    2009-01-01

    Seabirds are thought to time breeding to match the seasonal peak of food availability with peak chick energetic demands, but warming ocean temperatures have altered the timing of spring events, creating the potential for mismatches. The resilience of seabird populations to climate change depends on their ability to anticipate changes in the timing and magnitude of peak food availability and 'fine-tune' efforts to match ('Anticipation Hypothesis'). The degree that inter-annual variation in seabird timing of breeding and reproductive performance represents anticipated food availability versus energetic constraints ('Constraint Hypothesis') is poorly understood. We examined the relative merits of the Constraint and Anticipation Hypotheses by testing 2 predictions of the Constraint Hypothesis: (1) seabird timing of breeding is related to food availability prior to egg laying rather than the date of peak food availability, (2) initial reproductive output (e.g. laying success, clutch size) is related to pre-lay food availability rather than anticipated chick-rearing food availability. We analyzed breeding biology data of common murres Uria aalge and black-legged kittiwakes Rissa tridactyla and 2 proxies of the seasonal dynamics of their food availability (near-shore forage fish abundance and sea-surface temperature) at 2 colonies in Lower Cook Inlet, Alaska, USA, from 1996 to 1999. Our results support the Constraint Hypothesis: (1) for both species, egg laying was later in years with warmer sea-surface temperature and lower food availability prior to egg laying, but was not related to the date of peak food availability, (2) pre-egg laying food availability explained variation in kittiwake laying success and clutch size. Murre reproductive success was best explained by food availability during chick rearing. ?? 2009 Inter-Research.

  8. Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle.

    Directory of Open Access Journals (Sweden)

    Jannie Fries Linnebjerg

    Full Text Available When species competing for the same resources coexist, some segregation in the way they utilize those resources is expected. However, little is known about how closely related sympatric breeding species segregate outside the breeding season. We investigated the annual segregation of three closely related seabirds (razorbill Alcatorda, common guillemot Uriaaalge and Brünnich's guillemot U. lomvia breeding at the same colony in Southwest Greenland. By combining GPS and geolocation (GLS tracking with dive depth and stable isotope analyses, we compared spatial and dietary resource partitioning. During the breeding season, we found the three species to segregate in diet and/or dive depth, but less in foraging area. During both the post-breeding and pre-breeding periods, the three species had an increased overlap in diet, but were dispersed over a larger spatial scale. Dive depths were similar across the annual cycle, suggesting morphological adaptations fixed by evolution. Prey choice, on the other hand, seemed much more flexible and therefore more likely to be affected by the immediate presence of potential competitors.

  9. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman

    2016-01-01

    with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N......A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized...... carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground...

  10. Using principal component analysis and annual seasonal trend analysis to assess karst rocky desertification in southwestern China.

    Science.gov (United States)

    Zhang, Zhiming; Ouyang, Zhiyun; Xiao, Yi; Xiao, Yang; Xu, Weihua

    2017-06-01

    Increasing exploitation of karst resources is causing severe environmental degradation because of the fragility and vulnerability of karst areas. By integrating principal component analysis (PCA) with annual seasonal trend analysis (ASTA), this study assessed karst rocky desertification (KRD) within a spatial context. We first produced fractional vegetation cover (FVC) data from a moderate-resolution imaging spectroradiometer normalized difference vegetation index using a dimidiate pixel model. Then, we generated three main components of the annual FVC data using PCA. Subsequently, we generated the slope image of the annual seasonal trends of FVC using median trend analysis. Finally, we combined the three PCA components and annual seasonal trends of FVC with the incidence of KRD for each type of carbonate rock to classify KRD into one of four categories based on K-means cluster analysis: high, moderate, low, and none. The results of accuracy assessments indicated that this combination approach produced greater accuracy and more reasonable KRD mapping than the average FVC based on the vegetation coverage standard. The KRD map for 2010 indicated that the total area of KRD was 78.76 × 10 3  km 2 , which constitutes about 4.06% of the eight southwest provinces of China. The largest KRD areas were found in Yunnan province. The combined PCA and ASTA approach was demonstrated to be an easily implemented, robust, and flexible method for the mapping and assessment of KRD, which can be used to enhance regional KRD management schemes or to address assessment of other environmental issues.

  11. Forage accumulation in brachiaria grass under continuous grazing with single or variable height during the seasons of the year

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2013-05-01

    Full Text Available The objective of this study was to evaluate grazing management strategies of Brachiaria decumbens cv. Basilisk managed with different heights under continuous grazing with cattle. Two grazing management strategies were evaluated: maintenance of pasture with an average height of 25 cm throughout the experimental period and maintenance of pasture on the average of 15 cm in height during winter, up to 25 cm from the beginning of spring. The split-plot scheme and the randomized block design with four replications were adopted. The grazing management strategies corresponded to the primary factor, while the seasons (winter, spring and summer corresponded to secondary factor. The reduction of the average sward height to 15 cm in the winter resulted, when compared with pasture maintained at 25 cm, in overall higher growth rates (95 kg/ha.day DM and leaf blade (66.1 kg/ha.day DM, as well as higher rates of total accumulation (81.5 kg/ha.day DM and leaf blade (52.6 kg/ha.day DM. The accumulated forage production (from winter to summer was higher in the pasture lowered to 15 cm in winter (25.6 t/ha DM compared with that managed with an average height of 25 cm (22.2 t/ha DM. Regarding the seasons of the year, in the winter, there were lower rates of overall growth (6.4 kg/ha.day DM, leaf blade (5.6 kg/ha.day DM and pseudostem (0.8 kg/ha.day DM, and also lower total (-6.6 kg/ha.day DM and leaf blade (-7.5 kg/ha.day DM accumulation rates. In the spring there was a higher rate of leaf senescence (22.4 kg/ha.day DM. The accumulation of forage is incremented when the pasture of B. decumbens is lowered to 15 cm during the winter, and in the spring and summer, its average height is increased to 25 cm.

  12. Nitrogen and carbohydrate fractions in exclusive Tifton 85 and in pasture oversown with annual winter forage species - 10.4025/actascianimsci.v34i1.11428

    Directory of Open Access Journals (Sweden)

    Ana Claudia Ruggieri

    2011-11-01

    Full Text Available The experiment was undertaken at the Faculty of Agrarian and Veterinary Sciences (FCAV Jaboticabal, São Paulo State, Brazil, during winter-spring-summer of 2001-2002, to determine the fractionation of nitrogen and carbohydrates in Tifton 85 (Cynodon dactylon Vanderyst x Cynodon nlemfuensis (L. Pers, exclusively or oversown with winter annual forage species. Treatments comprised bristle oat (Avena strigosa Schreb, yellow oat (Avena byzantina C. Koch, triticale (X Triticosecale Wittmack, bristle oat + yellow oat, bristle oat + triticale, yellow oat + triticale, bristle oat + yellow oat + triticale seeded in Tifton 85 and sole crop (control. Experimental design was composed of completely randomized blocks with three replications. Fodder was cut 20 cm high (presence of winter forage and 10 cm high (Tifton 85 pasture. Crude protein, total carbohydrate and the fractions of nitrogen compounds and carbohydrates were determined. Decrease was reported in the levels of chemical compounds in winter forage species and in Tifton 85 during the evaluation periods. The content of nitrogen compounds and carbohydrates varied widely during the evaluation period according to the morphological characteristics of grass species and botanical composition of pastures.

  13. Late Cretaceous seasonal ocean variability from the Arctic.

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  14. Seasonal and inter-annual variability of aerosol optical properties during 2005-2010 over Red Mountain Pass and Impact on the Snow Cover of the San Juan Mountains

    Science.gov (United States)

    Singh, R. P.; Gautam, R.; Painter, T. H.

    2011-12-01

    Growing body of evidence suggests the significant role of aerosol solar absorption in accelerated seasonal snowmelt in the cryosphere and elevated mountain regions via snow contamination and radiative warming processes. Characterization of aerosol optical properties over seasonal snow cover and snowpacks is therefore important towards the better understanding of aerosol radiative effects and associated impact on snow albedo. In this study, we present seasonal variations in column-integrated aerosol optical properties retrieved from AERONET sunphotometer measurements (2005-2010) at Red Mountain Pass (37.90° N, 107.72° W, 3368 msl) in the San Juan Mountains, in the vicinity of the North American Great Basin and Colorado Plateau deserts. The aerosol optical depth (AOD) measured at 500nm is generally low (pollutant transport. In addition, the possibility of the observed increased coarse-mode influence associated with mineral dust influx cannot be ruled out, due to westerly-airmass driven transport from arid/desert regions as suggested by backward trajectory simulations. A meteorological coupling is also found in the summer season between AOD and column water vapor retrieved from AERONET with co-occurring enhanced water vapor and AOD. Based on column measurements, it is difficult to ascertain the aerosol composition, however, the summer-time enhanced aerosol loading as presented here is consistent with the increased dust deposition in the San Juan mountain snow cover as reported in recent studies. In summary, this study is expected to better understand the seasonal and inter-annual aerosol column variations and is an attempt to provide an insight into the effects of aerosol solar absorption on accelerated seasonal snowmelt in the San Juan mountains.

  15. Plasticity in habitat use determines metabolic response of fish to global warming in stratified lakes.

    Science.gov (United States)

    Busch, Susan; Kirillin, Georgiy; Mehner, Thomas

    2012-09-01

    We used a coupled lake physics and bioenergetics-based foraging model to evaluate how the plasticity in habitat use modifies the seasonal metabolic response of two sympatric cold-water fishes (vendace and Fontane cisco, Coregonus spp.) under a global warming scenario for the year 2100. In different simulations, the vertically migrating species performed either a plastic strategy (behavioral thermoregulation) by shifting their population depth at night to maintain the temperatures occupied at current in-situ observations, or a fixed strategy (no thermoregulation) by keeping their occupied depths at night but facing modified temperatures. The lake physics model predicted higher temperatures above 20 m and lower temperatures below 20 m in response to warming. Using temperature-zooplankton relationships, the density of zooplankton prey was predicted to increase at the surface, but to decrease in hypolimnetic waters. Simulating the fixed strategy, growth was enhanced only for the deeper-living cisco due to the shift in thermal regime at about 20 m. In contrast, simulating the plastic strategy, individual growth of cisco and young vendace was predicted to increase compared to growth currently observed in the lake. Only growth rates of older vendace are reduced under future global warming scenarios irrespective of the behavioral strategy. However, performing behavioral thermoregulation would drive both species into the same depth layers, and hence will erode vertical microhabitat segregation and intensify inter-specific competition between the coexisting coregonids.

  16. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects

    Science.gov (United States)

    Gallo, Antonio; Giuberti, Gianluca; Frisvad, Jens C.; Bertuzzi, Terenzio; Nielsen, Kristian F.

    2015-01-01

    Ruminant diets include cereals, protein feeds, their by-products as well as hay and grass, grass/legume, whole-crop maize, small grain or sorghum silages. Furthermore, ruminants are annually or seasonally fed with grazed forage in many parts of the World. All these forages could be contaminated by several exometabolites of mycotoxigenic fungi that increase and diversify the risk of mycotoxin exposure in ruminants compared to swine and poultry that have less varied diets. Evidence suggests the greatest exposure for ruminants to some regulated mycotoxins (aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone) and to many other secondary metabolites produced by different species of Alternaria spp. (e.g., AAL toxins, alternariols, tenuazonic acid or 4Z-infectopyrone), Aspergillus flavus (e.g., kojic acid, cyclopiazonic acid or β-nitropropionic acid), Aspergillus fuminatus (e.g., gliotoxin, agroclavine, festuclavines or fumagillin), Penicillium roqueforti and P. paneum (e.g., mycophenolic acid, roquefortines, PR toxin or marcfortines) or Monascus ruber (citrinin and monacolins) could be mainly related to forage contamination. This review includes the knowledge of mycotoxin occurrence reported in the last 15 years, with special emphasis on mycotoxins detected in forages, and animal toxicological issues due to their ingestion. Strategies for preventing the problem of mycotoxin feed contamination under farm conditions are discussed. PMID:26274974

  17. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects

    Directory of Open Access Journals (Sweden)

    Antonio Gallo

    2015-08-01

    Full Text Available Ruminant diets include cereals, protein feeds, their by-products as well as hay and grass, grass/legume, whole-crop maize, small grain or sorghum silages. Furthermore, ruminants are annually or seasonally fed with grazed forage in many parts of the World. All these forages could be contaminated by several exometabolites of mycotoxigenic fungi that increase and diversify the risk of mycotoxin exposure in ruminants compared to swine and poultry that have less varied diets. Evidence suggests the greatest exposure for ruminants to some regulated mycotoxins (aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone and to many other secondary metabolites produced by different species of Alternaria spp. (e.g., AAL toxins, alternariols, tenuazonic acid or 4Z-infectopyrone, Aspergillus flavus (e.g., kojic acid, cyclopiazonic acid or β-nitropropionic acid, Aspergillus fuminatus (e.g., gliotoxin, agroclavine, festuclavines or fumagillin, Penicillium roqueforti and P. paneum (e.g., mycophenolic acid, roquefortines, PR toxin or marcfortines or Monascus ruber (citrinin and monacolins could be mainly related to forage contamination. This review includes the knowledge of mycotoxin occurrence reported in the last 15 years, with special emphasis on mycotoxins detected in forages, and animal toxicological issues due to their ingestion. Strategies for preventing the problem of mycotoxin feed contamination under farm conditions are discussed.

  18. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects.

    Science.gov (United States)

    Gallo, Antonio; Giuberti, Gianluca; Frisvad, Jens C; Bertuzzi, Terenzio; Nielsen, Kristian F

    2015-08-12

    Ruminant diets include cereals, protein feeds, their by-products as well as hay and grass, grass/legume, whole-crop maize, small grain or sorghum silages. Furthermore, ruminants are annually or seasonally fed with grazed forage in many parts of the World. All these forages could be contaminated by several exometabolites of mycotoxigenic fungi that increase and diversify the risk of mycotoxin exposure in ruminants compared to swine and poultry that have less varied diets. Evidence suggests the greatest exposure for ruminants to some regulated mycotoxins (aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone) and to many other secondary metabolites produced by different species of Alternaria spp. (e.g., AAL toxins, alternariols, tenuazonic acid or 4Z-infectopyrone), Aspergillus flavus (e.g., kojic acid, cyclopiazonic acid or β-nitropropionic acid), Aspergillus fuminatus (e.g., gliotoxin, agroclavine, festuclavines or fumagillin), Penicillium roqueforti and P. paneum (e.g., mycophenolic acid, roquefortines, PR toxin or marcfortines) or Monascus ruber (citrinin and monacolins) could be mainly related to forage contamination. This review includes the knowledge of mycotoxin occurrence reported in the last 15 years, with special emphasis on mycotoxins detected in forages, and animal toxicological issues due to their ingestion. Strategies for preventing the problem of mycotoxin feed contamination under farm conditions are discussed.

  19. Adélie penguin foraging location predicted by tidal regime switching.

    Science.gov (United States)

    Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh

    2013-01-01

    Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

  20. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  1. Multi-tissue analyses reveal limited inter-annual and seasonal variation in mercury exposure in an Antarctic penguin community.

    Science.gov (United States)

    Brasso, Rebecka L; Polito, Michael J; Emslie, Steven D

    2014-10-01

    Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.

  2. Stable Isotopes Reveal Long-Term Fidelity to Foraging Grounds in the Galapagos Sea Lion (Zalophus wollebaeki.

    Directory of Open Access Journals (Sweden)

    Massimiliano Drago

    Full Text Available Most otariids have colony-specific foraging areas during the breeding season, when they behave as central place foragers. However, they may disperse over broad areas after the breeding season and individuals from different colonies may share foraging grounds at that time. Here, stable isotope ratios in the skull bone of adult Galapagos sea lions (Zalophus wollebaeki were used to assess the long-term fidelity of both sexes to foraging grounds across the different regions of the Galapagos archipelago. Results indicated that the stable isotope ratios (δ(13C and δ(15N of sea lion bone significantly differed among regions of the archipelago, without any significant difference between sexes and with a non significant interaction between sex and region. Moreover, standard ellipses, estimated by Bayesian inference and used as a measure of the isotopic resource use area at the population level, overlapped widely for the sea lions from the southern and central regions, whereas the overlap of the ellipses for sea lions from the central and western regions was small and non-existing for those from the western and southern regions. These results suggest that males and females from the same region within the archipelago use similar foraging grounds and have similar diets. Furthermore, they indicate that the exchange of adults between regions is limited, thus revealing a certain degree of foraging philopatry at a regional scale within the archipelago. The constraints imposed on males by an expanded reproductive season (~ 6 months, resulting from the weak reproductive synchrony among females, and those imposed on females by a very long lactation period (at least one year but up to three years, may explain the limited mobility of adult Galapagos sea lions of both sexes across the archipelago.

  3. Ocean climate and seal condition

    Directory of Open Access Journals (Sweden)

    Crocker Daniel E

    2005-03-01

    Full Text Available Abstract Background The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. Results The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Conclusion Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.

  4. A process-level attribution of the annual cycle of surface temperature over the Maritime Continent

    Science.gov (United States)

    Li, Yana; Yang, Song; Deng, Yi; Hu, Xiaoming; Cai, Ming

    2017-12-01

    The annual cycle of the surface temperature over the Maritime Continent (MC) is characterized by two periods of rapid warming in March-April and September-October, respectively, and a period of rapid cooling in June-July. Based upon an analysis of energy balance within individual atmosphere-surface columns, the seasonal variations of surface temperature in the MC are partitioned into partial temperature changes associated with various radiative and non-radiative (dynamical) processes. The seasonal variations in direct solar forcing and surface latent heat flux show the largest positive contributions to the annual cycle of MC surface temperature while the changes in oceanic dynamics (including ocean heat content change) work against the temperature changes related to the annual cycle. The rapid warming in March-April is mainly a result of the changes in atmospheric quick processes and ocean-atmosphere coupling such as water vapor, surface latent heat flux, clouds, and atmospheric dynamics while the contributions from direct solar forcing and oceanic dynamics are negative. This feature is in contrast to that associated with the warming in September-October, which is driven mainly by the changes in solar forcing with a certain amount of contributions from water vapor and latent heat flux change. More contribution from atmospheric quick processes and ocean-atmosphere coupling in March-April coincides with the sudden northward movement of deep convection belt, while less contribution from these quick processes and coupling is accompanied with the convection belt slowly moving southward. The main contributors to the rapid cooling in June-July are the same as those to the rapid warming in March-April, and the cooling is also negatively contributed by direct solar forcing and oceanic dynamics. The changes in water vapor in all three periods contribute positively to the change in total temperature and they are associated with the change in the location of the center of

  5. Decadal-scale variation in diet forecasts persistently poor breeding under ocean warming in a tropical seabird.

    Science.gov (United States)

    Tompkins, Emily M; Townsend, Howard M; Anderson, David J

    2017-01-01

    Climate change effects on population dynamics of natural populations are well documented at higher latitudes, where relatively rapid warming illuminates cause-effect relationships, but not in the tropics and especially the marine tropics, where warming has been slow. Here we forecast the indirect effect of ocean warming on a top predator, Nazca boobies in the equatorial Galápagos Islands, where rising water temperature is expected to exceed the upper thermal tolerance of a key prey item in the future, severely reducing its availability within the boobies' foraging envelope. From 1983 to 1997 boobies ate mostly sardines, a densely aggregated, highly nutritious food. From 1997 until the present, flying fish, a lower quality food, replaced sardines. Breeding success under the poor diet fell dramatically, causing the population growth rate to fall below 1, indicating a shrinking population. Population growth may not recover: rapid future warming is predicted around Galápagos, usually exceeding the upper lethal temperature and maximum spawning temperature of sardines within 100 years, displacing them permanently from the boobies' island-constrained foraging range. This provides rare evidence of the effect of ocean warming on a tropical marine vertebrate.

  6. Decadal-scale variation in diet forecasts persistently poor breeding under ocean warming in a tropical seabird.

    Directory of Open Access Journals (Sweden)

    Emily M Tompkins

    Full Text Available Climate change effects on population dynamics of natural populations are well documented at higher latitudes, where relatively rapid warming illuminates cause-effect relationships, but not in the tropics and especially the marine tropics, where warming has been slow. Here we forecast the indirect effect of ocean warming on a top predator, Nazca boobies in the equatorial Galápagos Islands, where rising water temperature is expected to exceed the upper thermal tolerance of a key prey item in the future, severely reducing its availability within the boobies' foraging envelope. From 1983 to 1997 boobies ate mostly sardines, a densely aggregated, highly nutritious food. From 1997 until the present, flying fish, a lower quality food, replaced sardines. Breeding success under the poor diet fell dramatically, causing the population growth rate to fall below 1, indicating a shrinking population. Population growth may not recover: rapid future warming is predicted around Galápagos, usually exceeding the upper lethal temperature and maximum spawning temperature of sardines within 100 years, displacing them permanently from the boobies' island-constrained foraging range. This provides rare evidence of the effect of ocean warming on a tropical marine vertebrate.

  7. Intensive use of an intertidal mudflat by foraging adult American horseshoe crabs Limulus polyphemus in the Great Bay estuary, New Hampshire

    Directory of Open Access Journals (Sweden)

    Wan-Jean LEE

    2010-10-01

    Full Text Available Although concerns about harvesting levels of the American Horseshoe Crab, Limulus polyphemus have prompted increased research into its ecology, current understanding of the species’ foraging ecology is mostly limited to mid-Atlantic populations. This study elucidates the spatial and temporal pattern of Limulus foraging on an intertidal mudflat of a northern New England estuary. A novel survey method was used to monitor Limulus foraging activity without disturbing the sediment. A fixed 50 m´2 m transect was monitored with monthly surveys of the number of Limulus feeding pits from June to October 2009, May and June 2010. Snorkelling surveys were also carried out to observe individual behavior and examine the spatial scale of activity of individual animals. Results showed frequent and intensive use of the mudflat by foraging Limulus. Limulus were actively foraging within the survey area during all months surveyed. Foraging patterns exhibited a seasonal pattern with activity levels peaking in August 2009 and increased significantly towards the end of the study in June 2010. It was also shown that Limulus intertidal foraging persisted and peaked after the spring breeding season. Observations of foraging Limulus revealed that individual predators dig multiple pits within a single high tide, with little disturbance to the sediment in between. In addition to altering the perception of Limulus as a subtidal predator outside of the breeding season, findings from this study suggests a segregation of spawning and feeding habitats, thus underscoring the need to consider a wider range of critical habitats in the management of Limulus populations [Current Zoology 56 (5: 611–617, 2010].

  8. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. IV. Changes during the growing season in anatomy and chemical composition in relation to fermentation characteristics of a lower internode

    NARCIS (Netherlands)

    Boon, E.J.M.C.; Struik, P.C.; Engels, F.M.; Cone, J.W.

    2012-01-01

    Improving digestibility of forage maize (Zea mays L.) through breeding is important to optimize the efficiency of ruminant's rations. It can partly be achieved by improving the digestibility of stem tissue, a genetically complex and diverse trait changing drastically during the growing season. We

  9. Growing season temperature and precipitation variability and extremes in the U.S. Corn Belt from 1981 to 2012

    Science.gov (United States)

    Dai, S.; Shulski, M.

    2013-12-01

    ,35, growth range limits for corn), and the sum of growing degree days between 20°C and 22°C (GDD20,22, optimal growth range for corn). And the precipitation-based indices include: cumulative precipitation, consecutive dry days, and number of extreme precipitation events in June. As to the decadal trend analysis in climatic factors, Sen's Nonparametric Estimator of Slope and the nonparametric Mann-Kendall test are used. In the U.S. Corn Belt, annual mean Tavg ranges from 5.7°C to 14.7°C, and annual cumulative precipitation ranges from 396 mm to 1,203 mm. According to the decadal trend of annual mean Tavg and annual cumulative precipitation, 30 stations (45%) demonstrate a warm and dry trend, and 28 stations demonstrate a warm and wet trend. In monthly scale, Jun mean Tmin presents the most significantly increasing trend, and no significant decreasing or zero trend is detected from 1981 to 2012. During the climatological corn growing season, BD ranges from 76 to 128 DOY, ED ranges from 276 to 316 DOY, and GSL ranges from 150 to 242 days. From 1981 to 2012, BD is significantly advanced at the rate of 1 to 8 DOY per decade, ED is significantly delayed at the rate of 1 to 5 per decade, and GSL is significantly prolonged at the rate of 1 to 11 days per decade.

  10. Performance and goats behavior in pasture of Andropogon grass under different forage allowances

    Directory of Open Access Journals (Sweden)

    Daniel Louçana da Costa Araújo

    2015-07-01

    Full Text Available This study was accomplished to evaluate the behavior and performance of goats in to grazing on grass Andropogon gayanus Kunth var. Bisquamulatus (Hochst Hack. cv. Planaltina submitted to three forage allowances: 11, 15 and 19% BW/day, under continuous grazing. The experimental design to assess the grazing behaviour was randomized blocks in a split-plot with five replicates within the block. In the plots, we evaluated the effect of forage allowances and in the subplots, the months May and June. While for evaluation of animal performance was in complete block design with five replicates within the block. The different forage allowance did not cause structural changes in the pasture, except in height. However, there was an increase of dead material, leaf/stem ratio and reducing of height during the grazing period. The behavioral variables were not affected by forage allowance, except for the time of displacement, whereby goats spent more time in pastures with offer of 11% BW. The goats remained most part of the time in grazing and idle, corresponding to 89% and 5% of the evaluation time, respectively. Higher bit rate was observed in June, among the offerings, and 15 and 19% BW. The ingestive and grazing behaviour in goats is changed by the accumulation of dead material and stem in pasture from Andropogon grass during at rainy season. The forage supply 11% of BW increases the time of displacement of goats grazing on Andropogon grass. The management of grazing Andropogon grass with forage allowance being 11 and 19% of BW provides low weight gains in goats during the rainy season.

  11. Spatial variability and trends of seasonal snowmelt processes over Antarctic sea ice observed by satellite scatterometers

    Science.gov (United States)

    Arndt, S.; Haas, C.

    2017-12-01

    Snow is one of the key drivers determining the seasonal energy and mass budgets of sea ice in the Southern Ocean. Here, we analyze radar backscatter time series from the European Remote Sensing Satellites (ERS)-1 and-2 scatterometers, from the Quick Scatterometer (QSCAT), and from the Advanced Scatterometer (ASCAT) in order to observe the regional and inter-annual variability of Antarctic snowmelt processes from 1992 to 2014. On perennial ice, seasonal backscatter changes show two different snowmelt stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of internal snowmelt and thaw-freeze cycles (snowmelt). In contrast, similar seasonal backscatter cycles are absent on seasonal ice, preventing the periodic retrieval of spring/summer transitions. This may be due to the dominance of ice bottom melt over snowmelt, leading to flooding and ice disintegration before strong snowmelt sets in. Resulting snowmelt onset dates on perennial sea ice show the expected latitudinal gradient from early melt onsets (mid-November) in the northern Weddell Sea towards late (end-December) or even absent snowmelt conditions further south. This result is likely related to seasonal variations in solar shortwave radiation (absorption). In addition, observations with different microwave frequencies allow to detect changing snow properties at different depths. We show that short wavelengths of passive microwave observations indicate earlier pre-melt and snowmelt onset dates than longer wavelength scatterometer observations, in response to earlier warming of upper snow layers compared to lower snow layers. Similarly, pre-melt and snowmelt onset dates retrieved from Ku-Band radars were earlier by an average of 11 and 23 days, respectively, than those retrieved from C-Band. This time difference was used to correct melt onset dates retrieved from Ku-Band to compile a consistent time series from

  12. A century of ocean warming on Florida Keys coral reefs: historic in situ observations

    Science.gov (United States)

    Kuffner, Ilsa B.; Lidz, Barbara H.; Hudson, J. Harold; Anderson, Jeffery S.

    2015-01-01

    There is strong evidence that global climate change over the last several decades has caused shifts in species distributions, species extinctions, and alterations in the functioning of ecosystems. However, because of high variability on short (i.e., diurnal, seasonal, and annual) timescales as well as the recency of a comprehensive instrumental record, it is difficult to detect or provide evidence for long-term, site-specific trends in ocean temperature. Here we analyze five in situ datasets from Florida Keys coral reef habitats, including historic measurements taken by lighthouse keepers, to provide three independent lines of evidence supporting approximately 0.8 °C of warming in sea surface temperature (SST) over the last century. Results indicate that the warming observed in the records between 1878 and 2012 can be fully accounted for by the warming observed in recent decades (from 1975 to 2007), documented using in situ thermographs on a mid-shore patch reef. The magnitude of warming revealed here is similar to that found in other SST datasets from the region and to that observed in global mean surface temperature. The geologic context and significance of recent ocean warming to coral growth and population dynamics are discussed, as is the future prognosis for the Florida reef tract.

  13. Temperature Impact on the Forage Quality of Two Wheat Cultivars with Contrasting Capacity to Accumulate Sugars

    Directory of Open Access Journals (Sweden)

    Máximo Lorenzo

    2015-08-01

    Full Text Available Wheat is increasingly used as a dual-purpose crop (for forage and grain production worldwide. Plants encounter low temperatures in winter, which commonly results in sugar accumulation. High sugar levels might have a positive impact on forage digestibility, but may also lead to an increased risk of bloat. We hypothesized that cultivars with a lower capacity to accumulate sugars when grown under cold conditions may have a lower bloat risk than higher sugar-accumulating genotypes, without showing significantly lower forage digestibility. This possibility was studied using two wheat cultivars with contrasting sugar accumulation at low temperature. A series of experiments with contrasting temperatures were performed in controlled-temperature field enclosures (three experiments and growth chambers (two experiments. Plants were grown at either cool (8.1 °C–9.3 °C or warm (15.7 °C–16.5 °C conditions in field enclosures, and at either 5 °C or 25 °C in growth chambers. An additional treatment consisted of transferring plants from cool to warm conditions in the field enclosures and from 5 °C to 25 °C in the growth chambers. The plants in the field enclosure experiments were exposed to higher irradiances (i.e., 30%–100% than those in the growth chambers. Our results show that (i low temperatures led to an increased hemicellulose content, in parallel with sugar accumulation; (ii low temperatures produced negligible changes in in vitro dry matter digestibility while leading to a higher in vitro rumen gas production, especially in the higher sugar-accumulating cultivar; (iii transferring plants from cool to warm conditions led to a sharp decrease in in vitro rumen gas production in both cultivars; and (iv light intensity (in contrast to temperature appeared to have a lower impact on forage quality.

  14. Seasonal variation in the mating system of a selfing annual with large floral displays.

    Science.gov (United States)

    Yin, Ge; Barrett, Spencer C H; Luo, Yi-Bo; Bai, Wei-Ning

    2016-03-01

    Flowering plants display considerable variation in mating system, specifically the relative frequency of cross- and self-fertilization. The majority of estimates of outcrossing rate do not account for temporal variation, particularly during the flowering season. Here, we investigated seasonal variation in mating and fertility in Incarvillea sinensis (Bignoniaceae), an annual with showy, insect-pollinated, 'one-day' flowers capable of delayed selfing. We examined the influence of several biotic and abiotic environmental factors on day-to-day variation in fruit set, seed set and patterns of mating. We recorded daily flower number and pollinator abundance in nine 3 × 3-m patches in a population at Mu Us Sand land, Inner Mongolia, China. From marked flowers we collected data on daily fruit and seed set and estimated outcrossing rate and biparental inbreeding using six microsatellite loci and 172 open-pollinated families throughout the flowering period. Flower density increased significantly over most of the 50-d flowering season, but was associated with a decline in levels of pollinator service by bees, particularly on windy days. Fruit and seed set declined over time, especially during the latter third of the flowering period. Multilocus estimates of outcrossing rate were obtained using two methods (the programs MLTR and BORICE) and both indicated high selfing rates of ∼80 %. There was evidence for a significant increase in levels of selfing as the flowering season progressed and pollinator visitation declined. Biparental inbreeding also declined significantly as the flowering season progressed. Temporal variation in outcrossing rates may be a common feature of the mating biology of annual, insect-pollinated plants of harsh environments but our study is the first to examine seasonal mating-system dynamics in this context. Despite having large flowers and showy floral displays, I. sinensis attracted relatively few pollinators. Delayed selfing by corolla dragging

  15. EFFECT OF PRE-COOLING ON REPEAT-SPRINT PERFORMANCE IN SEASONALLY ACCLIMATISED MALES DURING AN OUTDOOR SIMULATED TEAM-SPORT PROTOCOL IN WARM CONDITIONS

    Directory of Open Access Journals (Sweden)

    Carly J. Brade

    2013-09-01

    Full Text Available Whether precooling is beneficial for exercise performance in warm climates when heat acclimatised is unclear. The purpose of this study was to determine the effect of precooling on repeat-sprint performance during a simulated team-sport circuit performed outdoors in warm, dry field conditions in seasonally acclimatised males (n = 10. They performed two trials, one with precooling (PC; ice slushy and cooling jacket and another without (CONT. Trials began with a 30-min baseline/cooling period followed by an 80 min repeat-sprint protocol, comprising 4 x 20-min quarters, with 2 x 5-min quarter breaks and a 10-min half-time recovery/cooling period. A clear and substantial (negative; PC slower effect was recorded for first quarter circuit time. Clear and trivial effects were recorded for overall circuit time, third and fourth quarter sprint times and fourth quarter best sprint time, otherwise unclear and trivial effects were recorded for remaining performance variables. Core temperature was moderately lower (Cohen's d=0.67; 90% CL=-1.27, 0.23 in PC at the end of the precooling period and quarter 1. No differences were found for mean skin temperature, heart rate, thermal sensation, or rating of perceived exertion, however, moderate Cohen's d effect sizes suggested a greater sweat loss in PC compared with CONT. In conclusion, repeat- sprint performance was neither clearly nor substantially improved in seasonally acclimatised players by using a combination of internal and external cooling methods prior to and during exercise performed in the field in warm, dry conditions. Of practical importance, precooling appears unnecessary for repeat-sprint performance if athletes are seasonally acclimatised or artificially acclimated to heat, as it provides no additional benefit

  16. Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata, Tropiduridae) in a caatinga area of northeastern Brazil

    OpenAIRE

    Ribeiro,Leonardo B.; Freire,Eliza M. X.

    2011-01-01

    This study aimed to analyze the seasonal variation in diet composition and foraging behavior of Tropidurus hispidus (Spix, 1825) and T. semitaeniatus (Spix, 1825), as well as measurement of the foraging intensity (number of moves, time spent stationary, distance traveled and number of attacks on prey items) in a caatinga patch on the state of Rio Grande do Norte, Brazil. Hymenoptera/Formicidae and Isoptera predominated in the diet of both species during the dry season. Opportunistic predation...

  17. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    NARCIS (Netherlands)

    Nijland, W.; Jansma, E.; Addink, E.A.; Domínguez Delmás, M.; Jong, S.M. de

    2011-01-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we

  18. Seasonal and inter-annual variations of leaf-level photosynthesis and soil respiration in the representative ecosystems of the Okavango Delta, Botswana

    NARCIS (Netherlands)

    Mantlana, K.B.

    2008-01-01

    Seasonal and inter-annual leaf-level photosynthesis and soil respiration measurements were conducted in representative ecosystems of the Okavango Delta, Botswana, that differ in their long-term soil water content: the permanent swamp, the seasonal floodplain, the rain-fed grassland and the mopane

  19. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    Science.gov (United States)

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Vulnerability of Polar Oceans to Anthropogenic Acidification: Comparison of Arctic and Antarctic Seasonal Cycles

    OpenAIRE

    E. H. Shadwick; T. W. Trull; H. Thomas; J. A. E. Gibson

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3?C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320??mol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic sit...

  1. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions.

    Science.gov (United States)

    Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; Wohlfahrt, Georg; Buchmann, Nina; Zhu, Juan; Chen, Guanhong; Moyano, Fernando; Pumpanen, Jukka; Hirano, Takashi; Takagi, Kentaro; Merbold, Lutz

    2017-06-08

    The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10 , defined as the increase of RE (or GPP) rates with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG ) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR ). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. In addition, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.

  2. 20th-Century Climate Change over Africa: Seasonal Variation in Hydroclimate Trends and Sahara Desert Extent

    Science.gov (United States)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    Twentieth-century trends in seasonal temperature and precipitation over the African continent are analyzed from observational data sets and historical climate simulations. Given the agricultural economy of the continent, a seasonal perspective is adopted as it is more pertinent than an annual-average one which can mask off-setting but agriculturally-sensitive seasonal hydroclimate variations. Examination of linear trends in seasonal surface air temperature (SAT) shows that heat stress has increased in several regions, including Sudan and Northern Africa where largest SAT trends occur in the warm season. Broadly speaking, the northern continent has warmed more than the southern one in all seasons. Precipitation trends are varied but notable declining trends are found in the countries along the Gulf of Guinea, especially in the source region of Niger river in West Africa, and in the Congo river basin. Rainfall over the African Great Lakes - one of the largest freshwater repositories - has however increased. We show that the Sahara Desert has expanded significantly over the 20th century - by 12-20% depending on the season. The desert expanded southward in summer, reflecting retreat of the northern edge of the Sahel rainfall belt; and to the north in winter, indicating potential impact of the widening of the Tropics. Specific mechanisms driving the expansion in each season are investigated. Finally, this observational analysis is used to evaluate the state-of-the-art climate models from a comparison of the 20th-century hydroclimate trends with those manifest in historical climate simulations. The evaluation shows that modeling regional hydroclimate change over the Africa continent remains challenging.

  3. Seasonal prediction of the Leeuwin Current using the POAMA dynamical seasonal forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Hendon, Harry H.; Wang, Guomin [Centre for Australian Weather and Climate Research, Bureau of Meteorology, PO Box 1289, Melbourne (Australia)

    2010-06-15

    The potential for predicting interannual variations of the Leeuwin Current along the west coast of Australia is addressed. The Leeuwin Current flows poleward against the prevailing winds and transports warm-fresh tropical water southward along the coast, which has a great impact on local climate and ecosystems. Variations of the current are tightly tied to El Nino/La Nina (weak during El Nino and strong during La Nina). Skilful seasonal prediction of the Leeuwin Current to 9-month lead time is achieved by empirical downscaling of dynamical coupled model forecasts of El Nino and the associated upper ocean heat content anomalies off the north west coast of Australia from the Australian Bureau of Meteorology Predictive Ocean Atmosphere Model for Australia (POAMA) seasonal forecast system. Prediction of the Leeuwin Current is possible because the heat content fluctuations off the north west coast are the primary driver of interannual annual variations of the current and these heat content variations are tightly tied to the occurrence of El Nino/La Nina. POAMA can skilfully predict both the occurrence of El Nino/La Nina and the subsequent transmission of the heat content anomalies from the Pacific onto the north west coast. (orig.)

  4. Transmission of influenza reflects seasonality of wild birds across the annual cycle

    Science.gov (United States)

    Hill, Nichola J.; Ma, Eric J.; Meixell, Brandt W.; Lindberg, Mark S.; Boyce, Walter M.; Runstadler, Jonathan A.

    2016-01-01

    Influenza A Viruses (IAV) in nature must overcome shifting transmission barriers caused by the mobility of their primary host, migratory wild birds, that change throughout the annual cycle. Using a phylogenetic network of viral sequences from North American wild birds (2008–2011) we demonstrate a shift from intraspecific to interspecific transmission that along with reassortment, allows IAV to achieve viral flow across successive seasons from summer to winter. Our study supports amplification of IAV during summer breeding seeded by overwintering virus persisting locally and virus introduced from a wide range of latitudes. As birds migrate from breeding sites to lower latitudes, they become involved in transmission networks with greater connectivity to other bird species, with interspecies transmission of reassortant viruses peaking during the winter. We propose that switching transmission dynamics may be a critical strategy for pathogens that infect mobile hosts inhabiting regions with strong seasonality.

  5. Reindeer (Rangifer tarandus and climate change: Importance of winter forage

    Directory of Open Access Journals (Sweden)

    Thrine Moen Heggberget

    2002-06-01

    Full Text Available As a consequence of increasing greenhouse gas concentrations, climate change is predicted to be particularly pronounced, although regionally variable, in the vast arctic, sub-arctic and alpine tundra areas of the northern hemisphere. Here, we review winter foraging conditions for reindeer and caribou (Rangifer tarandus living in these areas, and consider diet, forage quality and distribution, accessibility due to snow variation, and effects of snow condition on reindeer and caribou populations. Finally, we hypothesise how global warming may affect wild mountain reindeer herds in South Norway. Energy-rich lichens often dominate reindeer and caribou diets. The animals also prefer lichens, and their productivity has been shown to be higher on lichen-rich than on lichen-poor ranges. Nevertheless, this energy source appears to be neither sufficient as winter diet for reindeer or caribou (at least for pregnant females nor necessary. Some reindeer and caribou populations seem to be better adapted to a non-lichen winter diet, e.g. by a larger alimentary tract. Shrubs appear to be the most common alternative winter forage, while some grasses appear to represent a good, nutritionally-balanced winter diet. Reindeer/caribou make good use of a wide variety of plants in winter, including dead and dry parts that are digested more than expected based on their fibre content. The diversity of winter forage is probably important for the mineral content of the diet. A lichen-dominated winter diet may be deficient in essential dietary elements, e.g. minerals. Sodium in particular may be marginal in inland winter ranges. Our review indicates that most Rangifer populations with lichen-dominated winter diets are either periodically or continuously heavily harvested by humans or predators. However, when population size is mainly limited by food, accessible lichen resources are often depleted. Plant studies simulating climatic change indicate that a warmer, wetter

  6. Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline.

    Science.gov (United States)

    Anadon-Rosell, Alba; Rixen, Christian; Cherubini, Paolo; Wipf, Sonja; Hagedorn, Frank; Dawes, Melissa A

    2014-01-01

    Global warming can have substantial impacts on the phenological and growth patterns of alpine and Arctic species, resulting in shifts in plant community composition and ecosystem dynamics. We evaluated the effects of a six-year experimental soil warming treatment (+4°C, 2007-2012) on the phenology and growth of three co-dominant dwarf shrub species growing in the understory of Larix decidua and Pinus uncinata at treeline in the Swiss Alps. We monitored vegetative and reproductive phenology of Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum throughout the early growing season of 2012 and, following a major harvest at peak season, we measured the biomass of above-ground ramet fractions. For all six years of soil warming we measured annual shoot growth of the three species and analyzed ramet age and xylem ring width of V. myrtillus. Our results show that phenology of the three species was more influenced by snowmelt timing, and also by plot tree species (Larix or Pinus) in the case of V. myrtillus, than by soil warming. However, the warming treatment led to increased V. myrtillus total above-ground ramet biomass (+36% in 2012), especially new shoot biomass (+63% in 2012), as well as increased new shoot increment length and xylem ring width (+22% and +41%, respectively; average for 2007-2012). These results indicate enhanced overall growth of V. myrtillus under soil warming that was sustained over six years and was not caused by an extended growing period in early summer. In contrast, E. hermaphroditum only showed a positive shoot growth response to warming in 2011 (+21%), and V. gaultherioides showed no significant growth response. Our results indicate that V. myrtillus might have a competitive advantage over the less responsive co-occurring dwarf shrub species under future global warming.

  7. Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline.

    Directory of Open Access Journals (Sweden)

    Alba Anadon-Rosell

    Full Text Available Global warming can have substantial impacts on the phenological and growth patterns of alpine and Arctic species, resulting in shifts in plant community composition and ecosystem dynamics. We evaluated the effects of a six-year experimental soil warming treatment (+4°C, 2007-2012 on the phenology and growth of three co-dominant dwarf shrub species growing in the understory of Larix decidua and Pinus uncinata at treeline in the Swiss Alps. We monitored vegetative and reproductive phenology of Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum throughout the early growing season of 2012 and, following a major harvest at peak season, we measured the biomass of above-ground ramet fractions. For all six years of soil warming we measured annual shoot growth of the three species and analyzed ramet age and xylem ring width of V. myrtillus. Our results show that phenology of the three species was more influenced by snowmelt timing, and also by plot tree species (Larix or Pinus in the case of V. myrtillus, than by soil warming. However, the warming treatment led to increased V. myrtillus total above-ground ramet biomass (+36% in 2012, especially new shoot biomass (+63% in 2012, as well as increased new shoot increment length and xylem ring width (+22% and +41%, respectively; average for 2007-2012. These results indicate enhanced overall growth of V. myrtillus under soil warming that was sustained over six years and was not caused by an extended growing period in early summer. In contrast, E. hermaphroditum only showed a positive shoot growth response to warming in 2011 (+21%, and V. gaultherioides showed no significant growth response. Our results indicate that V. myrtillus might have a competitive advantage over the less responsive co-occurring dwarf shrub species under future global warming.

  8. On the distributions of annual and seasonal daily rainfall extremes in central Arizona and their spatial variability

    Science.gov (United States)

    Mascaro, Giuseppe

    2018-04-01

    This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.

  9. Giant panda foraging and movement patterns in response to bamboo shoot growth.

    Science.gov (United States)

    Zhang, Mingchun; Zhang, Zhizhong; Li, Zhong; Hong, Mingsheng; Zhou, Xiaoping; Zhou, Shiqiang; Zhang, Jindong; Hull, Vanessa; Huang, Jinyan; Zhang, Hemin

    2018-03-01

    Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low- and mid-elevation ranges, particularly in the spring shooting season.

  10. Warming slowdown over the Tibetan plateau in recent decades

    Science.gov (United States)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  11. Comparison of three techniques for estimating the forage intake of lactating dairy cows on pasture.

    Science.gov (United States)

    Macoon, B; Sollenberger, L E; Moore, J E; Staples, C R; Fike, J H; Portier, K M

    2003-09-01

    Quantifying DMI is necessary for estimation of nutrient consumption by ruminants, but it is inherently difficult on grazed pastures and even more so when supplements are fed. Our objectives were to compare three methods of estimating forage DMI (inference from animal performance, evaluation from fecal output using a pulse-dose marker, and estimation from herbage disappearance methods) and to identify the most useful approach or combination of approaches for estimating pasture intake by lactating dairy cows. During three continuous 28-d periods in the winter season, Holstein cows (Bos taurus; n = 32) grazed a cool-season grass or a cool-season grass-clover mixture at two stocking rates (SR; 5 vs. 2.5 cows/ha) and were fed two rates of concentrate supplementation (CS; 1 kg of concentrate [as-fed] per 2.5 or 3.5 kg of milk produced). Animal response data used in computations for the animal performance method were obtained from the latter 14 d of each period. For the pulse-dose marker method, chromium-mordanted fiber was used. Pasture sampling to determine herbage disappearance was done weekly throughout the study. Forage DMI estimated by the animal performance method was different among periods (P forage mass. The pulse-dose marker method generally provided greater estimates of forage DMI (as much as 11.0 kg/d more than the animal performance method) and was not correlated with the other methods. Estimates of forage DMI by the herbage disappearance method were correlated with the animal performance method. The difference between estimates from these two methods, ranging from -4.7 to 5.4 kg/d, were much lower than their difference from pulse-dose marker estimates. The results of this study suggest that, when appropriate for the research objectives, the animal performance or herbage disappearance methods may be useful and less costly alternatives to using the pulse-dose method.

  12. Shrubland carbon sink depends upon winter water availability in the warm deserts of North America

    Science.gov (United States)

    Biederman, Joel A.; Scott, Russell L.; John A. Arnone,; Jasoni, Richard L.; Litvak, Marcy E.; Moreo, Michael T.; Papuga, Shirley A.; Ponce-Campos, Guillermo E.; Schreiner-McGraw, Adam P.; Vivoni, Enrique R.

    2018-01-01

    Global-scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such model-based analyses are poorly constrained by measured CO2 exchange in open shrublands, which is the most common global land cover type, covering ∼14% of Earth’s surface. Here we evaluate how the amount and seasonal timing of water availability regulate CO2 exchange between shrublands and the atmosphere. We use eddy covariance data from six US sites across the three warm deserts of North America with observed ranges in annual precipitation of ∼100–400mm, annual temperatures of 13–18°C, and records of 2–8 years (33 site-years in total). The Chihuahuan, Sonoran and Mojave Deserts present gradients in both mean annual precipitation and its seasonal distribution between the wet-winter Mojave Desert and the wet-summer Chihuahuan Desert. We found that due to hydrologic losses during the wettest summers in the Sonoran and Chihuahuan Deserts, evapotranspiration (ET) was a better metric than precipitation of water available to drive dryland CO2 exchange. In contrast with recent synthesis studies across diverse dryland biomes, we found that NEP could not be directly predicted from ET due to wintertime decoupling of the relationship between ecosystem respiration (Reco) and gross ecosystem productivity (GEP). Ecosystem water use efficiency (WUE=GEP/ET) did not differ between winter and summer. Carbon use efficiency (CUE=NEP/GEP), however, was greater in winter because Reco returned a smaller fraction of carbon to the atmosphere (23% of GEP) than in summer (77%). Combining the water-carbon relations found here with historical precipitation since 1980, we estimate that lower average winter precipitation during the 21st century reduced the net carbon sink of the three deserts by an average of 6.8TgC yr1. Our results highlight that winter precipitation is critical to the annual carbon balance of these

  13. The Effect of Passive Design Strategies on Thermal Performance of Female Secondary School Buildings during Warm Season in Hot Dry Climate

    Directory of Open Access Journals (Sweden)

    Sahar eZahiri

    2016-03-01

    Full Text Available This paper describes a series of field studies and simulation analysis to improve the thermal performance of school buildings in the city of Tehran in Iran during warm season. The field studies used on-site measurement and questionnaire-based survey in the warm spring season in a typical female secondary school building. The on-site monitoring assessed the indoor air temperature and humidity levels of six classrooms while the occupants completed questionnaires covering their thermal sensations and thermal preferences. Moreover, thermal simulation analysis was also carried out to evaluate and improve the thermal performance of the classrooms based on the students’ thermal requirements and passive design strategies. In this study, the environmental design guidelines for female secondary school buildings were introduced for the hot and dry climate of Tehran, using passive design strategies. The study shows that the application of passive design strategies including south and south-east orientation, 10cm thermal insulation in wall and 5cm in the roof, and the combination of 30cm side fins and overhangs as a solar shading devices, as well as all-day ventilation strategy and the use of thermal mass materials with 25cm-30cm thickness, has considerable impact on indoor air temperatures in warm season in Tehran and keeps the indoor environment in an acceptable thermal condition. The results of the field studies also indicated that most of the occupants found their thermal environment not to be comfortable and the simulation results showed that passive design techniques had a significant influence on the indoor air temperature and can keep it in an acceptable range based on the female students’ thermal requirement. Therefore, in order to enhance the indoor environment and to increase the learning performance of the students, it is necessary to use the appropriate passive design strategies, which also reduce the need for mechanical systems and

  14. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.

    Science.gov (United States)

    Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K

    2013-08-01

    Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. © 2013 John Wiley & Sons Ltd.

  15. Research on trend of warm-humid climate in Central Asia

    Science.gov (United States)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  16. Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming

    Science.gov (United States)

    Wu, Tingjuan; Hao, Shuguang; Sun, Osbert Jianxin; Kang, Le

    2012-01-01

    Background Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature. Methodology/Principal Findings We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation. Conclusions/Significance Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and

  17. Monsoon variability in the Himalayas under the condition of global warming

    International Nuclear Information System (INIS)

    Duan Keqin; Yao Tandong

    2003-01-01

    An ice core-drilling program was carried out at the accumulation area of Dasuopu glacier (28deg23'N, 85deg43'E, 7100 m a.s.l.) in the central Himalayas in 1997. The ice core was analyzed continuously for stable isotopes (δ 18 O), and major ions throughout the core. Cycles indicated by δ 18 O, cations were identified and counted as seasonal fluctuations as annual increment from maximum to maximum values. Reconstructed 300-year annual net accumulation (water equivalent) from the core, with a good correlation to Indian monsoon, reflects a major precipitation trend in the central Himalayas. The accumulation trend, separated from the time series, shows a strong negative correlation to Northern Hemisphere temperature. Generally, as northern hemisphere temperature increases 0.1degC, the accumulation decreases about 80 mm, reflecting monsoon rainfall in the central Himalayas has decreased over the past decades in the condition of global warming. (author)

  18. Seasonality directs contrasting food collection behavior and nutrient regulation strategies in ants.

    Science.gov (United States)

    Cook, Steven C; Eubanks, Micky D; Gold, Roger E; Behmer, Spencer T

    2011-01-01

    Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p) to carbohydrate (c) ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer), and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant.

  19. PM 2.5 and NO 2 assessment in 21 European study centres of ECRHS II: annual means and seasonal differences

    Science.gov (United States)

    Hazenkamp-von Arx, Marianne E.; Götschi, Thomas; Ackermann-Liebrich, Ursula; Bono, Roberto; Burney, Peter; Cyrys, Josef; Jarvis, Deborah; Lillienberg, Linnea; Luczynska, Christina; Maldonado, Jose A.; Jaén, Angeles; de Marco, Roberto; Mi, Yahong; Modig, Lars; Bayer-Oglesby, Lucy; Payo, Felix; Soon, Argo; Sunyer, Jordi; Villani, Simona; Weyler, Joost; Künzli, Nino

    The follow-up of cohorts of adults from more than 20 European centres of the former ECRHS I (1989-1992) investigates long-term effects of exposure to ambient air pollution on respiratory health, in particular asthma and change of pulmonary function. Since PM 2.5 is not routinely monitored in Europe, we measured PM 2.5 concentrations in 21 participating centres to estimate 'background' exposure in these cities. Winter (November-February), summer (May-August) and annual mean (all months) values of PM 2.5 were determined from measuring periods between June 2000 and November 2001. Sampling was conducted for 7 days per month for a year. Annual and winter mean concentrations of PM 2.5 vary substantially being lowest in Iceland and highest in centres in Northern Italy. Annual mean concentrations ranged from 3.7 to 44.9 μg m -3, winter mean concentrations from 4.8 to 69.2 μg m -3, and summer mean concentrations from 3.3 to 23.1 μg m -3. Seasonal variability occurred but did not follow the same pattern across all centres. Therefore, ranking of centres varied from summer to winter. Simultaneously, NO 2 concentrations were measured using passive sampling tubes. Annual mean NO 2 concentrations range from 4.9 to 72.1 μg m -3 with similar seasonal variations across centres and constant ranking of centres between seasons. The correlation between annual NO 2 and PM 2.5 concentrations is fair (Spearman correlation coefficient rs=0.75), but when considered as monthly means the correlation is far less consistent and varies substantially between centres. The range of PM 2.5 mass concentrations obtained in ECRHS II is larger than in other current cohort studies on long-term effects of air pollution. This substantial variation in PM 2.5 exposure will improve statistical power in future multi-level health analyses and to some degree may compensate for the lack of information on within-city variability. Seasonal means may be used to indicate potential differences in the toxicity

  20. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    Directory of Open Access Journals (Sweden)

    William J Platt

    Full Text Available Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature. We used nonparametric cluster analyses of a 17-year (1993-2009 data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires over a 13-year period with fire records (1997-2009. Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with

  1. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    Science.gov (United States)

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  2. A model study of the seasonality of sea surface temperature and circulation in the Atlantic North-Eastern Tropical Upwelling System.

    Directory of Open Access Journals (Sweden)

    Saliou eFaye

    2015-09-01

    Full Text Available The climatological seasonal cycle of the sea surface temperature (SST in the north-eastern tropical Atlantic (7-25°N, 26-12°W is studied using a mixed layer heat budget in a regional ocean general circulation model. The region, which experiences one of the larger SST cycle in the tropics, forms the main part of the Guinea Gyre. It is characterized by a seasonally varying open ocean and coastal upwelling system, driven by the movements of the intertropical convergence zone (ITCZ. The model annual mean heat budget has two regimes schematically. South of roughly 12°N, advection of equatorial waters, mostly warm, and warming by vertical mixing, is balanced by net air-sea flux. In the rest of the domain, a cooling by vertical mixing, reinforced by advection at the coast, is balanced by the air-sea fluxes. Regarding the seasonal cycle, within a narrow continental band, in zonal mean, the SST early decrease (from September, depending on latitude, until December is driven by upwelling dynamics off Senegal and Mauritania (15°-20°N, and instead by air-sea fluxes north and south of these latitudes. Paradoxically, the later peaks of upwelling intensity (from March to July, with increasing latitude essentially damp the warming phase, driven by air-sea fluxes. The open ocean cycle to the west, is entirely driven by the seasonal net air-sea fluxes. The oceanic processes significantly oppose it, but for winter north of ~18°N. Vertical mixing in summer-autumn tends to cool (warm the surface north (south of the ITCZ, and advective cooling or warming by the geostrophic Guinea Gyre currents and the Ekman drift. This analysis supports previous findings on the importance of air-sea fluxes offshore. It mainly offers quantitative elements on the modulation of the SST seasonal cycle by the ocean circulation, and particularly by the upwelling dynamics.Keywords: SST, upwelling, circulation, heat budget, observations, modeling

  3. Estimating Winter Annual Biomass in the Sonoran and Mojave Deserts with Satellite- and Ground-Based Observations

    Directory of Open Access Journals (Sweden)

    Bradley C. Reed

    2013-02-01

    Full Text Available Winter annual plants in southwestern North America influence fire regimes, provide forage, and help prevent erosion. Exotic annuals may also threaten native species. Monitoring winter annuals is difficult because of their ephemeral nature, making the development of a satellite monitoring tool valuable. We mapped winter annual aboveground biomass in the Desert Southwest from satellite observations, evaluating 18 algorithms using time-series vegetation indices (VI. Field-based biomass estimates were used to calibrate and evaluate each algorithm. Winter annual biomass was best estimated by calculating a base VI across the period of record and subtracting it from the peak VI for each winter season (R2 = 0.92. The normalized difference vegetation index (NDVI derived from 8-day reflectance data provided the best estimate of winter annual biomass. It is important to account for the timing of peak vegetation when relating field-based estimates to satellite VI data, since post-peak field estimates may indicate senescent biomass which is inaccurately represented by VI-based estimates. Images generated from the best-performing algorithm show both spatial and temporal variation in winter annual biomass. Efforts to manage this variable resource would be enhanced by a tool that allows the monitoring of changes in winter annual resources over time.

  4. Season exerts differential effects of ocean acidification and warming on growth and carbon metabolism of the seaweed Fucus vesiculosus in the western Baltic Sea

    Directory of Open Access Journals (Sweden)

    Angelika eGraiff

    2015-12-01

    Full Text Available Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers in the Baltic Sea in all seasons (from April 2013 to April 2014. We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms. Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic, however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising

  5. Seasonal and annual heat budgets offshore the Hanko Peninsula, Gulf of Finland

    Energy Technology Data Exchange (ETDEWEB)

    Merkouriadi, I.; Lepparanta, M. [Helsinki Univ. (Finland). Dept. of Physics], Email: ioanna.merkouriadi@helsinki.fi; Shirasawa, K. [Hokkaido Univ., Sapporo (Japan). Pan-Okhotsk Research Center, Inst. of Low Temperature Science

    2013-06-01

    A joint Finnish-Japanese sea-ice experiment 'Hanko-9012' carried out offshore the Hanko Peninsula included seasonal monitoring and intensive field campaigns. Ice, oceanographic and meteorological data were collected to examine the structure and properties of the Baltic Sea brackish ice, heat budget and solar radiation transfer through the ice cover. Here, the data from two years (2000 and 2001) are used for the estimation of the seasonal and annual heat budgets. Results present the surface heat balance, and the heat budget of the ice sheet and the waterbody. The ice cover acted as a good control measure of the net surface heat exchange. Solar radiation had a strong seasonal cycle with a monthly maximum at 160 and a minimum below 10 W m{sup -2}, while net terrestrial radiation was mostly between -40 and -60 W m{sup -2}. Latent heat exchange was much more important than sensible heat exchange, similar the net terrestrial radiation values in summer and autumn. A comparison between the latent heat flux released or absorbed by the ice and the net surface heat fluxes showed similar patterns, with a clearly better fit in 2001. The differences can be partly explained by the oceanic heat flux to the lower ice boundary. (orig.)

  6. Investigate the plant biomass response to climate warming in permafrost ecosystem using matrix-based data assimilation

    Science.gov (United States)

    Lu, X.; Du, Z.; Schuur, E.; Luo, Y.

    2017-12-01

    Permafrost is one of the most vulnerable regions on the earth with over 40% world soil C represented in this region. Future climate warming potentially has a great impact on this region. On one hand, rising temperature accelerates permafrost soil thaw and release more C from land. On the other hand, warming may also increase the plant growing season length and therefore negatively feedback to climate change by increasing annual land C uptake. However, whether permafrost vegetation biomass change in response to warming can sequester more C has not been well understood. Manipulated air warming experiments reported that air warming has very limited impacts on grass land productivity and biomass growth in permafrost region [Mauritz et al., 2017]. It is hard to reveal the mechanisms behind the limited air warming response directly from experiment data. We employ a vegetation C cycle matrix model based on Community land model 4.5 (CLM4.5) and data assimilation technique to investigate how much do phenology and physiology processes contribute to the response respectively. Our results indicate phenology contributes the most in response to warming. The shift of vegetation parameter distributions after 2012 indicate vegetation acclimation may explain the modest response in plant biomass to air warming. The results suggest future model development need to take vegetation acclimation more seriously. The novel matrix-based model allows data assimilation to be conducted more efficiently. It provides more functional understanding of the models as well as the mechanism behind experiment data.

  7. The impact of grazing on forage quality of the herbaceous ...

    African Journals Online (AJOL)

    Reports on research conducted in the Mamoro cork oak forest of Morocco to describe the impacts of sheep grazing in March, April, May and June of 1987 and 1988 on seasonal changes in forage quality of the herbaceous vegetation. The study showed that trends in herbage quality were related mainly to plant maturity.

  8. Multidimensional differentiation in foraging resource use during breeding of two sympatric top predators

    Science.gov (United States)

    Friedemann, Guilad; Leshem, Yossi; Kerem, Lior; Shacham, Boaz; Bar-Massada, Avi; McClain, Krystaal M.; Bohrer, Gil; Izhaki, Ido

    2016-10-01

    Ecologically-similar species were found to develop specific strategies to partition their resources, leading to niche differentiation and divergence, in order to avoid interspecific competition. Our study determines multi-dimensional differentiation of two sympatric top-predators, long-legged buzzards (LLB) and short-toed eagles (STE), which recently became sympatric during their breeding season in the Judean Foothills, Israel. By combining information from comprehensive diet and movement analyses we found four dimensions of differentiation: (1) Geographic foraging area: LLB tended to forage relatively close to their nests (2.35 ± 0.62 km), while STE forage far from their nest (13.03 ± 2.20 km) (2) Foraging-habitat type: LLBs forage at low natural vegetation, avoiding cultivated fields, whereas STEs forage in cultivated fields, avoiding low natural vegetation; (3) Diurnal dynamics of foraging: LLBs are uniformly active during daytime, whereas STEs activity peaks in the early afternoon; and (4) Food-niche: while both species largely rely on reptiles (47.8% and 76.3% for LLB and STE, respectively), LLB had a more diverse diet and consumed significantly higher percentages of lizards, while STE consumed significantly higher percentages of snakes. Our results suggest that this multidimensional differentiation allows the spatial coexistence of these two dense populations in the study area.

  9. River flood seasonality in the Northeast United States and trends in annual timing

    Science.gov (United States)

    Collins, M. J.

    2017-12-01

    The New England and Mid-Atlantic regions of the Northeast United States have experienced climate-associated increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood-generating mechanisms operating in a basin and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and floodplains. Changes in flood seasonality may indicate changes in flood-generating mechanisms, and their interactions, with important implications for habitats, floodplain infrastructure, and human communities. For example, changes in spring or fall flood timing may negatively or positively affect a vulnerable life stage for a migratory fish (e.g., egg setting) depending on whether floods occur more frequently before or after the life history event. In this study I apply an objective, probabilistic method for identifying flood seasons at a monthly resolution for 90 climate-sensitive watersheds in New England and the Mid-Atlantic (Hydrologic Unit Codes 01 and 02). Historical trends in flood timing during the year are also investigated. The analyses are based on partial duration flood series that are an average of 85 years long. The seasonality of flooding in these regions, and any historical changes, are considered in the context of other ongoing or expected phenological changes in the Northeast U.S. environment that affect flood generation—e.g., the timing of leaf-off/leaf-out for deciduous plants. How these factors interact will affect whether and how flood magnitudes and frequencies change in the future and associated impacts.

  10. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China.

    Directory of Open Access Journals (Sweden)

    Lin-Na Ma

    Full Text Available Both climate warming and atmospheric nitrogen (N deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.

  11. Legumes and forage species sole or intercropped with corn in soybean-corn succession in midwestern Brazil

    Directory of Open Access Journals (Sweden)

    Gessí Ceccon

    2013-02-01

    Full Text Available The feasibility of no-tillage in the Cerrado (Savanna-like vegetation of Brazil depends on the production of sufficient above-ground crop residue, which can be increased by corn-forage intercropping. This study evaluated how above-ground crop residue production and yields of soybean and late-season corn in a soybean-corn rotation were influenced by the following crops in the year before soybean: corn (Zea mays L. intercropped with Brachiaria (Urochloa brizantha cv. Marandu, B. decumbens cv. Basilisk, B. ruziziensis, cv. comum., Panicummaximum cv. Tanzânia, sunn hemp (Crotalaria juncea L., pigeon pea [Cajanus cajan (L. Millsp]; sole corn, forage sorghum [Sorghum bicolor (L. Moench (cv. Santa Elisa], and ruzi grass. In March 2005, corn and forage species were planted in alternate rows spaced 0.90 m apart, and sole forage species were planted in rows spaced 0.45 m apart. In October 2005, the forages were killed with glyphosate and soybean was planted. After the soybean harvest in March 2006, sole late-season corn was planted in the entire experimental area. Corn grain and stover yields were unaffected by intercropping. Above-ground crop residue was greater when corn was intercropped with Tanzania grass (10.7 Mg ha-1, Marandu (10.1 Mg ha-1, and Ruzi Grass (9.8 Mg ha-1 than when corn was not intercropped (4.0 Mg ha-1. The intercropped treatments increased the percentage of soil surface covered with crop residue. Soybean and corn grain yields were higher after sole ruzi grass and intercropped ruzi grass than after other crops. The intercropping corn with Brachiaria spp. and corn with Panicum spp. increases above-ground crop residue production and maintains nutrients in the soil without reducing late-season corn yield and the viability of no-till in the midwestern region of Brazil.

  12. Dynamic response of wind turbine towers in warm permafrost

    Institute of Scientific and Technical Information of China (English)

    Benjamin Still; ZhaoHui Joey Yang; Simon Evans; FuJun Niu

    2014-01-01

    Wind is a great source of renewable energy in western Alaska. Consistent winds blow across the barren tundra underlain by warm permafrost in the winter season, when the energy demand is the highest. Foundation engineering in warm permafrost has always been a challenge in wind energy development. Degrading warm permafrost poses engineering issues to design, construction, and operation of wind turbines. This paper describes the foundation design of a wind turbine built in western Alaska. It presents a sys-tem for response monitoring and load assessment, and data collected from September 2013 to March 2014. The dynamic proper-ties are assessed based on the monitoring data, and seasonal changes in the dynamic properties of the turbine tower-foundation system and likely resonance between the spinning blades and the tower structure are discussed. These analyses of a wind turbine in warm permafrost are valuable for designing or retrofitting of foundations in warm permafrost.

  13. Seasonal, annual and inter-annual features of turbulence parameters over the tropical station Pune (18°32' N, 73°51' E observed with UHF wind profiler

    Directory of Open Access Journals (Sweden)

    N. Singh

    2008-11-01

    Full Text Available The present study is specifically focused on the seasonal, annual and inter-annual variations of the refractive index structure parameter (Cn2 using three years of radar observations. Energy dissipation rates (ε during different seasons for a particular year are also computed over a tropical station, Pune. Doppler spectral width measurements made by the Wind Profiler, under various atmospheric conditions, are utilized to estimate the turbulence parameters. The refractive index structure parameter varies from 10−17.5 to 10−13 m−2/3 under clear air to precipitation conditions in the height region of 1.05 to 10.35 km. During the monsoon months, observed Cn2 values are up to 1–2 orders of magnitude higher than those during pre-monsoon and post-monsoon seasons. Spectral width correction for various non-turbulent spectral broadenings such as beam broadening and shear broadening are made in the observed spectral width for reliable estimation of ε under non-precipitating conditions. It is found that in the lower tropospheric height region, values of ε are in the range of 10−6 to 10−3 m2 s−3. In summer and monsoon seasons the observed values of ε are larger than those in post-monsoon and winter seasons in the lower troposphere. A comparison of Cn2 observed with the wind profiler and that estimated using Radio Sonde/Radio Wind (RS/RW data of nearby Met station Chikalthana has been made for the month of July 2003.

  14. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    Science.gov (United States)

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. Copyright © 2015. Published by Elsevier B.V.

  15. Soil preparation and forage sowing time for crop-livestock integration in corn culture

    Directory of Open Access Journals (Sweden)

    Luiz Fernando de Andrade Fritsch

    2012-01-01

    Full Text Available This work was carried out during the 2008/2009 crop season, in an Oxisol. It was used a split-plot arrangement design, with each plot corresponding to a different soil preparation system and each split-plot corresponding to a different sowing time of the forage Brachiaria brizantha Stapf. The soil preparation systems were: heavy harrowing (HH, disk plough (DP, chisel plough (CP and no-till (NT, and the forage sowing times were: 0, 8, 16 and 25 days after sowing (DAS of corn, arranged in 16 treatments with 3 replicates. The productive and vegetative characteristics of the corn were evaluated. Soil preparations have influenced plant height and the first ear height, with the highest value found for the heavy harrow treatment. Forage sowing time had no influence on vegetative characteristics of the corn and productive characteristics were not influenced by the soil preparations. The forage sowing time had influence on corn productivity, causing decrease in competition with corn forage from 5 DAS. The productivity was highly correlated with the number of grains per ear.

  16. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather

    DEFF Research Database (Denmark)

    MacLean, Heidi J.; Penick, Clint A.; Dunn, Robert R.

    2017-01-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness...... outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal...... performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3–5 °C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants...

  17. Provisioning of nestling Dickcissels in native warm-season grass field buffers

    Science.gov (United States)

    Mitchell, K.L.; Riffell, Samuel K.; Burger, L. Wes; Vilella, Francisco

    2012-01-01

    We used video cameras in 2008–2009 to record provisioning activities at Dickcissel (Spiza americana) nests in and around Conservation Reserve Program field buffers in north-central Mississippi, USA. We simultaneously observed foraging flight distances of parents. Provisioning rate (P  =  0.412), biomass (P  =  0.161), and foraging distance (P  =  0.159) did not increase with nestling age. Parents delivered larger items to meet demand associated with older nestlings (P  =  0.010–0.001). This suggests energetic costs of changes in prey selection were less than costs of increasing the number or distance of provisioning trips. Presence of male helpers increased provisioning rate (P nestling food resources similar to surrounding habitats. Use of continuous video monitoring of nest activity allows well-concealed activities including provisioning and male helping to be directly observed and better quantified.

  18. Semeadura direta de forrageiras de estação fria em campo natural com aplicação de herbicidas: I. Produção de forragem e contribuição relativa das espécies No-till seeding of cool season forages on native pasture with herbicides application: I. Forage yield and relative contribution of plant species

    Directory of Open Access Journals (Sweden)

    Enrique Pérez Gomar

    2004-06-01

    Full Text Available Os campos naturais apresentam estacionalidade na sua produção forrageira, a qual pode ser atenuada com a introdução de espécies de estação fria através de semeadura direta, aumentando a produção forrageira no inverno. Durante quatro anos, conduziu-se um experimento de semeadura direta de forragem de inverno, sobre campo nativo, em um Argissolo Vermelho-Amarelo, de textura superficial arenosa do norte do Uruguai. Em delineamento de blocos ao acaso com parcelas sub-subdivididas, foram testadas doses de herbicidas (glifosate 1L ha-1, glifosate 4L ha-1, paraquat 3L ha-1 e testemunha, como tratamento principal, aplicadas no ano 1994. A repetição ou não das mesmas doses no ano 1995 constituiu-se na subparcela, e a aplicação ou não das mesmas doses no ano 1996 constituiu-se na sub-subparcela. Os resultados mostraram que o maior distúrbio sobre a produção de forrageiras e contribuição das espécies do campo nativo foi provocado com a aplicação continuada de herbicidas sistêmicos na maior dose. Quando não foi aplicado herbicida (testemunha havia onze espécies e com aplicação de glifosate 4L ha-1 havia seis espécies, bem como ocorreu uma substituição de espécies perenes por anuais. O herbicida paraquat e a dose baixa de glifosate mostraram efeitos intermediários entre o observado no campo nativo semeado com triticale e azevém sem tratar com herbicida e os provocados com glifosate na dose alta. Por outro lado, os rendimentos de matéria seca das espécies forrageiras invernais semeadas foram 63% maiores na dose mais alta de glifosate do que na testemunha, devido a um maior controle da competição que exercia o campo nativo.Natural grasslands have great seasonal fluctuation of forage production. The winter forage production may be increased using cool-season forage species established with no-till, reducing seasonal fluctuations. An experiment with winter grasses (black oat and rye grass no-till sown on native grasses, was

  19. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2013-07-01

    Seasonal and inter-annual dynamics of growth, non-structural carbohydrates (NSC) and carbon isotope composition (δ(13)C) of NSC were studied in a beech forest of Central Italy over a 2-year period characterized by different environmental conditions. The net C assimilated by forest trees was mainly used to sustain growth early in the season and to accumulate storage carbohydrates in trunk and root wood in the later part of the season, before leaf shedding. Growth and NSC concentration dynamics were only slightly affected by the reduced soil water content (SWC) during the drier year. Conversely, the carbon isotope analysis on NSC revealed seasonal and inter-annual variations of photosynthetic and post-carboxylation fractionation processes, with a significant increase in δ(13)C of wood and leaf soluble sugars in the drier summer year than in the wetter one. The highly significant correlation between δ(13)C of leaf soluble sugars and SWC suggests a decrease of the canopy C isotope discrimination and, hence, an increased water-use efficiency with decreasing soil water availability. This may be a relevant trait for maintaining an acceptable plant water status and a relatively high C sink capacity during dry seasonal periods. Our results suggest a short- to medium-term homeostatic response of the Collelongo beech stand to variations in water availability and solar radiation, indicating that this Mediterranean forest was able to adjust carbon-water balance in order to prevent C depletion and to sustain plant growth and reserve accumulation during relatively dry seasons.

  20. Dynamics of sward condition and botanical composition in mixed pastures of marandugrass, forage peanut and tropical kudzu

    Directory of Open Access Journals (Sweden)

    Carlos Mauricio Soares de Andrade

    2012-03-01

    Full Text Available This study was carried out to evaluate the dynamics of sward condition and botanical composition of a mixed pasture of marandugrass (Brachiaria brizantha cv. Marandu, forage peanut (Arachis pintoi cv. Mandobi and tropical kudzu (Pueraria phaseoloides, rotationally stocked at four daily forage allowance levels (6.6, 10.3, 14.3 and 17.9% of live weight. Sward condition was characterized in each stocking cycle by measuring pre- and post-grazing sward height, forage mass and percentage of bare ground. Botanical composition (grass, forage peanut, tropical kudzu and weeds was evaluated before each stocking period. Swards under smaller forage allowances presented lower height, forage mass and ground cover. This condition favored the growth of forage peanut, which constituted 21.1, 15.2, 8.4 and 3.8% of forage mass in the last quarter of the experimental period, from the lowest to the highest forage allowance, respectively. Tropical kudzu was sensitive to all forage allowance levels and its percentage in the botanical composition was strongly reduced along the experimental period, especially during the dry season (July to September. Forage peanut cv. Mandobi and marandugrass form a more balanced mixture when pre-grazing sward height is maintained shorter than 45 cm. Tropical kudzu is intolerant to intensive grazing management systems when associated to marandugrass.

  1. European seasonal and annual temperature variability, trends, and extremes since 1500.

    Science.gov (United States)

    Luterbacher, Jürg; Dietrich, Daniel; Xoplaki, Elena; Grosjean, Martin; Wanner, Heinz

    2004-03-05

    Multiproxy reconstructions of monthly and seasonal surface temperature fields for Europe back to 1500 show that the late 20th- and early 21st-century European climate is very likely (>95% confidence level) warmer than that of any time during the past 500 years. This agrees with findings for the entire Northern Hemisphere. European winter average temperatures during the period 1500 to 1900 were reduced by approximately 0.5 degrees C (0.25 degrees C for annual mean temperatures) compared to the 20th century. Summer temperatures did not experience systematic century-scale cooling relative to present conditions. The coldest European winter was 1708/1709; 2003 was by far the hottest summer.

  2. Red-cockaded woodpecker male/female foraging differences in young forest stands.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2010-07-01

    ABSTRACT The Red-cockaded Woodpecker (Picoides borealis) is an endangered species endemic to pine (Pinus spp.) forests of the southeastern United States. I examined Red-cockaded Woodpecker foraging behavior to learn if there were male/female differences at the Savannah River Site, South Carolina. The study was conducted in largely young forest stands (,50 years of age) in contrast to earlier foraging behavior studies that focused on more mature forest. The Redcockaded Woodpecker at the Savannah River site is intensively managed including monitoring, translocation, and installation of artificial cavity inserts for roosting and nesting. Over a 3-year period, 6,407 foraging observations covering seven woodpecker family groups were recorded during all seasons of the year and all times of day. The most striking differences occurred in foraging method (males usually scaled [45% of observations] and females mostly probed [47%]),substrate used (females had a stronger preference [93%] for the trunk than males [79%]), and foraging height from the ground (mean 6 SE foraging height was higher for males [11.1 6 0.5 m] than females [9.8 6 0.5 m]). Niche overlap between males and females was lowest for substrate (85.6%) and foraging height (87.8%), and highest for tree species (99.0%), tree condition (98.3%), and tree height (96.4%). Both males and females preferred to forage in older, large pine trees. The habitat available at the Savannah River Site was considerably younger than at most other locations, but the pattern of male/female habitat partitioning observed was similar to that documented elsewhere within the range attesting to the species’ ability to adjust behaviorally.

  3. Seasonality directs contrasting food collection behavior and nutrient regulation strategies in ants.

    Directory of Open Access Journals (Sweden)

    Steven C Cook

    Full Text Available Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p to carbohydrate (c ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer, and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant.

  4. Relationship between protein molecular structural makeup and metabolizable protein supply to dairy cattle from new cool-season forage corn cultivars

    Science.gov (United States)

    Abeysekara, Saman; Khan, Nazir A.; Yu, Peiqiang

    2018-02-01

    Protein solubility, ruminal degradation and intestinal digestibility are strongly related to their inherent molecular makeup. This study was designed to quantitatively evaluate protein digestion in the rumen and intestine of dairy cattle, and estimate the content of truly metabolizable protein (MP) in newly developed cool-season forage corn cultivars. The second objective was to quantify protein inherent molecular structural characteristics using advance molecular spectroscopic technique (FT/IR-ATR) and correlate it to protein metabolic characteristics. Six new cool-season corn cultivars, including 3 Pioneer (PNR) and 3 Hyland (HL), coded as PNR-7443R, PNR-P7213R, PNR-7535R, HL-SR06, HL-SR22, HL-BAXXOS-RR, were evaluated in the present study. The metabolic characteristics, MP supply to dairy cattle, and energy synchronization properties were modeled by two protein evaluation models, namely, the Dutch DVE/OEB system and the NRC-2001 model. Both models estimated significant (P contents of microbial protein (MCP) synthesis and truly absorbable rumen undegraded protein (ARUP) among the cultivars. The NRC-2001 model estimated significant (P content and degraded protein balance (DPB) among the cultivars. The contents MCP, ARUP and MP were higher (P < 0.05) for cultivar HL-SR06, resulting in the lowest (P < 0.05) DPB. However, none of the cultivars reached the optimal target hourly effective degradability ratio [25 g N g/kg organic matter (OM)], demonstrating N deficiency in the rumen. There were non-significant differences among the cultivars in molecular-spectral intensities of protein. The amide I/II ratio had a significant correlation with ARUP (r = - 0.469; P < 0.001) and absorbable endogenous protein (AECPNRC) (P < 0.001; r = 0.612). Similarly, amide-II area had a weak but significant correlation (r = 0.299; P < 0.001) with RUP and ARUP, and with AECPNRC (P < 0.001; r = 0.411). Except total digestible nutrients and AECPNRC, the amide-I area did not show significant

  5. Annual CO2 budget and seasonal CO2 exchange signals at a High Arctic permafrost site on Spitsbergen, Svalbard archipelago

    Science.gov (United States)

    Lüers, J.; Westermann, S.; Piel, K.; Boike, J.

    2014-01-01

    The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in arctic regions dominated by soil freeze/thaw-processes, long-lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a High Arctic tundra area on the west coast of Svalbard based on eddy-covariance flux measurements. The annual cumulative CO2 budget is close to zero grams carbon per square meter per year, but shows a very strong seasonal variability. Four major CO2 exchange seasons have been identified. (1) During summer (ground snow-free), the CO2 exchange occurs mainly as a result of biological activity, with a predominance of strong CO2 assimilation by the ecosystem. (2) The autumn (ground snow-free or partly snow-covered) is dominated by CO2 respiration as a result of biological activity. (3) In winter and spring (ground snow-covered), low but persistent CO2 release occur, overlain by considerable CO2 exchange events in both directions associated with changes of air masses and air and atmospheric CO2 pressure. (4) The snow melt season (pattern of snow-free and snow-covered areas), where both, meteorological and biological forcing, resulting in a visible carbon uptake by the high arctic ecosystem. Data related to this article are archived under: http://doi.pangaea.de/10.1594/PANGAEA.809507.

  6. Delimitation of the warm and cold period of the year based on the variation of the Aegean sea surface temperature

    Directory of Open Access Journals (Sweden)

    A. MAVRAKIS

    2004-06-01

    Full Text Available Knowledge of the warm and cold season onset is important for the living conditions and the occupational activities of the inhabitants of a given area, and especially for agriculture and tourism. This paper presents a way to estimate the onset/end of the cold and warm period of the year, based on the sinusoidal annual variation of the Sea Surface Temperature. The method was applied on data from 8 stations of the Hellenic Navy Hydrographic Service, covering the period from 1965-1995. The results showed that the warm period starts sometime between April 28th and May 21st while it ends between October 27th and November 19th in accordance with the findings of other studies. Characteristic of the nature of the parameter used is the very low variance per station – 15 days at maximum. The average date of warm period onset is statistically the same for the largest part of the Aegean, with only one differentiation, that between Kavala and the southern stations ( Thira and Heraklion.

  7. forage systems mixed with forage legumes grazed by lactating cows

    Directory of Open Access Journals (Sweden)

    Clair Jorge Olivo

    2017-02-01

    Full Text Available Current research evaluates productivity, stocking and nutritional rates of three forage systems with Elephant Grass (EG + Italian Ryegrass (IR + Spontaneous Growth Species (SGS, without forage legumes; EG + IR + SGS + Forage Peanut (FP, mixed with FP; and EG + IR + SGS + Red Clover (RC, mixed with RC, in rotational grazing method by lactating cows. IR developed between rows of EG. FP was maintained, whilst RC was sow to respective forage systems. The experimental design was completely randomized, with three treatments and two replication, subdivided into parcels over time. Mean rate for forage yield and average stocking rate were 10.6, 11.6 and 14.4 t ha-1; 3.0, 2.8 and 3.1 animal unit ha-1 day-1, for the respective systems. Levels of crude protein and total digestible nutrients were 17.8, 18.7 and 17.5%; 66.5, 66.8 and 64.8%, for the respective forage systems. The presence of RC results in better and higher forage yield in the mixture, whilst FP results in greater control of SGS. The inclusion of forage legumes in pasture systems provides better nutritional rates.

  8. Terrestrial carbon cycle affected by non-uniform climate warming

    International Nuclear Information System (INIS)

    Jianyang Xia; Yiqi Luo; Jiquan Chen; Shilong Piao; Ciais, Philippe; Shiqiang Wan

    2014-01-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30 degrees and 90 degrees N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research. (authors)

  9. Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive

    Science.gov (United States)

    Harzhauser, Mathias; Piller, Werner E.; Müllegger, Stefan; Grunert, Patrick; Micheels, Arne

    2011-03-01

    The Western Tethyan estuarine oyster Crassostrea gryphoides is an excellent climate archive due to its large size and rapid growth. It is geologically long lived and allows a stable isotope-based insight into climatic trends during the Miocene. Herein we utilised the climate archive of 5 oyster shells from the Miocene Climate Optimum (MCO) and the subsequent Miocene Climate Transition (MCT) to evaluate changes of seasonality patterns. MCO shells exhibit highly regular seasonal rhythms of warm-wet and dry-cool seasons. Optimal conditions resulted in extraordinary growth rates of the oysters. δ 13C profiles are in phase with δ 18O although phytoplankton blooms may cause a slight offset. Estuarine waters during the MCO in Central Europe display a seasonal temperature range of c. 9-10 °C. Absolute water temperatures have ranged from 17 to 19 °C during cool seasons and up to 28 °C in warm seasons. Already during the early phase of the MCO, the growth rates are distinctly declining, although gigantic and extremely old shells have been formed at that time. Still, a very regular and well expressed seasonality is dominating the isotope profiles, but episodically occurring extreme climate events influence the environments. The seasonal temperature range is still c. 9 °C but the cool season temperature seems to be slightly lower (16 °C) and the warm season water temperature does not exceed c. 25 °C. In the later MCT at c. 12.5-12.0 Ma the seasonality pattern is breaking down and is replaced by successions of dry years with irregular precipitation events. No correlation between δ 18O and δ 13C is documented maybe due to a suboptimal nutrition level which would explain the low growth rates and small sizes. The amplitude of seasonal temperature range is decreasing to 5-8 °C. No clear cooling trend can be postulated for that time as the winter season water temperatures range from 15 to 20 °C. This may point to unstable precipitation rhythms on a multi-annual to

  10. Seasonal timing in a warming world : plasticity of seasonal timing of growth and reproduction

    OpenAIRE

    Salis, L.

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the study of seasonal timing in the food chain of the oak-winter moth-great tit. As temperature increased over the last decades, both phenologies of the host plant, the oak, and the herbivorous insect, t...

  11. Dynamics of Necrophagous Insect and Tissue Bacteria for Postmortem Interval Estimation During the Warm Season in Romania.

    Science.gov (United States)

    Iancu, Lavinia; Sahlean, Tiberiu; Purcarea, Cristina

    2016-01-01

    The estimation of postmortem interval (PMI) is affected by several factors including the cause of death, the place where the body lay after death, and the weather conditions during decomposition. Given the climatic differences among biogeographic locations, the understanding of necrophagous insect species biology and ecology is required when estimating PMI. The current experimental model was developed in Romania during the warm season in an outdoor location. The aim of the study was to identify the necrophagous insect species diversity and dynamics, and to detect the bacterial species present during decomposition in order to determine if their presence or incidence timing could be useful to estimate PMI. The decomposition process of domestic swine carcasses was monitored throughout a 14-wk period (10 July-10 October 2013), along with a daily record of meteorological parameters. The chronological succession of necrophagous entomofauna comprised nine Diptera species, with the dominant presence of Chrysomya albiceps (Wiedemann 1819) (Calliphoridae), while only two Coleoptera species were identified, Dermestes undulatus (L. 1758) and Creophilus maxillosus Brahm 1970. The bacterial diversity and dynamics from the mouth and rectum tissues, and third-instar dipteran larvae were identified using denaturing gradient gel electrophoresis analysis and sequencing of bacterial 16S rRNA gene fragments. Throughout the decomposition process, two main bacterial chronological groups were differentiated, represented by Firmicutes and Gammaproteobacteria. Twenty-six taxa from the rectal cavity and 22 from the mouth cavity were identified, with the dominant phylum in both these cavities corresponding to Firmicutes. The present data strengthen the postmortem entomological and microbial information for the warm season in this temperate-continental area, as well as the role of microbes in carcass decomposition. © The Authors 2015. Published by Oxford University Press on behalf of

  12. A study of regional trends in annual and seasonal precipitation and runoff series

    Energy Technology Data Exchange (ETDEWEB)

    Tveito, O.E.; Hisdal, H.

    1994-03-10

    In this study long and homogeneous time series of runoff and precipitation are studied to identify variations in time and space. The method of empirical orthogonal functions (EOF-method) is applied. Both annual observations, smoothed (using Gauss filter) and seasonal values are analyzed. The analysis shows that the temporal variations in runoff and precipitation coincide. The deviations occurring in the seasonal values are caused by snow accumulation and snow melt. In the filtered series temporal trends are found. A comparison between the different normal periods has been carried out for precipitation. The 1900-30 and 1960-90 periods differ from the 1930-60 period. This may be caused by different weather types dominating the different periods. The different weather types are reflected in different empirical orthogonal functions. This is verified by regional studies. The coinciding patterns in runoff and precipitation are important aspects in climate studies and for extrapolation purposes. 11 refs., 20 figs., 1 tab.

  13. Radiocesium in roe deer and wild boars and their forage in the Chernobyl area

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, O.; Jungskaer, W. [Uppsala Univ. (Sweden). Dept. of Ecological Botany; Gaichenko, V.; Panov, G. [Academy of Sciences of Ukraine, Kiev (Ukraine). Schmalhausen Inst. of Zoology; Goshchak, S. [RIA Pripyat, Chernobyl (Ukraine). Restoration Dept.; Jones, B. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Clinical Chemistry; Petrov, M.; Davydchuk, V. [Academy of Sciences of Ukraine, Kiev (Ukraine). Inst. of Geography; Shcherbatchenko, A. [Academy of Sciences of Ukraine, Kiev (Ukraine). Inst. of Nuclear Research

    1996-12-31

    Tissue samples from 67 roe deer (Capreolus capreolus) and 73 wild boars (Sus scrofa L.) were obtained from the evacuated zone around the damaged nuclear reactor in Chernobyl, Ukraine. The samplings were performed from June 1992 to February 1995 regularly during each typical season (spring in mid-May, summer in mid-August, autumn in mid-October and winter in late February). By using botanical analysis of rumen/stomach contents, dominant forage plants were identified and collected in the area where the animals had been foraging. The results show that there is a considerable individual variation in diet selection within each season for both these animal species and also a seasonal variation in the radiocesium contamination of muscular tissue. The seasonal variation is most pronounced in the wild boar. Minimum levels of 137Cs were seen during summer and autumn (mean 6kBq/kg w.w. and 2 kBq/kg w.w., resp.) and maximum levels in winter (mean 113 kBq/kg w.w.). In the roe deer, the minimum levels were seen in winter (mean 6kBq/kg w.w.) and maximum levels in autumn (mean 58 kBq/kg w.w.). These variations are caused by differences in pasture selection during different seasons of the year. One very important forage plant eaten both by roe deer and by wild boars during all seasons was evening primrose (Oenothera biennis L.). Also the underground parts of this plant are consumed by the wild boar. Also the role of soil as an intake source of radioactive contaminants has been estimated by determination of inorganic residues after ashing of rumen/stomach samples. In the winter, wild boars show the highest ash content with 32% (mean of dry matter) and the lowest in summer with 6%. In roe deer, the differences between seasons are smaller, with an average of 9% in the spring and 15% in winter. The level of 137Cs contamination in muscular tissue of these two species has not decreased noticeably in the studied area during the study period from summer 1992 to winter 1995. 18 refs, 8 figs.

  14. Radiocesium in roe deer and wild boars and their forage in the Chernobyl area

    International Nuclear Information System (INIS)

    Eriksson, O.; Jungskaer, W.; Gaichenko, V.; Panov, G.; Goshchak, S.; Jones, B.; Petrov, M.; Davydchuk, V.; Shcherbatchenko, A.

    1996-01-01

    Tissue samples from 67 roe deer (Capreolus capreolus) and 73 wild boars (Sus scrofa L.) were obtained from the evacuated zone around the damaged nuclear reactor in Chernobyl, Ukraine. The samplings were performed from June 1992 to February 1995 regularly during each typical season (spring in mid-May, summer in mid-August, autumn in mid-October and winter in late February). By using botanical analysis of rumen/stomach contents, dominant forage plants were identified and collected in the area where the animals had been foraging. The results show that there is a considerable individual variation in diet selection within each season for both these animal species and also a seasonal variation in the radiocesium contamination of muscular tissue. The seasonal variation is most pronounced in the wild boar. Minimum levels of 137Cs were seen during summer and autumn (mean 6kBq/kg w.w. and 2 kBq/kg w.w., resp.) and maximum levels in winter (mean 113 kBq/kg w.w.). In the roe deer, the minimum levels were seen in winter (mean 6kBq/kg w.w.) and maximum levels in autumn (mean 58 kBq/kg w.w.). These variations are caused by differences in pasture selection during different seasons of the year. One very important forage plant eaten both by roe deer and by wild boars during all seasons was evening primrose (Oenothera biennis L.). Also the underground parts of this plant are consumed by the wild boar. Also the role of soil as an intake source of radioactive contaminants has been estimated by determination of inorganic residues after ashing of rumen/stomach samples. In the winter, wild boars show the highest ash content with 32% (mean of dry matter) and the lowest in summer with 6%. In roe deer, the differences between seasons are smaller, with an average of 9% in the spring and 15% in winter. The level of 137Cs contamination in muscular tissue of these two species has not decreased noticeably in the studied area during the study period from summer 1992 to winter 1995

  15. Climate change, irrigation, and Israeli agriculture. Will warming be harmful?

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Aliza; Lichtman, Ivgenia [Hebrew University of Jerusalem, Jerusalem (Israel); Mendelsohn, Robert [Yale University, New Haven, Connecticut (United States)

    2008-04-15

    This paper utilizes a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. The study finds that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts climate change is strictly beneficial. However, with water included, the model predicts that only modest climate changes are beneficial while drastic climate change in the long run will be harmful. Using the AOGCM Scenarios we show that farm net revenue is expected to increase. Although Israel has a relatively warm climate a mild increase in temperature is beneficial due to the ability to supply international markets with farm product early in the season. (author)

  16. Climate change, irrigation, and Israeli agriculture. Will warming be harmful?

    International Nuclear Information System (INIS)

    Fleischer, Aliza; Lichtman, Ivgenia; Mendelsohn, Robert

    2008-01-01

    This paper utilizes a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. The study finds that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts climate change is strictly beneficial. However, with water included, the model predicts that only modest climate changes are beneficial while drastic climate change in the long run will be harmful. Using the AOGCM Scenarios we show that farm net revenue is expected to increase. Although Israel has a relatively warm climate a mild increase in temperature is beneficial due to the ability to supply international markets with farm product early in the season. (author)

  17. Liming and plant aging influence on micronutrient uptake by Brachiaria decumbens forage

    International Nuclear Information System (INIS)

    Armelin, Maria Jose A.; Saiki, Mitiko; Primavesi, Odo; Primavesi, Ana C.

    2007-01-01

    Brachiaria decumbens is the main forage in pastures of several Brazilian regions. The effects of liming and plant age on micronutrient uptake by the forage of a degraded Brachiaria decumbens pasture under restoration process, were studied in Sao Carlos - SP, southeastern Brazil, under altitude tropical climate. Experimental design was a random block (100 m 2 ), with 6 replications and 3 treatments. Each block received the following treatment: 0 t/ha of limestone with NK; 2 t/ha of limestone applied on soil surface with NK and maintenance of 1 t/ha per annum; 8 t/ha of limestone applied once on soil surface with NK. Forage samples were collected 14 cm above soil surface, each 36 days in the rain season. Instrumental neutron activation analysis (INAA) followed by gamma-ray spectrometry was the analytical method used to determine the micronutrient content. In some cases, Co Fe, Mn and Zn were negatively affected by increasing limestone doses. The opposite effect was observed for Cl. Decreases of Cl, Co and Mo uptake in forage were enhanced with plant aging. (author)

  18. Seasonal Climate Profiles of an Ice-free Arctic Based on Intra-ring Analyses of δ18O Value in Fossil Wood

    Science.gov (United States)

    Schubert, B.; Jahren, A. H.

    2017-12-01

    Arctic sea ice thickness and extent are projected to continue their substantial decline during this century, with an 80% reduction in sea-ice extent by 2050. While there is a clear relationship between mean annual temperature (MAT) and the concentration of atmospheric carbon dioxide (pCO2) across both glacial and interglacial periods, data on seasonal fluctuations is limited. Here we report seasonal temperature estimates for the Arctic during the ice-free conditions of the late early to middle Eocene based upon exquisitely preserved, mummified wood collected from Banks Island, Northwest Territories, Canada ( 74 oN). Annual growth rings identified in the wood specimens were subdivided by hand at sub-millimeter resolution and cellulose was extracted from each sub-sample for determination of stable oxygen isotope (δ18O) value (n = 81). The data reveal a consistent, cyclic pattern of decreasing and increasing δ18O value up to 3‰ across growth rings that was consistent with patterns observed in other modern and fossil wood, including from other high latitude sites. From these data we quantified cold month and warm month seasonal temperatures using a previously published model (Schubert and Jahren, 2015, QSR, 125: 1-14). Our calculations revealed low overall seasonality in the Arctic during the Eocene with above-freezing winters and mild summers, consistent with the presence of high biomass temperate rainforests. These results highlight the importance of warm winters in maintaining ice-free conditions in the Arctic and suggest that increased winter temperatures in today's Arctic in response to rising pCO2 will be of particular importance for Arctic ice-loss.

  19. Corresponding Relation between Warm Season Precipitation Extremes and Surface Air Temperature in South China

    Institute of Scientific and Technical Information of China (English)

    SUN; Wei; LI; Jian; YU; Ru-Cong

    2013-01-01

    Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.

  20. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    Science.gov (United States)

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke; Korhonen, Johanna; Yasuyuki Aono,

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.

  1. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    Science.gov (United States)

    Jensen, Anna M.; Warren, Jeffrey M.; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-01-01

    Background and Aims The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significance of maintaining multiple foliar cohorts for Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA. Methods Measurements were taken on multiple cohorts of needles for photosynthetic capacity, foliar respiration (Rd) and leaf biochemistry and morphology of mature trees from April to October over 4 years. The results were applied to a simple model of canopy photosynthesis in order to simulate annual C uptake by cohort age under ambient and elevated temperature scenarios. Key Results Temperature responses of key photosynthetic parameters [i.e. light-saturated rate of CO2 assimilation (Asat), rate of Rubisco carboxylation (Vcmax) and electron transport rate (Jmax)] were dependent on season and generally less responsive in the developing current-year (Y0) needles compared with 1-year-old (Y1) or 2-year-old (Y2) foliage. Temperature optimums ranged from 18·7 to 23·7, 31·3 to 38·3 and 28·7 to 36·7 °C for Asat, Vcmax and Jmax, respectively. Foliar cohorts differed in their morphology and photosynthetic capacity, which resulted in 64 % of modelled annual stand C uptake from Y1&2 cohorts (LAI 0·67 m2 m−2) and just 36 % from Y0 cohorts (LAI 0·52 m2 m−2). Under warmer climate change scenarios, the contribution of Y0 cohorts was even less; e.g. 31 % of annual C uptake for a modelled 9 °C rise in mean summer temperatures. Results suggest that net annual C uptake by P. mariana could increase under elevated temperature, and become more dependent on older foliar cohorts. Conclusions Collectively, this study illustrates the physiological and

  2. Dynamical Models of Interactions between Herds Forage and Water Resources in Sahelian Region

    Directory of Open Access Journals (Sweden)

    Jean Jules Tewa

    2014-01-01

    Full Text Available Optimal foraging is one of the capital topics nowadays in Sahelian region. The vast majority of feed consumed by ruminants in Sahelian region is still formed by natural pastures. Pastoral constraints are the high variability of available forage and drinking water in space and especially in time (highly seasonal, interannual variability and the scarcity of water resources. The mobility is the main functional and opportunistic adaptation to these constraints. Our goal in this paper is to formalize two dynamical models for interactions between a herd of domesticate animals, forage resources, and water resources inside a given Sahelian area, in order to confirm, explain, and predict by mathematical models some observations about pastoralism in Sahelian region. These models in some contexts can be similar to predator-prey models as forage and water resources can be considered as preys and herd’s animals as predators. These models exhibit very rich dynamics, since it predicts abrupt changes in consumer behaviour and disponibility of forage or water resources. The dynamics exhibits a possible coexistence between herd, resources, and water with alternative peaks in their trajectories.

  3. Annual Report: 2011-2012 Storm Season Sampling, Non-Dry Dock Stormwater Monitoring for Puget Sound Naval Shipyard, Bremerton, WA

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, Jill M.; Metallo, David; Rupert, Brian; Johnston, Robert K.; Gebhart, Christine

    2013-07-03

    Annual PSNS non-dry dock storm water monitoring results for 2011-2012 storm season. Included are a brief description of the sampling procedures, storm event information, laboratory methods and data collection, a results and discussion section, and the conclusions and recommendations.

  4. Foraging plasticity of breeding Northern Rockhopper Penguins, Eudyptes moseleyi, in response to changing energy requirements

    KAUST Repository

    Booth, Jenny Marie; Steinfurth, Antje; Fusi, Marco; Cuthbert, Richard J.; McQuaid, Christopher D.

    2018-01-01

    During the breeding season, seabirds must balance the changing demands of self- and off-spring provisioning with the constraints imposed by central-place foraging. Recently, it was shown that Northern Rockhopper Penguins at Tristan da Cunha

  5. Free boundary models for mosquito range movement driven by climate warming.

    Science.gov (United States)

    Bao, Wendi; Du, Yihong; Lin, Zhigui; Zhu, Huaiping

    2018-03-01

    As vectors, mosquitoes transmit numerous mosquito-borne diseases. Among the many factors affecting the distribution and density of mosquitoes, climate change and warming have been increasingly recognized as major ones. In this paper, we make use of three diffusive logistic models with free boundary in one space dimension to explore the impact of climate warming on the movement of mosquito range. First, a general model incorporating temperature change with location and time is introduced. In order to gain insights of the model, a simplified version of the model with the change of temperature depending only on location is analyzed theoretically, for which the dynamical behavior is completely determined and presented. The general model can be modified into a more realistic one of seasonal succession type, to take into account of the seasonal changes of mosquito movements during each year, where the general model applies only for the time period of the warm seasons of the year, and during the cold season, the mosquito range is fixed and the population is assumed to be in a hibernating status. For both the general model and the seasonal succession model, our numerical simulations indicate that the long-time dynamical behavior is qualitatively similar to the simplified model, and the effect of climate warming on the movement of mosquitoes can be easily captured. Moreover, our analysis reveals that hibernating enhances the chances of survival and successful spreading of the mosquitoes, but it slows down the spreading speed.

  6. Global warming: it's not only size that matters

    Science.gov (United States)

    Hegerl, Gabriele C.

    2011-09-01

    ecosystems and society more than slow, gradual ones. Also, is it really the mean seasonal temperature that counts, or should the focus change to extremes (see Hegerl et al 2011b)? Is seasonal mean exceedance of the prior temperature envelope a good and robust measure that also reflects these other, more complex diagnostics? Lots of food for thought and research! References Allen M R and Tett S F B 1999 Checking for model consistency in optimal finger printing Clim. Dyn. 15 419-34 Hall A 2004 The role of surface albedo feedback in climate J. Clim. 17 1550-68 Hasselmann K 1979 On the signal-to-noise problem in atmospheric response studies Meteorology of Tropical Oceans ed D B Shaw (Bracknell: Royal Meteorological Society) pp 251-9 Hegerl G C, Luterbacher J, Gonzalez-Ruoco F, Tett S F B and Xoplaki E 2011a Influence of human and natural forcing on European seasonal temperatures Nature Geoscience 4 99-103 Hegerl G, Hanlon H and Beierkuhnlein C 2011b Climate science: elusive extremes Nature Geoscience 4 142-3 IPCC 2007 Climate Change 2007: Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed M L Parry, O F Canziani, J P Palutikof, P J van der Linden and C E Hanson (Cambridge: Cambridge University Press) Jansen E et al 2007 Palaeoclimate Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon et al (Cambridge: Cambridge University Press) Luterbacher J et al 2004 European seasonal and annual temperature variability, trends, and extremes since 1500 Science 303 1499-503 Mahlstein I, Knutti R, Solomon S and Portmann R W 2011 Early onset of significant local warming in low latitude countries Environ. Res. Lett. 6 034009

  7. Does foraging performance change with age in female little penguins (Eudyptula minor?

    Directory of Open Access Journals (Sweden)

    Ilka Zimmer

    Full Text Available Age-related changes in breeding performance are likely to be mediated through changes in parental foraging performance. We investigated the relationship of foraging performance with age in female little penguins at Phillip Island, Australia, during the guard phase of the 2005 breeding season. Foraging parameters were recorded with accelerometers for birds grouped into three age-classes: (1 young, (2 middle age and (3 old females. We found the diving behaviour of middle-aged birds differed from young and old birds. The dive duration of middle age females was shorter than that of young and old birds while their dive effort (measure for dive and post-dive duration relation was lower than that of young ones, suggesting middle-aged birds were in better physical condition than other ones. There was no difference in prey pursuit frequency or duration between age classes, but in the hunting tactic. Females pursued more prey around and after reaching the maximum depth of dives the more experienced they were (old > middle age > young, an energy saving hunting tactic by probably taking advantage of up-thrust momentum. We suggest middle age penguins forage better than young or old ones because good physical condition and foraging experience could act simultaneously.

  8. Heat Damaged Forages: Effects on Forage Quality

    Science.gov (United States)

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  9. Seasonal timing in a warming world : Plasticity of seasonal timing of growth and reproduction

    NARCIS (Netherlands)

    Salis, Lucia

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the

  10. Seasonality in ocean microbial communities.

    Science.gov (United States)

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  11. Foraging

    NARCIS (Netherlands)

    Ydenberg, R.C.; Prins, H.H.T.

    2012-01-01

    This chapter describes the role played by behavioural adjustments to foraging behaviour in accommodating rapid environmental change. It looks into the adjustments of foraging behaviour to predation danger as a result of changes in the type and array of food available. It investigates the effects of

  12. Mean surface fields of heat budget components over the warm pool in the Bay of Bengal during post-monsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, D.P.; Rao, B.P.

    Andaman Islands and in the MT area there is an association between SST and Q n . But, off Sri Lanka warmer waters were noticed eventhough Q n was negative. This gives a clue that the role of advection plays a dominant role in the maintenance of SST.... Maintenance of warmwaters could be due to the transport of heat from North to South during post-monsoon season. Individual contributions from advection and air-sea fluxes towards SST would throw better light on the formation of warm pool in Bay of Bengal...

  13. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

    Directory of Open Access Journals (Sweden)

    Floris M van Beest

    Full Text Available BACKGROUND: Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. METHODOLOGY/PRINCIPAL FINDINGS: Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer. We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat at low ambient temperatures and mature coniferous forest (thermal shelter during thermally stressful conditions, lost less mass in winter and gained more mass in summer. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in

  14. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

    Science.gov (United States)

    van Beest, Floris M; Milner, Jos M

    2013-01-01

    Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance are likely contributory factors. Climate-related effects on animal

  15. Intra-seasonal and Inter-annual variability of Bowen Ratio over rain-shadow region of North peninsular India

    Science.gov (United States)

    Morwal, S. B.; Narkhedkar, S. G.; Padmakumari, B.; Maheskumar, R. S.; Deshpande, C. G.; Kulkarni, J. R.

    2017-05-01

    Intra-seasonal and inter-annual variability of Bowen Ratio (BR) have been studied over the rain-shadow region of north peninsular India during summer monsoon season. Daily grid point data of latent heat flux (LHF), sensible heat flux (SHF) from NCEP/NCAR Reanalysis for the period 1970-2014 have been used to compute daily area-mean BR. Daily grid point rainfall data at a resolution of 0.25° × 0.25° from APHRODITE's Water Resources for the available period 1970-2007 have been used to study the association between rainfall and BR. The study revealed that BR rapidly decreases from 4.1 to 0.29 in the month of June and then remains nearly constant at the same value (≤0.1) in the rest of the season. High values of BR in the first half of June are indicative of intense thermals and convective clouds with higher bases. Low values of BR from July to September period are indicative of weak thermals and convective clouds with lower bases. Intra-seasonal and inter-annual variability of BR is found to be inversely related to precipitation over the region. BR analysis indicates that the land surface characteristics of the study region during July-September are similar to that over oceanic regions as far as intensity of thermals and associated cloud microphysical properties are concerned. Similar variation of BR is found in El Nino and La Nina years. During June, an increasing trend is observed in SHF and BR and decreasing trend in LHF from 1976 to 2014. Increasing trend in the SHF is statistically significant.

  16. Optimally frugal foraging

    Science.gov (United States)

    Bénichou, O.; Bhat, U.; Krapivsky, P. L.; Redner, S.

    2018-02-01

    We introduce the frugal foraging model in which a forager performs a discrete-time random walk on a lattice in which each site initially contains S food units. The forager metabolizes one unit of food at each step and starves to death when it last ate S steps in the past. Whenever the forager eats, it consumes all food at its current site and this site remains empty forever (no food replenishment). The crucial property of the forager is that it is frugal and eats only when encountering food within at most k steps of starvation. We compute the average lifetime analytically as a function of the frugality threshold and show that there exists an optimal strategy, namely, an optimal frugality threshold k* that maximizes the forager lifetime.

  17. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    Science.gov (United States)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AODcases. We categorize dataset into warm-season and cold-season subsets to figure out how the boomerang shape varies with season. For moderate aerosol loading (AODMixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm

  18. Food availability and foraging near human developments by black bears

    Science.gov (United States)

    Merkle, Jerod A.; Robinson, Hugh S.; Krausman, Paul R.; Alaback, Paul B.

    2013-01-01

    Understanding the relationship between foraging ecology and the presence of human-dominated landscapes is important, particularly for American black bears (Ursus americanus), which sometimes move between wildlands and urban areas to forage. The food-related factors influencing this movement have not been explored, but can be important for understanding the benefits and costs to black bear foraging behavior and the fundamental origins of bear conflicts. We tested whether the scarcity of wildland foods or the availability of urban foods can explain when black bears forage near houses, examined the extent to which male bears use urban areas in comparison to females, and identified the most important food items influencing bear movement into urban areas. We monitored 16 collared black bears in and around Missoula, Montana, during 2009 and 2010, while quantifying the rate of change in green vegetation and the availability of 5 native berry-producing species outside the urban area, the rate of change in green vegetation, and the availability of apples and garbage inside the urban area. We used parametric time-to-event models in which an event was a bear location collected within 100 m of a house. We also visited feeding sites located near houses and quantified food items bears had eaten. The probability of a bear being located near a house was 1.6 times higher for males, and increased during apple season and the urban green-up. Fruit trees accounted for most of the forage items at urban feeding sites (49%), whereas wildland foods composed fruit trees, appear to be more important than the availability of garbage in influencing when bears forage near houses.

  19. On some aspects of Indian Ocean warm pool

    Digital Repository Service at National Institute of Oceanography (India)

    Saji, P.K.; Balchand, A.N.; RameshKumar, M.R.

    Annual and interannual variation of Indian Ocean Warm Pool (IOWP) was studied using satellite and in situ ocean temperature data IOWP surface area undergoes a strong annual cycle attaining a maximum of 24x106km2 during April...

  20. Nutritive value of pastures of Cynodon mixed with forage peanut in southwestern Paraná State

    Directory of Open Access Journals (Sweden)

    Magnos Fernando Ziech

    2015-08-01

    Full Text Available This study evaluated the nutritive value of pastures of Coastcross-1 and Tifton 85 mixed with increasing inclusion of forage peanut (0, 25, 50, 75% occupancy area, subjected to cuts, over two study years in Southwestern Paraná State. The experimental design was factorial (three factors distributed in randomized block. The factors were cultivars (2, the occupancy area of forage peanut (4 and seasons of cuts (5, with three replications. It was evaluated the percentage of crude protein, neutral detergent fiber and in vitro digestibility of dry matter of leaf blades, stem + sheath of grasses and available forage mass of pastures. Values of crude protein ranged from 17.0 to 20.4% and from 16.8 to 19.3% for the forage mass available of Coastcross-1 and Tifton 85, respectively. Higher digestibility values were found at the beginning of evaluations. On average, the Coastcross-1 showed better nutritive value compared to Tifton 85, and, the inclusion of forage peanut increased crude protein content in leaf blades of grasses studied, in the second year after planted.

  1. Spatiotemporal heterogeneity in prey abundance and vulnerability shapes the foraging tactics of an omnivore

    Science.gov (United States)

    Rayl, Nathaniel; Bastille-Rousseau, Guillaume; Organ, John F.; Mumma, Matthew; Mahoney, Shane P.; Soulliere, Colleen; Lewis, Keith; Otto, Robert; Murray, Dennis; Waits, Lisette; Fuller, Todd

    2018-01-01

    Prey abundance and prey vulnerability vary across space and time, but we know little about how they mediate predator–prey interactions and predator foraging tactics. To evaluate the interplay between prey abundance, prey vulnerability and predator space use, we examined patterns of black bear (Ursus americanus) predation of caribou (Rangifer tarandus) neonates in Newfoundland, Canada using data from 317 collared individuals (9 bears, 34 adult female caribou, 274 caribou calves).During the caribou calving season, we predicted that landscape features would influence calf vulnerability to bear predation, and that bears would actively hunt calves by selecting areas associated with increased calf vulnerability. Further, we hypothesized that bears would dynamically adjust their foraging tactics in response to spatiotemporal changes in calf abundance and vulnerability (collectively, calf availability). Accordingly, we expected bears to actively hunt calves when they were most abundant and vulnerable, but switch to foraging on other resources as calf availability declined.As predicted, landscape heterogeneity influenced risk of mortality, and bears displayed the strongest selection for areas where they were most likely to kill calves, which suggested they were actively hunting caribou. Initially, the per‐capita rate at which bears killed calves followed a type‐I functional response, but as the calving season progressed and calf vulnerability declined, kill rates dissociated from calf abundance. In support of our hypothesis, bears adjusted their foraging tactics when they were less efficient at catching calves, highlighting the influence that predation phenology may have on predator space use. Contrary to our expectations, however, bears appeared to continue to hunt caribou as calf availability declined, but switched from a tactic of selecting areas of increased calf vulnerability to a tactic that maximized encounter rates with calves.Our results reveal that

  2. Low-dose glyphosate does not control annual bromes in the northern Great Plains

    Science.gov (United States)

    Annual bromes (downy brome and Japanese brome) have been shown to decrease perennial grass forage production and alter ecosystem functions in northern Great Plains rangelands. Large-scale chemical control might be a method for increasing rangeland forage production if low application rates confer co...

  3. Seasonal modulation of the Asian summer monsoon between the Medieval Warm Period and Little Ice Age: a multi model study

    Science.gov (United States)

    Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki

    2017-12-01

    Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.

  4. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    NARCIS (Netherlands)

    Tsyganov, A.N.; Aerts, R.; Nijs, I.; Cornelissen, J.H.C.; Beyens, L.

    2012-01-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming,

  5. Determination of Phytoestrogen Content in Fresh-Cut Legume Forage

    Directory of Open Access Journals (Sweden)

    Pavlína Hloucalová

    2016-07-01

    Full Text Available The aim of the study was to determine phytoestrogen content in fresh-cut legume forage. This issue has been much discussed in recent years in connection with the health and safety of feedstuffs and thus livestock health. The experiments were carried out on two experimental plots at Troubsko and Vatín, Czech Republic during June and July in 2015. Samples were collected of the four forage legume species perennial red clover (variety “Amos”, alfalfa (variety “Holyně”, and annuals Persian clover and Alexandrian clover. Forage was sampled twice at regular three to four day intervals leading up to harvest and a third time on the day of harvest. Fresh and wilted material was analyzed using liquid chromatography–mass spectrometry (LC-MS. Higher levels ( p < 0.05 of isoflavones biochanin A (3.697 mg·g −1 of dry weight and formononetin (4.315 mg·g −1 of dry weight were found in red clover than in other species. The highest isoflavone content was detected in red clover, reaching 1.001% of dry matter ( p < 0.05, representing a risk for occurrence of reproduction problems and inhibited secretion of animal estrogen. The phytoestrogen content was particularly increased in wilted forage. Significant isoflavone reduction was observed over three to four day intervals leading up to harvest.

  6. REPRODUCTIVE SEASONALITY OF SHEEP IN MEXICO

    Directory of Open Access Journals (Sweden)

    Jaime Arroyo

    2011-07-01

    Full Text Available In order to discuss and analyze the available information concerning the seasonal breeding behavior of sheep in Mexico, this review was conducted. We analyzed the neuroendocrine basis that modulate the annual reproductive cycle in sheep and then discussed the degree of reproductive seasonality in Creole sheep wool, breeds originating in high latitudes and hair sheep, mainly in Pelibuey ewes. The Creole sheep wool show continuous annual reproductive activity and short seasonal anestrous. The females of northern origin, express seasonal reproductive activity, similar to that observed in individuals geographically located at latitudes above 35º. Pelibuey sheep show variable annual reproductive behavior with reduced anestrus or lack thereof.  It is suggested that the neuroendocrine mechanisms regulating seasonal anestrus in ewes, are active in the sheep of northern origin that live in Mexico, in a manner contrary is not activated in Creole and hair sheep.

  7. Biomass cycles, accumulation rates and nutritional characteristics of ...

    African Journals Online (AJOL)

    Annual biomass cycles, accumulation rates and nutritional characteristics of forage and non-forage species groups were determined in the canopied and open, uncanopied subhabitats of the herbaceous layer in Burkea africana savanna. The total amount of biomass of all species over the season was significantly greater in ...

  8. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest.

    Science.gov (United States)

    Schindlbacher, Andreas; Jandl, Robert; Schindlbacher, Sabine

    2014-02-01

    Climate change might alter annual snowfall patterns and modify the duration and magnitude of snow cover in temperate regions with resultant impacts on soil microclimate and soil CO2 efflux (Fsoil ). We used a 5-year time series of Fsoil measurements from a mid-elevation forest to assess the effects of naturally changing snow cover. Snow cover varied considerably in duration (105-154 days) and depth (mean snow depth 19-59 cm). Periodically shallow snow cover (soil freezing or increased variation in soil temperature. This was mostly not reflected in Fsoil which tended to decrease gradually throughout winter. Progressively decreasing C substrate availability (identified by substrate induced respiration) likely over-rid the effects of slowly changing soil temperatures and determined the overall course of Fsoil . Cumulative CO2 efflux from beneath snow cover varied between 0.46 and 0.95 t C ha(-1)  yr(-1) and amounted to between 6 and 12% of the annual efflux. When compared over a fixed interval (the longest period of snow cover during the 5 years), the cumulative CO2 efflux ranged between 0.77 and 1.18 t C ha(-1) or between 11 and 15% of the annual soil CO2 efflux. The relative contribution (15%) was highest during the year with the shortest winter. Variations in snow cover were not reflected in the annual CO2 efflux (7.44-8.41 t C ha(-1) ) which did not differ significantly between years and did not correlate with any snow parameter. Regional climate at our site was characterized by relatively high amounts of precipitation. Therefore, snow did not play a role in terms of water supply during the warm season and primarily affected cold season processes. The role of changing snow cover therefore seems rather marginal when compared to potential climate change effects on Fsoil during the warm season. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  9. Modeling Impacts of Alternative Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Rice–Wheat Annual Rotation in China

    Science.gov (United States)

    Wang, Jinyang; Zhang, Xiaolin; Liu, Yinglie; Pan, Xiaojian; Liu, Pingli; Chen, Zhaozhi; Huang, Taiqing; Xiong, Zhengqin

    2012-01-01

    Background Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. Materials and Methods Measured data of methane (CH4) and nitrous oxide (N2O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winter wheat – single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year) impacts on net global warming potential (GWP) and greenhouse gas intensity (GHGI). Principal Results The simulated cumulative CH4 emissions fell within the statistical deviation ranges of the field data, with the exception of N2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH4 and N2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1) high straw return and manure amendment scenarios greatly increased CH4 emissions, while other scenarios had similar CH4 emissions, (2) high inorganic N fertilizer increased N2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N2O emissions, (3) the mean annual soil organic carbon sequestration rates (SOCSR) under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha−1 yr−1, being greater than other scenarios, and (4) the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. Conclusions In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified cropping system. PMID

  10. Modeling impacts of alternative practices on net global warming potential and greenhouse gas intensity from rice-wheat annual rotation in China.

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    Full Text Available BACKGROUND: Evaluating the net exchange of greenhouse gas (GHG emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. MATERIALS AND METHODS: Measured data of methane (CH(4 and nitrous oxide (N(2O were utilized to test the applicability of the Denitrification and Decomposition (DNDC model to a winter wheat - single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year impacts on net global warming potential (GWP and greenhouse gas intensity (GHGI. PRINCIPAL RESULTS: The simulated cumulative CH(4 emissions fell within the statistical deviation ranges of the field data, with the exception of N(2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH(4 and N(2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1 high straw return and manure amendment scenarios greatly increased CH(4 emissions, while other scenarios had similar CH(4 emissions, (2 high inorganic N fertilizer increased N(2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N(2O emissions, (3 the mean annual soil organic carbon sequestration rates (SOCSR under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha(-1 yr(-1, being greater than other scenarios, and (4 the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. CONCLUSIONS: In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified

  11. Foraging and fasting can influence contaminant concentrations in animals: an example with mercury contamination in a free-ranging marine mammal

    Science.gov (United States)

    Peterson, Sarah; Ackerman, Joshua T.; Crocker, Daniel E.; Costa, Daniel P.

    2018-01-01

    Large fluctuations in animal body mass in relation to life-history events can influence contaminant concentrations and toxicological risk. We quantified mercury concentrations in adult northern elephant seals (Mirounga angustirostris) before and after lengthy at sea foraging trips (n = 89) or fasting periods on land (n = 27), and showed that mercury concentrations in blood and muscle changed in response to these events. The highest blood mercury concentrations were observed after the breeding fast, whereas the highest muscle mercury concentrations were observed when seals returned to land to moult. Mean female blood mercury concentrations decreased by 30% across each of the two annual foraging trips, demonstrating a foraging-associated dilution of mercury concentrations as seals gained mass. Blood mercury concentrations increased by 103% and 24% across the breeding and moulting fasts, respectively, demonstrating a fasting-associated concentration of mercury as seals lost mass. In contrast to blood, mercury concentrations in female's muscle increased by 19% during the post-breeding foraging trip and did not change during the post-moulting foraging trip. While fasting, female muscle mercury concentrations increased 26% during breeding, but decreased 14% during moulting. Consequently, regardless of exposure, an animal's contaminant concentration can be markedly influenced by their annual life-history events.

  12. Fatty acid composition of forage herb species

    DEFF Research Database (Denmark)

    Warner, D.; Jensen, Søren Krogh; Cone, J.W.

    2010-01-01

    The use of alternative forage species in grasslands for intensive livestock production is receiving renewed attention. Data on fatty acid composition of herbs are scarce, so four herbs (Plantago lanceolata, Achillea millefolium, Cichorium intybus, Pastinaca sativa) and one grass species (timothy......, Phleum pratense) were sown in a cutting trial. The chemical composition and concentration of fatty acids (FA) of individual species were determined during the growing season. Concentrations of crude protein and FA were generally higher in the herbs than in timothy. C. intybus had the highest nutritive...

  13. Prey type and foraging ecology of Sanderlings Calidris alba in different climate zones: are tropical areas more favourable than temperate sites?

    Directory of Open Access Journals (Sweden)

    Kirsten Grond

    2015-08-01

    Full Text Available Sanderlings (Calidris alba are long-distance migratory shorebirds with a non-breeding range that spans temperate and tropical coastal habitats. Breeding in the High Arctic combined with non-breeding seasons in the tropics necessitate long migrations, which are energetically demanding. On an annual basis, the higher energy expenditures during migration might pay off if food availability in the tropics is higher than at temperate latitudes. We compared foraging behaviour of birds at a north temperate and a tropical non-breeding site in the Netherlands and Ghana, respectively. In both cases the birds used similar habitats (open beaches, and experienced similar periods of daylight, which enabled us to compare food abundance and availability, and behavioural time budgets and food intake. During the non-breeding season, Sanderlings in the Netherlands spent 79% of their day foraging; in Ghana birds spent only 38% of the daytime period foraging and the largest proportion of their time resting (58%. The main prey item in the Netherlands was the soft-bodied polychaete Scolelepis squamata, while Sanderlings in Ghana fed almost exclusively on the bivalve Donax pulchellus, which they swallowed whole and crushed internally. Average availability of polychaete worms in the Netherlands was 7.4 g ash free dry mass (AFDM m−2, which was one tenth of the 77.1 g AFDM m−2 estimated for the beach in Ghana. In the tropical environment of Ghana the Sanderlings combined relatively low energy requirements with high prey intake rates (1.64 mg opposed to 0.13 mg AFDM s−1 for Ghana and the Netherlands respectively. Although this may suggest that the Ghana beaches are the most favourable environment, processing the hard-shelled bivalve (D. pulchellus which is the staple food could be costly. The large amount of daytime spent resting in Ghana may be indicative of the time needed to process the shell fragments, rather than indicate rest.

  14. Seed dormancy and germination of Halophila ovalis mediated by simulated seasonal temperature changes

    Science.gov (United States)

    Statton, John; Sellers, Robert; Dixon, Kingsley W.; Kilminster, Kieryn; Merritt, David J.; Kendrick, Gary A.

    2017-11-01

    The seagrass, Halophila ovalis plays an important ecological and sediment stability role in estuarine systems in Australia with the species in decline in many sites. Halophila ovalis is a facultative annual, relying mainly on recruitment from the sediment seed bank for the annual regeneration of meadows. Despite this, there is little understanding of seed dormancy releasing mechanisms and germination cues. Using H. ovalis seed from the warm temperate Swan River Estuary in Western Australia, the germination ecology of H. ovalis was investigated by simulating the natural seasonal variation in water temperatures. The proportion of germinating seeds was found to be significantly different among temperature treatments (p < 0.001). The treatment with the longest period of cold exposure at 15 °C followed by an increase in temperature to 20-25 °C (i.e. cold stratification) had the highest final mean germination of 32% and the fastest germination rate. Seeds exposed to constant mean winter temperatures of 15 °C had the slowest germination rate with less than two seeds germinating over 118 days. Thus temperature is a key germination cue for H. ovalis seeds and these data infer that cold stratification is an important dormancy releasing mechanism. This finding has implications for recruitment in facultative annual species like H. ovalis under global warming since the trend for increasing water temperatures in the region may limit seed-based recruitment in the future.

  15. Seasonality of the activity pattern of Callithrix penicillata (Primates, Callitrichidae in the cerrado (scrub savanna vegetation

    Directory of Open Access Journals (Sweden)

    S. L. Vilela

    Full Text Available Two wild groups of Callithrix penicillata, the Black Pincelled Marmoset, were observed from January to September 1998, in two areas, one an area of dense scrub savanna vegetation (cerrado and the other, a semidecidual woodland (cerradão, both within the boundaries of the Ecological Reserve of IBGE (Brazilian Institute of Geography and Statistics, in an environmentally protected area, the APA (Portuguese abbreviation for "environmental protected area" Gama/Cabeça-de-Veado, Brasília, DF. The behavioral data collected during the rainy (January 15 to April 15 and dry season (June 1 to September 15 were compared. Because of the proximity to the Reserve facilities, the group from the dense scrub savanna vegetation (CD was submitted to antropic impacts different from the group in the semidecidual woodland (CE, which was using as territory an area that had been suffering from man-made fires every two years as part of a long-term experimental project on fire impacts. The behavioral data was quantified by instantaneous cross-section ("scan sampling" every ten minutes with records of locomotion, rest, foraging for insects, use of exudate, and feeding. During the whole year, the greatest percentage of time spent by CE and CD was in foraging for insects, with 44% and 39%, respectively. It was evident when comparing the data for the two seasons that, for both groups, foraging for insects was more intense during the dry season, possibly to complement the shortage of food, and locomotion increased during the rainy season. The greater the availability and distribution of fruit in the areas, the greater the locomotion of the groups to obtain these resources. None of the other behavioral patterns, including the use of exudates, presented significant differences between the two seasons. Both groups foraged more frequently during the dry season and locomoted more during the rainy one.

  16. Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird.

    Science.gov (United States)

    Kowalczyk, Nicole D; Reina, Richard D; Preston, Tiana J; Chiaradia, André

    2015-08-01

    Marine animals forage in areas that aggregate prey to maximize their energy intake. However, these foraging 'hot spots' experience environmental variability, which can substantially alter prey availability. To survive and reproduce animals need to modify their foraging in response to these prey shifts. By monitoring their inter-annual foraging behaviours, we can understand which environmental variables affect their foraging efficiency, and can assess how they respond to environmental variability. Here, we monitored the foraging behaviour and isotopic niche of little penguins (Eudyptula minor), over 3 years (2008, 2011, and 2012) of climatic and prey variability within Port Phillip Bay, Australia. During drought (2008), penguins foraged in close proximity to the Yarra River outlet on a predominantly anchovy-based diet. In periods of heavy rainfall, when water depth in the largest tributary into the bay (Yarra River) was high, the total distance travelled, maximum distance travelled, distance to core-range, and size of core- and home-ranges of penguins increased significantly. This larger foraging range was associated with broad dietary diversity and high reproductive success. These results suggest the increased foraging range and dietary diversity of penguins were a means to maximize resource acquisition rather than a strategy to overcome local depletions in prey. Our results demonstrate the significance of the Yarra River in structuring predator-prey interactions in this enclosed bay, as well as the flexible foraging strategies of penguins in response to environmental variability. This plasticity is central to the survival of this small-ranging, resident seabird species.

  17. Group foraging increases foraging efficiency in a piscivorous diver, the African penguin

    Science.gov (United States)

    McGeorge, Cuan; Ginsberg, Samuel; Pichegru, Lorien; Pistorius, Pierre A.

    2017-01-01

    Marine piscivores have evolved a variety of morphological and behavioural adaptations, including group foraging, to optimize foraging efficiency when targeting shoaling fish. For penguins that are known to associate at sea and feed on these prey resources, there is nonetheless a lack of empirical evidence to support improved foraging efficiency when foraging with conspecifics. We examined the hunting strategies and foraging performance of breeding African penguins equipped with animal-borne video recorders. Individuals pursued both solitary as well as schooling pelagic fish, and demonstrated independent as well as group foraging behaviour. The most profitable foraging involved herding of fish schools upwards during the ascent phase of a dive where most catches constituted depolarized fish. Catch-per-unit-effort was significantly improved when targeting fish schools as opposed to single fish, especially when foraging in groups. In contrast to more generalist penguin species, African penguins appear to have evolved specialist hunting strategies closely linked to their primary reliance on schooling pelagic fish. The specialist nature of the observed hunting strategies further limits the survival potential of this species if Allee effects reduce group size-related foraging efficiency. This is likely to be exacerbated by diminishing fish stocks due to resource competition and environmental change. PMID:28989785

  18. Nutritional characteristics of forages from Niger

    Directory of Open Access Journals (Sweden)

    F. Infascelli

    2010-04-01

    Full Text Available In the production systems of the semi-arid areas low quality forages are commonly used as the basal diet (Wilkins, 2000 and, as a consequence, the nutritional status of ruminants depends mainly on the ability of rumen fermentation to yield nutrients such as the short chain fatty acids and microbial biomass (Preston and Leng, 1987. The forages browsed by the livestock can be classified into two main groups: ephemeral annual plants, which germinate and remain green for only a few weeks after rain, perennial shrubs and tree fodders. Despite their potential as feeds, little research has determined their nutritive value. In vivo evaluation is the best estimation method of feed’s nutritional value, however it is very laborious and difficult to standardize with browsing animals. O the contrary, in vitro methods are less expensive, less time consuming and allow a better control of experimental conditions than in vivo experiments. The in vitro gas production technique (IVGPT appears to be the most suitable method for use in developing countries where resources may be limited (Makkar, 2004. Increased interest in use of non-conventional feed resources has led to an increase in use of this technique, since IVGPT can provide useful data on digestion kinetics of both the soluble and insoluble fractions of feedstuffs. The aim of the present research was to evaluate twelve forages from the arid zone of Niger using the IVGPT.

  19. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-03-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2-D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt-dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite-derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  20. The role of frozen soil in groundwater discharge predictions for warming alpine watersheds

    Science.gov (United States)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-01-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2‐D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt‐dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite‐derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  1. Earning their stripes: The potential of tiger trout and other salmonids as biological controls of forage fishes in a western reservoir

    Science.gov (United States)

    Winters, Lisa K.; Budy, Phaedra; Thiede, Gary P.

    2017-01-01

    Maintaining a balance between predator and prey populations can be an ongoing challenge for fisheries managers, especially in managing artificial ecosystems such as reservoirs. In a high-elevation Utah reservoir, the unintentional introduction of the Utah Chub Gila atraria and its subsequent population expansion prompted managers to experimentally shift from exclusively stocking Rainbow Trout Oncorhynchus mykiss to also stocking tiger trout (female Brown Trout Salmo trutta × male Brook Trout Salvelinus fontinalis) and Bonneville Cutthroat Trout O. clarkii utah (hereafter, Cutthroat Trout) as potential biological control agents. We measured a combination of diet, growth, temperature, and abundance and used bioenergetic simulations to quantify predator demand versus prey supply. Utah Chub were the predominant prey type for tiger trout, contributing up to 80% of the diet depending on the season. Utah Chub represented up to 70% of the total diet consumed by Cutthroat Trout. Although Utah Chub dominated the fish biomass in the reservoir, we still estimated abundances of 238,000 tiger trout, 214,000 Cutthroat Trout, and 55,000 Rainbow Trout. Consequently, when expanded to the population level of each predator, tiger trout and Cutthroat Trout consumed large quantities of Utah Chub on an annual basis: tiger trout consumed 508,000 kg (2,660 g/predator) of the standing prey population, and Cutthroat Trout consumed an estimated 322,000 kg (1,820 g/predator). The estimated combined consumption by Cutthroat Trout and tiger trout exceeded the estimate of Utah Chub annual production. As such, our results suggest that the high rates of piscivory exhibited by Cutthroat Trout and tiger trout in artificial lentic ecosystems are likely sufficient to effectively reduce the overall abundance of forage fishes and to prevent forage fishes from dominating fish assemblages. Collectively, this research provides the first documented findings on tiger trout ecology and performance

  2. Weather and plant age affect the levels of steroidal saponin and Pithomyces chartarum spores in Brachiaria grass

    Science.gov (United States)

    Brachiaria species are cultivated worldwide in tropical and subtropical climates as the main forage source for ruminants. Numerous tropical and warm-season grasses cause hepatogenous photosensitization, among them several species of Brachiaria. Steroidal saponins present in these plants may be respo...

  3. Differential responses of seabirds to inter-annual environmental change in the continental shelf and oceanic habitats of southeastern Bering Sea

    Science.gov (United States)

    Yamamoto, T.; Kokubun, N.; Kikuchi, D. M.; Sato, N.; Takahashi, A.; Will, A.; Kitaysky, A. S.; Watanuki, Y.

    2015-11-01

    Seasonal sea-ice cover has been decreasing in the southeastern Bering Sea shelf, which might affect ecosystem dynamics and availability of food resources to marine top predators breeding in the region. In this study, we investigated the foraging responses of two seabird species, surface-foraging red-legged kittiwakes Rissa brevirostris (hereafter, RLKI) and pursuit-diving foraging thick-billed murres Uria lomvia (TBMU) to the inter-annual change in environmental conditions. Between the study years, winter ice retreated earlier and summer water temperatures were warmer in 2014 compared to those in 2013. At-sea distributions of RLKI and TBMU breeding on St. George Island, the largest seabird colony in the region, were recorded using GPS loggers, and blood samples were taken to examine their physiological condition and isotopic foraging niche in a given year. RLKI foraging occurred mostly over the oceanic basin in both years. TBMU, however, foraged mostly over the shelf, but showed a relatively higher use of the shelf break and oceanic basin in the colder year, 2013. The foraging distances from the colony peaked at 250-300 km in 2013 and, bimodally, at 150-250 and 300-350 km in 2014 for RLKI, and tended to be farther in 2013 compared to those in 2014 for TBMU. Plasma levels of corticosterone did not differ between years in RLKI, but differed in TBMU, showing higher levels of physiological stress incurred by murres during the colder year, 2013. δ13N (a proxy of trophic level of prey) did not differ between the years in either RLKI or TBMU, while δ13C (a proxy of prey origin) were lower in 2014 than in 2013 in both species, suggesting possible differences in influx of oceanic prey items into foraging areas. These results suggest that the response of ecosystem dynamics to climate variability in the southeast Bering Sea may differ between the ocean basin and continental shelf regions, which, in turn, may generate differential responses in seabirds relying on those

  4. Influencia de la fertilización, la época y la especie forrajera en la presencia Influence of fertilization, season, and forage species in presence of arbuscular mycorrhizae in a degraded Andisoil of Colombia

    Directory of Open Access Journals (Sweden)

    Arnulfo Gómez-Carabalí

    2011-01-01

    Full Text Available Para determinar la influencia de la fertilización, época, y especies forrajeras en la producción de micorrizas arbusculares se realizó un experimento con una gramínea C4, (Brachiaria dictyoneura), dos leguminosas forrajeras C3 (Arachis pintoi y Centrosema macrocarpum) y la vegetación nativa; cultivadas en dos sistemas de siembra (monocultivo y asociación), dos niveles de fertilización (alto y bajo) y cuatro edades de cosecha. Se uso un diseño de parcelas sub-sub divididas, en el cual la parcela principal fue la especie, los niveles de fertilización como subparcelas y la edad de rebrote como la sub-sub parcela. El número de esporas de hongos micorrízicos en el suelo y el porcentaje de infección en las raíces se incrementó con la edad y varió con la especie y la época del muestreo (seca o húmeda). Se encontraron diferencias en la capacidad para formar simbiosis micorrízica entre las especies de gramíneas y leguminosas bajo condiciones de campo.In the Colombian coffee zone much of the land has infertile soils with an ongoing accelerated degradation. As vegetation has changed from forest to transitory base (cassava cropping) and overgrazed pastures, ground cover has decreased resulting in increasing runoff. These changes have contributed to severe erosion, decline in soil fertility, productivity, soil structure, and water quality as well as loss of biodiversity. A field study was conducted at the farm "La Esperanza" (Mondomo, Department of Cauca, Colombia, South-America). The main objective was to determine the influence of fertilization, season and forage species in Arbuscular Mycorrhyzae in a degraded Andisol. One C4 forage grass (Brachiaria dictyoneura) and two C3 forage legumes (Arachis pintoi and Centrosema macrocarpum) and native vegetation grown under two fertilization levels, cultivated either in monoculture or in association and harvested at four different ages were evaluated. The numbers of mycorrizal spores in the soil

  5. Seasonal forecasts: communicating current climate variability in southern Africa

    CSIR Research Space (South Africa)

    Landman, WA

    2011-11-01

    Full Text Available seasonal time scale. Seasonal climate forecasts are defined as probabilistic predictions of how much rain is expected during the season and how warm or cool it will be, based primarily on the principle that the ocean (sea-surface temperatures) influences...

  6. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4

    Science.gov (United States)

    Li, Wenhong; Fu, Rong; Dickinson, Robert E.

    2006-01-01

    The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.

  7. The pineal gland, but not melatonin, is associated with the termination of seasonal testicular activity in an annual reproductive cycle in roseringed parakeet Psittacula krameri.

    Science.gov (United States)

    Sengupta, Anamika; Kumar Maitra, Saumen

    2006-01-01

    The role of the pineal gland and its hormone melatonin in the regulation of annual testicular events was investigated for the first time in a psittacine bird, the roseringed parakeet (Psittacula krameri). Accordingly, the testicular responsiveness of the birds was evaluated following surgical pinealectomy with or without the exogenous administration of melatonin and the experimental manipulations of the endogenous levels of melatonin through exposing the birds to continuous illumination. An identical schedule was followed during the four reproductive phases, each characterizing a distinct testicular status in the annual cycle, namely, the phases of gametogenic quiescence (preparatory phase), seasonal recovery of gametogenesis (progressive phase), seasonal initiation of sperm formation (pre-breeding phase), and peak gametogenic activity (breeding phase). In each reproductive phase, the birds were subjected to various experimental conditions, and the effects were studied comparing the testicular conditions in the respective control birds. The study included germ cell profiles of the seminiferous tubules, the activities of steroidogenic enzymes 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and Delta(5)3beta-hydroxysteroid dehydrogenase (Delta(5)3beta- HSD) in the testis, and the serum levels of testosterone and melatonin. An analysis of the data reveals that the pineal gland and its hormone melatonin may play an inhibitory role in the development of the testis until the attainment of the seasonal peak in the annual reproductive cycle. However, in all probability, the termination of the seasonal activity of the testis or the initiation of testicular regression in the annual reproductive cycle appears to be the function of the pineal gland, but not of melatonin.

  8. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  9. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Progress report, May 1, 1975--April 30, 1976

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1976-06-01

    Irradiation ( 60 Coγ source) was used for the genetic improvement of several warm season grasses and pearl millet. Results of plant breeding experiments using radioinduced mutants of Bermuda grass and millet are reported

  10. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    Science.gov (United States)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  11. Host reproductive phenology drives seasonal patterns of host use in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nathan D Burkett-Cadena

    2011-03-01

    Full Text Available Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1 the shift is driven by changes in host abundance, or (2 the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron and ectothermic (frogs hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts, quiescent young (avian and mammalian hosts, and mate-seeking males (frogs.

  12. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Directory of Open Access Journals (Sweden)

    Ken D Tape

    Full Text Available Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni and Eurasia (A. a. alces. Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  13. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat

    Science.gov (United States)

    Tape, Ken D.; Gustine, David D.; Reuss, Roger W.; Adams, Layne G.; Clark, Jason A.

    2016-01-01

    Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  14. Behavioral and hormonal responses to the availability of forage material in Western lowland gorillas (Gorilla gorilla gorilla).

    Science.gov (United States)

    Fuller, Grace; Murray, Anna; Thueme, Melissa; McGuire, Molly; Vonk, Jennifer; Allard, Stephanie

    2018-01-01

    We investigated how forage material affects indicators of welfare in three male Western lowland gorillas (Gorilla gorilla gorilla) at the Detroit Zoo. In addition to their maintenance diet and enrichment foods, the gorillas generally received forage material four times a week. From this baseline, we systematically manipulated how much forage material the group received on a weekly basis, with either daily or bi (twice)-weekly presentation of browse (mulberry, Morus sp.) or alfalfa hay. We collected behavioral data (60 hr per gorilla) and measured fecal glucocorticoid metabolites (FGM). Mixed models indicated that the presence of forage material significantly increased time feeding (F 2,351  = 9.58, p gorillas, compared to a disproportionately greater amount of time spent feeding by the dominant individual when forage material was absent. Providing forage material in addition to the regular diet likely created more opportunities for equitable feeding for the subordinate gorillas. FGM concentrations did not vary based on the presence or type of forage material available and, instead, likely reflected group social dynamics. In general, alfalfa and mulberry had similar impacts on behavior, indicating that alfalfa can be an adequate behavioral substitute during times when browse is less readily available for gorillas housed in seasonally variable climates. © 2017 Wiley Periodicals, Inc.

  15. Neutron activation analysis application for determining iron concentration in forage grasses used in intensive cattle production system

    International Nuclear Information System (INIS)

    Armelin, Maria Jose A.; Primavesi, Odo

    2002-01-01

    Iron is an essential element to the life. It is an important hemoglobin component and it is involved in the transport of oxygen to cells. A deficiency of iron results in an unsuitable synthesis of hemoglobin and a delay in the growth. Iron contents above the tolerable level in animal feed can cause serious damages to the health and the death in extreme cases. The forages are the main source of feed to cattle in grazing. It is known from the literature, that the growth and the nutritious value of the forage are influenced by specie and physiologic age of the plant, soil fertility and environmental conditions. Therefore, an agronomical evaluations of the forages are necessary before to introduce in an intensive cattle production systems to program adequate grazing management. Neutron activation analysis was applied to evaluate the Fe concentration in the main tropical forage grasses used in intensive dairy cattle production systems in Sao Carlos, SP, Brazil. Iron concentrations were smaller in the rain season than in the dry one. Comparison of results obtained in the analyses of forages with daily requirements of iron in dry matter, showed that the Fe concentration in forages was adequate. (author)

  16. Projected changes of thermal growing season over Northern Eurasia in a 1.5 °C and 2 °C warming world

    Science.gov (United States)

    Zhou, Baiquan; Zhai, Panmao; Chen, Yang; Yu, Rong

    2018-03-01

    Projected changes of the thermal growing season (TGS) over Northern Eurasia at 1.5 °C and 2 °C global warming levels are investigated using 22 CMIP5 models under both RCP4.5 and RCP8.5 scenarios. The multi-model mean projections indicate Northern Eurasia will experience extended and intensified TGSs in a warmer world. The prolongation of TGSs under 1.5 °C and 2 °C warming is attributed to both earlier onset and later termination, with the latter factor playing a dominating role. Interestingly, earlier onset is of greater importance under RCP4.5 than under RCP8.5 in prolonging TGS as the world warms by an additional 0.5 °C. Under both RCPs, growing degree day sum (GDD) above 5 °C is anticipated to increase by 0 °C-450 °C days and 0 °C-650 °C days over Northern Eurasia at 1.5 °C and 2 °C warming, respectively. However, effective GDD (EGDD) which accumulates optimum temperature for the growth of wheat, exhibits a decline in the south of Central Asia under warmer climates. Therefore, for wheat production over Northern Eurasia, adverse effects incurred by scorching temperatures and resultant inadequacy in water availability may counteract benefits from lengthening and warming TGS. In response to a future 1.5 °C and 2 °C warmer world, proper management and scientifically-tailored adaptation are imperative to optimize local-regional agricultural production.

  17. Earlier Snowmelt Changes the Ratio Between Early and Late Season Forest Productivity

    Science.gov (United States)

    Knowles, J. F.; Molotch, N. P.; Trujillo, E.; Litvak, M. E.

    2017-12-01

    Future projections of declining snowpack and increasing potential evaporation associated with climate warming are predicted to advance the timing of snowmelt in mountain ecosystems globally. This scenario has direct implications for snowmelt-driven forest productivity, but the net effect of temporally shifting moisture dynamics is unknown with respect to the annual carbon balance. Accordingly, this study uses both satellite- and tower-based observations to document the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the southern Rocky Mountain ecoregion, USA. These results show that a combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34-year minimum ecosystem productivity that could be indicative of future conditions. Moreover, early and late season productivity were significantly and inversely related, suggesting that future shifts toward earlier or reduced snowmelt could increase late-season moisture stress to vegetation and thus restrict productivity despite a longer growing season. This relationship was further subject to modification by summer precipitation, and the controls on the early/late season productivity ratio are explored within the context of ecosystem carbon storage in the future. Any perturbation to the carbon cycle at this scale represents a potential feedback to climate change since snow-covered forests represent an important global carbon sink.

  18. Global Warming and Geographically Scalar Climatic Objects Exist: An Ontologically Realist and Object-Oriented Analysis of the Daymet TMAX Climate Summaries for North America

    Science.gov (United States)

    Jackson, C. P.

    2017-12-01

    The scientific materialist worldview, what Peter Unger refers to as the Scientiphical worldview, or Scientiphicalism, has been utterly catastrophic for mesoscale objects in general, but, with its closely associated twentieth-century formal logic, this has been especially true for notoriously vague things like climate change, coastlines, mountains and dust storms. That is, any so-called representations or references ultimately suffer the same ontological demise as their referents, no matter how well-defined their boundaries may in fact be. Against this reductionist metaphysics, climatic objects are discretized within three separate ontologically realist systems, Graham Harman's object-oriented philosophy, or ontology (OOO), Markus Gabriel's ontology of fields of sense (OFS) and Tristan Garcia's two systems and new order of time, so as to make an ontological case for any geographically scalar object, beginning with pixels, as well as any notoriously vague thing they are said to represent. Four-month overlapping TMAX seasonals were first developed from the Oak Ridge National Laboratory (ORNL) Daymet climate temperature maximum (TMAX) monthly summaries (1980-2016) for North America and segmented within Trimble's eCognition Developer using the simple and widely familiar quadtree algorithm with a scale parameter of four, in this example. The regression coefficient was then calculated for the resulting 37-year climatic objects and an equally simple classification was applied. The same segmentation and classification was applied to the Daymet annual summaries, as well, for comparison. As was expected, the mean warming and cooling trends are lowest for the annual summary TMAX climatic objects. However, the Fall (SOND) season has the largest and smallest areas of warming and cooling, respectively, and the highest mean trend for warming objects. Conversely, Spring (MAMJ) has the largest and smallest areas undergoing cooling and warming, respectively. Finally, Summer (JJAS

  19. Changes in seasonal climate patterns from 34-4 ka in a Soreq Cave (Israel) speleothem: Sub-annual resolution by ion microprobe and CLFM

    Science.gov (United States)

    Orland, I. J.; Bar-Matthews, M.; Kita, N.; Ayalon, A.; Valley, J. W.

    2009-12-01

    Speleothems provide an important proxy-record of paleoclimate. Isotopic data from calcite-dominated cave formations have been used to identify changes in annual rainfall, monsoon strength, telecommunication of Northern Hemisphere climate aberrations, changes in vegetation cover, and other region-specific paleoclimate time-series over annual to millennial timescales. As more research is devoted to understanding abrupt climate change events, there is a need to develop high-temporal-resolution records from continental regions. However, in most isotopic studies, seasonality information is lost due to technical limitations. This study focuses on a speleothem from the semi-arid Eastern Mediterranean region (Soreq Cave, Israel) where prior research shows that conventional drill-sampling methods permit a temporal resolution of ~10-50 years in speleothem paleoclimate records. The WiscSIMS lab has developed analytical protocols for ion microprobe analysis that yield a precision of ~0.3‰ (2 s.d.) in δ18O from 10 μm-diameter spots, which permit multiple analyses/year in many speleothems. Orland et al. (2009, Quat. Res.) establish the methodology for the current study by identifying seasonal variability using a combination of confocal laser fluorescent microscopy (CLFM) and ion microprobe analysis in a younger (~2-1 ka) Soreq speleothem that has a consistent bright-grading-to-dark fluorescence pattern within each annual band. Further, Orland et al. define a quantitative measure of seasonality, Δ18O, that measures the difference in δ18O between bright and dark fluorescent portions of individual annual growth bands [Δ18O = δ18Odark - δ18Obright]. Smaller values of Δ18O are interpreted to be caused by dry years. The current study employs the aforementioned methods to examine seasonality trends in a sample that covers a much longer time period. We report δ18O from >1000 spots across a radial traverse of Soreq Cave sample 2N matched to imaging of annual growth bands by

  20. Recent changes in seasonal variations of climate within the range of northern caribou populations

    Directory of Open Access Journals (Sweden)

    Paul H. Whitfield

    2005-05-01

    Full Text Available The Arctic is one region where it is expected that the impacts of a globally changing climate will be readily observed. We present results that indicate that climate derivatives of potential significance to caribou changed during the past 50 years. Many temperature derivatives reflect the increasing overall temperature in the Arctic such as decreases in the number of days with low temperatures, increases in the number of days with thaw, and days with extremely warm temperatures. Other derivatives reflect changes in the precipitation regime such as days with heavy precipitation and number of days when rain fell on snow. Our results indicate that specific caribou herds from across the Arctic were subjected to different variations of these derivatives in different seasons in the recent past. Examination of temperature and precipitation at finer time-steps than annual or monthly means, shows that climatic variations in the region are neither consistent through the seasons nor across space. Decadal changes in seasonal patterns of temperature and precipitation are shown for selected herds. A process for assessing caribou-focused climate derivatives is proposed.

  1. Cool-season annual pastures with clovers to supplement wintering beef cows nursing calves

    Directory of Open Access Journals (Sweden)

    Gunter Stacey A

    2012-07-01

    Full Text Available Abstract In December of 3 years, 87 beef cows with nursing calves (594 ± 9.8 kg; calving season, September to November at side were stratified by body condition score, body weight, cow age, and calf gender and divided randomly into 6 groups assigned to 1 of 6 cool-season annual pastures (0.45 ha/cow that had been interseeded into a dormant common bermudagrass (Cynodon dactylon [L.] Pers./bahiagrass (Paspalum notatum Flugge sod. Pastures contained 1 of the following 3 seeding mixtures (2 pastures/mixture: 1 wheat (Triticum aestivum L. and ryegrass (Lolium multiflorum Lam., WRG, 2 wheat and ryegrass plus red clover (Trifolium pretense L., WRR, or 3 wheat and ryegrass plus white (Trifolium repens L. and crimson clovers (Trifolium incarnatum L., WRW. All groups had ad libitum access to grass hay (12% crude protein; 58% total digestible nutrients. The second week in December, cow estrous cycles were synchronized and artificially inseminated. In late December, a bull was placed with each group for 60-d. Data were analyzed with an analysis of variance using a mixed model containing treatment as the fixed effect and year as the random effect. Body weight and condition scores did not differ (P ≥ 0.27 among cows between February and June. Calf birth weights or average daily gain did not differ (P ≥ 0.17 among treatments; however, calves grazing pastures with clovers did tend (P = 0.06 to weigh more than calves grazing grass only. Weaning weight per cow exposed to a bull was greater (P = 0.02 for WRR and WRW than WRG. Cows grazing winter-annual pastures containing clovers tended to wean more calf body weight per cow exposed to a bull than cows grazing the grass only pastures.

  2. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Caroline L Poli

    Full Text Available During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra, in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level, the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance

  3. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    Science.gov (United States)

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  4. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    Directory of Open Access Journals (Sweden)

    Kai Xue

    2016-09-01

    Full Text Available Clipping (i.e., harvesting aboveground plant biomass is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  5. Seasonal and cryopreservation impacts on semen quality in boars

    Science.gov (United States)

    Seasonal boar infertility occurs worldwide and contributes to economic loss to the pork industry. The current study evaluated cooled vs cryopreserved semen quality of 11 Duroc boars collected in June (cool season) and August 2014 (warm season). Semen was cooled to 16°C (cooled) or frozen over liquid...

  6. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau

    Science.gov (United States)

    Ran, Youhua; Li, Xin; Cheng, Guodong

    2018-02-01

    Air temperature increases thermally degrade permafrost, which has widespread impacts on engineering design, resource development, and environmental protection in cold regions. This study evaluates the potential thermal degradation of permafrost over the Qinghai-Tibet Plateau (QTP) from the 1960s to the 2000s using estimated decadal mean annual air temperatures (MAATs) by integrating remote-sensing-based estimates of mean annual land surface temperatures (MASTs), leaf area index (LAI) and fractional snow cover values, and decadal mean MAAT date from 152 weather stations with a geographically weighted regression (GWR). The results reflect a continuous rise of approximately 0.04 °C a-1 in the decadal mean MAAT values over the past half century. A thermal-condition classification matrix is used to convert modelled MAATs to permafrost thermal type. Results show that the climate warming has led to a thermal degradation of permafrost in the past half century. The total area of thermally degraded permafrost is approximately 153.76 × 104 km2, which corresponds to 88 % of the permafrost area in the 1960s. The thermal condition of 75.2 % of the very cold permafrost, 89.6 % of the cold permafrost, 90.3 % of the cool permafrost, 92.3 % of the warm permafrost, and 32.8 % of the very warm permafrost has been degraded to lower levels of thermal condition. Approximately 49.4 % of the very warm permafrost and 96 % of the likely thawing permafrost has degraded to seasonally frozen ground. The mean elevations of the very cold, cold, cool, warm, very warm, and likely thawing permafrost areas increased by 88, 97, 155, 185, 161, and 250 m, respectively. The degradation mainly occurred from the 1960s to the 1970s and from the 1990s to the 2000s. This degradation may lead to increased risks to infrastructure, reductions in ecosystem resilience, increased flood risks, and positive climate feedback effects. It therefore affects the well-being of millions of people

  7. Swimming strategy and body plan of the world’s largest fish: implications for foraging efficiency and thermoregulation

    Directory of Open Access Journals (Sweden)

    Mark eMeekan

    2015-09-01

    Full Text Available The largest animals in the oceans eat prey that are orders of magnitude smaller than themselves, implying strong selection for cost-effective foraging to meet their energy demands. Whale sharks (Rhincodon typus may be especially challenged by warm seas that elevate their metabolism and contain sparse prey resources. Using a combination of biologging and satellite tagging, we show that whale sharks use four strategies to save energy and improve foraging efficiency: 1 fixed, low power swimming, 2 constant low speed swimming, 3 gliding and 4 asymmetrical diving. These strategies increase foraging efficiency by 22 – 32% relative to swimming horizontally and resolve the energy-budget paradox of whale sharks. However, sharks in the open ocean must access food resources that reside in relatively cold waters (up to 20oC cooler than the surface at depths of 250-500 m during the daytime, where long, slow gliding descents, continuous ram ventilation of the gills and filter-feeding could rapidly cool the circulating blood and body tissues. We suggest that whale sharks may overcome this problem through their large size and a specialized body plan that isolates highly vascularized red muscle on the dorsal surface, allowing heat to be retained near the centre of the body within a massive core of white muscle. This could allow a warm-adapted species to maintain enhanced function of organs and sensory systems while exploiting food resources in deep, cool water.

  8. Season-specific climate signal and reconstruction from a new tree-ring network in the southwestern U.S

    Science.gov (United States)

    Griffin, D.; Woodhouse, C. A.; Meko, D. M.; Stahle, D. W.; Faulstich, H.; Leavitt, S. W.; Touchan, R.; Castro, C. L.; Carrillo, C.

    2011-12-01

    Our research group has updated existing tree-ring collections from over 50 sampling sites in the southwestern U.S. The new and archived specimens, carefully dated with dendrochronology, have been analyzed for width variations of "earlywood" and "latewood." These are the two components of annual rings in conifers that form in spring and summer, respectively. The network of primary tree-ring data has been used to develop a suite of well-replicated chronologies that extend through the 2008 growing season and are sensitive to the season-specific climate variability of the Southwest. Correlation function analysis indicates that the earlywood chronologies are closely related to cool season (October-April) precipitation variability and the chronologies derived from latewood are generally sensitive to precipitation and temperature conditions during the warm season (June-August). These proxy data originate from biological organisms and are not without bias; however, they do constitute a new means for evaluating the recent paleoclimatic history of the North American summer monsoon. The monsoon is a major component of the region's climate, impacting social and environmental systems and delivering up to 60% of the annual precipitation in the southwestern U.S. We have developed latewood-based retrodictions of monsoon precipitation that explain over half of the variance in the instrumental record, pass standard verification tests, and point to periods of persistent drought and wetness during the last 300-500 years. These reconstructions are being used to evaluate the monsoon's long-term spatiotemporal variability and its relationship to cool season climate and the major modes of ocean-atmosphere variability.

  9. Spatiotemporal heterogeneity in prey abundance and vulnerability shapes the foraging tactics of an omnivore.

    Science.gov (United States)

    Rayl, Nathaniel D; Bastille-Rousseau, Guillaume; Organ, John F; Mumma, Matthew A; Mahoney, Shane P; Soulliere, Colleen E; Lewis, Keith P; Otto, Robert D; Murray, Dennis L; Waits, Lisette P; Fuller, Todd K

    2018-05-01

    Prey abundance and prey vulnerability vary across space and time, but we know little about how they mediate predator-prey interactions and predator foraging tactics. To evaluate the interplay between prey abundance, prey vulnerability and predator space use, we examined patterns of black bear (Ursus americanus) predation of caribou (Rangifer tarandus) neonates in Newfoundland, Canada using data from 317 collared individuals (9 bears, 34 adult female caribou, 274 caribou calves). During the caribou calving season, we predicted that landscape features would influence calf vulnerability to bear predation, and that bears would actively hunt calves by selecting areas associated with increased calf vulnerability. Further, we hypothesized that bears would dynamically adjust their foraging tactics in response to spatiotemporal changes in calf abundance and vulnerability (collectively, calf availability). Accordingly, we expected bears to actively hunt calves when they were most abundant and vulnerable, but switch to foraging on other resources as calf availability declined. As predicted, landscape heterogeneity influenced risk of mortality, and bears displayed the strongest selection for areas where they were most likely to kill calves, which suggested they were actively hunting caribou. Initially, the per-capita rate at which bears killed calves followed a type-I functional response, but as the calving season progressed and calf vulnerability declined, kill rates dissociated from calf abundance. In support of our hypothesis, bears adjusted their foraging tactics when they were less efficient at catching calves, highlighting the influence that predation phenology may have on predator space use. Contrary to our expectations, however, bears appeared to continue to hunt caribou as calf availability declined, but switched from a tactic of selecting areas of increased calf vulnerability to a tactic that maximized encounter rates with calves. Our results reveal that generalist

  10. Space use and resource selection by foraging Indiana bats at the northern edge of their distribution

    Science.gov (United States)

    Jachowski, David S.; Johnson, Joshua B.; Dobony, Christopher A.; Edwards, John W.; Ford, W. Mark

    2014-01-01

    Despite 4 decades of conservation concern, managing endangered Indiana bat (Myotis sodalis) populations remains a difficult wildlife resource issue facing natural resource managers in the eastern United States. After small signs of population recovery, the recent emergence of white-nose syndrome has led to concerns of local and/or regional extirpation of the species. Where Indiana bats persist, retaining high-quality foraging areas will be critical to meet physiological needs and ensure successful recruitment and overwinter survival. However, insight into foraging behavior has been lacking in the Northeast of the USA. We radio-tracked 12 Indiana bats over 2 summers at Fort Drum, New York, to evaluate factors influencing Indiana bat resource selection during night-time foraging. We found that foraging space use decreased 2% for every 100 m increase in distance to water and 6% for every 100 m away from the forest edge. This suggests high use of riparian areas in close proximity to forest and is somewhat consistent with the species’ foraging ecology in the Midwest and upper South. Given the importance of providing access to high-quality foraging areas during the summer maternity season, Indiana bat conservation at the northern extent of the species’ range will be linked to retention of forested habitat in close proximity to riparian zones. 

  11. Foraging flight distances of wintering ducks and geese: a review

    Directory of Open Access Journals (Sweden)

    William P. Johnson

    2014-12-01

    Full Text Available The distance covered by foraging animals, especially those that radiate from a central area when foraging, may affect ecosystem, community, and population dynamics, and has conservation and landscape planning implications for multiple taxa, including migratory waterfowl. Migrating and wintering waterfowl make regular foraging flights between roosting and feeding areas that can greatly impact energetic resources within the foraging zone near roost sites. We reviewed published studies and gray literature for one-way foraging flight distances (FFDs of migrating and wintering dabbling ducks and geese. Thirty reviewed studies reported FFDs and several reported values for multiple species or locations. We obtained FFD values for migration (n = 7 and winter (n = 70. We evaluated the effects of body mass, guild, i.e., dabbling duck or goose, and location, i.e., Nearctic or Palearctic, on FFDs. We used the second-order Akaike's Information Criterion for model selection. We found support for effects of location and guild on FFDs. FFDs of waterfowl wintering in the Nearctic (7.4 ± 6.7 km, mean ± SD; n = 39 values were longer than in the Palearctic (4.2 ± 3.2 km; n = 31 values. The FFDs of geese (7.8 ± 7.2 km, mean ± SD; n = 24 values were longer than FFDs of dabbling ducks (5.1 ± 4.4 km, mean ± SD; n = 46 values. We found mixed evidence that distance flown from the roost changed, i.e., increased or decreased, seasonally. Our results can be used to refine estimates of energetic carrying capacity around roosts and in biological and landscape planning efforts.

  12. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  13. Climate and tourism in the Black Forest during the warm season.

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative

  14. Hydrological Responses of Chaobai River Basin under 1.5° and 2.0° Global Warming Using Multi-GCMs and Multi-RCPs

    Science.gov (United States)

    Hao, Y.; Ma, J.

    2017-12-01

    The global warming of 1.5° and 2.0° proposed in Paris Agreement has became the iconic threshold of climate change impact research and discussion. In order to provide useful reference to the effective water resource management and planning for the capital city of China, this study aims to assessing the potential impact of 1.5° and 2.0° global warming on river discharge in Chaobai River Basin(CRB) which is main water supply source of Beijing. A semi-distributed hydrological model SWAT was driven by climate projections from five General Circulation Models(GCMs) under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5) to simulate the future discharge in CRB under 1.5° and 2.0° global warming respectively. On this basis, climate change impact on annual and monthly discharge, seasonal discharge distribution, extreme monthly discharge in CRB were assessed and the uncertainty associated with GCMs and RCPs were analyzed quantitatively. The results indicate that the average annual discharge will increase slightly and more concentrate in midsummer and early autumn under 1.5° global warming. When the global average temperature rise 2°, the annual discharge in CRB show an evident positive tendency with the magnitude increasing by approximate 30% and the extreme monthly runoff will significantly increase. However, the proportion of discharge in summer which is the peak water usage period will decline. It is obvious that the increment of 0.5° will lead to more flood events and bring great challenge to water resource management. There is a certain uncertainty in the projection of temperature, precipitation and discharge, by contrast, uncertainty of discharge projection is far greater than that of other two meteorological elements. Compared with RCPs, GCMs are proved to be the main factor which are responsible for the impact uncertainty in CRB under two global warming horizons. The uncertainty will be larger as the warming magnitude increase. In a word

  15. Climate impacts on agriculture: Implications for forage and rangeland production

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Thomson, Allison M.; Morgan, Jack; Fay, Philip; Polley, Wayne; Hatfield, Jerry L.

    2011-04-19

    Projections of temperature and precipitation patterns across the United States during the next 50 years anticipate a 1.5 to 2°C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change impacts on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on pastureland and rangeland species to rising CO2 and climate change (temperature, and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g., community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pasture species to increased [CO2] is consistent with the general response of C3 and C4 type vegetation, although significant exceptions exist. Both pastureland and rangeland species should exhibit an acceleration of metabolism and development due to earlier onset of spring green-up and longer growing seasons. However, in the studies reviewed here, C3 pasture species increased their photosynthetic rates by up to 40% while C4 species exhibited no increase in photosynthesis. In general, it is expected that increases in [CO2] and precipitation would enhance rangeland net primary production (NPP) while increased air temperatures would either increase or decrease NPP. Much of this uncertainty in response is due to uncertain future projections of precipitation, both globally and regionally. For example, if annual precipitation changes little or declines, rangeland plant response to warming temperatures and rising [CO2] may be neutral or may decline due to increased water stress. This review reveals the need for comprehensive studies of climate change impacts on the pasture ecosystem including grazing regimes, mutualistic relationships (e.g., plant roots-nematodes; N

  16. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae.

    Science.gov (United States)

    Mu, Junpeng; Peng, Youhong; Xi, Xinqiang; Wu, Xinwei; Li, Guoyong; Niklas, Karl J; Sun, Shucun

    2015-11-01

    Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows. A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology. Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area. The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant-pollinator interactions and plant

  17. Changes in the onset of spring growth in shrubland species in response to experimental warming along a north-south gradient in Europe

    DEFF Research Database (Denmark)

    Prieto, Patricia; Penuelas, Josep; Niinemets, Üelo

    2009-01-01

    Species responsive to increased temperatures were Vaccinium myrtillus and Empetrum nigrum in Wales, Deschampsia flexuosa in Denmark, Calluna vulgaris in Netherlands, Populus alba in Hungary and Erica multiflora in Spain. Although the acceleration of spring growth was the commonest response to warming...... gradient with average annual temperatures (8.2–15.6 °C) and precipitation (511–1427 mm). Methods 'Bud break' was monitored in eight shrub and grass species in six European sites under control and experimentally warmer conditions generated by automatic roofs covering vegetation during the night. Results...... treatments, the responses at each site were species specific and year dependent. Under experimental warming 25% of cases exhibited a significantly earlier onset of the growing season and 10% had a significantly delayed onset of vegetative growth. No geographical gradient was detected in the experimental...

  18. Livestock forage and mineral relations on a shrub-steppe rangeland in northwestern United States of America

    International Nuclear Information System (INIS)

    Uresk, D.W.; Rickard, W.H.

    1976-01-01

    The study area is the Arid Lands Ecology (ALE) Reserve, a portion of the United States Energy Research and Development Administration's Hanford Reservation located in the semi-arid region of south-central Washington. Small experimental pastures were subjected to four consecutive years of moderate spring grazing by yearling steers. These pastures are unique in that they represent grazing stresses imposed upon previously ungrazed (by livestock) plant communities. These communities had been protected from grazing by livestock for more than 30 years under ERDA management. Bluebunch wheatgrass (Agropyron spicatum), the dominant species, was the major forage plant in the diet of the steers during the 1974 grazing season, followed by Cusick's bluegrass (Poa cusickii), Thurber's needlegrass (Stipa thurberiania) and hawksbeard (Crepis atrabarba). These four species made up approximately 93% of the total diet. The forage intake ranged from 9.9 kg/head daily to 10.9 kg/head daily during the grazing season. During this period, these steers gained a total of 21.6 kg/ha live weight. Fifteen kg of forage consumed produces 1 kg of live steer for a 6.7% conversion. The conversion rate for crude protein was 12.7%, 83.3% for phosphorus and 25.6% for calcium. (author)

  19. CHEMICAL COMPOSITION OF CAATINGA POTENTIAL FORAGES SPECIES

    Directory of Open Access Journals (Sweden)

    Dynara Layza de Souza da Silva

    2015-12-01

    Full Text Available Chemical composition of some potential forages species, natives from Caatinga region, were evaluated. Samples of Macroptilium heterophyllum, Stylosanthes humilis, Rhynchosia mínima, Desmodium tortuosum Sw. Dc, Merremia aegyptia, Mimosa tenuiflora Wild, Bauhinia cheilantha and as well Macroptilium lathyroides, Caesalpinia pyramidalis and Mimosa tenuiflora hays were collected in Rio Grande do Norte Stated, during 2011 rainy season. The analyses: dry matter (DM, crude protein (CP mineral matter (MM ether extract  (EE neutral detergent fiber (NDF, acid detergent fiber (ADF, lignin (LIG, insoluble neutral detergent nitrogen, (INDN insoluble acid detergent nitrogen, (ADIN, total phenol (TF and total tannin (TT were done at Embrapa Caprinos e Ovinos in Ceará State. Plants analyzed, as expected, for tropical species, exhibited high level of cell wall constituents, high lignifications rate and revealed substantial presence of anti nutritional compounds. However, regardless of this data, the main problem, for grazing animals, is due to its xerophytes characteristics. Most of the shrubs and trees are deciduous, losing its leaves during the dry season. In addition, herbaceous presents a very rapid lifetime cycle, germinating and senescing during the brief wet season.

  20. Towards an assessment of on-farm niches for improved forages in Sud-Kivu, DR Congo

    Directory of Open Access Journals (Sweden)

    Birthe K. Paul

    2016-10-01

    Full Text Available Inadequate quantity and quality of livestock feed is a persistent constraint to productivity for mixed crop-livestock farming in eastern Democratic Republic of Congo. To assess on-farm niches of improved forages, demonstration trials and participatory on-farm research were conducted in four different sites. Forage legumes included Canavalia brasiliensis (CIAT 17009, Stylosanthes guianensis (CIAT 11995 and Desmodium uncinatum (cv. Silverleaf, while grasses were Guatemala grass (Tripsacum andersonii, Napier grass (Pennisetum purpureum French Cameroon, and a local Napier line. Within the first six months, forage legumes adapted differently to the four sites with little differences among varieties, while forage grasses displayed higher variability in biomass production among varieties than among sites. Farmers’ ranking largely corresponded to herbage yield from the first cut, preferring Canavalia, Silverleaf desmodium and Napier French Cameroon. Choice of forages and integration into farming systems depended on land availability, soil erosion prevalence and livestock husbandry system. In erosion prone sites, 55–60%of farmers planted grasses on field edges and 16–30% as hedgerows for erosion control. 43% of farmers grew forages as intercrop with food crops such as maize and cassava, pointing to land scarcity. Only in the site with lower land pressure, 71% of farmers grew legumes as pure stand. When land tenure was not secured and livestock freely roaming, 75% of farmers preferred to grow annual forage legumes instead of perennial grasses. Future research should develop robust decision support for spatial and temporal integration of forage technologies into diverse smallholder cropping systems and agro-ecologies.

  1. Environmental characterization of seasonal trends and foraging habitat of bottlenose dolphins (Tursiops truncatus) in northern Gulf of Mexico bays

    OpenAIRE

    Miller, Cara E.; Baltz, Donald M.

    2010-01-01

    A description of the foraging habitat of a cetacean species is critical for conservation and effective management. We used a fine-scale microhabitat approach to examine patterns in bottlenose dolphin (Tursiops truncatus) foraging distribution in relation to dissolved oxygen, turbidity, salinity, water depth, water temperature, and distance from shore measurements in a highly turbid estuary on the northern Gulf of Mexico. In general, environmental variation in the Barataria Basin marine env...

  2. A new way of assessing foraging behaviour at the individual level using faeces marking and satellite telemetry.

    Directory of Open Access Journals (Sweden)

    Marie-Andrée Giroux

    Full Text Available Heterogeneity in foraging behaviour can profoundly influence ecological processes shaping populations. To scale-up from individual foraging behaviour to processes occurring at the population scale, one needs to sample foraging behaviour at the individual level, and over large temporal scales or during critical seasons known to influence life-history traits. We developed an innovative technique to monitor foraging behaviour at the individual level in secretive species, a technique that can be ultimately used to investigate the links between foraging behaviour and life-history traits. First, the technique used a novel approach, namely the combination of telemetry tracking and biomarking of faeces with food dyes to locate fresh signs of presence left by individuals equipped with GPS collars. Second, the technique is based on the simultaneous or successive sampling of life-history traits and individual foraging behaviour, using tracks with high probabilities of recovery of dyed faeces. We first describe our methodological approach, using a case study of a large herbivore, and then provide recommendations and guidelines for its use. Sampling single snow tracks of individuals equipped with a GPS collar was a reliable way to assess individual winter foraging behaviour in a white-tailed deer (Odocoileus virginianus Zimmermann population. During that period, the probability of recovery of dyed faeces within the range of the collar precision was very high for single snow tracks of equipped deer (97%. Our approach is well suited to study individual foraging behaviour, and could ultimately be used to investigate the interplay between intra-population heterogeneity in foraging behaviour, life-history traits, and demographic processes.

  3. Evaluating the impact of handling and logger attachment on foraging parameters and physiology in southern rockhopper penguins.

    Directory of Open Access Journals (Sweden)

    Katrin Ludynia

    Full Text Available Logger technology has revolutionised our knowledge of the behaviour and physiology of free-living animals but handling and logger attachments may have negative effects on the behaviour of the animals and their welfare. We studied southern rockhopper penguin (Eudyptes chrysocome females during the guard stage in three consecutive breeding seasons (2008/09-2010/11 to evaluate the effects of handling and logger attachment on foraging trip duration, dive behaviour and physiological parameters. Smaller dive loggers (TDRs were used in 2010/11 for comparison to larger GPS data loggers used in all three seasons and we included two categories of control birds: handled controls and PIT control birds that were previously marked with passive integrative transponders (PITs, but which had not been handled during this study. Increased foraging trip duration was only observed in GPS birds during 2010/11, the breeding season in which we also found GPS birds foraging further away from the colony and travelling longer distances. Compared to previous breeding seasons, 2010/11 may have been a period with less favourable environmental conditions, which would enhance the impact of logger attachments. A comparison between GPS and TDR birds showed a significant difference in dive depth frequencies with birds carrying larger GPS data loggers diving shallower. Mean and maximum dive depths were similar between GPS and TDR birds. We measured little impact of logger attachments on physiological parameters (corticosterone, protein, triglyceride levels and leucocyte counts. Overall, handling and short-term logger attachments (1-3 days showed limited impact on the behaviour and physiology of the birds but care must be taken with the size of data loggers on diving seabirds. Increased drag may alter their diving behaviour substantially, thus constraining them in their ability to catch prey. Results obtained in this study indicate that data recorded may also not represent their

  4. Does behavioural thermoregulation underlie seasonal movements in Lake Erie walleye?

    Science.gov (United States)

    Raby, Graham D.; Vandergoot, Christopher; Hayden, Todd A.; Faust, Matthew D.; Kraus, Richard T.; Dettmers, John M.; Cooke, Steven J.; Zhao, Yingming; Fisk, Aaron T.; Krueger, Charles C.

    2018-01-01

    Thermoregulation is presumed to be a widespread determinant of behaviour in fishes, but has not often been investigated as a mechanism shaping long-distance migrations. We used acoustic telemetry and animal-borne thermal loggers to test the hypothesis that seasonal migration in adult walleye (Sander vitreus) in Lake Erie is size- and (or) sex-specific and related to behavioural thermoregulation. Female walleye migrated out of the warm, shallow western basin earlier than did males and were 1.8 times more likely to be detected on acoustic receivers in the deeper and cooler eastern basin. The few fish that remained in the western basin were restricted to a smaller range of higher temperatures (≥20 °C) than those that migrated to the central and eastern basins (∼16–21 °C). However, temperature records from walleye in the central basin were nearly indistinguishable from those in the eastern basin, suggesting thermal preferences alone could not explain migration to the eastern basin. As such, our effort to understand the mechanisms that cause migratory behaviours has generated mixed evidence on the role of temperature and that factors like foraging opportunities may have synergistic roles in the migration.

  5. Seasonal and spatial variation in broadleaf forest model parameters

    Science.gov (United States)

    Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.

    2009-04-01

    Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and

  6. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach

    Science.gov (United States)

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-01-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants. PMID:24665344

  7. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    Science.gov (United States)

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  8. Modeled seasonality of glacial abrupt climate events

    Energy Technology Data Exchange (ETDEWEB)

    Flueckiger, Jacqueline [Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO (United States); Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Zurich (Switzerland); Knutti, Reto [Institute for Atmospheric and Climate Science, ETH Zuerich, Zurich (Switzerland); White, James W.C. [Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO (United States); Renssen, Hans [Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, Amsterdam (Netherlands)

    2008-11-15

    Greenland ice cores, as well as many other paleo-archives from the northern hemisphere, recorded a series of 25 warm interstadial events, the so-called Dansgaard-Oeschger (D-O) events, during the last glacial period. We use the three-dimensional coupled global ocean-atmosphere-sea ice model ECBILT-CLIO and force it with freshwater input into the North Atlantic to simulate abrupt glacial climate events, which we use as analogues for D-O events. We focus our analysis on the Northern Hemisphere. The simulated events show large differences in the regional and seasonal distribution of the temperature and precipitation changes. While the temperature changes in high northern latitudes and in the North Atlantic region are dominated by winter changes, the largest temperature increases in most other land regions are seen in spring. Smallest changes over land are found during the summer months. Our model simulations also demonstrate that the temperature and precipitation change patterns for different intensifications of the Atlantic meridional overturning circulation are not linear. The extent of the transitions varies, and local non-linearities influence the amplitude of the annual mean response as well as the response in different seasons. Implications for the interpretation of paleo-records are discussed. (orig.)

  9. Cold-season temperature in the Swiss Alps from AD 1100-1500; trends, intra-annual variability and forcing factors

    Science.gov (United States)

    de Jong, Rixt; Kamenik, Christian; Grosjean, Martin

    2010-05-01

    To fully understand past climatic changes and their forcing factors, detailed reconstructions of past summer and winter temperatures are required. Winter temperature reconstructions are scarce, however, because most biological proxies are biased towards the growing season. This study presents a detailed reconstruction of winter temperatures based on Chrysophyte stomatocysts, silicious scales formed by so-called 'golden algae'. Previous studies (Kamenik and Schmidt, 2005; Pla and Catalan, 2005) have demonstrated the sensitivity of these algae to cold-season temperatures. Chrysophyte stomatocyst analysis was carried out on varved sediments from Lake Silvaplana (1791 m a.s.l.) at annual to near-annual resolution for two periods; AD 1100-1500 and AD 1870-2004. For both periods the reference date 'date of spring mixing' (Smix) was reconstructed using a transfer function developed for the Austrian Alps (Kamenik and Schmidt, 2005). In the Austrian Alps, Smix was primarily driven by air temperature in the cold season. The strength of stomatocysts as a proxy for winter temperature was tested by directly comparing reconstructed Smix with measured temperatures from nearby meteostation Sils Maria for the period AD 1870 - 2004. Correlation was highest (R = -0.6; p number of eruptions during the much shorter instrumental period (Fischer et al., 2007). References: T. Crowley. Science 289, 270-277 (2000) E. Fischer et al. Geophys. Res. Lett. 34, L05707 (2007) C. Kamenik and R. Schmidt. Boreas 34, 477-489 (2005) I. Larocque-Tobler et al. Quat. Sci. Rev., accepted. S. Pla and J. Catalan. Clim. Dyn. 24, 263-278 (2005) M. Trachsel et al. Manuscript in review

  10. Impacts of second-generation biofuel feedstock production in the central U.S. on the hydrologic cycle and global warming mitigation potential

    Science.gov (United States)

    Harding, K. J.; Twine, T. E.; VanLoocke, A.; Bagley, J. E.; Hill, J.

    2016-10-01

    Biofuel feedstocks provide a renewable energy source that can reduce fossil fuel emissions; however, if produced on a large scale they can also impact local to regional water and carbon budgets. Simulation results for 2005-2014 from a regional weather model adapted to simulate the growth of two perennial grass biofuel feedstocks suggest that replacing at least half the current annual cropland with these grasses would increase water use efficiency and drive greater rainfall downwind of perturbed grid cells, but increased evapotranspiration (ET) might switch the Mississippi River basin from having a net warm-season surplus of water (precipitation minus ET) to a net deficit. While this scenario reduces land required for biofuel feedstock production relative to current use for maize grain ethanol production, it only offsets approximately one decade of projected anthropogenic warming and increased water vapor results in greater atmospheric heat content.

  11. Effect of forage quality in faeces from different ruminant species fed high and low quality forage

    DEFF Research Database (Denmark)

    Jalali, A R; Nørgaard, P; Nielsen, M O

    2010-01-01

    Effect of forage quality in faeces from different ruminant species fed high and low quality forage......Effect of forage quality in faeces from different ruminant species fed high and low quality forage...

  12. Fodder Biomass Monitoring in Sahelian Rangelands Using Phenological Metrics from FAPAR Time Series

    Directory of Open Access Journals (Sweden)

    Abdoul Aziz Diouf

    2015-07-01

    Full Text Available Timely monitoring of plant biomass is critical for the management of forage resources in Sahelian rangelands. The estimation of annual biomass production in the Sahel is based on a simple relationship between satellite annual Normalized Difference Vegetation Index (NDVI and in situ biomass data. This study proposes a new methodology using multi-linear models between phenological metrics from the SPOT-VEGETATION time series of Fraction of Absorbed Photosynthetically Active Radiation (FAPAR and in situ biomass. A model with three variables—large seasonal integral (LINTG, length of growing season, and end of season decreasing rate—performed best (MAE = 605 kg·DM/ha; R2 = 0.68 across Sahelian ecosystems in Senegal (data for the period 1999–2013. A model with annual maximum (PEAK and start date of season showed similar performances (MAE = 625 kg·DM/ha; R2 = 0.64, allowing a timely estimation of forage availability. The subdivision of the study area in ecoregions increased overall accuracy (MAE = 489.21 kg·DM/ha; R2 = 0.77, indicating that a relation between metrics and ecosystem properties exists. LINTG was the main explanatory variable for woody rangelands with high leaf biomass, whereas for areas dominated by herbaceous vegetation, it was the PEAK metric. The proposed approach outperformed the established biomass NDVI-based product (MAE = 818 kg·DM/ha and R2 = 0.51 and should improve the operational monitoring of forage resources in Sahelian rangelands.

  13. [Effects of Warming and Straw Application on Soil Respiration and Enzyme Activity in a Winter Wheat Cropland].

    Science.gov (United States)

    Chen, Shu-tao; Sang, Lin; Zhang, Xu; Hu, Zheng-hua

    2016-02-15

    In order to investigate the effects of warming and straw application on soil respiration and enzyme activity, a field experiment was performed from November 2014 to May 2015. Four treatments, which were control (CK), warming, straw application, and warming and straw application, were arranged in field. Seasonal variability in soil respiration, soil temperature and soil moisture for different treatments were measured. Urease, invertase, and catalase activities for different treatments were measured at the elongation, booting, and anthesis stages. The results showed that soil respiration in different treatments had similar seasonal variation patterns. Seasonal mean soil respiration rates for the CK, warming, straw application, and warming and straw application treatments were 1.46, 1.96, 1.92, and 2.45 micromol x (m2 x s)(-1), respectively. ANOVA indicated that both warming and straw applications significantly (P soil respiration compared to the control treatment. The relationship between soil respiration and soil temperature in different treatments fitted with the exponential regression function. The exponential regression functions explained 34.3%, 28.1%, 24.6%, and 32.0% variations of soil respiration for CK, warming, straw application, and warming and straw application treatments, respectively. Warming and straw applications significantly (P soil respiration and urease activity fitted with a linear regression function, with the P value of 0.061. The relationship between soil respiration and invertase (P = 0.013), and between soil respiration and catalase activity (P = 0.002) fitted well with linear regression functions.

  14. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  15. Does greed help a forager survive?

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-06-01

    We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.

  16. NEW SEASON NEW HOPES: OFF-SEASON OPTIMISM

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2017-12-01

    Full Text Available While literature on the relation between on-field sports performance and stock returns is ample, there is very limited evidence on off-season stage. Constituting around 3 months, off-seasons do not only occupy a significant part of the year but also represent totally different characteristics than on-seasons. They lack the periodic, unambiguous news events in on-seasons (match results, instead they are associated with highly uncertain transfer news and rumors. We show that this distinction has several impacts on the stock market performances of soccer clubs. Most notably, off-seasons generate substantially higher (excess returns. After controlling for other variables, the estimated effect of off-season periods is as high as 38.75%, annually. In line with several seminal studies, we link this fact to increased optimism and betting behavior through uncertain periods; and periods prior to the start of a new calendar (in our case, new season. For all of the examined 7 clubs (3 from Italy and 4 from Turkey, mean excess returns over the market are positive (negative in off-seasons (on-seasons. On-seasons are associated with increased trading activity due to more frequent news. Stocks of Italian clubs are evidently more volatile through off-seasons while volatility results for the stocks of Turkish clubs are not consistent.

  17. Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Yang, Chuntao; Gao, Peng; Hou, Fujiang; Yan, Tianhai; Chang, Shenghua; Chen, Xianjiang; Wang, Zhaofeng

    2018-04-02

    To better utilize native pasture at the high altitude region, three-consecutive-year feeding experiments and a total of seven metabolism trials were conducted to evaluate the impact of three forage stages of maturity on the chemical composition, nutrient digestibility, and energy metabolism of native forage in Tibetan sheep on the Qinghai-Tibetan Plateau (QTP). Forages were harvested from June to July, August to October, and November to December of 2011 to 2013, corresponding to the vegetative, bloom, and senescent stages of the annual forages. Twenty male Tibetan sheep were selected for each study and fed native forage ad libitum. The digestibility of DM, OM, CP, NDF, ADF, DE, DE/GE, and ME/GE were greatest (P digestibility and energy parameters correlated positively (linear, 0.422 to 0.778; quadratic, 0.568 to 0.815; P digestibility. Contrary to previous studies, in this study, ADF content had a greater linear relationship (0.766 vs. 0.563 to 0.732) with OM digestibility than the other parameters of nutrient digestibility. The quadratic relationship between forage CP content and CP digestibility indicates that when forage CP content exceeds the peak point (9.7% DM in the present study), increasing forage CP content could decrease CP digestibility when Tibetan sheep were offered native forage alone on the QTP. Additionally, using the forage CP, EE, NDF, and ADF content to predict DMI (g/kg BW·d) yielded the best fit equation for Tibetan sheep living in the northeast portion of the QTP.

  18. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini) in temperate climate of Jalisco, México.

    Science.gov (United States)

    Macías-Macías, J O; Tapia-Gonzalez, J M; Contreras-Escareño, F

    2017-01-01

    Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  19. Warm water temperatures and shifts in seasonality increase trout recruitment but only moderately decrease adult size in western North American tailwaters

    Science.gov (United States)

    Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.

    2018-01-01

    Dams throughout western North America have altered thermal regimes in rivers, creating cold, clear “tailwaters” in which trout populations thrive. Ongoing drought in the region has led to highly publicized reductions in reservoir storage and raised concerns about potential reductions in downstream flows. Large changes in riverine thermal regimes may also occur as reservoir water levels drop, yet this potential impact has received far less attention. We analyzed historic water temperature and fish population data to anticipate how trout may respond to future changes in the magnitude and seasonality of river temperatures. We found that summer temperatures were inversely related to reservoir water level, with warm temperatures associated with reduced storage and with dams operated as run-of-river units. Variation in rainbow trout (Oncorhynchus mykiss) recruitment was linked to water temperature variation, with a 5-fold increase in recruitment occurring at peak summer temperatures (18 °C vs. 7 °C) and a 2.5-fold increase in recruitment when peak temperatures occurred in summer rather than fall. Conversely, adult trout size was only moderately related to temperature. Rainbow and brown trout (Salmo trutta) size decreased by ~24 mm and 20 mm, respectively, as mean annual and peak summer temperatures increased. Further, rainbow trout size decreased by ~29 mm with an earlier onset of cold winter temperatures. While increased recruitment may be the more likely outcome of a warmer and drier climate, density-dependent growth constraints could exacerbate temperature-dependent growth reductions. As such, managers may consider implementing flows to reduce recruitment or altering infrastructure to maintain coldwater reservoir releases.

  20. ANNUAL AND SEASONAL-VARIATION IN THE FOOD-SUPPLY HARVESTABLE BY KNOT CALIDRIS-CANUTUS STAGING IN THE WADDEN SEA IN LATE SUMMER

    NARCIS (Netherlands)

    ZWARTS, L; BLOMERT, AM; WANINK, JH

    The biomass of the macrobenthic animals living in intertidal flats of the Wadden Sea varies annually and seasonally. However, the variation in prey biomass harvestable by wading birds such as knot Calidris canutus, which feed mainly on the middle range of their prey size classes, is even larger. The

  1. Gross primary production of a semiarid grassland is enhanced by six years of exposure to elevated atmospheric CO2, warming, and irrigation.

    Science.gov (United States)

    Ryan, E.; Ogle, K.; Peltier, D.; Williams, D. G.; Pendall, E.

    2014-12-01

    The goal of this study was to quantify interannual variation of gross primary production (GPP) and evaluate potential drivers of GPP with global change using the Prairie Heating and CO2 Enrichment (PHACE) experiment in semiarid grassland in southeastern Wyoming. PHACE consists of the treatments: control, warming only, elevated CO2 (eCO2) only, eCO2 and warming, and irrigation only. We expected that GPP would be most strongly influenced by interannual variability in precipitation under all PHACE treatments, soil water availability under eCO2, and nitrogen availability. GPP data were obtained from paired measurements of net ecosystem exchange (NEE) and ecosystem respiration (Reco; GPP = Reco - NEE) made on 2-4 week intervals over six growing seasons (2007-2012). Soil temperature (T), soil water content (SWC), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR) were continuously recorded at the plot (T, SWC) and site (VPD, PAR) scales. Annual, plot-level aboveground plant nitrogen content (N) was measured during peak biomass. We fit a non-linear light-response model to the GPP data within a Bayesian framework, and modeled the maximum GPP rate (Gmax) and canopy light-use efficiency (Q) as functions of N and current and antecedent SWC, T, and VPD. The model fit the GPP data well (R2 = 0.64), and regardless of the PHACE treatment the most important drivers of GPP were N (for Gmax), VPD (Gmax and Q), antecedent T (Gmax), and antecedent VPD (Q). Model simulations predicted that annual GPP increased on average by about 16% with eCO2, 14% with warming, 12% with eCO2 and warming, and 23% with irrigation. For four of the six years, annual GPP was significantly affected by either eCO2 alone or when combined with warming. The increase in annual GPP under irrigation was similar to the increase under eCO2 during a dry year (2012), but irrigation stimulated GPP to a greater degree than eCO2 during wet years (2008, 2009). Hence, increases in GPP under eCO2

  2. Soil microbial responses to climate warming in Northern Andean alpine ecosystems

    Science.gov (United States)

    Gallery, R. E.; Lasso, E.

    2017-12-01

    The historically cooler temperatures and waterlogged soils of tropical alpine grasslands (páramo) have resulted in low decomposition rates and a large buildup of organic matter, making páramo one of the most important carbon sinks in tropical biomes. The climatic factors that favored the carbon accumulation are changing, and as a result páramo could play a disproportionate role in driving climate feedbacks through increased carbon released from these large soil carbon stores. Open top chamber warming experiments were established in the Colombian Andes in 2016 to quantify the magnitude of climate change on carbon balance and identify microbial and plant traits that regulate these impacts. Two focal sites differ in mean annual temperature, precipitation, and plant community richness. Heterotrophic respiration (RH,) was measured from soil cores incubated at temperatures representing current and projected warming. The warming effect on RH was sensitive to soil moisture, which could reflect shifts in microbial community composition and/or extracellular enzyme production or efficiency as soils dry. Bacterial, archaeal, and fungal communities in ambient and warmed plots were measured through high-throughput amplicon sequencing of the 16S rRNA and ITS1 rRNA gene regions. Communities showed strong spatial structuring both within and among páramo, reflecting the topographic heterogeneity of these ecosystems. Significant differences in relative abundance of dominant microbial taxa between páramo could be largely explained by soil bulk density, water holding capacity, and non-vascular plant cover. Phototrophs common to anoxic soils (e.g., Rhodospirillaceae, Hyphomicrobiaceae) were abundant. Taxa within Euryarchaeota were recovered, suggesting methanogenesis potential. Exploration of the magnitude and temperature sensitivity of methane flux is needed in these seasonally anoxic soils whose dynamics could have significant implications for the global climate system.

  3. Sulphate and desertification signals in Middle Eastern temperature trends

    International Nuclear Information System (INIS)

    Nasrallah, H.A.; Balling, R.C. Jr.

    1994-01-01

    Analysis of Middle Eastern annual temperature anomalies over the past 40 years reveals statistically significant warming over this time period of 0.07 C per decade. The warming is most pronounced over the spring season and least apparent in the winter season. Spatial analysis reveals a positive relationship between Middle Eastern warming and the degree of human-induced desertification and a negative relationship between local warming and the atmospheric concentration of sulphate

  4. Best practices for assessing forage fish fisheries-seabird resource competition

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Anker-Nilssen, Tycho; Arimitsu, Mayumi L.; Bennison, Ashley; Bertrand, Sophie; Boersch-Supan, Philipp; Boyd, Charlotte; Bransome, Nicole C.; Crawford, Robert J.M.; Daunt, Francis; Furness, Robert W.; Gianuca, Dimas; Gladics, Amanda; Koehn, Laura; Lang, Jennifer W.; Loggerwell, Elizabeth; Morris, Taryn L.; Phillips, Elizabeth M.; Provencher, Jennifer; Punt, André E..; Saraux, Claire; Shannon, Lynne; Sherley, Richard B.; Simeone, Alejandro; Wanless, Ross M.; Wanless, Sarah; Zador, Stephani

    2017-01-01

    Worldwide, in recent years capture fisheries targeting lower-trophic level forage fish and euphausiid crustaceans have been substantial (∼20 million metric tons [MT] annually). Landings of forage species are projected to increase in the future, and this harvest may affect marine ecosystems and predator-prey interactions by removal or redistribution of biomass central to pelagic food webs. In particular, fisheries targeting forage fish and euphausiids may be in competition with seabirds, likely the most sensitive of marine vertebrates given limitations in their foraging abilities (ambit and gape size) and high metabolic rate, for food resources. Lately, apparent competition between fisheries and seabirds has led to numerous high-profile conflicts over interpretations, as well as the approaches that could and should be used to assess the magnitude and consequences of fisheries-seabird resource competition. In this paper, we review the methods used to date to study fisheries competition with seabirds, and present “best practices” for future resource competition assessments. Documenting current fisheries competition with seabirds generally involves addressing two major issues: 1) are fisheries causing localized prey depletion that is sufficient to affect the birds? (i.e., are fisheries limiting food resources?), and 2) how are fisheries-induced changes to forage stocks affecting seabird populations given the associated functional or numerical response relationships? Previous studies have been hampered by mismatches in the scale of fisheries, fish, and seabird data, and a lack of causal understanding due to confounding by climatic and other ecosystem factors (e.g., removal of predatory fish). Best practices for fisheries-seabird competition research should include i) clear articulation of hypotheses, ii) data collection (or summation) of fisheries, fish, and seabirds on matched spatio-temporal scales, and iii) integration of observational and experimental

  5. Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream.

    Science.gov (United States)

    Bonet, Berta; Corcoll, Natàlia; Acuňa, Vicenç; Sigg, Laura; Behra, Renata; Guasch, Helena

    2013-02-01

    While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Production and supply logistics of switchgrass as an energy feedstock

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a warm-season (C4), perennial grass that is native to the tallgrass ecoregion of North America (Figure 1). Historically, switchgrass has been used for summer forage, hay, ensiling, or in conservation plantings. At the end of the 20th century, switchgrass was de...

  7. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming.

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Asmund; Michelsen, Anders; Holopainen, Jarmo K; Rinnan, Riikka

    2010-07-01

    *Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. *We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra heath hosting a long-term warming and mountain birch (Betula pubescens ssp. czerepanovii) litter addition experiment. *The relatively low emissions of monoterpenes and sesquiterpenes were doubled in response to an air temperature increment of only 1.9-2.5 degrees C, while litter addition had a minor influence. BVOC emissions were seasonal, and warming combined with litter addition triggered emissions of specific compounds. *The unexpectedly high rate of release of BVOCs measured in this conservative warming scenario is far above the estimates produced by the current models, which underlines the importance of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects.

  8. Distribution and seasonal change of the Tsugaru warm current water off Rokkasho

    International Nuclear Information System (INIS)

    Shima, Shigeki; Nakayama, Tomoharu; Iseda, Kenichi; Nishizawa, Keisuke; Gasa, Shinichi; Suto, Kazuhiko; Sakurai, Satoshi; Oguri, Kazumasa; Kouzuma, Kiyotake

    2000-01-01

    The first commercial spent fuel reprocessing plant in Japan is being installed in Rokkasho-mura, Aomori Prefecture. Decontaminated liquid effluents in its operation will be released into a sea. In accessing the environmental impact of radionuclides discharged into a sea, it is important that the patterns of water movements around the discharge outlet are clarified. This area off Rokkasho is an open coast, where the Tsugaru Warm Current Water (TWC), the cold Oyashio and the warm Kuroshio Extension meet. Therefore, it is considered that complicated water circulations will be formed around the region of the wastewater outlet. Current structures of the coastal water near the ocean outlet were investigated by use of mooring current meters/ADCPs, a towing-ADCP, and some CTD observations. In addition, extensive observations with CTD and a shipboard ADCP were made in detail around the off Rokkasho (Shimokita Peninsula) to evaluate the distribution and the seasonal change of the TWC. These observations were carried out five times in September 1997 to August 1999. Gyre mode and coastal mode of the TWC experimentally pointed out by Conlon are found by those investigations. In the gyre mode, the large eddy more than 100 km in diameter is found in the east part of the Tsugaru Strait, which has the vertical structure of 1,000 m in depth. From the current measurements by shipboard ADCP, the velocity of the TWC was more than three knots and the width of its fastest region about 30km at that mode. On the other hand, in the coastal mode, the TWC flows along the continental slope off Rokkasho (ca five miles off the coast) and is about 400m thick in depth. The TWC affects the layers below the sill depth of the Tsugaru Strait. In the gyre mode the TWC flows northward along the slope off Rokkasho, however, around the coastal zone standing near to the outlet, southward flow was observed predominantly. At the coastal mode, the northward flow was mostly observed around the coastal area

  9. Possible causes of decreasing migratory ungulate populations in an East African savannah after restrictions in their seasonal movements

    NARCIS (Netherlands)

    Voeten, Margje M.; van de Vijver, Claudius A. D. M.; Olff, Han; van Langevelde, Frank

    In many areas in Africa, seasonal movements of migratory ungulates are restricted and their population numbers decline, for example in the Tarangire region, Tanzania. Here, agriculture restricts migration of ungulates to their wet season ranges. We investigated whether low forage quality or supply

  10. Robustness of a multiple-use reservoir to seasonal runoff shifts associated with climate change

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Brettman, K.L.

    1990-05-01

    Although much remains to be learned about long-term climate change associated with anthropogenic increases in concentrations of the so-called ''greenhouse gases,'' such as carbon dioxide and methane, there is a general consensus that some global warming will result from past and present emissions. In the western United States, the dominant hydrologic effect of such warming, aside from any accompanying changes in precipitation, would be to reduce winter snow accumulations in mountainous headwaters regions. To assess the robustness of reservoir operation to such shifts in seasonal runoff, simulations were developed of monthly runoff for the American River, Washington, using the National Weather Service River Forecast System. The American River is presently unregulated; however, we tested the performance of hypothetical reservoirs with capacity of 0.25 and 0.50 of the mean annual flow for a range of annual temperature changes from 0.0 (present climate) to 4.0 degree C. We considered a multiple-purpose reservoir system operated for water supply ad hydropower, with minimum releases required for fisheries enhancement. In addition to evaluating the sensitivity of water supply, low flow, and hydropower performance using a heuristic operating rule, the relative performance of the system under present and altered climates was evaluated using an optimization algorithm, extended linear quadratic Gaussian control. This paper reports the results of hydrologic simulations for the American River, Washington. 13 refs., 8 figs

  11. Hooded seal Cystophora cristata foraging areas in the Northeast Atlantic Ocean-Investigated using three complementary methods.

    Directory of Open Access Journals (Sweden)

    Jade Vacquie-Garcia

    Full Text Available Identifying environmental characteristics that define the ecological niche of a species is essential to understanding how changes in physical conditions might affect its distribution and other aspects of its ecology. The present study used satellite relay data loggers (SRDLs to study habitat use by Northeast Atlantic hooded seals (N = 20; 9 adult females, 3 adult males, and 8 juveniles. Three different methods were used in combination to achieve maximum insight regarding key foraging areas for hooded seals in this region, which have decline by 85% in recent decades: 1 first passage time (FPT; 2 vertical transit rate and; 3 change in dive drift rate. Generalized additive mixed models (GAMM were applied to each method to determine whether specific habitat characteristics were associated with foraging. Separate models were run for the post-molting and the post-breeding seasons; sex and age classes were included in the GAMMs. All three methods highlighted a few common geographic areas as being important foraging zones; however, there were also some different areas identified by the different methods, which highlights the importance of using multiple indexes when analyzing tracking and diving data to study foraging behavior. Foraging occurred most commonly in relatively shallow areas with high Sea Surface Temperatures (SST, corresponding to continental shelf areas with Atlantic Water masses. All age and sex classes overlapped spatially to some extent, but the different age and sex groups showed differences in the bathymetry of their foraging areas as well as in their vertical use of the water column. When foraging, pups dove in the upper part of the water column in relatively deep areas. Adult females foraged relatively shallowly in deep water areas too, though in shallower areas than pups. Adult males foraged close to the bottom in shallower areas.

  12. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    Science.gov (United States)

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  13. Wetland selection by breeding and foraging black terns in the Prairie Pothole Region of the United States

    Science.gov (United States)

    Steen, Valerie A.; Powell, Abby N.

    2012-01-01

    We examined wetland selection by the Black Tern (Chlidonias niger), a species that breeds primarily in the prairie pothole region, has experienced population declines, and is difficult to manage because of low site fidelity. To characterize its selection of wetlands in this region, we surveyed 589 wetlands throughout North and South Dakota. We documented breeding at 5% and foraging at 17% of wetlands. We created predictive habitat models with a machine-learning algorithm, Random Forests, to explore the relative role of local wetland characteristics and those of the surrounding landscape and to evaluate which characteristics were important to predicting breeding versus foraging. We also examined area-dependent wetland selection while addressing the passive sampling bias by replacing occurrence of terns in the models with an index of density. Local wetland variables were more important than landscape variables in predictions of occurrence of breeding and foraging. Wetland size was more important to prediction of foraging than of breeding locations, while floating matted vegetation was more important to prediction of breeding than of foraging locations. The amount of seasonal wetland in the landscape was the only landscape variable important to prediction of both foraging and breeding. Models based on a density index indicated that wetland selection by foraging terns may be more area dependent than that by breeding terns. Our study provides some of the first evidence for differential breeding and foraging wetland selection by Black Terns and for a more limited role of landscape effects and area sensitivity than has been previously shown.

  14. Plant Guide: Yellow beeplant (Cleome lutea Hook)

    Science.gov (United States)

    Derek Tilley; Jim Cane; Loren St. John; Dan Ogle; Nancy Shaw

    2012-01-01

    Yellow beeplant is a valuable native forage species for bees wasps and butterflies. Over 140 species of native bees have been observed foraging for nectar or pollen on yellow beeplant in southern Utah (Cane, 2008). Yellow beeplant is an annual forb which could provide food to insects in the first growing season of a range seeding (Ogle and others, 2011a). This...

  15. Impact of climate change on mid-twenty-first century growing seasons in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kerry H.; Vizy, Edward K. [The University of Texas at Austin, Department of Geological Sciences, Jackson School of Geosciences, Austin, TX (United States)

    2012-12-15

    Changes in growing seasons for 2041-2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5-10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5-15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40-80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean. (orig.)

  16. Seasonality intensification and long-term winter cooling as a part of the Late Pliocene climate development

    Science.gov (United States)

    Klotz, Stefan; Fauquette, Séverine; Combourieu-Nebout, Nathalie; Uhl, Dieter; Suc, Jean-Pierre; Mosbrugger, Volker

    2006-01-01

    A mutual climatic range method is applied to the Mediterranean marine pollen record of Semaforo (Vrica section, Calabria, Italy) covering the period from ∼2.46 Ma to ∼2.11 Ma. The method yields detailed information on summer, annual and winter temperatures and on precipitation during the nine obliquity and precession-controlled 'glacial' periods (marine isotope stages 96 to 80) and eight 'interglacial' periods (marine isotope stages 95 to 81) characterising this time interval. The reconstruction reveals higher temperatures of at least 2.8 °C in mean annual and 2.2 °C in winter temperatures, and 500 mm in precipitation during the 'interglacials' as compared to the present-day climate in the study area. During the 'glacials', temperatures are generally lower as compared to the present-day climate in the region, but precipitation is equivalent. Along the consecutive 'interglacials', a trend toward a reduction in annual and winter temperatures by more than 2.3 °C, and toward a higher seasonality is observed. Along the consecutive 'glacials', a trend toward a strong reduction in all temperature parameters of at least 1.6 °C is reconstructed. Climatic amplitudes of 'interglacial-glacial' transitions increase from the older to the younger cycles for summer and annual temperatures. The cross-spectral analyses suggest obliquity related warm/humid-cold/dry 'interglacial-glacial' cycles which are superimposed by precession related warm/dry- cold/humid cycles. A time displacement in the development of temperatures and precipitation is indicated for the obliquity band by temperatures generally leading precipitation change at ∼4 kyr, and on the precession band of ∼9.6 kyr in maximum.

  17. Seasonal habitat selection by African buffalo Syncerus caffer in the Savuti–Mababe–Linyanti ecosystem of northern Botswana

    Directory of Open Access Journals (Sweden)

    Keoikantse Sianga

    2017-05-01

    Full Text Available This study aimed to establish seasonal movement and habitat selection patterns of African buffalo Syncerus caffer in relation to a detailed habitat map and according to seasonal changes in forage quality and quantity in the Savuti–Mababe–Linyanti ecosystem (Botswana. Two buffalo were collared in November 2011 and another in October 2012. All three buffalo had greater activities in the mopane–sandveld woodland mosaic during the wet season, which provided high-quality leafy grasses and ephemeral water for drinking, but moved to permanent water and reliable forage of various wetlands (swamps and floodplains and riverine woodlands during the dry season. Wetlands had higher grass greenness, height and biomass than woodlands during the dry season. Buffalo had similar wet season concentration areas in the 2011–2012 and 2012–2013 wet seasons and similar dry season concentration areas over the 2012 and 2013 dry seasons. However, their dry season location of collaring in 2011 differed dramatically from their 2012 and 2013 dry season concentration areas, possibly because of the exceptionally high flood levels in 2011, which reduced accessibility to their usual dry season concentration areas. The study demonstrates that extremely large and heterogeneous landscapes are needed to conserve buffalo in sandy, dystrophic ecosystems with variable rainfall. Conservation implications: This study emphasises the importance of large spatial scale available for movement, which enables adaptation to changing conditions between years and seasons.

  18. King penguin population threatened by Southern Ocean warming.

    Science.gov (United States)

    Le Bohec, Céline; Durant, Joël M; Gauthier-Clerc, Michel; Stenseth, Nils C; Park, Young-Hyang; Pradel, Roger; Grémillet, David; Gendner, Jean-Paul; Le Maho, Yvon

    2008-02-19

    Seabirds are sensitive indicators of changes in marine ecosystems and might integrate and/or amplify the effects of climate forcing on lower levels in food chains. Current knowledge on the impact of climate changes on penguins is primarily based on Antarctic birds identified by using flipper bands. Although flipper bands have helped to answer many questions about penguin biology, they were shown in some penguin species to have a detrimental effect. Here, we present for a Subantarctic species, king penguin (Aptenodytes patagonicus), reliable results on the effect of climate on survival and breeding based on unbanded birds but instead marked by subcutaneous electronic tags. We show that warm events negatively affect both breeding success and adult survival of this seabird. However, the observed effect is complex because it affects penguins at several spatio/temporal levels. Breeding reveals an immediate response to forcing during warm phases of El Niño Southern Oscillation affecting food availability close to the colony. Conversely, adult survival decreases with a remote sea-surface temperature forcing (i.e., a 2-year lag warming taking place at the northern boundary of pack ice, their winter foraging place). We suggest that this time lag may be explained by the delay between the recruitment and abundance of their prey, adjusted to the particular 1-year breeding cycle of the king penguin. The derived population dynamic model suggests a 9% decline in adult survival for a 0.26 degrees C warming. Our findings suggest that king penguin populations are at heavy extinction risk under the current global warming predictions.

  19. Global warming and climate change: control methods

    International Nuclear Information System (INIS)

    Laal, M.; Aliramaie, A.

    2008-01-01

    This paper aimed at finding causes of global warming and ways to bring it under control. Data based on scientific opinion as given by synthesis reports of news, articles, web sites, and books. global warming is the observed and projected increases in average temperature of Earth's atmosphere and oceans. Carbon dioxide and other air pollution that is collecting in the atmosphere like a thickening blanket, trapping the sun's heat and causing the planet to warm up. Pollution is one of the biggest man-made problems. Burning fossil fuels is the main factor of pollution. As average temperature increases, habitats, species and people are threatened by drought, changes in rainfall, altered seasons, and more violent storms and floods. Indeed the life cycle of nuclear power results in relatively little pollution. Energy efficiency, solar, wind and other renewable fuels are other weapons against global warming . Human activity, primarily burning fossil fuels, is the major driving factor in global warming . Curtailing the release of carbon dioxide into the atmosphere by reducing use of oil, gasoline, coal and employment of alternate energy, sources are the tools for keeping global warming under control. global warming can be slowed and stopped, with practical actions thal yield a cleaner, healthier atmosphere

  20. Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins

    Science.gov (United States)

    Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.

    2016-02-01

    Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.

  1. Effects of global warming on ancient mammalian communities and their environments.

    Directory of Open Access Journals (Sweden)

    Larisa R G DeSantis

    2009-06-01

    Full Text Available Current global warming affects the composition and dynamics of mammalian communities and can increase extinction risk; however, long-term effects of warming on mammals are less understood. Dietary reconstructions inferred from stable isotopes of fossil herbivorous mammalian tooth enamel document environmental and climatic changes in ancient ecosystems, including C(3/C(4 transitions and relative seasonality.Here, we use stable carbon and oxygen isotopes preserved in fossil teeth to document the magnitude of mammalian dietary shifts and ancient floral change during geologically documented glacial and interglacial periods during the Pliocene (approximately 1.9 million years ago and Pleistocene (approximately 1.3 million years ago in Florida. Stable isotope data demonstrate increased aridity, increased C(4 grass consumption, inter-faunal dietary partitioning, increased isotopic niche breadth of mixed feeders, niche partitioning of phylogenetically similar taxa, and differences in relative seasonality with warming.Our data show that global warming resulted in dramatic vegetation and dietary changes even at lower latitudes (approximately 28 degrees N. Our results also question the use of models that predict the long term decline and extinction of species based on the assumption that niches are conserved over time. These findings have immediate relevance to clarifying possible biotic responses to current global warming in modern ecosystems.

  2. What to eat in a warming world: do increased temperatures necessitate hazardous duty pay?

    Science.gov (United States)

    Hall, L. Embere; Chalfoun, Anna D.

    2018-01-01

    Contemporary climate change affects nearly all biomes, causing shifts in animal distributions and resource availability. Changes in resource selection may allow individuals to offset climatic stress, thereby providing a mechanism for persistence amidst warming conditions. Whereas the role of predation risk in food choice has been studied broadly, the extent to which individuals respond to thermoregulatory risk by changing resource preferences is unclear. We addressed whether individuals compensated for temperature-related reductions in foraging time by altering forage preferences, using the American pika (Ochotona princeps) as a model species. We tested two hypotheses: (1) food-quality hypothesis—individuals exposed to temperature extremes should select higher-quality vegetation in return for accepting a physiologically riskier feeding situation; and (2) food-availability hypothesis—individuals exposed to temperature extremes should prioritize foraging quickly, thereby decreasing selection for higher-quality food. We quantified the composition and quality (% moisture, % nitrogen, and fiber content) of available and harvested vegetation, and deployed a network of temperature sensors to measure in situ conditions for 30 individuals, during July–Sept., 2015. Individuals exposed to more extreme daytime temperatures showed increased selection for high-nitrogen and for low-fiber vegetation, demonstrating strong support for the food-quality hypothesis. By contrast, pikas that experienced warmer conditions did not reduce selection for any of the three vegetation-quality metrics, as predicted by the food-availability hypothesis. By shifting resource-selection patterns, temperature-limited animals may be able to proximately buffer some of the negative effects associated with rapidly warming environments, provided that sufficient resources remain on the landscape.

  3. Quitting time: When do honey bee foragers decide to stop foraging on natural resources?

    Directory of Open Access Journals (Sweden)

    Michael eRivera

    2015-05-01

    Full Text Available Honey bee foragers may use both personal and social information when making decisions about when to visit resources. In particular, foragers may stop foraging at resources when their own experience indicates declining resource quality, or when social information, namely the delay to being able to unload nectar to receiver bees, indicates that the colony has little need for the particular resource being collected. Here we test the relative importance of these two factors in a natural setting, where colonies are using many dynamically changing resources. We recorded detailed foraging histories of individually marked bees, and identified when they appeared to abandon any resources (such as flower patches that they had previously been collecting from consistently. As in previous studies, we recorded duration of trophallaxis events (unloading nectar to receiver bees as a proxy for resource quality and the delays before returning foragers started trophallaxis as a proxy for social need for the resource. If these proxy measures accurately reflect changes in resource quality and social need, they should predict whether bees continue foraging or not. However, neither factor predicted when individuals stopped foraging on a particular resource, nor did they explain changes in colony-level foraging activity. This may indicate that other, as yet unstudied processes also affect individual decisions to abandon particular resources.

  4. Holocene landscape response to seasonality of storms in the Mojave Desert

    Science.gov (United States)

    Miller, D.M.; Schmidt, K.M.; Mahan, S.A.; McGeehin, J.P.; Owen, L.A.; Barron, J.A.; Lehmkuhl, F.; Lohrer, R.

    2010-01-01

    New optically stimulated and radiocarbon ages for alluvial fan and lake deposits in the Mojave Desert are presented, which greatly improves the temporal resolution of surface processes. The new Mojave Desert climate-landscape record is particularly detailed for the late Holocene. Evidence from ephemeral lake deposits and landforms indicates times of sustained stream flow during a wet interval of the latter part of the Medieval Warm Period at ca. AD 1290 and during the Little Ice Age at ca. AD 1650. The former lakes postdate megadroughts of the Medieval Warm Period, whereas the latter match the Maunder Minimum of the Little Ice Age. Periods of alluvial fan aggradation across the Mojave Desert are 14-9 cal ka and 6-3 cal ka. This timing largely correlates to times of increased sea-surface temperatures in the Gulf of California and enhanced warm-season monsoons. This correlation suggests that sustained alluvial fan aggradation may be driven by intense summer-season storms. These data suggest that the close proximity of the Mojave Desert to the Pacific Ocean and the Gulf of California promotes a partitioning of landscape-process responses to climate forcings that vary with seasonality of the dominant storms. Cool-season Pacific frontal storms cause river flow, ephemeral lakes, and fan incision, whereas periods of intense warm-season storms cause hillslope erosion and alluvial fan aggradation. The proposed landscape-process partitioning has important implications for hazard mitigation given that climate change may increase sea-surface temperatures in the Gulf of California, which indirectly could increase future alluvial fan aggradation.

  5. Soil Moisture and Sea Surface Temperatures equally important for Land Climate in the Warm Season

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2015-12-01

    Both sea surface temperatures (SSTs) and soil moisture (SM) are important drivers of climate variability over land. In this study we present a comprehensive comparison of SM versus SST impacts on land climate in the warm season. We perform ensemble experiments with the Community Earth System Model (CESM) where we set SM or SSTs to median conditions, respectively, to remove their inter-annual variability, whereby the other component - SST or SM - is still interactively computed. In contrast to earlier experiments performed with prescribed SSTs, our experiments suggest that SM is overall as important as SSTs for land climate, not only in the midlatitudes but also in the tropics and subtropics. Mean temperature and precipitation are reduced by 0.1-0.5 K and 0-0.2 mm, respectively, whereas their variability at different time scales decreases by 10-40% (temperature) and 0-10% (precipitation) when either SM or SSTs are prescribed. Also drought occurrence is affected, with mean changes in the maximum number of cumulative dry days of 0-0.75 days. Both SM and SST-induced changes are strongest for hot temperatures (up to 0.7 K, and 50%), extreme precipitation (up to 0.4 mm, and 20%), and strong droughts (up to 2 days). Local climate changes in response to removed SM variability are controlled - to first order - by the land-atmosphere coupling and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Niño-Southern Oscillation. Moreover removed SM or SST variabilities both induce remote effects by impacting the atmospheric circulation. Our results are similar for the present day and the end of the century. We investigate the inter-dependency between SM and SST and find a sufficient degree of independence for the purpose of this study. The robustness of our findings is shown by comparing the response of CESM to removed SM variability with four other global climate models. In summary, SM and SSTs

  6. Developing a module for estimating climate warming effects on hydropower pricing in California

    International Nuclear Information System (INIS)

    Guégan, Marion; Uvo, Cintia B.; Madani, Kaveh

    2012-01-01

    Climate warming is expected to alter hydropower generation in California through affecting the annual stream-flow regimes and reducing snowpack. On the other hand, increased temperatures are expected to increase hydropower demand for cooling in warm periods while decreasing demand for heating in winter, subsequently altering the annual hydropower pricing patterns. The resulting variations in hydropower supply and pricing regimes necessitate changes in reservoir operations to minimize the revenue losses from climate warming. Previous studies in California have only explored the effects of hydrological changes on hydropower generation and revenues. This study builds a long-term hydropower pricing estimation tool, based on artificial neural network (ANN), to develop pricing scenarios under different climate warming scenarios. Results suggest higher average hydropower prices under climate warming scenarios than under historical climate. The developed tool is integrated with California's Energy-Based Hydropower Optimization Model (EBHOM) to facilitate simultaneous consideration of climate warming on hydropower supply, demand and pricing. EBHOM estimates an additional 5% drop in annual revenues under a dry warming scenario when climate change impacts on pricing are considered, with respect to when such effects are ignored, underlining the importance of considering changes in hydropower demand and pricing in future studies and policy making. - Highlights: ► Addressing the major gap in previous climate change and hydropower studies in California. ► Developing an ANN-based long-term hydropower price estimation tool. ► Estimating climate change effects on hydropower demand and pricing in California. ► Investigating the sensitivity of hydropower operations to future price changes. ► Underlining the importance of consideration of climate change impacts on electricity pricing.

  7. Seasonal variability in Arctic temperatures during the early Eocene

    Science.gov (United States)

    Eberle, J. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, H.

    2009-12-01

    As a deep time analog for today’s rapidly warming Arctic region, early Eocene (~53 Ma) rocks on Ellesmere Island, Arctic Canada (~79° N.) preserve evidence of lush swamp forests inhabited by turtles, alligators, primates, tapirs, and hippo-like Coryphodon. Although the rich flora and fauna of the early Eocene Arctic imply warmer, wetter conditions that at present, quantitative estimates of Eocene Arctic climate are rare. By analyzing oxygen isotope ratios of biogenic phosphate from mammal, fish, and turtle fossils from a single locality on central Ellesmere Island, we provide estimates of early Eocene Arctic temperature, including mean annual temperature (MAT) of ~ 8° C, mean annual range in temperature (MART) of ~ 16.5° C, warm month mean temperature (WMMT) of 16 - 19° C, and cold month mean temperature (CMMT) of 0 - 1° C. Our seasonal range in temperature is similar to the range in estimated MAT obtained using different proxies. In particular, unusually high estimates of early Eocene Arctic MAT and sea surface temperature (SST) by others that are based upon the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in terrestrial soil bacteria and marine Crenarchaeota fall within our range of WMMT, suggesting a bias towards summer values. Consequently, caution should be taken when using these methods to infer MAT and SST that, in turn, are used to constrain climate models. From a paleontologic perspective, our temperature estimates verify that alligators and tortoises, by way of nearest living relative-based climatic inference, are viable paleoclimate proxies for mild, above-freezing year-round temperatures. Although in both of these reptiles, past temperature tolerances were greater than in their living descendants.

  8. Nitrogen fertilization strategies for xaraes and tifton 85 grasses irrigated in the dry season

    Directory of Open Access Journals (Sweden)

    Domingos Sávio Queiroz

    2012-08-01

    Full Text Available An experiment was carried out to assess rates and nitrogen fertilization strategies on the forage yield using irrigation to supply the water deficit during the dry season. The grasses Cynodon spp cv. tifton 85 and Brachiaria brizantha cv. Xaraés were cultivated with nitrogen (N at levels of 200 and 400 kg/ha according to strategies: 1 half dose applied during the rainy season (RS and half during the dry season (DS; 2 1/3 during the RS and 2/3 during the DS; 3 2/3 during the RS and 1/3 during the DS; 4 all doses applied during the DS. In each season the dose was divided in three applications. Eleven harvests were conducted: six in the RS and five in the DS. When 2/3 of N was applied in the DS, forage yield in this period was statistically equivalent to those obtained in the RS in three of the five harvests for both 200 and 400 kg/ha of N. With 100% of N applied in the DS, the yield of four of five cuts of forage was similar to that obtained in the RS for both rates of N. The strategy of applying more N in the DS rather than in the RS was effective, keeping the yield steadily throughout the year. The application of 100% of the dose of 200 kg/ha N and 2/3 of the dose of 400 kg/ha N both in the dry period, under irrigation, promote uniform productions per harvest throughout the year.

  9. Competition and facilitation between a native and a domestic herbivore: trade-offs between forage quantity and quality.

    Science.gov (United States)

    Augustine, David J; Springer, Tim L

    2013-06-01

    Potential competition between native and domestic herbivores is a major consideration influencing the management and conservation of native herbivores in rangeland ecosystems. In grasslands of the North American Great Plains, black-tailed prairie dogs (Cynomys ludovicianus) are widely viewed as competitors with cattle but are also important for biodiversity conservation due to their role in creating habitat for other native species. We examined spatiotemporal variation in prairie dog effects on growing-season forage quality and quantity using measurements from three colony complexes in Colorado and South Dakota and from a previous study of a fourth complex in Montana. At two complexes experiencing below-average precipitation, forage availability both on and off colonies was so low (12-54 g/m2) that daily forage intake rates of cattle were likely constrained by instantaneous intake rates and daily foraging time. Under these dry conditions, prairie dogs (1) substantially reduced forage availability, thus further limiting cattle daily intake rates, and (2) had either no or a small positive effect on forage digestibility. Under such conditions, prairie dogs are likely to compete with cattle in direct proportion to their abundance. For two complexes experiencing above-average precipitation, forage quantity on and off colonies (77-208 g/m2) was sufficient for daily forage intake of cattle to be limited by digestion rather than instantaneous forage intake. At one complex where prairie dogs enhanced forage digestibility and [N] while having no effect on forage quantity, prairie dogs are predicted to facilitate cattle mass gains regardless of prairie dog abundance. At the second complex where prairie dogs enhanced digestibility and [N] but reduced forage quantity, effects on cattle can vary from competition to facilitation depending on prairie dog abundance. Our findings show that the high spatiotemporal variation in vegetation dynamics characteristic of semiarid grasslands

  10. Effect of forage type, harvesting time and exogenous enzyme application on degradation characteristics measured using in vitro technique

    DEFF Research Database (Denmark)

    Moharrery, Ali; Hvelplund, Torben; Weisbjerg, Martin Riis

    2009-01-01

    Five forage species cut at different harvest times were studied for their degradation characteristics using in vitro digestibility technique. The forage species were two grasses and three legumes growing in two seasons (spring growth and second re-growth). Grass and legume forages were harvested...... at three harvesting times being early (E), middle (M) and late (L), both during the spring growth and the second re-growth. The grasses included perennial ryegrass (Lolium perenne), and festulolium (XFestulolium), and the legumes included white clover (Trifolium repens), red clover (Trifolium pratense......) and neutral detergent fibre (aNDFom) degradation profiles were fitted to an exponential equation. The fractional rate of degradation (c) of DM or aNDFom did vary among the forage species and was highest for the legumes. The potential degradability ranged from 580 to 870 g/kg for DM and from 380 to 900 g...

  11. How Does Seasonal Flu Differ From Pandemic Flu?

    Science.gov (United States)

    ... Past Issues How Does Seasonal Flu Differ From Pandemic Flu? Past Issues / Fall 2006 Table of Contents ... this page please turn Javascript on. Seasonal Flu Pandemic Flu Outbreaks follow predictable seasonal patterns; occurs annually, ...

  12. Heat, sight and scent: multiple cues influence foraging site selection by an ambush-foraging snake Hoplocephalus bungaroides (Elapidae

    Directory of Open Access Journals (Sweden)

    Weiguo DU, Jonathan K. WEBB, Richard SHINE

    2009-08-01

    Full Text Available Most mobile organisms respond to multiple cues when selecting habitat types, and laboratory experiments that manipulate only single cues may fail to reveal the true complexity of habitat-selection behaviour. In south-eastern Australia, broad-headed snakes Hoplocephalus bungaroides (Elapidae lie in wait under sun-warmed rocks to ambush velvet geckos Oedura leseuerii (Gekkonidae. Previous laboratory work has shown that both the geckos and the snakes actively select hotter rather than colder rocks, and that the snakes actively select rocks scented by geckos. We manipulated rock temperature and the presence of two types of cues from geckos (chemical and visual information to clarify the causal basis for foraging site selection by the juveniles of this snake. When given a choice between cold lizard-scented rocks and hot unscented rocks, our captive snakes gave a higher priority to lizard scent than to temperature. The snakes also selected shelter-sites that provided visual as well as scent cues from lizards, rather than shelter-sites with scent cues alone. Thus, although broad-headed snakes show a direct preference for hotter rather than colder rocks in the laboratory, their choice of foraging site in the field may also be influenced by the presence of scent cues from prey. Our laboratory results suggest that habitat selection by broad-headed snakes may be more complex than has been suggested by previous single-factor laboratory trials[Current Zoology 55(4: 266–271, 2009].

  13. Spatial and Temporal Variations in the Occurrence and Foraging Activity of Coastal Dolphins in Menai Bay, Zanzibar, Tanzania.

    Directory of Open Access Journals (Sweden)

    Andrew J Temple

    Full Text Available Understanding temporal patterns in distribution, occurrence and behaviour is vital for the effective conservation of cetaceans. This study used cetacean click detectors (C-PODs to investigate spatial and temporal variation in occurrence and foraging activity of the Indo-Pacific bottlenose (Tursiops aduncus and Indian Ocean humpback (Sousa plumbea dolphins resident in the Menai Bay Conservation Area (MBCA, Zanzibar, Tanzania. Occurrence was measured using detection positive minutes. Inter-click intervals were used to identify terminal buzz vocalisations, allowing for analysis of foraging activity. Data were analysed in relation to spatial (location and temporal (monsoon season, diel phase and tidal phase variables. Results showed significantly increased occurrence and foraging activity of dolphins in southern areas and during hours of darkness. Higher occurrence at night was not explained by diel variation in echolocation rate and so were considered representative of occurrence patterns. Both tidal phase and monsoon season influenced occurrence but results varied among sites, with no general patterns found. Foraging activity was greatest during hours of darkness, High water and Flood tidal phases. Comparisons of echolocation data among sites suggested differences in the broadband click spectra of MBCA dolphins, possibly indicative of species differences. These dolphin populations are threatened by unsustainable fisheries bycatch and tourism activities. The spatial and temporal patterns identified in this study have implications for future conservation and management actions with regards to these two threats. Further, the results indicate future potential for using passive acoustics to identify and monitor the occurrence of these two species in areas where they co-exist.

  14. A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata

    Directory of Open Access Journals (Sweden)

    Lee A. Dyer

    2002-09-01

    Full Text Available While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae, on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests.

  15. A Remote Sensing Based Forage Biomass Yield Inversion Model of Alpine-cold Meadow during Grass-withering Period in Sanjiangyuan Area

    International Nuclear Information System (INIS)

    Song, Weize; Jia, Haifeng; Liang, Shidong; Wang, Zheng; Liu, Shujie; Hao, Lizhuang; Chai, Shatuo

    2014-01-01

    Estimating forage biomass yield remotely from space is still challenging nowadays. Field experiments were conducted and ground measurements correlated to remote sensing data to estimate the forage biomass yield of Alpine-cold meadow grassland during the grass and grass-withering period in Sanjiangyuan area in Yushu county. Both Shapiro-Wilk and Kolmogorov-Smirnov two-tailed tests showed that the field training samples are normally distributed, the Spearman coefficient indicated that the parametric correlation analysis had significant differences. The optimal regression models were developed based on the Landsat Thematic Mapper Normalized Difference Vegetation Index (TM-NDVI) and the forage biomass field data during the grass and the grass-withering periods, respectively. Then an integration model was used to predict forage biomass yield of alpine-cold meadow in the grass-withering period. The model showed good prediction accuracy and reliability. It was found that this approach can not only estimate forage yield in large scale efficiently but also overcome the seasonal limitation of remote sensing inversion. This technique can provides valuable guidance to animal husbandry to resource more efficiently in winter

  16. Prey type and foraging ecology of Sanderlings

    NARCIS (Netherlands)

    Grond, K.; Ntiamoa-Baidu, Y.; Piersma, T.; Reneerkens, J.

    2015-01-01

    Sanderlings (Calidris alba) are long-distance migratory shorebirds with a non-breeding range that spans temperate and tropical coastal habitats. Breeding in the High Arctic combined with non-breeding seasons in the tropics necessitate long migrations, which are energetically demanding. On an annual

  17. Evaluation of Warm Season Turfgrass under Different Irrigation Regimes in Arid Region

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Hassan ALSHEHHI

    2010-09-01

    Full Text Available Turfgrasses play a very important role in enhancing quality of life in modern urban living. Water quantity is the most important challenge worldwide in establishing and maintaining quality turf. The present study was aimed to test the performance of three warm season turfgrasses under four water levels for plantation in arid zones. Pits (48 measuring 1m length x 1m width x 0.6 m depth were planted with four replications of Common Bermuda grass (Cynodon dactylon, Tifway Bermuda grass (Cynodon dactylon x transvaalensis and Seashore Paspalum grass (Paspalum vaginatum in complete randomized design (CRD. Irrigation was done daily with 15 l/plot during the first 4 weeks (establishment period and four irrigation levels (5, 10, and 15, 20 l/lot were maintained in the following 8 weeks (treatment period. Physical parameters (canopy temperatures, ambient temperature, leaf area, shoot production and relative water content were measured once in two week as well as the visual quality (shoot color, shoot density and shoot uniformity was assessed, however, chlorophyll analysis was done in the end of the study. It was found that temperature has significant effect on performance of turfgrasses. Canopy temperature was higher than ambient temperature in the three turfgrasses but it has different level in each variety. Five liter of water per day per square meter gave acceptable turf quality when ambient temperature ranged from 20 to 33�C. Seashore paspalum performed best followed by Tifway Bermuda grass and common Bermuda grass respectively.

  18. Monitoring Inter- and Intra-Seasonal Dynamics of Rapidly Degrading Ice-Rich Permafrost Riverbanks in the Lena Delta with TerraSAR-X Time Series

    Directory of Open Access Journals (Sweden)

    Samuel Stettner

    2017-12-01

    Full Text Available Arctic warming is leading to substantial changes to permafrost including rapid degradation of ice and ice-rich coasts and riverbanks. In this study, we present and evaluate a high spatiotemporal resolution three-year time series of X-Band microwave satellite data from the TerraSAR-X (TSX satellite to quantify cliff-top erosion (CTE of an ice-rich permafrost riverbank in the central Lena Delta. We apply a threshold on TSX backscatter images and automatically extract cliff-top lines to derive intra- and inter-annual CTE. In order to examine the drivers of erosion we statistically compare CTE with climatic baseline data using linear mixed models and analysis of variance (ANOVA. Our evaluation of TSX-derived CTE against annual optical-derived CTE and seasonal in situ measurements showed good agreement between all three datasets. We observed continuous erosion from June to September in 2014 and 2015 with no significant seasonality across the thawing season. We found the highest net annual cliff-top erosion of 6.9 m in 2014, in accordance with above-average mean temperatures and thawing degree days as well as low precipitation. We found high net annual erosion and erosion variability in 2015 associated with moderate mean temperatures but above average precipitation. According to linear mixed models, climate parameters alone could not explain intra-seasonal erosional patterns and additional factors such as ground ice content likely drive the observed erosion. Finally, mean backscatter intensity on the cliff surface decreased from −5.29 to −6.69 dB from 2013 to 2015, respectively, likely resulting from changes in surface geometry and properties that could be connected to partial slope stabilization. Overall, we conclude that X-Band backscatter time series can successfully be used to complement optical remote sensing and in situ monitoring of rapid tundra permafrost erosion at riverbanks and coasts by reliably providing information about intra-seasonal

  19. Potential contribution of groundwater to dry-season ET in the Amazon

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Fan, Ying

    2010-05-01

    Climate and land ecosystem models simulate vegetation stress in the Amazon forest in the dry season, but observations show enhanced growth in response to higher radiation under less cloudy skies indicating an adequate water supply. The question is: how does the vegetation obtain sufficient water, and what is missing in the models? Shallow model soil and rooting depth is a factor; the ability of roots to move water up and down (hydraulic redistribution) may be another, but another cause may lie in the buffering effect of the groundwater found in nature but absent in models. We present observational and modeling evidence that the vast groundwater store, consequence of high annual rainfall combined with poor drainage in the Amazon, may provide a stable source for dry-season photosynthesis. The water table beneath the Amazon is sufficiently shallow (38% area 2mm/day to dry-season evapotranspiration, a non-negligible portion of tower-observed flux of 3-4mm/day, the latter including canopy-interception loss and open-water evaporation. This may have important implications to our understanding of Amazonia ecosystem response and feedback to climate change. Current models, lacking groundwater, predict a significant reduction in dry-season photosynthesis under current climate and large-scale dieback under projected future climate converting the Amazon from a net carbon sink to a net source and accelerating warming. If groundwater is considered in the models, the magnitude of the responses and feedbacks may be reduced.

  20. Hybrid value foraging: How the value of targets shapes human foraging behavior.

    Science.gov (United States)

    Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla

    2018-04-01

    In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.

  1. Combined effects of night warming and light pollution on predator-prey interactions.

    Science.gov (United States)

    Miller, Colleen R; Barton, Brandon T; Zhu, Likai; Radeloff, Volker C; Oliver, Kerry M; Harmon, Jason P; Ives, Anthony R

    2017-10-11

    Interactions between multiple anthropogenic environmental changes can drive non-additive effects in ecological systems, and the non-additive effects can in turn be amplified or dampened by spatial covariation among environmental changes. We investigated the combined effects of night-time warming and light pollution on pea aphids and two predatory ladybeetle species. As expected, neither night-time warming nor light pollution changed the suppression of aphids by the ladybeetle species that forages effectively in darkness. However, for the more-visual predator, warming and light had non-additive effects in which together they caused much lower aphid abundances. These results are particularly relevant for agriculture near urban areas that experience both light pollution and warming from urban heat islands. Because warming and light pollution can have non-additive effects, predicting their possible combined consequences over broad spatial scales requires knowing how they co-occur. We found that night-time temperature change since 1949 covaried positively with light pollution, which has the potential to increase their non-additive effects on pea aphid control by 70% in US alfalfa. Our results highlight the importance of non-additive effects of multiple environmental factors on species and food webs, especially when these factors co-occur. © 2017 The Author(s).

  2. Starvation dynamics of a greedy forager

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-07-01

    We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.

  3. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

    Directory of Open Access Journals (Sweden)

    Hailey N Scofield

    Full Text Available The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera. Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults. Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus

  4. Genetic options for improving fodder yield and quality in forage sorghum

    Directory of Open Access Journals (Sweden)

    C. Aruna

    2015-01-01

    Full Text Available Improving yield and quality of fodder from forage sorghum is important, especially in the semi-arid tropics, where sorghum is a major source of fodder. The aim of this work was to understand the genetic basis of fodder yield and quality traits, and character associations, and to estimate combining ability of the parents. The experiment was carried out during 2 successive rainy seasons using 10 parents crossed in a half-diallel design. Significant differences among the genotypes for fodder yield, quality and cell wall constituents were observed. Important quality traits, crude protein and digestibility (IVOMD, were not correlated with fodder yield, indicating the potential to improve yield and quality simultaneously in forage sorghum. General combining ability and specific combining ability variances showed that, for almost all characters, both additive and non-additive gene effects were important, with a predominance of non-additive effects. Parental lines SEVS4, HC308 and UPMC503 were good general combiners for yield and quality. The brown midrib lines, EC582508 and EC582510, were good general combiners for low lignin and high IVOMD. Strategies for improving forage sorghum to suit animal and biofuel industries are discussed.Keywords: Digestibility, crude protein, ADL, diallel analysis, gene effects.DOI: 10.17138/TGFT(349-58

  5. Calibration and Evaluation of Different Estimation Models of Daily Solar Radiation in Seasonally and Annual Time Steps in Shiraz Region

    Directory of Open Access Journals (Sweden)

    Hamid Reza Fooladmand

    2017-06-01

    2006 to 2008 were used for calibrating fourteen estimated models of solar radiation in seasonally and annual time steps and the measured data of years 2009 and 2010 were used for evaluating the obtained results. The equations were used in this study divided into three groups contains: 1 The equations based on only sunshine hours. 2 The equations based on only air temperature. 3 The equations based on sunshine hours and air temperature together. On the other hand, statistical comparison must be done to select the best equation for estimating solar radiation in seasonally and annual time steps. For this purpose, in validation stage the combination of statistical equations and linear correlation was used, and then the value of mean square deviation (MSD was calculated to evaluate the different models for estimating solar radiation in mentioned time steps. Results and Discussion: The mean values of mean square deviation (MSD of fourteen models for estimating solar radiation were equal to 24.16, 20.42, 4.08 and 16.19 for spring to winter respectively, and 15.40 in annual time step. Therefore, the results showed that using the equations for autumn enjoyed high accuracy, however for other seasons had low accuracy. So, using the equations for annual time step were appropriate more than the equations for seasonally time steps. Also, the mean values of mean square deviation (MSD of the equations based on only sunshine hours, the equations based on only air temperature, and the equations based on the combination of sunshine hours and air temperature for estimating solar radiation were equal to 14.82, 17.40 and 14.88, respectively. Therefore, the results indicated that the models based on only air temperature were the worst conditions for estimating solar radiation in Shiraz region, and therefore, using the sunshine hours for estimating solar radiation is necessary. Conclusions: In this study for estimating solar radiation in seasonally and annual time steps in Shiraz region

  6. New Developments in Forage Varieties

    Science.gov (United States)

    Forage crops harvested for hay or haylage or grazed support dairy, beef, sheep and horse production. Additional livestock production from reduced forage acreage supports the need for forage variety improvement. The Consortium for Alfalfa Improvement is a partnership model of government, private no...

  7. Determination trends and abnormal seasonal wind speed in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Hassoon, Ahmed F. [Department of Atmospheric Sciences, College of Science, AL- Mustansiriyah University, Baghdad (Iraq)

    2013-07-01

    Monthly observed wind speed data at four weather stations (Baghdad, Mosul, Basra, Rutba) at 10m above surface were used to explore the temporal variations of the wind speed (1971-2000) in Iraq. There are different methods to analyze wind speed variation data, but the time series are one of the powerful analysis methods to diagnose the seasonal wind speed anomaly. The results show most high abnormal data is found in summer seasons in all the stations of study, where it concentrated at 1975, 1976, 1978,1996-1995, 2000. Rutba station is different where its high deviation about annual average at nearly all the seasons, in this station there are trends in seasonal wind towards decreases in all the seasons, for example in winter it reached to about 0.046m/s.a-1, while in other stations Mosul and Basra there increases in annual seasonal wind speed trends in seasons spring, summer, autumn where its reached higher value at summer in Basra about 0.0482m/s.a-1. The second method to determine abnormal annual seasonal wind speed is through comparison seasonal average wind speed, where the average wind speed at the seasons summer and spring in Baghdad and Basra station have very high averages at nearly all years, this cannot see in Mosul and Rutba, in Rutba the seasonal average is intersected with each other, summer and spring is not have greater seasonal average in this station.

  8. Key sources and seasonal dynamics of greenhouse gas fluxes from yak grazing systems on the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Liu, Yang; Yan, Caiyu; Matthew, Cory; Wood, Brennon; Hou, Fujiang

    2017-01-01

    Greenhouse gas (GHG) emissions from livestock grazing systems are contributing to global warming. To examine the influence of yak grazing systems on GHG fluxes and relationships between GHG fluxes and environmental factors, we measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes over three key seasons in 2012 and 2013 from a range of potential sources, including: alpine meadows, dung patches, manure heaps and yak night pens, on the Qinghai-Tibetan Plateau. We also estimated the total annual global warming potential (GWP, CO2-equivalents) from family farm grazing yaks using our measured results and other published data. In this study, GHG fluxes per unit area from night pens and composting manure heaps were higher than from dung patches and alpine meadows. Increased moisture content and surface temperature of soil and manure were major factors increasing CO2 and CH4 fluxes. High contributions of CH4 and N2O (21.1% and 44.8%, respectively) to the annual total GWP budget (334.2 tonnes) strongly suggest these GHG other than CO2 should not be ignored when estimating GWP from the family farm grazing yaks on the Qinghai-Tibetan Plateau for the purposes of determining national and regional land use policies or compiling global GHG inventories.

  9. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini in temperate climate of Jalisco, México

    Directory of Open Access Journals (Sweden)

    J. O. Macías-Macías

    Full Text Available Abstract Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  10. Avian predation on juvenile salmonids in the Lower Columbia River; 1998 annual report

    International Nuclear Information System (INIS)

    Collis, Ken; Adamany, Stephanie; Roby, Daniel D.; Craig, David P.; Lyons, Donald E.

    2000-01-01

    The authors initiated a field study in 1997 to assess the impacts of fish-eating colonial waterbirds (i.e., terns, cormorants, and gulls) on the survival of juvenile salmonids in the lower Columbia River. Here the authors present results from the 1998 breeding season, the second field season of work on this project. The research objectives in 1998 were to: (1) determine the location, size, nesting chronology, nesting success, and population trajectories of breeding colonies of fish-eating birds in the lower Columbia River; (2) determine diet composition of fish-eating birds, including taxonomic composition and energy content of various prey types; (3) estimate forage fish consumption rates, with special emphasis on juvenile salmonids, by breeding adults and their young; (4) determine the relative vulnerability of different groups of juvenile salmonids to bird predation; (5) identify foraging range, foraging strategies, and habitat utilization by piscivorous waterbirds; and (6) test the feasibility of various alternative methods for managing avian predation on juvenile salmonids and develop recommendations to reduce avian predation, if warranted by the results

  11. Avian Predation on Juvenile Salmonids in the Lower Columbia River: 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Collis, Ken; Adamany, Stephanie; Roby, Daniel D.; Craig, David P.; Lyons, Donald E.

    2000-04-01

    The authors initiated a field study in 1997 to assess the impacts of fish-eating colonial waterbirds (i.e., terns, cormorants, and gulls) on the survival of juvenile salmonids in the lower Columbia River. Here the authors present results from the 1998 breeding season, the second field season of work on this project. The research objectives in 1998 were to: (1) determine the location, size, nesting chronology, nesting success, and population trajectories of breeding colonies of fish-eating birds in the lower Columbia River; (2) determine diet composition of fish-eating birds, including taxonomic composition and energy content of various prey types; (3) estimate forage fish consumption rates, with special emphasis on juvenile salmonids, by breeding adults and their young; (4) determine the relative vulnerability of different groups of juvenile salmonids to bird predation; (5) identify foraging range, foraging strategies, and habitat utilization by piscivorous waterbirds; and (6) test the feasibility of various alternative methods for managing avian predation on juvenile salmonids and develop recommendations to reduce avian predation, if warranted by the results.

  12. Diving of great shearwaters (Puffinus gravis in cold and warm water regions of the South Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Robert A Ronconi

    Full Text Available BACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis, the largest member of this genus. This study reports the first high sampling rate (2 s of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50% dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. CONCLUSIONS/SIGNIFICANCE: General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving.

  13. Seasonal and annual plant production of a southern Manitoba old-field

    International Nuclear Information System (INIS)

    Turner, B.N.; Iverson, S.L.

    1980-06-01

    The amount of natural variation in vegetation production during Project ZEUS (an investigation of long-term gamma radiation on meadow voles) will constitute an important habitat variable for the meadow vole population. To quantify this variation, annual and seasonal plant production of a nearby old-field was estimated by monthly harvests of aboveground vegetation between April and October for five consecutive years. The amount of dry green vegetation varied significantly both among years and months, peaking at a mean of nearly 300 G. M -2 in late July and late August. Mean rates of production were maximum in late May to late June, reaching 4.45 g.m -2 .d -1 . Dead vegetation varied significantly among months, but not among years, with peak amounts of nearly 800 G. M -2 in May and October. Moss quantities varied among years, but not among months, and showed a general trend to increase as the field aged. Monthly production of green vegetation showed some relationships to precipitation and temperature, and particularly indicated that hot dry springs impeded growth. Both amount and rate of green production were greater than that on most similar old-fields reported in the literature, and generally exceeded levels on all native grasslands except tallgrass prairie. Annual variability in peak green production was similar to that on other grasslands and old-fields. Variability in green production was greatest in April, and least in June, at the time when production was greatest. Greatest variation in green production occurred at the same time as greatest variation in temperature. Low precipitation may limit production, but the amount of precipitation does not appear to have an effect above a certain minimum level. (auth)

  14. Contrasting Patterns of Gene Flow for Amazonian Snakes That Actively Forage and Those That Wait in Ambush.

    Science.gov (United States)

    de Fraga, Rafael; Lima, Albertina P; Magnusson, William E; Ferrão, Miquéias; Stow, Adam J

    2017-07-01

    Knowledge of genetic structure, geographic distance and environmental heterogeneity can be used to identify environmental features and natural history traits that influence dispersal and gene flow. Foraging mode is a trait that might predict dispersal capacity in snakes, because actively foragers typically have greater movement rates than ambush predators. Here, we test the hypothesis that 2 actively foraging snakes have higher levels of gene flow than 2 ambush predators. We evaluated these 4 co-distributed species of snakes in the Brazilian Amazon. Snakes were sampled along an 880 km transect from the central to the southwest of the Amazon basin, which covered a mosaic of vegetation types and seasonal differences in climate. We analyzed thousands of single nucleotide polymorphisms to compare patterns of neutral gene flow based on isolation by geographic distance (IBD) and environmental resistance (IBR). We show that IBD and IBR were only evident in ambush predators, implying lower levels of dispersal than the active foragers. Therefore, gene flow was high enough in the active foragers analyzed here to prevent any build-up of spatial genotypic structure with respect to geographic distance and environmental heterogeneity. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Long term picoplankton dynamics in a warm-monomictic, tropical high altitude lake

    Directory of Open Access Journals (Sweden)

    Alfonso LUGO VÁZQUEZ

    2009-08-01

    Full Text Available Long term analyses of the microbial loop, centred on the picoplankton dynamics, were carried out over a five-year (1998 to 2002 period in Lake Alchichica (Puebla, Mexico, a high altitude tropical athalassohaline lake. The hydrodynamics of the lake followed a warm-monomictic pattern with mixing at a minimum temperature during the early dry season while the stratification was pronounced in the late dry season and throughout the rainy season; anoxic conditions in the hypolimnion lasted <9 months. The annual mean concentrations of chlorophyll-a were below 4 μg L-1 in 1998, 1999 and 2001, however, 6.1 and 5.2 μg L-1 in 2000 and 2002, respectively. Total picoplankton, TPP, displayed a temporal pattern that followed the mixing-stratification cycle. The highest TPP values (the whole water column ≥5×106 cells mL-1 were found during mixing and early stratification (January-March. The minimum numbers were present during late stratification (October-November. The maximum TPP numbers were observed within the layer 0-20 m, which corresponded to the epilimnion during the stratification period. Neither the thermocline nor the deep chlorophyll maximum showed an elevated TPP concentration. In the hypolimnion, TPP numbers were low (frequently <1×106 cells mL-1 apparently as a result of the long period of anoxia. Notwithstanding autotrophic picoplankton (APP contributed even ≥30% of TPP (2001 to 2002; no significant correlation was found between TPP and chlorophyll-a.

  16. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Science.gov (United States)

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  17. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Directory of Open Access Journals (Sweden)

    Nobuo Kokubun

    Full Text Available Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting occurred over the ocean basin (bottom depth >1,000 m. Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1 flight, characterized by regular wing flapping, (2 resting on water, characterized by non-active behavior, and (3 foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3% compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%. The mean duration of foraging (2.4 ± 2.9 min was shorter than that of flight between prey patches (24.2 ± 53.1 min. Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight. Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  18. Cold climate bioventing with soil warming in Alaska

    International Nuclear Information System (INIS)

    Sayles, G.D.; Brenner, R.C.; Leeson, A.; Hinchee, R.E.; Vogel, C.M.

    1995-01-01

    In the heart of Alaska, a 3-year field study was conducted of bioventing in conjunction with several soil warming methods. The contamination was JP-4 jet fuel. The soil warming methods evaluated, chosen for their apparent low cost, were (1) application of warm water at a low rate, (2) enhanced solar warming by covering the surface with clear plastic in the summer and covering the surface with insulation in the winter, and (3) buried heat pipe. The warm water and buried heat tape methods performed best, maintaining summer-like 10 to 20 C temperatures in the test plots year round, compared to the temperature of the unheated control plot, which dipped to -1 C in the winter. The solar/insulation warming method showed a modest improvement in temperature over the unheated control test plot. The annual average temperatures of the warm water, heat tape, solar, and control plots were 16.9, 14.5, 6.1, and 3.5 C, respectively. The biodegradation rates, measured by in situ respirometry, were higher in plots with higher temperatures and followed the Arrhenius relationship. Despite the low temperature, significant biodegradation was observed in the unheated plot during the winter

  19. Plant-water relationships and growth of black walnut in a walnut-forage multicropping regime

    Science.gov (United States)

    Daniel C. Dey; M. R. Conway; H. E. Garrett; T. S. Hinckley; G. S. Cox

    1987-01-01

    Eastern black walnut seedlings were planted on a 1.5 ? 1.5m spacing in the spring of 1976 and irrigated throughout the growing season. During the spring of 1977, forage plots consisting of Kentucky 31 tall fescue, orchard grass, or Kobe lespedeza measuring 1 m wide and 10.2 m long and centered on a row of trees, were established with and without irrigation. Soil-water...

  20. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Science.gov (United States)

    Talukder, Shyamal K.; Saha, Malay C.

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. PMID:28798766