WorldWideScience

Sample records for wall integrity pathway

  1. Role of the cell wall integrity and filamentous growth mitogen-activated protein kinase pathways in cell wall remodeling during filamentous growth.

    Science.gov (United States)

    Birkaya, Barbara; Maddi, Abhiram; Joshi, Jyoti; Free, Stephen J; Cullen, Paul J

    2009-08-01

    Many fungal species including pathogens exhibit filamentous growth (FG) as a means of foraging for nutrients. Genetic screens were performed to identify genes required for FG in the budding yeast Saccharomyces cerevisiae. Genes encoding proteins with established functions in transcriptional activation (MCM1, MATalpha2, PHD1, MSN2, SIR4, and HMS2), cell wall integrity (MPT5, WSC2, and MID2), and cell polarity (BUD5) were identified as potential regulators of FG. The transcription factors MCM1 and MATalpha2 induced invasive growth by promoting diploid-specific bipolar budding in haploid cells. Components of the cell wall integrity pathway including the cell surface proteins Slg1p/Wsc1p, Wsc2p, Mid2p, and the mitogen-activated protein kinase (MAPK) Slt2p/Mpk1p contributed to multiple aspects of the FG response including cell elongation, cell-cell adherence, and agar invasion. Mid2p and Wsc2p stimulated the FG MAPK pathway through the signaling mucin Msb2p and components of the MAPK cascade. The FG pathway contributed to cell wall integrity in parallel with the cell wall integrity pathway and in opposition with the high osmolarity glycerol response pathway. Mass spectrometry approaches identified components of the filamentous cell wall including the mucin-like proteins Msb2p, Flo11p, and subtelomeric (silenced) mucin Flo10p. Secretion of Msb2p, which occurs as part of the maturation of the protein, was inhibited by the ss-1,3-glucan layer of the cell wall, which highlights a new regulatory aspect to cell wall remodeling in this organism. Disruption of ss-1,3-glucan linkages induced mucin shedding and resulted in defects in cell-cell adhesion and invasion of cells into the agar matrix.

  2. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes.

    Science.gov (United States)

    Rodríguez-Peña, Jose Manuel; García, Raúl; Nombela, César; Arroyo, Javier

    2010-08-01

    Two mitogen-activated protein kinase (MAPK) pathways, viz. the high-osmolarity glycerol (HOG) and the cell wall integrity (CWI) pathways, regulate stress responses in the yeast Saccharomyces cerevisiae. Whereas the former is mainly involved in adaptation of yeast cells to hyperosmotic stress, the latter is activated under conditions leading to cell wall instability. Although MAPK signalling specificity can be conceived as requiring insulation of the different pathways, it is also becoming clear that the two pathways do not compete with each other but can be positively coordinated to regulate many stress responses. This review highlights our current knowledge about the collaboration between these two MAPK pathways to counteract different kinds of environmental stress.

  3. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Natalia Carbó

    2010-07-01

    Full Text Available It is widely accepted that MAPK activation in budding and fission yeasts is often associated with negative effects on cell cycle progression, resulting in delay or arrest at a specific stage in the cell cycle, thereby enabling cells to adapt to changing environmental conditions. For instance, activation of the Cell Wall Integrity (CWI pathway in the budding yeast Saccharomyces cerevisiae signals an increase in CDK inhibitory phosphorylation, which leads cells to remain in the G2 phase. Here we characterized the CWI pathway of Ustilago maydis, a fungus evolutionarily distant from budding and fission yeasts, and show that activation of the CWI pathway forces cells to escape from G2 phase. In spite of these disparate cell cycle responses in S. cerevisiae and U. maydis, the CWI pathway in both organisms appears to respond to the same class cell wall stressors. To understand the basis of such a difference, we studied the mechanism behind the U. maydis response. We found that activation of CWI pathway in U. maydis results in a decrease in CDK inhibitory phosphorylation, which depends on the mitotic phosphatase Cdc25. Moreover, in response to activation of the CWI pathway, Cdc25 accumulates in the nucleus, providing a likely explanation for the increase in the unphosphorylated form of CDK. We also found that the extended N-terminal domain of Cdc25, which is dispensable under normal growth conditions, is required for this G2 escape as well as for resistance to cell wall stressors. We propose that the process of cell cycle adaptation to cell stress evolved differently in these two divergent organisms so that each can move towards a cell cycle phase most appropriate for responding to the environmental signals encountered.

  4. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis.

    Science.gov (United States)

    Carbó, Natalia; Pérez-Martín, José

    2010-07-01

    It is widely accepted that MAPK activation in budding and fission yeasts is often associated with negative effects on cell cycle progression, resulting in delay or arrest at a specific stage in the cell cycle, thereby enabling cells to adapt to changing environmental conditions. For instance, activation of the Cell Wall Integrity (CWI) pathway in the budding yeast Saccharomyces cerevisiae signals an increase in CDK inhibitory phosphorylation, which leads cells to remain in the G2 phase. Here we characterized the CWI pathway of Ustilago maydis, a fungus evolutionarily distant from budding and fission yeasts, and show that activation of the CWI pathway forces cells to escape from G2 phase. In spite of these disparate cell cycle responses in S. cerevisiae and U. maydis, the CWI pathway in both organisms appears to respond to the same class cell wall stressors. To understand the basis of such a difference, we studied the mechanism behind the U. maydis response. We found that activation of CWI pathway in U. maydis results in a decrease in CDK inhibitory phosphorylation, which depends on the mitotic phosphatase Cdc25. Moreover, in response to activation of the CWI pathway, Cdc25 accumulates in the nucleus, providing a likely explanation for the increase in the unphosphorylated form of CDK. We also found that the extended N-terminal domain of Cdc25, which is dispensable under normal growth conditions, is required for this G2 escape as well as for resistance to cell wall stressors. We propose that the process of cell cycle adaptation to cell stress evolved differently in these two divergent organisms so that each can move towards a cell cycle phase most appropriate for responding to the environmental signals encountered.

  5. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins.

    Science.gov (United States)

    Joubert, Aymeric; Bataille-Simoneau, Nelly; Campion, Claire; Guillemette, Thomas; Hudhomme, Piétrick; Iacomi-Vasilescu, Béatrice; Leroy, Thibault; Pochon, Stéphanie; Poupard, Pascal; Simoneau, Philippe

    2011-01-01

    Camalexin, the characteristic phytoalexin of Arabidopsis thaliana, inhibits growth of the fungal necrotroph Alternaria brassicicola. This plant metabolite probably exerts its antifungal toxicity by causing cell membrane damage. Here we observed that activation of a cellular response to this damage requires cell wall integrity (CWI) and the high osmolarity glycerol (HOG) pathways. Camalexin was found to activate both AbHog1 and AbSlt2 MAP kinases, and activation of the latter was abrogated in a AbHog1 deficient strain. Mutant strains lacking functional MAP kinases showed hypersensitivity to camalexin and brassinin, a structurally related phytoalexin produced by several cultivated Brassica species. Enhanced susceptibility to the membrane permeabilization activity of camalexin was observed for MAP kinase deficient mutants. These results suggest that the two signalling pathways have a pivotal role in regulating a cellular compensatory response to preserve cell integrity during exposure to camalexin. AbHog1 and AbSlt2 deficient mutants had reduced virulence on host plants that may, at least for the latter mutants, partially result from their inability to cope with defence metabolites such as indolic phytoalexins. This constitutes the first evidence that a phytoalexin activates fungal MAP kinases and that outputs of activated cascades contribute to protecting the fungus against antimicrobial plant metabolites. © 2010 Blackwell Publishing Ltd.

  6. FvBck1, a Component of Cell Wall Integrity MAP Kinase Pathway, is Required for Virulence and Oxidative Stress Response in Sugarcane Pokkah Boeng Pathogen

    Directory of Open Access Journals (Sweden)

    Chengkang eZhang

    2015-10-01

    Full Text Available Fusarium verticillioides (formerly F. moniliforme is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane.

  7. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    Science.gov (United States)

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  8. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi.

    Science.gov (United States)

    Malavazi, Iran; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2014-11-01

    In the external environment, or within a host organism, filamentous fungi experience sudden changes in nutrient availability, osmolality, pH, temperature and the exposure to toxic compounds. The fungal cell wall represents the first line of defense, while also performing essential roles in morphology, development and virulence. A polarized secretion system is paramount for cell wall biosynthesis, filamentous growth, nutrient acquisition and interactions with the environment. The unique ability of filamentous fungi to secrete has resulted in their industrial adoption as fungal cell factories. Protein maturation and secretion commences in the endoplasmic reticulum (ER). The unfolded protein response (UPR) maintains ER functionality during exposure to secretion and cell wall stress. UPR, therefore, influences secretion and cell wall homeostasis, which in turn impacts upon numerous fungal traits important to pathogenesis and biotechnology. Subsequently, this review describes the relevance of the cell wall and UPR systems to filamentous fungal pathogens or industrial microbes and then highlights interconnections between the two systems. Ultimately, the possible biotechnological applications of an enhanced understanding of such regulatory systems in combating fungal disease, or the removal of natural bottlenecks in protein secretion in an industrial setting, are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C.

    Directory of Open Access Journals (Sweden)

    Ines Teichert

    2014-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1. We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems.

  10. Highly Dynamic and Specific Phosphatidylinositol 4,5-Bisphosphate, Septin, and Cell Wall Integrity Pathway Responses Correlate with Caspofungin Activity against Candida albicans.

    Science.gov (United States)

    Badrane, Hassan; Nguyen, M Hong; Clancy, Cornelius J

    2016-06-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] activates the yeast cell wall integrity pathway. Candida albicans exposure to caspofungin results in the rapid redistribution of PI(4,5)P2 and septins to plasma membrane foci and subsequent fungicidal effects. We studied C. albicans PI(4,5)P2 and septin dynamics and protein kinase C (PKC)-Mkc1 cell wall integrity pathway activation following exposure to caspofungin and other drugs. PI(4,5)P2 and septins were visualized by live imaging of C. albicans cells coexpressing green fluorescent protein (GFP)-pleckstrin homology (PH) domain and red fluorescent protein-Cdc10p, respectively. PI(4,5)P2 was also visualized in GFP-PH domain-expressing C. albicans mkc1 mutants. Mkc1p phosphorylation was measured as a marker of PKC-Mkc1 pathway activation. Fungicidal activity was assessed using 20-h time-kill assays. Caspofungin immediately induced PI(4,5)P2 and Cdc10p colocalization to aberrant foci, a process that was highly dynamic over 3 h. PI(4,5)P2 levels increased in a dose-response manner at caspofungin concentrations of ≤4× MIC and progressively decreased at concentrations of ≥8× MIC. Caspofungin exposure resulted in broad-based mother-daughter bud necks and arrested septum-like structures, in which PI(4,5)P2 and Cdc10 colocalized. PKC-Mkc1 pathway activation was maximal within 10 min, peaked in response to caspofungin at 4× MIC, and declined at higher concentrations. The caspofungin-induced PI(4,5)P2 redistribution remained apparent in mkc1 mutants. Caspofungin exerted dose-dependent killing and paradoxical effects at ≤4× and ≥8× MIC, respectively. Fluconazole, amphotericin B, calcofluor white, and H2O2 did not impact the PI(4,5)P2 or Cdc10p distribution like caspofungin did. Caspofungin exerts rapid PI(4,5)P2-septin and PKC-Mkc1 responses that correlate with the extent of C. albicans killing, and the responses are not induced by other antifungal agents. PI(4,5)P2-septin regulation is crucial in early

  11. Cell wall integrity signaling and innate immunity in plants.

    Science.gov (United States)

    Nühse, Thomas S

    2012-01-01

    All plant pathogens and parasites have had to develop strategies to overcome cell walls in order to access the host's cytoplasm. As a mechanically strong, multi-layered composite exoskeleton, the cell wall not only enables plants to grow tall but also protects them from such attacks. Many plant pathogens employ an arsenal of cell wall degrading enzymes, and it has long been thought that the detection of breaches in wall integrity contributes to the induction of defense. Cell wall fragments are danger-associated molecular patterns or DAMPs that can trigger defense signaling pathways comparable to microbial signals, but the picture is likely to be more complicated. A wide range of defects in cell wall biosynthesis leads to enhanced pathogen resistance. We are beginning to understand the essential role of cell wall integrity surveillance for plant growth, and the connection of processes like cell expansion, plasma membrane-cell wall contact and secondary wall biosynthesis with plant immunity is emerging.

  12. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    Directory of Open Access Journals (Sweden)

    de Morais Marcos A

    2011-08-01

    Full Text Available Abstract Background Polyhexamethylene biguanide (PHMB is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  13. Integrating Building Functions into Massive External Walls

    Directory of Open Access Journals (Sweden)

    Ahmed Hisham Hafez

    2016-05-01

    Full Text Available Well into the twentieth century, brick and stone were the materials used. Bricklaying and stonemasonry were the construction technologies employed for the exterior walls of virtually all major structures. However, with the rise in quality of life, the massive walls alone became incapable of fulfilling all the developed needs. Adjacent systems and layers had then to be attached to the massive layer. Nowadays, the external wall is usually composed of a layered construction. Each external wall function is usually represented by a separate layer or system. The massive layer of the wall is usually responsible for the load-bearing function.Traditional massive external walls vary in terms of their external appearance, their composition and attached layers. However, their design and construction process is usually a repeated process. It is a linear process where each discipline is concerned with a separate layer or system. These disciplines usually take their tasks away and bring them back to be re-integrated in a layered manner. New massive technologies with additional function have recently become available.Such technologies can provide the external wall with other functions in addition to its load-bearing function. The purpose of this research is to map the changes required to the traditional design and construction process when massive technologies with additional function are applied in external walls. Moreover, the research aims at assessing the performance of massive solutions with additional function when compared to traditional solutions in two different contexts, the Netherlands and Egypt.Through the analysis of different additional function technologies in external walls, a guidance scheme for different stakeholders is generated. It shows the expected process changes as related to the product level and customization level. Moreover, the research concludes that the performance of additional insulating technologies, and specifically Autoclaved

  14. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?

    Science.gov (United States)

    Kock, Christian; Dufrêne, Yves F; Heinisch, Jürgen J

    2015-02-01

    Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.

  15. Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sharmin, Dilruba; Sasano, Yu; Sugiyama, Minetaka; Harashima, Satoshi

    2015-04-01

    The phosphorylation status of cellular proteins results from an equilibrium between the activities of protein kinases and protein phosphatases (PPases). Reversible protein phosphorylation is an important aspect of signal transduction that regulate many biological processes in eukaryotic cells. The Saccharomyces cerevisiae genome encodes 40 PPases, including seven members of the protein phosphatase 2C subfamily (PTC1 to PTC7). In contrast to other PPases, the cellular roles of PTCs have not been investigated in detail. Here, we sought to determine the cellular role of PTC6 in S. cerevisiae with disruption of PTC genes. We found that cells with Δptc6 disruption were tolerant to the cell wall-damaging agents Congo red (CR) and calcofluor white (CFW); however, cells with simultaneous disruption of PTC1 and PTC6 were very sensitive to these agents. Thus, simultaneous disruption of PTC1 and PTC6 gave a synergistic response to cell wall damaging agents. The level of phosphorylated Slt2 increased significantly after CR treatment in Δptc1 cells and more so in Δptc1Δptc6 cells; therefore, deletion of PTC6 enhanced Slt2 phosphorylation in the Δptc1 disruptant. The level of transcription of KDX1 upon exposure to CR increased to a greater extent in the Δptc1Δptc6 double disruptant than the Δptc1 single disruptant. The Δptc1Δptc6 double disruptant cells showed normal vacuole formation under standard growth conditions, but fragmented vacuoles were present in the presence of CR or CFW. Our analyses indicate that S. cerevisiae PTC6 participates in the negative regulation of Slt2 phosphorylation and vacuole morphogenesis under cell wall stress conditions.

  16. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  17. Fuel Pathway Integration Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE Partnership (the Partnership) in the identification and evaluation of implementation scenarios for fuel cell technology pathways, including hydrogen and fuel cell electric vehicles in the transportation sector, both during a transition period and in the long term.

  18. kpath: integration of metabolic pathway linked data.

    Science.gov (United States)

    Navas-Delgado, Ismael; García-Godoy, María Jesús; López-Camacho, Esteban; Rybinski, Maciej; Reyes-Palomares, Armando; Medina, Miguel Ángel; Aldana-Montes, José F

    2015-01-01

    In the last few years, the Life Sciences domain has experienced a rapid growth in the amount of available biological databases. The heterogeneity of these databases makes data integration a challenging issue. Some integration challenges are locating resources, relationships, data formats, synonyms or ambiguity. The Linked Data approach partially solves the heterogeneity problems by introducing a uniform data representation model. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web. This article introduces kpath, a database that integrates information related to metabolic pathways. kpath also provides a navigational interface that enables not only the browsing, but also the deep use of the integrated data to build metabolic networks based on existing disperse knowledge. This user interface has been used to showcase relationships that can be inferred from the information available in several public databases.

  19. Integrating the Wall Street Journal into AIS Courses

    Science.gov (United States)

    Kohlmeyer, James M., III

    2008-01-01

    While it is important for accounting information systems (AIS) students to understand computer technology, internal controls and business processes, such knowledge is of little use without reference to appropriate contexts. Integrating Wall Street Journal (WSJ) readings and discussions into AIS classes can enrich learning by stimulating…

  20. Integrating the Wall Street Journal into AIS Courses

    Science.gov (United States)

    Kohlmeyer, James M., III

    2008-01-01

    While it is important for accounting information systems (AIS) students to understand computer technology, internal controls and business processes, such knowledge is of little use without reference to appropriate contexts. Integrating Wall Street Journal (WSJ) readings and discussions into AIS classes can enrich learning by stimulating…

  1. Together we are strong--cell wall integrity sensors in yeasts.

    Science.gov (United States)

    Rodicio, Rosaura; Heinisch, Jürgen J

    2010-08-01

    The integrity of the fungal cell wall is ensured by a signal transduction pathway, the so-called CWI pathway, which has best been studied in the model yeast Saccharomyces cerevisiae. In this context, environmental stress and other perturbations at the cell surface are detected by a small set of plasma membrane-spanning sensors, viz. Wsc1, Wsc2, Wsc3, Mid2 and Mtl1. This review covers the recent advances in sensor structure, sensor mechanics, their cellular distribution and their in vivo functions, obtained from genetic, biochemical, cell biological and biophysical investigations.

  2. Integrated care pathways and task shifting

    Directory of Open Access Journals (Sweden)

    Linda Panton

    2014-11-01

    Full Text Available Delivery of HIV care has evolved over the last 10 years, and nurse specialists are a driving force in developing new pathways to enhance patient care. Despite the continued rise in numbers of people living with HIV, the financial constraints on the NHS have unfortunately resulted in a reduction in service provision. Experienced nurses are integral to patient care management. They not only provide standardized care for stable patients, therefore increasing consultant capacity for the more complex medical patient, but have a degree of flexibility that allows newly diagnosed patients quick access to care and support. With a strong emphasis being placed on an integrated and collaborative multidisciplinary team approach, to ensure patients receive the same standard of care, Scotland's HIV centres follow an integrated care pathway. The nurse oversees the completion of this document and co-ordinates the pathway of care depending on the clinical need. Nurses develop and maintain necessary partnerships between primary care, specialist care, psychological services, social care and third sector support services. The nurse case load continues to expand and diversify. Stable patients may be maintained on therapy but are living with a stigmatized long-term chronic condition and rely on the nurse as a point of contact to access advice and support readily. The more chaotic and vulnerable clients with complex care needs require the nurse to co-ordinate their care, ensuring the appropriate agencies remain involved. Overseeing the transition of care to other units and tracing patients who are lost to follow up is also a necessity, as retention in care is paramount for the continued improvement in clinical outcomes. The contribution that specialist nurses make to the provision of HIV care is valuable and will continue to play a large role in the delivery of such care.

  3. Developing integrated patient pathways using hybrid simulation

    Science.gov (United States)

    Zulkepli, Jafri; Eldabi, Tillal

    2016-10-01

    Integrated patient pathways includes several departments, i.e. healthcare which includes emergency care and inpatient ward; intermediate care which patient(s) will stay for a maximum of two weeks and at the same time be assessed by assessment team to find the most suitable care; and social care. The reason behind introducing the intermediate care in western countries was to reduce the rate of patients that stays in the hospital especially for elderly patients. This type of care setting has been considered to be set up in some other countries including Malaysia. Therefore, to assess the advantages of introducing this type of integrated healthcare setting, we suggest develop the model using simulation technique. We argue that single simulation technique is not viable enough to represent this type of patient pathways. Therefore, we suggest develop this model using hybrid techniques, i.e. System Dynamics (SD) and Discrete Event Simulation (DES). Based on hybrid model result, we argued that the result is viable to be as references for decision making process.

  4. Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis.

    Science.gov (United States)

    Fukuda, Takeshi; Matsumura, Takayuki; Ato, Manabu; Hamasaki, Maho; Nishiuchi, Yukiko; Murakami, Yoshiko; Maeda, Yusuke; Yoshimori, Tamotsu; Matsumoto, Sohkichi; Kobayashi, Kazuo; Kinoshita, Taroh; Morita, Yasu S

    2013-02-19

    Lipomannan (LM) and lipoarabinomannan (LAM) are mycobacterial glycolipids containing a long mannose polymer. While they are implicated in immune modulations, the significance of LM and LAM as structural components of the mycobacterial cell wall remains unknown. We have previously reported that a branch-forming mannosyltransferase plays a critical role in controlling the sizes of LM and LAM and that deletion or overexpression of this enzyme results in gross changes in LM/LAM structures. Here, we show that such changes in LM/LAM structures have a significant impact on the cell wall integrity of mycobacteria. In Mycobacterium smegmatis, structural defects in LM and LAM resulted in loss of acid-fast staining, increased sensitivity to β-lactam antibiotics, and faster killing by THP-1 macrophages. Furthermore, equivalent Mycobacterium tuberculosis mutants became more sensitive to β-lactams, and one mutant showed attenuated virulence in mice. Our results revealed previously unknown structural roles for LM and LAM and further demonstrated that they are important for the pathogenesis of tuberculosis. IMPORTANCE Tuberculosis (TB) is a global burden, affecting millions of people worldwide. Mycobacterium tuberculosis is a causative agent of TB, and understanding the biology of M. tuberculosis is essential for tackling this devastating disease. The cell wall of M. tuberculosis is highly impermeable and plays a protective role in establishing infection. Among the cell wall components, LM and LAM are major glycolipids found in all Mycobacterium species, show various immunomodulatory activities, and have been thought to play roles in TB pathogenesis. However, the roles of LM and LAM as integral parts of the cell wall structure have not been elucidated. Here we show that LM and LAM play critical roles in the integrity of mycobacterial cell wall and the pathogenesis of TB. These findings will now allow us to seek the possibility that the LM/LAM biosynthetic pathway is a

  5. Integrating shotcrete walls into the natural landscape by application of 'Green Walls'

    Science.gov (United States)

    Medl, Alexandra; Kikuta, Silvia

    2017-04-01

    Steep slopes resulting from major road infrastructure constructions are increasingly perceived as disagreeable disturbance in the landscape. Thus, a tool to consider landscape aspects and integrate these slopes into the natural environment is required. The challenge is to establish a sustainable vegetation layer despite of adverse circumstances such as inclinations of almost 90⁰, exposed position of slopes near streets and lack of soil and water supply. The objective of this study was to assess the performance of an innovative greening technology for vertical structures (shotcrete wall) in terms of vegetation development on varying plant substrates and geotextiles. The field experiment in Steinach am Brenner, Tyrol, Austria, included testing three plant substrates on basis of nearby rocky excavation material ('Innsbrucker Quarzphyllit', 'Bündnerschiefer' and 'Zentralgneis') combined with compost. Additionally, five geotextiles (geogrid (3x4 mm), geogrid (9x10 mm), coir net, coir mat, geo mat) were applied for evaluation. All test combinations were evaluated regarding vegetation cover and biomass production from 2015 to 2016. Analyses of chemical properties were conducted for all plant substrates. Results showed highest vegetation cover ratio on 'Bündnerschiefer' and 'Innsbrucker Quarzphyllit', which can be explained by the favorable mineral composition (nutrient storage capacity) and chemical properties of compost (lower values of electrical conductivity and C/N ratio). In conclusion, the use of 'Green Walls' filled with 'Bündnerschiefer' or 'Innsbrucker Quarzphyllit' plant substrate in combination with netlike geotextiles proved best, since geo grid and coir net turned out as most successful one year after installation. 'Green Walls' are promising in terms of establishing an optimal vegetation cover on vertical structures and are well suited for integrating shotcrete walls into the landscape. The use of local excavation material for greening purposes can be

  6. Selective breakdown of metallic pathways in double-walled carbon nanotube networks.

    Science.gov (United States)

    Ng, Allen L; Sun, Yong; Powell, Lyndsey; Sun, Chuan-Fu; Chen, Chien-Fu; Lee, Cheng S; Wang, YuHuang

    2015-01-07

    Covalently functionalized, semiconducting double-walled carbon nanotubes exhibit remarkable properties and can outperform their single-walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double-walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties. Here, the first approach to address this challenge through electrical breakdown of metallic double-walled carbon nanotubes, both inner and outer walls, within networks of mixed electronic types is described. The intact semiconductors demonstrate a ∼62% retention of the ON-state conductance in thin film transistors in response to covalent functionalization. The selective elimination of the metallic pathways improves the ON/OFF ratio, by more than 360 times, to as high as 40 700, while simultaneously retaining high ON-state conductance.

  7. Atkinesin-13A modulates cell-wall synthesis and cell expansion in Arabidopsis thaliana via the THESEUS1 pathway.

    Directory of Open Access Journals (Sweden)

    Ushio Fujikura

    2014-09-01

    Full Text Available Growth of plant organs relies on cell proliferation and expansion. While an increasingly detailed picture about the control of cell proliferation is emerging, our knowledge about the control of cell expansion remains more limited. We demonstrate here that the internal-motor kinesin AtKINESIN-13A (AtKIN13A limits cell expansion and cell size in Arabidopsis thaliana, with loss-of-function atkin13a mutants forming larger petals with larger cells. The homolog, AtKINESIN-13B, also affects cell expansion and double mutants display growth, gametophytic and early embryonic defects, indicating a redundant role of the two genes. AtKIN13A is known to depolymerize microtubules and influence Golgi motility and distribution. Consistent with this function, AtKIN13A interacts genetically with ANGUSTIFOLIA, encoding a regulator of Golgi dynamics. Reduced AtKIN13A activity alters cell wall structure as assessed by Fourier-transformed infrared-spectroscopy and triggers signalling via the THESEUS1-dependent cell-wall integrity pathway, which in turn promotes the excess cell expansion in the atkin13a mutant. Thus, our results indicate that the intracellular activity of AtKIN13A regulates cell expansion and wall architecture via THESEUS1, providing a compelling case of interplay between cell wall integrity sensing and expansion.

  8. An emerging role of pectic rhamnogalacturonanII for cell wall integrity.

    Science.gov (United States)

    Reboul, Rebecca; Tenhaken, Raimund

    2012-02-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the previously favored xyloglucan.

  9. Posterior septal and right free-wall Kent pathways visualized in situ and removed at operation.

    Science.gov (United States)

    Brodman, R F; Fisher, J D; Mitsudo, S; Kim, S G; Mercando, A; Ferrick, K; Furman, S

    1989-09-01

    This article describes the first posterior septal and first and second right free-wall pathways identified at operation for Wolff-Parkinson-White syndrome and confirmed histologically. All pathways were found in the areas of preexcitation identified by pre and intraoperative mapping. They bridged the atrium and ventricle, and postoperative electrophysiological testing confirmed division of the pathways. Kent bundles may be identified at the time of surgery but they appear to be gossamer structures usually destroyed during surgical manipulation of the coronary sulcus. Visualization of the suspected bypass tract should not alter or limit the extent of surgical dissection.

  10. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development

    NARCIS (Netherlands)

    Cankar, K.; Kortstee, A.J.; Toonen, M.A.J.; Wolters-Arts, M.; Houbein, R.; Mariani, C.; Ulvskov, P.; Jorgensen, B.; Schols, H.A.; Visser, R.G.F.; Trindade, L.M.

    2014-01-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure–function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pec

  11. An ethanolamine kinase Eki1 affects radial growth and cell wall integrity in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Guo, Wei; Zhang, Dongyuan

    2015-09-01

    Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1.82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The functions of eki genes that encode ethanolamine kinase have been intensively studied in mammalian cells, fruit flies and yeast. However, the role of the eki gene has not yet been characterized in filamentous fungi. In this study, Treki1, an ortholog of Saccharomyces cerevisiae EKI1, was identified and functionally characterized using a target gene deletion strategy in Trichoderma reesei. A Treki deletion mutant was less sensitive to cell wall stressors calcofluor white and Congo red and released fewer protoplasts during cell wall digestion than the parent strain QM9414. Further transcription analysis showed that the expression levels of five genes that encode chitin synthases were drastically increased in the ΔTreki1 mutant. The chitin content was also increased in the null mutant of Treki1 comparing to the parent strain. In addition, the ΔTreki1 mutant exhibited defects in radial growth, conidiation and the accumulation of ethanolamine. The results indicate that Treki1 plays a key role in growth and development and in the maintenance of cell wall integrity in T. reesei.

  12. Work-up times in an integrated brain cancer pathway

    DEFF Research Database (Denmark)

    Lund Laursen, Emilie; Rasmussen, Birthe Krogh

    2012-01-01

    The integrated brain cancer pathway (IBCP) aims to ensure fast-track diagnostics and treatment for brain cancers in Denmark. This paper focuses on the referral pattern and the time frame of key pathway elements during the first two years following implementation of the IBCP in a regional neurology...

  13. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will ad

  14. Work-up times in an integrated brain cancer pathway

    DEFF Research Database (Denmark)

    Lund Laursen, Emilie; Rasmussen, Birthe Krogh

    2012-01-01

    The integrated brain cancer pathway (IBCP) aims to ensure fast-track diagnostics and treatment for brain cancers in Denmark. This paper focuses on the referral pattern and the time frame of key pathway elements during the first two years following implementation of the IBCP in a regional neurology...

  15. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will

  16. Influence of thrombophlebitis on TGF-β1 and its signaling pathway in the vein wall

    Directory of Open Access Journals (Sweden)

    Radoslaw Kowalewski

    2010-04-01

    Full Text Available Extensive extracellular matrix remodeling of the vein wall is involved in varicose veins pathogenesis. Thisprocess is controlled by numerous factors, including peptide growth factors. The aim of the study was to evaluate influenceof thrombophlebitis on TGF-β1 and its signaling pathway in the vein wall. TGF-β1 mRNAlevels, growth factor content andits expression were evaluated by RT-PCR, ELISA, and western blot methods, respectively, in the walls of normal veins, varicoseveins and varicose veins complicated by thrombophlebitis. Western blot analysis was used to assess TGF-β receptortype II (TGF-β RII and p-Smad2/3 protein expression in the investigated material. Unchanged mRNA levels of TGF-β1,decreased TGF-β1 content, as well as decreased expression of latent and active forms of TGF-β1 were found in varicoseveins. Increased expression of TGF-β RII and p-Smad2/3 were found in varicose veins. Thrombophlebitis led to increasedprotein expression of the TGF-β1 active form and p-Smad2/3 in the vein wall compared to varicose veins. TGF-β1 may playa role in the disease pathogenesis because of increased expression and activation of its receptor in the wall of varicose veins.Thrombophlebitis accelerates activation of TGF-β1 and activity of its receptor in the varicose vein wall.

  17. Mining and integration of pathway diagrams from imaging data.

    Science.gov (United States)

    Kozhenkov, Sergey; Baitaluk, Michael

    2012-03-01

    Pathway diagrams from PubMed and World Wide Web (WWW) contain valuable highly curated information difficult to reach without tools specifically designed and customized for the biological semantics and high-content density of the images. There is currently no search engine or tool that can analyze pathway images, extract their pathway components (molecules, genes, proteins, organelles, cells, organs, etc.) and indicate their relationships. Here, we describe a resource of pathway diagrams retrieved from article and web-page images through optical character recognition, in conjunction with data mining and data integration methods. The recognized pathways are integrated into the BiologicalNetworks research environment linking them to a wealth of data available in the BiologicalNetworks' knowledgebase, which integrates data from >100 public data sources and the biomedical literature. Multiple search and analytical tools are available that allow the recognized cellular pathways, molecular networks and cell/tissue/organ diagrams to be studied in the context of integrated knowledge, experimental data and the literature. BiologicalNetworks software and the pathway repository are freely available at www.biologicalnetworks.org. Supplementary data are available at Bioinformatics online.

  18. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  19. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling.

    Science.gov (United States)

    Kock, Christian; Arlt, Henning; Ungermann, Christian; Heinisch, Jürgen J

    2016-09-01

    The cell wall integrity (CWI) pathway of the yeast Saccharomyces cerevisiae relies on the detection of cell surface stress by five sensors (Wsc1, Wsc2, Wsc3, Mid2, Mtl1). Each sensor contains a single transmembrane domain and a highly mannosylated extracellular region, and probably detects mechanical stress in the cell wall or the plasma membrane. We here studied the distribution of the five sensors at the cell surface by using fluorescently tagged variants in conjunction with marker proteins for established membrane compartments. We find that each of the sensors occupies a specific microdomain at the plasma membrane. The novel punctate 'membrane compartment occupied by Wsc1' (MCW) shows moderate overlap with other Wsc-type sensors, but not with those of the Mid-type sensors or other established plasma membrane domains. We further observed that sensor density and formation of the MCW compartment depends on the cysteine-rich head group near the N-terminus of Wsc1. Yet, signalling capacity depends more on the sensor density in the plasma membrane than on clustering within its microcompartment. We propose that the MCW microcompartment provides a quality control mechanism for retaining functional sensors at the plasma membrane to prevent them from endocytosis.

  20. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    DEFF Research Database (Denmark)

    Bousquet, J; Addis, A; Adcock, I

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy....... AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers)....

  1. Developing an innovative, integrated care pathway for PMV patients

    OpenAIRE

    Garcia Gomes, Vanda Maria; Butzke, Bettina; Kubitschek, Martin

    2016-01-01

    Background: In the traditional care pathway for prolonged mechanically ventilated (PMV) patients, the patients often progress from an intensive care unit (ICU) directly to their home or to an unspecialised nursing home setting. In these settings, specialised offerings for PMV patients such as round-the-clock respiratory rehabilitation and weaning programmes are usually not being offered. Therefore in the traditional pathway, PMV patients do not receive the integrated rehabilitation and therap...

  2. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae.

    Science.gov (United States)

    Narayanan, Aswathy; Pullepu, Dileep; Reddy, Praveen Kumar; Uddin, Wasim; Kabir, M Anaul

    2016-07-01

    The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell's defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors.

  3. Multiple integral representation for the trigonometric SOS model with domain wall boundaries

    CERN Document Server

    Galleas, W

    2011-01-01

    Using the dynamical Yang-Baxter algebra we derive a functional equation for the partition function of the trigonometric SOS model with domain wall boundary conditions. The solution of the equation is given in terms of a multiple contour integral.

  4. Integrated pathway clusters with coherent biological themes for target prioritisation.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.

  5. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nathan T Reem

    2016-05-01

    Full Text Available The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity and function remains unclear. Modifications of cell wall composition can induce plant responses known as Cell Wall Integrity control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, increased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant cell wall integrity, which contributes to plant resistance to necrotrophic pathogens.

  6. Penalized differential pathway analysis of integrative oncogenomics studies.

    Science.gov (United States)

    van Wieringen, Wessel N; van de Wiel, Mark A

    2014-04-01

    Through integration of genomic data from multiple sources, we may obtain a more accurate and complete picture of the molecular mechanisms underlying tumorigenesis. We discuss the integration of DNA copy number and mRNA gene expression data from an observational integrative genomics study involving cancer patients. The two molecular levels involved are linked through the central dogma of molecular biology. DNA copy number aberrations abound in the cancer cell. Here we investigate how these aberrations affect gene expression levels within a pathway using observational integrative genomics data of cancer patients. In particular, we aim to identify differential edges between regulatory networks of two groups involving these molecular levels. Motivated by the rate equations, the regulatory mechanism between DNA copy number aberrations and gene expression levels within a pathway is modeled by a simultaneous-equations model, for the one- and two-group case. The latter facilitates the identification of differential interactions between the two groups. Model parameters are estimated by penalized least squares using the lasso (L1) penalty to obtain a sparse pathway topology. Simulations show that the inclusion of DNA copy number data benefits the discovery of gene-gene interactions. In addition, the simulations reveal that cis-effects tend to be over-estimated in a univariate (single gene) analysis. In the application to real data from integrative oncogenomic studies we show that inclusion of prior information on the regulatory network architecture benefits the reproducibility of all edges. Furthermore, analyses of the TP53 and TGFb signaling pathways between ER+ and ER- samples from an integrative genomics breast cancer study identify reproducible differential regulatory patterns that corroborate with existing literature.

  7. Overcoming resistance to implementation of integrated care pathways in orthopaedics.

    Science.gov (United States)

    Manning, Blaine T; Callahan, Charles D; Robinson, Brooke S; Adair, Daniel; Saleh, Khaled J

    2013-07-17

    The future of orthopaedic surgery will be shaped by unprecedented demographic and economic challenges, necessitating movement to so-called "second curve" innovations in the delivery of care. Implementation of integrated care pathways (ICPs) may be one solution to imminent cost and access pressures facing orthopaedic patients in this era of health-care accountability and reform. ICPs can lower costs and the duration of hospital stay while facilitating better outcomes through enhanced interspecialty communication. As with any innovation at the crossroads of paradigm change, implementation of integrated care pathways for orthopaedics may elicit surgeons' concern on a variety of grounds and on levels ranging from casual questioning to vehement opposition. No single method is always effective in promoting cooperation and adoption, so a combination of strategies offers the best chance of success. With a special focus on total joint replacement, we consider general patterns of resistance to change, styles of conflict, and specific issues that may underlie orthopaedic surgeon resistance to implementation of integrated care pathways. Methods to facilitate and sustain orthopaedic surgeon engagement in implementation of such pathways are discussed.

  8. Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica.

    Science.gov (United States)

    Schwartz, Cory; Shabbir-Hussain, Murtaza; Frogue, Keith; Blenner, Mark; Wheeldon, Ian

    2016-12-22

    The yeast Yarrowia lipolytica is a promising microbial host due to its native capacity to produce lipid-based chemicals. Engineering stable production strains requires genomic integration of modified genes, avoiding episomal expression that requires specialized media to maintain selective pressures. Here, we develop a CRISPR-Cas9-based tool for targeted, markerless gene integration into the Y. lipolytica genome. A set of genomic loci was screened to identify sites that were accepting of gene integrations without impacting cell growth. Five sites were found to meet these criteria. Expression levels from a GFP expression cassette were consistent when inserted into AXP, XPR2, A08, and D17, with reduced expression from MFE1. The standardized tool is comprised of five pairs of plasmids (one homologous donor plasmid and a CRISPR-Cas9 expression plasmid), with each pair targeting gene integration into one of the characterized sites. To demonstrate the utility of the tool we rapidly engineered a semisynthetic lycopene biosynthesis pathway by integrating four different genes at different loci. The capability to integrate multiple genes without the need for marker recovery and into sites with known expression levels will enable more rapid and reliable pathway engineering in Y. lipolytica.

  9. The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action.

    Science.gov (United States)

    Hamann, Thorsten

    2015-02-01

    One of the main differences between plant and animal cells are the walls surrounding plant cells providing structural support during development and protection like an adaptive armor against biotic and abiotic stress. During recent years it has become widely accepted that plant cells use a dedicated system to monitor and maintain the functional integrity of their walls. Maintenance of integrity is achieved by modifying the cell wall and cellular metabolism in order to permit tightly controlled changes in wall composition and structure. While a substantial amount of evidence supporting the existence of the mechanism has been reported, knowledge regarding its precise mode of action is still limited. The currently available evidence suggests similarities of the plant mechanism with respect to both design principles and molecular components involved to the very well characterized system active in the model organism Saccharomyces cerevisiae. There the system has been implicated in cell morphogenesis as well as response to abiotic stresses such as osmotic challenges. Here the currently available knowledge on the yeast system will be reviewed initially to provide a framework for the subsequent discussion of the plant cell wall integrity maintenance mechanism. The review will then end with a discussion on possible design principles for the cell wall integrity maintenance mechanism and the function of the plant turgor pressure in this context. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Signal integration between IFNgamma and TLR signalling pathways in macrophages.

    Science.gov (United States)

    Schroder, Kate; Sweet, Matthew J; Hume, David A

    2006-01-01

    Macrophages are major effector cells of the innate immune system, and appropriate regulation of macrophage function requires the integration of multiple signalling inputs derived from the recognition of host factors (e.g. interferon-gamma/IFNgamma) and pathogen products (e.g. toll-like receptor/TLR agonists). The profound effects of IFNgamma pre-treatment ("priming") on TLR-induced macrophage activation have long been recognised, but many of the mechanisms underlying the priming phenotype have only recently been identified. This review summarises the known mechanisms of integration between the IFNgamma and TLR signalling pathways. Synergy occurs at multiple levels, ranging from signal recognition to convergence of signals at the promoters of target genes. In particular, the cross-talk between the IFNgamma, and LPS and CpG DNA signalling pathways is discussed.

  11. Integrating service excellence in a CHF clinical pathway pilot project.

    Science.gov (United States)

    Hahn, Joyce; Bishop, Geri; Fennell, Lenora

    2002-01-01

    The complex dynamics of the current healthcare environment require healthcare delivery systems to become cost effective and quality driven. Educated healthcare consumers expect superior service and timely responses to their needs. For one healthcare system, customer expectations were an integral part of designing, implementing, and measuring the service components of congestive heart failure pathway outcomes. Service excellence can influence overall clinical outcomes when measured by consumer awareness and patient satisfaction. The inclusion of service excellence as an intrinsic piece of the organizational strategic plan laid the groundwork for this integrated pilot project.

  12. Localization and radiofrequency ablation of slow conducting pathway in left free wall

    Institute of Scientific and Technical Information of China (English)

    周聊生; 李莹; 侯应龙; 娄兹谟; 闫素华

    2003-01-01

    Objectives To study the Electrophysiologic characteristics and method of radiofrequency ablation in patients with slow conduction in left free wall. Methods When 5 cases induced tachycardia, using VS2 program stimulation terminated the tachycardia to establish that ventricle is the part of reentry circle. Results No retrograde A waves in 4 cases but only 1 case present A wave in terminating tachycardia. The accessory pathways have decreasing conduction in One case. Successful ablation were located in ventricle sides. Conclusions Ventricular sense and S2 program stimulation to terminate tachycardia is a reliable method to different atrial tachycardia. A wave of successful targets ahead of A wave of any coronary sinus leads is 8 ~22 ms.

  13. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology.

    Science.gov (United States)

    Karp, Peter D; Paley, Suzanne M; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M; Lee, Thomas J; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M; Caspi, Ron

    2010-01-01

    Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry.

  14. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes.

    Directory of Open Access Journals (Sweden)

    Yuanqin Jiang

    Full Text Available Biomedical applications of carbon nanotubes (CNTs often involve improving their hydrophilicity and dispersion in biological media by modifying them through noncovalent or covalent functionalization. However, the potential adverse effects of surface-functionalized CNTs have not been well characterized. In this study, we functionalized multi-walled CNTs (MWCNTs via carboxylation, to produce MWCNTs-COOH, and via poly (ethylene glycol linking, to produce MWCNTs-PEG. We used these functionalized MWCNTs to study the effect of surface functionalization on MWCNTs-induced toxicity to macrophages, and elucidate the underlying mechanisms of action. Our results revealed that MWCNTs-PEG were less cytotoxic and were associated with less apoptotic cell death of macrophages than MWCNTs-COOH. Additionally, MWCNTs-PEG induced less generation of reactive oxygen species (ROS involving less activation of NADPH oxidase compared with MWCNTs-COOH, as evidenced by membrane translocation of p47(phox and p67(phox in macrophages. The less cytotoxic and apoptotic effect of MWCNTs-PEG compared with MWCNTs-COOH resulted from the lower cellular uptake of MWCNTs-PEG, which resulted in less activation of oxidative stress-responsive pathways, such as p38 mitogen-activated protein kinases (MAPK and nuclear factor (NF-κB. These results demonstrate that surface functionalization of CNTs may alter ROS-mediated cytotoxic and apoptotic response by modulating apoptotic signaling pathways. Our study thus provides new insights into the molecular basis for the surface properties affecting CNTs toxicity.

  15. Methods of assessing total doses integrated across pathways

    Energy Technology Data Exchange (ETDEWEB)

    Grzechnik, M.; Camplin, W.; Clyne, F. [Centre for Environment, Fisheries and Aquaculture Science, Lowestoft (United Kingdom); Allott, R. [Environment Agency, London (United Kingdom); Webbe-Wood, D. [Food Standards Agency, London (United Kingdom)

    2006-07-01

    Calculated doses for comparison with limits resulting from discharges into the environment should be summed across all relevant pathways and food groups to ensure adequate protection. Current methodology for assessments used in the radioactivity in Food and the Environment (R.I.F.E.) reports separate doses from pathways related to liquid discharges of radioactivity to the environment from those due to gaseous releases. Surveys of local inhabitant food consumption and occupancy rates are conducted in the vicinity of nuclear sites. Information has been recorded in an integrated way, such that the data for eachividual is recorded for all pathways of interest. These can include consumption of foods, such as fish, crustaceans, molluscs, fruit and vegetables, milk and meats. Occupancy times over beach sediments and time spent in close proximity to the site is also recorded for inclusion of external and inhalation radiation dose pathways. The integrated habits survey data may be combined with monitored environmental radionuclide concentrations to calculate total dose. The criteria for successful adoption of a method for this calculation were: Reproducibility can others easily use the approach and reassess doses? Rigour and realism how good is the match with reality?Transparency a measure of the ease with which others can understand how the calculations are performed and what they mean. Homogeneity is the group receiving the dose relatively homogeneous with respect to age, diet and those aspects that affect the dose received? Five methods of total dose calculation were compared and ranked according to their suitability. Each method was labelled (A to E) and given a short, relevant name for identification. The methods are described below; A) Individual doses to individuals are calculated and critical group selection is dependent on dose received. B) Individual Plus As in A, but consumption and occupancy rates for high dose is used to derive rates for application in future

  16. Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    DEFF Research Database (Denmark)

    Meyer, H.; Eich, T.; Beurskens, M.

    2017-01-01

    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine ...

  17. Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana.

    Science.gov (United States)

    Huang, Shuaishuai; He, Zhangjiang; Zhang, Shiwei; Keyhani, Nemat O; Song, Yulin; Yang, Zhi; Jiang, Yahui; Zhang, Wenli; Pei, Yan; Zhang, Yongjun

    2015-10-01

    The entomopathogenic fungus, Beauveria bassiana, is of environmental and economic importance as an insect pathogen, currently used for the biological control of a number of pests. Cell wall integrity and conidiation are critical parameters for the ability of the fungus to infect insects and for production of the infectious propagules. The contribution of calcineurin and the Slt2 MAP kinase to cell wall integrity and development in B. bassiana was investigated. Gene knockouts of either the calcineurin CNA1 subunit or the Slt2 MAP kinase resulted in decreased tolerance to calcofluor white and high temperature. In contrast, the Δcna1 strain was more tolerant to Congo red but more sensitive to osmotic stress (NaCl, sorbitol) than the wild type, whereas the Δslt2 strain had the opposite phenotype. Changes in cell wall structure and composition were seen in the Δslt2 and Δcna1 strains during growth under cell wall stress as compared to the wild type. Both Δslt2 and Δcna1 strains showed significant alterations in growth, conidiation, and viability. Elevation of intracellular ROS levels, and decreased conidial hydrophobicity and adhesion to hydrophobic surfaces, were also seen for both mutants, as well as decreased virulence. Under cell wall stress conditions, inactivation of Slt2 significantly repressed CN-mediated phosphatase activity suggesting some level of cross talk between the two pathways. Comparative transcriptome profiling of the Δslt2 and Δcna1 strains revealed alterations in the expression of distinct gene sets, with overlap in transcripts involved in cell wall integrity, stress response, conidiation and virulence. These data illustrate convergent and divergent phenotypes and targets of the calcineurin and Slt2 pathways in B. bassiana.

  18. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens.

    Science.gov (United States)

    Reem, Nathan T; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A; Bellincampi, Daniela; Zabotina, Olga A

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.

  19. Role of the fission yeast cell integrity MAPK pathway in response to glucose limitation

    Directory of Open Access Journals (Sweden)

    Madrid Marisa

    2013-02-01

    Full Text Available Abstract Background Glucose is a signaling molecule which regulates multiple events in eukaryotic organisms and the most preferred carbon source in the fission yeast Schizosaccharomyces pombe. The ability of this yeast to grow in the absence of glucose becomes strongly limited due to lack of enzymes of the glyoxylate cycle that support diauxic growth. The stress-activated protein kinase (SAPK pathway and its effectors, Sty1 MAPK and transcription factor Atf1, play a critical role in the adaptation of fission yeast to grow on alternative non-fermentable carbon sources by inducing the expression of fbp1+ gene, coding for the gluconeogenic enzyme fructose-1,6-bisphosphatase. The cell integrity Pmk1 pathway is another MAPK cascade that regulates various processes in fission yeast, including cell wall construction, cytokinesis, and ionic homeostasis. Pmk1 pathway also becomes strongly activated in response to glucose deprivation but its role during glucose exhaustion and ensuing adaptation to respiratory metabolism is currently unknown. Results We found that Pmk1 activation in the absence of glucose takes place only after complete depletion of this carbon source and that such activation is not related to an endogenous oxidative stress. Notably, Pmk1 MAPK activation relies on de novo protein synthesis, is independent on known upstream activators of the pathway like Rho2 GTPase, and involves PKC ortholog Pck2. Also, the Glucose/cAMP pathway is required operative for full activation of the Pmk1 signaling cascade. Mutants lacking Pmk1 displayed a partial growth defect in respiratory media which was not observed in the presence of glucose. This phenotype was accompanied by a decreased and delayed expression of transcription factor Atf1 and target genes fbp1+ and pyp2+. Intriguingly, the kinetics of Sty1 activation in Pmk1-less cells was clearly altered during growth adaptation to non-fermentable carbon sources. Conclusions Unknown upstream elements

  20. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  1. Critical role for CaFEN1 and CaFEN12 of Candida albicans in cell wall integrity and biofilm formation

    Science.gov (United States)

    Alfatah, Md.; Bari, Vinay K.; Nahar, Anubhav S.; Bijlani, Swati; Ganesan, K.

    2017-01-01

    Sphingolipids are involved in several cellular functions, including maintenance of cell wall integrity. To gain insight into the role of individual genes of sphingolipid biosynthetic pathway, we have screened Saccharomyces cerevisiae strains deleted in these genes for sensitivity to cell wall perturbing agents calcofluor white and congo red. Only deletants of FEN1 and SUR4 genes were found to be sensitive to both these agents. Candida albicans strains deleted in their orthologs, CaFEN1 and CaFEN12, respectively, also showed comparable phenotypes, and a strain deleted for both these genes was extremely sensitive to cell wall perturbing agents. Deletion of these genes was reported earlier to sensitise cells to amphotericin B (AmB), which is a polyene drug that kills the cells mainly by binding and sequestering ergosterol from the plasma membrane. Here we show that their AmB sensitivity is likely due to their cell wall defect. Further, we show that double deletant of C. albicans is defective in hyphae formation as well as biofilm development. Together this study reveals that deletion of FEN1 and SUR4 orthologs of C. albicans leads to impaired cell wall integrity and biofilm formation, which in turn sensitise cells to AmB. PMID:28079132

  2. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  3. Non-invasive markers of gut wall integrity in health and disease

    Institute of Scientific and Technical Information of China (English)

    Joep; PM; Derikx; Misha; DP; Luyer; Erik; Heineman; Wim; A; Buurman

    2010-01-01

    The intestinal mucosa is responsible for the absorption of nutrients from the lumen and for the separation of the potentially toxic luminal content(external environment) from the host(internal environment).Disruption of this delicate balance at the mucosal interface is the basis for numerous(intestinal) diseases.Experimental animal studies have shown that gut wall integrity loss is involved in the development of various inflammatory syndromes,including post-operative or post-traumatic systemic inflammatory ...

  4. Integral formula for elliptic SOS models with domain walls and a reflecting end

    Science.gov (United States)

    Lamers, Jules

    2015-12-01

    In this paper we extend previous work of Galleas and the author to elliptic SOS models. We demonstrate that the dynamical reflection algebra can be exploited to obtain a functional equation characterizing the partition function of an elliptic SOS model with domain-wall boundaries and one reflecting end. Special attention is paid to the structure of the functional equation. Through this approach we find a novel multiple-integral formula for that partition function.

  5. Cdc48 and cofactors Npl4-Ufd1 are important for G1 progression during heat stress by maintaining cell wall integrity in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Meng-Ti Hsieh

    Full Text Available The ubiquitin-selective chaperone Cdc48, a member of the AAA (ATPase Associated with various cellular Activities ATPase superfamily, is involved in many processes, including endoplasmic reticulum-associated degradation (ERAD, ubiquitin- and proteasome-mediated protein degradation, and mitosis. Although Cdc48 was originally isolated as a cell cycle mutant in the budding yeast Saccharomyces cerevisiae, its cell cycle functions have not been well appreciated. We found that temperature-sensitive cdc48-3 mutant is largely arrested at mitosis at 37°C, whereas the mutant is also delayed in G1 progression at 38.5°C. Reporter assays show that the promoter activity of G1 cyclin CLN1, but not CLN2, is reduced in cdc48-3 at 38.5°C. The cofactor npl4-1 and ufd1-2 mutants also exhibit G1 delay and reduced CLN1 promoter activity at 38.5°C, suggesting that Npl4-Ufd1 complex mediates the function of Cdc48 at G1. The G1 delay of cdc48-3 at 38.5°C is a consequence of cell wall defect that over-activates Mpk1, a MAPK family member important for cell wall integrity in response to stress conditions including heat shock. cdc48-3 is hypersensitive to cell wall perturbing agents and is synthetic-sick with mutations in the cell wall integrity signaling pathway. Our results suggest that the cell wall defect in cdc48-3 is exacerbated by heat shock, which sustains Mpk1 activity to block G1 progression. Thus, Cdc48-Npl4-Ufd1 is important for the maintenance of cell wall integrity in order for normal cell growth and division.

  6. We’re good to grow: Dynamic integration of cell wall architecture with the machinery of growth

    Directory of Open Access Journals (Sweden)

    Matheus R Benatti

    2012-08-01

    Full Text Available Despite differences in cell wall composition between the type I cell walls of dicots and most monocots and the type II walls of commelinid monocots, all flowering plants respond to the same classes of growth regulators in the same tissue-specific way and exhibit the same growth physics. Substantial progress has been made in defining gene families and identifying mutants in cell wall-related genes, but our understanding of the biochemical basis of wall extensibility during growth is still rudimentary. In this review, we highlight insights into the physiological control of cell expansion emerging from genetic functional analyses, mostly in Arabidopsis and other dicots, and a few examples of genes of potential orthologous function in grass species. We discuss examples of cell wall architectural features that impact growth independent of composition, and progress in identifying proteins involved in transduction of growth signals and integrating their outputs in the molecular machinery of wall expansion.

  7. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development.

    Science.gov (United States)

    Cankar, Katarina; Kortstee, Anne; Toonen, Marcel A J; Wolters-Arts, Mieke; Houbein, Rudolf; Mariani, Celestina; Ulvskov, Peter; Jorgensen, Bodil; Schols, Henk A; Visser, Richard G F; Trindade, Luisa M

    2014-05-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.

  8. 8th Annual Glycoscience Symposium: Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Paratoo [Univ. of Georgia, Athens, GA (United States)

    2015-09-24

    The Complex Carbohydrate Research Center (CCRC) of the University of Georgia holds a symposium yearly that highlights a broad range of carbohydrate research topics. The 8th Annual Georgia Glycoscience Symposium entitled “Integrating Models of Plant Cell Wall Structure, Biosynthesis and Assembly” was held on April 7, 2014 at the CCRC. The focus of symposium was on the role of glycans in plant cell wall structure and synthesis. The goal was to have world leaders in conjunction with graduate students, postdoctoral fellows and research scientists to propose the newest plant cell wall models. The symposium program closely followed the DOE’s mission and was specifically designed to highlight chemical and biochemical structures and processes important for the formation and modification of renewable plant cell walls which serve as the basis for biomaterial and biofuels. The symposium was attended by both senior investigators in the field as well as students including a total attendance of 103, which included 80 faculty/research scientists, 11 graduate students and 12 Postdoctoral students.

  9. HPD: an online integrated human pathway database enabling systems biology studies.

    Science.gov (United States)

    Chowbina, Sudhir R; Wu, Xiaogang; Zhang, Fan; Li, Peter M; Pandey, Ragini; Kasamsetty, Harini N; Chen, Jake Y

    2009-10-08

    Pathway-oriented experimental and computational studies have led to a significant accumulation of biological knowledge concerning three major types of biological pathway events: molecular signaling events, gene regulation events, and metabolic reaction events. A pathway consists of a series of molecular pathway events that link molecular entities such as proteins, genes, and metabolites. There are approximately 300 biological pathway resources as of April 2009 according to the Pathguide database; however, these pathway databases generally have poor coverage or poor quality, and are difficult to integrate, due to syntactic-level and semantic-level data incompatibilities. We developed the Human Pathway Database (HPD) by integrating heterogeneous human pathway data that are either curated at the NCI Pathway Interaction Database (PID), Reactome, BioCarta, KEGG or indexed from the Protein Lounge Web sites. Integration of pathway data at syntactic, semantic, and schematic levels was based on a unified pathway data model and data warehousing-based integration techniques. HPD provides a comprehensive online view that connects human proteins, genes, RNA transcripts, enzymes, signaling events, metabolic reaction events, and gene regulatory events. At the time of this writing HPD includes 999 human pathways and more than 59,341 human molecular entities. The HPD software provides both a user-friendly Web interface for online use and a robust relational database backend for advanced pathway querying. This pathway tool enables users to 1) search for human pathways from different resources by simply entering genes/proteins involved in pathways or words appearing in pathway names, 2) analyze pathway-protein association, 3) study pathway-pathway similarity, and 4) build integrated pathway networks. We demonstrated the usage and characteristics of the new HPD through three breast cancer case studies. HPD http://bio.informatics.iupui.edu/HPD is a new resource for searching, managing

  10. Influence of thrombophlebitis on TGF-β1 and its signaling pathway in the vein wall.

    Directory of Open Access Journals (Sweden)

    Andrzej Malkowski

    2011-04-01

    Full Text Available Extensive extracellular matrix remodeling of the vein wall is involved in varicose veins pathogenesis. This process is controlled by numerous factors, including peptide growth factors. The aim of the study was to evaluate influence of thrombophlebitis on TGF-β1 and its signaling pathway in the vein wall. TGF-β1 mRNAlevels, growth factor content and its expression were evaluated by RT-PCR, ELISA, and western blot methods, respectively, in the walls of normal veins, varicose veins and varicose veins complicated by thrombophlebitis. Western blot analysis was used to assess TGF-β receptor type II (TGF-β RII and p-Smad2/3 protein expression in the investigated material. Unchanged mRNA levels of TGF-β1, decreased TGF-β1 content, as well as decreased expression of latent and active forms of TGF-β1 were found in varicose veins. Increased expression of TGF-β RII and p-Smad2/3 were found in varicose veins. Thrombophlebitis led to increased protein expression of the TGF-β1 active form and p-Smad2/3 in the vein wall compared to varicose veins. TGF-β1 may play a role in the disease pathogenesis because of increased expression and activation of its receptor in the wall of varicose veins. Thrombophlebitis accelerates activation of TGF-β1 and activity of its receptor in the varicose vein wall.

  11. An Interactive, Integrated, Instructional Pathway to the LEAD Science Gateway

    Science.gov (United States)

    Yalda, S.; Clark, R.; Davis, L.; Wiziecki, E. N.

    2008-12-01

    Linked Environments for Atmospheric Discovery (LEAD) is a bold and revolutionary paradigm that through a Web-based Service Oriented Architecture (SOA) exposes the user to a rich environment of data, models, data mining and visualization and analysis tools, enabling the user to ask science questions of applications while the complexity of the software and middleware managing these applications is hidden from the user. From its inception in 2003, LEAD has championed goals that have context for the future of weather and related research and education. LEAD espouses to lowering the barrier for using complex end-to-end weather technologies by a) democratizing the availability of advanced weather technologies, b) empowering the user of these technologies to tackle a variety of problems, and c) facilitating learning and understanding. LEAD, as it exists today, is poised to enable a diverse community of scientists, educators, students, and operational practitioners. The project has been informed by atmospheric and computer scientists, educators, and educational consultants who, in search of new knowledge, understanding, ideas, and learning methodologies, seek easy access to new capabilities that allow for user-directed and interactive query and acquisition, simulation, assimilation, data mining, computational modeling, and visualization. As one component of the total LEAD effort, the LEAD education team has designed interactive, integrated, instructional pathways within a set of learning modules (LEAD-to-Learn) to facilitate, enhance, and enable the use of the LEAD gateway in the classroom. The LEAD education initiative focuses on the means to integrate data, tools, and services used by researchers into undergraduate meteorology education in order to provide an authentic and contextualized environment for teaching and learning. Educators, educational specialists, and students from meteorology and computer science backgrounds have collaborated on the design and development

  12. Mechanism of synchronized change in ultrasonic integrated backscatter across human heart wall

    Science.gov (United States)

    Tobinai, Yumi; Taki, Hirofumi; Kanai, Hiroshi

    2017-07-01

    Ultrasonic integrated backscatter (IB) from the heart wall, which has been employed for quantitative tissue characterization of the myocardium, is known to have cyclic variation-a decrease in systole and an increase in diastole. In the present study, by tracking the measurement position of the myocardium and compensating for the movement due to the heartbeat, IB and its temporal variation were obtained from the same site with a high temporal resolution of 1.73 ms. In an in vivo study on a healthy subject, the temporal variation of IB values homogeneously changed across the heart wall, especially during the slow filling and the atrial systole phases. This new finding shows that the IB value reflects a small movement of the myocardium of about 5 mm/s. Thus, the proposed measurement has a potential for quantitative and accurate evaluation of the contraction and relaxation of the myocardium.

  13. Genome-wide survey of yeast mutations leading to activation of the yeast cell integrity MAPK pathway: Novel insights into diverse MAPK outcomes

    Directory of Open Access Journals (Sweden)

    Arias Patricia

    2011-08-01

    Full Text Available Abstract Background The yeast cell wall integrity mitogen-activated protein kinase (CWI-MAPK pathway is the main regulator of adaptation responses to cell wall stress in yeast. Here, we adopt a genomic approach to shed light on two aspects that are only partially understood, namely, the characterization of the gene functional catalog associated with CWI pathway activation and the extent to which MAPK activation correlates with transcriptional outcomes. Results A systematic yeast mutant deletion library was screened for constitutive transcriptional activation of the CWI-related reporter gene MLP1. Monitoring phospho-Slt2/Mpk1 levels in the identified mutants revealed sixty-four deletants with high levels of phosphorylation of this MAPK, including mainly genes related to cell wall construction and morphogenesis, signaling, and those with unknown function. Phenotypic analysis of the last group of mutants suggests their involvement in cell wall homeostasis. A good correlation between levels of Slt2 phosphorylation and the magnitude of the transcriptional response was found in most cases. However, the expression of CWI pathway-related genes was enhanced in some mutants in the absence of significant Slt2 phosphorylation, despite the fact that functional MAPK signaling through the pathway was required. CWI pathway activation was associated to increased deposition of chitin in the cell wall - a known survival compensatory mechanism - in about 30% of the mutants identified. Conclusion We provide new insights into yeast genes related to the CWI pathway and into how the state of activation of the Slt2 MAPK leads to different outcomes, discovering the versatility of this kind of signaling pathways. These findings potentially have broad implications for understanding the functioning of other eukaryotic MAPKs.

  14. Integrated Analysis Identifies Interaction Patterns between Small Molecules and Pathways

    Science.gov (United States)

    Li, Yan; Li, Weiguo; Chen, Xin; Sun, Jiatong; Chen, Huan; Lv, Sali

    2014-01-01

    Previous studies have indicated that the downstream proteins in a key pathway can be potential drug targets and that the pathway can play an important role in the action of drugs. So pathways could be considered as targets of small molecules. A link map between small molecules and pathways was constructed using gene expression profile, pathways, and gene expression of cancer cell line intervened by small molecules and then we analysed the topological characteristics of the link map. Three link patterns were identified based on different drug discovery implications for breast, liver, and lung cancer. Furthermore, molecules that significantly targeted the same pathways tended to treat the same diseases. These results can provide a valuable reference for identifying drug candidates and targets in molecularly targeted therapy. PMID:25114931

  15. SOP for pathway inference in Integrated Microbial Genomes (IMG).

    Science.gov (United States)

    Anderson, Iain; Chen, Amy; Markowitz, Victor; Kyrpides, Nikos; Ivanova, Natalia

    2011-12-31

    One of the most important aspects of genomic analysis is the prediction of which pathways, both metabolic and non-metabolic, are present in an organism. In IMG, this is carried out by the assignment of IMG terms, which are organized into IMG pathways. Based on manual and automatic assignment of IMG terms, the presence or absence of IMG pathways is automatically inferred. The three categories of pathway assertion are asserted (likely present), not asserted (likely absent), and unknown. In the unknown category, at least one term necessary for the pathway is missing, but an ortholog in another organism has the corresponding term assigned to it. Automatic pathway inference is an important initial step in genome analysis.

  16. The Integration and Functional Evaluation of Rabbit Pacing Cells Transplanted into the Left Ventricular Free Wall

    Directory of Open Access Journals (Sweden)

    Zhihui Zhang, Zhiyuan Song, Jun Cheng, Yaoming Nong, Lu Wei, Changhai Zhang

    2012-01-01

    Full Text Available To evaluate the feasibility of cell transplantation to treat bradyarrhythmia, we analyzed the in vivo integration and pacing function after transplantation of mHCN4-modified rabbit bone marrow mesenchymal stem cells (MSCs into the rabbit left ventricle free wall epicardium. In our investigation, we injected MSCs transduced with or without mHCN4 into the rabbit left ventricle free wall epicardium. Chemical ablation of the sinoatrial node was performed and bilateral vagus nerves were sequentially stimulated to observe premature left ventricular contraction or left ventricular rhythm. We found that the mHCN4-transduced MSC group had a significantly higher ventricular rate and a shorter QRS duration than that of the control and EGFP group. Furthermore, the mHCN4-transduced MSCs, but not the control cells, gradually adapted long-spindle morphology and became indistinguishable from adjacent ventricle myocytes. The modified MSCs showed pacing function approximately 1 week after transplantation and persisted at least 4 weeks after transplantation. In conclusion, a bradyarrhythmia model can be successfully established by chemical ablation of the sinoatrial node and sequential bilateral vagus nerve stimulation. The mHCN4-modified rabbit MSCs displayed evident dynamic morphology changes after being transplanted into rabbit left ventricle free wall epicardium. Our studies may provide a promising strategy of using modified stem cell transplantation to treat bradyarrhythmia.

  17. GDP-mannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

    Science.gov (United States)

    Jiang, Hechun; Ouyang, Haomiao; Zhou, Hui; Jin, Cheng

    2008-09-01

    GDP-mannose pyrophosphorylase (GMPP) catalyses the synthesis of GDP-mannose, which is the precursor for the mannose residues in glycoconjugates, using mannose 1-phosphate and GTP as substrates. Repression of GMPP in yeast leads to phenotypes including cell lysis, defective cell wall, and failure of polarized growth and cell separation. Although several GMPPs have been isolated and characterized in filamentous fungi, the physiological consequences of their actions are not clear. In this study, Afsrb1, which is a homologue of yeast SRB1/PSA1/VIG9, was identified in the Aspergillus fumigatus genome. The Afsrb1 gene was expressed in Escherichia coli, and recombinant AfSrb1 was functionally confirmed as a GMPP. By the replacement of the native Afsrb1 promoter with an inducible Aspergillus nidulans alcA promoter, the conditional inactivation mutant strain YJ-gmpp was constructed. The presence of 3 % glucose completely blocked transcription of P(alcA)-Afsrb1, and was lethal to strain YJ-gmpp. Repression of Afsrb1 expression in strain YJ-gmpp led to phenotypes including hyphal lysis, defective cell wall, impaired polarity maintenance, and branching site selection. Also, rapid germination and reduced conidiation were documented. However, in contrast to yeast, strain YJ-gmpp retained the ability to direct polarity establishment and septation. Our results showed that the Afsrb1 gene is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

  18. Restoration of abdominal wall integrity as a salvage procedure in difficult recurrent abdominal wall hernias using a method of wide myofascial release.

    Science.gov (United States)

    Levine, J P; Karp, N S

    2001-03-01

    The management of primary and recurrent giant incisional hernias remains a complex and frustrating challenge even with multiple alloplastic and autogenous closure options. The purpose of this study was to develop a reconstructive technique of restoring abdominal wall integrity to a subcategory of patients, who have failed initial hernia therapy, by performing superior and lateral myofascial release. Over a 1.5-year period, 10 patients with previously unsuccessful treatment of abdominal wall hernias, using either primary repair or placement of synthetic material, were studied. The patients had either recurrence of the hernia or complications such as infections requiring removal of synthetic material. The hernias were not able to be treated with standard primary closure techniques or synthetic material. The average defect size was 19 x 9 cm. Each patient underwent wide lysis of bowel adhesions releasing the posterior abdominal wall fascia to the posterior axillary line, subcutaneous release of the anterior abdominal wall fascia to a similar level, and complete removal of any synthetic material (if present). The abdominal domain was reestablished by releasing the laterally retracted abdominal wall. The amount of available abdominal wall tissue was increased by wide release of the cephalic abdominal wall fascia overlying the costal margin and the external oblique fascia and muscle laterally. If needed, partial thickness of the internal oblique muscle and its anterior fascia were also released laterally to perform a tension-free primary closure of the defect. All repairs were closed with satisfactory functional and aesthetic results. All alloplastic material was removed. Fascial release was limited so as to close only the hernia defect without tension. No significant release of the rectus sheath and muscle was needed. Good, dynamic muscle function was noted postoperatively. All repairs have remained intact, and no further abdominal wall hernias have been noted on follow-up.

  19. Dosimetric evaluation of integrated IMRT treatment of the chest wall and supraclavicular region for breast cancer after modified radical mastectomy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Wei, Xian-ding; Zhao, Yu-tian [Department of Radiation Oncology, the Fourth Affiliated Hospital of Suzhou University, Wuxi (China); Ma, Chang-Ming, E-mail: charlie.ma@fccc.edu [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-07-01

    To investigate the dosimetric characteristics of irradiation of the chest wall and supraclavicular region as an integrated volume with intensity-modulated radiation therapy (IMRT) after modified radical mastectomy. This study included 246 patients who received modified radical mastectomy. The patients were scanned with computed tomography, and the chest wall (with or without the internal mammary lymph nodes) and supraclavicular region were delineated. For 143 patients, the chest wall and supraclavicular region were combined as an integrated planning volume and treated with IMRT. For 103 patients, conventional treatments were employed with 2 tangential fields for the chest wall, abutting a mixed field of 6-MV x-rays (16 Gy) and 9-MeV electrons (34 Gy) for the upper supraclavicular region. The common prescription dose was 50 Gy/25 Fx/5 W to 90% of the target volume. The dosimetric characteristics of the chest wall, the supraclavicular region, and normal organs were compared. For the chest wall target, compared with conventional treatments, the integrated IMRT plans lowered the maximum dose, increased the minimum dose, and resulted in better conformity and uniformity of the target volume. There was an increase in minimum, average, and 95% prescription dose for the integrated IMRT plans in the supraclavicular region, and conformity and uniformity were improved. The V{sub 30} of the ipsilateral lung and V{sub 10}, V{sub 30}, and mean dose of the heart on the integrated IMRT plans were lower than those of the conventional plans. The V{sub 5} and V{sub 10} of the ipsilateral lung and V{sub 5} of the heart were higher on the integrated IMRT plans (p < 0.05) than on conventional plans. Without an increase in the radiation dose to organs at risk, the integrated IMRT treatment plans improved the dose distribution of the supraclavicular region and showed better dose conformity and uniformity of the integrated target volume of the chest wall and supraclavicular region.

  20. Novel process integration for biodiesel blend in membrane reactive divided wall (MRDW column

    Directory of Open Access Journals (Sweden)

    Sakhre Vandana

    2016-03-01

    Full Text Available The paper proposes a novel process integration for biodiesel blend in the Membrane assisted Reactive Divided Wall Distillation (MRDW column. Biodiesel is a green fuel and grade of biodiesel blend is B20 (% which consist of 20% biodiesel and rest 80% commercial diesel. Instead of commercial diesel, Tertiary Amyl Ethyl Ether (TAEE was used as an environment friendly fuel for blending biodiesel. Biodiesel and TAEE were synthesized in a pilot scale reactive distillation column. Dual reactive distillation and MRDW were simulated using aspen plus. B20 (% limit calculation was performed using feed flow rates of both TAEE and biodiesel. MRDW was compared with dual reactive distillation column and it was observed that MRDW is comparatively cost effective and suitable in terms of improved heat integration and flow pattern.

  1. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Tadakimi; Bzik, David J.; Ma, Yan Fen; Fox, Barbara A.; Markillie, Lye Meng; Taylor, Ronald C.; Kim, Kami; Weiss, Louis M.

    2013-12-26

    Toxoplasma gondii infects up to one third of the world’s population. A key to the success of T.gondii is its ability to persist for the life of its host as bradyzoites within tissue cysts. The glycosylated cyst wall is the key structural feature that facilitates persistence and oral transmission of this parasite. We have identified CST1 (TGME49_064660) as a 250 kDa SRS (SAG1 related sequence) domain protein with a large mucin-like domain. CST1 is responsible for the Dolichos biflorus Agglutinin (DBA) lectin binding characteristic of T. gondii cysts. Deletion of CST1 results in a fragile brain cyst phenotype revealed by a thinning and disruption of the underlying region of the cyst wall. These defects are reversed by complementation of CST1. Additional complementation experiments demonstrate that the CST1-mucin domain is necessary for the formation of a normal cyst wall structure, the ability of the cyst to resist mechanical stress and binding of DBA to the cyst wall. RNA-seq transcriptome analysis demonstrated dysregulation of bradyzoite genes within the various cst1 mutants. These results indicate that CST1 functions as a key structural component that reinforces the cyst wall structure and confers essential sturdiness to the T. gondii tissue cyst.

  2. Integrating sphere effect in whole bladder wall photodynamic therapy at violet, green, and red wavelengths

    Science.gov (United States)

    van Staveren, Hugo J.; Beek, Johan F.; Keijzer, Marleen; Star, Willem M.

    1995-01-01

    Fluence rates were measured in vivo at a piglet bladder wall during whole bladder wall (WBW) light irradiation at 458, 488, 514, 532, and 630 nm wavelengths. Bladder optical properties, the absorption-, scattering-, and anisotropy coefficient, were determined in vitro at these wavelengths using a double integrating sphere set-up. Monte Carlo (MC) computer simulations for WBW photodynamic therapy (PDT) were performed in a spherical geometry representing the bladder. The in vivo measured fluence multiplication factor ((beta) ) decreases from approximately equals 5 at 630 nm to approximately equals 1.5 at 458 nm. The simulated (beta) values, using the in vitro optical properties and non-absorbing (saline) bladder contents, are consistently larger with a minimum at 514/532 nm and a maximum at 458 and 630 nm. Simulations with slightly light absorbing bladder contents show that the inevitable urine in the cavity can at least partly be responsible for the lower in vivo values. Whereas the MC simulations use an in vitro absorption coefficient, the in vivo observed phenomenon might be attributed to additional light absorption by hemoglobin in the bladder tissue. Thus, WBW-PDT with red light is technically more advantageous than with green or blue light as this gives the strongest integrating sphere effect.

  3. Dosimetric evaluation of integrated IMRT treatment of the chest wall and supraclavicular region for breast cancer after modified radical mastectomy.

    Science.gov (United States)

    Yang, Bo; Wei, Xian-Ding; Zhao, Yu-Tian; Ma, Chang-Ming

    2014-01-01

    To investigate the dosimetric characteristics of irradiation of the chest wall and supraclavicular region as an integrated volume with intensity-modulated radiation therapy (IMRT) after modified radical mastectomy. This study included 246 patients who received modified radical mastectomy. The patients were scanned with computed tomography, and the chest wall (with or without the internal mammary lymph nodes) and supraclavicular region were delineated. For 143 patients, the chest wall and supraclavicular region were combined as an integrated planning volume and treated with IMRT. For 103 patients, conventional treatments were employed with 2 tangential fields for the chest wall, abutting a mixed field of 6-MV x-rays (16Gy) and 9-MeV electrons (34Gy) for the upper supraclavicular region. The common prescription dose was 50Gy/25Fx/5W to 90% of the target volume. The dosimetric characteristics of the chest wall, the supraclavicular region, and normal organs were compared. For the chest wall target, compared with conventional treatments, the integrated IMRT plans lowered the maximum dose, increased the minimum dose, and resulted in better conformity and uniformity of the target volume. There was an increase in minimum, average, and 95% prescription dose for the integrated IMRT plans in the supraclavicular region, and conformity and uniformity were improved. The V30 of the ipsilateral lung and V10, V30, and mean dose of the heart on the integrated IMRT plans were lower than those of the conventional plans. The V5 and V10 of the ipsilateral lung and V5 of the heart were higher on the integrated IMRT plans (p supraclavicular region and showed better dose conformity and uniformity of the integrated target volume of the chest wall and supraclavicular region. Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry

    CERN Document Server

    Kontsevich, Maxim

    2013-01-01

    We introduce the notion of Wall-Crossing Structure and discuss it in several examples including complex integrable systems, Donaldson-Thomas invariants and Mirror Symmetry. For a big class of non-compact Calabi-Yau 3-folds we construct complex integrable systems of Hitchin type with the base given by the moduli space of deformations of those 3-folds. Then Donaldson-Thomas invariants of the Fukaya category of such a Calabi-Yau 3-fold can be (conjecturally) described in two more ways: in terms of the attractor flow on the base of the corresponding complex integrable system and in terms of the skeleton of the mirror dual to the total space of the integrable system. The paper also contains a discussion of some material related to the main subject, e.g. Betti model of Hitchin systems with irregular singularities, WKB asymptotics of connections depending on a small parameter, attractor points in the moduli space of complex structures of a compact Calabi-Yau 3-fold, relation to cluster varieties, etc.

  5. The role of Na,K-ATPase/Src-kinase signaling pathway in the vascular wall contaction

    DEFF Research Database (Denmark)

    Bouzinova, Elena

    ,K-ATPase by ouabain elevates blood pressure. Consequently, ouabain was shown to potentiate arterial contraction in vitro. In contrast, we have demonstrated that siRNA-induced down-regulation of the α-2 isoform Na,K-ATPase expression reduced arterial sensitivity to agonist stimulation and prevented the effect...... of ouabain. Here we demonstrate results of our research on the mechanisms involved in the modulation of vascular wall contractility by ouabain-sensitive Na,K-ATPase. Methods: The experiments were performed using rat mesenteric arteries in isometric myograph conditions. To inhibit kinase activity a Src-family...

  6. PHLPP phosphatase:a key mediator integrating multiple signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Hui ZHONG

    2010-01-01

    @@ Cellular responses to bacterial or viral infections and to stress require rapid and accurate transmission of signals from cell-surface receptors to the nucleus (Karin and Hunter, 1995).These signaling pathways, relying on extensive protein phosphorylation events, lead to the activation of specific transcription factors that induce the expression of appropriate target genes.Among the activated transcription factors, nuclear factor KB (NF-KB)is essential for inflammation, immunity, cell proliferation and apoptosis.NF-KB requires a signaling pathway for activation.Such NF-KB-activating pathways can be triggered by a variety of extracellular stimuli, which lead to the phosphorylation and subsequent proteasomemediated degradation of inhibitory molecules, the inhibitor of NF-KB (hcB) proteins (Karin and Ben-Neriah, 2000).Activated NF-KB migrates into the nucleus to regulate the expression of multiple target genes.

  7. Portuguese Older Gay Men: Pathways to Family Integrity

    Directory of Open Access Journals (Sweden)

    Filipa Daniela Marques

    2016-08-01

    Full Text Available Abstract Research in the field of older gay men remains scarce. This exploratory study examines older gay men's experiences in the construction of family integrity (versus disconnection and alienation. The family integrity approach is a developmental perspective that links ego integrity to a larger process of constructing meaning within the family system. The sample comprises ten participants (from 60 to 88 years old. A semi-structured interview was conducted and submitted to content analysis. The main findings suggest three experiences in older gay men's construction of family integrity: (i influence of homosexuality throughout life; (ii establishing a family of choice; (iii creating a legacy associated with homosexuality. Family integrity in older gay men seems to evolve from disclosure at a young age to making homosexuality a legacy in old age.

  8. Full scale measurements and CFD investigations of a wall radiant cooling system integrated in thin concrete walls

    DEFF Research Database (Denmark)

    Mikeska, Tomás; Fan, Jianhua; Svendsen, Svend

    2017-01-01

    Densely occupied spaces such as classrooms can very often have problems with overheating. It can be difficult to cool such spaces by means of a ventilation system without creating draughts and causing discomfort for occupants. The use of a wall radiant cooling system is a suitable option for spaces...... with a high occupant density. Radiant systems can remove most sensible heat loads resulting in a relatively small requirement for supply air for ventilation....

  9. A decade on: has the use of integrated care pathways made a difference in Lanarkshire?

    Science.gov (United States)

    Kent, P; Chalmers, Y

    2006-10-01

    This article aimed to: (1) review the work carried out in Lanarkshire between 1996 and 1999 on a Scottish Executive funded project and (2) to discuss the situation from 1999 to 2006. (1) This 3-year project led to the successful development and implementation of over 100 integrated care pathways in an urban teaching hospital (Glasgow) and a district general hospital (Lanarkshire) and was the first in-depth study of integrated care pathways to be undertaken in Scotland. The main report on the project was produced in 1999 (Clinical Audit and Quality using Integrated Pathways of Care) and reported increased adherence to British Thoracic Society and Scottish Intercollegiate Guidelines Network guidelines and multiple best practice statements, and improved standards of documentation. The general findings were that process indicators were improved by integrated care pathway use and there was some suggestion of improved length of stay with no apparent effect on outcome. Evidence was found that integrated care pathways have made a difference for both patients and staff. (2) This provides an update of integrated care pathway development in a changing environment within NHS Lanarkshire and examines some of the key factors for success.

  10. An Integrative Pathway-based Clinical-genomic Model for Cancer Survival Prediction.

    Science.gov (United States)

    Chen, Xi; Wang, Lily; Ishwaran, Hemant

    2010-09-01

    Prediction models that use gene expression levels are now being proposed for personalized treatment of cancer, but building accurate models that are easy to interpret remains a challenge. In this paper, we describe an integrative clinical-genomic approach that combines both genomic pathway and clinical information. First, we summarize information from genes in each pathway using Supervised Principal Components (SPCA) to obtain pathway-based genomic predictors. Next, we build a prediction model based on clinical variables and pathway-based genomic predictors using Random Survival Forests (RSF). Our rationale for this two-stage procedure is that the underlying disease process may be influenced by environmental exposure (measured by clinical variables) and perturbations in different pathways (measured by pathway-based genomic variables), as well as their interactions. Using two cancer microarray datasets, we show that the pathway-based clinical-genomic model outperforms gene-based clinical-genomic models, with improved prediction accuracy and interpretability.

  11. Notch, Wnt, and Hedgehog Pathways in Rhabdomyosarcoma: From Single Pathways to an Integrated Network

    Directory of Open Access Journals (Sweden)

    Josep Roma

    2012-01-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common type of soft tissue sarcoma in children. Regarding histopathological criteria, RMS can be divided into 2 main subtypes: embryonal and alveolar. These subtypes differ considerably in their clinical phenotype and molecular features. Abnormal regulation or mutation of signalling pathways that regulate normal embryonic development such as Notch, Hedgehog, and Wnt is a recurrent feature in tumorigenesis. Herein, the general features of each of the three pathways, their implication in cancer and particularly in RMS are reviewed. Finally, the cross-talking among these three pathways and the possibility of better understanding of the horizontal communication among them, leading to the development of more potent therapeutic approaches, are discussed.

  12. Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis.

    Science.gov (United States)

    Basu, Debarati; Tian, Lu; Debrosse, Tayler; Poirier, Emily; Emch, Kirk; Herock, Hayley; Travers, Andrew; Showalter, Allan M

    2016-01-01

    Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-specific galactosyltransferases namely, GALT2 and GALT5, confer pleiotropic growth and development phenotypes indicating the important contributions of carbohydrate moieties towards AGP function. Notably, galt2galt5 double mutants displayed impaired root growth and root tip swelling in response to salt, likely as a result of decreased cellulose synthesis. These mutants phenocopy a salt-overly sensitive mutant called sos5, which lacks a fasciclin-like AGP (SOS5/FLA4) as well as a fei1fei2 double mutant, which lacks two cell wall-associated leucine-rich repeat receptor-like kinases. Additionally, galt2gal5 as well as sos5 and fei2 showed reduced seed mucilage adherence. Quintuple galt2galt5sos5fei1fei2 mutants were produced and provided evidence that these genes act in a single, linear genetic pathway. Further genetic and biochemical analysis of the quintuple mutant demonstrated involvement of these genes with the interplay between cellulose biosynthesis and two plant growth regulators, ethylene and ABA, in modulating root cell wall integrity.

  13. Endoplasmic Reticulum α-Glycosidases of Candida albicans Are Required for N Glycosylation, Cell Wall Integrity, and Normal Host-Fungus Interaction▿

    Science.gov (United States)

    Mora-Montes, Héctor M.; Bates, Steven; Netea, Mihai G.; Díaz-Jiménez, Diana F.; López-Romero, Everardo; Zinker, Samuel; Ponce-Noyola, Patricia; Kullberg, Bart Jan; Brown, Alistair J. P.; Odds, Frank C.; Flores-Carreón, Arturo; Gow, Neil A. R.

    2007-01-01

    The cell surface of Candida albicans is enriched in highly glycosylated mannoproteins that are involved in the interaction with the host tissues. N glycosylation is a posttranslational modification that is initiated in the endoplasmic reticulum (ER), where the Glc3Man9GlcNAc2 N-glycan is processed by α-glucosidases I and II and α1,2-mannosidase to generate Man8GlcNAc2. This N-oligosaccharide is then elaborated in the Golgi to form N-glycans with highly branched outer chains rich in mannose. In Saccharomyces cerevisiae, CWH41, ROT2, and MNS1 encode for α-glucosidase I, α-glucosidase II catalytic subunit, and α1,2-mannosidase, respectively. We disrupted the C. albicans CWH41, ROT2, and MNS1 homologs to determine the importance of N-oligosaccharide processing on the N-glycan outer-chain elongation and the host-fungus interaction. Yeast cells of Cacwh41Δ, Carot2Δ, and Camns1Δ null mutants tended to aggregate, displayed reduced growth rates, had a lower content of cell wall phosphomannan and other changes in cell wall composition, underglycosylated β-N-acetylhexosaminidase, and had a constitutively activated PKC-Mkc1 cell wall integrity pathway. They were also attenuated in virulence in a murine model of systemic infection and stimulated an altered pro- and anti-inflammatory cytokine profile from human monocytes. Therefore, N-oligosaccharide processing by ER glycosidases is required for cell wall integrity and for host-fungus interactions. PMID:17933909

  14. Integrative analysis of RUNX1 downstream pathways and target genes

    Science.gov (United States)

    Michaud, Joëlle; Simpson, Ken M; Escher, Robert; Buchet-Poyau, Karine; Beissbarth, Tim; Carmichael, Catherine; Ritchie, Matthew E; Schütz, Frédéric; Cannon, Ping; Liu, Marjorie; Shen, Xiaofeng; Ito, Yoshiaki; Raskind, Wendy H; Horwitz, Marshall S; Osato, Motomi; Turner, David R; Speed, Terence P; Kavallaris, Maria; Smyth, Gordon K; Scott, Hamish S

    2008-01-01

    Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFβ, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both

  15. Integrative analysis of RUNX1 downstream pathways and target genes

    Directory of Open Access Journals (Sweden)

    Liu Marjorie

    2008-07-01

    Full Text Available Abstract Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML. The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1 cell lines with RUNX1 mutations from FPD-AML patients, 2 over-expression of RUNX1 and CBFβ, and 3 Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease

  16. Integrative pathway genomics of lung function and airflow obstruction

    NARCIS (Netherlands)

    Gharib, Sina A.; Loth, Daan W.; Artigas, Maria Soler; Birkland, Timothy P.; Wilk, Jemma B.; Wain, Louise V.; Brody, Jennifer A.; Obeidat, Ma'en; Hancock, Dana B.; Tang, Wenbo; Rawal, Rajesh; Boezen, H. Marike; Imboden, Medea; Huffman, Jennifer E.; Lahousse, Lies; Alves, Alexessander C.; Manichaikul, Ani; Hui, Jennie; Morrison, Alanna C.; Ramasamy, Adaikalavan; Smith, Albert Vernon; Gudnason, Vilmundur; Surakka, Ida; Vitart, Veronique; Evans, David M.; Strachan, David P.; Deary, Ian J.; Hofman, Albert; Glaeser, Sven; Wilson, James F.; North, Kari E.; Zhao, Jing Hua; Heckbert, Susan R.; Jarvis, Deborah L.; Probst-Hensch, Nicole; Schulz, Holger; Barr, R. Graham; Jarvelin, Marjo-Riitta; O'Connor, George T.; Kahonen, Mika; Cassano, Patricia A.; Hysi, Pirro G.; Dupuis, Josee; Hayward, Caroline; Psaty, Bruce M.; Hall, Ian P.; Parks, William C.; Tobin, Martin D.; London, Stephanie J.

    2015-01-01

    Chronic respiratory disorders are important contributors to the global burden of disease. Genome-wide association studies (GWASs) of lung function measures have identified several trait-associated loci, but explain only a modest portion of the phenotypic variability. We postulated that integrating p

  17. Multi-Walled Carbon Nanotubes Promote Cementoblast Differentiation and Mineralization through the TGF-β/Smad Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Lu Li

    2015-02-01

    Full Text Available Excretion of cementum by cementoblasts on the root surface is a process indispensable for the formation of a functional periodontal ligament. This study investigated whether carboxyl group-functionalized multi-walled carbon nanotubes (MWCNT-COOH could enhance differentiation and mineralization of mammalian cementoblasts (OCCM-30 and the possible signaling pathway involved in this process. Cementoblasts were incubated with various doses of MWCNT-COOH suspension. Cell viability was detected, and a scanning electron microscopy (SEM observed both the nanomaterials and the growth of cells cultured with the materials. Alizarin red staining was used to investigate the formation of calcium deposits. Real-time PCR and western blot were used to detect cementoblast differentiation and the underlying mechanisms through the expression of the osteogenic genes and the downstream effectors of the TGF-β/Smad signaling. The results showed that 5 µg/mL MWCNT-COOH had the most obvious effects on promoting differentiation without significant toxicity. Alp, Ocn, Bsp, Opn, Col1 and Runx2 gene expression was up-regulated. Smad2 and Smad3 mRNA was up-regulated, while Smad7 was first down-regulated on Day 3 and later up-regulated on Day 7. The elevated levels of phospho-Smad2/3 were also confirmed by western blot. In sum, the MWCNT-COOH promoted cementoblast differentiation and mineralization, at least partially, through interactions with the TGF-β/Smad pathway.

  18. Graphene/single-walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway

    Science.gov (United States)

    Yan, Xinxin; Yang, Wen; Shao, Zengwu; Yang, Shuhua; Liu, Xianzhe

    2016-01-01

    Carbon nanomaterials are becoming increasingly significant in biomedical fields since they exhibit exceptional physicochemical and biocompatible properties. Today, the stem cells offer potentially new therapeutic approaches in tissue engineering and regenerative medicine. However, the induction of differentiation into specific lineages remains challenging, which provoked us to explore the biomedical applications of carbon nanomaterials in stem cells. In this study, we investigated the interactions between graphene/single-walled carbon nanotube (G/SWCNT) hybrids and rat mesenchymal stem cells (rMSCs) and focused on the proliferation and differentiation of rMSCs treated with G/SWCNT hybrids. Cell viability and morphology were evaluated using cell counting kit-8 assay and immunofluorescence staining, respectively. Osteogenic differentiation evaluated by alkaline phosphatase activity of MSCs proved to be higher after treatment with G/SWCNT hybrids, and the mineralized matrix nodule formation was also enhanced. In addition, the expression levels of osteogenic-associated genes were upregulated, while the adipocyte-specific markers were downregulated. Consistent with these results, we illustrated that the effect of G/SWCNT hybrids on the process of osteogenic differentiation of rMSCs can be modulated by activating the p38 signaling pathway and inhibiting the extracellular signal-regulated kinase 1/2 pathway. Nevertheless, our study suggests that carbon nanomaterials offer a promising platform for regenerative medicine in the near future.

  19. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    Science.gov (United States)

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation.

  20. System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses

    Energy Technology Data Exchange (ETDEWEB)

    Snyder-Talkington, Brandi N. [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Dymacek, Julian [Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506-6070 (United States); Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States); Porter, Dale W.; Wolfarth, Michael G.; Mercer, Robert R. [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Pacurari, Maricica [Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States); Denvir, James [Department of Biochemistry and Microbiology, Marshall University, Huntington, WV 25755 (United States); Castranova, Vincent [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Qian, Yong, E-mail: yaq2@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Guo, Nancy L., E-mail: lguo@hsc.wvu.edu [Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States)

    2013-10-15

    The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 μg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts. - Highlights: • A novel computational model identified toxicity pathways matching in vivo pathology. • Systematic identification of MWCNT-induced biological processes in mouse lungs • MWCNT-induced functional networks of lung

  1. Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    Science.gov (United States)

    Meyer, H.; Eich, T.; Beurskens, M.; Coda, S.; Hakola, A.; Martin, P.; Adamek, J.; Agostini, M.; Aguiam, D.; Ahn, J.; Aho-Mantila, L.; Akers, R.; Albanese, R.; Aledda, R.; Alessi, E.; Allan, S.; Alves, D.; Ambrosino, R.; Amicucci, L.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Apruzzese, G.; Ariola, M.; Arnichand, H.; Arter, W.; Baciero, A.; Barnes, M.; Barrera, L.; Behn, R.; Bencze, A.; Bernardo, J.; Bernert, M.; Bettini, P.; Bilková, P.; Bin, W.; Birkenmeier, G.; Bizarro, J. P. S.; Blanchard, P.; Blanken, T.; Bluteau, M.; Bobkov, V.; Bogar, O.; Böhm, P.; Bolzonella, T.; Boncagni, L.; Botrugno, A.; Bottereau, C.; Bouquey, F.; Bourdelle, C.; Brémond, S.; Brezinsek, S.; Brida, D.; Brochard, F.; Buchanan, J.; Bufferand, H.; Buratti, P.; Cahyna, P.; Calabrò, G.; Camenen, Y.; Caniello, R.; Cannas, B.; Canton, A.; Cardinali, A.; Carnevale, D.; Carr, M.; Carralero, D.; Carvalho, P.; Casali, L.; Castaldo, C.; Castejón, F.; Castro, R.; Causa, F.; Cavazzana, R.; Cavedon, M.; Cecconello, M.; Ceccuzzi, S.; Cesario, R.; Challis, C. D.; Chapman, I. T.; Chapman, S.; Chernyshova, M.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Clairet, F.; Classen, I.; Coelho, R.; Coenen, J. W.; Colas, L.; Conway, G.; Corre, Y.; Costea, S.; Crisanti, F.; Cruz, N.; Cseh, G.; Czarnecka, A.; D'Arcangelo, O.; De Angeli, M.; De Masi, G.; De Temmerman, G.; De Tommasi, G.; Decker, J.; Delogu, R. S.; Dendy, R.; Denner, P.; Di Troia, C.; Dimitrova, M.; D'Inca, R.; Dorić, V.; Douai, D.; Drenik, A.; Dudson, B.; Dunai, D.; Dunne, M.; Duval, B. P.; Easy, L.; Elmore, S.; Erdös, B.; Esposito, B.; Fable, E.; Faitsch, M.; Fanni, A.; Fedorczak, N.; Felici, F.; Ferreira, J.; Février, O.; Ficker, O.; Fietz, S.; Figini, L.; Figueiredo, A.; Fil, A.; Fishpool, G.; Fitzgerald, M.; Fontana, M.; Ford, O.; Frassinetti, L.; Fridström, R.; Frigione, D.; Fuchert, G.; Fuchs, C.; Furno Palumbo, M.; Futatani, S.; Gabellieri, L.; Gałązka, K.; Galdon-Quiroga, J.; Galeani, S.; Gallart, D.; Gallo, A.; Galperti, C.; Gao, Y.; Garavaglia, S.; Garcia, J.; Garcia-Carrasco, A.; Garcia-Lopez, J.; Garcia-Munoz, M.; Gardarein, J.-L.; Garzotti, L.; Gaspar, J.; Gauthier, E.; Geelen, P.; Geiger, B.; Ghendrih, P.; Ghezzi, F.; Giacomelli, L.; Giannone, L.; Giovannozzi, E.; Giroud, C.; Gleason González, C.; Gobbin, M.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Gruber, M.; Gude, A.; Guimarais, L.; Guirlet, R.; Gunn, J.; Hacek, P.; Hacquin, S.; Hall, S.; Ham, C.; Happel, T.; Harrison, J.; Harting, D.; Hauer, V.; Havlickova, E.; Hellsten, T.; Helou, W.; Henderson, S.; Hennequin, P.; Heyn, M.; Hnat, B.; Hölzl, M.; Hogeweij, D.; Honoré, C.; Hopf, C.; Horáček, J.; Hornung, G.; Horváth, L.; Huang, Z.; Huber, A.; Igitkhanov, J.; Igochine, V.; Imrisek, M.; Innocente, P.; Ionita-Schrittwieser, C.; Isliker, H.; Ivanova-Stanik, I.; Jacobsen, A. S.; Jacquet, P.; Jakubowski, M.; Jardin, A.; Jaulmes, F.; Jenko, F.; Jensen, T.; Jeppe Miki Busk, O.; Jessen, M.; Joffrin, E.; Jones, O.; Jonsson, T.; Kallenbach, A.; Kallinikos, N.; Kálvin, S.; Kappatou, A.; Karhunen, J.; Karpushov, A.; Kasilov, S.; Kasprowicz, G.; Kendl, A.; Kernbichler, W.; Kim, D.; Kirk, A.; Kjer, S.; Klimek, I.; Kocsis, G.; Kogut, D.; Komm, M.; Korsholm, S. B.; Koslowski, H. R.; Koubiti, M.; Kovacic, J.; Kovarik, K.; Krawczyk, N.; Krbec, J.; Krieger, K.; Krivska, A.; Kube, R.; Kudlacek, O.; Kurki-Suonio, T.; Labit, B.; Laggner, F. M.; Laguardia, L.; Lahtinen, A.; Lalousis, P.; Lang, P.; Lauber, P.; Lazányi, N.; Lazaros, A.; Le, H. B.; Lebschy, A.; Leddy, J.; Lefévre, L.; Lehnen, M.; Leipold, F.; Lessig, A.; Leyland, M.; Li, L.; Liang, Y.; Lipschultz, B.; Liu, Y. Q.; Loarer, T.; Loarte, A.; Loewenhoff, T.; Lomanowski, B.; Loschiavo, V. P.; Lunt, T.; Lupelli, I.; Lux, H.; Lyssoivan, A.; Madsen, J.; Maget, P.; Maggi, C.; Maggiora, R.; Magnussen, M. L.; Mailloux, J.; Maljaars, B.; Malygin, A.; Mantica, P.; Mantsinen, M.; Maraschek, M.; Marchand, B.; Marconato, N.; Marini, C.; Marinucci, M.; Markovic, T.; Marocco, D.; Marrelli, L.; Martin, Y.; Solis, J. R. Martin; Martitsch, A.; Mastrostefano, S.; Mattei, M.; Matthews, G.; Mavridis, M.; Mayoral, M.-L.; Mazon, D.; McCarthy, P.; McAdams, R.; McArdle, G.; McCarthy, P.; McClements, K.; McDermott, R.; McMillan, B.; Meisl, G.; Merle, A.; Meyer, O.; Milanesio, D.; Militello, F.; Miron, I. G.; Mitosinkova, K.; Mlynar, J.; Mlynek, A.; Molina, D.; Molina, P.; Monakhov, I.; Morales, J.; Moreau, D.; Morel, P.; Moret, J.-M.; Moro, A.; Moulton, D.; Müller, H. W.; Nabais, F.; Nardon, E.; Naulin, V.; Nemes-Czopf, A.; Nespoli, F.; Neu, R.; Nielsen, A. H.; Nielsen, S. K.; Nikolaeva, V.; Nimb, S.; Nocente, M.; Nouailletas, R.; Nowak, S.; Oberkofler, M.; Oberparleiter, M.; Ochoukov, R.; Odstrčil, T.; Olsen, J.; Omotani, J.; O'Mullane, M. G.; Orain, F.; Osterman, N.; Paccagnella, R.; Pamela, S.; Pangione, L.; Panjan, M.; Papp, G.; Papřok, R.; Parail, V.; Parra, F. I.; Pau, A.; Pautasso, G.; Pehkonen, S.-P.; Pereira, A.; Perelli Cippo, E.; Pericoli Ridolfini, V.; Peterka, M.; Petersson, P.; Petrzilka, V.; Piovesan, P.; Piron, C.; Pironti, A.; Pisano, F.; Pisokas, T.; Pitts, R.; Ploumistakis, I.; Plyusnin, V.; Pokol, G.; Poljak, D.; Pölöskei, P.; Popovic, Z.; Pór, G.; Porte, L.; Potzel, S.; Predebon, I.; Preynas, M.; Primc, G.; Pucella, G.; Puiatti, M. E.; Pütterich, T.; Rack, M.; Ramogida, G.; Rapson, C.; Rasmussen, J. Juul; Rasmussen, J.; Rattá, G. A.; Ratynskaia, S.; Ravera, G.; Réfy, D.; Reich, M.; Reimerdes, H.; Reimold, F.; Reinke, M.; Reiser, D.; Resnik, M.; Reux, C.; Ripamonti, D.; Rittich, D.; Riva, G.; Rodriguez-Ramos, M.; Rohde, V.; Rosato, J.; Ryter, F.; Saarelma, S.; Sabot, R.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Samaddar, D.; Sanchis-Sanchez, L.; Santos, J.; Sauter, O.; Scannell, R.; Scheffer, M.; Schneider, M.; Schneider, B.; Schneider, P.; Schneller, M.; Schrittwieser, R.; Schubert, M.; Schweinzer, J.; Seidl, J.; Sertoli, M.; Šesnić, S.; Shabbir, A.; Shalpegin, A.; Shanahan, B.; Sharapov, S.; Sheikh, U.; Sias, G.; Sieglin, B.; Silva, C.; Silva, A.; Silva Fuglister, M.; Simpson, J.; Snicker, A.; Sommariva, C.; Sozzi, C.; Spagnolo, S.; Spizzo, G.; Spolaore, M.; Stange, T.; Stejner Pedersen, M.; Stepanov, I.; Stober, J.; Strand, P.; Šušnjara, A.; Suttrop, W.; Szepesi, T.; Tál, B.; Tala, T.; Tamain, P.; Tardini, G.; Tardocchi, M.; Teplukhina, A.; Terranova, D.; Testa, D.; Theiler, C.; Thornton, A.; Tolias, P.; Tophøj, L.; Treutterer, W.; Trevisan, G. L.; Tripsky, M.; Tsironis, C.; Tsui, C.; Tudisco, O.; Uccello, A.; Urban, J.; Valisa, M.; Vallejos, P.; Valovic, M.; Van den Brand, H.; Vanovac, B.; Varoutis, S.; Vartanian, S.; Vega, J.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, N.; Vicente, J.; Viezzer, E.; Vignitchouk, L.; Vijvers, W. A. J.; Villone, F.; Viola, B.; Vlahos, L.; Voitsekhovitch, I.; Vondráček, P.; Vu, N. M. T.; Wagner, D.; Walkden, N.; Wang, N.; Wauters, T.; Weiland, M.; Weinzettl, V.; Westerhof, E.; Wiesenberger, M.; Willensdorfer, M.; Wischmeier, M.; Wodniak, I.; Wolfrum, E.; Yadykin, D.; Zagórski, R.; Zammuto, I.; Zanca, P.; Zaplotnik, R.; Zestanakis, P.; Zhang, W.; Zoletnik, S.; Zuin, M.; ASDEX Upgrade, the; MAST; TCV Teams

    2017-10-01

    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n  =  2 RMP maintaining good confinement {{H}\\text{H≤ft(98,\\text{y}2\\right)}}≈ 0.95 . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes. In the future we will refer to the author list of the paper as the EUROfusion MST1 Team.

  2. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2014-11-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host.

  3. The effect of acute alcohol intoxication on gut wall integrity in healthy male volunteers; a randomized controlled trial

    NARCIS (Netherlands)

    de Jong, Willem-Jan; Cleveringa, A. M.; Greijdanus, B.; Meyer, P.; Heineman, E.; Hulscher, J. B.

    2015-01-01

    The aim of the study is to determine the effect of acute alcohol consumption on enterocytes. Chronic alcohol consumption has been known to induce a decrease in gut wall integrity in actively drinking alcoholics and patients with alcohol-induced liver disease. Data on the extent of the damage induced

  4. Single-walled carbon nanotubes as nano-electrode and nano-reactor to control the pathways of a redox reaction.

    Science.gov (United States)

    McSweeney, Robert L; Chamberlain, Thomas W; Davies, E Stephen; Khlobystov, Andrei N

    2014-11-28

    Single-walled carbon nanotubes have been demonstrated as effective nanoscale containers for a redox active organometallic complex Cp(Me)Mn(CO)3, acting simultaneously as nano-electrode and nano-reactor. Extreme spatial confinement of the redox reaction within the nanotubes changes its pathway compared to bulk solution due to stabilisation of a reactive intermediate.

  5. MAR-Mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering.

    Science.gov (United States)

    Kostyrko, Kaja; Neuenschwander, Samuel; Junier, Thomas; Regamey, Alexandre; Iseli, Christian; Schmid-Siegert, Emanuel; Bosshard, Sandra; Majocchi, Stefano; Le Fourn, Valérie; Girod, Pierre-Alain; Xenarios, Ioannis; Mermod, Nicolas

    2017-02-01

    Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non-homologous end-joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis-dependent microhomology-mediated end-joining (SD-MMEJ) activities. Genome-wide analysis of the integration loci and junction sequences validated the prevalent use of the SD-MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD-MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384-396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.

  6. Arterialization and anomalous vein wall remodeling in varicose veins is associated with upregulated FoxC2-Dll4 pathway.

    Science.gov (United States)

    Surendran, Sumi; S Ramegowda, Kalpana; Suresh, Aarcha; Binil Raj, S S; Lakkappa, Ravi Kumar B; Kamalapurkar, Giridhar; Radhakrishnan, N; C Kartha, Chandrasekharan

    2016-04-01

    Varicose veins of lower extremities are a heritable common disorder. Mechanisms underlying its pathogenesis are still vague. Structural failures such as valve weakness and wall dilatation in saphenous vein result in venous retrograde flow in lower extremities of body. Reflux of blood leads to distal high venous pressure resulting in distended veins. In an earlier study, we observed a positive association between c.-512C>T FoxC2 gene polymorphism and upregulated FoxC2 expression in varicose vein specimens. FoxC2 overexpression in vitro in venous endothelial cells resulted in the elevated mRNA expression of arterial endothelial markers such as Delta-like ligand 4 (Dll4) and Hairy/enhancer-of-split related with YRPW motif protein 2 (Hey2). We hypothesized that an altered FoxC2-Dll4 signaling underlies saphenous vein wall remodeling in patients with varicose veins. Saphenous veins specimens were collected from 22 patients with varicose veins and 20 control subjects who underwent coronary artery bypass grafting. Tissues were processed for paraffin embedding and sections were immunostained for Dll4, Hey2, EphrinB2, α-SMA, Vimentin, and CD31 antigens and examined under microscope. These observations were confirmed by quantitative real-time PCR and western blot analysis. An examination of varicose vein tissue specimens by immunohistochemistry indicated an elevated expression of Notch pathway components, such as Dll4, Hey2, and EphrinB2, and smooth muscle markers, which was further confirmed by gene and protein expression analyses. We conclude that the molecular alterations in Dll4-Hey2 signaling are associated with smooth muscle cell hypertrophy and hyperplasia in varicose veins. Our observations substantiate a significant role for altered FoxC2-Dll4 signaling in structural alterations of saphenous veins in patients with varicose veins.

  7. Stress, metabolism and cancer: integrated pathways contributing to immune suppression.

    Science.gov (United States)

    Repasky, Elizabeth A; Eng, Jason; Hylander, Bonnie L

    2015-01-01

    The potential for immune cells to control cancers has been recognized for many decades, but only recently has real excitement begun to spread through the oncology community following clear evidence that therapeutic blockade of specific immune-suppressive mechanisms is enough to make a real difference in survival for patients with several different advanced cancers. However, impressive and encouraging as these new clinical data are, it is clear that more effort should be devoted toward understanding the full spectrum of factors within cancer patients, which have the potential to block or weaken antitumor activity by immune cells. The goal of this brief review is to highlight recent literature revealing interactive stress and metabolic pathways, particularly those mediated by the sympathetic nervous system, which may conspire to block immune cells from unleashing their full killing potential. There is exciting new information regarding the role of neurogenesis by tumors and adrenergic signaling in cancer progression (including metabolic changes associated with cachexia and lipolysis) and in regulation of immune cell function and differentiation. However, much more work is needed to fully understand how the systemic metabolic effects mediated by the brain and nervous system can be targeted for therapeutic efficacy in the setting of immunotherapy and other cancer therapies.

  8. A generalized traction integral equation for Stokes flow, with applications to near-wall particle mobility and viscous erosion

    Science.gov (United States)

    Mitchell, William H.; Spagnolie, Saverio E.

    2017-03-01

    A double-layer integral equation for the surface tractions on a body moving in a viscous fluid is derived which allows for the incorporation of a background flow and/or the presence of a plane wall. The Lorentz reciprocal theorem is used to link the surface tractions on the body to integrals involving the background velocity and stress fields on an imaginary bounding sphere (or hemisphere for wall-bounded flows). The derivation requires the velocity and stress fields associated with numerous fundamental singularity solutions which we provide for free-space and wall-bounded domains. Two sample applications of the method are discussed: we study the tractions on an ellipsoid moving near a plane wall, which provides a more detailed understanding of the well-studied glancing and reversing trajectories in the context of particle sedimentation, and the erosion of bodies by a viscous flow, in which the surface is ablated at a rate proportional to the local viscous shear stress. Simulations and analytical estimates suggest that a spherical body in a uniform flow first reduces nearly but not exactly to the drag minimizing profile and then vanishes in finite time. The shape dynamics of an eroding body in a shear flow and near a wall are also investigated. Stagnation points on the body surface lead generically to the formation of cusps, whose number depends on the flow configuration and/or the presence of nearby boundaries.

  9. Inside the polygonal walls of Amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections

    Science.gov (United States)

    Ercoli, M.; Brigante, R.; Radicioni, F.; Pauselli, C.; Mazzocca, M.; Centi, G.; Stoppini, A.

    2016-04-01

    We investigate a portion of the ancient (VI and IV centuries BC) polygonal walls of Amelia, in Central Italy. After the collapse of a portion of the walls which occurred in January 2006, a wide project started in order to monitor their external facade and inspect the characteristics of the internal structure, currently not clearly known. In this specific case, the preservation of such an important cultural heritage was mandatory, therefore invasive methods like drilling or archaeological essays cannot be used. For this purpose, a multidisciplinary approach represents an innovative way to shed light on their inner structure. We combine several non-invasive techniques such as Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), specifically adapted for this study, Laser Scanning and Digital Terrestrial Photogrammetry, integrated with other geomatic measures provided by a Total Station and Global Navigation Satellite Systems (GNSS). After collecting some historical information, we gather the whole datasets exploring for their integration an interpretation approach borrowed from the reflection seismic (attribute analysis and three dimensional visualization). The results give rise for the first time to the internal imaging of this ancient walls, highlighting features associable to different building styles related to different historical periods. Among the result, we define a max wall thickness of about 3.5 m for the cyclopic sector, we show details of the internal block organization and we detect low resistivity values interpretable with high water content behind the basal part of the walls. Then, quantitative analyses to assess their reliable geotechnical stability are done, integrating new geometrical constrains provided by the geophysics and geo-technical ground parameters available in literature. From this analysis, we highlight how the Amelia walls are interested, in the investigated sector, by a critical pseudo-static equilibrium.

  10. Energy and exergy evaluation of an integrated solar heat pipe wall system for space heating

    Indian Academy of Sciences (India)

    ROONAK DAGHIGH; ABDELLAH SHAFIEIAN

    2016-08-01

    In this paper, an integrated solar heat pipe wall space heating system, employing double glazed heat pipe evacuated tube solar collector and forced convective heat transfer condenser, is introduced. Thermal performance of the heat pipe solar collector is studied and a numerical model is developed to investigate thethermal efficiency of the system, the inlet and outlet air temperatures and heat pipe temperature. Furthermore, the system performance is evaluated based on exergy efficiency. In order to verify the precision of the developed model, the numerical results are compared with experimental data. Parametric sensitivity for design features and material associated with the heat pipe, collector cover and insulation is evaluated to provide a combination with higher thermal performance. Simulation results show that applying a solar collector with more than 30 heat pipes is not efficient. The rate of increasing in temperature of air becomes negligible after 30 heat pipes and the trend of the thermal efficiency is descending with increasing heat pipes. The results also indicate that at a cold winter day of January, the proposed system with a 20 heat pipe collector shows maximum energy and exergy efficiency of 56.8% and 7.2%, which can afford warm air up to 30°C. At the end, the capability of the proposed system tomeet the heating demand of a building is investigated. It is concluded that the best method to reach a higher thermal covered area is to apply parallel collectors

  11. Integration of liquid-cooled solar collectors into building walls; Gebaeudeintegration von Sonnenkollektoren mit Fluessigkeitskuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Rockendorf, G.; Bartelsen, B. [Institut fuer Solarenergieforschung GmbH Hameln/Emmerthal (ISFH), Emmerthal (Germany)

    1998-02-01

    Three different methods are presented how to integrate active solar thermal components into building facades. The solar thermal absorber acts as overheating protection and the heat produced can be utilized further. The lower annual yield in comparison to roof-mounted installations is counterbalanced by a more uniform solar gain and an improved wall insulation. The new concept of elastomer-metal-absorbers can be realized in different configurations and material combinations and offers attractive options for collector installation. The methods discussed hold the promise of significant cost reductions. (orig.) [Deutsch] Es werden drei Methoden vorgestellt, aktive solarthermische Komponenten mit Fluessigkeit als Waermetraeger in die Gebaeudehuelle zu integrieren. Dabei dient der solarthermische Absorber als Ueberhitzungsschutz und die abgefuehrte Waerme kann einer Nutzung zugefuehrt werden. Der geringere jaehrliche Waermeertrag im Vergleich zur Dachmontage wird durch ein gleichmaesssiges Ertragsprofil und eine verbesserte Waermedaemmung weitgehend ausgeglichen. Das neu entwickelte Elastomer-Metall-Absorber-Konzept (EMA-Konzept) ist in unterschiedliche Konfigurationen und Materialkombinationen umsetzbar und eroeffnet attraktive Moeglichkeiten der Kollektorinstallation. Die diskutierten Methoden lassen eine deutliche Kostenersparnis erwarten. (orig.)

  12. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans.

    Science.gov (United States)

    Zhang, Bing; Yu, Qilin; Jia, Chang; Wang, Yuzhou; Xiao, Chenpeng; Dong, Yijie; Xu, Ning; Wang, Lei; Li, Mingchun

    2015-08-01

    Candida albicans is a common pathogenic fungus and has aroused widespread attention recently. Actin cytoskeleton, an important player in polarized growth, protein secretion and organization of cell shape, displays irreplaceable role in hyphal development and cell integrity. In this study, we demonstrated a homologue of Saccharomyces cerevisiae Sac1, in C. albicans. It is a potential PIP phosphatase with Sac domain which is related to actin organization, hyphal development, biofilm formation and cell wall integrity. Deletion of SAC1 did not lead to insitiol-auxotroph phenotype in C. albicans, but this gene rescued the growth defect of S. cerevisiae sac1Δ in the insitiol-free medium. Hyphal induction further revealed the deficiency of sac1Δ/Δ in hyphal development and biofilm formation. Fluorescence observation and real time PCR (RT-PCR) analysis suggested both actin and the hyphal cell wall protein Hwp1 were overexpressed and mislocated in this mutant. Furthermore, cell wall integrity (CWI) was largely affected by deletion of SAC1, due to the hypersensitivity to cell wall stress, changed content and distribution of chitin in the mutant. As a result, the virulence of sac1Δ/Δ was seriously attenuated. Taken together, this study provides evidence that Sac1, as a potential PIP phosphatase, is essential for actin organization, hyphal development, CWI and pathogenicity in C. albicans.

  13. Integrated Life Cycle Energy and Greenhouse Gas Analysis of Exterior Wall Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Reza Broun

    2014-11-01

    Full Text Available This paper investigates the breakdown of primary energy use and greenhouse gas (GHG emissions of two common types of exterior walls in the U.K.: insulated concrete form (ICF and cavity walls. A comprehensive assessment was conducted to evaluate the environmental performance of each exterior wall system over 50 years of service life in Edinburgh and Bristol. The results indicate that for both wall systems, use phase is the major contributor to the overall environmental impacts, mainly due to associated electricity consumption. For the ICF wall system in Edinburgh, 91% of GHG emissions were attributed to the use phase, with 7.8% in the pre-use and 1.2% in end-of-life phases. For the same system in Bristol, emissions were 89%, 9% and 2%, respectively. A similar trend was observed for cavity wall systems in both locations. It was concluded that in each scenario, the ICF wall system performed better when compared to the cavity wall system. The results of the sensitivity analysis clearly show that the uncertainties relevant to the change of the thickness of the wall are quite tolerable: variable up to 5%, as far as energy and greenhouse emissions are concerned.

  14. Integral Facade Construction. Towards a new product architecture for curtain walls

    Directory of Open Access Journals (Sweden)

    Tillmann Klein

    2013-05-01

    Full Text Available Curtain wall constructions are one of the most applied facade constructions today. Independently attached to the primary load bearing structure of the building they protect the building’s interior from external climate conditions and allow great design freedom.With continuously rising requirements in terms of energy savings the constructional principle has reached its limits and strategies for improvement are needed.Incrementally evolved over time it is closely related to the architectural design and building processes. Based on literature research and stakeholder interviews the dissertation maps out the traditional and craftsmanship related facade design and construction process currently employed. In a next step, future challenges for facade constructions to cope with a changing market environment are identified.A facade function tree is developed and the theory of product architecture is applied to create a comparative basis for analysing different historical and contemporary facade products and systems. The function tree as well as the analysis clearly show how the fragmented market structures has influenced contemporary facade construction and leads to extremely modular product architectures.Numerous case studies for a new approach are conducted and summarised in several matrices. The case studies show how different modular and integral constructional strategies can respond to the future challenges. The pros and cons of different facade solutions, their potential for innovation and robustness in terms of market conditions are investigated.The dissertation concludes that a greater diversity of fa.ade types with a more integral construction is needed to meet the sometimes conflicting future challenges. If this can be realised, a greater diversity of more integral design and construction processes will evolve simultaneously. The role of the different stakeholders will change and a new way of educating architects or facade specialists will be

  15. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Mingyu Wang

    Full Text Available The mitogen-activated protein kinase (MAPK pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest

  16. Lrp4 modulates extracellular integration of cell signaling pathways in development.

    Directory of Open Access Journals (Sweden)

    Atsushi Ohazama

    Full Text Available The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway.

  17. Modulating Wnt Signaling Pathway to Enhance Allograft Integration in Orthopedic Trauma Treatment

    Science.gov (United States)

    2014-04-01

    TITLE: Modulating Wnt Signaling Pathway to Enhance Allograft Integration in Orthopedic Trauma Treatment PRINCIPAL INVESTIGATOR: Amarjit S...Integration in Orthopedic Trauma Treatment 5b. GRANT NUMBER W81XWH-10-1-1054 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amarjit S. Virdi, PhD...practical means of enhancing repair of large bone defects in orthopedic trauma and can be translated into clinical practice in the near future. Figures

  18. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans

    Directory of Open Access Journals (Sweden)

    Girolamo Antonietta

    2011-05-01

    Full Text Available Abstract Background The MP65 gene of Candida albicans (orf19.1779 encodes a putative β-glucanase mannoprotein of 65 kDa, which plays a main role in a host-fungus relationship, morphogenesis and pathogenicity. In this study, we performed an extensive analysis of a mp65Δ mutant to assess the role of this protein in cell wall integrity, adherence to epithelial cells and biofilm formation. Results The mp65Δ mutant showed a high sensitivity to a range of cell wall-perturbing and degrading agents, especially Congo red, which induced morphological changes such as swelling, clumping and formation of hyphae. The mp65Δ mutant showed an activation of two MAPKs (Mkc1p and Cek1p, a high level of expression of two stress-related genes (DDR48 and SOD5, and a modulated expression of β-glucan epitopes, but no gross changes in cell wall polysaccharide composition. Interestingly, the mp65Δ mutant displayed a marked reduction in adhesion to BEC and Caco-2 cells and severe defects in biofilm formation when compared to the wild type. All of the mentioned properties were totally or partially recovered in a revertant strain, demonstrating the specificity of gene deletion. Conclusions We demonstrate that the MP65 gene of Candida albicans plays a significant role in maintaining cell wall integrity, as well as in adherence to epithelia and biofilm formation, which are major virulence attributes of this fungus.

  19. Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway.

    Science.gov (United States)

    Wallace, Simon; Chater, Caspar C; Kamisugi, Yasuko; Cuming, Andrew C; Wellman, Charles H; Beerling, David J; Fleming, Andrew J

    2015-01-01

    The early evolution of plants required the acquisition of a number of key adaptations to overcome physiological difficulties associated with survival on land. One of these was a tough sporopollenin wall that enclosed reproductive propagules and provided protection from desiccation and UV-B radiation. All land plants possess such walled spores (or their derived homologue, pollen). We took a reverse genetics approach, consisting of knock-out and complementation experiments to test the functional conservation of the sporopollenin-associated gene MALE STERILTY 2 (which is essential for pollen wall development in Arabidopsis thaliana) in the bryophyte Physcomitrella patens. Knock-outs of a putative moss homologue of the A. thaliana MS2 gene, which is highly expressed in the moss sporophyte, led to spores with highly defective walls comparable to that observed in the A. thaliana ms2 mutant, and extremely compromised germination. Conversely, the moss MS2 gene could not rescue the A. thaliana ms2 phenotype. The results presented here suggest that a core component of the biochemical and developmental pathway required for angiosperm pollen wall development was recruited early in land plant evolution but the continued increase in pollen wall complexity observed in angiosperms has been accompanied by divergence in MS2 gene function.

  20. Temporal integration of the pi 1/pi 3 pathway in normal and dichromatic vision.

    Science.gov (United States)

    Friedman, L J; Yim, M H; Pugh, E N

    1984-01-01

    Stiles' pi 1 and pi 3 mechanisms are thought to reflect adaptation events at two sites in a single pathway, the first site controlled by the short-wavelength cones alone, the second site controlled by opposing signals from these cones vs the other cone classes. We examined this pathway's temporal integration under conditions that yield the full gamut of possible adaptation states at the two sites. Critical duration of the pi 1/pi 3 pathway was always about 200 msec. In addition, we examined the pi 1 and pi 3 mechanisms of dichromatic vision. Our results suggest that protanopic and deuteranopic vision are characterized by a pi 1/pi 3 pathway similar to that in normal color vision.

  1. Electronic patient information systems and care pathways: the organisational challenges of implementation and integration.

    Science.gov (United States)

    Dent, Mike; Tutt, Dylan

    2014-09-01

    Our interest here is with the 'marriage' of e-patient information systems with care pathways in order to deliver integrated care. We report on the development and implementation of four such pathways within two National Health Service primary care trusts in England: (a) frail elderly care, (b) stroke care, (c) diabetic retinopathy screening and (d) intermediate care. The pathways were selected because each represents a different type of information and data 'couplings', in terms of task interdependency with some pathways/systems reflecting more complex coordinating patterns than others. Our aim here is identify and explain how health professionals and information specialists in two organisational National Health Service primary care trusts organisationally construct and use such systems and, in particular, the implications this has for issues of professional and managerial control and autonomy. The article is informed by an institutionalist analysis.

  2. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...

  3. Integrative Analysis of Gene Expression Data Including an Assessment of Pathway Enrichment for Predicting Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2006-01-01

    Full Text Available Background: Microarray technology has been previously used to identify genes that are differentially expressed between tumour and normal samples in a single study, as well as in syntheses involving multiple studies. When integrating results from several Affymetrix microarray datasets, previous studies summarized probeset-level data, which may potentially lead to a loss of information available at the probe-level. In this paper, we present an approach for integrating results across studies while taking probe-level data into account. Additionally, we follow a new direction in the analysis of microarray expression data, namely to focus on the variation of expression phenotypes in predefined gene sets, such as pathways. This targeted approach can be helpful for revealing information that is not easily visible from the changes in the individual genes. Results: We used a recently developed method to integrate Affymetrix expression data across studies. The idea is based on a probe-level based test statistic developed for testing for differentially expressed genes in individual studies. We incorporated this test statistic into a classic random-effects model for integrating data across studies. Subsequently, we used a gene set enrichment test to evaluate the significance of enriched biological pathways in the differentially expressed genes identified from the integrative analysis. We compared statistical and biological significance of the prognostic gene expression signatures and pathways identified in the probe-level model (PLM with those in the probeset-level model (PSLM. Our integrative analysis of Affymetrix microarray data from 110 prostate cancer samples obtained from three studies reveals thousands of genes significantly correlated with tumour cell differentiation. The bioinformatics analysis, mapping these genes to the publicly available KEGG database, reveals evidence that tumour cell differentiation is significantly associated with many

  4. Integrative care for the management of low back pain: use of a clinical care pathway

    Directory of Open Access Journals (Sweden)

    Legendre Claire G

    2010-10-01

    Full Text Available Abstract Background For the treatment of chronic back pain, it has been theorized that integrative care plans can lead to better outcomes than those achieved by monodisciplinary care alone, especially when using a collaborative, interdisciplinary, and non-hierarchical team approach. This paper describes the use of a care pathway designed to guide treatment by an integrative group of providers within a randomized controlled trial. Methods A clinical care pathway was used by a multidisciplinary group of providers, which included acupuncturists, chiropractors, cognitive behavioral therapists, exercise therapists, massage therapists and primary care physicians. Treatment recommendations were based on an evidence-informed practice model, and reached by group consensus. Research study participants were empowered to select one of the treatment recommendations proposed by the integrative group. Common principles and benchmarks were established to guide treatment management throughout the study. Results Thirteen providers representing 5 healthcare professions collaborated to provide integrative care to study participants. On average, 3 to 4 treatment plans, each consisting of 2 to 3 modalities, were recommended to study participants. Exercise, massage, and acupuncture were both most commonly recommended by the team and selected by study participants. Changes to care commonly incorporated cognitive behavioral therapy into treatment plans. Conclusion This clinical care pathway was a useful tool for the consistent application of evidence-based care for low back pain in the context of an integrative setting. Trial registration ClinicalTrials.gov NCT00567333

  5. Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2015-12-01

    Full Text Available Building integrated photovoltaics (BIPV offer an aesthetical, economical and technical solution to integrate solar cells harvesting solar radiation to produce electricity within the climate envelopes of buildings. Photovoltaic (PV cells may be mounted above or onto the existing or traditional roofing or wall systems. However, BIPV systems replace the outer building envelope skin, i.e., the climate screen, hence serving simultanously as both a climate screen and a power source generating electricity. Thus, BIPV may provide savings in materials and labor, in addition to reducing the electricity costs. Hence, for the BIPV products, in addition to specific requirements put on the solar cell technology, it is of major importance to have satisfactory or strict requirements of rain tightness and durability, where building physical issues like e.g., heat and moisture transport in the building envelope also have to be considered and accounted for. This work, from both a technological and scientific point of view, summarizes briefly the current state-of-the-art of BIPV, including both BIPV foil, tiles, modules and solar cell glazing products, and addresses possible research pathways for BIPV in the years to come.

  6. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing

    Energy Technology Data Exchange (ETDEWEB)

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; Fierro, Ana C.; Mansfield, Shawn D.; Davis, Mark F.; Gjersing, Erica; Tuskan, Gerald A.; Van Montagu, Marc; Van de Peer, Yves; Marchal, Kathleen; Myburg, Alexander A.

    2017-01-17

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.

  7. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing.

    Science.gov (United States)

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; Fierro, Ana C; Mansfield, Shawn D; Davis, Mark F; Gjersing, Erica; Tuskan, Gerald A; Van Montagu, Marc; Van de Peer, Yves; Marchal, Kathleen; Myburg, Alexander A

    2017-01-31

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.

  8. Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy

    Science.gov (United States)

    Noor, Elad; van der Oost, John; de Vos, Willem M.; Kengen, Servé W. M.; Martins dos Santos, Vitor A. P.

    2016-01-01

    The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon dioxide by using sustainable energy sources. This challenge involves the integration of carbon fixation and energy uptake systems. A variety of carbon fixation pathways and several types of photosystems and other energy uptake systems can be chosen and, potentially, modularly combined to design synthetic autotrophic metabolism. Prior to implementation, these designs can be evaluated by the combination of several computational pathway analysis techniques. Here we present a systematic, integrated in silico analysis of photo-electro-autotrophic pathway designs, consisting of natural and synthetic carbon fixation pathways, a proton-pumping rhodopsin photosystem for ATP regeneration and an electron uptake pathway. We integrated Flux Balance Analysis of the heterotrophic chassis Escherichia coli with kinetic pathway analysis and thermodynamic pathway analysis (Max-min Driving Force). The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the proton pumping rhodopsin photosystems and the high ATP maintenance of E. coli. If these factors can be tackled, our analysis indicates the highest growth potential for the natural reductive tricarboxylic acid cycle and the synthetic pyruvate synthase–pyruvate carboxylate -glyoxylate bicycle. Both carbon fixation cycles are very ATP efficient, while maintaining fast kinetics, which also results in relatively low estimated protein costs for these pathways. Furthermore, the synthetic bicycles are highly thermodynamic

  9. Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy.

    Science.gov (United States)

    Volpers, Michael; Claassens, Nico J; Noor, Elad; van der Oost, John; de Vos, Willem M; Kengen, Servé W M; Martins Dos Santos, Vitor A P

    2016-01-01

    The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon dioxide by using sustainable energy sources. This challenge involves the integration of carbon fixation and energy uptake systems. A variety of carbon fixation pathways and several types of photosystems and other energy uptake systems can be chosen and, potentially, modularly combined to design synthetic autotrophic metabolism. Prior to implementation, these designs can be evaluated by the combination of several computational pathway analysis techniques. Here we present a systematic, integrated in silico analysis of photo-electro-autotrophic pathway designs, consisting of natural and synthetic carbon fixation pathways, a proton-pumping rhodopsin photosystem for ATP regeneration and an electron uptake pathway. We integrated Flux Balance Analysis of the heterotrophic chassis Escherichia coli with kinetic pathway analysis and thermodynamic pathway analysis (Max-min Driving Force). The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the proton pumping rhodopsin photosystems and the high ATP maintenance of E. coli. If these factors can be tackled, our analysis indicates the highest growth potential for the natural reductive tricarboxylic acid cycle and the synthetic pyruvate synthase-pyruvate carboxylate -glyoxylate bicycle. Both carbon fixation cycles are very ATP efficient, while maintaining fast kinetics, which also results in relatively low estimated protein costs for these pathways. Furthermore, the synthetic bicycles are highly thermodynamic favorable

  10. Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy.

    Directory of Open Access Journals (Sweden)

    Michael Volpers

    Full Text Available The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon dioxide by using sustainable energy sources. This challenge involves the integration of carbon fixation and energy uptake systems. A variety of carbon fixation pathways and several types of photosystems and other energy uptake systems can be chosen and, potentially, modularly combined to design synthetic autotrophic metabolism. Prior to implementation, these designs can be evaluated by the combination of several computational pathway analysis techniques. Here we present a systematic, integrated in silico analysis of photo-electro-autotrophic pathway designs, consisting of natural and synthetic carbon fixation pathways, a proton-pumping rhodopsin photosystem for ATP regeneration and an electron uptake pathway. We integrated Flux Balance Analysis of the heterotrophic chassis Escherichia coli with kinetic pathway analysis and thermodynamic pathway analysis (Max-min Driving Force. The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the proton pumping rhodopsin photosystems and the high ATP maintenance of E. coli. If these factors can be tackled, our analysis indicates the highest growth potential for the natural reductive tricarboxylic acid cycle and the synthetic pyruvate synthase-pyruvate carboxylate -glyoxylate bicycle. Both carbon fixation cycles are very ATP efficient, while maintaining fast kinetics, which also results in relatively low estimated protein costs for these pathways. Furthermore, the synthetic bicycles are highly

  11. The serine/threonine phosphatase DhSIT4 modulates cell cycle, salt tolerance and cell wall integrity in halo tolerant yeast Debaryomyces hansenii.

    Science.gov (United States)

    Chawla, Srishti; Kundu, Debasree; Randhawa, Anmoldeep; Mondal, Alok K

    2017-03-30

    The highly conserved family of Phosphoprotein phosphatases (PPP) regulates several major physiological processes in yeast. However, very little is known about the PPP orthologs from the yeast species inhabiting extreme environmental niches. In the present study we have identified DhSIT4, a member of PPP6 class of serine threonine phosphatases from the halotolerant yeast Debaryomyces hansenii. Deletion of DhSIT4 in D. hansenii was not lethal but the mutant exhibited reduced growth due to its effect on the cell cycle. The knock out mutant Dhsit4Δ showed sensitivity towards Li(+), Na(+) and cell wall damaging agents. The expression of DhSit4p rescued salt, caffeine and calcofluor white sensitivity of Dhmpk1Δ strain and thereby indicating a genetic interaction of this phosphatase with the cell wall integrity pathway in this species. Our study also demonstrated the antagonistic roles of DhSit4p and DhPpz1p in maintaining the cell cycle and ion homeostasis in D. hansenii.

  12. PathText: a text mining integrator for biological pathway visualizations

    Science.gov (United States)

    Kemper, Brian; Matsuzaki, Takuya; Matsuoka, Yukiko; Tsuruoka, Yoshimasa; Kitano, Hiroaki; Ananiadou, Sophia; Tsujii, Jun'ichi

    2010-01-01

    Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations. Contact: brian@monrovian.com. PMID:20529930

  13. Malaria parasites utilize both homologous recombination and alternative end joining pathways to maintain genome integrity.

    Science.gov (United States)

    Kirkman, Laura A; Lawrence, Elizabeth A; Deitsch, Kirk W

    2014-01-01

    Malaria parasites replicate asexually within their mammalian hosts as haploid cells and are subject to DNA damage from the immune response and chemotherapeutic agents that can significantly disrupt genomic integrity. Examination of the annotated genome of the parasite Plasmodium falciparum identified genes encoding core proteins required for the homologous recombination (HR) pathway for repairing DNA double-strand breaks (DSBs), but surprisingly none of the components of the canonical non-homologous end joining (C-NHEJ) pathway were identified. To better understand how malaria parasites repair DSBs and maintain genome integrity, we modified the yeast I-SceI endonuclease system to generate inducible, site-specific DSBs within the parasite's genome. Analysis of repaired genomic DNA showed that parasites possess both a typical HR pathway resulting in gene conversion events as well as an end joining (EJ) pathway for repair of DSBs when no homologous sequence is available. The products of EJ were limited in number and identical products were observed in multiple independent experiments. The repair junctions frequently contained short insertions also found in the surrounding sequences, suggesting the possibility of a templated repair process. We propose that an alternative end-joining pathway rather than C-NHEJ, serves as a primary method for repairing DSBs in malaria parasites.

  14. ArrayXPath: mapping and visualizing microarray gene-expression data with integrated biological pathway resources using Scalable Vector Graphics.

    Science.gov (United States)

    Chung, Hee-Joon; Kim, Mingoo; Park, Chan Hee; Kim, Jihoon; Kim, Ju Han

    2004-07-01

    Biological pathways can provide key information on the organization of biological systems. ArrayXPath (http://www.snubi.org/software/ArrayXPath/) is a web-based service for mapping and visualizing microarray gene-expression data for integrated biological pathway resources using Scalable Vector Graphics (SVG). By integrating major bio-databases and searching pathway resources, ArrayXPath automatically maps different types of identifiers from microarray probes and pathway elements. When one inputs gene-expression clusters, ArrayXPath produces a list of the best matching pathways for each cluster. We applied Fisher's exact test and the false discovery rate (FDR) to evaluate the statistical significance of the association between a cluster and a pathway while correcting the multiple-comparison problem. ArrayXPath produces Javascript-enabled SVGs for web-enabled interactive visualization of pathways integrated with gene-expression profiles.

  15. Single-wall and multi-wall carbon nanotubes promote rice root growth by eliciting the similar molecular pathways and epigenetic regulation.

    Science.gov (United States)

    Yan, Shihan; Zhang, Hao; Huang, Yan; Tan, Junjun; Wang, Pu; Wang, Yapei; Hou, Haoli; Huang, Jin; Li, Lijia

    2016-08-01

    Organisms are constantly exposed to environmental stimuli and have evolved mechanisms of protection and adaptation. Various effects of nanoparticles (NPs) on crops have been described and some results confirm that NPs could enhance plant growth at the physiological and genetic levels. This study comparatively analysed the effect of carbon nanotubes (CNTs) on rice growth. The results showed that single-wall CNTs were located in the intercellular space while multi-wall CNTs penetrated cell walls in roots. CNTs could promote rice root growth through the regulation of expression of the root growth related genes and elevated global histone acetylation in rice root meristem zones. These responses were returned to normal levels after CNTs were removed from medium. CNTs caused the similar histone acetylation and methylation statuses across the local promoter region of the Cullin-RING ligases 1 (CRL1) gene and increased micrococcal nuclease accessibility of this region, which enhanced this gene expression. The authors results suggested that CNTs could cause plant responses at the cellular, genetic, and epigenetic levels and these responses were independent on interaction modes between root cells and CNTs.

  16. User-centered evaluation of Arizona BioPathway: an information extraction, integration, and visualization system.

    Science.gov (United States)

    Quiñones, Karin D; Su, Hua; Marshall, Byron; Eggers, Shauna; Chen, Hsinchun

    2007-09-01

    Explosive growth in biomedical research has made automated information extraction, knowledge integration, and visualization increasingly important and critically needed. The Arizona BioPathway (ABP) system extracts and displays biological regulatory pathway information from the abstracts of journal articles. This study uses relations extracted from more than 200 PubMed abstracts presented in a tabular and graphical user interface with built-in search and aggregation functionality. This paper presents a task-centered assessment of the usefulness and usability of the ABP system focusing on its relation aggregation and visualization functionalities. Results suggest that our graph-based visualization is more efficient in supporting pathway analysis tasks and is perceived as more useful and easier to use as compared to a text-based literature-viewing method. Relation aggregation significantly contributes to knowledge-acquisition efficiency. Together, the graphic and tabular views in the ABP Visualizer provide a flexible and effective interface for pathway relation browsing and analysis. Our study contributes to pathway-related research and biological information extraction by assessing the value of a multiview, relation-based interface that supports user-controlled exploration of pathway information across multiple granularities.

  17. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome.

    Directory of Open Access Journals (Sweden)

    Philippe Boucher

    Full Text Available BACKGROUND: The multifunctional receptor LRP1 controls expression, activity and trafficking of the PDGF receptor-beta in vascular smooth muscle cells (VSMC. LRP1 is also a receptor for TGFbeta1 and is required for TGFbeta mediated inhibition of cell proliferation. METHODS AND PRINCIPAL FINDINGS: We show that loss of LRP1 in VSMC (smLRP(- in vivo results in a Marfan-like syndrome with nuclear accumulation of phosphorylated Smad2/3, disruption of elastic layers, tortuous aorta, and increased expression of the TGFbeta target genes thrombospondin-1 (TSP1 and PDGFRbeta in the vascular wall. Treatment of smLRP1(- animals with the PPARgamma agonist rosiglitazone abolished nuclear pSmad accumulation, reversed the Marfan-like phenotype, and markedly reduced smooth muscle proliferation, fibrosis and atherosclerosis independent of plasma cholesterol levels. CONCLUSIONS AND SIGNIFICANCE: Our findings are consistent with an activation of TGFbeta signals in the LRP1-deficient vascular wall. LRP1 may function as an integrator of proliferative and anti-proliferative signals that control physiological mechanisms common to the pathogenesis of Marfan syndrome and atherosclerosis, and this is essential for maintaining vascular wall integrity.

  18. Integration of a capacitive pressure sensing system into the outer catheter wall for coronary artery FFR measurements

    Science.gov (United States)

    Stam, Frank; Kuisma, Heikki; Gao, Feng; Saarilahti, Jaakko; Gomes Martins, David; Kärkkäinen, Anu; Marrinan, Brendan; Pintal, Sebastian

    2017-05-01

    The deadliest disease in the world is coronary artery disease (CAD), which is related to a narrowing (stenosis) of blood vessels due to fatty deposits, plaque, on the arterial walls. The level of stenosis in the coronary arteries can be assessed by Fractional Flow Reserve (FFR) measurements. This involves determining the ratio between the maximum achievable blood flow in a diseased coronary artery and the theoretical maximum flow in a normal coronary artery. The blood flow is represented by a pressure drop, thus a pressure wire or pressure sensor integrated in a catheter can be used to calculate the ratio between the coronary pressure distal to the stenosis and the normal coronary pressure. A 2 Fr (0.67mm) outer diameter catheter was used, which required a high level of microelectronics miniaturisation to fit a pressure sensing system into the outer wall. The catheter has an eccentric guidewire lumen with a diameter of 0.43mm, which implies that the thickest catheter wall section provides less than 210 microns height for flex assembly integration consisting of two dies, a capacitive MEMS pressure sensor and an ASIC. In order to achieve this a very thin circuit flex was used, and the two chips were thinned down to 75 microns and flip chip mounted face down on the flex. Many challenges were involved in obtaining a flex layout that could wrap into a small tube without getting the dies damaged, while still maintaining enough flexibility for the catheter to navigate the arterial system.

  19. Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation

    DEFF Research Database (Denmark)

    Palm, Henrik; Jacobsen, Steffen; Sonne-Holm, Stig

    2007-01-01

    -six fractures of the lateral femoral wall occurred during the operative procedure itself. A fracture of the lateral femoral wall occurred in only 3% (three) of the 103 patients with an AO/OTA type-31-A1.1, A1.2, A1.3, or A2.1 intertrochanteric fracture compared with 31% (thirty-one) of the ninety......-nine with an AO/OTA type 31-A2.2 or A2.3 fracture (p fracture of the lateral femoral wall was found to be the main predictor for a reoperation after an intertrochanteric fracture. Consequently, we concluded that patients with preoperative or intraoperative fracture......BACKGROUND: Reoperations after intertrochanteric fractures are often necessitated by fracture displacement following mobilization of the patient. The biomechanical complexity of the fracture, the position of the implant, and the patient's characteristics are known to influence postoperative outcome...

  20. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources.

    Science.gov (United States)

    Waagmeester, Andra; Kutmon, Martina; Riutta, Anders; Miller, Ryan; Willighagen, Egon L; Evelo, Chris T; Pico, Alexander R

    2016-06-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.

  1. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra

    2013-01-01

    Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...... to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signalling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signalling along...... the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed...

  2. Exploring the Unfolding Pathway of Maltose Binding Proteins: An Integrated Computational Approach

    KAUST Repository

    Guardiani, Carlo

    2014-09-09

    © 2014 American Chemical Society. Recent single-molecule force spectroscopy experiments on the Maltose Binding Proteins (MBPs) identified four stable structural units, termed unfoldons, that resist mechanical stress and determine the intermediates of the unfolding pathway. In this work, we analyze the topological origin and the dynamical role of the unfoldons using an integrated approach which combines a graph-theoretical analysis of the interaction network of the MBP native-state with steered molecular dynamics simulations. The topological analysis of the native state, while revealing the structural nature of the unfoldons, provides a framework to interpret the MBP mechanical unfolding pathway. Indeed, the experimental pathway can be effectively predicted by means of molecular dynamics simulations with a simple topology-based and low-resolution model of the MBP. The results obtained from the coarse-grained approach are confirmed and further refined by all-atom molecular dynamics.

  3. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Circadian period integrates network information through activation of the BMP signaling pathway.

    Science.gov (United States)

    Beckwith, Esteban J; Gorostiza, E Axel; Berni, Jimena; Rezával, Carolina; Pérez-Santángelo, Agustín; Nadra, Alejandro D; Ceriani, María Fernanda

    2013-12-01

    Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF) set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP) signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  5. Circadian period integrates network information through activation of the BMP signaling pathway.

    Directory of Open Access Journals (Sweden)

    Esteban J Beckwith

    2013-12-01

    Full Text Available Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  6. Malaria parasites utilize both homologous recombination and alternative end joining pathways to maintain genome integrity

    OpenAIRE

    2013-01-01

    Malaria parasites replicate asexually within their mammalian hosts as haploid cells and are subject to DNA damage from the immune response and chemotherapeutic agents that can significantly disrupt genomic integrity. Examination of the annotated genome of the parasite Plasmodium falciparum identified genes encoding core proteins required for the homologous recombination (HR) pathway for repairing DNA double-strand breaks (DSBs), but surprisingly none of the components of the canonical non-hom...

  7. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways.

    Science.gov (United States)

    Pey, Jon; Valgepea, Kaspar; Rubio, Angel; Beasley, John E; Planes, Francisco J

    2013-12-08

    The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.

  8. Integrating the Wall Street Journal into a Business School Curriculum: A Success Story at Samford University

    Science.gov (United States)

    Loudon, David L.; Carson, Charles M.

    2008-01-01

    In the Spring of 2006 Samford University's School of Business made a decision to participate in The Wall Street Journal's Academic Partnership (AP) program beginning with the Fall semester of 2006. This paper examines School of Business student and faculty attitudes and usage of the WSJ that made for a successful implementation this past year.…

  9. Integrating the Wall Street Journal into a Business School Curriculum: A Success Story at Samford University

    Science.gov (United States)

    Loudon, David L.; Carson, Charles M.

    2008-01-01

    In the Spring of 2006 Samford University's School of Business made a decision to participate in The Wall Street Journal's Academic Partnership (AP) program beginning with the Fall semester of 2006. This paper examines School of Business student and faculty attitudes and usage of the WSJ that made for a successful implementation this past year.…

  10. Integral Facade Construction: Towards a new product architecture for curtain walls

    NARCIS (Netherlands)

    Klein, T.

    2013-01-01

    Curtain wall constructions are one of the most applied facade constructions today. Independently attached to the primary load bearing structure of the building they protect the building’s interior from external climate conditions and allow great design freedom. With continuously rising requirements

  11. Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain

    DEFF Research Database (Denmark)

    Dohn, Søren; Kjelstrup-Hansen, Jakob; Madsen, D.N.

    2005-01-01

    Individual multi-walled carbon nanotubes were positioned on silicon oxide microcantilevers using nanomanipulation tools. A silicon nanowire with a diameter of 200nm is positioned across the nanotube, and serves as shadow mask during deposition of conducting electrode material, leading to a 200 ru...

  12. Joint working in community mental health teams: implementation of an integrated care pathway.

    Science.gov (United States)

    Rees, Gwyneth; Huby, Guro; McDade, Lian; McKechnie, L

    2004-11-01

    Abstract Integration of community mental health services is a key policy objective that aims to increase quality and efficiency of care. Integrated care pathways (ICPs) are a mechanism designed to formalise multi-agency working at an operational level and are currently being applied to mental health services. Evidence regarding the impact of this tool to support joint working is mixed, and there is limited evidence regarding the suitability of ICPs for complex, community-based services. The present study was set in one primary care trust (PCT) in Scotland that is currently implementing an ICP for community mental health teams (CMHTs) across the region. The aim of the study was to investigate professionals' experiences and views on the implementation of an ICP within adult CMHTs in order to generate learning points for other organisations which are considering developing and implementing such systems. The study used qualitative methods which comprised of individual interviews with three CMHT leaders and two service development managers, as well as group interviews with members of four adult CMHTs. Data was analysed using the constant comparison method. Participants reported positive views regarding joint working and the role of an ICP in theory. However, in practice, teams were not implementing the ICP. Lack of integration at higher organisational levels was found to create conflicts within the teams which became explicit in response to the ICP. Implementation was also hindered by lack of resources for ongoing support, team development and change management. In conclusion, the study suggests that operational systems such as ICPs do not address and cannot overcome wider organisational barriers to integration of mental health services. Integrated care pathways need to be developed with strategic input as well as practitioner involvement and ownership. Team development, education about integration and change management are essential if ICPs are to foster and support

  13. Process evaluation of an integrated care pathway in geriatric rehabilitation for people with complex health problems.

    Science.gov (United States)

    Everink, Irma H J; van Haastregt, Jolanda C M; Maessen, Jose M C; Schols, Jos M G A; Kempen, Gertrudis I J M

    2017-01-13

    An integrated care pathway in geriatric rehabilitation was developed to improve coordination and continuity of care for community-living older adults in the Netherlands, who go through the process of hospital admission, admission to a geriatric rehabilitation facility and discharge back to the home situation. This pathway is a complex intervention and is focused on improving communication, triage and transfers of patients between the hospital, geriatric rehabilitation facility and primary care organisations. A process evaluation was performed to assess the feasibility of this pathway. The study design incorporated mixed methods. Feasibility was assessed thru if the pathway was implemented according to plan (fidelity and dose delivered), (b) if patients, informal caregivers and professionals were satisfied with the pathway (dose received) and (c) which barriers and facilitators influenced implementation (context). These components were derived from the theoretical framework of Saunders and colleagues. Data were collected using three structured face-to-face interviews with patients, self-administered questionnaires among informal caregivers, and group interviews with professionals. Furthermore, data were collected from the information transfer system in the hospital, patient files of the geriatric rehabilitation facility and minutes of evaluation meetings. In total, 113 patients, 37 informal caregivers and 19 healthcare professionals participated in this process evaluation. The pathway was considered largely feasible as two components were fully implemented according to plan and two components were largely implemented according to plan. The timing and quality of medical discharge summaries were not sufficiently implemented according to plan and professionals indicated that the triage instrument needed refinement. Healthcare professionals were satisfied with the implementation of the pathway and they indicated that due to improved collaboration, the quality of care

  14. Evolution of the New Pathway curriculum at Harvard Medical School: the new integrated curriculum.

    Science.gov (United States)

    Dienstag, Jules L

    2011-01-01

    In 1985, Harvard Medical School adopted a "New Pathway" curriculum, based on active, adult learning through problem-based, faculty-facilitated small-group tutorials designed to promote lifelong skills of self-directed learning. Despite the successful integration of clinically relevant material in basic science courses, the New Pathway goals were confined primarily to the preclinical years. In addition, the shifting balance in the delivery of health care from inpatient to ambulatory settings limited the richness of clinical education in clinical clerkships, creating obstacles for faculty in their traditional roles as teachers. In 2006, Harvard Medical School adopted a more integrated curriculum based on four principles that emerged after half a decade of self-reflection and planning: (1) integrate the teaching of basic/population science and clinical medicine throughout the entire student experience; (2) reestablish meaningful and intensive faculty-student interactions and reengage the faculty; (3) develop a new model of clinical education that offers longitudinal continuity of patient experience, cross-disciplinary curriculum, faculty mentoring, and student evaluation; and (4) provide opportunities for all students to pursue an in-depth, faculty-mentored scholarly project. These principles of our New Integrated Curriculum reflect our vision for a curriculum that fosters a partnership between students and faculty in the pursuit of scholarship and leadership.

  15. High-R Walls for New Construction Structural Performance: Integrated Rim Header Testing

    Energy Technology Data Exchange (ETDEWEB)

    DeRenzis, A. [NAHB Research Center, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center, Upper Marlboro, MD (United States); Wiehagen, J. [NAHB Research Center, Upper Marlboro, MD (United States)

    2013-01-01

    Two prominent approaches within the Building America Program to construct higher R-value walls have included use of larger dimension framing and exterior rigid foam insulation. These approaches have been met with some success; however for many production builders, where the cost of changing framing systems is expensive, the changes have been slow to be realized. In addition, recent building code changes have raised some performance issues for exterior sheathing and raised heel trusses, for example, that indicates a need for continued performance testing for wall systems. The testing methods presented in this report evaluate structural rim header designs over openings up to 6 ft wide and applicable to one- and two-story homes.

  16. Combinatory action of VEGFR2 and MAP kinase pathways maintains endothelial-cell integrity

    Institute of Scientific and Technical Information of China (English)

    Hanbing Zhong; Danyang Wang; Nan Wang; Yesenia Rios; Haigen Huang; Song Li; Xinrong Wu; Shuo Lin

    2011-01-01

    Blood vessels normally maintain stereotyped lumen diameters and their stable structures are crucial for vascular function. However, very little is known about the molecular mechanisms controlling the maintenance of vessel diameters and the integrity of endothelial cells. We investigated this issue in zebrafish embryos by a chemical genetics approach. Small molecule libraries were screened using live Tg(kdrl:GRCFP)zn1 transgenic embryos in which endothelial cells are specifically labeled with GFP. By analyzing the effects of compounds on the morphology and function of embryonic blood vessels after lumen formation, PP1, a putative Src kinase inhibitor, was identified as capable of specifically reducing vascular lumen size by interrupting endothelial-cell integrity. The inhibitory effect is not due to Src or general VEGF signaling inhibition because another Src inhibitor and Src morpholino as well as several VEGFR inhibitors failed to produce a similar phenotype. After profiling a panel of 22 representative mammalian kinases and surveying published data, we selected a few possible new candidates. Combinational analysis of these candidate kinase inhibitors established that PP1 induced endothelial collapse by inhibiting both the VEGFR2 and MAP kinase pathways. More importantly, combinatory use of two clinically approved drugs Dasatinib and Sunitinib produced the same phenotype. This is the first study to elucidate the pathways controlling maintenance of endothelial integrity using a chemical genetics approach, indicating that endothelial integrity is controlled by the combined action of the VEGFR2 and MAP kinase pathways. Our results also suggest the possible side effect of the combination of two anticancer drugs on the circulatory system.

  17. Pathways for Genome Integrity in G2 Phase of the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Claus Storgaard Sørensen

    2012-11-01

    Full Text Available The maintenance of genome integrity is important for normal cellular functions, organism development and the prevention of diseases, such as cancer. Cellular pathways respond immediately to DNA breaks leading to the initiation of a multi-facetted DNA damage response, which leads to DNA repair and cell cycle arrest. Cell cycle checkpoints provide the cell time to complete replication and repair the DNA damage before it can continue to the next cell cycle phase. The G2/M checkpoint plays an especially important role in ensuring the propagation of error-free copies of the genome to each daughter cell. Here, we review recent progress in our understanding of DNA repair and checkpoint pathways in late S and G2 phases. This review will first describe the current understanding of normal cell cycle progression through G2 phase to mitosis. It will also discuss the DNA damage response including cell cycle checkpoint control and DNA double-strand break repair. Finally, we discuss the emerging concept that DNA repair pathways play a major role in the G2/M checkpoint pathway thereby blocking cell division as long as DNA lesions are present.

  18. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    Science.gov (United States)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  19. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defence pathways.

    Directory of Open Access Journals (Sweden)

    Luis A.J. Mur

    2013-06-01

    Full Text Available Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA or jasmonic acid (JA/ethylene (ET pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses to be tailored to particular biotic stresses. Nitric oxide (NO has emerged as a major signal influencing resistance mediated by both signalling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signalling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA—dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1 will promote the NPR1 oligomerisation within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S –nitrosylation and inhibition of s-adenosylmethionine transferases which provides methyl groups for ethylene production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  20. The FACETS project: integrated core-edge-wall modeling with concurrent execution

    Science.gov (United States)

    Cary, J. R.; Balay, S.; Candy, J.; Carlsson, J. A.; Cohen, R. H.; Epperly, T.; Estep, D. J.; Fahey, M. R.; Groebner, R. J.; Hakim, A. H.; Hammett, G. W.; Indireshkumar, K.; Kruger, S. E.; Maloney, A. D.; McCune, D. C.; McInnes, L.; Morris, A.; Pankin, A.; Pletzer, A.; Pigarov, A.; Rognlien, T. D.; Shasharina, S.; Shende, S.; Vadlamani, S.; Zhang, H.

    2009-11-01

    The multi-institutional FACETS project has the physics goals of using computation to understand of how a consistent, coupled core-edge-wall plasma evolves, including energy flow, particle recycling, and the variation of power density on divertor plates with plasma under different conditions. FACETS is being developed to take advantage of Leadership Class Facilities (LCFs), while still being able to run on laptops with reduced fidelity models. This presentation will provide a high-level overview of the project, discussing the issues of componentization, solvers, performance monitoring, testing, visualization and first physics results for core-edge coupling.

  1. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Zhernakova, Daria V.; Westra, Harm-Jan;

    2015-01-01

    expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected...... polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. CONCLUSIONS: To our knowledge......BACKGROUND: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about...

  2. EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity.

    Directory of Open Access Journals (Sweden)

    Alejandra Garces

    Full Text Available Mycobacterium tuberculosis (Mtb requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall.

  3. Integrated rate-dependent and dual pathway AV nodal functions: principles and assessment framework.

    Science.gov (United States)

    Billette, Jacques; Tadros, Rafik

    2014-01-15

    The atrioventricular (AV) node conducts slowly and has a long refractory period. These features sustain the filtering of atrial impulses and hence are often modulated to optimize ventricular rate during supraventricular tachyarrhythmias. The AV node is also the site of a clinically common reentrant arrhythmia. Its function is assessed for a variety of purposes from its responses to a premature protocol (S1S2, test beats introduced at different cycle lengths) repeatedly performed at different basic rates and/or to an incremental pacing protocol (increasingly faster rates). Puzzlingly, resulting data and interpretation differ with protocols as well as with chosen recovery and refractory indexes, and are further complicated by the presence of built-in fast and slow pathways. This problem applies to endocavitary investigations of arrhythmias as well as to many experimental functional studies. This review supports an integrated framework of rate-dependent and dual pathway AV nodal function that can account for these puzzling characteristics. The framework was established from AV nodal responses to S1S2S3 protocols that, compared with standard S1S2 protocols, allow for an orderly quantitative dissociation of the different factors involved in changes in AV nodal conduction and refractory indexes under rate-dependent and dual pathway function. Although largely based on data from experimental studies, the proposed framework may well apply to the human AV node. In conclusion, the rate-dependent and dual pathway properties of the AV node can be integrated within a common functional framework the contribution of which to individual responses can be quantitatively determined with properly designed protocols and analytic tools.

  4. Aligning ontologies and integrating textual evidence for pathway analysis of microarray data

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Banu; Posse, Christian; Sanfilippo, Antonio P.; Stenzel-Poore, Mary; Stevens, S.L.; Castano, Jose; Beagley, Nathaniel; Riensche, Roderick M.; Baddeley, Bob; Simon, R.P.; Pustejovsky, James

    2006-10-08

    Expression arrays are introducing a paradigmatic change in biology by shifting experimental approaches from single gene studies to genome-level analysis, monitoring the ex-pression levels of several thousands of genes in parallel. The massive amounts of data obtained from the microarray data needs to be integrated and interpreted to infer biological meaning within the context of information-rich pathways. In this paper, we present a methodology that integrates textual information with annotations from cross-referenced ontolo-gies to map genes to pathways in a semi-automated way. We illustrate this approach and compare it favorably to other tools by analyzing the gene expression changes underlying the biological phenomena related to stroke. Stroke is the third leading cause of death and a major disabler in the United States. Through years of study, researchers have amassed a significant knowledge base about stroke, and this knowledge, coupled with new technologies, is providing a wealth of new scientific opportunities. The potential for neu-roprotective stroke therapy is enormous. However, the roles of neurogenesis, angiogenesis, and other proliferative re-sponses in the recovery process following ischemia and the molecular mechanisms that lead to these processes still need to be uncovered. Improved annotation of genomic and pro-teomic data, including annotation of pathways in which genes and proteins are involved, is required to facilitate their interpretation and clinical application. While our approach is not aimed at replacing existing curated pathway databases, it reveals multiple hidden relationships that are not evident with the way these databases analyze functional groupings of genes from the Gene Ontology.

  5. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    Science.gov (United States)

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. To our knowledge, this is the first study to perform an integrated genomics and

  6. Development and Implementation of an Ambulatory Integrated Care Pathway for Major Depressive Disorder and Alcohol Dependence.

    Science.gov (United States)

    Awan, Saima; Samokhvalov, Andriy V; Aleem, Nadia; Hendershot, Christian S; Irving, Julie Anne; Kalvik, Anne; Lefebvre, Lisa; Le Foll, Bernard; Quilty, Lena; Voore, Peter

    2015-12-01

    Integrated care pathways (ICPs) provide an approach for delivering evidence-based treatment in a hospital setting. This column describes the development and pilot implementation in a clinical setting of an ICP for patients with concurrent major depressive disorder and alcohol dependence at the Centre for Addiction and Mental Health (CAMH), an academic tertiary care hospital, in Toronto, Canada. The ICP methodology includes evidence reviews, knowledge translation, process reengineering, and change management. Pilot results indicate high patient satisfaction, evidence of symptom improvement, and excellent retention.

  7. Integrated analysis of differentially expressed genes and pathways in triple-negative breast cancer

    Science.gov (United States)

    Peng, Cancan; Ma, Wenli; Xia, Wei; Zheng, Wenling

    2017-01-01

    Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by an aggressive phenotype and reduced survival. The aim of the present study was to investigate the molecular mechanisms involved in the carcinogenesis of TNBC and to identify novel target molecules for therapy. The differentially expressed genes (DEGs) in TNBC and normal adjacent tissue were assessed by analyzing the GSE41970 microarray data using Qlucore Omics Explorer, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes. Pathway enrichment analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery online resource. A protein-protein interaction (PPI) network was constructed using Search Tool for the Retrieval of Interacting Genes, and subnetworks were analyzed by ClusterONE. The PPI network and subnetworks were visualized using Cytoscape software. A total of 121 DEGs were obtained, of which 101 were upregulated and 20 were downregulated. The upregulated DEGs were significantly enriched in 14 pathways and 83 GO biological processes, while the downregulated DEGs were significantly enriched in 18 GO biological processes. The PPI network with 118 nodes and 1,264 edges was constructed and three subnetworks were extracted from the entire network. The significant hub DEGs with high degrees were identified, including TP53, glyceraldehyde-3-phosphate dehydrogenase, cyclin D1, HRAS and proliferating cell nuclear antigen, which were predominantly enriched in the cell cycle pathway and pathways in cancer. A number of critical genes and pathways were revealed to be associated with TNBC. The present study may provide an improved understanding of the pathogenesis of TNBC and contribute to the development of therapeutic targets for TNBC. PMID:28075450

  8. A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans

    Science.gov (United States)

    Zhao, Yunli; Yang, Junnian; Wang, Dayong

    2016-03-01

    The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeqTM 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms.

  9. Nonassociative learning as gated neural integrator and differentiator in stimulus-response pathways

    Directory of Open Access Journals (Sweden)

    Young Daniel L

    2006-08-01

    Full Text Available Abstract Nonassociative learning is a basic neuroadaptive behavior exhibited across animal phyla and sensory modalities but its role in brain intelligence is unclear. Current literature on habituation and sensitization, the classic "dual process" of nonassociative learning, gives highly incongruous accounts between varying experimental paradigms. Here we propose a general theory of nonassociative learning featuring four base modes: habituation/primary sensitization in primary stimulus-response pathways, and desensitization/secondary sensitization in secondary stimulus-response pathways. Primary and secondary modes of nonassociative learning are distinguished by corresponding activity-dependent recall, or nonassociative gating, of neurotransmission memory. From the perspective of brain computation, nonassociative learning is a form of integral-differential calculus whereas nonassociative gating is a form of Boolean logic operator – both dynamically transforming the stimulus-response relationship. From the perspective of sensory integration, nonassociative gating provides temporal filtering whereas nonassociative learning affords low-pass, high-pass or band-pass/band-stop frequency filtering – effectively creating an intelligent sensory firewall that screens all stimuli for attention and resultant internal model adaptation and reaction. This unified framework ties together many salient characteristics of nonassociative learning and nonassociative gating and suggests a common kernel that correlates with a wide variety of sensorimotor integration behaviors such as central resetting and self-organization of sensory inputs, fail-safe sensorimotor compensation, integral-differential and gated modulation of sensorimotor feedbacks, alarm reaction, novelty detection and selective attention, as well as a variety of mental and neurological disorders such as sensorimotor instability, attention deficit hyperactivity, sensory defensiveness, autism

  10. Miniature Hall sensor integrated on a magnetic thin film for detecting domain wall motion

    Science.gov (United States)

    Kubota, M.; Tokunaga, Y.; Kanazawa, N.; Kagawa, F.; Tokura, Y.; Kawasaki, M.

    2013-08-01

    We have fabricated a cross-bar Hall sensor made of 50-nm-wide and 100-nm-thick bismuth wires patterned by an electron-beam lithography and lift-off. The Hall coefficient at 300 K is as large as -0.44 cm3/C, yielding in a high product sensitivity of about 5 V/(A T). The series resistance was reduced as low as 1.7 kΩ with a short bar configuration, resulting in a high signal-to-noise ratio of 38.5 dB. These characteristics are far better than those reported with similar dimensions. The Hall element was successfully demonstrated for detecting the domain wall motion in an iron garnet film employed as the substrate.

  11. Computation of macro-fiber composite integrated thin-walled smart structures

    Science.gov (United States)

    Zhang, S. Q.; Zhang, S. Y.; Chen, M.; Bai, J.; Li, J.

    2016-07-01

    Due to high flexibility, reliability, and strong actuation forces, piezo fiber based composite smart material, macro-fiber composite (MFC), is increasingly applied in various fields for vibration suppression, shape control, and health monitoring. The complexity arrangement of MFC materials makes them difficult in numerical simulations. This paper develops a linear electro-mechanically coupled finite element (FE) model for composite laminated thin-walled smart structures bonded with MFC patches considering arbitrary piezo fiber orientation. Two types of MFCs are considered, namely, MFC-d31 in which the d 31 effect dominates the actuation forces, and MFC-d33 which mainly uses the d 33 effect. The proposed FE model is validated by static analysis of an MFC bonded smart plate.

  12. Mycolic Acid Cyclopropanation is Essential for Viability, Drug Resistance, and Cell Wall Integrity of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Barkan, Daniel; Liu, Zhen; Sacchettini, James C.; Glickman, Michael S.; (MSKCC); (TAM)

    2009-12-01

    Mycobacterium tuberculosis infection remains a major global health problem complicated by escalating rates of antibiotic resistance. Despite the established role of mycolic acid cyclopropane modification in pathogenesis, the feasibility of targeting this enzyme family for antibiotic development is unknown. We show through genetics and chemical biology that mycolic acid methyltransferases are essential for M. tuberculosis viability, cell wall structure, and intrinsic resistance to antibiotics. The tool compound dioctylamine, which we show acts as a substrate mimic, directly inhibits the function of multiple mycolic acid methyltransferases, resulting in loss of cyclopropanation, cell death, loss of acid fastness, and synergistic killing with isoniazid and ciprofloxacin. These results demonstrate that mycolic acid methyltransferases are a promising antibiotic target and that a family of virulence factors can be chemically inhibited with effects not anticipated from studies of each individual enzyme.

  13. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development

    DEFF Research Database (Denmark)

    Cankar, Katarina; Kortstee, Anne; Toonen, Marcel A.J.

    2014-01-01

    transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different...... developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain...... and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating....

  14. Gut wall integrity in exclusively breastfed vs. formula-fed infants

    Directory of Open Access Journals (Sweden)

    Nur Hayati

    2016-08-01

    Full Text Available Background Breast milk has bioactive substances that modulate gastrointestinal maturation and maintain mucosal integrity of the gut in infants. Markers that are both non-invasive and reliable, such as fecal alpha-1 antitrypsin (AAT, calprotectin, and secretory immunoglobulin A (sIgA have been used to assess gut integrity in adults. Higher AAT levels may imply greater enteric protein loss due to increase intestinal permeability of immaturity gut. Objective To assess and compare gut integrity of exclusively breastfed (BF and exclusively formula fed (FF infants aged 4-6 months. Methods Subjects were 80 healthy infants (BF=40; FF=40, aged 4-6 months who visited the Pediatric Polyclinic at St. Carolus Hospital, and lived in Pasar Minggu or Cempaka Putih Districts, Jakarta. The fecal AAT was analyzed by an ELISA method. Mann-Whitney and unpaired T-test were used to analyze possible correlations between feeding type and gut integrity. Results The BF group had significantly higher mean fecal AAT than the FF group (P=0.02. Median sIgA levels were not significantly different between groups (P=0.104. The FF group had a higher mean fecal calprotectin level but this difference was also not significant (P=0.443. There was a significant correlation between breastfeeding and mean fecal AAT level (P=0.02, but no significant correlation with calprotectin (P=0.65 or sIgA (P=0.26. Conclusion The breastfed group shows better mucosal integrity compared to the formula fed group. Higher mean fecal AAT level in the BF group is related to the AAT content of breast milk. Therefore AAT content of BF group is actually lower than formula fed group which shows greater mucosal integrity in BF group.

  15. Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum.

    Science.gov (United States)

    Liu, Huanhuan; Huang, Di; Wen, Jianping

    2016-02-15

    Clostridium acetobutylicum is one of the most important butanol producing strains. However, environmental stress in the fermentation process usually leads to a lower yield, seriously hampering its industrialization. In order to systematically investigate the key intracellular metabolites that influence the strain growth and butanol production, and find out the critical regulation nodes, an integrated analysis approach has been carried out in this study. Based on the gas chromatography-mass spectrometry technology, the partial least square discriminant analysis and the pathway analysis, 40 metabolic pathways linked with 43 key metabolic nodes were identified. In-depth analysis showed that lots of amino acids metabolism promoted cell growth but exerted slight influence on butanol production, while sugar metabolism was favorable for cell growth but unfavorable for butanol synthesis. Besides, both lysine and succinic acid metabolism generated a complex effect on the whole metabolic network. Dicarboxylate metabolism exerted an indispensable role on cell growth and butanol production. Subsequently, rational feeding strategies were proposed to verify these conclusions and facilitate the butanol biosynthesis. Feeding amino acids, especially glycine and serine, could obviously improve cell growth while yeast extract, citric acid and ethylene glycol could significantly enhance both growth and butanol production. The feeding experiment confirmed that metabolic profiling combined with pathway analysis provided an accurate, reasonable and practical approach to explore the cellular metabolic activity and supplied a basis for improving butanol production. These strategies can also be extended for the production of other important bio-chemical compounds.

  16. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids.

    Science.gov (United States)

    Cava, Felipe; de Pedro, Miguel A; Lam, Hubert; Davis, Brigid M; Waldor, Matthew K

    2011-07-26

    Production of non-canonical D-amino acids (NCDAAs) in stationary phase promotes remodelling of peptidoglycan (PG), the polymer that comprises the bacterial cell wall. Impairment of NCDAAs production leads to excessive accumulation of PG and hypersensitivity to osmotic shock; however, the mechanistic bases for these phenotypes were not previously determined. Here, we show that incorporation of NCDAAs into PG is a critical means by which NCDAAs control PG abundance and strength. We identified and reconstituted in vitro two (of at least three) distinct processes that mediate NCDAA incorporation. Diverse bacterial phyla incorporate NCDAAs into their cell walls, either through periplasmic editing of the mature PG or via incorporation into PG precursor subunits in the cytosol. Production of NCDAAs in Vibrio cholerae requires the stress response sigma factor RpoS, suggesting that NCDAAs may aid bacteria in responding to varied environmental challenges. The widespread capacity of diverse bacteria, including non-producers, to incorporate NCDAAs suggests that these amino acids may serve as both autocrine- and paracrine-like regulators of chemical and physical properties of the cell wall in microbial communities.

  17. IT-supported integrated care pathways for diabetes: A compilation and review of good practices.

    Science.gov (United States)

    Vrijhoef, Hubertus Jm; de Belvis, Antonio Giulio; de la Calle, Matias; de Sabata, Maria Stella; Hauck, Bastian; Montante, Sabrina; Moritz, Annette; Pelizzola, Dario; Saraheimo, Markku; Guldemond, Nick A

    2017-06-01

    Integrated Care Pathways (ICPs) are a method for the mutual decision-making and organization of care for a well-defined group of patients during a well-defined period. The aim of a care pathway is to enhance the quality of care by improving patient outcomes, promoting patient safety, increasing patient satisfaction, and optimizing the use of resources. To describe this concept, different names are used, e.g. care pathways and integrated care pathways. Modern information technologies (IT) can support ICPs by enabling patient empowerment, better management, and the monitoring of care provided by multidisciplinary teams. This study analyses ICPs across Europe, identifying commonalities and success factors to establish good practices for IT-supported ICPs in diabetes care. A mixed-method approach was applied, combining desk research on 24 projects from the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) with follow-up interviews of project participants, and a non-systematic literature review. We applied a Delphi technique to select process and outcome indicators, derived from different literature sources which were compiled and applied for the identification of successful good practices. Desk research identified sixteen projects featuring IT-supported ICPs, mostly derived from the EIP on AHA, as good practices based on our criteria. Follow-up interviews were then conducted with representatives from 9 of the 16 projects to gather information not publicly available and understand how these projects were meeting the identified criteria. In parallel, the non-systematic literature review of 434 PubMed search results revealed a total of eight relevant projects. On the basis of the selected EIP on AHA project data and non-systematic literature review, no commonalities with regard to defined process or outcome indicators could be identified through our approach. Conversely, the research produced a heterogeneous picture in all aspects of the projects

  18. Investigating ego modules and pathways in osteosarcoma by integrating the EgoNet algorithm and pathway analysis.

    Science.gov (United States)

    Chen, X Y; Chen, Y H; Zhang, L J; Wang, Y; Tong, Z C

    2017-02-16

    Osteosarcoma (OS) is the most common primary bone malignancy, but current therapies are far from effective for all patients. A better understanding of the pathological mechanism of OS may help to achieve new treatments for this tumor. Hence, the objective of this study was to investigate ego modules and pathways in OS utilizing EgoNet algorithm and pathway-related analysis, and reveal pathological mechanisms underlying OS. The EgoNet algorithm comprises four steps: constructing background protein-protein interaction (PPI) network (PPIN) based on gene expression data and PPI data; extracting differential expression network (DEN) from the background PPIN; identifying ego genes according to topological features of genes in reweighted DEN; and collecting ego modules using module search by ego gene expansion. Consequently, we obtained 5 ego modules (Modules 2, 3, 4, 5, and 6) in total. After applying the permutation test, all presented statistical significance between OS and normal controls. Finally, pathway enrichment analysis combined with Reactome pathway database was performed to investigate pathways, and Fisher's exact test was conducted to capture ego pathways for OS. The ego pathway for Module 2 was CLEC7A/inflammasome pathway, while for Module 3 a tetrasaccharide linker sequence was required for glycosaminoglycan (GAG) synthesis, and for Module 6 was the Rho GTPase cycle. Interestingly, genes in Modules 4 and 5 were enriched in the same pathway, the 2-LTR circle formation. In conclusion, the ego modules and pathways might be potential biomarkers for OS therapeutic index, and give great insight of the molecular mechanism underlying this tumor.

  19. PC装配式墙体相关集成技术研究%Research The Related Integration Technology in the System of PC Prefabricated Wall

    Institute of Scientific and Technical Information of China (English)

    汪力; 樊骅

    2015-01-01

    文章分析研究PC装配式墙体系统中的相关集成技术,包括保温技术、外墙装饰技术、墙体门窗一体化技术、水电管线技术、预制整体卫浴技术、防水技术等。其中,保温技术包括预制夹心保温墙体和预制外墙外保温墙体;外墙装饰技术包括瓷砖饰面和石材饰面;墙体门窗一体化技术包括实心墙体门窗一体化和叠合墙体门窗一体化;水电管线技术是通过BIM技术预先确定穿墙管线位置;预制整体卫浴技术包括“钢筋混凝土”整体卫浴、“SMC”整体卫浴、“轻钢龙骨”整体卫浴;防水技术包括成型胶防水和非成型胶防水。应用上述相关集成技术的目的在于提高装配式建筑工业化程度,加快施工效率,保证工程质量。%This paper analyzed the related integration technology in the system of PC prefabricated wall, including thermal insulation technology, exterior wall decoration, wall windows integration technology, water pipeline technology, prefabricated whole wei yu, waterproof technology etc. Among them, the thermal insulation technology included the prefabrication sandwich insulation wall body and the exterior insulation wall. Exterior wall decoration techniques included the tile and stone veneer. Wall doors and windows integrated technology included the solid wall doors and windows integration and integration of composite wall doors and windows. Water pipeline technology is predetermined by BIM technology wall pipe position. Prefabricated whole wei yu technology included "reinforced concrete whole wei yu", "SMC whole wei yu", "light steel keel whole wei yu". Waterproof technology including the molding rubber waterproof and non waterproof glue. The purpose of the related integration technology is to increase the degree of prefabricated construction industrialization, speed up the construction efficiency and ensure the engineering quality.

  20. The impact of alterations in the lignin biosynthetic pathway on molecular architecture of the plant cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiliang; Kim, Jeong IM; Cusumano, J C; Chapple, C; Venugopalan, Nagarajan; Fischetti, Robert F.; Makowski, Lee

    2016-06-17

    Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content were grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with

  1. Integrating Publicly Available Data to Generate Computationally Predicted Adverse Outcome Pathways for Fatty Liver.

    Science.gov (United States)

    Bell, Shannon M; Angrish, Michelle M; Wood, Charles E; Edwards, Stephen W

    2016-04-01

    Newin vitrotesting strategies make it possible to design testing batteries for large numbers of environmental chemicals. Full utilization of the results requires knowledge of the underlying biological networks and the adverse outcome pathways (AOPs) that describe the route from early molecular perturbations to an adverse outcome. Curation of a formal AOP is a time-intensive process and a rate-limiting step to designing these test batteries. Here, we describe a method for integrating publicly available data in order to generate computationally predicted AOP (cpAOP) scaffolds, which can be leveraged by domain experts to shorten the time for formal AOP development. A network-based workflow was used to facilitate the integration of multiple data types to generate cpAOPs. Edges between graph entities were identified through direct experimental or literature information, or computationally inferred using frequent itemset mining. Data from the TG-GATEs and ToxCast programs were used to channel large-scale toxicogenomics information into a cpAOP network (cpAOPnet) of over 20 000 relationships describing connections between chemical treatments, phenotypes, and perturbed pathways as measured by differential gene expression and high-throughput screening targets. The resulting fatty liver cpAOPnet is available as a resource to the community. Subnetworks of cpAOPs for a reference chemical (carbon tetrachloride, CCl4) and outcome (fatty liver) were compared with published mechanistic descriptions. In both cases, the computational approaches approximated the manually curated AOPs. The cpAOPnet can be used for accelerating expert-curated AOP development and to identify pathway targets that lack genomic markers or high-throughput screening tests. It can also facilitate identification of key events for designing test batteries and for classification and grouping of chemicals for follow up testing.

  2. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    Science.gov (United States)

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  3. Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum.

    Science.gov (United States)

    Beisser, Daniela; Grohme, Markus A; Kopka, Joachim; Frohme, Marcus; Schill, Ralph O; Hengherr, Steffen; Dandekar, Thomas; Klau, Gunnar W; Dittrich, Marcus; Müller, Tobias

    2012-06-19

    Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source

  4. Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

    Directory of Open Access Journals (Sweden)

    Beisser Daniela

    2012-06-01

    Full Text Available Abstract Background Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. Results In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites and 4,378 edges (reactions. Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from

  5. Integrated ternary artificial nacre via synergistic toughening of reduced graphene oxide/double-walled carbon nanotubes/poly(vinyl alcohol)

    Science.gov (United States)

    Gong, Shanshan; Wu, Mengxi; Jiang, Lei; Cheng, Qunfeng

    2016-07-01

    The synergistic toughening effect of building blocks and interface interaction exists in natural materials, such as nacre. Herein, inspired by one-dimensional (1D) nanofibrillar chitin and two-dimensional (2D) calcium carbonate platelets of natural nacre, we have fabricated integrated strong and tough ternary bio-inspired nanocomposites (artificial nacre) successfully via the synergistic effect of 2D reduced graphene oxide (rGO) nanosheets and 1D double-walled carbon nanotubes (DWNTs) and hydrogen bonding cross-linking with polyvinyl alcohol (PVA) matrix. Moreover, the crack mechanics model with crack deflection by 2D rGO nanosheets and crack bridging by 1D DWNTs and PVA chains induces resultant artificial nacre exhibiting excellent fatigue-resistance performance. These outstanding characteristics enable the ternary bioinspired nanocomposites have many promising potential applications, for instance, aerospace, flexible electronics devices and so forth. This synergistic toughening strategy also provides an effective way to assemble robust graphene-based nanocomposites.

  6. Calpains are involved in asexual and sexual development, cell wall integrity and pathogenicity of the rice blast fungus.

    Science.gov (United States)

    Liu, Xiao-Hong; Ning, Guo-Ao; Huang, Lu-Yao; Zhao, Ya-Hui; Dong, Bo; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-08-09

    Calpains are ubiquitous and well-conserved proteins that belong to the calcium-dependent, non-lysosomal cysteine protease family. In this study, 8 putative calpains were identified using Pfam domain analysis and BlastP searches in M. oryzae. Three single gene deletion mutants (ΔMocapn7, ΔMocapn9 and ΔMocapn14) and two double gene deletion mutants (ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7) were obtained using the high-throughput gene knockout system. The calpain disruption mutants showed defects in colony characteristics, conidiation, sexual reproduction and cell wall integrity. The mycelia of the ΔMocapn7, ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7 mutants showed reduced pathogenicity on rice and barley.

  7. Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways.

    Directory of Open Access Journals (Sweden)

    Mélanie Falord

    Full Text Available The GraS/GraR two-component system has been shown to control cationic antimicrobial peptide (CAMP resistance in the major human pathogen Staphylococcus aureus. We demonstrated that graX, also involved in CAMP resistance and cotranscribed with graRS, encodes a regulatory cofactor of the GraSR signaling pathway, effectively constituting a three-component system. We identified a highly conserved ten base pair palindromic sequence (5' ACAAA TTTGT 3' located upstream from GraR-regulated genes (mprF and the dlt and vraFG operons, which we show to be essential for transcriptional regulation by GraR and induction in response to CAMPs, suggesting it is the likely GraR binding site. Genome-based predictions and transcriptome analysis revealed several novel GraR target genes. We also found that the GraSR TCS is required for growth of S. aureus at high temperatures and resistance to oxidative stress. The GraSR system has previously been shown to play a role in S. aureus pathogenesis and we have uncovered previously unsuspected links with the AgrCA peptide quorum-sensing system controlling virulence gene expression. We also show that the GraSR TCS controls stress reponse and cell wall metabolism signal transduction pathways, sharing an extensive overlap with the WalKR regulon. This is the first report showing a role for the GraSR TCS in high temperature and oxidative stress survival and linking this system to stress response, cell wall and pathogenesis control pathways.

  8. One-way spatial integration of Navier-Stokes equations: stability of wall-bounded flows

    Science.gov (United States)

    Rigas, Georgios; Colonius, Tim; Towne, Aaron; Beyar, Michael

    2016-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, a regularization of the equations of motion sometimes permits a fast spatial marching procedure that results in a huge reduction in computational cost. Recently, a novel one-way spatial marching algorithm has been developed by Towne & Colonius. The new method overcomes the principle flaw observed in Parabolized Stability Equations (PSE), namely the ad hoc regularization that removes upstream propagating modes. The one-way method correctly parabolizes the flow equations based on estimating, in a computationally efficient way, the local spectrum in each cross-stream plane and an efficient spectral filter eliminates modes with upstream group velocity. Results from the application of the method to wall-bounded flows will be presented and compared with predictions from the full linearized compressible Navier-Stokes equations and PSE.

  9. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  10. Integrating the digital library puzzle: The library without walls at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Luce, R. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    1998-01-01

    Current efforts at the Research Library, Los Alamos National Laboratory (LANL), to develop digital library services are described. A key principle of LANL`s approach to delivering library information is the integration of products into a common interface and the use of the Web as the medium of service provision. Products described include science databases such as the SciSearch at LANL and electronic journals. Project developments described have significant ramifications for delivering library services over the Internet.

  11. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity

    Directory of Open Access Journals (Sweden)

    Vincent eLee

    2014-05-01

    Full Text Available Purpose: We explored the microstructural differences between perinatally blind (PB, acquired blind (AB, and normally sighted controls (SC and related these differences to performance on functional tasks using a sensory substitution device (BrainPort. Methods: We enrolled 52 subjects (PB n=11; AQ n=35; NS n=6. Subjects spent 15 hours undergoing BrainPort device training. Outcomes of light perception, motion, direction, temporal resolution, grating, and acuity were tested at baseline and after training. Twenty-six of the subjects were scanned with a 3 Tesla MRI scanner for diffusion tensor imaging (DTI, and with a positron emission tomography (PET scanner for mapping regional brain glucose consumption during sensory substitution function. Non-parametric models were used to analyze fractional anisotropy (FA; a DTI measure of microstructural integrity of the brain via region-of-interest (ROI analysis and tract-based spatial statistics (TBSS. Results: At baseline, all subjects performed all tasks at chance level. After training, light perception, time resolution, location and grating acuity tasks improved significantly for all subject groups. ROI and TBSS analyses of FA maps show statistically significant differences (p≤0.025 in the bilateral optic radiations and some visual association areas between all 3 groups. No relationship was found between FA and functional performance with the BrainPort. Discussion: : All subjects showed performance improvements using the BrainPort irrespective of nature and duration of blindness. Definite brain areas with significant microstructural integrity changes exist among PB, AB, and NC, and these variations are most pronounced in the visual pathways. However, the use of sensory substitution devices is feasible irrespective of of microstructural integrity of the primary visual pathways between the eye and the brain. Therefore, tongue based devices devices may be usable for a broad array of non sighted persons.

  12. Community College Students with Criminal Justice Histories and Human Services Education: Glass Ceiling, Brick Wall, or a Pathway to Success

    Science.gov (United States)

    Rose, Lisa Hale

    2015-01-01

    In spite of open access to community college education, specifically human service associate degree programs, students with criminal justice histories do not necessarily have an unobstructed pathway to obtaining the degree and admission to the baccalaureate programs in human services and social work that are almost always selective. The first…

  13. Community College Students with Criminal Justice Histories and Human Services Education: Glass Ceiling, Brick Wall, or a Pathway to Success

    Science.gov (United States)

    Rose, Lisa Hale

    2015-01-01

    In spite of open access to community college education, specifically human service associate degree programs, students with criminal justice histories do not necessarily have an unobstructed pathway to obtaining the degree and admission to the baccalaureate programs in human services and social work that are almost always selective. The first…

  14. Pro-contractile action of the Na,K-ATPase/Src-kinase signaling pathway in the vascular wall

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Aalkjær, Christian; Matchkov, Vladimir

    ,K-ATPase by ouabain elevates blood pressure. Consequently, ouabain was shown to potentiate arterial contraction in vitro. In contrast, we have demonstrated that siRNA-induced down-regulation of the α-2 isoform Na,K-ATPase expression reduced arterial sensitivity to agonist stimulation and prevented the effect...... of ouabain. Here we demonstrate results of our research on the mechanisms involved in the modulation of vascular wall contractility by ouabain-sensitive Na,K-ATPase. Methods: The experiments were performed using rat mesenteric arteries in isometric myograph conditions. To inhibit kinase activity a Src-family...

  15. Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.

    Science.gov (United States)

    Gong, Shanshan; Cui, Wei; Zhang, Qi; Cao, Anyuan; Jiang, Lei; Cheng, Qunfeng

    2015-12-22

    With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a "gold standard" for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile strength and toughness of this kind of ternary bioinspired nanocomposites reaches 374.1 ± 22.8 MPa and 9.2 ± 0.8 MJ/m(3), which is 2.6 and 3.3 times that of pure reduced graphene oxide film, respectively. Furthermore, this ternary bioinspired nanocomposite has a high conductivity of 394.0 ± 6.8 S/cm and also shows excellent fatigue-resistant properties, which may enable this material to be used in aerospace, flexible energy devices, and artificial muscle. The synergistic building blocks with covalent bonding for constructing ternary bioinspired nanocomposites can serve as the basis of a strategy for the construction of integrated, high-performance, reduced graphene oxide (rGO)-based nanocomposites in the future.

  16. Study on the Surface Integrity of a Thin-Walled Aluminum Alloy Structure after a Bilateral Slid Rolling Process

    Directory of Open Access Journals (Sweden)

    Laixiao Lu

    2016-04-01

    Full Text Available For studying the influence of a bilateral slid rolling process (BSRP on the surface integrity of a thin-walled aluminum alloy structure, and revealing the generation mechanism of residual stresses, a self-designed BSRP appliance was used to conduct rolling experiments. With the aid of a surface optical profiler, an X-ray stress analyzer, and a scanning electron microscope (SEM, the differences in surface integrity before and after BSRP were explored. The internal changing mechanism of physical as well as mechanical properties was probed. The results show that surface roughness (Ra is reduced by 23.7%, microhardness is increased by 21.6%, and the depth of the hardening layer is about 100 μm. Serious plastic deformation was observed within the subsurface of the rolled region. The residual stress distributions along the depth of the rolling surface and milling surface were tested respectively. Residual stresses with deep and high amplitudes were generated via the BSRP. Based on the analysis of the microstructure, the generation mechanism of the residual stresses was probed. The residual stress of the rolling area consisted of two sections: microscopic stresses caused by local plastic deformation and macroscopic stresses caused by overall non-uniform deformation.

  17. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation.

    Science.gov (United States)

    Sorci, Guglielmo; Giovannini, Gloria; Riuzzi, Francesca; Bonifazi, Pierluigi; Zelante, Teresa; Zagarella, Silvia; Bistoni, Francesco; Donato, Rosario; Romani, Luigina

    2011-03-01

    Humans inhale hundreds of Aspergillus conidia without adverse consequences. Powerful protective mechanisms may ensure prompt control of the pathogen and inflammation. Here we reveal a previously unknown mechanism by which the danger molecule S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. Upon forming complexes with TLR2 ligands, S100B inhibited TLR2 via RAGE, through a paracrine epithelial cells/neutrophil circuit that restrained pathogen-induced inflammation. However, upon binding to nucleic acids, S100B activated intracellular TLRs eventually resolve danger-induced inflammation via transcriptional inhibition of S100B. Thus, the spatiotemporal regulation of TLRs and RAGE by S100B provides evidence for an evolving braking circuit in infection whereby an endogenous danger protects against pathogen-induced inflammation and a pathogen-sensing mechanism resolves danger-induced inflammation.

  18. Retracted: Identification of Novel Biomarkers for Pancreatic Cancer Using Integrated Transcriptomics With Functional Pathways Analysis.

    Science.gov (United States)

    Zhang, Xuan; Tong, Pan; Chen, Jinyun; Pei, Zenglin; Zhang, Xiaoyan; Chen, Weiping; Xu, Jianqing; Wang, Jin

    2016-02-22

    Retraction: 'Identification of Novel Biomarkers for Pancreatic Cancer Using Integrated Transcriptomics With Functional Pathways Analysis' by Zhang, X., Tong, P., Chen, J., Pei, Z., Zhang, X., Chen, W., Xu, J. and Wang, J. The above article from the Journal of Cellular Physiology, published online on 10 March 2016 in Wiley Online Library as Early View (http://onlinelibrary.wiley.com/enhanced/doi/10.1002/jcp.25353/), has been retracted by agreement between Gary Stein, the journal's Editor-in-Chief, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation at the University of Texas, MD Anderson Cancer Center, which confirmed that the article was submitted and approved for publication by Dr. Jin Wang without acknowledgement of NIH funding received or the consent and authorship of Dr. Ann Killary and Dr. Subrata Sen, with whom the manuscript was originally drafted.

  19. Integrating Multiple Microarray Data for Cancer Pathway Analysis Using Bootstrapping K-S Test

    Directory of Open Access Journals (Sweden)

    Bing Han

    2009-01-01

    Full Text Available Previous applications of microarray technology for cancer research have mostly focused on identifying genes that are differentially expressed between a particular cancer and normal cells. In a biological system, genes perform different molecular functions and regulate various biological processes via interactions with other genes thus forming a variety of complex networks. Therefore, it is critical to understand the relationship (e.g., interactions between genes across different types of cancer in order to gain insights into the molecular mechanisms of cancer. Here we propose an integrative method based on the bootstrapping Kolmogorov-Smirnov test and a large set of microarray data produced with various types of cancer to discover common molecular changes in cells from normal state to cancerous state. We evaluate our method using three key pathways related to cancer and demonstrate that it is capable of finding meaningful alterations in gene relations.

  20. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation.

    Directory of Open Access Journals (Sweden)

    Guglielmo Sorci

    2011-03-01

    Full Text Available Humans inhale hundreds of Aspergillus conidia without adverse consequences. Powerful protective mechanisms may ensure prompt control of the pathogen and inflammation. Here we reveal a previously unknown mechanism by which the danger molecule S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. Upon forming complexes with TLR2 ligands, S100B inhibited TLR2 via RAGE, through a paracrine epithelial cells/neutrophil circuit that restrained pathogen-induced inflammation. However, upon binding to nucleic acids, S100B activated intracellular TLRs eventually resolve danger-induced inflammation via transcriptional inhibition of S100B. Thus, the spatiotemporal regulation of TLRs and RAGE by S100B provides evidence for an evolving braking circuit in infection whereby an endogenous danger protects against pathogen-induced inflammation and a pathogen-sensing mechanism resolves danger-induced inflammation.

  1. Conditional Epistatic Interaction Maps Reveal Global Functional Rewiring of Genome Integrity Pathways in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar

    2016-01-01

    Full Text Available As antibiotic resistance is increasingly becoming a public health concern, an improved understanding of the bacterial DNA damage response (DDR, which is commonly targeted by antibiotics, could be of tremendous therapeutic value. Although the genetic components of the bacterial DDR have been studied extensively in isolation, how the underlying biological pathways interact functionally remains unclear. Here, we address this by performing systematic, unbiased, quantitative synthetic genetic interaction (GI screens and uncover widespread changes in the GI network of the entire genomic integrity apparatus of Escherichia coli under standard and DNA-damaging growth conditions. The GI patterns of untreated cultures implicated two previously uncharacterized proteins (YhbQ and YqgF as nucleases, whereas reorganization of the GI network after DNA damage revealed DDR roles for both annotated and uncharacterized genes. Analyses of pan-bacterial conservation patterns suggest that DDR mechanisms and functional relationships are near universal, highlighting a modular and highly adaptive genomic stress response.

  2. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid.

    Science.gov (United States)

    Peng, Siyuan; Yan, Lijuan; Zhang, Jie; Wang, Zhanlin; Tian, Meiping; Shen, Heqing

    2013-12-01

    Perfluorooctanoic acid (PFOA) is one of the most representative perfluorinated compounds and liver is the major organ where PFOA is accumulated. Although the multiple toxicities had been reported, its toxicological profile remained unclear. In this study, a systems toxicology strategy integrating liquid chromatography/mass spectrometry-based metabonomics and transcriptomics analyses was applied for the first time to investigate the effects of PFOA on a representative Chinese normal human liver cell line L-02, with focusing on the metabolic disturbance. Fifteen potential biomarkers were identified on metabolic level and most observations were consistent with the altered levels of gene expression. Our results showed that PFOA induced the perturbations in various metabolic processes in L-02 cells, especially lipid metabolism-related pathways. The up-stream mitochondrial carnitine metabolism was proved to be influenced by PFOA treatment. The specific transformation from carnitine to acylcarnitines, which showed a dose-dependent effect, and the expression level of key genes involved in this pathway were observed to be altered correspondingly. Furthermore, the down-stream cholesterol biosynthesis was directly confirmed to be up-regulated by both increased cholesterol content and elevated expression level of key genes. The PFOA-induced lipid metabolism-related effects in L-02 cells started from the fatty acid catabolism in cytosol, fluctuated to the processes in mitochondria, extended to the cholesterol biosynthesis. Many other metabolic pathways like amino acid metabolism and tricarboxylic acid cycle might also be disturbed. The findings obtained from the systems biological research provide more details about metabolic disorders induced by PFOA in human liver.

  3. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    Directory of Open Access Journals (Sweden)

    Jose A Santiago

    Full Text Available BACKGROUND: Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. METHODS AND FINDINGS: Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP, previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS and the Prognostic Biomarker Study (PROBE, revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. CONCLUSIONS: These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers

  4. Critical assessment of human metabolic pathway databases: a stepping stone for future integration

    Science.gov (United States)

    2011-01-01

    Background Multiple pathway databases are available that describe the human metabolic network and have proven their usefulness in many applications, ranging from the analysis and interpretation of high-throughput data to their use as a reference repository. However, so far the various human metabolic networks described by these databases have not been systematically compared and contrasted, nor has the extent to which they differ been quantified. For a researcher using these databases for particular analyses of human metabolism, it is crucial to know the extent of the differences in content and their underlying causes. Moreover, the outcomes of such a comparison are important for ongoing integration efforts. Results We compared the genes, EC numbers and reactions of five frequently used human metabolic pathway databases. The overlap is surprisingly low, especially on reaction level, where the databases agree on 3% of the 6968 reactions they have combined. Even for the well-established tricarboxylic acid cycle the databases agree on only 5 out of the 30 reactions in total. We identified the main causes for the lack of overlap. Importantly, the databases are partly complementary. Other explanations include the number of steps a conversion is described in and the number of possible alternative substrates listed. Missing metabolite identifiers and ambiguous names for metabolites also affect the comparison. Conclusions Our results show that each of the five networks compared provides us with a valuable piece of the puzzle of the complete reconstruction of the human metabolic network. To enable integration of the networks, next to a need for standardizing the metabolite names and identifiers, the conceptual differences between the databases should be resolved. Considerable manual intervention is required to reach the ultimate goal of a unified and biologically accurate model for studying the systems biology of human metabolism. Our comparison provides a stepping stone

  5. Critical assessment of human metabolic pathway databases: a stepping stone for future integration

    Directory of Open Access Journals (Sweden)

    Stobbe Miranda D

    2011-10-01

    Full Text Available Abstract Background Multiple pathway databases are available that describe the human metabolic network and have proven their usefulness in many applications, ranging from the analysis and interpretation of high-throughput data to their use as a reference repository. However, so far the various human metabolic networks described by these databases have not been systematically compared and contrasted, nor has the extent to which they differ been quantified. For a researcher using these databases for particular analyses of human metabolism, it is crucial to know the extent of the differences in content and their underlying causes. Moreover, the outcomes of such a comparison are important for ongoing integration efforts. Results We compared the genes, EC numbers and reactions of five frequently used human metabolic pathway databases. The overlap is surprisingly low, especially on reaction level, where the databases agree on 3% of the 6968 reactions they have combined. Even for the well-established tricarboxylic acid cycle the databases agree on only 5 out of the 30 reactions in total. We identified the main causes for the lack of overlap. Importantly, the databases are partly complementary. Other explanations include the number of steps a conversion is described in and the number of possible alternative substrates listed. Missing metabolite identifiers and ambiguous names for metabolites also affect the comparison. Conclusions Our results show that each of the five networks compared provides us with a valuable piece of the puzzle of the complete reconstruction of the human metabolic network. To enable integration of the networks, next to a need for standardizing the metabolite names and identifiers, the conceptual differences between the databases should be resolved. Considerable manual intervention is required to reach the ultimate goal of a unified and biologically accurate model for studying the systems biology of human metabolism. Our comparison

  6. Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells

    Directory of Open Access Journals (Sweden)

    Luca Fagnocchi

    2016-01-01

    Full Text Available Stem cells balance their self-renewal and differentiation potential by integrating environmental signals with the transcriptional regulatory network. The maintenance of cell identity and/or cell lineage commitment relies on the interplay of multiple factors including signaling pathways, transcription factors, and the epigenetic machinery. These regulatory modules are strongly interconnected and they influence the pattern of gene expression of stem cells, thus guiding their cellular fate. Embryonic stem cells (ESCs represent an invaluable tool to study this interplay, being able to indefinitely self-renew and to differentiate towards all three embryonic germ layers in response to developmental cues. In this review, we highlight those mechanisms of signaling to chromatin, which regulate chromatin modifying enzymes, histone modifications, and nucleosome occupancy. In addition, we report the molecular mechanisms through which signaling pathways affect both the epigenetic and the transcriptional state of ESCs, thereby influencing their cell identity. We propose that the dynamic nature of oscillating signaling and the different regulatory network topologies through which those signals are encoded determine specific gene expression programs, leading to the fluctuation of ESCs among multiple pluripotent states or to the establishment of the necessary conditions to exit pluripotency.

  7. Microbial nitrogen removal pathways in integrated vertical-flow constructed wetland systems.

    Science.gov (United States)

    Hu, Yun; He, Feng; Ma, Lin; Zhang, Yi; Wu, Zhenbin

    2016-05-01

    Microbial nitrogen (N) removal pathways in planted (Canna indica L.) and unplanted integrated vertical-flow constructed wetland systems (IVCWs) were investigated. Results of, molecular biological and isotope pairing experiments showed that nitrifying, anammox, and denitrifying bacteria were distributed in both down-flow and up-flow columns of the IVCWs. Further, the N transforming bacteria in the planted IVCWs were significantly higher than that in the unplanted ones (p<0.05). Moreover, the potential nitrification, anammox, and denitrification rates were highest (18.90, 11.75, and 7.84nmolNg(-1)h(-1), respectively) in the down-flow column of the planted IVCWs. Significant correlations between these potential rates and the absolute abundance of N transformation genes further confirmed the existence of simultaneous nitrification, anammox, and denitrification (SNAD) processes in the IVCWs. The anammox process was the major N removal pathway (55.6-60.0%) in the IVCWs. The results will further our understanding of the microbial N removal mechanisms in IVCWs.

  8. The Notch ligand Delta-like 1 integrates inputs from TGFbeta/Activin and Wnt pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org; Tewari, Shruti, E-mail: stewari@tcmedc.org; Atamna, Wafa, E-mail: watamna@tcmedc.org; Lazarova, Darina L., E-mail: dlazarova@tcmedc.org

    2011-06-10

    Unlike the well-characterized nuclear function of the Notch intracellular domain, it has been difficult to identify a nuclear role for the ligands of Notch. Here we provide evidence for the nuclear function of the Notch ligand Delta-like 1 in colon cancer (CC) cells exposed to butyrate. We demonstrate that the intracellular domain of Delta-like 1 (Dll1icd) augments the activity of Wnt signaling-dependent reporters and that of the promoter of the connective tissue growth factor (CTGF) gene. Data suggest that Dll1icd upregulates CTGF promoter activity through both direct and indirect mechanisms. The direct mechanism is supported by co-immunoprecipitation of endogenous Smad2/3 proteins and Dll1 and by chromatin immunoprecipitation analyses that revealed the occupancy of Dll1icd on CTGF promoter sequences containing a Smad binding element. The indirect upregulation of CTGF expression by Dll1 is likely due to the ability of Dll1icd to increase Wnt signaling, a pathway that targets CTGF. CTGF expression is induced in butyrate-treated CC cells and results from clonal growth assays support a role for CTGF in the cell growth-suppressive role of butyrate. In conclusion, integration of the Notch, Wnt, and TGFbeta/Activin signaling pathways is in part mediated by the interactions of Dll1 with Smad2/3 and Tcf4.

  9. Integrity of the Anterior Visual Pathway and Its Association with Ambulatory Performance in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Swathi Balantrapu

    2013-01-01

    Full Text Available Background. Retinal nerve fiber layer thickness and total macular volume (TMV represent markers of neuroaxonal degeneration within the anterior visual pathway that might correlate with ambulation in persons with multiple sclerosis (MS. Objective. This study examined the associations between and TMV with ambulatory parameters in MS. Methods. Fifty-eight MS patients underwent a neurological examination for generation of an expanded disability status scale (EDSS score and measurement of and TMV using optical coherence tomography (OCT. Participants completed the 6-minute walk (6MW and the timed 25-foot walk (T25FW. The associations were examined using generalized estimating equation models that accounted for within-patient, inter-eye correlations, and controlled for disease duration, EDSS score, and age. Results. was not significantly associated with 6MW or T25FW . TMV was significantly associated with 6MW and T25FW . The coefficients indicated that unit differences in 6MW (100 feet and T25FW (1 second were associated with 0.040 and −0.048 unit differences in TMV (mm3, respectively. Conclusion. Integrity of the anterior visual pathway, particularly TMV, might represent a noninvasive measure of neuroaxonal degeneration that is correlated with ambulatory function in MS.

  10. Integrated GWAS and Pathway profiling for feed efficiency traits in pigs leads to novel genes and their molecular pathways

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Ostersen, Tage; Strathe, Anders Bjerring

    is an important step where we firstly detect genes located near GWAS-detected SNPs and subsequently we detect enrichment of these genes in various biological processes and pathways. The objective of this study was to apply these steps to identify relevant pathways involved in residual feed intake (RFI) in pigs....... Residual feed intake is a feed efficiency measure and is highly economically important in animal production. In our study, a total of 596 Yorkshire boars had phenotypic and genotypic records. After quality control, 37,915 SNPs were available for GWAS which was implemented in the DMU software package...... pathway are known to be involved in biological processes closely related to regulation of feed intake or residual feed intake. These results provide insights into the genetic architecture as well as the systems biological mechanisms of this complex trait in pigs....

  11. Integrated GWAS and Pathway profiling for feed efficiency traits in pigs leads to novel genes and their molecular pathways

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Ostersen, Tage; Strathe, Anders Bjerring

    2013-01-01

    is an important step where we firstly detect genes located near GWAS-detected SNPs and subsequently we detect enrichment of these genes in various biological processes and pathways. The objective of this study was to apply these steps to identify relevant pathways involved in residual feed intake (RFI) in pigs....... Residual feed intake is a feed efficiency measure and is highly economically important in animal production. In our study, a total of 596 Yorkshire boars had phenotypic and genotypic records. After quality control, 37,915 SNPs were available for GWAS which was implemented in the DMU software package...... pathway are known to be involved in biological processes closely related to regulation of feed intake or residual feed intake. These results provide insights into the genetic architecture as well as the systems biological mechanisms of this complex trait in pigs....

  12. Integrated GWAS and Pathway profiling for feed efficiency traits in pigs leads to novel genes and their molecular pathways

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Ostersen, Tage; Strathe, Anders Bjerring

    2013-01-01

    . Residual feed intake is a feed efficiency measure and is highly economically important in animal production. In our study, a total of 596 Yorkshire boars had phenotypic and genotypic records. After quality control, 37,915 SNPs were available for GWAS which was implemented in the DMU software package...... is an important step where we firstly detect genes located near GWAS-detected SNPs and subsequently we detect enrichment of these genes in various biological processes and pathways. The objective of this study was to apply these steps to identify relevant pathways involved in residual feed intake (RFI) in pigs...

  13. Hydroxylation of multi-walled carbon nanotubes: Enhanced biocompatibility through reduction of oxidative stress initiated cell membrane damage, cell cycle arrestment and extrinsic apoptotic pathway.

    Science.gov (United States)

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2016-10-01

    Modification of CNTs with hydroxyl group promotes their applications in biomedical area. However, the impact of hydroxylation on their biocompatibility is far from being completely understood. In this study, we carried out a comprehensive evaluation of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) on the human normal liver L02 cell line, and compared it with that of pristine multi-walled carbon nanotubes (p-MWCNTs). Results demonstrated that compared with p-MWCNTs, MWCNTs-OH induced significantly lower oxidative stress as indicated by the level of intracellular antioxidant glutathione (GSH), subsequently lead to less cell membrane damage as demonstrated by lactate dehydrogenase (LDH) leakage assay, and showed slightly decreased arrestment of cell cycle distribution at G0/G1. More interestingly, MWCNTs-OH exhibited significantly lower tendency to activate caspase-8, a key molecule involved in the extrinsic apoptotic pathway. All these in vitro results demonstrated that hydroxylation of MWCNTs enhanced their biocompatibility compare with p-MWCNTs.

  14. Ultrasound characterization of arterial wall structures based on integrated backscatter profiles

    Science.gov (United States)

    Pedersen, Peder C.; Chakareski, Jacob; Lara-Montalvo, Ruben

    2003-05-01

    Studies suggest that the composition of atherosclerotic plaque in the carotid arteries is predictive of stroke risk. The goal of this investigation has been to explore how well the true integrated backscatter (IBS) from plaque regions can be measured non-invasively using ultrasound, based on which plaque composition may be inferred. To obtain the true arterial IBS non-invasively, the scattering and aberrating effect of the intervening tissue layers must be overcome. This is achieved by using the IBS from arterial blood as a reference backscatter, specifically the backscatter from a blood volume along the same scan line as and adjacent to the region of interest. The arterial blood IBS is obtained as an estimated mean of a stochastic process, after clutter removal. We have shown that the variance of the IBS estimate of the blood backscatter signal can be quantified and reduced to a tolerable level. The results are in the form of IBS profiles along the vessel. IBS profiles not normalized with the IBS of the blood-mimicking fluid have been measured for vessels phantom, with and without an intervening inhomogeneous medium; these results are contrasted with the corresponding normalized IBS profiles.

  15. Bloodstream infections during the onset of necrotizing enterocolitis and their relation with the pro-inflammatory response, gut wall integrity and severity of disease in NEC

    NARCIS (Netherlands)

    Heida, F.H.; Hulscher, J.B.; Schurink, M.; Vliet, M.J. van; Kooi, E.M.; Kasper, D.C.; Pones, M.; Bos, A.F; Benkoe, T.M.

    2015-01-01

    INTRODUCTION: Bacterial involvement is believed to play a pivotal role in the development and disease outcome of NEC. However, whether a bloodstream infection (BSI) predisposes to NEC (e.g. by activating the pro-inflammatory response) or result from the loss of gut wall integrity during NEC developm

  16. Bloodstream infections during the onset of necrotizing enterocolitis and their relation with the pro-inflammatory response, gut wall integrity and severity of disease in NEC

    NARCIS (Netherlands)

    Heida, F. H.; Hulscher, J. B. F.; Schurink, M.; van Vliet, M. J.; Kooi, E. M. W.; Kasper, D. C.; Pones, M.; Bos, A. F.; Benkoe, T. M.

    2015-01-01

    Introduction: Bacterial involvement is believed to play a pivotal role in the development and disease outcome of NEC. However, whether a bloodstream infection (BSI) predisposes to NEC (e.g. by activating the pro-inflammatory response) or result from the loss of gut wall integrity during NEC developm

  17. Solution of fractional kinetic equation by a class of integral transform of pathway type

    Science.gov (United States)

    Kumar, Dilip

    2013-04-01

    Solutions of fractional kinetic equations are obtained through an integral transform named Pα-transform introduced in this paper. The Pα-transform is a binomial type transform containing many class of transforms including the well known Laplace transform. The paper is motivated by the idea of pathway model introduced by Mathai [Linear Algebra Appl. 396, 317-328 (2005), 10.1016/j.laa.2004.09.022]. The composition of the transform with differential and integral operators are proved along with convolution theorem. As an illustration of applications to the general theory of differential equations, a simple differential equation is solved by the new transform. Being a new transform, the Pα-transform of some elementary functions as well as some generalized special functions such as H-function, G-function, Wright generalized hypergeometric function, generalized hypergeometric function, and Mittag-Leffler function are also obtained. The results for the classical Laplace transform is retrieved by letting α → 1.

  18. Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA).

    Science.gov (United States)

    Tollefsen, Knut Erik; Scholz, Stefan; Cronin, Mark T; Edwards, Stephen W; de Knecht, Joop; Crofton, Kevin; Garcia-Reyero, Natalia; Hartung, Thomas; Worth, Andrew; Patlewicz, Grace

    2014-12-01

    Chemical regulation is challenged by the large number of chemicals requiring assessment for potential human health and environmental impacts. Current approaches are too resource intensive in terms of time, money and animal use to evaluate all chemicals under development or already on the market. The need for timely and robust decision making demands that regulatory toxicity testing becomes more cost-effective and efficient. One way to realize this goal is by being more strategic in directing testing resources; focusing on chemicals of highest concern, limiting testing to the most probable hazards, or targeting the most vulnerable species. Hypothesis driven Integrated Approaches to Testing and Assessment (IATA) have been proposed as practical solutions to such strategic testing. In parallel, the development of the Adverse Outcome Pathway (AOP) framework, which provides information on the causal links between a molecular initiating event (MIE), intermediate key events (KEs) and an adverse outcome (AO) of regulatory concern, offers the biological context to facilitate development of IATA for regulatory decision making. This manuscript summarizes discussions at the Workshop entitled "Advancing AOPs for Integrated Toxicology and Regulatory Applications" with particular focus on the role AOPs play in informing the development of IATA for different regulatory purposes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Peptidoglycan Acetylation of Campylobacter jejuni Is Essential for Maintaining Cell Wall Integrity and Colonization in Chicken Intestines.

    Science.gov (United States)

    Iwata, Taketoshi; Watanabe, Ayako; Kusumoto, Masahiro; Akiba, Masato

    2016-10-15

    Peptidoglycan (PG) acetylation of Gram-positive bacteria confers lysozyme resistance and contributes to survival in the host. However, the importance of PG acetylation in Gram-negative bacteria has not been fully elucidated. The genes encoding putative PG acetyltransferase A (PatA) and B (PatB) are highly conserved in Campylobacter jejuni, the predominant cause of bacterial diarrhea worldwide. To evaluate the importance of PatA and PatB of C. jejuni, we constructed patA and patB isogenic mutants and compared their phenotypes with those of the parental strains. Although transmission electron microscopy did not reveal morphological changes, both mutants exhibited decreased motility and biofilm formation in vitro The extent of acetylation of the PG purified from the patA and patB mutants was significantly lower than the PG acetylation in the parental strains. Both mutants exhibited decreased lysozyme resistance and intracellular survival in macrophage cells. In a chick colonization experiment, significant colonization deficiency was observed for both mutants. These results suggest that PatA and PatB of C. jejuni play important roles in maintaining cell wall integrity by catalyzing PG O-acetylation and that the loss of these enzymes causes decreased motility and biofilm formation, thus leading to colonization deficiency in chicken infection. The importance of peptidoglycan (PG) acetylation in Gram-negative bacteria has not been fully elucidated. The genes encoding putative PG acetyltransferase A (PatA) and B (PatB) are highly conserved in Campylobacter jejuni, the predominant cause of bacterial diarrhea worldwide. We evaluated the importance of these enzymes using isogenic mutants. The results of this study suggest that PatA and PatB of C. jejuni play important roles in maintaining cell wall integrity. The loss of these factors caused multiple phenotypic changes, leading to colonization deficiency in chicken infection. These data should be useful in developing novel

  20. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Jinhua Jiang

    Full Text Available Type 2C protein phosphatases (PP2Cs play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8 exhibited reduced aerial hyphae formation and deoxynivalenol (DON production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum.

  1. A cell wall extract from Piriformospora indica promotes tuberization in potato (Solanum tuberosum L.) via enhanced expression of Ca(+2) signaling pathway and lipoxygenase gene.

    Science.gov (United States)

    Upadhyaya, Chandrama Prakash; Gururani, Mayank Anand; Prasad, Ram; Verma, Ajit

    2013-06-01

    Piriformospora indica is an axenically cultivable phytopromotional endosymbiont that mimics capabilities of arbuscular mycorrhizal fungi. This is a basidiomycete of the Sebacinaceae family, which promotes growth, development, and seed production in a variety of plant species. We report that the cell wall extract (CWE) from P. indica induces tuberization in vitro and promotes tuber growth and yield in potato. The CWE altered the calcium signaling pathway that regulates tuberization process. An increase in tuber number and size was correlated with increased transcript expression of the two Ca(2+)-dependant proteins (CaM1 and St-CDPK1) and the lipoxygenase (LOX) mRNA, which are known to play distinct roles in potato tuberization. External supplementation of Ca(2+) ions induced a similar set of tuberization pathway genes, indicating presence of an active Ca(2+) in the CWE of P. indica. Since potato tuberization is directly influenced by the presence of microflora in nature, the present study provides an insight into the novel mechanism of potato tuberization in relation to plant-microbe association. Ours is the first report on an in vitro tuber-inducing beneficial fungus.

  2. The design and initial patient evaluation of an integrated care pathway for faecal incontinence: a qualitative study.

    Science.gov (United States)

    Rimmer, Craig John; Gill, Kathryn Ann; Greenfield, Sheila; Dowswell, George

    2015-10-01

    Faecal incontinence is a common, distressing and debilitating condition which remains largely hidden, leading to social isolation and loss of confidence. Patients with faecal incontinence experience delays in accessing appropriate treatment services due to embarrassment and lack of enquiry from primary care health professionals. Despite the publication of three government documents related to continence services in the last decade, these services are still fragmented with asynchronous delivery and poor inter-professional integration. The aim of the study was to describe a novel integrated care pathway for the management of faecal incontinence and examine the experiences of patients with faecal incontinence in relation to this pathway. A focus group (eight participants) and narrative, qualitative individual interviews (five participants) were used to explore the views of patients with faecal incontinence, relating to access and quality of incontinence services and the new integrated care pathway. Emerging themes were identified from the transcribed focus group and interviews via the thematic analysis method. The concept of an integrated care pathway is attractive for increasing accessibility, streamlining of the patient pathway and providing a dedicated service for the management of faecal incontinence. Patients' initial experiences of the pathway are positive. A new ICP was developed and the initial patient evaluation of it was positive. Service users made various suggestions how the FI pathway could have been improved. The issues that patients were most concerned about were access to continence services, GP awareness of continence services and prompt, effective management of their condition. This service was set up within the pelvic floor dysfunction unit with BFNS and an integrated community continence team. The authors are aware that this is not a standard service setup across the country. The fact that it may be uncomfortable for patients to talk about their

  3. Cooperative drought adaptation: Integrating infrastructure development, conservation, and water transfers into adaptive policy pathways

    Science.gov (United States)

    Zeff, Harrison B.; Herman, Jonathan D.; Reed, Patrick M.; Characklis, Gregory W.

    2016-09-01

    A considerable fraction of urban water supply capacity serves primarily as a hedge against drought. Water utilities can reduce their dependence on firm capacity and forestall the development of new supplies using short-term drought management actions, such as conservation and transfers. Nevertheless, new supplies will often be needed, especially as demands rise due to population growth and economic development. Planning decisions regarding when and how to integrate new supply projects are fundamentally shaped by the way in which short-term adaptive drought management strategies are employed. To date, the challenges posed by long-term infrastructure sequencing and adaptive short-term drought management are treated independently, neglecting important feedbacks between planning and management actions. This work contributes a risk-based framework that uses continuously updating risk-of-failure (ROF) triggers to capture the feedbacks between short-term drought management actions (e.g., conservation and water transfers) and the selection and sequencing of a set of regional supply infrastructure options over the long term. Probabilistic regional water supply pathways are discovered for four water utilities in the "Research Triangle" region of North Carolina. Furthermore, this study distinguishes the status-quo planning path of independent action (encompassing utility-specific conservation and new supply infrastructure only) from two cooperative formulations: "weak" cooperation, which combines utility-specific conservation and infrastructure development with regional transfers, and "strong" cooperation, which also includes jointly developed regional infrastructure to support transfers. Results suggest that strong cooperation aids utilities in meeting their individual objectives at substantially lower costs and with less overall development. These benefits demonstrate how an adaptive, rule-based decision framework can coordinate integrated solutions that would not be

  4. Integrated signaling pathway and gene expression regulatory model to dissect dynamics of Escherichia coli challenged mammary epithelial cells.

    Science.gov (United States)

    den Breems, Nicoline Y; Nguyen, Lan K; Kulasiri, Don

    2014-12-01

    Cells transform external stimuli, through the activation of signaling pathways, which in turn activate gene regulatory networks, in gene expression. As more omics data are generated from experiments, eliciting the integrated relationship between the external stimuli, the signaling process in the cell and the subsequent gene expression is a major challenge in systems biology. The complex system of non-linear dynamic protein interactions in signaling pathways and gene networks regulates gene expression. The complexity and non-linear aspects have resulted in the study of the signaling pathway or the gene network regulation in isolation. However, this limits the analysis of the interaction between the two components and the identification of the source of the mechanism differentiating the gene expression profiles. Here, we present a study of a model of the combined signaling pathway and gene network to highlight the importance of integrated modeling. Based on the experimental findings we developed a compartmental model and conducted several simulation experiments. The model simulates the mRNA expression of three different cytokines (RANTES, IL8 and TNFα) regulated by the transcription factor NFκB in mammary epithelial cells challenged with E. coli. The analysis of the gene network regulation identifies a lack of robustness and therefore sensitivity for the transcription factor regulation. However, analysis of the integrated signaling and gene network regulation model reveals distinctly different underlying mechanisms in the signaling pathway responsible for the variation between the three cytokine's mRNA expression levels. Our key findings reveal the importance of integrating the signaling pathway and gene expression dynamics in modeling. Modeling infers valid research questions which need to be verified experimentally and can assist in the design of future biological experiments.

  5. Tipping elements and climate-economic shocks: Pathways toward integrated assessment

    Science.gov (United States)

    Kopp, Robert E.; Shwom, Rachael L.; Wagner, Gernot; Yuan, Jiacan

    2016-08-01

    The literature on the costs of climate change often draws a link between climatic "tipping points" and large economic shocks, frequently called "catastrophes." The phrase "tipping points" in this context can be misleading. In popular and social scientific discourse, "tipping points" involve abrupt state changes. For some climatic "tipping points," the commitment to a state change may occur abruptly, but the change itself may be rate-limited and take centuries or longer to realize. Additionally, the connection between climatic "tipping points" and economic losses is tenuous, although emerging empirical and process-model-based tools provide pathways for investigating it. We propose terminology to clarify the distinction between "tipping points" in the popular sense, the critical thresholds exhibited by climatic and social "tipping elements," and "economic shocks." The last may be associated with tipping elements, gradual climate change, or nonclimatic triggers. We illustrate our proposed distinctions by surveying the literature on climatic tipping elements, climatically sensitive social tipping elements, and climate-economic shocks, and we propose a research agenda to advance the integrated assessment of all three.

  6. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo;

    2015-01-01

    The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants...... to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall...... acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis....

  7. Using answer set programming to integrate RNA expression with signalling pathway information to infer how mutations affect ageing.

    Directory of Open Access Journals (Sweden)

    Irene Papatheodorou

    Full Text Available A challenge of systems biology is to integrate incomplete knowledge on pathways with existing experimental data sets and relate these to measured phenotypes. Research on ageing often generates such incomplete data, creating difficulties in integrating RNA expression with information about biological processes and the phenotypes of ageing, including longevity. Here, we develop a logic-based method that employs Answer Set Programming, and use it to infer signalling effects of genetic perturbations, based on a model of the insulin signalling pathway. We apply our method to RNA expression data from Drosophila mutants in the insulin pathway that alter lifespan, in a foxo dependent fashion. We use this information to deduce how the pathway influences lifespan in the mutant animals. We also develop a method for inferring the largest common sub-paths within each of our signalling predictions. Our comparisons reveal consistent homeostatic mechanisms across both long- and short-lived mutants. The transcriptional changes observed in each mutation usually provide negative feedback to signalling predicted for that mutation. We also identify an S6K-mediated feedback in two long-lived mutants that suggests a crosstalk between these pathways in mutants of the insulin pathway, in vivo. By formulating the problem as a logic-based theory in a qualitative fashion, we are able to use the efficient search facilities of Answer Set Programming, allowing us to explore larger pathways, combine molecular changes with pathways and phenotype and infer effects on signalling in in vivo, whole-organism, mutants, where direct signalling stimulation assays are difficult to perform. Our methods are available in the web-service NetEffects: http://www.ebi.ac.uk/thornton-srv/software/NetEffects.

  8. Using answer set programming to integrate RNA expression with signalling pathway information to infer how mutations affect ageing.

    Science.gov (United States)

    Papatheodorou, Irene; Ziehm, Matthias; Wieser, Daniela; Alic, Nazif; Partridge, Linda; Thornton, Janet M

    2012-01-01

    A challenge of systems biology is to integrate incomplete knowledge on pathways with existing experimental data sets and relate these to measured phenotypes. Research on ageing often generates such incomplete data, creating difficulties in integrating RNA expression with information about biological processes and the phenotypes of ageing, including longevity. Here, we develop a logic-based method that employs Answer Set Programming, and use it to infer signalling effects of genetic perturbations, based on a model of the insulin signalling pathway. We apply our method to RNA expression data from Drosophila mutants in the insulin pathway that alter lifespan, in a foxo dependent fashion. We use this information to deduce how the pathway influences lifespan in the mutant animals. We also develop a method for inferring the largest common sub-paths within each of our signalling predictions. Our comparisons reveal consistent homeostatic mechanisms across both long- and short-lived mutants. The transcriptional changes observed in each mutation usually provide negative feedback to signalling predicted for that mutation. We also identify an S6K-mediated feedback in two long-lived mutants that suggests a crosstalk between these pathways in mutants of the insulin pathway, in vivo. By formulating the problem as a logic-based theory in a qualitative fashion, we are able to use the efficient search facilities of Answer Set Programming, allowing us to explore larger pathways, combine molecular changes with pathways and phenotype and infer effects on signalling in in vivo, whole-organism, mutants, where direct signalling stimulation assays are difficult to perform. Our methods are available in the web-service NetEffects: http://www.ebi.ac.uk/thornton-srv/software/NetEffects.

  9. Nonhomologous end joining and homologous recombination DNA repair pathways in integration mutagenesis in the xylose-fermenting yeast Pichia stipitis.

    Science.gov (United States)

    Maassen, Nicole; Freese, Stefan; Schruff, Barbara; Passoth, Volkmar; Klinner, Ulrich

    2008-08-01

    Pichia stipitis integrates linear homologous DNA fragments mainly ectopically. High rates of randomly occurring integration allow tagging mutagenesis with high efficiency using simply PCR amplificates of suitable selection markers from the P. stipitis genome. Linearization of an autonomously replicating vector caused a distinct increase of the transformation efficiency compared with the circular molecule. Cotransformation of a restriction endonuclease further enhanced the transformation efficiency. This effect was also observed with integrative vector DNA. In most cases vector integration in chromosomal targets did not depend on microhomologies, indicating that restriction-enzyme-mediated integration (REMI) does not play an essential role in P. stipitis. Small deletions were observed at the ends of the integrated vectors and in the target sites. Disruption of the PsKU80 gene increased the frequency of homologous integration considerably but resulted in a remarkable decrease of the transformation efficiency. These results suggest that in P. stipitis the nonhomologous end joining (NHEJ) pathway obviously predominates the homologous recombination pathway of double-strand break repair.

  10. A model of an integrated immune system pathway in Homo sapiens and its interaction with superantigen producing expression regulatory pathway in Staphylococcus aureus: comparing behavior of pathogen perturbed and unperturbed pathway.

    Science.gov (United States)

    Tomar, Namrata; De, Rajat K

    2013-01-01

    Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the

  11. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  12. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  13. The Glycosylphosphatidylinositol Anchor Biosynthesis Genes GPI12, GAA1, and GPI8 Are Essential for Cell-Wall Integrity and Pathogenicity of the Maize Anthracnose Fungus Colletotrichum graminicola.

    Science.gov (United States)

    Oliveira-Garcia, Ely; Deising, Holger B

    2016-11-01

    Glycosylphosphatidylinositol (GPI) anchoring of proteins is one of the most common posttranslational modifications of proteins in eukaryotic cells and is important for associating proteins with the cell surface. In fungi, GPI-anchored proteins play essential roles in cross-linking of β-glucan cell-wall polymers and cell-wall rigidity. GPI-anchor synthesis is successively performed at the cytoplasmic and the luminal face of the ER membrane and involves approximately 25 proteins. While mutagenesis of auxiliary genes of this pathway suggested roles of GPI-anchored proteins in hyphal growth and virulence, essential genes of this pathway have not been characterized. Taking advantage of RNA interference (RNAi) we analyzed the function of the three essential genes GPI12, GAA1 and GPI8, encoding a cytoplasmic N-acetylglucosaminylphosphatidylinositol deacetylase, a metallo-peptide-synthetase and a cystein protease, the latter two representing catalytic components of the GPI transamidase complex. RNAi strains showed drastic cell-wall defects, resulting in exploding infection cells on the plant surface and severe distortion of in planta-differentiated infection hyphae, including formation of intrahyphal hyphae. Reduction of transcript abundance of the genes analyzed resulted in nonpathogenicity. We show here for the first time that the GPI synthesis genes GPI12, GAA1, and GPI8 are indispensable for vegetative development and pathogenicity of the causal agent of maize anthracnose, Colletotrichum graminicola.

  14. Glycoside Hydrolase MoGls2 Controls Asexual/Sexual Development, Cell Wall Integrity and Infectious Growth in the Rice Blast Fungus

    Science.gov (United States)

    Li, Mengying; Liu, Xinyu; Liu, Zhixi; Sun, Yi; Liu, Muxing; Wang, Xiaoli; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2016-01-01

    N-linked glycosylation is a way of glycosylation for newly synthesized protein, which plays a key role in the maturation and transport of proteins. Glycoside hydrolases (GHs) are essential in this process, and are involved in processing of N-linked glycoproteins or degradation of carbohydrate structures. Here, we identified and characterized MoGls2 in Magnaporthe oryzae, which is a yeast glucosidase II homolog Gls2 and is required for trimming the final glucose in N-linked glycans and normal cell wall synthesis. Target deletion of MoGLS2 in M. oryzae resulted in a reduced mycelial growth, an increased conidial production, delayed conidial germination and loss the ability of sexual reproduction. Pathogenicity assays revealed that the ΔMogls2 mutant showed significantly decreased in virulence and infectious growth. Further studies showed that the mutant was less sensitive to salt and osmotic stress, and increased sensitivity to cell wall stresses. Additionally, the ΔMogls2 mutant showed a defect in cell wall integrity. Our results indicate that MoGls2 is a key protein for the growth and development of M. oryzae, involving in the regulation of asexual/sexual development, stress response, cell wall integrity and infectious growth. PMID:27607237

  15. Epithelial-mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway.

    Science.gov (United States)

    Chen, Tian; Nie, Haiyu; Gao, Xin; Yang, Jinglin; Pu, Ji; Chen, Zhangjian; Cui, Xiaoxing; Wang, Yun; Wang, Haifang; Jia, Guang

    2014-04-21

    Multi-walled carbon nanotubes (MWCNT) are a typical nanomaterial with a wide spectrum of commercial applications. Inhalation exposure to MWCNT has been linked with lung fibrosis and mesothelioma-like lesions commonly seen with asbestos. In this study, we examined the pulmonary fibrosis response to different length of MWCNT including short MWCNT (S-MWCNT, length=350-700nm) and long MWCNT (L-MWCNT, length=5-15μm) and investigated whether the epithelial-mesenchymal transition (EMT) occurred during MWCNT-induced pulmonary fibrosis. C57Bl/6J male mice were intratracheally instilled with S-MWCNT or L-WCNT by a single dose of 60μg per mouse, and the progress of pulmonary fibrosis was evaluated at 7, 28 and 56 days post-exposure. The in vivo data showed that only L-MWCNT increased collagen deposition and pulmonary fibrosis significantly, and approximately 20% of pro-surfactant protein-C positive epithelial cells transdifferentiated to fibroblasts at 56 days, suggesting the occurrence of EMT. In order to understand the mechanism, we used human pulmonary epithelial cell line A549 to investigate the role of TGF-β/p-Smad2 signaling pathway in EMT. Our results showed that L-MWCNT downregulated E-cadherin and upregulated α-smooth muscle actin (α-SMA) protein expression in A549 cells. Taken together, both in vivo and in vitro study demonstrated that respiratory exposure to MWCNT induced length dependent pulmonary fibrosis and epithelial-derived fibroblasts via TGF-β/Smad pathway.

  16. Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis.

    Science.gov (United States)

    Töpfer, Nadine; Caldana, Camila; Grimbs, Sergio; Willmitzer, Lothar; Fernie, Alisdair R; Nikoloski, Zoran

    2013-04-01

    Understanding metabolic acclimation of plants to challenging environmental conditions is essential for dissecting the role of metabolic pathways in growth and survival. As stresses involve simultaneous physiological alterations across all levels of cellular organization, a comprehensive characterization of the role of metabolic pathways in acclimation necessitates integration of genome-scale models with high-throughput data. Here, we present an integrative optimization-based approach, which, by coupling a plant metabolic network model and transcriptomics data, can predict the metabolic pathways affected in a single, carefully controlled experiment. Moreover, we propose three optimization-based indices that characterize different aspects of metabolic pathway behavior in the context of the entire metabolic network. We demonstrate that the proposed approach and indices facilitate quantitative comparisons and characterization of the plant metabolic response under eight different light and/or temperature conditions. The predictions of the metabolic functions involved in metabolic acclimation of Arabidopsis thaliana to the changing conditions are in line with experimental evidence and result in a hypothesis about the role of homocysteine-to-Cys interconversion and Asn biosynthesis. The approach can also be used to reveal the role of particular metabolic pathways in other scenarios, while taking into consideration the entirety of characterized plant metabolism.

  17. SP12 Biological Pathway-Centric Approach to Integrative Analysis of Array Data as Applied to Mefloquine Neurotoxicity

    Science.gov (United States)

    Jenkins, J.

    2007-01-01

    Expression profiling of whole genomes, and modern high-throughput proteomics, has created a revolution in the study of disease states. Approaches for gene expression analysis (time series analysis and clustering) have been applied to functional genomics related to cancer research, and have yielded major successes in the pursuit of gene expression signatures. However, these analysis methods are primarily designed to identify correlative or causal relationships between entities, but do not consider the data in the proper biological context of a “biological pathway” model. Pathway models form a cornerstone of systems biology. They provide a framework for (1) systematic interrogation of biochemical interactions, (2) management of the collective knowledge pertaining to cellular components, and (3) discovery of emergent properties of different pathway configurations. CFD Research Corporation has developed advanced techniques to interpret microarray data in the context of known biological pathways. We have applied this integrative biological pathway-centered approach to the specific problem of identifying a genetic cause for individuals predisposed to mefloquine neurotoxicity. Mefloquine (Lariam) is highly effective against drug-resistant malaria. However, adverse neurological effects (ataxia, mood changes) have been observed in human sub-populations. Microarray experiments were used to quantify the transcriptional response of cells exposed to mefloquine. Canonical pathway models containing the differentially expressed genes were automatically retrieved from the KEGG database, using recently developed software. The canonical pathway models were automatically concatenated together to form the final pathway model. The resultant pathway model was interrogated using a novel signaling control flux (SCF) algorithm that combines Boolean pseudodynamics (BPD) to relax the cumbersome steady-state assumptions of SCF. The SCF-BPD algorithm was used to identify and prioritize

  18. bcpmr1 encodes a P-type Ca(2+)/Mn(2+)-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea.

    Science.gov (United States)

    Plaza, Verónica; Lagües, Yanssuy; Carvajal, Mauro; Pérez-García, Luis A; Mora-Montes, Hector M; Canessa, Paulo; Larrondo, Luis F; Castillo, Luis

    2015-03-01

    The cell wall of fungi is generally composed of an inner skeletal layer consisting of various polysaccharides surrounded by a layer of glycoproteins. These usually contain both N- and O-linked oligosaccharides, coupled to the proteins by stepwise addition of mannose residues by mannosyltransferases in the endoplasmic reticulum and the Golgi apparatus. In yeast, an essential luminal cofactor for these mannosyltransferases is Mn(2+) provided by the Ca(2+)/Mn(2+)-ATPase known as Pmr1. In this study, we have identified and characterized the Botrytis cinerea pmr1 gene, the closest homolog of yeast PMR1. We hypothesized that bcpmr1 also encodes a Ca(2+)/Mn(2+)-ATPase that plays an important role in the protein glycosylation pathway. Phenotypic analysis showed that bcpmr1 null mutants displayed a significant reduction in conidial production, radial growth and diameter of sclerotia. Significant alterations in hyphal cell wall composition were observed including a 83% decrease of mannan levels and an increase in the amount of chitin and glucan. These changes were accompanied by a hypersensitivity to cell wall-perturbing agents such as Calcofluor white, Congo red and zymolyase. Importantly, the Δbcpmr1 mutant showed reduced virulence in tomato (leafs and fruits) and apple (fruits) and reduced biofilm formation. Together, our results highlight the importance of bcpmr1 for protein glycosylation, cell wall structure and virulence of B. cinerea.

  19. Economic analysis of the integrated heating and cooling potential of a residential passive-solar water wall design

    Energy Technology Data Exchange (ETDEWEB)

    Roach, F.; Mangeng, C.; Kirschner, C.; Ben-David, S.

    1982-01-01

    The heating potential of residential water wall designs has been analyzed for many years. Because this past work has been confined strictly to heating potential, it has understated the true energy savings potential of water walls. Preliminary performance estimates for the heating and cooling potential of water walls have recently been made available. These estimates include the Btu displacement that is attributable to a 300-square foot water wall design in a 1200-square foot residence. The design is for a forced ventilation water wall system that includes the fans and ducting necessary to achieve a 3000-cfm flow of air. The cooling and heating energy displacement estimates are combined with appropriate region-specific fuel prices, system costs, and general economic parameters in a lifecycle cost analysis of this fixed-size water wall design. The economic indicators used to discuss the results include net present value and a total cost goal. Input data and results are presented in mapped form and used to assess the energy savings potential of the water wall in 220 regions of the continental United States.

  20. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo;

    2015-01-01

    -dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses...... acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis....

  1. Integrative bioinformatics analysis of genomic and proteomic approaches to understand the transcriptional regulatory program in coronary artery disease pathways.

    Directory of Open Access Journals (Sweden)

    Rajani Kanth Vangala

    Full Text Available Patients with cardiovascular disease show a panel of differentially regulated serum biomarkers indicative of modulation of several pathways from disease onset to progression. Few of these biomarkers have been proposed for multimarker risk prediction methods. However, the underlying mechanism of the expression changes and modulation of the pathways is not yet addressed in entirety. Our present work focuses on understanding the regulatory mechanisms at transcriptional level by identifying the core and specific transcription factors that regulate the coronary artery disease associated pathways. Using the principles of systems biology we integrated the genomics and proteomics data with computational tools. We selected biomarkers from 7 different pathways based on their association with the disease and assayed 24 biomarkers along with gene expression studies and built network modules which are highly regulated by 5 core regulators PPARG, EGR1, ETV1, KLF7 and ESRRA. These network modules in turn comprise of biomarkers from different pathways showing that the core regulatory transcription factors may work together in differential regulation of several pathways potentially leading to the disease. This kind of analysis can enhance the elucidation of mechanisms in the disease and give better strategies of developing multimarker module based risk predictions.

  2. Integrative bioinformatics analysis of genomic and proteomic approaches to understand the transcriptional regulatory program in coronary artery disease pathways.

    Science.gov (United States)

    Vangala, Rajani Kanth; Ravindran, Vandana; Ghatge, Madan; Shanker, Jayashree; Arvind, Prathima; Bindu, Hima; Shekar, Meghala; Rao, Veena S

    2013-01-01

    Patients with cardiovascular disease show a panel of differentially regulated serum biomarkers indicative of modulation of several pathways from disease onset to progression. Few of these biomarkers have been proposed for multimarker risk prediction methods. However, the underlying mechanism of the expression changes and modulation of the pathways is not yet addressed in entirety. Our present work focuses on understanding the regulatory mechanisms at transcriptional level by identifying the core and specific transcription factors that regulate the coronary artery disease associated pathways. Using the principles of systems biology we integrated the genomics and proteomics data with computational tools. We selected biomarkers from 7 different pathways based on their association with the disease and assayed 24 biomarkers along with gene expression studies and built network modules which are highly regulated by 5 core regulators PPARG, EGR1, ETV1, KLF7 and ESRRA. These network modules in turn comprise of biomarkers from different pathways showing that the core regulatory transcription factors may work together in differential regulation of several pathways potentially leading to the disease. This kind of analysis can enhance the elucidation of mechanisms in the disease and give better strategies of developing multimarker module based risk predictions.

  3. [Effect of clinical pathways based on integrative medicine for patients with chronic heart failure: a multi-center research].

    Science.gov (United States)

    Zou, Xu; Pan, Guang-Ming; Sheng, Xiao-Gang; Yao, Geng-Zhen; Zhu, Ming-Jun; Wu, Yang; Chen, Xiao-Hu; Wang, Yong-Xia; Cui, Jie; Chen, Jian-Dong

    2013-06-01

    To assess a multi-center study effectiveness of clinical pathways based on integrative medicine (IM) for chronic heart failure (CHF) patients. A combined method of historical control study and clinical study on concurrent control was used. After the standard management for clinical pathways was carried out in four hospitals at home, the effects on hospitalization days, medical expenses, clinical efficacy, patient satisfaction, and quality of life were assessed. Results of non-concurrent historical control study showed that: the hospital stay was significantly shorter in the pathways group than in the retrospective group (12.59 days vs 18.44 days), and the total cost of hospitalization was significantly reduced in the pathways group (yen 9 051.90 vs yen 11 978.40), showing statistical difference (P hospital stay was significantly shorter in the pathways group than in the control group (11.19 days vs 13.21 days), showing statistical difference (P hospitalization was significantly lower in the pathways group than in the control group (yen 8 656.80 vs yen 11 609.70), showing statistical difference (P hospital, and the readmission rate due to heart failure between the two groups (P > 0.05). But there was statistical difference in the quality of life (P hospitalization time, decrease the cost of hospitalization, improve the clinical efficacy, improve patients' quality of life and satisfaction, therefore, it could be spread nationwide.

  4. The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD.

    Science.gov (United States)

    Hunter, Sally; Arendt, Thomas; Brayne, Carol

    2013-12-01

    Alzheimer disease (AD) is a progressive, neurodegenerative disease characterised in life by cognitive decline and behavioural symptoms and post-mortem by the neuropathological hallmarks including the microtubule-associated protein tau-reactive tangles and neuritic plaques and amyloid-beta-protein-reactive senile plaques. Greater than 95 % of AD cases are sporadic (SAD) with a late onset and FAD) with an early onset. FAD is associated with various genetic mutations in the amyloid precursor protein (APP) and the presenilins (PS)1 and PS2. As yet, no disease pathway has been fully accepted and there are no treatments that prevent, stop or reverse the cognitive decline associated with AD. Here, we review and integrate available environmental and genetic evidence associated with all forms of AD. We present the senescence hypothesis of AD progression, suggesting that factors associated with AD can be seen as partial stressors within the matrix of signalling pathways that underlie cell survival and function. Senescence pathways are triggered when stressors exceed the cells ability to compensate for them. The APP proteolytic system has many interactions with pathways involved in programmed senescence and APP proteolysis can both respond to and be driven by senescence-associated signalling. Disease pathways associated with sporadic disease may be different to those involving familial genetic mutations. The interpretation we provide strongly points to senescence as an additional underlying causal process in dementia progression in both SAD and FAD via multiple disease pathways.

  5. Integration of HIV in child survival platforms: a novel programmatic pathway towards the 90–90–90 targets

    Directory of Open Access Journals (Sweden)

    Dick D Chamla

    2015-12-01

    Full Text Available Introduction: Integration of HIV into child survival platforms is an evolving territory with multiple connotations. Most literature on integration of HIV into other health services focuses on adults; however promising practices for children are emerging. These include the Double Dividend (DD framework, a new programming approach with dual goal of improving paediatric HIV care and child survival. In this commentary, the authors discuss why integrating HIV testing, treatment and care into child survival platforms is important, as well as its potential to advance progress towards global targets that call for, by 2020, 90% of children living with HIV to know their status, 90% of those diagnosed to be on treatment and 90% of those on treatment to be virally suppressed (90–90–90. Discussion: Integration is critical in improving health outcomes and efficiency gains. In children, integration of HIV in programmes such as immunization and nutrition has been associated with an increased uptake of HIV infant testing. Integration is increasingly recognized as a case-finding strategy for children missed from prevention of mother-to-child transmission programmes and as a platform for diffusing emerging technologies such as point-of-care diagnostics. These support progress towards the 90–90–90 targets by providing a pathway for early identification of HIV-infected children with co-morbidities, prompt initiation of treatment and improved survival. There are various promising practices that have demonstrated HIV outcomes; however, few have documented the benefits of integration on child survival interventions. The DD framework is well positioned to address the bidirectional impacts for both programmes. Conclusions: Integration provides an important programmatic pathway for accelerated progress towards the 90–90–90 targets. Despite this encouraging information, there are still challenges to be addressed in order to maximize the benefits of integration.

  6. Integrated Regulation of Toll-like Receptor Responses by Notch and Interferon-γ Pathways

    OpenAIRE

    2008-01-01

    Toll-like receptor (TLR) responses are regulated to avoid toxicity and achieve coordinated responses appropriate for the cell environment. We found that Notch and TLR pathways cooperated to activate canonical Notch target genes, including transcriptional repressors Hes1 and Hey1, and to increase production of canonical TLR-induced cytokines TNF, IL-6 and IL-12. Cooperation by these pathways to increase target gene expression was mediated the Notch pathway component and transcription factor RB...

  7. Integrated miRNA-risk gene-pathway pair network analysis provides prognostic biomarkers for gastric cancer

    Directory of Open Access Journals (Sweden)

    Cai H

    2016-05-01

    Full Text Available Hui Cai,1 Jiping Xu,2 Yifang Han,3 Zhengmao Lu,1 Ting Han,1 Yibo Ding,4 Liye Ma1 1Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 2Department of Medical Administration, Changhai Hospital, Second Military Medical University, Shanghai, 3Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 4Department of Epidemiology, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China Purpose: This study aimed to identify molecular prognostic biomarkers for gastric cancer. Methods: mRNA and miRNA expression profiles of eligible gastric cancer and control samples were downloaded from Gene Expression Omnibus to screen the differentially expressed genes (DEGs and differentially expressed miRNAs (DEmiRs, using MetaDE and limma packages, respectively. Target genes of the DEmiRs were also collected from both predictive and experimentally validated target databases of miRNAs. The overlapping genes between selected targets and DEGs were identified as risk genes, followed by functional enrichment analysis. Human pathways and their corresponding genes were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG database for the expression analysis of each pathway in gastric cancer samples. Next, co-pathway pairs were selected according to the Pearson correlation coefficients. Finally, the co-pathway pairs, miRNA–target pairs, and risk gene–pathway pairs were merged into a complex interaction network, the most important nodes (miRNAs/target genes/co-pathway pairs of which were selected by calculating their degrees.Results: Totally, 1,260 DEGs and 144 DEmiRs were identified. There were 336 risk genes found in the 9,572 miRNA–target pairs. Judging from the pathway expression files, 45 co-pathway pairs were screened out. There were 1,389 interactive pairs and 480 nodes in the integrated network. Among all nodes in the network, focal

  8. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway

    DEFF Research Database (Denmark)

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function...

  9. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass.

    Science.gov (United States)

    Pattathil, Sivakumar; Hahn, Michael G; Dale, Bruce E; Chundawat, Shishir P S

    2015-07-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer.

    Science.gov (United States)

    Zhang, Haiyang; Qu, Yanjun; Duan, Jingjing; Deng, Ting; Liu, Rui; Zhang, Le; Bai, Ming; Li, Jialu; Zhou, Likun; Ning, Tao; Li, Hongli; Ge, Shaohua; Li, Hua; Ying, Guoguang; Huang, Dingzhi; Ba, Yi

    2016-02-01

    Gastric cancer is one of the most common malignant tumors worldwide; however, the efficacy of clinical treatment is limited. MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been reported to play a key role in the development of cancer. They also provide novel candidates for targeted therapy. To date, in-depth studies on the molecular mechanisms of gastric cancer involving miRNAs are still absent. We previously reported that 5 miRNAs were identified as being significantly increased in gastric cancer, and the role of these miRNAs was investigated in the present study. By using bioinformatics tools, we found that more than 4,000 unique genes are potential downstream targets of gastric cancer miRNAs, and these targets belong to the protein class of nucleic acid binding, transcription factor, enzyme modulator, transferase and receptor. Pathway mapping showed that the targets of gastric cancer miRNAs are involved in the MAPK signaling pathway, pathways in cancer, the PI3K-Akt signaling pathway, the HTLV-1 signaling pathway and Ras signaling pathway, thus regulating cell growth, differentiation, apoptosis and metastasis. Analysis of the pathways related to miRNAs may provides potential drug targets for future therapy of gastric cancer.

  11. A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network

    Directory of Open Access Journals (Sweden)

    Erkhembayar Jadamba

    2016-01-01

    Full Text Available Drug repositioning offers new clinical indications for old drugs. Recently, many computational approaches have been developed to repurpose marketed drugs in human diseases by mining various of biological data including disease expression profiles, pathways, drug phenotype expression profiles, and chemical structure data. However, despite encouraging results, a comprehensive and efficient computational drug repositioning approach is needed that includes the high-level integration of available resources. In this study, we propose a systematic framework employing experimental genomic knowledge and pharmaceutical knowledge to reposition drugs for a specific disease. Specifically, we first obtain experimental genomic knowledge from disease gene expression profiles and pharmaceutical knowledge from drug phenotype expression profiles and construct a pathway-drug network representing a priori known associations between drugs and pathways. To discover promising candidates for drug repositioning, we initialize node labels for the pathway-drug network using identified disease pathways and known drugs associated with the phenotype of interest and perform network propagation in a semisupervised manner. To evaluate our method, we conducted some experiments to reposition 1309 drugs based on four different breast cancer datasets and verified the results of promising candidate drugs for breast cancer by a two-step validation procedure. Consequently, our experimental results showed that the proposed framework is quite useful approach to discover promising candidates for breast cancer treatment.

  12. EARLY RESPONSIVE to DEHYDRATION 15, a new transcription factor that integrates stress signaling pathways.

    Science.gov (United States)

    Alves, Murilo S; Fontes, Elizabeth P B; Fietto, Luciano G

    2011-12-01

    The Early Responsive to Dehydration (ERD) genes are defined as those genes that are rapidly activated during drought stress. The encoded proteins show a great structural and functional diversity, with a particular class of proteins acting as connectors of stress response pathways. Recent studies have shown that ERD15 proteins from different species of plants operate in cross-talk among different response pathways. In this mini-review, we show the recent progress on the functional role of this diverse family of proteins and demonstrate that a soybean ERD15 homolog can act as a connector in stress response pathways that trigger a programmed cell death signal.

  13. Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae

    OpenAIRE

    Kim, Jeong-Ho; Brachet, Valérie; Moriya, Hisao; Johnston, Mark

    2006-01-01

    Expression of the HXT genes encoding glucose transporters in the budding yeast Saccharomyces cerevisiae is regulated by two interconnected glucose-signaling pathways: the Snf3/Rgt2-Rgt1 glucose induction pathway and the Snf1-Mig1 glucose repression pathway. The Snf3 and Rgt2 glucose sensors in the membrane generate a signal in the presence of glucose that inhibits the functions of Std1 and Mth1, paralogous proteins that regulate the function of the Rgt1 transcription factor, which binds to th...

  14. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways.

    Science.gov (United States)

    Borggrefe, Tilman; Lauth, Matthias; Zwijsen, An; Huylebroeck, Danny; Oswald, Franz; Giaimo, Benedetto Daniele

    2016-02-01

    Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.

  15. Integrated pathway-based approach identifies association between genomic regions at CTCF and CACNB2 and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Dilafruz Juraeva

    2014-06-01

    Full Text Available In the present study, an integrated hierarchical approach was applied to: (1 identify pathways associated with susceptibility to schizophrenia; (2 detect genes that may be potentially affected in these pathways since they contain an associated polymorphism; and (3 annotate the functional consequences of such single-nucleotide polymorphisms (SNPs in the affected genes or their regulatory regions. The Global Test was applied to detect schizophrenia-associated pathways using discovery and replication datasets comprising 5,040 and 5,082 individuals of European ancestry, respectively. Information concerning functional gene-sets was retrieved from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and the Molecular Signatures Database. Fourteen of the gene-sets or pathways identified in the discovery dataset were confirmed in the replication dataset. These include functional processes involved in transcriptional regulation and gene expression, synapse organization, cell adhesion, and apoptosis. For two genes, i.e. CTCF and CACNB2, evidence for association with schizophrenia was available (at the gene-level in both the discovery study and published data from the Psychiatric Genomics Consortium schizophrenia study. Furthermore, these genes mapped to four of the 14 presently identified pathways. Several of the SNPs assigned to CTCF and CACNB2 have potential functional consequences, and a gene in close proximity to CACNB2, i.e. ARL5B, was identified as a potential gene of interest. Application of the present hierarchical approach thus allowed: (1 identification of novel biological gene-sets or pathways with potential involvement in the etiology of schizophrenia, as well as replication of these findings in an independent cohort; (2 detection of genes of interest for future follow-up studies; and (3 the highlighting of novel genes in previously reported candidate regions for schizophrenia.

  16. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    Science.gov (United States)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; Ponnusamy, Paramasivam; Rasnayaka, Herath; Singh, Harbir

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  17. Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies

    Directory of Open Access Journals (Sweden)

    Adam R. Smith

    2016-06-01

    Full Text Available Alzheimer's disease is a complex neurodegenerative disorder. A large number of genome-wide association studies have been performed, which have been supplemented more recently by the first epigenome-wide association studies, leading to the identification of a number of novel loci altered in disease. Twin studies have shown monozygotic twin discordance for Alzheimer's disease (Gatz et al., 2006, leading to the conclusion that a combination of genetic and epigenetic mechanisms is likely to be involved in disease etiology (Lunnon & Mill, 2013. This review focuses on identifying overlapping pathways between published genome-wide association studies and epigenome-wide association studies, highlighting dysfunctional synaptic, lipid metabolism, plasma membrane/cytoskeleton, mitochondrial, and immune cell activation pathways. Identifying common pathways altered in genetic and epigenetic studies will aid our understanding of disease mechanisms and identify potential novel targets for pharmacological intervention.

  18. A method for integrating and ranking the evidence for biochemical pathways by mining reactions from text

    Science.gov (United States)

    Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-01

    Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008

  19. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast.

    Science.gov (United States)

    Staschke, Kirk A; Dey, Souvik; Zaborske, John M; Palam, Lakshmi Reddy; McClintick, Jeanette N; Pan, Tao; Edenberg, Howard J; Wek, Ronald C

    2010-05-28

    Two important nutrient-sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism during changes in nutrient availability. Amino acid starvation activates the GAAC through Gcn2p phosphorylation of translation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. Although Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p in conjunction with Gln3p activates genes required for the assimilation of secondary nitrogen sources such as gamma-aminobutyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to the GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.

  20. Quality improvement by implementing an integrated oncological care pathway for breast cancer patients

    NARCIS (Netherlands)

    van Hoeve, J.; de Munck, L.; Otter, Renee; de Vries, J.; Siesling, S.

    2014-01-01

    Background and aim: In cancer care, more and more systemized approaches such as care pathways are used to reduce variation, reduce waiting- and throughput times and to improve quality of care. The aim of this study was to determine whether the implementation of a multidisciplinary breast cancer path

  1. Quality improvement by implementing an integrated oncological care pathway for breast cancer patients

    NARCIS (Netherlands)

    Hoeve, van J.; Munck, de L.; Otter, R.; Vries, de J.; Siesling, S.

    2014-01-01

    Background and aim In cancer care, more and more systemized approaches such as care pathways are used to reduce variation, reduce waiting- and throughput times and to improve quality of care. The aim of this study was to determine whether the implementation of a multidisciplinary breast cancer pathw

  2. Building Integrated Pathways to Sustainable Careers: An Introduction to the Accelerated Opportunity Initiative

    Science.gov (United States)

    Pleasants, Rachel

    2011-01-01

    "Accelerating Opportunity" responds to the nation's growing need for improved pathways from Adult Basic Education (ABE) to credentials of value in the labor market. It builds on promising practices developed in "Breaking Through," an initiative of Jobs for the Future and the National Council for Workforce Education, and…

  3. An Institutional Three-Stage Framework: Elevating Academic Writing and Integrity Standards of International Pathway Students

    Science.gov (United States)

    Velliaris, Donna M.; Breen, Paul

    2016-01-01

    In this paper, the authors explore a holistic three-stage framework currently used by the Eynesbury Institute of Business and Technology (EIBT), focused on academic staff identification and remediation processes for the prevention of (un)intentional student plagiarism. As a pre-university pathway provider--whose student body is 98%…

  4. Reduced structural integrity and functional lateralization of the dorsal language pathway correlate with hallucinations in schizophrenia: a combined diffusion spectrum imaging and functional magnetic resonance imaging study.

    Science.gov (United States)

    Wu, Chen-Hao; Hwang, Tzung-Jeng; Chen, Pin-Jane; Chou, Tai-Li; Hsu, Yung-Chin; Liu, Chih-Min; Wang, Hsiao-Lan; Chen, Chung-Ming; Hua, Mau-Sun; Hwu, Hai-Gwo; Tseng, Wen-Yih Isaac

    2014-12-30

    Recent studies suggest that structural and functional alterations of the language network are associated with auditory verbal hallucinations (AVHs) in schizophrenia. However, the ways in which the underlying structure and function of the network are altered and how these alterations are related to each other remain unclear. To elucidate this, we used diffusion spectrum imaging (DSI) to reconstruct the dorsal and ventral pathways and employed functional magnetic resonance imaging (fMRI) in a semantic task to obtain information about the functional activation in the corresponding regions in 18 patients with schizophrenia and 18 matched controls. The results demonstrated decreased structural integrity in the left ventral, right ventral and right dorsal tracts, and decreased functional lateralization of the dorsal pathway in schizophrenia. There was a positive correlation between the microstructural integrity of the right dorsal pathway and the functional lateralization of the dorsal pathway in patients with schizophrenia. Additionally, both functional lateralization of the dorsal pathway and microstructural integrity of the right dorsal pathway were negatively correlated with the scores of the delusion/hallucination symptom dimension. Our results suggest that impaired structural integrity of the right dorsal pathway is related to the reduction of functional lateralization of the dorsal pathway, and these alterations may aggravate AVHs in schizophrenia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Double-walled Au nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy.

    Science.gov (United States)

    Hu, Feng; Zhang, Yan; Chen, Guangcun; Li, Chunyan; Wang, Qiangbin

    2015-02-25

    In this work, a novel type of nanomedical platform, the double-walled Au nanocage/SiO(2) nanorattle, is successfully fabricated by combining two "hollow-excavated strategies"--galvanic replacement and "surface-protected etching". The rational design of double-walled nanostructure based on gold nanocages (AuNCs) and hollow SiO(2) shells functionalized respectively with p-aminothiophenol (pATP) and Tat peptide simultaneously renders the nanoplatforms three functionalities: 1) the whole nanorattle serves as a high efficient drug carrier thanks to the structural characteristics of AuNC and SiO(2) shell with hollow interiors and porous walls; 2) the AuNC with large electromagnetic enhancement acts as a sensitive surface-enhanced Raman scattering (SERS) substrate to track the internalization process of the nanorattles by human MCF-7 breast cancer cells, as well as an efficient photothermal transducer for localized hyperthermia cancer therapy due to the strong near-infrared absorption; 3) Tat-functionalized SiO(2) shell not only improves biocompatibility and cell uptake efficiency resulting in enhanced anticancer efficacy but also prevents the AuNCs from aggregation and provides the stability of AuNCs so that the SERS signals can be used for cell tracking in high fidelity. The reported chemistry and the designed nanostructures should inspire more interesting nanostructures and applications.

  6. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Chung Jae

    2009-06-01

    Full Text Available Abstract Background Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition. Methods To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis. Results Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99 between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells. Conclusion Selective epigenetic disruption of distinct biological

  7. Linkage of organic anion transporter-1 to metabolic pathways through integrated "omics"-driven network and functional analysis.

    Science.gov (United States)

    Ahn, Sun-Young; Jamshidi, Neema; Mo, Monica L; Wu, Wei; Eraly, Satish A; Dnyanmote, Ankur; Bush, Kevin T; Gallegos, Tom F; Sweet, Douglas H; Palsson, Bernhard Ø; Nigam, Sanjay K

    2011-09-09

    The main kidney transporter of many commonly prescribed drugs (e.g. penicillins, diuretics, antivirals, methotrexate, and non-steroidal anti-inflammatory drugs) is organic anion transporter-1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478). Targeted metabolomics in knockouts have shown that OAT1 mediates the secretion or reabsorption of many important metabolites, including intermediates in carbohydrate, fatty acid, and amino acid metabolism. This observation raises the possibility that OAT1 helps regulate broader metabolic activities. We therefore examined the potential roles of OAT1 in metabolic pathways using Recon 1, a functionally tested genome-scale reconstruction of human metabolism. A computational approach was used to analyze in vivo metabolomic as well as transcriptomic data from wild-type and OAT1 knock-out animals, resulting in the implication of several metabolic pathways, including the citric acid cycle, polyamine, and fatty acid metabolism. Validation by in vitro and ex vivo analysis using Xenopus oocyte, cell culture, and kidney tissue assays demonstrated interactions between OAT1 and key intermediates in these metabolic pathways, including previously unknown substrates, such as polyamines (e.g. spermine and spermidine). A genome-scale metabolic network reconstruction generated some experimentally supported predictions for metabolic pathways linked to OAT1-related transport. The data support the possibility that the SLC22 and other families of transporters, known to be expressed in many tissues and primarily known for drug and toxin clearance, are integral to a number of endogenous pathways and may be involved in a larger remote sensing and signaling system (Ahn, S. Y., and Nigam, S. K. (2009) Mol. Pharmacol. 76, 481-490, and Wu, W., Dnyanmote, A. V., and Nigam, S. K. (2011) Mol. Pharmacol. 79, 795-805). Drugs may alter metabolism by

  8. Piloting an integrated education pathway as a strategy to prepare for and encourage oncology specialty certification.

    Science.gov (United States)

    Savage, Pamela; Fitzgerald, Barbara; Lee, Charlotte T

    2015-01-01

    Although continuing nursing education is crucial to improve professional and patient outcomes, programs in oncology nursing remain scarce, piecemeal, and focused on one modality of treatment, which limits the effectiveness of education interventions. The objectives of this paper are to describe the development and implementation of a longitudinal specialized oncology nursing education pathway program, and the evaluation results of a year-long pilot of the first stage of the program at a large university-affiliated cancer centre. Preliminary findings indicated that participants' perceived competence in health assessment and symptom management was improved after one year of enrolment in the education pathway. Next steps following this pilot, including implications for participants with regards to attaining oncology certification are also discussed.

  9. Modulating Wnt Signaling Pathway to Enhance Allograft Integration in Orthopaedic Trauma Treatment

    Science.gov (United States)

    2012-10-01

    Sena, K.; McNulty, M. A.; Ke, H. Z.; Liu, M.; Sumner, D. R. Sclerostin antibody increases peri-implant bone formation in a rat ovariectomy model...modulating Wnt signaling pathway in the bone tissue repair by using monoclonal antibodies against sclerostin (Sost) and DKK-1 (donated by Amgen Inc...the data is encouraging as it reveals that the use of anti-Sost or anti-Dkk-1 antibodies enhances new bone formation around the allograft. The

  10. The Fanconi Anemia Pathway Protects Genome Integrity from R-loops.

    Directory of Open Access Journals (Sweden)

    María L García-Rubio

    2015-11-01

    Full Text Available Co-transcriptional RNA-DNA hybrids (R loops cause genome instability. To prevent harmful R loop accumulation, cells have evolved specific eukaryotic factors, one being the BRCA2 double-strand break repair protein. As BRCA2 also protects stalled replication forks and is the FANCD1 member of the Fanconi Anemia (FA pathway, we investigated the FA role in R loop-dependent genome instability. Using human and murine cells defective in FANCD2 or FANCA and primary bone marrow cells from FANCD2 deficient mice, we show that the FA pathway removes R loops, and that many DNA breaks accumulated in FA cells are R loop-dependent. Importantly, FANCD2 foci in untreated and MMC-treated cells are largely R loop dependent, suggesting that the FA functions at R loop-containing sites. We conclude that co-transcriptional R loops and R loop-mediated DNA damage greatly contribute to genome instability and that one major function of the FA pathway is to protect cells from R loops.

  11. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress.

    Science.gov (United States)

    Hou, Jinling; Wang, Shaohui; Shang, Yan Chen; Chong, Zhao Zhong; Maiese, Kenneth

    2011-08-01

    Given the cytoprotective ability of erythropoietin (EPO) in cerebral microvascular endothelial cells (ECs) and the invaluable role of ECs in the central nervous system, it is imperative to elucidate the cellular pathways for EPO to protect ECs against brain injury. Here we illustrate that EPO relies upon the modulation of SIRT1 (silent mating type information regulator 2 homolog 1) in cerebral microvascular ECs to foster cytoprotection during oxygen-glucose deprivation (OGD). SIRT1 activation which results in the inhibition of apoptotic early membrane phosphatidylserine (PS) externalization and subsequent DNA degradation during OGD becomes a necessary component for EPO protection in ECs, since inhibition of SIRT1 activity or diminishing its expression by gene silencing abrogates cell survival supported by EPO during OGD. Furthermore, EPO promotes the subcellular trafficking of SIRT1 to the nucleus which is necessary for EPO to foster vascular protection. EPO through SIRT1 averts apoptosis through activation of protein kinase B (Akt1) and the phosphorylation and cytoplasmic retention of the forkhead transcription factor FoxO3a. SIRT1 through EPO activation also utilizes mitochondrial pathways to prevent mitochondrial depolarization, cytochrome c release, and Bad, caspase 1, and caspase 3 activation. Our work identifies novel pathways for EPO in the vascular system that can govern the activity of SIRT1 to prevent apoptotic injury through Akt1, FoxO3a phosphorylation and trafficking, mitochondrial membrane permeability, Bad activation, and caspase 1 and 3 activities in ECs during oxidant stress.

  12. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration.

    Science.gov (United States)

    Lian, Jiazhang; Jin, Run; Zhao, Huimin

    2016-11-01

    The CEN/ARS-based low-copy plasmids and 2 μ-based high-copy plasmids have been broadly used for both fundamental studies and practical applications in Saccharomyces cerevisiae. However, the relative low copy numbers and narrow dynamic range limit their applications in many cases. In this study, the expression level of the selection marker proteins was engineered to increase the plasmid copy numbers. A series of plasmids with step-wise increased copy numbers were constructed. The copy number of the plasmids with engineered dominant markers (5-100 copies per cell) showed a positive correlation with the concentration of antibiotics supplemented to the growth media. Based on this finding, we developed a simple yet highly efficient strategy, named Pathway Optimization by Tuning Antibiotic Concentrations (POTAC) to rapidly balance the flux of multi-gene pathways at the DNA level in S. cerevisiae. As proof of concept, POTAC was used to optimize the lycopene and n-butanol biosynthetic pathways, increasing the production of lycopene and n-butanol by 10- and 100-fold, respectively. Additionally, multiplex genome integration with controllable copy numbers was attempted by combining the engineered dominant markers with the CRISPR/Cas9 system. Biotechnol. Bioeng. 2016;113: 2462-2473. © 2016 Wiley Periodicals, Inc.

  13. Inflammation-Induced CCR7 Oligomers Form Scaffolds to Integrate Distinct Signaling Pathways for Efficient Cell Migration.

    Science.gov (United States)

    Hauser, Mark A; Schaeuble, Karin; Kindinger, Ilona; Impellizzieri, Daniela; Krueger, Wolfgang A; Hauck, Christof R; Boyman, Onur; Legler, Daniel F

    2016-01-19

    Host defense depends on orchestrated cell migration guided by chemokines that elicit selective but biased signaling pathways to control chemotaxis. Here, we showed that different inflammatory stimuli provoked oligomerization of the chemokine receptor CCR7, enabling human dendritic cells and T cell subpopulations to process guidance cues not only through classical G protein-dependent signaling but also by integrating an oligomer-dependent Src kinase signaling pathway. Efficient CCR7-driven migration depends on a hydrophobic oligomerization interface near the conserved NPXXY motif of G protein-coupled receptors as shown by mutagenesis screen and a CCR7-SNP demonstrating super-oligomer characteristics leading to enhanced Src activity and superior chemotaxis. Furthermore, Src phosphorylates oligomeric CCR7, thereby creating a docking site for SH2-domain-bearing signaling molecules. Finally, we identified CCL21-biased signaling that involved the phosphatase SHP2 to control efficient cell migration. Collectively, our data showed that CCR7 oligomers serve as molecular hubs regulating distinct signaling pathways.

  14. Quantification of Vapor Intrusion Pathways into a Slab-on-Ground Building: an Integration of Mathematical Modeling and Field Experiments

    Science.gov (United States)

    Li, Y.; Akbariyeh, S.; Patterson, B.

    2014-12-01

    Vapor intrusion of volatile organic compounds into buildings can be a significant source of human exposure to hazardous materials. Field assessment is essential to evaluate the vapor intrusion pathways, which has been recognized to be challenging due to the heterogeneity of sites and uncontrolled site environments. Modeling of vapor intrusion processes can predict subsurface vapor and oxygen concentrations and indoor air concentration under various environmental site conditions. However, detailed experimental quantification for model validation is typically unavailable. In this work, we report our efforts to quantifying vapor intrusion pathways into a slab-on-ground building by integrating mathematical modeling with well-controlled field measurements under three different pressure and ventilation site conditions. Comparisons between modeling and field measurements include indoor air concentration, contaminant and oxygen distribution profile beneath and inside the building, diffusive and advective flux under different pressure and air vitalization conditions. In addition to typically identified key factors influencing vapor intrusion (e.g. the building construction, the properties of compounds, and depth to the source), we found several additional parameters, such as anisotropic property of surface soil, locations of crack, and dependency of reaction rates on oxygen concentration, are critical to evaluate vapor intrusion pathways.

  15. FGF-receptor substrate 2 functions as a molecular sensor integrating external regulatory signals into the FGF pathway

    Institute of Scientific and Technical Information of China (English)

    Wenchao Zhou; Xiujing Feng; Yingjie Wu; Johannes Benge; Zhe Zhang; Zhengjun Chen

    2009-01-01

    Fibroblast growth factor (FGF) receptor substrate 2α (FRS2α) is the main mediator of signaling in the FGF path-way. Recent studies have shown that n/itogen-activated protein kinase (MAPK) phosphorylates serine and threonine residues in FRS2, negatively affecting FGF-induced tyrosine phosphorylation (PY) of FRS2. Several kinds of stimuli can induce serine/threonine phosphorylation (PS/T) of FRS2, indicating that FRS2 may be useful for studying cross-talk between growth factor signaling pathways. Here, we report that FGF-induced PY of FRS2 can be attenuated by EGF co-stimulation in PC12cells; this inhibitory effect could be completely reversed by U0126, an inhibitor of MEK. We further identified the ERK1/2-binding motif in FRS2 and generated FRS2-3KL, a mutant lacking MAPK binding and PT upon FGF and/or EGF stimulation. Unlike wild-type (WT) FRS2, FGF-induced PY of FRS2-3KL could not be inhibited by EGF co-stimulation, and FRS2-3KL-expressing PC12 cells exhibited more differentiating potential than FRS2-WT-expressing cells in response to FGF treatment. These results suggest that PSfr of FRS2 mediated by the FRS2-MAPK negative regulatory loop may function as a molecular switch integrating negative regulatory signals from other pathways into FGFR-generated signal transduction.

  16. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  17. The Climate Literacy and Energy Awareness Network (clean) Pathway: Integrating Science and Solutions

    Science.gov (United States)

    Ledley, T. S.; McCaffrey, M. S.; Buhr, S.; Manduca, C. A.; Fox, S.; Niepold, F.; Gold, A. U.

    2010-12-01

    Changes in the climate system are underway, largely due to human impacts, and it is essential that citizens understand what these changes are, what is causing them, and the potential implications in order for them to make responsible decisions for themselves, their communities and society. The Climate Literacy Network (CLN) comprised of a broad spectrum of ~200 stakeholders, has virtual meetings weekly (since January 2008) to provide a forum to share information and leverage efforts to address the complex issues involved in making climate and energy literacy real in formal and informal educational contexts as well as for all citizens. The discussions of the CLN have led to 1) coordinated efforts to support the implementation of the Climate Literacy Essential Principles of Climate Science (CLEP, http://www.climatescience.gov/Library/Literacy/), 2) the establishment of the CLEAN Pathway collection (http://cleanet.org) of reviewed resources that directly support the CLEP, and 3) the development of a model for CLEAN-Regional Networks that facilitate increasing climate and energy literacy at the local level. In this presentation we will describe the ongoing activities of the CLN and provide an overview of the new and recently launched CLEAN Pathway collection. The CLEAN Pathway is a project to steward an on-line collection of digital teaching materials that directly address the CLEP as well as a set of energy awareness principles. All teaching materials are aligned with the NAAEE Guidelines for Excellence in Environmental Education, the AAAS Project 2061 Benchmarks for Science Literacy, and the National Science Education Standards. With a goal of vetting ~500 educational materials at the 6-16 grade levels, we have just completed our first round of identifying, reviewing and annotating ~100 excellent teaching activities. We will demonstrate the current capabilities of the CLEAN Pathway portal, describe plans for additional functionality, and provide a vision for others

  18. Updates to the Corn Ethanol Pathway and Development of an Integrated Corn and Corn Stover Ethanol Pathway in the GREET™ Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael Q. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Corn ethanol, a first-generation biofuel, is the predominant biofuel in the United States. In 2013, the total U.S. ethanol fuel production was 13.3 billion gallons, over 95% of which was produced from corn (RFA, 2014). The 2013 total renewable fuel mandate was 16.6 billion gallons according to the Energy Independence and Security Act (EISA) (U.S. Congress, 2007). Furthermore, until 2020, corn ethanol will make up a large portion of the renewable fuel volume mandated by Renewable Fuels Standard (RFS2). For the GREET1_2014 release, the corn ethanol pathway was subject to updates reflecting changes in corn agriculture and at corn ethanol plants. In the latter case, we especially focused on the incorporation of corn oil as a corn ethanol plant co-product. Section 2 covers these updates. In addition, GREET now includes options to integrate corn grain and corn stover ethanol production on the field and at the biorefinery. These changes are the focus of Section 3.

  19. Integrated marketing communications:pathway for enhancing client-costomer relationships

    Directory of Open Access Journals (Sweden)

    Kehinde Oladele Joseph

    2010-12-01

    Full Text Available The strategic coordination of marketing communication tools is vital and highly crucial for every result driven organization today. Companies must be able to deliver the right message to their target audience in order to elicit the right results. The objectives of this paper amongst others are to: (i ascertain whether proper implementation of Integrated Marketing Communications can help reduce the cost of marketing communication or promotional budget. (ii Establish whether the use of integrated marketing communications by firm through its advertising agencies can bring about profitable long-term client-customer relationships. The paper raises two hypotheses, which are stated in the null form. These are: The more an organization adopts Integrated Marketing communications, the more fund it will spend on promotional activities in the long run, and the less an organization adopts IMC principles, the more profitable Client-Customer relationship it will build. The paper uses survey method with structured questionnaire to obtain data that were later analyzed with correlation coefficient and analysis of variance test statistics. (ANOVA. Findings show that company will be able to save cost on marketing communication and promote lasting long-term client-customer relationships, if they properly adopt integrated marketing communication principles. The paper makes valuable recommendations which users of IMC will find useful in the ever dynamic and highly competitive world of marketing

  20. Pathways of Knowing: Integrating Citizen Science and Critical Thinking in the Adult ELL Classroom

    Science.gov (United States)

    Basham, Melody

    2012-01-01

    This action research study examines what common perceptions and constructs currently exist in educating adult immigrants in Arizona and considers how might the integration of citizen science with the current English curriculum promote higher order thinking and educational equity in this population. A citizen science project called the Mastodon…

  1. Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2.

    Directory of Open Access Journals (Sweden)

    Steve P Crampton

    Full Text Available BACKGROUND: THE COMPLEXITY OF WNT SIGNALING LIKELY STEMS FROM TWO SOURCES: multiple pathways emanating from frizzled receptors in response to wnt binding, and modulation of those pathways and target gene responsiveness by context-dependent signals downstream of growth factor and matrix receptors. Both rac1 and c-jun have recently been implicated in wnt signaling, however their upstream activators have not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we identify the adapter protein Grb2, which is itself an integrator of multiple signaling pathways, as a modifier of beta-catenin-dependent wnt signaling. Grb2 synergizes with wnt3A, constitutively active (CA LRP6, Dvl2 or CA-beta-catenin to drive a LEF/TCF-responsive reporter, and dominant negative (DN Grb2 or siRNA to Grb2 block wnt3A-mediated reporter activity. MMP9 is a target of beta-catenin-dependent wnt signaling, and an MMP9 promoter reporter is also responsive to signals downstream of Grb2. Both a jnk inhibitor and DN-c-jun block transcriptional activation downstream of Dvl2 and Grb2, as does DN-rac1. Integrin ligation by collagen also synergizes with wnt signaling as does overexpression of Focal Adhesion Kinase (FAK, and this is blocked by DN-Grb2. CONCLUSIONS/SIGNIFICANCE: These data suggest that integrin ligation and FAK activation synergize with wnt signaling through a Grb2-rac-jnk-c-jun pathway, providing a context-dependent mechanism for modulation of wnt signaling.

  2. Ss-Sl2, a novel cell wall protein with PAN modules, is essential for sclerotial development and cellular integrity of Sclerotinia sclerotiorum.

    Science.gov (United States)

    Yu, Yang; Jiang, Daohong; Xie, Jiatao; Cheng, Jiasen; Li, Guoqing; Yi, Xianhong; Fu, Yanping

    2012-01-01

    The sclerotium is an important dormant body for many plant fungal pathogens. Here, we reported that a protein, named Ss-Sl2, is involved in sclerotial development of Sclerotinia sclerotiorum. Ss-Sl2 does not show significant homology with any protein of known function. Ss-Sl2 contains two putative PAN modules which were found in other proteins with diverse adhesion functions. Ss-Sl2 is a secreted protein, during the initial stage of sclerotial development, copious amounts of Ss-Sl2 are secreted and accumulated on the cell walls. The ability to maintain the cellular integrity of RNAi-mediated Ss-Sl2 silenced strains was reduced, but the hyphal growth and virulence of Ss-Sl2 silenced strains were not significantly different from the wild strain. Ss-Sl2 silenced strains could form interwoven hyphal masses at the initial stage of sclerotial development, but the interwoven hyphae could not consolidate and melanize. Hyphae in these interwoven bodies were thin-walled, and arranged loosely. Co-immunoprecipitation and yeast two-hybrid experiments showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Woronin body major protein (Hex1) and elongation factor 1-alpha interact with Ss-Sl2. GAPDH-knockdown strains showed a similar phenotype in sclerotial development as Ss-Sl2 silenced strains. Hex1-knockdown strains showed similar impairment in maintenance of hyphal integrity as Ss-Sl2 silenced strains. The results suggested that Ss-Sl2 functions in both sclerotial development and cellular integrity of S. sclerotiorum.

  3. In Escherichia coli, MreB and FtsZ direct the synthesis of lateral cell wall via independent pathways that require PBP 2.

    Science.gov (United States)

    Varma, Archana; Young, Kevin D

    2009-06-01

    In Escherichia coli, the cytoplasmic proteins MreB and FtsZ play crucial roles in ensuring that new muropeptide subunits are inserted into the cell wall in a spatially correct way during elongation and division. In particular, to retain a constant diameter and overall shape, new material must be inserted into the wall uniformly around the cell's perimeter. Current thinking is that MreB accomplishes this feat through intermediary proteins that tether peptidoglycan synthases to the outer face of the inner membrane. We tested this idea in E. coli by using a DD-carboxypeptidase mutant that accumulates pentapeptides in its peptidoglycan, allowing us to visualize new muropeptide incorporation. Surprisingly, inhibiting MreB with the antibiotic A22 did not result in uneven insertion of new wall, although the cells bulged and lost their rod shapes. Instead, uneven (clustered) incorporation occurred only if MreB and FtsZ were inactivated simultaneously, providing the first evidence in E. coli that FtsZ can direct murein incorporation into the lateral cell wall independently of MreB. Inhibiting penicillin binding protein 2 (PBP 2) alone produced the same clustered phenotype, implying that MreB and FtsZ tether peptidoglycan synthases via a common mechanism that includes PBP 2. However, cell shape was determined only by the presence or absence of MreB and not by the even distribution of new wall material as directed by FtsZ.

  4. Slt2 MAPK pathway is essential for cell integrity in the presence of arsenate.

    Science.gov (United States)

    Matia-González, Ana M; Rodríguez-Gabriel, Miguel A

    2011-01-01

    Arsenate is a common toxic metalloid found in drinking water worldwide that causes several human diseases. The biochemical action underlying cellular response to arsenate, however, is not yet completely understood. Here we used Saccharomyces cerevisiae as an eukaryotic model system to identify proteins essential for adaptation to arsenate treatment. Previous studies have demonstrated a function for Hog1 MAPK in modulating the cellular response to arsenite. Our results, however, showed that cells deficient in Hog1 did not show increased sensitivity to arsenate, suggesting that perhaps other MAPKs may be involved in the response to this particular arsenic species. Here, we found that Slt2 MAPK and several of its upstream regulators are essential in modulating the response to arsenate, and that Slt2 is phosphorylated after arsenate treatment. Furthermore, whole-genome transcriptional analysis showed that Slt2 is required for the induction of several genes in response to arsenate exposure. Many of these genes are involved in the cellular response to heat, suggesting an overlap between these two stress response pathways, and pointing toward a common response to both arsenate and heat exposure in Saccharomyces cerevisiae. Furthermore, our results support the idea that cellular exposure to arsenate results in induction of cellular signalling pathways different from those induced under arsenite treatment.

  5. Integrated analysis of transportation demand pathway options for hydrogen production, storage, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.S. [Directed Technologies Inc., Arlington, VA (United States)

    1996-10-01

    Directed Technologies, Inc. has begun the development of a computer model with the goal of providing guidance to the Hydrogen Program Office regarding the most cost effective use of limited resources to meet national energy security and environmental goals through the use of hydrogen as a major energy carrier. The underlying assumption of this programmatic pathway model is that government and industry must work together to bring clean hydrogen energy devices into the marketplace. Industry cannot provide the long term resources necessary to overcome technological, regulatory, institutional, and perceptual barriers to the use of hydrogen as an energy carrier, and government cannot provide the substantial investments required to develop hydrogen energy products and increased hydrogen production capacity. The computer model recognizes this necessary government/industry partnership by determining the early investments required by government to bring hydrogen energy end uses within the time horizon and profitability criteria of industry, and by estimating the subsequent investments required by industry. The model then predicts the cost/benefit ratio for government, based on contributions of each hydrogen project to meeting societal goals, and it predicts the return on investment for industry. Sensitivity analyses with respect to various government investments such as hydrogen research and development and demonstration projects will then provide guidance as to the most cost effective mix of government actions. The initial model considers the hydrogen transportation market, but this programmatic pathway methodology will be extended to other market segments in the future.

  6. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Zhernakova, Daria V.; Westra, Harm-Jan

    2015-01-01

    BACKGROUND: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about...... the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from...... a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. METHODS: Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential...

  7. SteinerNet: a web server for integrating 'omic' data to discover hidden components of response pathways.

    Science.gov (United States)

    Tuncbag, Nurcan; McCallum, Scott; Huang, Shao-Shan Carol; Fraenkel, Ernest

    2012-07-01

    High-throughput technologies including transcriptional profiling, proteomics and reverse genetics screens provide detailed molecular descriptions of cellular responses to perturbations. However, it is difficult to integrate these diverse data to reconstruct biologically meaningful signaling networks. Previously, we have established a framework for integrating transcriptional, proteomic and interactome data by searching for the solution to the prize-collecting Steiner tree problem. Here, we present a web server, SteinerNet, to make this method available in a user-friendly format for a broad range of users with data from any species. At a minimum, a user only needs to provide a set of experimentally detected proteins and/or genes and the server will search for connections among these data from the provided interactomes for yeast, human, mouse, Drosophila melanogaster and Caenorhabditis elegans. More advanced users can upload their own interactome data as well. The server provides interactive visualization of the resulting optimal network and downloadable files detailing the analysis and results. We believe that SteinerNet will be useful for researchers who would like to integrate their high-throughput data for a specific condition or cellular response and to find biologically meaningful pathways. SteinerNet is accessible at http://fraenkel.mit.edu/steinernet.

  8. Integrated data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas

    DEFF Research Database (Denmark)

    Beltrami, Caroline Moraes; Dos Reis, Mariana Bisarro; Barros-Filho, Mateus Camargo

    2017-01-01

    BACKGROUND: Papillary thyroid carcinoma (PTC) is a common endocrine neoplasm with a recent increase in incidence in many countries. Although PTC has been explored by gene expression and DNA methylation studies, the regulatory mechanisms of the methylation on the gene expression was poorly clarified......-validated by the The Cancer Genome Atlas data. The majority of these probes was found in non-promoters regions, distant from CGI and enriched by enhancers. The integrative analysis between gene expression and DNA methylation revealed 185 and 38 genes (mainly in the promoter and body regions, respectively) with negative...

  9. Loss of a Functionally and Structurally Distinct ld-Transpeptidase, LdtMt5, Compromises Cell Wall Integrity in Mycobacterium tuberculosis.

    Science.gov (United States)

    Brammer Basta, Leighanne A; Ghosh, Anita; Pan, Ying; Jakoncic, Jean; Lloyd, Evan P; Townsend, Craig A; Lamichhane, Gyanu; Bianchet, Mario A

    2015-10-16

    The final step of peptidoglycan (PG) biosynthesis in bacteria involves cross-linking of peptide side chains. This step in Mycobacterium tuberculosis is catalyzed by ld- and dd-transpeptidases that generate 3→3 and 4→3 transpeptide linkages, respectively. M. tuberculosis PG is predominantly 3→3 cross-linked, and LdtMt2 is the dominant ld-transpeptidase. There are four additional sequence paralogs of LdtMt2 encoded by the genome of this pathogen, and the reason for this apparent redundancy is unknown. Here, we studied one of the paralogs, LdtMt5, and found it to be structurally and functionally distinct. The structures of apo-LdtMt5 and its meropenem adduct presented here demonstrate that, despite overall architectural similarity to LdtMt2, the LdtMt5 active site has marked differences. The presence of a structurally divergent catalytic site and a proline-rich C-terminal subdomain suggest that this protein may have a distinct role in PG metabolism, perhaps involving other cell wall-anchored proteins. Furthermore, M. tuberculosis lacking a functional copy of LdtMt5 displayed aberrant growth and was more susceptible to killing by crystal violet, osmotic shock, and select carbapenem antibiotics. Therefore, we conclude that LdtMt5 is not a functionally redundant ld-transpeptidase, but rather it serves a unique and important role in maintaining the integrity of the M. tuberculosis cell wall.

  10. Growth of a single-wall carbon nanotube film and its patterning as an n-type field effect transistor device using an integrated circuit compatible process

    Energy Technology Data Exchange (ETDEWEB)

    Shiau, S H; Gau, C [Institute of Aeronautics and Astronautics, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan (China); Liu, C W; Dai, B T [National Nano Device Laboratories, No. 27, Nanke 3rd Road, Science-based Industrial Park, Hsin-shi, Tainan, Taiwan (China)], E-mail: gauc@mail.ncku.edu.tw

    2008-03-12

    This study presents the synthesis of a dense single-wall carbon nanotube (SWNT) network on a silicon substrate using alcohol as the source gas. The nanosize catalysts required are made by the reduction of metal compounds in ethanol. The key point in spreading the nanoparticles on the substrate, so that the SWNT network can be grown over the entire wafer, is making the substrate surface hydrophilic. This SWNT network is so dense that it can be treated like a thin film. Methods of patterning this SWNT film with integrated circuit compatible processes are presented and discussed for the first time in the literature. Finally, fabrication and characteristic measurements of a field effect transistor (FET) using this SWNT film are also demonstrated. This FET is shown to have better electronic properties than any other kind of thin film transistor. This thin film with good electronic properties can be readily applied in the processing of many other SWNT electronic devices.

  11. Impairments of Multisensory Integration and Cross-Sensory Learning as Pathways to Dyslexia

    Science.gov (United States)

    Hahn, Noemi; Foxe, John J.; Molholm, Sophie

    2014-01-01

    Two sensory systems are intrinsic to learning to read. Written words enter the brain through the visual system and associated sounds through the auditory system. The task before the beginning reader is quite basic. She must learn correspondences between orthographic tokens and phonemic utterances, and she must do this to the point that there is seamless automatic ‘connection’ between these sensorially distinct units of language. It is self-evident then that learning to read requires formation of cross-sensory associations to the point that deeply encoded multisensory representations are attained. While the majority of individuals manage this task to a high degree of expertise, some struggle to attain even rudimentary capabilities. Why do dyslexic individuals, who learn well in myriad other domains, fail at this particular task? Here, we examine the literature as it pertains to multisensory processing in dyslexia. We find substantial support for multisensory deficits in dyslexia, and make the case that to fully understand its neurological basis, it will be necessary to thoroughly probe the integrity of auditory-visual integration mechanisms. PMID:25265514

  12. A microRNA activity map of human mesenchymal tumors: connections to oncogenic pathways; an integrative transcriptomic study

    Directory of Open Access Journals (Sweden)

    Fountzilas Elena

    2012-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are nucleic acid regulators of many human mRNAs, and are associated with many tumorigenic processes. miRNA expression levels have been used in profiling studies, but some evidence suggests that expression levels do not fully capture miRNA regulatory activity. In this study we integrate multiple gene expression datasets to determine miRNA activity patterns associated with cancer phenotypes and oncogenic pathways in mesenchymal tumors – a very heterogeneous class of malignancies. Results Using a computational method, we identified differentially activated miRNAs between 77 normal tissue specimens and 135 sarcomas and we validated many of these findings with microarray interrogation of an independent, paraffin-based cohort of 18 tumors. We also showed that miRNA activity is imperfectly correlated with miRNA expression levels. Using next-generation miRNA sequencing we identified potential base sequence alterations which may explain differential activity. We then analyzed miRNA activity changes related to the RAS-pathway and found 21 miRNAs that switch from silenced to activated status in parallel with RAS activation. Importantly, nearly half of these 21 miRNAs were predicted to regulate integral parts of the miRNA processing machinery, and our gene expression analysis revealed significant reductions of these transcripts in RAS-active tumors. These results suggest an association between RAS signaling and miRNA processing in which miRNAs may attenuate their own biogenesis. Conclusions Our study represents the first gene expression-based investigation of miRNA regulatory activity in human sarcomas, and our findings indicate that miRNA activity patterns derived from integrated transcriptomic data are reproducible and biologically informative in cancer. We identified an association between RAS signaling and miRNA processing, and demonstrated sequence alterations as plausible causes for differential miRNA activity

  13. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Loesser, G. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Smith, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Udintsev, V. [ITER Org, F-13115 St Paul Les Durance, France.; Giacomin, T., T. [ITER Org, F-13115 St Paul Les Durance, France.; Khodak, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Johnson, D, [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Feder, R, [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-07-01

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses were performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.

  14. Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways.

    Science.gov (United States)

    Govey, Peter M; Jacobs, Jon M; Tilton, Susan C; Loiselle, Alayna E; Zhang, Yue; Freeman, Willard M; Waters, Katrina M; Karin, Norman J; Donahue, Henry J

    2014-06-03

    Osteocytes, positioned within bone׳s porous structure, are subject to interstitial fluid flow upon whole bone loading. Such fluid flow is widely theorized to be a mechanical signal transduced by osteocytes, initiating a poorly understood cascade of signaling events mediating bone adaptation to mechanical load. The objective of this study was to examine the time course of flow-induced changes in osteocyte gene transcript and protein levels using high-throughput approaches. Osteocyte-like MLO-Y4 cells were subjected to 2h of oscillating fluid flow (1Pa peak shear stress) and analyzed following 0, 2, 8, and 24h post-flow incubation. Transcriptomic microarray analysis, followed by gene ontology pathway analysis, demonstrated fluid flow regulation of genes consistent with both known and unknown metabolic and inflammatory responses in bone. Additionally, two of the more highly up-regulated gene products - chemokines Cxcl1 and Cxcl2, supported by qPCR - have not previously been reported as responsive to fluid flow. Proteomic analysis demonstrated greatest up-regulation of the ATP-producing enzyme NDK, calcium-binding Calcyclin, and G protein-coupled receptor kinase 6. Finally, an integrative pathway analysis merging fold changes in transcript and protein levels predicted signaling nodes not directly detected at the sampled time points, including transcription factors c-Myc, c-Jun, and RelA/NF-κB. These results extend our knowledge of the osteocytic response to fluid flow, most notably up-regulation of Cxcl1 and Cxcl2 as possible paracrine agents for osteoblastic and osteoclastic recruitment. Moreover, these results demonstrate the utility of integrative, high-throughput approaches in place of a traditional candidate approach for identifying novel mechano-sensitive signaling molecules.

  15. Different corticostriatal integration in spiny projection neurons from direct and indirect pathways

    Directory of Open Access Journals (Sweden)

    Edén Flores-Barrera

    2010-06-01

    Full Text Available The striatum is the principal input structure of the basal ganglia (BG. Major glutamatergic afferents to the striatum come from the cerebral cortex and make monosynaptic contacts with medium spiny projection neurons (MSNs and interneurons. Despite differences in axonal projections, dopamine receptors expression and differences in excitability between MSNs from “direct” and “indirect” BG pathways, these neuronal classes have been thought as electrophysiologically very similar. Based on work with BAC transgenic mice, here it is shown that corticostriatal responses in D1- and D2-receptor expressing MSNs (D1- and D2-MSNs are radically different so as to establish an electrophysiological footprint that readily differentiates between them. Experiments in BAC mice allowed us to predict, with high probability (P>0.9, in rats or non-BAC mice, whether a recorded neuron, from rat or mouse, was going to be substance P or enkephalin immunoreactive. Responses are more prolonged and evoke more action potentials in D1-MSNs, while they are briefer and exhibit intrinsic autoregenerative responses in D2-MSNs. A main cause for these differences was the interaction of intrinsic properties with the inhibitory contribution in each response Inhibition always depressed corticostriatal depolarization in D2-MSNs, while it helped in sustaining prolonged depolarizations in D1-MSNs, in spite of depressing early discharge. Corticostriatal responses changed dramatically after striatal DA-depletion in 6-hydroxy-dopamine (6-OHDA lesioned animals: a response reduction was seen in SP+ MSNs whereas an enhanced response was seen in ENK+ MSNs. The end result was that differences in the responses were greatly diminished after DA depletion.

  16. MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways.

    Science.gov (United States)

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Obata, Toshihiro; Fernie, Alisdair R; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2013-10-01

    Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth.

  17. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer

    Directory of Open Access Journals (Sweden)

    Lockwood William W

    2010-05-01

    Full Text Available Abstract Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.

  18. Integration of G-Protein Coupled Receptor Signaling Pathways for Activation of a Transcription Factor (EGR-3)

    Institute of Scientific and Technical Information of China (English)

    Xuehai Tan; Pam Sanders; Jack Bolado Jr.; Mike Whitney

    2003-01-01

    We recently reported the use of a gene-trapping approach to isolate cell clones in which a reporter gene had integrated into genes modulated by T-cell activation. We have now tested a panel of clones from that report and identified the one that responds to a variety of G-protein coupled receptors (GPCR). The βlactamase tagged EGR-3 Jurkat cell was used to dissect specific GPCR signaling in vivo. Three GPCRs were studied, including the chemokine receptor CXCR4 (Gicoupled) that was endogenously expressed, the platelet activation factor (PAF) receptor (Gq-coupled), andβ2 adrenergic receptor (Gs-coupled) that was both stably transfected. Agonists for each receptor activated transcription of theβ-lactamase tagged EGR-3 gene. Induction of EGR-3 through CXCR4 was blocked by pertussis toxin and PD58059, a specific inhibitor of MEK (MAPK/ERK kinase). Neither of these inhibitors blocked isoproterenol or PAF-mediated activation of EGR-3. Conversely, β2- and PAF-mediated EGR-3 activation was blocked by the p38, specific inhibitor SB580. In addition, bothβ2- and PAF-mediated EGR-3 activation could be synergistically activated by CXCR4 activation. This combined result indicates that EGR-3 can be activated through distinct signal transduction pathways by different GPCRs and that signals can be integrated and amplified to efficiently tune the level of activation.

  19. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  20. A critical knowledge pathway to low-carbon, sustainable futures: Integrated understanding of urbanization, urban areas, and carbon

    Science.gov (United States)

    Romero-Lankao, Patricia; Gurney, Kevin R.; Seto, Karen C.; Chester, Mikhail; Duren, Riley M.; Hughes, Sara; Hutyra, Lucy R.; Marcotullio, Peter; Baker, Lawrence; Grimm, Nancy B.; Kennedy, Christopher; Larson, Elisabeth; Pincetl, Stephanie; Runfola, Dan; Sanchez, Landy; Shrestha, Gyami; Feddema, Johannes; Sarzynski, Andrea; Sperling, Joshua; Stokes, Eleanor

    2014-10-01

    Independent lines of research on urbanization, urban areas, and carbon have advanced our understanding of some of the processes through which energy and land uses affect carbon. This synthesis integrates some of these diverse viewpoints as a first step toward a coproduced, integrated framework for understanding urbanization, urban areas, and their relationships to carbon. It suggests the need for approaches that complement and combine the plethora of existing insights into interdisciplinary explorations of how different urbanization processes, and socio-ecological and technological components of urban areas, affect the spatial and temporal patterns of carbon emissions, differentially over time and within and across cities. It also calls for a more holistic approach to examining the carbon implications of urbanization and urban areas, based not only on demographics or income but also on other interconnected features of urban development pathways such as urban form, economic function, economic-growth policies, and other governance arrangements. It points to a wide array of uncertainties around the urbanization processes, their interactions with urban socio-institutional and built environment systems, and how these impact the exchange of carbon flows within and outside urban areas. We must also understand in turn how carbon feedbacks, including carbon impacts and potential impacts of climate change, can affect urbanization processes. Finally, the paper explores options, barriers, and limits to transitioning cities to low-carbon trajectories, and suggests the development of an end-to-end, coproduced and integrated scientific understanding that can more effectively inform the navigation of transitional journeys and the avoidance of obstacles along the way.

  1. Integration of Orthogonal Signaling by the Notch and Dpp Pathways in Drosophila.

    Science.gov (United States)

    Stroebele, Elizabeth; Erives, Albert

    2016-05-01

    The transcription factor Suppressor of Hairless and its coactivator, the Notch intracellular domain, are polyglutamine (pQ)-rich factors that target enhancer elements and interact with other locally bound pQ-rich factors. To understand the functional repertoire of such enhancers, we identify conserved regulatory belts with binding sites for the pQ-rich effectors of both Notch and BMP/Dpp signaling, and the pQ-deficient tissue selectors Apterous (Ap), Scalloped (Sd), and Vestigial (Vg). We find that the densest such binding site cluster in the genome is located in the BMP-inducible nab locus, a homolog of the vertebrate transcriptional cofactors NAB1/NAB2 We report three major findings. First, we find that this nab regulatory belt is a novel enhancer driving dorsal wing margin expression in regions of peak phosphorylated Mad in wing imaginal discs. Second, we show that Ap is developmentally required to license the nab dorsal wing margin enhancer (DWME) to read out Notch and Dpp signaling in the dorsal compartment. Third, we find that the nab DWME is embedded in a complex of intronic enhancers, including a wing quadrant enhancer, a proximal wing disc enhancer, and a larval brain enhancer. This enhancer complex coordinates global nab expression via both tissue-specific activation and interenhancer silencing. We suggest that DWME integration of BMP signaling maintains nab expression in proliferating margin descendants that have divided away from Notch-Delta boundary signaling. As such, uniform expression of genes like nab and vestigial in proliferating compartments would typically require both boundary and nonboundary lineage-specific enhancers.

  2. Evaluation of Schottky barrier height on 4H-SiC m-face \\{ 1\\bar{1}00\\} for Schottky barrier diode wall integrated trench MOSFET

    Science.gov (United States)

    Kobayashi, Yusuke; Ishimori, Hiroshi; Kinoshita, Akimasa; Kojima, Takahito; Takei, Manabu; Kimura, Hiroshi; Harada, Shinsuke

    2017-04-01

    We proposed an Schottky barrier diode wall integrated trench MOSFET (SWITCH-MOS) for the purposes of shrinking the cell pitch and suppressing the forward degradation of the body diode. A trench Schottky barrier diode (SBD) was integrated into a trench gate MOSFET with a wide shielding p+ region that protected the trench bottoms of both the SBD and the MOS gate from high electrical fields in the off state. The SBD was placed on the trench sidewall of the \\{ 1\\bar{1}00\\} plane (m-face). Static and transient simulations revealed that SWITCH-MOS sufficiently suppressed the bipolar current that induced forward degradation, and we determined that the optimum Schottky barrier height (SBH) was from 0.8 to 2.0 eV. The SBH depends on the crystal planes in 4H-SiC, but the SBH of the m-face was unclear. We fabricated a planar m-face SBD for the first time, and we obtained SBHs from 1.4 to 1.8 eV experimentally with titanium or nickel as a Schottky metal.

  3. Study on Manufacture of Integrated Visual Pathway Specimens%完整视觉传导通路标本研制

    Institute of Scientific and Technical Information of China (English)

    高燕; 马青; 沈柔; 李倩; 普玲燕; 朱建华

    2014-01-01

    Objective:To investigate the methods of manufacturing integrated visual pathway specimens,and provide specimen making ideas for study of the visual pathway and light reflex pathway. Manufacture integrated visual pathway specimens as intuitive teaching aids for experimental teaching of human anatomy. Methods:Based on the previous experience,integrated visual pathway specimens were made from the base of skull by peeling tissues progressively. Results:Two integrated visual pathway specimens have been made. The eyes,optic nerves,optic chiasm,optic tracts,lateral geniculate bodies,optic radiation and visual cortex ware showed in the specimens. Conclusion:It is difficult to make the integrated visual pathway specimens,especially to display structures of visual pathway from the top of skull. The method of passing through the base of skull is the better way to display structures of integrated visual pathway.%目的:探讨完整视觉传导路标本的制作方法,为视觉传导及对光反射通路的研究提供标本制作思路;制作出完整视觉传导通路的标本,为解剖学实验教学提供直观形象的教具。方法:在参考和综合前人经验的基础上,使用逐层剥离法从颅底显露完整视觉传导通路。结果:制作出2个完整视觉传导通路标本,标本直观地显示了眼球、视神经、视交叉、视束、外侧膝状体、视辐射及视觉中枢等结构。结论:视觉传导通路标本制作较为困难,从上面很难完整显示整个视觉传导通路,从颅底入路是显示完整视觉传导通路的较好方法。

  4. Bridging arctic pathways: Integrating hydrology, geomorphology and remote sensing in the north

    Science.gov (United States)

    Trochim, Erin D.

    This work presents improved approaches for integrating patterns and processes within hydrology, geomorphology, ecology and permafrost on Arctic landscapes. Emphasis was placed on addressing fundamental interdisciplinary questions using robust, repeatable methods. Water tracks were examined in the foothills of the Brooks Range to ascertain their role within the range of features that transport water in Arctic regions. Classes of water tracks were developed using multiple factor analysis based on their geomorphic, soil and vegetation characteristics. These classes were validated to verify that they were repeatable. Water tracks represented a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrated a new approach to better understanding regional hydrological patterns. The locations of the water track classes were mapped using a combination method where intermediate processing of spectral classifications, texture and topography were fed into random forests to identify the water track classes. Overall, the water track classes were best visualized where they were the most discrete from the background landscape in terms of both shape and content. Issues with overlapping and imbalances between water track classes were the biggest challenges. Resolving the spatial locations of different water tracks represents a significant step forward for understanding periglacial landscape dynamics. Leaf area index (LAI) calculations using the gap-method were optimized using normalized difference vegetation index (NDVI) as input for both WorldView-2 and Landsat-7 imagery. The study design used groups to separate the effects of surficial drainage networks and the relative magnitude of change in NDVI over time. LAI values were higher for the WorldView-2 data and for each sensor and group combination the distribution of LAI values was unique. This study indicated that there are tradeoffs between increased spatial resolution and the ability

  5. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Peisert, Sean [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Davis, CA (United States); Potok, Thomas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jones, Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-03

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues included research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the

  6. Development of computationally predicted Adverse Outcome Pathway (AOP) networks through data mining and integration of publicly available in vivo, in vitro, phenotype, and biological pathway data

    Science.gov (United States)

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...

  7. An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells

    Directory of Open Access Journals (Sweden)

    Davie James R

    2007-09-01

    Full Text Available Abstract Background The sex hormone estrogen (E2 is pivotal to normal mammary gland growth and differentiation and in breast carcinogenesis. In this in silico study, we examined metabolic differences between ER(+ve breast cancer cells during E2 deprivation. Methods Public repositories of SAGE and MA gene expression data generated from E2 deprived ER(+ve breast cancer cell lines, MCF-7 and ZR75-1 were compared with normal breast tissue. We analyzed gene ontology (GO, enrichment, clustering, chromosome localization, and pathway profiles and performed multiple comparisons with cell lines and tumors with different ER status. Results In all GO terms, biological process (BP, molecular function (MF, and cellular component (CC, MCF-7 had higher gene utilization than ZR75-1. Various analyses showed a down-regulated immune function, an up-regulated protein (ZR75-1 and glucose metabolism (MCF-7. A greater percentage of 77 common genes localized to the q arm of all chromosomes, but in ZR75-1 chromosomes 11, 16, and 19 harbored more overexpressed genes. Despite differences in gene utilization (electron transport, proteasome, glycolysis/gluconeogenesis and expression (ribosome in both cells, there was an overall similarity of ZR75-1 with ER(-ve cell lines and ER(+ve/ER(-ve breast tumors. Conclusion This study demonstrates integral metabolic differences may exist within the same cell subtype (luminal A in representative ER(+ve cell line models. Selectivity of gene and pathway usage for strategies such as energy requirement minimization, sugar utilization by ZR75-1 contrasted with MCF-7 cells, expressing genes whose protein products require ATP utilization. Such characteristics may impart aggressiveness to ZR75-1 and may be prognostic determinants of ER(+ve breast tumors.

  8. Exocyst Sec10 protects epithelial barrier integrity and enhances recovery following oxidative stress, by activation of the MAPK pathway.

    Science.gov (United States)

    Park, Kwon Moo; Fogelgren, Ben; Zuo, Xiaofeng; Kim, Jinu; Chung, Daniel C; Lipschutz, Joshua H

    2010-03-01

    Cell-cell contacts are essential for epithelial cell function, and disruption is associated with pathological conditions including ischemic kidney injury. We hypothesize that the exocyst, a highly-conserved eight-protein complex that targets secretory vesicles carrying membrane proteins, is involved in maintaining renal epithelial barrier integrity. Accordingly, increasing exocyst expression in renal tubule cells may protect barrier function from oxidative stress resulting from ischemia and reperfusion (I/R) injury. When cultured on plastic, Madin-Darby canine kidney (MDCK) cells overexpressing Sec10, a central exocyst component, formed domes showing increased resistance to hydrogen peroxide (H2O2). Transepithelial electric resistance (TER) of Sec10-overexpressing MDCK cells grown on Transwell filters was higher than in control MDCK cells, and the rate of TER decrease following H2O2 treatment was less in Sec10-overexpressing MDCK cells compared with control MDCK cells. After removal of H2O2, TER returned to normal more rapidly in Sec10-overexpressing compared with control MDCK cells. In collagen culture MDCK cells form cysts, and H2O2 treatment damaged Sec10-overexpressing MDCK cell cysts less than control MDCK cell cysts. The MAPK pathway has been shown to protect animals from I/R injury. Levels of active ERK, the final MAPK pathway step, were higher in Sec10-overexpressing compared with control MDCK cells. U0126 inhibited ERK activation, exacerbated the H2O2-induced decrease in TER and cyst disruption, and delayed recovery of TER following H2O2 removal. Finally, in mice with renal I/R injury, exocyst expression decreased early and returned to normal concomitant with functional recovery, suggesting that the exocyst may be involved in the recovery following I/R injury.

  9. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity.

    Directory of Open Access Journals (Sweden)

    Fabio Carrilho Galvão

    Full Text Available The putative eukaryotic translation initiation factor 5A (eIF5A is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1 and deoxyhypusine hydroxylase (Lia1 catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1 and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of m

  10. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity.

    Science.gov (United States)

    Galvão, Fabio Carrilho; Rossi, Danuza; Silveira, Wagner da Silva; Valentini, Sandro Roberto; Zanelli, Cleslei Fernando

    2013-01-01

    The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell

  11. Identification of oral cancer related candidate genes by integrating protein-protein interactions, gene ontology, pathway analysis and immunohistochemistry.

    Science.gov (United States)

    Kumar, Ravindra; Samal, Sabindra K; Routray, Samapika; Dash, Rupesh; Dixit, Anshuman

    2017-05-30

    In the recent years, bioinformatics methods have been reported with a high degree of success for candidate gene identification. In this milieu, we have used an integrated bioinformatics approach assimilating information from gene ontologies (GO), protein-protein interaction (PPI) and network analysis to predict candidate genes related to oral squamous cell carcinoma (OSCC). A total of 40973 PPIs were considered for 4704 cancer-related genes to construct human cancer gene network (HCGN). The importance of each node was measured in HCGN by ten different centrality measures. We have shown that the top ranking genes are related to a significantly higher number of diseases as compared to other genes in HCGN. A total of 39 candidate oral cancer target genes were predicted by combining top ranked genes and the genes corresponding to significantly enriched oral cancer related GO terms. Initial verification using literature and available experimental data indicated that 29 genes were related with OSCC. A detailed pathway analysis led us to propose a role for the selected candidate genes in the invasion and metastasis in OSCC. We further validated our predictions using immunohistochemistry (IHC) and found that the gene FLNA was upregulated while the genes ARRB1 and HTT were downregulated in the OSCC tissue samples.

  12. [Part I. End-stage chronic organ failures: a position paper on shared care planning. The Integrated Care Pathway].

    Science.gov (United States)

    Gristina, Giuseppe R; Orsi, Luciano; Carlucci, Annalisa; Causarano, Ignazio R; Formica, Marco; Romanò, Massimo

    2014-01-01

    In Italy the birth rate decrease together with the continuous improvement of living conditions on one hand, and the health care progress on the other hand, led in recent years to an increasing number of patients with chronic mono- or multi-organ failures and in an extension of their life expectancy. However, the natural history of chronic failures has not changed and the inescapable disease's worsening at the end makes more rare remissions, increasing hospital admissions rate and length of stay. Thus, when the "end-stage" get close clinicians have to engage the patient and his relatives in an advance care planning aimed to share a decision making process regarding all future treatments and related ethical choices such as patient's best interests, rights, values, and priorities. A right approach to the chronic organ failures end-stage patients consists therefore of a careful balance between the new powers of intervention provided by the biotechnology and pharmacology (intensive care), both with the quality of remaining life supplied by physicians to these patients (proportionality and beneficence) and the effective resources rationing and allocation (distributive justice). However, uncertainty still marks the criteria used by doctors to assess prognosis of these patients in order to make decisions concerning intensive or palliative care. The integrated care pathway suggested in this position paper shared by nine Italian medical societies, has to be intended as a guide focused to identify end-stage patients and choosing for them the best care option between intensive treatments and palliative care.

  13. Integrating Robust Decision Making (RDM) and Dynamic Adaptive Policy Pathways (DAPP): Towards a Unified Decision Making Framework under Deep Uncertainty

    Science.gov (United States)

    Kumar, A.; Weijs, S.

    2016-12-01

    With exogenous factors such as climate change, future demand, resource options, technological and economic constraints, water agency plans should be robust and able to be adapted over time to meet agency goals over a wide range of plausible future conditions. A variety of new approaches and computational tools are being put forward to aid decision making under deep uncertainty (DMDU). Robust Decision Making (RDM) and Dynamic Adaptive Policy Pathways (DAPP) are the two frameworks that have been applied recently to a variety of problems. While RDM facilitates the analysis of trade-offs and the iterative learning about a policy problem, DAPP offers a map of possible routes into the future giving insight into future actions that can be taken if the initial actions prove to be insufficient, thus, alleviating the irreversibility of decisions. This paper first investigates into both approaches, and then suggest a way to combine elements from both so as to produce a more unified decision making framework under deep uncertainty. Integrated Resource Plan (IRP) 2013 submitted by British Columbia Hydro and Power Authority (BC Hydro) is considered for the analyses. Main focus is on identification of scenarios that highlight the vulnerabilities of IRP strategies in different state of the world using RDM approach and then employing DAPP to identify demand and climate-related signposts. This work will inform decision makers and stakeholders to adapt robust plans in upcoming IRP 2018.

  14. Friend leukemia virus integration 1 activates the Rho GTPase pathway and is associated with metastasis in breast cancer.

    Science.gov (United States)

    Song, Wei; Li, Wei; Li, Lingyu; Zhang, Shilin; Yan, Xu; Wen, Xue; Zhang, Xiaoying; Tian, Huimin; Li, Ailing; Hu, Ji-Fan; Cui, Jiuwei

    2015-09-15

    Breast cancer is the most prevalent malignant disease in women worldwide. In patients with breast cancer, metastasis to distant sites directly determines the survival outcome. However, the molecular mechanism underlying metastasis in breast cancer remains to be defined. In this report, we found that Friend leukemia virus integration 1 (FLI1) proto-oncogene was differentially expressed between the aggressive MDA-MB231 and the non-aggressive MCF-7 breast cancer cells. Congruently, immunohistochemical staining of clinical samples revealed that FLI1 was overexpressed in breast cancers as compared with the adjacent tissues. The abundance of FLI1 protein was strongly correlated with the advanced stage, poor differentiation, and lymph node metastasis in breast cancer patients. Knockdown of FLI1 with small interfering RNAs significantly attenuated the potential of migration and invasion in highly metastatic human breast cancer cells. FLI1 oncoprotein activated the Rho GTPase pathway that is known to play a role in tumor metastasis. This study for the first time identifies FLI1 as a clinically and functionally important target gene of metastasis, providing a rationale for developing FLI1 inhibitors in the treatment of breast cancer.

  15. Wonderful Walls

    Science.gov (United States)

    Greenman, Jim

    2006-01-01

    In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…

  16. The CCAAT/enhancer-binding protein-ATF response elements-luciferase mouse model, an innovative tool to monitor the integrated stress response pathway in vivo.

    Science.gov (United States)

    Bruhat, Alain; Fafournoux, Pierre

    2017-05-01

    The article highlights the recent development of an ATF4 (activating transcription factor) inducible luciferase (LUC) mouse model to monitor the integrated stress response pathway (ISR) in vivo. The ISR pathway plays a key role in cellular adaptation to stress and is dysregulated in numerous diseases. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 α, which leads to the recruitment of the transcription factor ATF4 to specific CCAAT/enhancer-binding protein-ATF response elements (CAREs) located in the promoters of target genes. To monitor the modulation of this pathway in the whole animal and at tissue and cellular levels, we generated a CARE-driven LUC mouse model. We validated the relevance of this model to study stress-related pathologies and recently observed the correlation between the ISR pathway induction in muscle and the occurrence of stress-induced skeletal muscle atrophy. The CARE-LUC mouse model represents an innovative tool for investigating the role of the ISR pathway in physiology and disease and opens new avenues for the development of drugs that could modify this important pathway in stress-related human diseases.

  17. How Effective Are Clinical Pathways With and Without Online Peer-Review? An Analysis of Bone Metastases Pathway in a Large, Integrated National Cancer Institute-Designated Comprehensive Cancer Center Network

    Energy Technology Data Exchange (ETDEWEB)

    Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA (United States); Rajagopalan, Malolan S.; Flickinger, John C.; Rakfal, Susan M. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA (United States); Rodgers, Edwin [Via Oncology, Pittsburgh, PA (United States); Heron, Dwight E. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA (United States)

    2012-07-15

    Purpose: Clinical pathways are an important tool used to manage the quality in health care by standardizing processes. This study evaluated the impact of the implementation of a peer-reviewed clinical pathway in a large, integrated National Cancer Institute-Designated Comprehensive Cancer Center Network. Methods: In 2003, we implemented a clinical pathway for the management of bone metastases with palliative radiation therapy. In 2009, we required the entry of management decisions into an online tool that records pathway choices. The pathway specified 1 or 5 fractions for symptomatic bone metastases with the option of 10-14 fractions for certain clinical situations. The data were obtained from 13 integrated sites (3 central academic, 10 community locations) from 2003 through 2010. Results: In this study, 7905 sites were treated with 64% of courses delivered in community practice and 36% in academic locations. Academic practices were more likely than community practices to treat with 1-5 fractions (63% vs. 23%; p < 0.0001). The number of delivered fractions decreased gradually from 2003 to 2010 for both academic and community practices (p < 0.0001); however, greater numbers of fractions were selected more often in community practices (p < 0.0001). Using multivariate logistic regression, we found that a significantly greater selection of 1-5 fractions developed after implementation online pathway monitoring (2009) with an odds ratio of 1.2 (confidence interval, 1.1-1.4) for community and 1.3 (confidence interval, 1.1-1.6) for academic practices. The mean number of fractions also decreased after online peer review from 6.3 to 6.0 for academic (p = 0.07) and 9.4 to 9.0 for community practices (p < 0.0001). Conclusion: This is one of the first studies to examine the efficacy of a clinical pathway for radiation oncology in an integrated cancer network. Clinical pathway implementation appears to be effective in changing patterns of care, particularly with online clinical

  18. Potential barriers and facilitators for implementation of an integrated care pathway for hearing-impaired persons: an exploratory survey among patients and professionals

    Directory of Open Access Journals (Sweden)

    Verschuure Hans

    2007-04-01

    Full Text Available Abstract Background Because of the increasing costs and anticipated shortage of Ear Nose and Throat (ENT specialists in the care for hearing-impaired persons, an integrated care pathway that includes direct hearing aid provision was developed. While this direct pathway is still under investigation, in a survey we examined expectations and potential barriers and facilitators towards this direct pathway, of patients and professionals involved in the pathway. Methods Two study populations were assessed: members of the health professions involved in the care pathway for hearing-impaired persons (general practitioners (GPs, hearing aid dispensers, ENT-specialists and clinical audiologists and persons with hearing complaints. We developed a comprehensive semi-structured questionnaire for the professionals, regarding expectations, barriers, facilitators and conditions for implementation. We developed two questionnaires for persons with hearing complaints, both regarding evaluations and preferences, and administered them after they had experienced two key elements of the direct pathway: the triage and the hearing aid fitting. Results On average GPs and hearing aid dispensers had positive expectations towards the direct pathway, while ENT-specialists and clinical audiologists had negative expectations. Professionals stated both barriers and facilitators towards the direct pathway. Most professionals either supported implementation of the direct pathway, provided that a number of conditions were satisfied, or did not support implementation, unless roughly the same conditions were satisfied. Professionals generally agreed on which conditions need to be satisfied. Persons with hearing complaints evaluated the present referral pathway and the new direct pathway equally. Many, especially older, participants stated however that they would still visit the GP and ENT-specialist, even when this would not be necessary for reimbursement of the hearing aid, and

  19. Live-cell and super-resolution imaging reveal that the distribution of wall-associated protein A is correlated with the cell chain integrity of Streptococcus mutans.

    Science.gov (United States)

    Li, Y; Liu, Z; Zhang, Y; Su, Q P; Xue, B; Shao, S; Zhu, Y; Xu, X; Wei, S; Sun, Y

    2015-10-01

    Streptococcus mutans is a primary pathogen responsible for dental caries. It has an outstanding ability to form biofilm, which is vital for virulence. Previous studies have shown that knockout of Wall-associated protein A (WapA) affects cell chain and biofilm formation of S. mutans. As a surface protein, the distribution of WapA remains unknown, but it is important to understand the mechanism underlying the function of WapA. This study applied the fluorescence protein mCherry as a reporter gene to characterize the dynamic distribution of WapA in S. mutans via time-lapse and super-resolution fluorescence imaging. The results revealed interesting subcellular distribution patterns of WapA in single, dividing and long chains of S. mutans cells. It appears at the middle of the cell and moves to the poles as the cell grows and divides. In a cell chain, after each round of cell division, such dynamic relocation results in WapA distribution at the previous cell division sites, resulting in a pattern where WapA is located at the boundary of two adjacent cell pairs. This WapA distribution pattern corresponds to the breaking segmentation of wapA deletion cell chains. The dynamic relocation of WapA through the cell cycle increases our understanding of the mechanism of WapA in maintaining cell chain integrity and biofilm formation.

  20. Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation.

    Science.gov (United States)

    Bottai, Daria; Di Luca, Mariagrazia; Majlessi, Laleh; Frigui, Wafa; Simeone, Roxane; Sayes, Fadel; Bitter, Wilbert; Brennan, Michael J; Leclerc, Claude; Batoni, Giovanna; Campa, Mario; Brosch, Roland; Esin, Semih

    2012-03-01

    The chromosome of Mycobacterium tuberculosis encodes five type VII secretion systems (ESX-1-ESX-5). While the role of the ESX-1 and ESX-3 systems in M. tuberculosis has been elucidated, predictions for the function of the ESX-5 system came from data obtained in Mycobacterium marinum, where it transports PPE and PE_PGRS proteins and modulates innate immune responses. To define the role of the ESX-5 system in M. tuberculosis, in this study, we have constructed five M. tuberculosis H37Rv ESX-5 knockout/deletion mutants, inactivating eccA(5), eccD(5), rv1794 and esxM genes or the ppe25-pe19 region. Whereas the Mtbrv1794ko displayed no obvious phenotype, the other four mutants showed defects in secretion of the ESX-5-encoded EsxN and PPE41, a representative member of the large PPE protein family. Strikingly, the MtbeccD(5) ko mutant also showed enhanced sensitivity to detergents and hydrophilic antibiotics. When the virulence of the five mutants was evaluated, the MtbeccD(5) ko and MtbΔppe25-pe19 mutants were found attenuated both in macrophages and in the severe combined immune-deficient mouse infection model. Altogether these findings indicate an essential role of ESX-5 for transport of PPE proteins, cell wall integrity and full virulence of M. tuberculosis, thereby opening interesting new perspectives for the study of this human pathogen.

  1. Re-analysis of protein data reveals the germination pathway and up accumulation mechanism of cell wall hydrolases during the radicle protrusion step of seed germination in Podophyllum hexandrum- a high altitude plant

    Directory of Open Access Journals (Sweden)

    Vivek eDogra

    2015-10-01

    Full Text Available Podophyllum hexandrum Royle is an important high-altitude plant of Himalayas with immense medicinal value. Earlier, it was reported that the cell wall hydrolases were up accumulated during radicle protrusion step of Podophyllum seed germination. In the present study, Podophyllum Germination protein interactome Network (PGN was constructed by using the differentially accumulated protein data set of Podophyllum during the radicle protrusion step of seed germination, with reference to Arabidopsis protein–protein interactome network (AtPIN. The developed PGN is comprised of a giant cluster with 1028 proteins having 10519 interactions and a few small clusters with relevant gene ontological signatures. In this analysis, a germination pathway related cluster which is also central to the topology and information dynamics of PGN was obtained with a set of 60 key proteins. Among these, 8 proteins which are known to be involved in signalling, metabolism, protein modification, cell wall modification and cell cycle regulation processes were found commonly highlighted in both the proteomic and interactome analysis. The systems-level analysis of PGN identified the key proteins involved in radicle protrusion step of seed germination in Podophyllum.

  2. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola.

    Science.gov (United States)

    Albarouki, Emad; Deising, Holger B

    2013-06-01

    Ferroxidases are essential components of the high-affinity reductive iron assimilation pathway in fungi. Two ferroxidase genes, FET3-1 and FET3-2, have been identified in the genome of the maize anthracnose fungus Colletotrichum graminicola. Complementation of growth defects of the ferroxidase-deficient Saccharomyces cerevisiae strain Δfet3fet4 showed that both Fet3-1 and Fet3-2 of C. graminicola represent functional ferroxidases. Expression of enhanced green fluorescent protein fusions in yeast and C. graminicola indicated that both ferroxidase proteins localize to the plasma membrane. Transcript abundance of FET3-1 increased dramatically under iron-limiting conditions but those of FET3-2 were hardly detectable. Δfet3-1 and Δfet3-2 single as well as Δfet3-1/2 double-deletion strains were generated. Under iron-sufficient or deficient conditions, vegetative growth rates of these strains did not significantly differ from that of the wild type but Δfet3-1 and Δfet3-1/2 strains showed increased sensitivity to reactive oxygen species. Furthermore, under iron-limiting conditions, appressoria of Δfet3-1 and Δfet3-1/2 strains showed significantly reduced transcript abundance of a class V chitin synthase and exhibited severe cell wall defects. Infection assays on intact and wounded maize leaves, quantitative data of infection structure differentiation, and infection stage-specific expression of FET3-1 showed that reductive iron assimilation is required for appressorial penetration, biotrophic development, and full virulence.

  3. 基于相似性推导的代谢数据集成%Integration of metabolic pathway database based on similarity derivation

    Institute of Scientific and Technical Information of China (English)

    岳丽华; 王蛴州; 蔡荣峰

    2011-01-01

    To solve the problem of biologic database integration, combining the metabolic pathway data feature and automated schema matching methods, based on the characteristics that the same molecular and enzyme reaction have the same representation, a similarity derivation based metabolic pathway data integration algorithm was proposed. The method was verified by being effectively applied to LIGAND, EcoCyc and MetaCyc metabolic pathway databases. In addition, considering a friend interface for end user, a metabolic pathway visualized integration tool was designed and implemented using dynamic layout graphic user interface.%为了解决生物学代谢数据库数据集成的难题,通过结合生物教据库中代谢通路数据特点和自动模式匹配的集成方法,根据同种分子和酶在反应中有相同表现的特点,提出一种基于相似性推导的代谢通路数据集成方法.该方法通过在公共代谢数据库LIGAND、EcoCye和MetaCyc上的实验,验证了其有效性.最后,为了方便使用,采用动态布局的可视化用户界面,设计实现了一个代谢通路可视化集成工具.

  4. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  5. From generic pathways to ICT-supported horizontally integrated care: the SmartCare approach and convergence with future Internet assembly.

    Science.gov (United States)

    Urošević, Vladimir; Mitić, Marko

    2014-01-01

    Successful service integration in policy and practice requires both technology innovation and service process innovation being pursued and implemented at the same time. The SmartCare project (partially EC-funded under CIP ICT PSP Program) aims to achieve this through development, piloting and evaluation of ICT-based services, horizontally integrating health and social care in ten pilot regions, including Kraljevo region in Serbia. The project has identified and adopted two generic highest-level common thematic pathways in joint consolidation phase - integrated support for long-term care and integrated support after hospital discharge. A common set of standard functional specifications for an open ICT platform enabling the delivery of integrated care is being defined, around the challenges of data sharing, coordination and communication in these two formalized pathways. Implementation and system integration on technology and architecture level are to be based on open standards, multivendor interoperability, and leveraging on the current evolving open specification technology foundations developed in relevant projects across the European Research Area.

  6. Multi-walled carbon nanotubes act as a chemokine and recruit macrophages by activating the PLC/IP3/CRAC channel signaling pathway.

    Science.gov (United States)

    Li, Hui; Tan, Xiao-Qiu; Yan, Li; Zeng, Bo; Meng, Jie; Xu, Hai-Yan; Cao, Ji-Min

    2017-03-22

    The impact of nanomaterials on immune cells is gaining attention but is not well documented. Here, we report a novel stimulating effect of carboxylated multi-walled carbon nanotubes (c-MWCNTs) on the migration of macrophages and uncover the underlying mechanisms, especially the upstream signaling, using a series of techniques including transwell migration assay, patch clamp, ELISA and confocal microscopy. c-MWCNTs dramatically stimulated the migration of RAW264.7 macrophages when endocytosed, and this effect was abolished by inhibiting phospholipase C (PLC) with U-73122, antagonizing the IP3 receptor with 2-APB, and blocking calcium release-activated calcium (CRAC) channels with SK&F96365. c-MWCNTs directly activated PLC and increased the IP3 level and [Ca(2+)]i level in RAW264.7 cells, promoted the translocation of the ER-resident stromal interaction molecule 1 (STIM1) towards the membranous calcium release-activated calcium channel modulator 1 (Orai1), and increased CRAC current densities in both RAW264.7 cells and HEK293 cells stably expressing the CRAC channel subunits Orai1 and STIM1. c-MWCNTs also induced dramatic spatial polarization of KCa3.1 channels in the RAW264.7 cells. We conclude that c-MWCNT is an activator of PLC and strongly recruits macrophages via the PLC/IP3/CRAC channel signaling cascade. These novel findings may provide a fundamental basis for the impact of MWCNTs on the immune system.

  7. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  8. Light Regulation of Swarming Motility in Pseudomonas syringae Integrates Signaling Pathways Mediated by a Bacteriophytochrome and a LOV Protein

    Science.gov (United States)

    Wu, Liang; McGrane, Regina S.; Beattie, Gwyn A.

    2013-01-01

    ABSTRACT The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. PMID:23760465

  9. RNA interference of WdFKS1 mRNA expression causes slowed growth, incomplete septation and loss of cell wall integrity in yeast cells of the polymorphic, pathogenic fungus Wangiella (Exophiala) dermatitidis.

    Science.gov (United States)

    Guo, Pengfei; Szaniszlo, Paul J

    2011-11-01

    As one of the main components of the fungal cell wall, β-1,3-glucan provides the mechanical strength to protect fungal protoplasts. The enzyme responsible for the synthesis of β-1,3-glucans in fungi is β-1,3-glucan synthase. Here we report the cloning, sequencing and characterization of the WdFKS1 gene, which in the pathogenic fungus Wangiella dermatitidis encodes the catalytic domain of its β-1, 3-glucan synthase. Because our research suggested that WdFKS1 is a single copy essential gene, we used RNA interference to reduce its expression. Reduction of the WdFKS1 messenger retarded growth and caused the loss of cell wall integrity of yeast cells, but not hyphae or sclerotic cells. We suggest that the WdFKS1 in this polymorphic agent of phaeohyphomycosis is not only required for cell wall construction and maintenance, but also is involved in septum formation.

  10. Putative PmrA and PmcA are important for normal growth, morphogenesis and cell wall integrity, but not for viability in Aspergillus nidulans.

    Science.gov (United States)

    Jiang, Hechun; Liu, Feifei; Zhang, Shizhu; Lu, Ling

    2014-11-01

    P-type Ca(2+)-transporting ATPases are Ca(2+) pumps, extruding cytosolic Ca(2+) to the extracellular environment or the intracellular Ca(2+) store lumens. In budding yeast, Pmr1 (plasma membrane ATPase related), and Pmc1 (plasma membrane calcium-ATPase) cannot be deleted simultaneously for it to survive in standard medium. Here, we deleted two putative Ca(2+) pumps, designated AnPmrA and AnPmcA, from Aspergillus nidulans, and obtained the mutants ΔanpmrA and ΔanpmcA, respectively. Then, using ΔanpmrA as the starting strain, the promoter of its anpmcA was replaced with the alcA promoter to secure the mutant ΔanpmrAalcApmcA or its anpmcA was deleted completely to produce the mutant ΔanpmrAΔpmcA. Different from the case in Saccharomyces cerevisiae, double deletion of anpmrA and anpmcA was not lethal in A. nidulans. In addition, deletion of anpmrA and/or anpmcA had produced growth defects, although overexpression of AnPmc1 in ΔanpmrAalcApmcA could not restore the growth defects that resulted from the loss of AnPmrA. Moreover, we found AnPmrA was indispensable for maintenance of normal morphogenesis, especially in low-Ca(2+)/Mn(2+) environments. Thus, our findings suggest AnPmrA and AnPmcA might play important roles in growth, morphogenesis and cell wall integrity in A. nidulans in a different way from that in yeasts.

  11. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  12. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Satoki [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Kakehashi, Anna [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Gi, Min [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  13. To what degree is palliative care integrated in guidelines and pathways for adult cancer patients in Europe: a systematic literature review.

    Science.gov (United States)

    Van Beek, Karen; Siouta, Naouma; Preston, Nancy; Hasselaar, Jeroen; Hughes, Sean; Payne, Sheila; Radbruch, Lukas; Centeno, Carlos; Csikos, Agnes; Garralda, Eduardo; van der Eerden, Marlieke; Hodiamont, Farina; Radvanyi, Ildiko; Menten, Johan

    2016-03-03

    Palliative Care (PC) aims to improve the quality of life for patients with cancer and their families and its benefits have been demonstrated by several studies. The objective of this systematic review is to assess the integration of PC in the content of guidelines/pathways of adult cancer patients in Europe. We included studies of adult patients with cancer published from 01/01/1995 and 31/12/2013 in Europe in six languages. We searched nine electronic databases, hand-searched six journals and also performed citation tracking. Studies were ranked using Emanuel's Integrated Palliative Care (IPC) criteria, a tool containing 11 domains to assess PC content in guidelines. Two reviewers screened the results and narrative synthesis has been employed. We identified a total of 28,277 potentially relevant articles from which 637 were eligible for full-text screening. The final review included 60 guidelines and 14 pathways. Eighty percent (80%) of the guidelines/pathways emphasize a holistic approach and 66% focus on PC interventions aimed at reducing suffering. Fifty seven percent (57%) did not discuss referral criteria for PC. Of all studies, five fulfilled at least 10/11 IPC criteria. Differences existed with regard to the referral criteria for bereavement care and the continuous adjustment of goals of care. Overall, most of the identified guidelines/pathways highlighted the importance of the holistic approach of IPC. The studies that were found to fulfil at least 10/11 Emanuel's IPC criteria could serve as benchmarks of IPC.

  14. Integrating pathway analysis and genetics of gene expression for genome-wide association study of basal cell carcinoma.

    Science.gov (United States)

    Zhang, Mingfeng; Liang, Liming; Morar, Nilesh; Dixon, Anna L; Lathrop, G Mark; Ding, Jun; Moffatt, Miriam F; Cookson, William O C; Kraft, Peter; Qureshi, Abrar A; Han, Jiali

    2012-04-01

    Genome-wide association studies (GWASs) have primarily focused on marginal effects for individual markers and have incorporated external functional information only after identifying robust statistical associations. We applied a new approach combining the genetics of gene expression and functional classification of genes to the GWAS of basal cell carcinoma (BCC) to identify potential biological pathways associated with BCC. We first identified 322,324 expression-associated single-nucleotide polymorphisms (eSNPs) from two existing GWASs of global gene expression in lymphoblastoid cell lines (n = 955), and evaluated the association of these functionally annotated SNPs with BCC among 2,045 BCC cases and 6,013 controls in Caucasians. We then grouped them into 99 KEGG pathways for pathway analysis and identified two pathways associated with BCC with p value <0.05 and false discovery rate (FDR) <0.5: the autoimmune thyroid disease pathway (mainly HLA class I and II antigens, p < 0.001, FDR = 0.24) and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway (p = 0.02, FDR = 0.49). Seventy-nine (25.7%) out of 307 significant eSNPs in the JAK-STAT pathway were associated with BCC risk (p < 0.05) in an independent replication set of 278 BCC cases and 1,262 controls. In addition, the association of JAK-STAT signaling pathway was marginally validated using 16,691 eSNPs identified from 110 normal skin samples (p = 0.08). Based on the evidence of biological functions of the JAK-STAT pathway on oncogenesis, it is plausible that this pathway is involved in BCC pathogenesis.

  15. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine

    Science.gov (United States)

    McKinney, Brett A.; Lareau, Caleb; Oberg, Ann L.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Poland, Gregory A.

    2016-01-01

    Although many diseases and traits show large heritability, few genetic variants have been found to strongly separate phenotype groups by genotype. Complex regulatory networks of variants and expression of multiple genes lead to small individual-variant effects and difficulty replicating the effect of any single variant in an affected pathway. Interaction network modeling of GWAS identifies effects ignored by univariate models, but population differences may still cause specific genes to not replicate. Integrative network models may help detect indirect effects of variants in the underlying biological pathway. In this study, we used gene-level functional interaction information from the Integrative Multi-species Prediction (IMP) tool to reveal important genes associated with a complex phenotype through evidence from epistasis networks and pathway enrichment. We test this method for augmenting variant-based network analyses with functional interactions by applying it to a smallpox vaccine immune response GWAS. The integrative analysis spotlights the role of genes related to retinoid X receptor alpha (RXRA), which has been implicated in a previous epistasis network analysis of smallpox vaccine. PMID:27513748

  16. Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures.

    Science.gov (United States)

    Zhao, Jian; Zheng, Shao-Hui; Fujita, Koki; Sakai, Kokki

    2004-05-01

    Roles of jasmonate and ethylene signalling and their interaction in yeast elicitor-induced biosynthesis of a phytoalexin, beta-thujaplicin, were investigated in Cupressus lusitanica cell cultures. Yeast elicitor, methyl jasmonate, and ethylene all induce the production of beta-thujaplicin. Elicitor also stimulates the biosynthesis of jasmonate and ethylene before the induction of beta-thujaplicin accumulation. The elicitor-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of jasmonate and ethylene biosynthesis or signal transduction. These results indicate that the jasmonate and ethylene signalling pathways are integral parts of the elicitor signal transduction leading to beta-thujaplicin accumulation. Methyl jasmonate treatment can induce ethylene production, whereas ethylene does not induce jasmonate biosynthesis; methyl jasmonate-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of ethylene biosynthesis and signalling, while blocking jasmonate biosynthesis inhibits almost all ethylene-induced beta-thujaplicin accumulation. These results indicate that the ethylene and jasmonate pathways interact in mediating beta-thujaplicin production, with the jasmonate pathway working as a main control and the ethylene pathway as a fine modulator for beta-thujaplicin accumulation. Both the ethylene and jasmonate signalling pathways can be regulated upstream by Ca(2+). Ca(2+) influx negatively regulates ethylene production, and differentially regulates elicitor- or methyl jasmonate-stimulated ethylene production.

  17. Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa B pathway

    Science.gov (United States)

    Qin, Yue; Li, Suning; Zhao, Gan; Fu, Xuanhao; Xie, Xueping; Huang, Yiyi; Cheng, Xiaojing; Wei, Jinbin; Liu, Huagang; Lai, Zefeng

    2017-01-01

    Numerous studies have demonstrated promising application of single-walled carbon nanotubes (SWNTs) in drug delivery, diagnosis, and targeted therapy. However, the adverse health effects resulting from intravenous injection of SWNTs are not completely understood. Studies have shown that levels of “pristine” or carboxylated carbon nanotubes are very high in mouse lungs after intravenous injection. We hypothesized that long-term and repeated intravenous administration of carboxylated SWNTs (c-SWNTs) can result in persistent accumulation and induce histopathologic changes in rat lungs. Here, c-SWNTs were administered repeatedly to rats via tail-vein injection for 90 days. Long-term intravenous injection of c-SWNTs caused sustained embolization in lung capillaries and granuloma formation. It also induced a persistent inflammatory response that was regulated by the nuclear factor-kappa B signaling pathway, and which resulted in pulmonary fibrogenesis. c-SWNTs trapped within lung capillaries traversed capillary walls and injured alveolar epithelial cells, thereby stimulating production of pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and pro-fibrotic growth factors (transforming growth factor-beta 1). Protein levels of type-I and type-III collagens, matrix metalloproteinase-2, and the tissue inhibitor of metalloproteinase-2 were upregulated after intravenous exposure to c-SWNTs as determined by immunohistochemical assays and Western blotting, which suggested collagen deposition and remodeling of the extracellular matrix. These data suggest that chronic and cumulative toxicity of nanomaterials to organs with abundant capillaries should be assessed if such nanomaterials are applied via intravenous administration. PMID:28115845

  18. Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway.

    Science.gov (United States)

    Polimeni, Manuela; Gulino, Giulia Rossana; Gazzano, Elena; Kopecka, Joanna; Marucco, Arianna; Fenoglio, Ivana; Cesano, Federico; Campagnolo, Luisa; Magrini, Andrea; Pietroiusti, Antonio; Ghigo, Dario; Aldieri, Elisabetta

    2016-06-01

    Multi-walled carbon nanotubes (MWCNT) are currently under intense toxicological investigation due to concern on their potential health effects. Current in vitro and in vivo data indicate that MWCNT exposure is strongly associated with lung toxicity (inflammation, fibrosis, granuloma, cancer and airway injury) and their effects might be comparable to asbestos-induced carcinogenesis. Although fibrosis is a multi-origin disease, epithelial-mesenchymal transition (EMT) is recently recognized as an important pathway in cell transformation. It is known that MWCNT exposure induces EMT through the activation of the TGF-β/Smad signalling pathway thus promoting pulmonary fibrosis, but the molecular mechanisms involved are not fully understood. In the present work we propose a new mechanism involving a TGF-β-mediated signalling pathway. Human bronchial epithelial cells were incubated with two different MWCNT samples at various concentrations for up to 96 h and several markers of EMT were investigated. Quantitative real time PCR, western blot, immunofluorescent staining and gelatin zymographies were performed to detect the marker protein alterations. ELISA was performed to evaluate TGF-β production. Experiments with neutralizing anti-TGF-β antibody, specific inhibitors of GSK-3β and Akt and siRNA were carried out in order to confirm their involvement in MWCNT-induced EMT. In vivo experiments of pharyngeal aspiration in C57BL/6 mice were also performed. Data were analyzed by a one-way ANOVA with Tukey's post-hoc test. Fully characterized MWCNT (mean length EMT in an in vitro human model (BEAS-2B cells) after long-term incubation at sub-cytotoxic concentrations. MWCNT stimulate TGF-β secretion, Akt activation and GSK-3β inhibition, which induces nuclear accumulation of SNAIL-1 and its transcriptional activity, thus contributing to switch on the EMT program. Moreover, a significant increment of nuclear β-catenin - due to E-cadherin repression and following

  19. Integrated pathway-based and network-based analysis of GC-MS rice metabolomics data under diazinon stress to infer affected biological pathways.

    Science.gov (United States)

    Mahdavi, Vahideh; Ghanati, Faezeh; Ghassempour, Alireza

    2016-02-01

    Diazinon insecticide is widely applied in rice (Oryza sativa L.) fields in Iran. However, concerns are now being raised about its potential adverse impacts on rice. In this study, a time-course metabolic change in rice plants was investigated after diazinon treatment using gas chromatography-mass spectrometry (GC-MS) and subsequently three different methods, MetaboAnalyst, MetaboNetwork, and analysis of reporter reactions, as a potential multivariate method were used to find the underlying changes in metabolism with stronger evidence in order to link differentially expressed metabolites to biological pathways. Results clearly showed the similarity of acetylcholinesterase (AChE) of rice plants to that of animals in terms of its inhibitability by diazinon and emphasized that subsequent accumulation of AChE mainly affects the metabolism of osmolites and tricarboxylic acid intermediates subsequent accumulation of ACh mainly affects the metabolism of osmolites and TCA intermediates.

  20. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  1. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells

    OpenAIRE

    2013-01-01

    Wnt morphogens released by neural precursor cells were recently reported to control blood–brain barrier (BBB) formation during development. Indeed, in mouse brain endothelial cells, activation of the Wnt/β-catenin signaling pathway, also known as the canonical Wnt pathway, was shown to stabilize endothelial tight junctions (TJs) through transcriptional regulation of the expression of TJ proteins. Because Wnt proteins activate several distinct β-catenin-dependent and independent signaling path...

  2. Wall Art

    Science.gov (United States)

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  3. The dynamics of regional economic integration : a system dynamics analysis of pathways to the development of value chains in the South African Customs Union

    Directory of Open Access Journals (Sweden)

    Grobbelaar, S. S.

    2017-05-01

    Full Text Available Despite progress towards improved cooperation within the Southern African Customs Union (SACU, it can be argued that real economic integration is still lacking. Cross-border value chain (VC development has been proposed as a potential enabler of regional economic integration. This article draws on a systems thinking process to explore the dynamic process of regional economic integration and value chain development. Through an inductive approach, we consider pathways for value chain development using the agro-processing and automotive sectors within SACU as case studies. The outcome of the dynamic hypothesis is to inform a framework for strategic decision-making to support policy action towards developing cross-border value chains in SACU.

  4. Space, composition, vertical wall ...

    OpenAIRE

    Despot, Katerina; Sandeva, Vaska

    2016-01-01

    The space in which it is an integral segment of our life is nourished with many functional and decorative elements. One aspect for consideration of vertical walls or The vertical gardens and their aesthetic impact in space called function. Vertical gardens bordering the decoration to totally functional garden in areas where there is little oxygen and space, ideal for residential buildings and public spaces where missing greenery, special place occupies in interior design where their expres...

  5. Parameters used in the environmental pathways (DESCARTES) and radiological dose (CIDER) modules of the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC) for the air pathway

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.F.; Farris, W.T.; Napier, B.A.; Ikenberry, T.A.; Gilbert, R.O.

    1992-09-01

    This letter report is a description of work performed for the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project was established to estimate the radiation doses to individuals resulting from releases of radionuclides from the Hanford Site since 1944. This work is being done by staff at Battelle, Pacific Northwest Laboratories (Battelle) under a contract with the Centers for Disease Control (CDC) with technical direction provided by an independent Technical Steering Panel (TSP). The objective of this report is to-document the environmental accumulation and dose-assessment parameters that will be used to estimate the impacts of past Hanford Site airborne releases. During 1993, dose estimates made by staff at Battelle will be used by the Fred Hutchinson Cancer Research Center as part of the Hanford Thyroid Disease Study (HTDS). This document contains information on parameters that are specific to the airborne release of the radionuclide iodine-131. Future versions of this document will include parameter information pertinent to other pathways and radionuclides.

  6. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  7. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways.

    Science.gov (United States)

    Narayan, Srinivas B; Master, Stephen R; Sireci, Anthony N; Bierl, Charlene; Stanley, Paige E; Li, Changhong; Stanley, Charles A; Bennett, Michael J

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.

  8. Short-Chain 3-Hydroxyacyl-Coenzyme A Dehydrogenase Associates with a Protein Super-Complex Integrating Multiple Metabolic Pathways

    Science.gov (United States)

    Narayan, Srinivas B.; Master, Stephen R.; Sireci, Anthony N.; Bierl, Charlene; Stanley, Paige E.; Li, Changhong; Stanley, Charles A.; Bennett, Michael J.

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein. PMID:22496890

  9. Short-chain 3-hydroxyacyl-coenzyme A dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Srinivas B Narayan

    Full Text Available Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD and glutamate dehydrogenase (GDH explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1 from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.

  10. The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.

    Science.gov (United States)

    Allen, Davina; Gillen, Elizabeth; Rixson, Laura

    2009-01-01

    Integrated Care Pathways (ICPs) are management technologies which formalise multi-disciplinary team-working and enable professionals to examine and address how they articulate their respective roles, responsibilities and activities. They map out a patient's journey and aim to have: 'the right people, doing the right things, in the right order, at the right time, in the right place, with the right outcome'. Initially introduced into the health care context in the 1980s in the US, enthusiasm for ICPs now extends across the world. They have been promoted as a means to realise: evidence based practice, clinical governance, continuity of care, patient empowerment, efficiency gains, service re-engineering, role realignment and staff education.While ICPs are now being developed and implemented across international health care arena, evidence to support their use is equivocal and understanding of their 'active ingredients' is poor. Reviews of evidence of ICP effectiveness have focused on their use in specific patient populations. However, ICPs are 'complex interventions' and are increasingly being implemented for a variety of purposes in a range of organisational contexts. Identification of the circumstances in which ICPs are effective is the first step towards developing hypotheses about their active ingredients and the generative mechanisms by which they have their effects.This review was designed to address a slightly different set of questions to those that typify systematic reviews of ICP effectiveness. Rather than simply asking: 'Are ICPs effective?', our concern was to identify the circumstances in which ICPs are effective, for whom and in what contexts. In addition to identifying evidence of ICP effectiveness, the review therefore required attention to the contexts in which ICPs are utilised, the purposes to which they are put and the factors critical to their success. In framing the review in this way we are drawing on the insights afforded by Pawson and Tilley

  11. CLIMBING WALL

    CERN Multimedia

    1999-01-01

    The FIRE AND RESCUE Group of TIS Commission informs that the climbing wall in the yard of the Fire-fighters Station, is intended for the sole use of the members of that service, and recalls that access to this installation is forbidden for safety reasons to all persons not belonging to the Service.CERN accepts no liability for damage or injury suffered as a result of failure to comply with this interdiction.TIS/DI

  12. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Science.gov (United States)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  13. Comprehensive School Mental Health: An Integrated "School-Based Pathway to Care" Model for Canadian Secondary Schools

    Science.gov (United States)

    Wei, Yifeng; Kutcher, Stan; Szumilas, Magdalena

    2011-01-01

    Adolescence is a critical period for the promotion of mental health and the treatment of mental disorders. Schools are well-positioned to address adolescent mental health. This paper describes a school mental health model, "School-Based Pathway to Care," for Canadian secondary schools that links schools with primary care providers and…

  14. Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa B pathway

    Directory of Open Access Journals (Sweden)

    Qin Y

    2016-12-01

    Full Text Available Yue Qin,1,* Suning Li,2,* Gan Zhao,2,* Xuanhao Fu,1 Xueping Xie,1 Yiyi Huang,1 Xiaojing Cheng,3 Jinbin Wei,1 Huagang Liu,1 Zefeng Lai1 1Pharmaceutical College, Guangxi Medical University, 2Department of Pharmacy, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, 3Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China *These authors contributed equally to this work Abstract: Numerous studies have demonstrated promising application of single-walled carbon nanotubes (SWNTs in drug delivery, diagnosis, and targeted therapy. However, the adverse health effects resulting from intravenous injection of SWNTs are not completely understood. Studies have shown that levels of “pristine” or carboxylated carbon nanotubes are very high in mouse lungs after intravenous injection. We hypothesized that long-term and repeated intravenous administration of carboxylated SWNTs (c-SWNTs can result in persistent accumulation and induce histopathologic changes in rat lungs. Here, c-SWNTs were administered repeatedly to rats via tail-vein injection for 90 days. Long-term intravenous injection of c-SWNTs caused sustained embolization in lung capillaries and granuloma formation. It also induced a persistent inflammatory response that was regulated by the nuclear factor-kappa B signaling pathway, and which resulted in pulmonary fibrogenesis. c-SWNTs trapped within lung capillaries traversed capillary walls and injured alveolar epithelial cells, thereby stimulating production of pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta and pro-fibrotic growth factors (transforming growth factor-beta 1. Protein levels of type-I and type-III collagens, matrix metalloproteinase-2, and the tissue inhibitor of metalloproteinase-2 were upregulated after intravenous exposure to c-SWNTs as determined by immunohistochemical assays and Western blotting, which suggested collagen deposition

  15. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data.

    Science.gov (United States)

    Cubitt, Helen E; Houston, J Brian; Galetin, Aleksandra

    2011-05-01

    The current study assesses hepatic and intestinal glucuronidation, sulfation, and cytochrome P450 (P450) metabolism of raloxifene, quercetin, salbutamol, and troglitazone using different in vitro systems. The fraction metabolized by conjugation and P450 metabolism was estimated in liver and intestine, and the importance of multiple metabolic pathways on accuracy of clearance prediction was assessed. In vitro intrinsic sulfation clearance (CL(int, SULT)) was determined in human intestinal and hepatic cytosol and compared with hepatic and intestinal microsomal glucuronidation (CL(int, UGT)) and P450 clearance (CL(int, CYP)) expressed per gram of tissue. Hepatic and intestinal cytosolic scaling factors of 80.7 mg/g liver and 18 mg/g intestine were estimated from published data. Scaled CL(int, SULT) ranged between 0.7 and 11.4 ml · min(-1) · g(-1) liver and 0.1 and 3.3 ml · min(-1) · g(-1) intestine (salbutamol and quercetin were the extremes). Salbutamol was the only compound with a high extent of sulfation (51 and 28% of total CL(int) for liver and intestine, respectively) and also significant renal clearance (26-57% of observed plasma clearance). In contrast, the clearance of quercetin was largely accounted for by glucuronidation. Drugs metabolized by multiple pathways (raloxifene and troglitazone) demonstrated improved prediction of intravenous clearance using data from all hepatic pathways (44-86% of observed clearance) compared with predictions based only on the primary pathway (22-36%). The assumption of no intestinal first pass resulted in underprediction of oral clearance for raloxifene, troglitazone, and quercetin (3-22% of observed, respectively). Accounting for the intestinal contribution to oral clearance via estimated intestinal availability improved prediction accuracy for raloxifene and troglitazone (within 2.5-fold of observed). Current findings emphasize the importance of both hepatic and intestinal conjugation for in vitro-in vivo extrapolation

  16. Recovery after abdominal wall reconstruction

    DEFF Research Database (Denmark)

    Jensen, Kristian Kiim

    2017-01-01

    was lacking. Study II was a case-control study of the effects of an enhanced recovery after surgery pathway for patients undergoing abdominal wall reconstruction for a giant hernia. Sixteen consecutive patients were included prospectively after the implementation of a new enhanced recovery after surgery...... pathway at the Digestive Disease Center, Bispebjerg Hospital, and compared to a control group of 16 patients included retrospectively in the period immediately prior to the implementation of the pathway. The enhanced recovery after surgery pathway included preoperative high-dose steroid, daily assessment...... of revised discharge criteria and an aggressive approach to restore bowel function (chewing gum and enema on postoperative day two). Patients who followed the enhanced recovery after surgery pathway reported low scores of pain, nausea and fatigue, and were discharged significantly faster than patients...

  17. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  18. Linking the X3D Pathway to Integral Field Spectrographs: YSNR 1E 0102.2-7219 in the SMC as a Case Study

    Science.gov (United States)

    Vogt, Frédéric P. A.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ruiter, Ashley J.

    2017-05-01

    The concept of the x3d pathway was introduced by Vogt et al. as a new approach to sharing and publishing three-dimensional structures interactively in online scientific journals. The core characteristics of the x3d pathway are that: (1) it does not rely on specific software, but rather a file format (x3d), (2) it can be implemented using fully open-source tools, and (3) article readers can access the interactive models using most main stream web browsers without the need for any additional plugins. In this article, we further demonstrate the potential of the x3d pathway to visualize data sets from optical integral field spectrographs. We use recent observations of the oxygen-rich young supernova remnant 1E 0102.2-7219 in the Small Magellanic Cloud to implement additional x3dom tools & techniques and expand the range of interactions that can be offered to article readers. In particular, we present a set of javascript functions allowing the creation and interactive handling of clip planes, effectively allowing users to take measurements of distances and angles directly from the interactive model itself.

  19. Linking the X3D pathway to integral field spectrographs: YSNR 1E0102.2-7219 in the SMC as a case study

    CERN Document Server

    Vogt, F P A; Dopita, M A; Ruiter, A J

    2016-01-01

    The concept of the X3D pathway was introduced by Vogt et al. (2016) as a new approach to sharing and publishing 3-D structures interactively in online scientific journals. The core characteristics of the X3D pathway are that: 1) it does not rely on specific software, but rather a file format (X3D), 2) it can be implemented using fully open-source tools, and 3) article readers can access the interactive models using most main stream web browsers without the need for any additional plugins. In this article, we further demonstrate the potential of the X3D pathway to visualize datasets from optical integral field spectrographs. We use recent observations of the oxygen-rich young supernova remnant 1E0102.2-7219 in the Small Magellanic Cloud to implement additional X3DOM tools & techniques and expand the range of interactions that can be offered to article readers. In particular, we present a set of javascript functions allowing the creation and interactive handling of clip planes, effectively allowing users to...

  20. Assessment of Arteriovenous Shunt Pathway Function and Hypervolemia for Hemodialysis Patients by Using Integrated Rapid Screening System

    Directory of Open Access Journals (Sweden)

    Wei-Ling Chen

    2017-06-01

    Full Text Available Currently, the hemodialysis patients received body weight measurement by themselves, vital sign checking by nursing staffs before dialysis. Whenever, the arteriovenous routes with problems doubted, the patients needed to be referred to surgeon for vascular echography checking and then to be corrected. How to integrate these three tasks in one time is a very important issue. The project proposes to combine our previous study of audio-phono angiographic technology in detecting vascular stenosis with rapid screening system to evaluate dialysis patients’ arteriovenous routes function and their status of excess body fluids: inspecting and integrating the blood pressure, body weight, and fistula function work into a rapid screening system, and using the quantization of fistula phono angiography pitch to achieve assessing arteriovenous routes. Future hoping is developed a complete integrated intelligence system by combining the arteriovenous fistula signal processing with feature extraction with wireless sensor network technology.

  1. Clinical Pathways Based on Integrative Medicine in Chinese Hospitals Improve Treatment Outcomes for Patients with Acute Myocardial Infarction: A Multicentre, Nonrandomized Historically Controlled Trial

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2012-01-01

    Full Text Available Objective. To determine the impact of an integrative medicine clinical pathways (CPs on the length of in-hospital stay and on outcomes for patients with acute myocardial infarction (AMI. Methods. A multicenter nonrandomized controlled trial enrolling 197 consecutive patients with AMI at eight urban TCM hospitals was conducted between 1 January 2010 and 31 October 2010. These patients were enrolled in the interventional group after the CPs had been implemented. The control group included 405 patients with AMI from eight hospitals; these patients were treated between 1 January 2008 and 31 December 2009, before the CPs were implemented. Outcome measures were the length of hospital stay costs of medical care, and major cardiovascular events (MACEs during hospitalization. Results. Compared with the control group, the patients in intervention group had a shorter length of hospital stay (9.2±4.2 days versus 12.7±8.6 days, P<0.05, and reduced healthcare costs in hospital (46365.7±18266.9 versus 52866.0±35404.4, P<0.05. There were statistically significant differences in MACE between the two groups during the hospitalization period (2.5% versus 6.9%, P=0.03. Conclusion. These data suggest that the development and implementation of the clinical pathways based in Integrative Medicine could further improve quality of care and outcome for patients with AMI.

  2. The integrated pathway of TGFβ/Snail with TNFα/NFκB may facilitate the tumor-stroma interaction in the EMT process and colorectal cancer prognosis.

    Science.gov (United States)

    Li, Hui; Zhong, Anjing; Li, Si; Meng, Xianwen; Wang, Xue; Xu, Fangying; Lai, Maode

    2017-07-07

    Substantial evidence has shown that epithelial-mesenchymal transition (EMT) plays critical roles in colorectal cancer (CRC) development and prognosis. To uncover the pivotal regulators that function in the cooperative interactions between cancer cells and their microenvironment and consequently affect the EMT process, we carried out a systematic analysis and evaluated prognosis in CRC specimens. Tumor buds and their surrounding stroma were captured using laser microdissection. We used gene expression profiling, bioinformatics analysis and regulatory network construction for molecular selection. The clinical significance of potential biomarkers was investigated. We identified potential EMT biomarkers, including BGN, MMP1, LGALS1, SERPINB5, and TM4SF4, all of which participated in the integrated pathway of TGFβ/Snail with TNFα/NFκB. We also found that BGN, MMP1, LGALS1, SERPINB5 and TM4SF4 were related to CRC patient prognosis. Patients with higher expression of these individual potential biomarkers had poorer prognosis. Among the identified biomarkers, BGN and TM4SF4 are reported, for the first time, to probably be involved in the EMT process and to predict CRC prognosis. Our results strongly suggest that the integrated pathway of TGFβ/Snail with TNFα/NFκB may be the principal axis that links cancer cells to their microenvironment during the EMT process and results in poor prognosis in CRC patients.

  3. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    Science.gov (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  4. Building the 3D Geological Model of Wall Rock of Salt Caverns Based on Integration Method of Multi-source data

    Science.gov (United States)

    Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI

    2017-02-01

    In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.

  5. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism.

    Science.gov (United States)

    Tomàs-Gamisans, Màrius; Ferrer, Pau; Albiol, Joan

    2016-01-01

    Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In these simulations, the

  6. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism.

    Directory of Open Access Journals (Sweden)

    Màrius Tomàs-Gamisans

    Full Text Available Genome-scale metabolic models (GEMs are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented.In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In

  7. Inducible expression of Pisum sativum xyloglucan fucosyltransferase in the pea root cap meristem, and effects of antisense mRNA expression on root cap cell wall structural integrity.

    Science.gov (United States)

    Wen, Fushi; Celoy, Rhodesia M; Nguyen, Trang; Zeng, Weiqing; Keegstra, Kenneth; Immerzeel, Peter; Pauly, Markus; Hawes, Martha C

    2008-07-01

    Mitosis and cell wall synthesis in the legume root cap meristem can be induced and synchronized by the nondestructive removal of border cells from the cap periphery. Newly synthesized cells can be examined microscopically as they differentiate progressively during cap development, and ultimately detach as a new population of border cells. This system was used to demonstrate that Pisum sativum L. fucosyl transferase (PsFut1) mRNA expression is strongly expressed in root meristematic tissues, and is induced >2-fold during a 5-h period when mitosis in the root cap meristem is increased. Expression of PsFut1 antisense mRNA in pea hairy roots under the control of the CaMV35S promoter, which exhibits meristem localized expression in pea root caps, resulted in a 50-60% reduction in meristem localized endogenous PsFut1 mRNA expression measured using whole mount in situ hybridization. Changes in gross levels of cell wall fucosylated xyloglucan were not detected, but altered surface localization patterns were detected using whole mount immunolocalization with CCRC-M1, an antibody that recognizes fucosylated xyloglucan. Emerging hairy roots expressing antisense PsFut1 mRNA appeared normal macroscopically but scanning electron microscopy of tissues with altered CCRC-M1 localization patterns revealed wrinkled, collapsed cell surfaces. As individual border cells separated from the cap periphery, cell death occurred in correlation with extrusion of cellular contents through breaks in the wall.

  8. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways.

    Science.gov (United States)

    Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R

    2014-01-01

    Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention.

  9. Functional genomics in chickens: development of integrated-systems microarrays for transcriptional profiling and discovery of regulatory pathways.

    Science.gov (United States)

    Cogburn, L A; Wang, X; Carre, W; Rejto, L; Aggrey, S E; Duclos, M J; Simon, J; Porter, T E

    2004-01-01

    The genetic networks that govern the differentiation and growth of major tissues of economic importance in the chicken are largely unknown. Under a functional genomics project, our consortium has generated 30 609 expressed sequence tags (ESTs) and developed several chicken DNA microarrays, which represent the Chicken Metabolic/Somatic (10 K) and Neuroendocrine/Reproductive (8 K) Systems (http://udgenome.ags.udel.edu/cogburn/). One of the major challenges facing functional genomics is the development of mathematical models to reconstruct functional gene networks and regulatory pathways from vast volumes of microarray data. In initial studies with liver-specific microarrays (3.1 K), we have examined gene expression profiles in liver during the peri-hatch transition and during a strong metabolic perturbation-fasting and re-feeding-in divergently selected broiler chickens (fast vs. slow-growth lines). The expression of many genes controlling metabolic pathways is dramatically altered by these perturbations. Our analysis has revealed a large number of clusters of functionally related genes (mainly metabolic enzymes and transcription factors) that control major metabolic pathways. Currently, we are conducting transcriptional profiling studies of multiple tissues during development of two sets of divergently selected broiler chickens (fast vs. slow growing and fat vs. lean lines). Transcriptional profiling across multiple tissues should permit construction of a detailed genetic blueprint that illustrates the developmental events and hierarchy of genes that govern growth and development of chickens. This review will briefly describe the recent acquisition of chicken genomic resources (ESTs and microarrays) and our consortium's efforts to help launch the new era of functional genomics in the chicken.

  10. Integrative miRNA and mRNA analysis in penile carcinomas reveals markers and pathways with potential clinical impact

    DEFF Research Database (Denmark)

    Kuasne, Hellen; Barros-Filho, Mateus Camargo; Busso-Lopes, Ariane F

    2017-01-01

    Penile carcinoma (PeCa) is an important public health issue in poor and developing countries, and has only recently been explored in terms of genetic and epigenetic studies. Integrative data analysis is a powerful method for the identification of molecular drivers involved in cancer development a...

  11. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) o

  12. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway

    DEFF Research Database (Denmark)

    Lee, Jae Seong; Beuchert Kallehauge, Thomas; Pedersen, Lasse Ebdrup

    2015-01-01

    gene integration into site-specific loci in CHO cells using CRISPR/Cas9 genome editing system and compatible donor plasmid harboring a gene of interest (GOI) and short homology arms. This strategy has enabled precise insertion of a 3.7-kb gene expression cassette at defined loci in CHO cells following...

  13. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ)

  14. Participation of Candida albicans transcription factor RLM1 in cell wall biogenesis and virulence.

    Science.gov (United States)

    Delgado-Silva, Yolanda; Vaz, Catarina; Carvalho-Pereira, Joana; Carneiro, Catarina; Nogueira, Eugénia; Correia, Alexandra; Carreto, Laura; Silva, Sónia; Faustino, Augusto; Pais, Célia; Oliveira, Rui; Sampaio, Paula

    2014-01-01

    Candida albicans cell wall is important for growth and interaction with the environment. RLM1 is one of the putative transcription factors involved in the cell wall integrity pathway, which plays an important role in the maintenance of the cell wall integrity. In this work we investigated the involvement of RLM1 in the cell wall biogenesis and in virulence. Newly constructed C. albicans Δ/Δrlm1 mutants showed typical cell wall weakening phenotypes, such as hypersensitivity to Congo Red, Calcofluor White, and caspofungin (phenotype reverted in the presence of sorbitol), confirming the involvement of RLM1 in the cell wall integrity. Additionally, the cell wall of C. albicans Δ/Δrlm1 showed a significant increase in chitin (213%) and reduction in mannans (60%), in comparison with the wild-type, results that are consistent with cell wall remodelling. Microarray analysis in the absence of any stress showed that deletion of RLM1 in C. albicans significantly down-regulated genes involved in carbohydrate catabolism such as DAK2, GLK4, NHT1 and TPS1, up-regulated genes involved in the utilization of alternative carbon sources, like AGP2, SOU1, SAP6, CIT1 or GAL4, and genes involved in cell adhesion like ECE1, ALS1, ALS3, HWP1 or RBT1. In agreement with the microarray results adhesion assays showed an increased amount of adhering cells and total biomass in the mutant strain, in comparison with the wild-type. C. albicans mutant Δ/Δrlm1 strain was also found to be less virulent than the wild-type and complemented strains in the murine model of disseminated candidiasis. Overall, we showed that in the absence of RLM1 the modifications in the cell wall composition alter yeast interaction with the environment, with consequences in adhesion ability and virulence. The gene expression findings suggest that this gene participates in the cell wall biogenesis, with the mutant rearranging its metabolic pathways to allow the use of alternative carbon sources.

  15. Participation of Candida albicans transcription factor RLM1 in cell wall biogenesis and virulence.

    Directory of Open Access Journals (Sweden)

    Yolanda Delgado-Silva

    Full Text Available Candida albicans cell wall is important for growth and interaction with the environment. RLM1 is one of the putative transcription factors involved in the cell wall integrity pathway, which plays an important role in the maintenance of the cell wall integrity. In this work we investigated the involvement of RLM1 in the cell wall biogenesis and in virulence. Newly constructed C. albicans Δ/Δrlm1 mutants showed typical cell wall weakening phenotypes, such as hypersensitivity to Congo Red, Calcofluor White, and caspofungin (phenotype reverted in the presence of sorbitol, confirming the involvement of RLM1 in the cell wall integrity. Additionally, the cell wall of C. albicans Δ/Δrlm1 showed a significant increase in chitin (213% and reduction in mannans (60%, in comparison with the wild-type, results that are consistent with cell wall remodelling. Microarray analysis in the absence of any stress showed that deletion of RLM1 in C. albicans significantly down-regulated genes involved in carbohydrate catabolism such as DAK2, GLK4, NHT1 and TPS1, up-regulated genes involved in the utilization of alternative carbon sources, like AGP2, SOU1, SAP6, CIT1 or GAL4, and genes involved in cell adhesion like ECE1, ALS1, ALS3, HWP1 or RBT1. In agreement with the microarray results adhesion assays showed an increased amount of adhering cells and total biomass in the mutant strain, in comparison with the wild-type. C. albicans mutant Δ/Δrlm1 strain was also found to be less virulent than the wild-type and complemented strains in the murine model of disseminated candidiasis. Overall, we showed that in the absence of RLM1 the modifications in the cell wall composition alter yeast interaction with the environment, with consequences in adhesion ability and virulence. The gene expression findings suggest that this gene participates in the cell wall biogenesis, with the mutant rearranging its metabolic pathways to allow the use of alternative carbon sources.

  16. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-28

    This fact sheet overviews the Greening the Grid India grid integration study. The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established a target of 175 gigawatts (GW) of installed RE capacity by 2022, including 60 GW of wind and 100 GW of solar, up from 29 GW wind and 9 GW solar at the beginning of 2017. Thanks to advanced weather and power system modeling made for this project, the study team is able to explore operational impacts of meeting India's RE targets and identify actions that may be favorable for integration.

  17. “Upstream Analysis”: An Integrated Promoter-Pathway Analysis Approach to Causal Interpretation of Microarray Data

    Directory of Open Access Journals (Sweden)

    Jeannette Koschmann

    2015-05-01

    Full Text Available A strategy is presented that allows a causal analysis of co-expressed genes, which may be subject to common regulatory influences. A state-of-the-art promoter analysis for potential transcription factor (TF binding sites in combination with a knowledge-based analysis of the upstream pathway that control the activity of these TFs is shown to lead to hypothetical master regulators. This strategy was implemented as a workflow in a comprehensive bioinformatic software platform. We applied this workflow to gene sets that were identified by a novel triclustering algorithm in naphthalene-induced gene expression signatures of murine liver and lung tissue. As a result, tissue-specific master regulators were identified that are known to be linked with tumorigenic and apoptotic processes. To our knowledge, this is the first time that genes of expression triclusters were used to identify upstream regulators.

  18. PhID: an open-access integrated pharmacology interactions database for drugs, targets, diseases, genes, side-effects and pathways.

    Science.gov (United States)

    Deng, Zhe; Tu, Weizhong; Deng, Zixin; Hu, Qian-Nan

    2017-09-14

    The current network pharmacology study encountered a bottleneck with a lot of public data scattered in different databases. There is the lack of open-access and consolidated platform that integrates this information for systemic research. To address this issue, we have developed PhID, an integrated pharmacology database which integrates >400,000 pharmacology elements (drug, target, disease, gene, side-effect, and pathway) and >200,000 element interactions in branches of public databases. The PhID has three major applications: (1) assists scientists searching through the overwhelming amount of pharmacology elements interaction data by names, public IDs, molecule structures, or molecular sub-structures; (2) helps visualizing pharmacology elements and their interactions with a web-based network graph; (3) provides prediction of drug-target interactions through two modules: PreDPI-ki and FIM, by which users can predict drug-target interactions of the PhID entities or some drug-target pairs they interest. To get a systems-level understanding of drug action and disease complexity, PhID as a network pharmacology tool was established from the perspective of data layer, visualization layer and prediction model layer to present information untapped by current databases. Database URL: http://phid.ditad.org/.

  19. Pathways and impacts of nitrogen in water bodies: establishing a framework for integrated assessment modelling of management benefits

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Kronvang, Brian; Carstensen, Jacob

    the study demonstrates how state-of-the-art environmental modelling can be linked with valuation to provide an adequate cross-media assessment framework relevant to integrated water quality management. The results must be regarded as illustrative and more research is required in several areas to consolidate...... pollution, whereby both ecosystem and human health effects are considered. Diffuse nitrogen-loss from agricultural activities is the main pollution source in focus within the framework, while the catchments explored are situated in Czech Republic, Denmark, Italy, Luxembourg, Norway and UK. Methodologically...

  20. The myosin motor domain-containing chitin synthase PdChsVII is required for development, cell wall integrity and virulence in the citrus postharvest pathogen Penicillium digitatum.

    Science.gov (United States)

    Gandía, Mónica; Harries, Eleonora; Marcos, Jose F

    2014-06-01

    Chitin is an essential component of the fungal cell wall and a potential target in the development of new antifungal compounds, due to its presence in fungi and not in plants or vertebrates. Chitin synthase genes (chs) constitute a complex family in filamentous fungi and are involved in fungal development, morphogenesis, pathogenesis and virulence. In this study, additional chs genes in the citrus postharvest pathogen Penicillium digitatum have been identified. Comparative analyses included each PdChs in each one of the classes I to VII previously established, and support the grouping of these into three divisions. Disruption of the gene coding PdChsVII, which contains a short version of a myosin motor domain, has been achieved by using Agrobacterium tumefaciens-mediated transformation and revealed its role in the life cycle of the fungus. Disruption strains were viable but showed reduced growth and conidia production. Moreover, Pdchs mutants developed morphological defects as balloon-like enlarged cells and increased chitin content, indicative of an altered cell wall structure. Gene disruption also increased susceptibility to antifungal compounds such as calcofluor white (CFW), sodium dodecyl sulfate (SDS), hydroxide peroxide (H2O2) and commercial fungicides, but significantly no change was observed in the sensitivity to antifungal peptides. The PdchsVII mutants were able to infect citrus fruit and produced tissue maceration, although had reduced virulence and most importantly were greatly impaired in the production of visible mycelium and conidia on the fruit.

  1. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  2. Pulmonary complications of abdominal wall defects.

    Science.gov (United States)

    Panitch, Howard B

    2015-01-01

    The abdominal wall is an integral component of the chest wall. Defects in the ventral abdominal wall alter respiratory mechanics and can impair diaphragm function. Congenital abdominal wall defects also are associated with abnormalities in lung growth and development that lead to pulmonary hypoplasia, pulmonary hypertension, and alterations in thoracic cage formation. Although infants with ventral abdominal wall defects can experience life-threatening pulmonary complications, older children typically experience a more benign respiratory course. Studies of lung and chest wall function in older children and adolescents with congenital abdominal wall defects are few; such investigations could provide strategies for improved respiratory performance, avoidance of respiratory morbidity, and enhanced exercise ability for these children.

  3. Integrated natural treatment systems for developing communities: low-tech N-removal through the fluctuating microbial pathways.

    Science.gov (United States)

    Shipin, O; Koottatep, T; Khanh, N T T; Polprasert, C

    2005-01-01

    Integration of natural treatment systems (NTS) (WSP, wetlands etc.) with each other as well as with advanced unit processes (biofiltration) offers a second lease of life to NTS. Long-term full and pilot cale experience in South Africa and Thailand have shown that contrary to a common view, a low tech N-removal from municipal and light industrial wastewater is a reality for a developing community The high treatment efficiency is ascribed to interplay of N-related processes complementing each other. The present FISH-based (Fluorescence In Situ Hybridization) approach to microbial community structure is a pioneering effort in the field of NTS. It establishes interrelationships between major N-removing groups (aerobic and anaerobic ammonia oxidizers (ANAMMOX), denitrifiers) within integrated systems and links them to the high treatment performance. Seasonally fluctuating presence of the ANAMMOX bacteria (0-2.5% of total bacterial numbers) in the NTS (free surface flow wetland) is reported for the first time. Their numbers correlate with metabolically dependent ammonia-oxidizers (2.0-3.0%) but not with stable overall Planctomycetes population (4.5-5.1%). As a result of the flexible microbial structure the robust low cost removal down to TN < 10 mg/L is routinely feasible at the loading rates ranging from 0.005 to 0.08 TN kg/m3/day.

  4. Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1.

    Science.gov (United States)

    Alhosin, Mahmoud; Abusnina, Abdurazzag; Achour, Mayada; Sharif, Tanveer; Muller, Christian; Peluso, Jean; Chataigneau, Thierry; Lugnier, Claire; Schini-Kerth, Valérie B; Bronner, Christian; Fuhrmann, Guy

    2010-05-01

    The salvage anti-tumoral pathway which implicates the p53-related p73 gene is not yet fully characterized. We therefore attempted to identify the up- and down-stream events involved in the activation of the p73-dependent pro-apoptotic pathway, by focusing on the anti-apoptotic and epigenetic integrator UHRF1 which is essential for cell cycle progression. For this purpose, we analyzed the effects of a known anti-neoplastic drug, thymoquinone (TQ), on the p53-deficient acute lymphoblastic leukemia (ALL) Jurkat cell line. Our results showed that TQ inhibits the proliferation of Jurkat cells and induces G1 cell cycle arrest in a dose-dependent manner. Moreover, TQ treatment triggers programmed cell death, production of reactive oxygen species (ROS) and alteration of the mitochondrial membrane potential (DeltaPsim). TQ-induced apoptosis, confirmed by the presence of hypodiploid G0/G1 cells, is associated with a rapid and sharp re-expression of p73 and dose-dependent changes of the levels of caspase-3 cleaved subunits. These modifications are accompanied by a dramatic down-regulation of UHRF1 and two of its main partners, namely DNMT1 and HDAC1, which are all involved in the epigenetic code regulation. Knockdown of p73 expression restores UHRF1 expression, reactivates cell cycle progression and inhibits TQ-induced apoptosis. Altogether our results showed that TQ mediates its growth inhibitory effects on ALL p53-mutated cells via the activation of a p73-dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets UHRF1.

  5. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP.

    Science.gov (United States)

    Ankala, A; Luthe, D S; Williams, W P; Wilkinson, J R

    2009-12-01

    In plants, ethylene and jasmonate control the defense responses to multiple stressors, including insect predation. Among the defense proteins known to be regulated by ethylene is maize insect resistance 1-cysteine protease (Mir1-CP). This protein is constitutively expressed in the insect-resistant maize (Zea mays) genotype Mp708; however, its abundance significantly increases during fall armyworm (Spodoptera frugiperda) herbivory. Within 1 h of herbivory by fall armyworm, Mir1-CP accumulates at the feeding site and continues to increase in abundance until 24 h without any increase in its transcript (mir1) levels. To resolve this discrepancy and elucidate the role of ethylene and jasmonate in the signaling of Mir1-CP expression, the effects of phytohormone biosynthesis and perception inhibitors on Mir1-CP expression were tested. Immunoblot analysis of Mir1-CP accumulation and quantitative reverse-transcriptase polymerase chain reaction examination of mir1 levels in these treated plants demonstrate that Mir1-CP accumulation is regulated by both transcript abundance and protein expression levels. The results also suggest that jasmonate functions upstream of ethylene in the Mir1-CP expression pathway, allowing for both low-level constitutive expression and a two-stage defensive response, an immediate response involving Mir1-CP accumulation and a delayed response inducing mir1 transcript expression.

  6. Integrative analysis of hepatic microRNA and mRNA to identify potential biological pathways associated with monocrotaline-induced liver injury in mice.

    Science.gov (United States)

    Huang, Zhenlin; Chen, Minwei; Zhang, Jiaqi; Sheng, Yuchen; Ji, Lili

    2017-10-15

    Pyrrolizidine alkaloids (PAs) are a type of natural hepatotoxic compounds. Monocrotaline (MCT), belongs to PAs, is a main compound distributed in medicinal herb Crotalaria ferruginea Grah. ex Benth. This study aims to identify the potential biological signaling pathway associated with MCT-induced liver injury by analyzing the integrative altered hepatic microRNA (miRNA) and mRNA expression profile. C57BL/6 mice were orally given with MCT (270, 330mg/kg). Serum alanine/aspartate aminotransferase (ALT/AST) activity, total bilirubin (TBil) amount and liver histological evaluation showed the liver injury induced by MCT. Results of miRNA chip analysis showed that the hepatic expression of 15 miRNAs (whose signal intensity>200) was significantly altered in MCT-treated mice, and among them total 11 miRNAs passed further validation by using Real-time PCR assay. Results of mRNA chip analysis demonstrated that the hepatic expression of 569 genes was up-regulated and of other 417 genes was down-regulated in MCT-treated mice. There are total 426 predicted target genes of those above altered 11 miRNAs, and among them total 10 genes were also altered in mice treated with both MCT (270mg/kg) and MCT (330mg/kg) from the results of mRNA chip. Among these above 10 genes, total 8 genes passed further validation by using Real-time PCR assay. Only 1 biological signaling pathway was annotated by using those above 8 genes, which is phagosome. In conclusion, this study demonstrated the integrative altered expression profile of liver miRNA and mRNA, and identified that innate immunity may be critically involved in MCT-induced liver injury in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect.

    Science.gov (United States)

    Op de Beeck, Lin; Verheyen, Julie; Stoks, Robby

    2017-05-01

    Global warming and chemical pollution are key anthropogenic stressors with the potential to interact. While warming can change the impact of pollutants and pollutants can change the sensitivity to warming, both interaction pathways have never been integrated in a single experiment. Therefore, we tested the effects of warming and multiple pesticide pulses (allowing accumulation) of chlorpyrifos on upper thermal tolerance (CTmax) and associated physiological traits related to aerobic/anaerobic energy production in the damselfly Ischnura elegans. To also assess the role of latitude-specific thermal adaptation in shaping the impact of warming and pesticide exposure on thermal tolerance, we exposed larvae from replicated high- and low-latitude populations to the pesticide in a common garden rearing experiment at 20 and 24 °C, the mean summer water temperatures at high and low latitudes. As expected, exposure to chlorpyrifos resulted in a lower CTmax. Yet, this pesticide effect on CTmax was lower at 24 °C compared to 20 °C because of a lower accumulation of chlorpyrifos in the medium at 24 °C. The effects on CTmax could partly be explained by reduction of the aerobic scope. Given that these effects did not differ between latitudes, gradual thermal evolution is not expected to counteract the negative effect of the pesticide on thermal tolerance. By for the first time integrating both interaction pathways we were not only able to provide support for both of them, but more importantly demonstrate that they can directly affect each other. Indeed, the warming-induced reduction in pesticide impact generated a lower pesticide-induced climate change sensitivity (in terms of decreased upper thermal tolerance). Our results indicate that, assuming no increase in pesticide input, global warming might reduce the negative effect of multiple pulse exposures to pesticides on sensitivity to elevated temperatures.

  8. Towards integration of palliative care in patients with chronic heart failure and chronic obstructive pulmonary disease: a systematic literature review of European guidelines and pathways.

    Science.gov (United States)

    Siouta, Naouma; van Beek, Karen; Preston, Nancy; Hasselaar, Jeroen; Hughes, Sean; Payne, Sheila; Garralda, Eduardo; Centeno, Carlos; van der Eerden, Marlieke; Groot, Marieke; Hodiamont, Farina; Radbruch, Lukas; Busa, Csilla; Csikos, Agnes; Menten, Johan

    2016-02-13

    Despite the positive impact of Palliative Care (PC) on the quality of life for patients and their relatives, the implementation of PC in non-cancer health-care delivery in the EU seems scarcely addressed. The aim of this study is to assess guidelines/pathways for integrated PC in patients with advanced Chronic Heart Failure (CHF) and Chronic Obstructive Pulmonary Disease (COPD) in Europe via a systematic literature review. Search results were screened by two reviewers. Eligible studies of adult patients with CHF or COPD published between 01/01/1995 and 31/12/2013 in Europe in 6 languages were included. Nine electronic databases were searched, 6 journals were hand-searched and citation tracking was also performed. For the analysis, a narrative synthesis was employed. The search strategy revealed 26,256 studies without duplicates. From these, 19 studies were included in the review; 17 guidelines and 2 pathways. 18 out of 19 focused on suffering reduction interventions, 13/19 on a holistic approach and 15/19 on discussions of illness prognosis and limitations. The involvement of a PC team was mentioned in 13/19 studies, the assessment of the patients' goals of care in 12/19 and the advance care planning in 11/19. Only 4/19 studies elaborated on aspects such as grief and bereavement care, 7/19 on treatment in the last hours of life and 8/19 on the continuation of goal adjustment. The results illustrate that there is a growing awareness for the importance of integrated PC in patients with advanced CHF or COPD. At the same time, however, they signal the need for the development of standardized strategies so that existing barriers are alleviated.

  9. Decoding Cellular Dynamics in Epidermal Growth Factor Signaling Using a New Pathway-Based Integration Approach for Proteomics and Transcriptomics Data

    Science.gov (United States)

    Wachter, Astrid; Beißbarth, Tim

    2016-01-01

    Identification of dynamic signaling mechanisms on different cellular layers is now facilitated as the increased usage of various high-throughput techniques goes along with decreasing costs for individual experiments. A lot of these signaling mechanisms are known to be coordinated by their dynamics, turning time-course data sets into valuable information sources for inference of regulatory mechanisms. However, the combined analysis of parallel time-course measurements from different high-throughput platforms still constitutes a major challenge requiring sophisticated bioinformatic tools in order to ease biological interpretation. We developed a new pathway-based integration approach for the analysis of coupled omics time-series data, which we implemented in the R package pwOmics. Unlike many other approaches, our approach acknowledges the role of the different cellular layers of measurement and infers consensus profiles and time profile clusters for further biological interpretation. We investigated a time-course data set on epidermal growth factor stimulation of human mammary epithelial cells generated on the two layers of RNA and proteins. The data was analyzed using our new approach with a focus on feedback signaling and pathway crosstalk. We could confirm known regulatory patterns relevant in the physiological cellular response to epidermal growth factor stimulation as well as identify interesting new interactions in this signaling context, such as the regulatory influence of the connective tissue growth factor on transferrin receptor or the influence of growth arrest and DNA-damage-inducible alpha on the connective tissue growth factor. Thus, we show that integrated cross-platform analysis provides a deeper understanding of regulatory signaling mechanisms. Combined with time-course information it enables the characterization of dynamic signaling processes and leads to the identification of important regulatory interactions which might be dysregulated in disease

  10. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  11. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Science.gov (United States)

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  12. Conceptual Pathways to Ethnic Transcendence in Diverse Churches: Theoretical Reflections on the Achievement of Successfully Integrated Congregations

    Directory of Open Access Journals (Sweden)

    Gerardo Marti

    2015-09-01

    Full Text Available The concept of ethnic transcendence—defined as the process of co-formulating a shared religious identity among diverse members that supersedes their racial and ethnic differences through congregational involvement—captures a critical aspect of successfully integrating different racial and ethnic groups into a single, commonly shared, multi-ethnic congregation. Drawing on classic theoretical resources from Max Weber and Emile Durkheim, this paper expands on previous scholarship by conceptually articulating two different paths for the achievement of ethnic transcendence in multiracial congregations. In the first path, ethnic transcendence supports and encourages congregational diversification by inspiring members and mobilizing them to contribute their efforts to accomplish a common religious mission. In the second path, the achievement of ethnic transcendence involves the sublimation of congregational members’ religious selves to an overarching moral collective. Both paths involve privileging religious identities in favor of a particularistic ethnic or racial identity. Moreover, through both paths, the development of congregationally specific religious identities results in joining with co-members of different ethno-racial ancestries as a type of spiritually-derived kinship. Due to the fact that ethnic transcendence is an interactive process, congregational diversity is a bi-directional phenomenon representing the extent to which members allow for the integration of separate ethnicities/races into a common congregation through idealized and richly-symbolic notions of connection and belonging to a congregation. Overall, this paper suggests a heuristic framework that productively expands the concept of ethnic transcendence, allows an approach for observing cross-ethnic/inter-racial organizational processes, and ultimately contributes toward understanding how congregations (whether church, temple, or mosque pursue alternative identity

  13. Pathway Commons, a web resource for biological pathway data.

    Science.gov (United States)

    Cerami, Ethan G; Gross, Benjamin E; Demir, Emek; Rodchenkov, Igor; Babur, Ozgün; Anwar, Nadia; Schultz, Nikolaus; Bader, Gary D; Sander, Chris

    2011-01-01

    Pathway Commons (http://www.pathwaycommons.org) is a collection of publicly available pathway data from multiple organisms. Pathway Commons provides a web-based interface that enables biologists to browse and search a comprehensive collection of pathways from multiple sources represented in a common language, a download site that provides integrated bulk sets of pathway information in standard or convenient formats and a web service that software developers can use to conveniently query and access all data. Database providers can share their pathway data via a common repository. Pathways include biochemical reactions, complex assembly, transport and catalysis events and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. Pathway Commons currently contains data from nine databases with over 1400 pathways and 687,000 interactions and will be continually expanded and updated.

  14. Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins.

    Science.gov (United States)

    Hayes, Brigitte M E; Anderson, Marilyn A; Traven, Ana; van der Weerden, Nicole L; Bleackley, Mark R

    2014-07-01

    Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.

  15. Wall to Wall Optimal Transport

    CERN Document Server

    Hassanzadeh, Pedram; Doering, Charles R

    2013-01-01

    The calculus of variations is employed to find steady divergence-free velocity fields that maximize transport of a tracer between two parallel walls held at fixed concentration for one of two constraints on flow strength: a fixed value of the kinetic energy or a fixed value of the enstrophy. The optimizing flows consist of an array of (convection) cells of a particular aspect ratio Gamma. We solve the nonlinear Euler-Lagrange equations analytically for weak flows and numerically (and via matched asymptotic analysis in the fixed energy case) for strong flows. We report the results in terms of the Nusselt number Nu, a dimensionless measure of the tracer transport, as a function of the Peclet number Pe, a dimensionless measure of the energy or enstrophy of the flow. For both constraints the maximum transport Nu_{MAX}(Pe) is realized in cells of decreasing aspect ratio Gamma_{opt}(Pe) as Pe increases. For the fixed energy problem, Nu_{MAX} \\sim Pe and Gamma_{opt} \\sim Pe^{-1/2}, while for the fixed enstrophy scen...

  16. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    After a long history dominated by out-migration, Denmark, Norway and Sweden have, in the past 50 years, become immigration societies. This article compares how these Scandinavian welfare societies have sought to incorporate immigrants and refugees into their national communities. It suggests that......, while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  17. Like a bridge over troubled water--Opening pathways for integrating social sciences and humanities into nuclear research.

    Science.gov (United States)

    Turcanu, Catrinel; Schröder, Jantine; Meskens, Gaston; Perko, Tanja; Rossignol, Nicolas; Carlé, Benny; Hardeman, Frank

    2016-03-01

    Research on nuclear technologies has been largely driven by a detachment of the 'technical content' from the 'social context'. However, social studies of science and technology--also for the nuclear domain--emphasize that 'the social' and 'the technical' dimensions of technology development are inter-related and co-produced. In an effort to create links between nuclear research and innovation and society in mutually beneficial ways, the Belgian Nuclear Research Centre started fifteen years ago a 'Programme of Integration of Social Aspects into nuclear research' (PISA). In line with broader science-policy agendas (responsible research and innovation and technology assessment), this paper argues that the importance of such programmes is threefold. First, their multi-disciplinary basis and participatory character contribute to a better understanding of the interactions between science, technology and society, in general, and the complexity of nuclear technology assessment in particular. Second, their functioning as (self -)critical policy supportive research with outreach to society is an essential prerequisite for policies aiming at generating societal trust in the context of controversial issues related to nuclear technologies and exposure to ionising radiation. Third, such programmes create an enriching dynamic in the organisation itself, stimulating collective learning and transdisciplinarity. The paper illustrates with concrete examples these claims and concludes by discussing some key challenges that researchers face while engaging in work of this kind.

  18. Key Technology of the Prefabricated External Integrated Wall-panels with Decoration and Insulation%结构装饰保温一体化预制外墙板制造关键技术

    Institute of Scientific and Technical Information of China (English)

    杨思忠; 任成传; 齐博磊; 武卫平

    2015-01-01

    Based on the realistic need of construction project of public housing in Beijing, the structure characteristics of external integrated wall⁃panels with decoration and insulation are fully considered. Quality problems easily occurring in the construction including the precise positioning of filling sleeve, the choice of the connected components of internal and external wall, the choice of insulation layer, the construction of outer wall with decorative surface and hoisting embedded parts and so on are analyzed in detail. The corresponding solutions have been proposed, and the good results have been achieved.%结合北京市公租房工程建设,从结构装饰保温一体化外墙板的结构特点出发,对灌浆套筒精确定位、内外叶墙拉接件选用、保温层选用、装饰面外叶墙施工以及吊装预埋件等施工中容易出现的质量问题进行了详细分析,提出了针对性解决措施,取得了良好成效。

  19. PcchiB1, encoding a class V chitinase, is affected by PcVelA and PcLaeA, and is responsible for cell wall integrity in Penicillium chrysogenum.

    Science.gov (United States)

    Kamerewerd, Jens; Zadra, Ivo; Kürnsteiner, Hubert; Kück, Ulrich

    2011-11-01

    Penicillin production in Penicillium chrysogenum is controlled by PcVelA and PcLaeA, two components of the regulatory velvet-like complex. Comparative microarray analysis with mutants lacking PcVelA or PcLaeA revealed a set of 62 common genes affected by the loss of both components. A downregulated gene in both knockout strains is PcchiB1, potentially encoding a class V chitinase. Under nutrient-depleted conditions, transcript levels of PcchiB1 are strongly upregulated, and the gene product contributes to more than 50 % of extracellular chitinase activity. Functional characterization by generating PcchiB1-disruption strains revealed that PcChiB1 is responsible for cell wall integrity and pellet formation in P. chrysogenum. Further, fluorescence microscopy with a DsRed-labelled chitinase suggests a cell wall association of the protein. An unexpected phenotype occurred when knockout strains were grown on media containing N-acetylglucosamine as the sole C and N source, where, in contrast to the recipient, a penicillin producer strain, the mutants and an ancestral strain show distinct mycelial growth. We discuss the relevance of this class V chitinase for morphology in an industrially important fungus.

  20. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mitesh J Borad

    2014-02-01

    Full Text Available Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM. In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.

  1. Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma

    Science.gov (United States)

    Liang, Winnie S.; Fonseca, Rafael; Bryce, Alan H.; McCullough, Ann E.; Barrett, Michael T.; Hunt, Katherine; Patel, Maitray D.; Young, Scott W.; Collins, Joseph M.; Silva, Alvin C.; Condjella, Rachel M.; Block, Matthew; McWilliams, Robert R.; Lazaridis, Konstantinos N.; Klee, Eric W.; Bible, Keith C.; Harris, Pamela; Oliver, Gavin R.; Bhavsar, Jaysheel D.; Nair, Asha A.; Middha, Sumit; Asmann, Yan; Kocher, Jean-Pierre; Schahl, Kimberly; Kipp, Benjamin R.; Barr Fritcher, Emily G.; Baker, Angela; Aldrich, Jessica; Kurdoglu, Ahmet; Izatt, Tyler; Christoforides, Alexis; Cherni, Irene; Nasser, Sara; Reiman, Rebecca; Phillips, Lori; McDonald, Jackie; Adkins, Jonathan; Mastrian, Stephen D.; Placek, Pamela; Watanabe, Aprill T.; LoBello, Janine; Han, Haiyong; Von Hoff, Daniel; Craig, David W.; Stewart, A. Keith; Carpten, John D.

    2014-01-01

    Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations. PMID:24550739

  2. The Penicillium digitatum protein O-mannosyltransferase Pmt2 is required for cell wall integrity, conidiogenesis, virulence and sensitivity to the antifungal peptide PAF26.

    Science.gov (United States)

    Harries, Eleonora; Gandía, Mónica; Carmona, Lourdes; Marcos, Jose F

    2015-09-01

    The activity of protein O-mannosyltransferases (Pmts) affects the morphogenesis and virulence of fungal pathogens. Recently, PMT genes have been shown to determine the sensitivity of Saccharomyces cerevisiae to the antifungal peptide PAF26. This study reports the identification and characterization of the three Pdpmt genes in the citrus post-harvest pathogen Penicillium digitatum. The Pdpmt genes are expressed during fungal growth and fruit infection, with the highest induction for Pdpmt2. Pdpmt2 complemented the growth defect of the S. cerevisiae Δpmt2 strain. The Pdpmt2 gene mutation in P. digitatum caused pleiotropic effects, including a reduction in fungal growth and virulence, whereas its constitutive expression had no phenotypic effect. The Pdpmt2 null mutants also showed a distinctive colourless phenotype with a strong reduction in the number of conidia, which was associated with severe alterations in the development of conidiophores. Additional effects of the Pdpmt2 mutation were hyphal morphological alterations, increased sensitivity to cell wall-interfering compounds and a blockage of invasive growth. In contrast, the Pdpmt2 mutation increased tolerance to oxidative stress and to the antifungal activity of PAF26. These data confirm the role of protein O-glycosylation in the PAF26-mediated antifungal mechanism present in distantly related fungal species. Important to future crop protection strategies, this study demonstrates that a mutation rendering fungi more resistant to an antifungal peptide results in severe deleterious effects on fungal growth and virulence.

  3. Late Holocene sea-level rise in Tampa Bay: Integrated reconstruction using biomarkers, pollen, organic-walled dinoflagellate cysts, and diatoms

    Science.gov (United States)

    van Soelen, E. E.; Lammertsma, E. I.; Cremer, H.; Donders, T. H.; Sangiorgi, F.; Brooks, G. R.; Larson, R. A.; Sinninghe Damsté, J. S.; Wagner-Cremer, F.; Reichart, G. J.

    2010-01-01

    A suite of organic geochemical, micropaleontological and palynological proxies was applied to sediments from Southwest Florida, to study the Holocene environmental changes associated with sea-level rise. Sediments were recovered from Hillsborough Bay, part of Tampa Bay, and studied using biomarkers, pollen, organic-walled dinoflagellate cysts and diatoms. Analyses show that the site flooded around 7.5 ka as a consequence of Holocene transgression, progressively turning a fresh/brackish marl-marsh into a shallow, restricted marine environment. Immediately after the marine transgression started, limited water circulation and high amounts of runoff caused stratification of the water column. A shift in dinocysts and diatom assemblages to more marine species, increasing concentrations of marine biomarkers and a shift in the Diol Index indicate increasing salinity between 7.5 ka and the present, which is likely a consequence of progressing sea-level rise. Reconstructed sea surface temperatures for the past 4 kyrs are between 25 and 26 ° C, and indicate stable temperatures during the Late Holocene. A sharp increase in sedimentation rate in the top ˜50 cm of the core is attributed to human impact. The results are in agreement with parallel studies from the area, but this study further refines the environmental reconstructions having the advantage of simultaneously investigating changes in the terrestrial and marine environment.

  4. Evidence for normal letter-sound integration, but altered language pathways in a case of recovered Landau-Kleffner Syndrome.

    Science.gov (United States)

    Pullens, Pim; Pullens, Will; Blau, Vera; Sorger, Bettina; Jansma, Bernadette M; Goebel, Rainer

    2015-10-01

    Landau-Kleffner Syndrome (LKS) is a rare form of acquired aphasia in children, characterized by epileptic discharges, which occur mostly during sleep. After normal speech and language development, aphasia develops between the ages of 3-7 years in a period ranging from days to months. The epileptic discharges usually disappear after reaching adulthood, but language outcomes are usually poor if no treatment focused on restoration of (non-) verbal communication is given. Patients often appear deaf-mute, but sign language, as part of the treatment, may lead to recovery of communication. The neural mechanisms underlying poor language outcomes in LKS are not yet understood. In this detailed functional MRI study of a recovered LKS patient - that is, a patient no longer suffering from epileptic discharges, audiovisual multi-sensory processing was investigated, since LKS patients are often proficient in reading, but not in speech perception. In the recovered LKS patient a large difference in the neural activation to auditory stimuli was found in the left versus the right auditory cortex, which cannot be attributed to hearing loss. Compared to healthy proficient readers investigated earlier with the same fMRI experiment, the patient demonstrated normal letter-sound integration in the superior temporal gyrus as demonstrated by the multi-sensory interaction index, indicating intact STG function. Diffusion Tensor Imaging (DTI) based fiber tracking in the LKS patient showed fibers originating from Heschl's gyrus that seem to be left-right inverted with respect to HG fiber pattern described in the literature for healthy controls. In the patient, in both hemispheres we found arcuate fibers projecting from (homologues of) Broca's to Wernicke's areas, and a lack of fibers from arcuate left inferior parietal and sylvian areas reported in healthy subjects. We observed short arcuate segments in the right hemisphere. Although speculative, our results suggest intact temporal lobe

  5. Cell wall structure and function in lactic acid bacteria.

    Science.gov (United States)

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.

  6. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus.

    Science.gov (United States)

    Li, Xiaolin; Lei, Mingjuan; Yan, Zhongyuan; Wang, Qi; Chen, Aimin; Sun, Jie; Luo, Da; Wang, Yanzhang

    2014-01-01

    The ta-siRNA pathway is required for lateral organ development, including leaf patterning, flower differentiation and lateral root growth. Legumes can develop novel lateral root organs--nodules--resulting from symbiotic interactions with rhizobia. However, ta-siRNA regulation in nodule formation remains unknown. To explore ta-siRNA regulation in nodule formation, we investigated the roles of REL3, a key component of TAS3 ta-siRNA biogenesis, during nodulation in Lotus japonicus. We characterized the symbiotic phenotypes of the TAS3 ta-siRNA defective rel3 mutant, and analyzed the responses of the rel3 mutant to auxin and ethylene in order to gain insight into TAS3 ta-siRNA regulation of nodulation. The rel3 mutant produced fewer pink nitrogen-fixing nodules, with substantially decreased infection frequency and nodule initiation. Moreover, the rel3 mutant was more resistant than wild-type to 1-naphthaleneacetic acid (NAA) and N-1-naphthylphthalamic acid (NPA) in root growth, and exhibited insensitivity to auxins but greater sensitivity to auxin transport inhibitors during nodulation. Furthermore, the rel3 mutant has enhanced root-specific ethylene sensitivity and altered responses to ethylene during nodulation; the low-nodulating phenotype of the rel3 mutant can be restored by ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) or action inhibitor Ag(+). The REL3-mediated TAS3 ta-siRNA pathway regulates nodulation by integrating ethylene and auxin signaling. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Fatigue life assessment of thin-walled welded joints under non-proportional load-time histories by the shear stress rate integral approach

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2016-10-01

    Full Text Available Fatigue life tests under constant and variable amplitude loadings were performed on the tube-tube thin-walled welded specimens made of magnesium (AZ31 and AZ61 alloys. The tests included pure axial, pure torsional and combined in-phase and out-of-phase loadings with the load ratio  RR " ", " " 1  . For the tests with variable amplitude loads a Gaußdistributed loading spectrum with S L 4 5 10  cycles was used. Since magnesium welds show a fatigue life reduction under out-of-phase loads, a stress-based method, which takes this behavior into account, is proposed. The out-of-phase loading results in rotating shear stress vectors in the section planes, which are not orthogonal to the surface. This fact is used in order to provide an out-of-phase measure of the load. This measure is computed as an area covered by the shear stress vectors in all planes over a certain time interval, its computation involves the shear stress and the shear stress rate vectors in the individual planes. Fatigue life evaluation for the variable amplitudes loadings is performed using the Palmgren-Miner linear damage accumulation, whereas the total damage of every cycle is split up into two components: the amplitude component and the out-of-phase component. In order to compute the two components a modification of the rainflow counting method, which keeps track of the time intervals, where the cycles occur, must be used. The proposed method also takes into account different slopes of the pure axial and the pure torsional Wöhler-line by means of a Wöhler-line interpolation for combined loadings

  8. Precise integration method of dynamic time history analysis of frame - shear wall structures%框剪结构动力时程分析的精细积分法

    Institute of Scientific and Technical Information of China (English)

    胡启平; 王颖

    2011-01-01

    Proceeding from the total potential energy of frame - shear wall structure, the Hamiltonian dual system of coordination analysis is established according to the parallel Timoshenko beam beam model. The layer element stiffness matrix is deduced according to interval mixed energy matrix which is based on the precise integration method of the double end boundary value problems, and then the global stiffness matrix of structure can be set up by according to the finite element stiffness integration method. The dynamic time history analysis is eventually processed on the frame - shear wall structttres based on the precise integration method of initial value problems, and the relevant program is progmnned with the Matlab software. The reliability and feasibility of this method is tested by a 19 - floor frame - shear building, and the result shows that the most story drift angle of the building is 1/1 329 under frequent earthquake action, which indicates the whole building is in the elastic working state.%从框剪结构的总势能出发,根据结构的并联铁摩辛柯梁模型求得框剪结构协同分析的哈密顿对偶体系,由两端边值问题精细积分法中的区段混合能矩阵推导出结构的层单元刚度矩阵,然后利用有限元刚度集成法形成总刚矩阵,利用初值问题的精细积分法对框剪结构进行动力时程分析,并以Matlab编制相应程序.以某19层框剪结构为例,进行多遇地震作用下的动力时程分析,结果表明该结构的最大层间位移角为1/1 329,且结构没有出现明显的薄弱层,说明整个结构是处在弹性工作的状态,从而验证了该方法的可行性与可靠性.

  9. Gastric potential difference measurements. The gastric mucosal integrity and function studied with a new method for measurement of the electric potential difference across the stomach wall

    DEFF Research Database (Denmark)

    Højgaard, L

    1991-01-01

    be reduced by allopurinol pretreatment, possibly due to the inhibition of oxygen-derived free radical formation. Gastric PD and pH were measured in volunteers and duodenal ulcer patients during Stroop's color word conflict test, in which mental stress causes sympathetic activation. A PD reduction and a p......H increase were found along with stress induction, thereby indicating an influence of mental stress on stomach mucosal function. It is concluded that gastric PD measurement may be useful in ulcer pathogenetic research, and a sufficient gastric mucosal blood flow is stressed as being important for the mucosal......PD--the electric potential difference across the gastric mucosa--is a variable used to describe the gastric mucosal integrity and function. A new, reliable, and easily applied method for gastric PD measurements corrected for the disturbing liquid junction potentials between gastric juice and the PD...

  10. Development of integrated care pathways: toward a care management system to meet the needs of frail and disabled community-dwelling older people

    Directory of Open Access Journals (Sweden)

    Nicole Dubuc

    2013-05-01

    Full Text Available Introduction: The home care and services provided to older adults with the same needs are often inadequate and highly varied. Integrated care pathways (ICPs can resolve these issues. The aim of this study was to develop the content of ICPs to follow up frail and disabled community-dwelling older people. Theory and method: A rigorous process was applied according to a series of steps: identification of desirable characteristics and a theoretical framework; review of evidence-based practices and current practices; and determination of ICPs by an interdisciplinary task team. Results: ICPs are intended to prevent specific problems, maximize independence, and promote successful aging. They are organized according to a dynamic process: (1 needs assessment and assessment of risk/protection factors; (2 data-collection summary and goals identification; (3 planning of interventions from a client-centered view; (4 coordination, delivery, and follow-up; and (5 identification of variances, as well as review and adjustment of plans. Conclusion: Once computerized, these ICPs will facilitate the exchange of information as well as the clinical decision-making process with a perspective to adequately matching the needs of an individual person with resources that delay or slow the progression of frailty and disability. Once aggregated, the data will also support managers in organizing teamwork and follow-up for clients.

  11. Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem.

    Science.gov (United States)

    Hyun, Youbong; Richter, René; Vincent, Coral; Martinez-Gallegos, Rafael; Porri, Aimone; Coupland, George

    2016-05-09

    Flowering is initiated in response to environmental and internal cues that are integrated at the shoot apical meristem (SAM). We show that SPL15 coordinates the basal floral promotion pathways required for flowering of Arabidopsis in non-inductive environments. SPL15 directly activates transcription of the floral regulators FUL and miR172b in the SAM during floral induction, whereas its paralog SPL9 is expressed later on the flanks of the SAM. The capacity of SPL15 to promote flowering is regulated by age through miR156, which targets SPL15 mRNA, and gibberellin (GA), which releases SPL15 from DELLAs. Furthermore, SPL15 and the MADS-box protein SOC1 cooperate to promote transcription of their target genes. SPL15 recruits RNAPII and MED18, a Mediator complex component, in a GA-dependent manner, while SOC1 facilitates active chromatin formation with the histone demethylase REF6. Thus, we present a molecular basis for assimilation of flowering signals and transcriptional control at the SAM during flowering. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Development of integrated care pathways: toward a care management system to meet the needs of frail and disabled community-dwelling older people

    Directory of Open Access Journals (Sweden)

    Nicole Dubuc

    2013-05-01

    Full Text Available Introduction: The home care and services provided to older adults with the same needs are often inadequate and highly varied. Integrated care pathways (ICPs can resolve these issues. The aim of this study was to develop the content of ICPs to follow up frail and disabled community-dwelling older people.Theory and method: A rigorous process was applied according to a series of steps: identification of desirable characteristics and a theoretical framework; review of evidence-based practices and current practices; and determination of ICPs by an interdisciplinary task team.Results: ICPs are intended to prevent specific problems, maximize independence, and promote successful aging. They are organized according to a dynamic process: (1 needs assessment and assessment of risk/protection factors; (2 data-collection summary and goals identification; (3 planning of interventions from a client-centered view; (4 coordination, delivery, and follow-up; and (5 identification of variances, as well as review and adjustment of plans.Conclusion: Once computerized, these ICPs will facilitate the exchange of information as well as the clinical decision-making process with a perspective to adequately matching the needs of an individual person with resources that delay or slow the progression of frailty and disability. Once aggregated, the data will also support managers in organizing teamwork and follow-up for clients.

  13. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways.

    Science.gov (United States)

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K

    2015-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well.

  14. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process.

    Science.gov (United States)

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency.

  15. Separate elements of the TERMINAL FLOWER 1 cis-regulatory region integrate pathways to control flowering time and shoot meristem identity.

    Science.gov (United States)

    Serrano-Mislata, Antonio; Fernández-Nohales, Pedro; Doménech, María J; Hanzawa, Yoshie; Bradley, Desmond; Madueño, Francisco

    2016-09-15

    TERMINAL FLOWER 1 (TFL1) is a key regulator of Arabidopsis plant architecture that responds to developmental and environmental signals to control flowering time and the fate of shoot meristems. TFL1 expression is dynamic, being found in all shoot meristems, but not in floral meristems, with the level and distribution changing throughout development. Using a variety of experimental approaches we have analysed the TFL1 promoter to elucidate its functional structure. TFL1 expression is based on distinct cis-regulatory regions, the most important being located 3' of the coding sequence. Our results indicate that TFL1 expression in the shoot apical versus lateral inflorescence meristems is controlled through distinct cis-regulatory elements, suggesting that different signals control expression in these meristem types. Moreover, we identified a cis-regulatory region necessary for TFL1 expression in the vegetative shoot and required for a wild-type flowering time, supporting that TFL1 expression in the vegetative meristem controls flowering time. Our study provides a model for the functional organisation of TFL1 cis-regulatory regions, contributing to our understanding of how developmental pathways are integrated at the genomic level of a key regulator to control plant architecture. © 2016. Published by The Company of Biologists Ltd.

  16. Witten Index and Wall Crossing

    CERN Document Server

    Hori, Kentaro; Yi, Piljin

    2014-01-01

    We compute the Witten index of one-dimensional gauged linear sigma models with at least ${\\mathcal N}=2$ supersymmetry. In the phase where the gauge group is broken to a finite group, the index is expressed as a certain residue integral. It is subject to a change as the Fayet-Iliopoulos parameter is varied through the phase boundaries. The wall crossing formula is expressed as an integral at infinity of the Coulomb branch. The result is applied to many examples, including quiver quantum mechanics that is relevant for BPS states in $d=4$ ${\\mathcal N}=2$ theories.

  17. Comparative study of Trombe wall, water wall and trans wall

    Energy Technology Data Exchange (ETDEWEB)

    Sodha, M.S.; Bansal, N.K.; Singh, S.; Ram, S.; Annamalai, M.; Iyer, M.V.; Nirmala, K.A.; Venkatesh, P.; Prasad, C.R.; Subramani, C.

    1982-01-01

    The thermal performances of three systems viz. Trombe wall: (1) without; and (2) with vents (forced air circulation), water wall and Transwall have been studied analytically interms of heat flux entering the living space (Maintained at 20/sup 0/C) corresponding to the meteriological data on January 19, 1981 at New Delhi (India), a typical cold winter day. Subsequent parametric studies using the simulation indicated that the Transwall system is the more efficient system for the passive heating of buildings.

  18. Cell Wall Heterogeneity in Root Development of Arabidopsis

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  19. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  20. Salvianolic acid A ameliorates the integrity of blood-spinal cord barrier via miR-101/Cul3/Nrf2/HO-1 signaling pathway.

    Science.gov (United States)

    Yu, De-Shui; Wang, Yan-Song; Bi, Yun-Long; Guo, Zhan-Peng; Yuan, Ya-Jiang; Tong, Song-Ming; Su, Rui-Chao; Ge, Li-Hao; Wang, Jian; Pan, Ya-Li; Guan, Ting-Ting; Cao, Yang

    2017-02-15

    Salvianolic acid A (Sal A), a bioactive compound isolated from the Chinese medicinal herb Danshen, is used for the prevention and treatment of cardiovascular diseases. However, the protective function of Sal A on preserving the role of blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) is unclear. The present study investigated the effects and mechanisms of Sal A (2.5, 5, 10mg/kg, i.p.) on BSCB permeability at different time-points after compressive SCI in rats. Compared to the SCI group, treatment with Sal A decreased the content of the Evans blue in the spinal cord tissue at 24h post-SCI. The expression levels of tight junction proteins and HO-1 were remarkably increased, and that of p-caveolin-1 protein was greatly decreased after SCI Sal A. The effect of Sal A on the expression level of ZO-1, occluding, and p-caveolin-1 after SCI was blocked by the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP). Also, Sal A inhibited the level of apoptosis-related proteins and improved the motor function until 21days after SCI. In addition, Sal A significantly increased the expression of microRNA-101 (miR-101) in the RBMECs under hypoxia. AntagomiR-101 markedly increased the RBMECs permeability and the expression of the Cul3 protein by targeting with 3'-UTR of its mRNA. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 was significantly increased after agomiR-101 treatment. Therefore, Sal A could improve the recovery of neurological function after SCI, which could be correlated with the repair of BSCB integrity by the miR-101/Cul3/Nrf2/HO-1 signaling pathway.

  1. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G.; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P.; Chrysanthopoulos, Panagiotis; Plan, Manuel R.; McQualter, Richard; Palfreyman, Robin W.; Nielsen, Lars K.

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  2. Further reduction of near-wall resolution for wall-modeled LES

    Science.gov (United States)

    Marques, Alexandre; Wang, Qiqi; Larsson, Johan; Laskowski, Gregory; Bose, Sanjeeb

    2016-11-01

    One of the greatest challenges to the use of Large Eddy Simulations (LES) in engineering applications is the large number of grid points required near walls. To mitigate this issue, LES is often coupled with a model of the flow close to the wall, known as wall model. One feature common to most wall models is that the first few (about 3) grid points must be located below the inviscid log-layer (y / δ modeled LES may still require a large number of grid points, both in the wall-normal and span-wise directions. Because of these requirements, wall-modeled LES still is unfeasible in many applications. We present a new formulation of wall-modeled LES that is being developed to address this issue. In this formulation, LES is used to solve only for the features of the velocity field that can be adequately represented on the LES grid. The effects of the unresolved features are captured by imposing a balance of momentum integrated in the wall-normal direction. This integral momentum balance translates into a dynamic PDE defined on the walls, which is coupled to the LES equations. We discuss details of the new formulation and present results obtained in laminar and turbulent channel flows. This work was partially supported by the Center of Turbulence Research at Stanford University, and by the U.S. Department of Energy under Award Number DE-SC-0011089.

  3. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans

    Science.gov (United States)

    Thevissen, Karin; de Mello Tavares, Patricia; Xu, Deming; Blankenship, Jill; Vandenbosch, Davy; Idkowiak-Baldys, Jolanta; Govaert, Gilmer; Bink, Anna; Rozental, Sonia; de Groot, Piet W.J.; Davis, Talya R.; Kumamoto, Carol A.; Vargas, Gabriele; Nimrichter, Leonardo; Coenye, Tom; Mitchell, Aaron; Roemer, Terry; Hannun, Yusuf A.; Cammue, Bruno P.A.

    2012-01-01

    Summary The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2,868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analyzed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation. PMID:22384976

  4. Complexity of the transcriptional network controlling secondary wall biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Ye, Zheng-Hua

    2014-12-01

    Secondary walls in the form of wood and fibers are the most abundant biomass produced by vascular plants, and are important raw materials for many industrial uses. Understanding how secondary walls are constructed is of significance in basic plant biology and also has far-reaching implications in genetic engineering of plant biomass better suited for various end uses, such as biofuel production. Secondary walls are composed of three major biopolymers, i.e., cellulose, hemicelluloses and lignin, the biosynthesis of which requires the coordinated transcriptional regulation of all their biosynthesis genes. Genomic and molecular studies have identified a number of transcription factors, whose expression is associated with secondary wall biosynthesis. We comprehensively review how these secondary wall-associated transcription factors function together to turn on the secondary wall biosynthetic program, which leads to secondary wall deposition in vascular plants. The transcriptional network regulating secondary wall biosynthesis employs a multi-leveled feed-forward loop regulatory structure, in which the top-level secondary wall NAC (NAM, ATAF1/2 and CUC2) master switches activate the second-level MYB master switches and they together induce the expression of downstream transcription factors and secondary wall biosynthesis genes. Secondary wall NAC master switches and secondary wall MYB master switches bind to and activate the SNBE (secondary wall NAC binding element) and SMRE (secondary wall MYB-responsive element) sites, respectively, in their target gene promoters. Further investigation of what and how developmental signals trigger the transcriptional network to regulate secondary wall biosynthesis and how different secondary wall-associated transcription factors function cooperatively in activating secondary wall biosynthetic pathways will lead to a better understanding of the molecular mechanisms underlying the transcriptional control of secondary wall biosynthesis.

  5. Domain Walls on Singularities

    CERN Document Server

    Halyo, Edi

    2009-01-01

    We describe domain walls that live on $A_2$ and $A_3$ singularities. The walls are BPS if the singularity is resolved and non--BPS if it is deformed and fibered. We show that these domain walls may interpolate between vacua that support monopoles and/or vortices.

  6. The Lamportian cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Keiliszewski, M.; Lamport, D. (Michigan State Univ. Plant Research Lab., East Lansing (United States))

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  7. Halogenation of microcapsule walls

    Science.gov (United States)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  8. Canal-wall-down mastoidectomy and tympanoplasty surgery preserving chorda tympani nerve integrality%保留鼓索神经的开放式乳突根治鼓室成形术

    Institute of Scientific and Technical Information of China (English)

    王林娥; 张汝祥; 张道行

    2012-01-01

    目的:报告开放式乳突根治鼓室成形术中寻找鼓索神经的方法和保留鼓索神经的意义.方法:66例慢性化脓性中耳炎或中耳胆脂瘤患者,术中以砧骨短突为标志,磨低外耳道后壁,沿面神经垂直段找到鼓索嵴(鼓索神经出骨管处),沿鼓索嵴找到游离于鼓室内的鼓索神经,仔细清理鼓索神经表面的病变组织,保持其完整性.结果:24例中耳胆脂瘤患者和42例慢性化脓性中耳炎患者鼓索神经表面胆脂瘤上皮及肉芽彻底清理,无一例鼓索神经断裂,患者术后味觉无明显变化.结论:开放式乳突根治鼓室成形术中彻底清理病变的同时保持鼓索神经的完整性,保留了鼓索神经的结构和功能,可以减低移植于镫骨头上的听小骨膺复物脱落的危险,且可对移植筋膜起支架作用.%Objective:To report the way for searching the chorda tympani nerve and the significance for preserving the chorda tympani nerve during canal'wall-down mastoidectomy and tympanoplasty surgery. Method:Sixty-six cases with chronic suppurative otitis media underwent canal-wall-down mastoidectomy and tympanoplasty surgery. According to the marker of the short crus of incus, the posterior wall of auditory canal was lowered and crista of the chorda tympani nerve was found through tracing the facial nerve contour. The chorda tympani nerve was preserved after clearing the surrounding tissue. Result: Among the 66 cases, 24 cases had middle ear chol-esteatoma,42 cases had granulation in middle ear. The cholesteatoma and granulation on the surface of the chorda tympani nerve were cleared thoroughly. No neurotmesis or obvious change of taste occurred after operation. Conclu sion: Canal-wall-down mastoidectomy and tympanoplasty surgery preserving chorda tympani nerve integrality may preserve the structure and function of the chorda tympani nerve , reduce the risk of ossicle extrusion above the head of stapes and serve as a frame for transplanting

  9. Subpathway-CorSP: Identification of metabolic subpathways via integrating expression correlations and topological features between metabolites and genes of interest within pathways.

    Science.gov (United States)

    Feng, Chenchen; Zhang, Jian; Li, Xuecang; Ai, Bo; Han, Junwei; Wang, Qiuyu; Wei, Taiming; Xu, Yong; Li, Meng; Li, Shang; Song, Chao; Li, Chunquan

    2016-09-14

    Metabolic pathway analysis is a popular strategy for comprehensively researching metabolites and genes of interest associated with specific diseases. However, the traditional pathway identification methods do not accurately consider the combined effect of these interesting molecules and neglects expression correlations or topological features embedded in the pathways. In this study, we propose a powerful method, Subpathway-CorSP, for identifying metabolic subpathway regions. This method improved on original pathway identification methods by using a subpathway identification strategy and emphasizing expression correlations between metabolites and genes of interest based on topological features within the metabolic pathways. We analyzed a prostate cancer data set and its metastatic sub-group data set with detailed comparison of Subpathway-CorSP with four traditional pathway identification methods. Subpathway-CorSP was able to identify multiple subpathway regions whose entire corresponding pathways were not detected by traditional pathway identification methods. Further evidences indicated that Subpathway-CorSP provided a robust and efficient way of reliably recalling cancer-related subpathways and locating novel subpathways by the combined effect of metabolites and genes. This was a novel subpathway strategy based on systematically considering expression correlations and topological features between metabolites and genes of interest within given pathways.

  10. Functional analysis of the MAPK pathways in fungi.

    Science.gov (United States)

    Martínez-Soto, Domingo; Ruiz-Herrera, José

    2017-07-18

    The Mitogen-Activated Protein Kinase (MAPK) signaling pathways constitute one of the most important and evolutionarily conserved mechanisms for the perception of extracellular information in all the eukaryotic organisms. The MAPK pathways are involved in the transfer to the cell of the information perceived from extracellular stimuli, with the final outcome of activation of different transcription factors that regulate gene expression in response to them. In all species of fungi, the MAPK pathways have important roles in their physiology and development; e.g. cell cycle control, mating, morphogenesis, response to different stresses, resistance to UV radiation and to temperature changes, cell wall assembly and integrity, degradation of cellular organelles, virulence, cell-cell signaling, fungus-plant interaction, and response to damage-associated molecular patterns (DAMPs). Considering the importance of the phylogenetically conserved MAPK pathways in fungi, an updated review of the knowledge on them is discussed in this article. This information reveals their importance, their distribution in fungal species evolutionarily distant and with different lifestyles, their organization and function, and the interactions occurring between different MAPK pathways, and with other signaling pathways, for the regulation of the most complex cellular processes. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Combined Visualization of Wall Thickness and Wall Shear Stress for the Evaluation of Aneurysms.

    Science.gov (United States)

    Glaßer, Sylvia; Lawonn, Kai; Hoffmann, Thomas; Skalej, Martin; Preim, Bernhard

    2014-12-01

    For an individual rupture risk assessment of aneurysms, the aneurysm's wall morphology and hemodynamics provide valuable information. Hemodynamic information is usually extracted via computational fluid dynamic (CFD) simulation on a previously extracted 3D aneurysm surface mesh or directly measured with 4D phase-contrast magnetic resonance imaging. In contrast, a noninvasive imaging technique that depicts the aneurysm wall in vivo is still not available. Our approach comprises an experiment, where intravascular ultrasound (IVUS) is employed to probe a dissected saccular aneurysm phantom, which we modeled from a porcine kidney artery. Then, we extracted a 3D surface mesh to gain the vessel wall thickness and hemodynamic information from a CFD simulation. Building on this, we developed a framework that depicts the inner and outer aneurysm wall with dedicated information about local thickness via distance ribbons. For both walls, a shading is adapted such that the inner wall as well as its distance to the outer wall is always perceivable. The exploration of the wall is further improved by combining it with hemodynamic information from the CFD simulation. Hence, the visual analysis comprises a brushing and linking concept for individual highlighting of pathologic areas. Also, a surface clustering is integrated to provide an automatic division of different aneurysm parts combined with a risk score depending on wall thickness and hemodynamic information. In general, our approach can be employed for vessel visualization purposes where an inner and outer wall has to be adequately represented.

  12. Composite panel, wall assembly and components therefor

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.J.

    1988-12-20

    This invention is concerned with improvements in wall assemblies made of a plurality of composite wall panels, such as concrete wall panels, and components and connectors for such assemblies. The invention is also concerned with a method of making such composite wall panels by molding concrete to form a concrete panel. It is particularly applicable for the provision of upstanding walls around oil tanks and hydrocarbon storage facilities, thereby to form part of a containment structure that can satisfy safety regulations for spills around such facilities. In accordance with another aspect of the invention, there is provided a composite building product comprising a concrete panel, said panel being obtained by molding a respective concrete composition. The panel has at least one metal hinge element integrally secured at a respective peripheral edge, with said metal hinge element being secured at the panel to project sufficiently therefrom so as to present a first hinge element. Several of the panels can be connected in a corral-type wall assembly in a variety of configuration. Another aspect of the invention provides, for use in a wall assembly, a portable composite panel comprising a concrete panel body, which is obtained by molding a respective concrete composition; and a frame assembly for reinforcing the peripheral edges of said concrete panel body. The frame assembly includes at least one metal member for provision of a first hing element for connecting a plurality of said panels in a corral-type wall assembly. 7 figs.

  13. Abdominal wall fat pad biopsy

    Science.gov (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... method of taking an abdominal wall fat pad biopsy . The health care provider cleans the skin on ...

  14. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  15. Solar heating wall

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, J.L.

    1983-08-16

    A solar heating wall is disclosed including a water pipe circulation system having a plurality of separate tubes, each formed as a loop, connected between a water supply and a return. The separate tubes are arranged in a single vertical plane at the approximate center of the wall. The wall is formed within a frame which is packed with a material suited for use as a thERMAL RESERVOIR, SUCH AS concrete. The frame provides extra support by having a series of horizontally disposed cross supports on one surface of the wall and a series of vertically disposed cross supports on the opposite surface A pressure relief valve may be provided between the water supply to the separate tubes and the water supply to the building or structure containing the solar wall, so that the solar wall can be adapted for use with a city water system.

  16. Cell Wall Proteome

    OpenAIRE

    Boudart, Georges; Minic, Zoran; Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth; Pont-Lezica, Rafael F

    2007-01-01

    In this chapter, we will focus on the contribution of proteomics to the identification and determination of the structure and function of CWPs as well as discussing new perspectives in this area. The great variety of proteins found in the plant cell wall is described. Some families, such as glycoside hydrolases, proteases, lectins, and inhibitors of cell wall modifying enzymes, are discussed in detail. Examples of the use of proteomic techniques to elucidate the structure of various cell wall...

  17. Staggered domain wall fermions

    CERN Document Server

    Hoelbling, Christian

    2016-01-01

    We construct domain wall fermions with a staggered kernel and investigate their spectral and chiral properties numerically in the Schwinger model. In some relevant cases we see an improvement of chirality by more than an order of magnitude as compared to usual domain wall fermions. Moreover, we present first results for four-dimensional quantum chromodynamics, where we also observe significant reductions of chiral symmetry violations for staggered domain wall fermions.

  18. Green walls in Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)

    2007-07-01

    With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical

  19. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard

    2010-01-01

    that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  20. Advanced glycation end products decrease collagen I levels in fibroblasts from the vaginal wall of patients with POP via the RAGE, MAPK and NF-κB pathways.

    Science.gov (United States)

    Chen, Yi-Song; Wang, Xiao-Juan; Feng, Weiwei; Hua, Ke-Qin

    2017-10-01

    The present study was carried out to observe the impact of advanced glycation end products (AGEs) on collagen I derived from vaginal fibroblasts in the context of pelvic organ prolapse (POP), and explore the downstream effects on MAPK and nuclear factor-κB (NF-κB) signaling. After treating primary cultured human vaginal fibroblasts (HVFs) derived from POP and non-POP cases with AGEs, cell counting was carried out by sulforhodamine B. The expression levels of collagen I, receptor of advanced glycation end products (RAGE), matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were detected by western blot analysis and PCR. RAGE, MAPK and NF-κB were molecularly and pharmacologically-inhibited by siRNA, SB203580 and PDTC, respectively, and downstream changes were detected by western blot analysis and PCR. Inhibition of HVF proliferation by AGEs occurred more readily in POP patients than that noted in the controls. After treatment with AGEs, collagen I levels decreased and MMP-1 levels increased to a greater extent in the HVFs of POP than that noted in the controls. During this same period, RAGE and TIMP-1 levels remained stable. Following treatment with AGEs and RAGE pathway inhibitors by siRNA, SB203580 and PDTC, the impact induced by AGEs was diminished. The inhibition of p-p38 MAPK alone was not able to block the promoting effect of AGEs on the levels of NF-κB, which suggests that AGEs may function through other pathways, as well as p-p38 MAPK. On the whole, this study demonstrated that AGEs inhibited HVF proliferation in POP cases and decreased the expression of collagen I through RAGE and/or p-p38 MAPK and NF-κB-p-p65 pathways. Our results provide important insights into the collagen I metabolism in HVFs in POP.

  1. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, A.C.W.(L.)

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful, a

  2. Domain wall filters

    CERN Document Server

    Bär, O; Neuberger, H; Witzel, O; Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-01-01

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  3. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  4. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, A.C.W.(L.)

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  5. Hard and soft walls

    CERN Document Server

    Milton, Kimball A

    2011-01-01

    In a continuing effort to understand divergences which occur when quantum fields are confined by bounding surfaces, we investigate local energy densities (and the local energy-momentum tensor) in the vicinity of a wall. In this paper, attention is largely confined to a scalar field. If the wall is an infinite Dirichlet plane, well known volume and surface divergences are found, which are regulated by a temporal point-splitting parameter. If the wall is represented by a linear potential in one coordinate $z$, the divergences are softened. The case of a general wall, described by a potential of the form $z^\\alpha$ for $z>0$ is considered. If $\\alpha>2$, there are no surface divergences, which in any case vanish if the conformal stress tensor is employed. Divergences within the wall are also considered.

  6. Advanced technologies for plant cell wall evolution and diversity

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik

    Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotide...... angiosperms. This analysis has enabled cell wall diversity to be placed in a phylogenetic context, and, when integrated with transcriptomic and genomic analysis has contributed to our understanding of important aspects of plant evolution....

  7. Integrated Proteomic and Transcriptomic-Based Approaches to Identifying Signature Biomarkers and Pathways for Elucidation of Daoy and UW228 Subtypes

    Directory of Open Access Journals (Sweden)

    Roger Higdon

    2017-02-01

    Full Text Available Medulloblastoma (MB is the most common malignant pediatric brain tumor. Patient survival has remained largely the same for the past 20 years, with therapies causing significant health, cognitive, behavioral and developmental complications for those who survive the tumor. In this study, we profiled the total transcriptome and proteome of two established MB cell lines, Daoy and UW228, using high-throughput RNA sequencing (RNA-Seq and label-free nano-LC-MS/MS-based quantitative proteomics, coupled with advanced pathway analysis. While Daoy has been suggested to belong to the sonic hedgehog (SHH subtype, the exact UW228 subtype is not yet clearly established. Thus, a goal of this study was to identify protein markers and pathways that would help elucidate their subtype classification. A number of differentially expressed genes and proteins, including a number of adhesion, cytoskeletal and signaling molecules, were observed between the two cell lines. While several cancer-associated genes/proteins exhibited similar expression across the two cell lines, upregulation of a number of signature proteins and enrichment of key components of SHH and WNT signaling pathways were uniquely observed in Daoy and UW228, respectively. The novel information on differentially expressed genes/proteins and enriched pathways provide insights into the biology of MB, which could help elucidate their subtype classification.

  8. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway.

    Science.gov (United States)

    Roversi, Fernanda Marconi; Pericole, Fernando Vieira; Machado-Neto, João Agostinho; da Silva Santos Duarte, Adriana; Longhini, Ana Leda; Corrocher, Flávia Adolfo; Palodetto, Bruna; Ferro, Karla Priscila; Rosa, Renata Giardini; Baratti, Mariana Ozello; Verjovski-Almeida, Sergio; Traina, Fabiola; Molinari, Alessio; Botta, Maurizio; Saad, Sara Teresinha Olalla

    2017-02-01

    New drug development for neoplasm treatment is nowadays based on molecular targets that participate in the disease pathogenesis and tumor phenotype. Herein, we describe a new specific pharmacological hematopoietic cell kinase (HCK) inhibitor (iHCK-37) that was able to reduce PI3K/AKT and MAPK/ERK pathways activation after erythropoietin induction in cells with high HCK expression: iHCK-37 treatment increased leukemic cells death and, very importantly, did not affect normal hematopoietic stem cells. We also present evidence that HCK, one of Src kinase family (SFK) member, regulates early-stage erythroid cell differentiation by acting as an upstream target of a frequently deregulated pathway in hematologic neoplasms, PI3K/AKT and MAPK/ERK. Notably, HCK levels were highly increased in stem cells from patients with some diseases, as Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML), that are associated with ineffective erythropoiesis These discoveries support the exploration of the new pharmacological iHCK-37 in future preclinical and clinical studies.

  9. Balancing act: matching growth with environment by the TOR signalling pathway.

    Science.gov (United States)

    Henriques, Rossana; Bögre, László; Horváth, Beátrix; Magyar, Zoltán

    2014-06-01

    One of the most fundamental aspects of growth in plants is its plasticity in relation to fluctuating environmental conditions. Growth of meristematic cells relies predominantly on protein synthesis, one of the most energy-consuming activities in cells, and thus is tightly regulated in accordance with the available nutrient and energy supplies. The Target of Rapamycin (TOR) signalling pathway takes a central position in this regulation. The core of the TOR signalling pathway is conserved throughout evolution, and can be traced back to the last eukaryotic common ancestor. In plants, a single complex constitutes the TOR signalling pathway. Manipulating the components of the TOR complex in Arabidopsis highlighted its common role as a major regulator of protein synthesis and metabolism, that is also involved in other biological functions such as cell-wall integrity, regulation of cell proliferation, and cell size. TOR, as an integral part of the auxin signalling pathway, connects hormonal and nutrient pathways. Downstream of TOR, S6 kinase and the ribosomal S6 protein have been shown to mediate several of these responses, although there is evidence of other complex non-linear TOR signalling pathway structures.

  10. Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance

    Directory of Open Access Journals (Sweden)

    Nagireddy Putluri

    2014-05-01

    Full Text Available Breast cancer (BCa molecular subtypes include luminal A, luminal B, normal-like, HER-2–enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2 alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa.

  11. Analysis and prediction of pathways in HeLa cells by integrating biological levels of organization with systems-biology approaches.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Higareda-Almaraz

    Full Text Available It has recently begun to be considered that cancer is a systemic disease and that it must be studied at every level of complexity using many of the currently available approaches, including high-throughput technologies and bioinformatics. To achieve such understanding in cervical cancer, we collected information on gene, protein and phosphoprotein expression of the HeLa cell line and performed a comprehensive analysis of the different signaling pathways, transcription networks and metabolic events in which they participate. A total expression analysis by RNA-Seq of the HeLa cell line showed that 19,974 genes were transcribed. Of these, 3,360 were over-expressed, and 2,129 under-expressed when compared to the NHEK cell line. A protein-protein interaction network was derived from the over-expressed genes and used to identify central elements and, together with the analysis of over-represented transcription factor motifs, to predict active signaling and regulatory pathways. This was further validated by Metal-Oxide Affinity Chromatography (MOAC and Tandem Mass Spectrometry (MS/MS assays which retrieved phosphorylated proteins. The 14-3-3 family members emerge as important regulators in carcinogenesis and as possible clinical targets. We observed that the different over- and under-regulated pathways in cervical cancer could be interrelated through elements that participate in crosstalks, therefore belong to what we term "meta-pathways". Additionally, we highlighted the relations of each one of the differentially represented pathways to one or more of the ten hallmarks of cancer. These features could be maintained in many other types of cancer, regardless of mutations or genomic rearrangements, and favor their robustness, adaptations and the evasion of tissue control. Probably, this could explain why cancer cells are not eliminated by selective pressure and why therapy trials directed against molecular targets are not as effective as expected.

  12. Pathway-centric integrative analysis identifies RRM2 as a prognostic marker in breast cancer associated with poor survival and tamoxifen resistance.

    Science.gov (United States)

    Putluri, Nagireddy; Maity, Suman; Kommagani, Ramakrishna; Kommangani, Ramakrishna; Creighton, Chad J; Putluri, Vasanta; Chen, Fengju; Nanda, Sarmishta; Bhowmik, Salil Kumar; Terunuma, Atsushi; Dorsey, Tiffany; Nardone, Agostina; Fu, Xiaoyong; Shaw, Chad; Sarkar, Tapasree Roy; Schiff, Rachel; Lydon, John P; O'Malley, Bert W; Ambs, Stefan; Das, Gokul M; Michailidis, George; Sreekumar, Arun

    2014-05-01

    Breast cancer (BCa) molecular subtypes include luminal A, luminal B, normal-like, HER-2-enriched, and basal-like tumors, among which luminal B and basal-like cancers are highly aggressive. Biochemical pathways associated with patient survival or treatment response in these more aggressive subtypes are not well understood. With the limited availability of pathologically verified clinical specimens, cell line models are routinely used for pathway-centric studies. We measured the metabolome of luminal and basal-like BCa cell lines using mass spectrometry, linked metabolites to biochemical pathways using Gene Set Analysis, and developed a novel rank-based method to select pathways on the basis of their enrichment in patient-derived omics data sets and prognostic relevance. Key mediators of the pathway were then characterized for their role in disease progression. Pyrimidine metabolism was altered in luminal versus basal BCa, whereas the combined expression of its associated genes or expression of one key gene, ribonucleotide reductase subunit M2 (RRM2) alone, associated significantly with decreased survival across all BCa subtypes, as well as in luminal patients resistant to tamoxifen. Increased RRM2 expression in tamoxifen-resistant patients was verified using tissue microarrays, whereas the metabolic products of RRM2 were higher in tamoxifen-resistant cells and in xenograft tumors. Both genetic and pharmacological inhibition of this key enzyme in tamoxifen-resistant cells significantly decreased proliferation, reduced expression of cell cycle genes, and sensitized the cells to tamoxifen treatment. Our study suggests for evaluating RRM2-associated metabolites as noninvasive markers for tamoxifen resistance and its pharmacological inhibition as a novel approach to overcome tamoxifen resistance in BCa. Copyright © 2014 Neoplasia Press, Inc. All rights reserved.

  13. Integrated Model of Chemical Perturbations of a Biological PathwayUsing 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor

    Science.gov (United States)

    We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity pa...

  14. "I Climbed the Great Wall"

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    I finally climbed the Great Wall, A dream of my childhood; my heart is filled with pleasure at the indescribable beauty of the Wall. China’s ancient civilization is best documented by the grandeur of the Wall.

  15. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  16. Integrative approach detected association between genetic variants of microRNA binding sites of TLRs pathway genes and OSCC susceptibility in Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available Oral squamous cell carcinoma (OSCC is a leading malignancy worldwide; the overall 5-year survival rate is approximately 50%. A variety of proteins in Toll-like receptors (TLRs pathway have been related with the risk of OSCC. However, the influence of genetic variations in TLRs pathway genes on OSCC susceptibility is unclear. Previous studies mainly focused on the coding region of genes, while the UTR region remains unstudied. In the current study, a bioinformatics approach was performed to select candidate single nucleotide polymorphisms (SNPs on microRNA binding sites of TLRs pathway genes related with OSCC. After screening 90 OSCC related TLRs pathway genes, 16 SNPs were selected for genotyping. We found that rs5030486, the polymorphisms on 3' UTR of TRAF6, was significantly associated with OSCC risk. AG genotype of TRAF6 was strongly associated with a decreased risk of OSCC (OR = 0.252; 95% CI = 0.106, 0.598; p = 0.001. In addition, AG genotype was also related with a reduced risk of OSCC progression both in univariable analysis (HR = 0.303, 95% CI = 0.092, 0.995 and multivariable analysis (HR = 0.272, 95% CI = 0.082, 0.903. Furthermore, after detecting the mRNA expression level of TRAF6 in 24 OSCC patients, we found that TRAF6 expression level was significantly different between patients carrying different genotypes at locus rs5030486 (p = 0.013, indicating that rs5030486 of TRAF6 might contribute to OSCC risk by altering TRAF6 expression level. In general, these data indicated that SNP rs5030486 could be a potential bio-marker for OSCC risk and our results might provide new insights into the association of polymorphisms within the non-coding area of genes with cancers.

  17. Conducting Wall Hall Thrusters

    Science.gov (United States)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  18. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India’s Electric Grid, Vol. I. National Study. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Palchak, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Deshmukh, Ranjit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ehlen, Ali [National Renewable Energy Lab. (NREL), Golden, CO (United States); Soonee, Sushil Kumar [Power System Operation Corporation Limited (POSOCO), New Delhi (India); Narasimhan, S. R. [Power System Operation Corporation Limited (POSOCO), New Delhi (India); Joshi, Mohit [Power System Operation Corporation Limited (POSOCO), New Delhi (India); McBennett, Brendan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sreedharan, Priya [US Agency for International Development (USAID), Washington, DC (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-01

    The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established an installed capacity target of 175 gigawatts (GW) RE by 2022 that includes 60 GW of wind and 100 GW of solar, up from current capacities of 29 GW wind and 9 GW solar. India’s contribution to global efforts on climate mitigation extends this ambition to 40% non-fossil-based generation capacity by 2030. Global experience demonstrates that power systems can integrate wind and solar at this scale; however, evidence-based planning is important to achieve wind and solar integration at least cost. The purpose of this analysis is to evaluate the operation of India’s power grid with 175 GW of RE in order to identify potential cost and operational concerns and actions needed to efficiently integrate this level of wind and solar generation.

  19. Protocol for a multicentre study to assess feasibility, acceptability, effectiveness and direct costs of TRIumPH (Treatment and Recovery In PsycHosis): integrated care pathway for psychosis

    Science.gov (United States)

    Rathod, Shanaya; Garner, Christie; Griffiths, Alison; Dimitrov, Borislav D; Newman-Taylor, Katherine; Woodfine, Chris; Hansen, Lars; Tabraham, Paul; Ward, Karen; Asher, Carolyn; Phiri, Peter; Naeem, Farooq; North, Pippa; Munshi, Tariq; Kingdon, David

    2016-01-01

    Introduction Duration of untreated psychosis (time between the onset of symptoms and start of treatment) is considered the strongest predictor of symptom severity and outcome. Integrated care pathways that prescribe timeframes around access and interventions can potentially improve quality of care. Methods and analysis A multicentre mixed methods study to assess feasibility, acceptability, effectiveness and analysis of direct costs of an integrated care pathway for psychosis. A pragmatic, non-randomised, controlled trial design is used to compare the impact of Treatment and Recovery In PsycHosis (TRIumPH; Intervention) by comparison between NHS organisations that adopt TRIumPH and those that continue with care as usual (Control). Quantitative and qualitative methods will be used. We will use routinely collected quantitative data and study-specific questionnaires and focus groups to compare service user outcomes, satisfaction and adherence to intervention between sites that adopt TRIumPH versus sites that continue with usual care pathways. Setting 4 UK Mental health organisations. Two will implement TRIumPH whereas two will continue care as usual. Participants Staff, carers, individuals accepted to early intervention in psychosis teams in participating organisations for the study period. Intervention TRIumPH—Integrated Care Pathway for psychosis that has a holistic approach and prescribes time frames against interventions; developed using intelligence from data; co-produced with patients, carers, clinicians and other stakeholders. Outcomes Feasibility will be assessed through adherence to the process measures. Satisfaction and acceptability will be assessed using questionnaires and focus groups. Effectiveness will be assessed through data collection and evaluation of patient outcomes, including clinical, functional and recovery outcomes, physical health, acute care use. Outcome measures will be assessed at baseline, 12 and 24 months to measure whether there is

  20. Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation

    Science.gov (United States)

    Park, George Ilhwan; Moin, Parviz

    2016-06-01

    We report the space-time characteristics of the wall-pressure fluctuations and wall shear-stress fluctuations from wall-modeled large eddy simulation (WMLES) of a turbulent channel flow at Reτ=2000 . Two standard zonal wall models (equilibrium stress model and nonequilibrium model based on unsteady RANS) are employed, and it is shown that they yield similar results in predicting these quantities. The wall-pressure and wall shear-stress fields from WMLES are analyzed in terms of their r.m.s. fluctuations, spectra, two-point correlations, and convection velocitie