WorldWideScience

Sample records for wall degrading enzyme

  1. The identification of cell wall degrading enzymes in Globodera rostochiensis

    NARCIS (Netherlands)

    Popeijus, H.E.

    2002-01-01

    This thesis describes the identification of cell wall degrading enzymes of the potato cyst nematode Globodera rostochiensis . A robust method using expressed sequence tags (ESTs) was applied to identify new parasitism related enzymes. One of the ESTs revealed the first

  2. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran

    DEFF Research Database (Denmark)

    Bech, Lasse; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    degrading enzymes and strong secretion ability of this genus. Here we report extensive transcriptome analysis of plant cell wall degrading enzymes in T. asperellum. The production of cell wall degrading enzymes by T. asperellum was tested on a range of cellulosic materials under various conditions. When T...

  3. Pathogenicity and cell wall-degrading enzyme activities of some ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2005-12-17

    borne pathogens most of which are fungi6,8,10,11. Many phytopathogenic fungi and bacteria have long been known to produce enzymes capable of hydrolyzing the polymeric carbohydrate constituent of higher plants cell wall.

  4. Enhanced lipid recovery from Nannochloropsis microalgae by treatment with optimized cell wall degrading enzyme mixtures.

    Science.gov (United States)

    Zuorro, Antonio; Miglietta, Selenia; Familiari, Giuseppe; Lavecchia, Roberto

    2016-07-01

    A statistical mixture design approach was used to investigate the effects of cell wall degrading enzymes on the recovery of lipids from Nannochloropsis sp. A preliminary screening of potentially suitable enzyme preparations, including lysozyme, cellulase and different types of hemicellulases, was carried out. The most effective preparations were then taken as basic components for the formulation of enzyme mixtures. Optimized ternary mixtures consisting of cellulase and two hemicellulases were obtained which allowed the recovery of up to 37.2g of lipids per 100g of dry biomass. SEM and TEM images of the enzymatically treated microalga revealed extensive cell damage, with degradation of the cell wall and release of intracellular material. Overall, the results obtained demonstrate that the mixture design method can be used to prepare cell wall degrading enzyme cocktails that can significantly improve the recovery of lipids or other valuable components from microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi.

    Science.gov (United States)

    Kubicek, Christian P; Starr, Trevor L; Glass, N Louise

    2014-01-01

    Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.

  6. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Bergstrom Gary C

    2011-02-01

    Full Text Available Abstract Background The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of T. reesei enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides. Results Large-scale screening identified a range of hydrolytic activities among 348 unique isolates representing 156 species of plant pathogenic and non-pathogenic fungi. Hierarchical clustering was used to identify groups of species with similar hydrolytic profiles. Among moderately and highly active species, plant pathogenic species were found to be more active than non-pathogens on six of eight substrates tested, with no significant difference seen on the other two substrates. Among the pathogenic fungi, greater hydrolysis was seen when they were tested on biomass and hemicellulose derived from their host plants (commelinoid monocot or dicot. Although T. reesei has a hydrolytic profile that is highly active on cellulose and pretreated biomass, it was less active than some natural isolates of fungi when tested on xylans and untreated biomass. Conclusions Several highly active isolates of plant pathogenic fungi were identified, particularly when tested on xylans and untreated biomass. There were statistically significant preferences for biomass type reflecting the monocot or dicot host preference of the

  7. Effect of calcium on cell-wall degrading enzymes of Botrytis cinerea.

    Science.gov (United States)

    Sasanuma, Izumi; Suzuki, Takuya

    2016-09-01

    Effective anti-Botrytis strategies leading to reduce pesticides on strawberries are examined to provide the protection that is harmless to humans, higher animals and plants. Calcium treatments significantly inhibited the spore germination and mycelial growth of B. cinerea. The intracellular polygalacturonase and CMCase showed low activities in B. cinerea cultivated by medium containing calcium. On the other hand, calcium-stimulated β-glucosidases production occurred. Our findings suggest that the calcium treatments keep CMCase activity low and cause low activities of cell-wall degrading enzymes of B. cinerea in the late stage of growth.

  8. Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

    Science.gov (United States)

    Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk

    2012-01-01

    A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272

  9. Agrobacterium tumefaciens mediated transient expression of plant cell wall-degrading enzymes in detached sunflower leaves.

    Science.gov (United States)

    Jung, Sang-Kyu; Lindenmuth, Benjamin E; McDonald, Karen A; Hwang, Hwang; Bui, Mai Q Nguyen; Falk, Bryce W; Uratsu, Sandra L; Phu, My L; Dandekar, Abhaya M

    2014-01-01

    For biofuel applications, synthetic endoglucanase E1 and xylanase (Xyn10A) derived from Acidothermus cellulolyticus were transiently expressed in detached whole sunflower (Helianthus annuus L.) leaves using vacuum infiltration. Three different expression systems were tested, including the constitutive CaMV 35S-driven, CMVar (Cucumber mosaic virus advanced replicating), and TRBO (Tobacco mosaic virus RNA-Based Overexpression Vector) systems. For 6-day leaf incubations, codon-optimized E1 and xylanase driven by the CaMV 35S promoter were successfully expressed in sunflower leaves. The two viral expression vectors, CMVar and TRBO, were not successful although we found high expression in Nicotiana benthamiana leaves previously for other recombinant proteins. To further enhance transient expression, we demonstrated two novel methods: using the plant hormone methyl jasmonic acid in the agroinfiltration buffer and two-phase optimization of the leaf incubation temperature. When methyl jasmonic acid was added to Agrobacterium tumefaciens cell suspensions and infiltrated into plant leaves, the functional enzyme production increased 4.6-fold. Production also increased up to 4.2-fold when the leaf incubation temperature was elevated above the typical temperature, 20C, to 30C in the late incubation phase, presumably due to enhanced rate of protein synthesis in plant cells. Finally, we demonstrated co-expression of E1 and xylanase in detached sunflower leaves. To our knowledge, this is the first report of (co)expression of heterologous plant cell wall-degrading enzymes in sunflower.

  10. Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components.

    Science.gov (United States)

    Geiser, Elena; Reindl, Michèle; Blank, Lars M; Feldbrügge, Michael; Wierckx, Nick; Schipper, Kerstin

    2016-09-01

    The microbial conversion of plant biomass to valuable products in a consolidated bioprocess could greatly increase the ecologic and economic impact of a biorefinery. Current strategies for hydrolyzing plant material mostly rely on the external application of carbohydrate-active enzymes (CAZymes). Alternatively, production organisms can be engineered to secrete CAZymes to reduce the reliance on externally added enzymes. Plant-pathogenic fungi have a vast repertoire of hydrolytic enzymes to sustain their lifestyle, but expression of the corresponding genes is usually highly regulated and restricted to the pathogenic phase. Here, we present a new strategy in using the biotrophic smut fungus Ustilago maydis for the degradation of plant cell wall components by activating its intrinsic enzyme potential during axenic growth. This fungal model organism is fully equipped with hydrolytic enzymes, and moreover, it naturally produces value-added substances, such as organic acids and biosurfactants. To achieve the deregulated expression of hydrolytic enzymes during the industrially relevant yeast-like growth in axenic culture, the native promoters of the respective genes were replaced by constitutively active synthetic promoters. This led to an enhanced conversion of xylan, cellobiose, and carboxymethyl cellulose to fermentable sugars. Moreover, a combination of strains with activated endoglucanase and β-glucanase increased the release of glucose from carboxymethyl cellulose and regenerated amorphous cellulose, suggesting that mixed cultivations could be a means for degrading more complex substrates in the future. In summary, this proof of principle demonstrates the potential applicability of activating the expression of native CAZymes from phytopathogens in a biocatalytic process. This study describes basic experiments that aim at the degradation of plant cell wall components by the smut fungus Ustilago maydis As a plant pathogen, this fungus contains a set of lignocellulose-degrading

  11. Adaptive expression of host cell wall degrading enzymes in fungal disease: an example from Fusarium root rot of medicinal Coleus.

    Science.gov (United States)

    Bhattacharya, A

    2013-12-15

    Quantity of extracellular proteins and activities two cell wall degrading enzymes pectinase and cellulase were determined in the culture filtrate of Fusarium solani, the causal organism of root rot of Coleus forskohlii. Substitution of carbon source in the medium with either pectin or carboxymethyl cellulose led to the increased production of extracellular proteins by the fungus. Pectinase and cellulase activity in the culture filtrate was detected only when the growth medium contained substituted carbon source in the form of pectin and CMC, respectively. Pectinase activity was highest after 5 days incubation and then decreased gradually with time but cellulase activity showed a steady time dependent increase. In vitro virulence study showed the requirement of both the enzymes for complete expression of rot symptoms on Coleus plants. Thus the present study established the adaptive, substrate dependent expression of the two enzymes by the fungus and also their involvement in the root rot disease of Coleus forskohlii.

  12. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    Science.gov (United States)

    Berg Miller, Margret E; Antonopoulos, Dionysios A; Rincon, Marco T; Band, Mark; Bari, Albert; Akraiko, Tatsiana; Hernandez, Alvaro; Thimmapuram, Jyothi; Henrissat, Bernard; Coutinho, Pedro M; Borovok, Ilya; Jindou, Sadanari; Lamed, Raphael; Flint, Harry J; Bayer, Edward A; White, Bryan A

    2009-08-14

    Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb), and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs), polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs). Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315) exhibited the highest levels of up-regulation. The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional analysis of the genome has revealed that the growth substrate drives expression of enzymes

  13. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    Directory of Open Access Journals (Sweden)

    Margret E Berg Miller

    Full Text Available BACKGROUND: Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. METHODOLOGY/PRINCIPAL FINDINGS: The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb, and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs, polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs. Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315 exhibited the highest levels of up-regulation. CONCLUSIONS/SIGNIFICANCE: The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional

  14. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Kátia F., E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Cortijo-Triviño, David [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Batista, Karla A.; Ulhoa, Cirano J. [Departamento de Bioquímica e Biologia Molecular, Instituo de Ciências Biológicas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970 Goiânia, GO (Brazil); García-Ruiz, Pedro A. [Grupo de Química de Carbohidratos y Biotecnología de Alimentos (QCBA), Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain)

    2013-07-01

    In this study, cell wall degrading enzymes produced by Thrichoderma asperellum (TCWDE) were immobilized on totally cinnamoylated D-sorbitol (TCNSO) beads and used for chitin hydrolysis. In order to optimize immobilization efficiency, the reaction time was varied from 2 to 12 h and reactions were conducted in the presence or absence of Na{sub 2}SO{sub 4}. Immobilized enzymes were analysed concerning to thermal and operational stability. Immobilization in presence of Na{sub 2}SO{sub 4} was 54% more efficient than immobilization in absence of salt. After optimization, 32% of the total enzyme offered was immobilized, with 100% of bounding efficiency, measured as the relation between protein and enzyme immobilized. Free and TCNSO–TCWDE presented very similar kinetics with maximum hydrolysis reached at 90 min of reaction. Thermal stability of both free and TCNSO–TCWDE was similar, with losses in activity after 55 °C. Moreover, free and TCNSO–TCWDE retained 100% activity after 3 h incubation at 55 °C. TCNSO–TCWDE were used in a bath-wise reactor during 14 cycles, producing 1825 μg of N-acetylglucosamine (NAG) maintaining 83% of initial activity. - Highlights: • TCWDE immobilized on TCNSO, a support with highly hydrophobic character • New immobilization strategy for immobilization on a hydrophobic support • TCNSO–TCWDE were retained during washes and during incubation at 55 °C for 3 h.

  15. Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes.

    Science.gov (United States)

    Choi, Jaeyoung; Kim, Ki-Tae; Jeon, Jongbum; Lee, Yong-Hwan

    2013-01-01

    Plant cell wall-degrading enzymes (PCWDEs) play significant roles throughout the fungal life including acquisition of nutrients and decomposition of plant cell walls. In addition, many of PCWDEs are also utilized by biofuel and pulp industries. In order to develop a comparative genomics platform focused in fungal PCWDEs and provide a resource for evolutionary studies, Fungal PCWDE Database (FPDB) is constructed (http://pcwde.riceblast.snu.ac.kr/). In order to archive fungal PCWDEs, 22 sequence profiles were constructed and searched on 328 genomes of fungi, Oomycetes, plants and animals. A total of 6,682 putative genes encoding PCWDEs were predicted, showing differential distribution by their life styles, host ranges and taxonomy. Genes known to be involved in fungal pathogenicity, including polygalacturonase (PG) and pectin lyase, were enriched in plant pathogens. Furthermore, crop pathogens had more PCWDEs than those of rot fungi, implying that the PCWDEs analysed in this study are more needed for invading plant hosts than wood-decaying processes. Evolutionary analysis of PGs in 34 selected genomes revealed that gene duplication and loss events were mainly driven by taxonomic divergence and partly contributed by those events in species-level, especially in plant pathogens. The FPDB would provide a fungi-specialized genomics platform, a resource for evolutionary studies of PCWDE gene families and extended analysis option by implementing Favorite, which is a data exchange and analysis hub built in Comparative Fungal Genomics Platform (CFGP 2.0; http://cfgp.snu.ac.kr/).

  16. Identification and expression profiling of novel plant cell wall degrading enzymes from a destructive pest of palm trees, Rhynchophorus ferrugineus.

    Science.gov (United States)

    Antony, B; Johny, J; Aldosari, S A; Abdelazim, M M

    2017-08-01

    Plant cell wall degrading enzymes (PCWDEs) from insects were recently identified as a multigene family of proteins that consist primarily of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) and play essential roles in the degradation of the cellulose/hemicellulose/pectin network in the invaded host plant. Here we applied transcriptomic and degenerate PCR approaches to identify the PCWDEs from a destructive pest of palm trees, Rhynchophorus ferrugineus, followed by a gut-specific and stage-specific differential expression analysis. We identified a total of 27 transcripts encoding GH family members and three transcripts of the CE family with cellulase, hemicellulase and pectinase activities. We also identified two GH9 candidates, which have not previously been reported from Curculionidae. The gut-specific quantitative expression analysis identified key cellulases, hemicellulases and pectinases from R. ferrugineus. The expression analysis revealed a pectin methylesterase, RferCE8u02, and a cellulase, GH45c34485, which showed the highest gut enriched expression. Comparison of PCWDE expression patterns revealed that cellulases and pectinases are significantly upregulated in the adult stages, and we observed specific high expression of the hemicellulase RferGH16c4170. Overall, our study revealed the potential of PCWDEs from R. ferrugineus, which may be useful in biotechnological applications and may represent new tools in R. ferrugineus pest management strategies. © 2017 The Royal Entomological Society.

  17. Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica.

    Science.gov (United States)

    Pauchet, Yannick; Kirsch, Roy; Giraud, Sandra; Vogel, Heiko; Heckel, David G

    2014-06-01

    Xylophagous insects have evolved to thrive in a highly challenging environment. For example, wood-boring beetles from the family Cerambycidae feed exclusively on woody tissues, and to efficiently access the nutrients present in this sub-optimal environment, they have to cope with the lignocellulose barrier. Whereas microbes of the insect's gut flora were hypothesized to be responsible for the degradation of lignin, the beetle itself depends heavily on the secretion of a range of enzymes, known as plant cell wall degrading enzymes (PCWDEs), to efficiently digest both hemicellulose and cellulose networks. Here we sequenced the larval gut transcriptome of the Mulberry longhorn beetle, Apriona japonica (Cerambycidae, Lamiinae), in order to investigate the arsenal of putative PCWDEs secreted by this species. We combined our transcriptome with all available sequencing data derived from other cerambycid beetles in order to analyze and get insight into the evolutionary history of the corresponding gene families. Finally, we heterologously expressed and functionally characterized the A. japonica PCWDEs we identified from the transcriptome. Together with a range of endo-β-1,4-glucanases, we describe here for the first time the presence in a species of Cerambycidae of (i) a xylanase member of the subfamily 2 of glycoside hydrolase family 5 (GH5 subfamily 2), as well as (ii) an exopolygalacturonase from family GH28. Our analyses greatly contribute to a better understanding of the digestion physiology of this important group of insects, many of which are major pests of forestry worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. PLASMALEMMA PATCH CLAMP EXPERIMENTS IN PLANT-ROOT CELLS - PROCEDURE FOR FAST ISOLATION OF PROTOPLASTS WITH MINIMAL EXPOSURE TO CELL-WALL DEGRADING ENZYMES

    NARCIS (Netherlands)

    VOGELZANG, SA; PRINS, HBA

    1992-01-01

    A convenient and rapid isolation procedure for root cell protoplasts suitable for patch clamp experiments. was developed for root cells of tomato (Lycopersicon esculentum and Plantago species, grown on hydroculture. The procedure is based on a minimal exposure of cells to cell wall degrading enzyme

  19. Plant Wall Degradative Compounds and Systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present invention relates to cell wall degradative systems, in particular to systems containing enzymes that bind to and/or depolymerize cellulose. These systems...

  20. In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn.

    Science.gov (United States)

    Ramos, Araceli M; Gally, Marcela; Szapiro, Gala; Itzcovich, Tatiana; Carabajal, Maira; Levin, Laura

    Macrophomina phaseolina is a polyphagous phytopathogen, causing stalk rot on many commercially important species. Damages caused by this pathogen in soybean and maize crops in Argentina during drought and hot weather have increased due its ability to survive as sclerotia in soil and crop debris under non-till practices. In this work, we explored the in vitro production of plant cell wall-degrading enzymes [pectinases (polygalacturonase and polymethylgalacturonase); cellulases (endoglucanase); hemicellulases (endoxylanase) and the ligninolytic enzyme laccase] by several Argentinean isolates of M. phaseolina, and assessed the pathogenicity of these isolates as a preliminary step to establish the role of these enzymes in M. phaseolina-maize interaction. The isolates were grown in liquid synthetic medium supplemented with glucose, pectin, carboxymethylcellulose or xylan as carbon sources and/or enzyme inducers and glutamic acid as nitrogen source. Pectinases were the first cell wall-degrading enzymes detected and the activities obtained (polygalacturonase activity was between 0.4 and 1.3U/ml and polymethylgalacturonase between 0.15 and 1.3U/ml) were higher than those of cellulases and xylanases, which appeared later and in a lesser magnitude. This sequence would promote initial tissue maceration followed by cell wall degradation. Laccase was detected in all the isolates evaluated (activity was between 36U/l and 63U/l). The aggressiveness of the isolates was tested in maize, sunflower and watermelon seeds, being high on all the plants assayed. This study reports for the first time the potential of different isolates of M. phaseolina to produce plant cell wall-degrading enzymes in submerged fermentation. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Hot air treatment reduces postharvest decay and delays softening of cherry tomato by regulating gene expression and activities of cell wall-degrading enzymes.

    Science.gov (United States)

    Wei, Yingying; Zhou, Dandan; Wang, Zhenjie; Tu, Sicong; Shao, Xingfeng; Peng, Jing; Pan, Leiqing; Tu, Kang

    2017-09-25

    Fruit softening facilitates pathogen infection and postharvest decay, leading to the reduction of shelf-life. Hot air (HA) treatment at 38 °C for 12 h is effective in reducing postharvest disease and chilling injury of tomato fruit. To explore the effect and mechanism of HA treatment on reducing postharvest decay and softening of cherry tomato, fruit at the mature green stage were treated with HA and then stored at 20 °C for 15 days. Changes in natural decay incidence, firmness, cell wall compositions, activities and gene expression of cell wall-degrading enzymes of cherry tomatoes were assessed. HA treatment reduced natural decay incidence, postponed the firmness decline, inhibited the respiration rate and ethylene production, and retarded pectin solubilization and cellulose degradation of cherry tomatoes. Enzymatic activities and gene expression of pectin methylesterase, polygalacturonase, cellulase and β-galactosidase were inhibited by HA treatment. In addition, the gene expression of LeEXP1 was reduced, while LeEXT was up-regulated after HA treatment. Our findings suggested that HA treatment could inhibit cell wall degradation and postpone softening of cherry tomatoes by regulating gene expression and activities of cell wall-degrading enzymes, resulting in the reduction of postharvest decay. This article is protected by copyright. All rights reserved.

  2. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  3. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  4. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels.

    Science.gov (United States)

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  5. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    Directory of Open Access Journals (Sweden)

    Shazia Rehman

    2014-12-01

    Full Text Available Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE, in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase using a novel substrate, Banana Peels (BP for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  6. Processing technologies and cell wall degrading enzymes to improve nutritional value of dried distillers grain with solubles for animal feed: an in vitro digestion study.

    Science.gov (United States)

    de Vries, Sonja; Pustjens, Annemieke M; Kabel, Mirjam A; Salazar-Villanea, Sergio; Hendriks, Wouter H; Gerrits, Walter J J

    2013-09-18

    Currently, the use of maize dried distillers grain with solubles (DDGS) as protein source in animal feed is limited by the inferior protein quality and high levels of non-starch polysaccharides (NSP). Processing technologies and enzymes that increase NSP degradability might improve digestive utilization of DDGS, enhancing its potential as a source of nutrients for animals. The effects of various combinations of processing technologies and commercial enzyme mixtures on in vitro digestion and subsequent fermentation of DDGS were tested. Wet-milling, extrusion, and mild hydrothermal acid treatment increased in vitro protein digestion but had no effect on NSP. Severe hydrothermal acid treatments, however, effectively solubilized NSP (48-78%). Addition of enzymes did not affect NSP solubilization in unprocessed or processed DDGS. Although the cell wall structure of DDGS seems to be resistant to most milder processing technologies, in vitro digestion of DDGS can be effectively increased by severe hydrothermal acid treatments.

  7. Analysis of expressed sequence tags and identification of genes encoding cell-wall-degrading enzymes from the fungivorous nematode Aphelenchus avenae

    Directory of Open Access Journals (Sweden)

    Okada Hiroaki

    2009-11-01

    Full Text Available Abstract Background The fungivorus nematode, Aphelenchus avenae is widespread in soil and is found in association with decaying plant material. This nematode is also found in association with plants but its ability to cause plant disease remains largely undetermined. The taxonomic position and intermediate lifestyle of A. avenae make it an important model for studying the evolution of plant parasitism within the Nematoda. In addition, the exceptional capacity of this nematode to survive desiccation makes it an important system for study of anhydrobiosis. Expressed sequence tag (EST analysis may therefore be useful in providing an initial insight into the poorly understood genetic background of A. avenae. Results We present the generation, analysis and annotation of over 5,000 ESTs from a mixed-stage A. avenae cDNA library. Clustering of 5,076 high-quality ESTs resulted in a set of 2,700 non-redundant sequences comprising 695 contigs and 2,005 singletons. Comparative analyses indicated that 1,567 (58.0% of the cluster sequences had homologues in Caenorhabditis elegans, 1,750 (64.8% in other nematodes, 1,321(48.9% in organisms other than nematodes, and 862 (31.9% had no significant match to any sequence in current protein or nucleotide databases. In addition, 1,100 (40.7% of the sequences were functionally classified using Gene Ontology (GO hierarchy. Similarity searches of the cluster sequences identified a set of genes with significant homology to genes encoding enzymes that degrade plant or fungal cell walls. The full length sequences of two genes encoding glycosyl hydrolase family 5 (GHF5 cellulases and two pectate lyase genes encoding polysaccharide lyase family 3 (PL3 proteins were identified and characterized. Conclusion We have described at least 2,214 putative genes from A. avenae and identified a set of genes encoding a range of cell-wall-degrading enzymes. This EST dataset represents a starting point for studies in a number of different

  8. Synergistic Effect of Different Plant Cell Wall-Degrading Enzymes Is Important for Virulence of Fusarium graminearum.

    Science.gov (United States)

    Paccanaro, Maria Chiara; Sella, Luca; Castiglioni, Carla; Giacomello, Francesca; Martínez-Rocha, Ana Lilia; D'Ovidio, Renato; Schäfer, Wilhelm; Favaron, Francesco

    2017-11-01

    Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.

  9. Mycoparasitism of endophytic fungi isolated from reed on soilborne phytopathogenic fungi and production of cell wall-degrading enzymes in vitro.

    Science.gov (United States)

    Cao, Ronghua; Liu, Xiaoguang; Gao, Kexiang; Mendgen, Kurt; Kang, Zhensheng; Gao, Jianfeng; Dai, Yang; Wang, Xue

    2009-12-01

    Antagonism of three endophytic fungi isolated from common reed (Phragmites australis) against eight soilborne pathogenic fungi was investigated on potato dextrose agar by light microscopy, scanning electron microscopy, and transmission electron microscopy. Inhibitory zones were not observed. The microscopical studies suggested that the endophytes inhibit growth of soilborne pathogens by means of coiling around hyphae and, after penetration, the degradation of hyphal cytoplasm. Since penetration of hyphae seems to play a major role in parasitism, we studied the production of cell wall degrading enzymes by the three endophytes. Choiromyces aboriginum produced higher activities of beta-1,3-glucanases compared to Stachybotrys elegans and Cylindrocarpon sp. For C. aboriginum and S. elegans, colloidal chitin was the best substrate for the induction of beta-1,3-glucanases and chitinases, respectively. This result suggests that mycoparasitism by endophytes on soilborne plant pathogens can be explained by their mycoparasitic activity.

  10. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica.

    Science.gov (United States)

    Blackman, Leila M; Cullerne, Darren P; Torreña, Pernelyn; Taylor, Jen; Hardham, Adrienne R

    2015-01-01

    RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade β-1

  11. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius by Phytophthora parasitica.

    Directory of Open Access Journals (Sweden)

    Leila M Blackman

    Full Text Available RNA-Seq analysis has shown that over 60% (12,962 of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i demethylation of pectic homogalacturonan occurs before its deacetylation; (ii cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade

  12. Abeta-degrading enzymes in Alzheimer's disease.

    Science.gov (United States)

    Miners, James Scott; Baig, Shabnam; Palmer, Jennifer; Palmer, Laura E; Kehoe, Patrick G; Love, Seth

    2008-04-01

    In Alzheimer's disease (AD) Abeta accumulates because of imbalance between the production of Abeta and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of Abeta is partly, if not in some cases solely, because of defects in its removal--mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading Abeta. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced Abeta-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading Abetain vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOEepsilon4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to Abeta plaque load. Up-regulation of some Abeta-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other Abeta-clearance pathways, reductions in the activity of particular Abeta-degrading enzymes may become critical, leading to the development of AD and CAA.

  13. Uronic polysaccharide degrading enzymes.

    Science.gov (United States)

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Novel Enzymes for Targeted Hydrolysis of Algal Cell Walls

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel

    urchins are known algae-eaters and may therefore be inhabited by endosymbiotic bacteria that help in degradation of algal cell wall constituents. This thesis work investigated bacteria associated with seaweed, seagrass and sea urchins for their enzymatic activities against algal cell wall polysaccharides...... are incapable of breaking the complex polysaccharides found in seaweed cell walls. Therefore, new enzymes are needed for degradation of seaweed biomass. Bacteria that colonize the surfaces of seaweed secrete enzymes that allow them to degrade and utilize seaweed polysaccharides as energy. In addition, sea...

  15. Improved purity and immunostimulatory activity of β-(1→3)(1→6)-glucan from Pleurotus sajor-caju using cell wall-degrading enzymes.

    Science.gov (United States)

    Satitmanwiwat, Saranya; Ratanakhanokchai, Khanok; Laohakunjit, Natta; Chao, Louis Kuoping; Chen, Shui-Tein; Pason, Patthra; Tachaapaikoon, Chakrit; Kyu, Khin Lay

    2012-05-30

    The objective of this work was to improve the purity of β-(1→3)(1→6)-glucan in the native triple helical structure from the fruiting bodies of Pleurotus sajor-caju for effective biological function using cell wall-degrading enzymes. A crude carbohydrate was extracted with hot water, then treated with crude xylanase and cellulase from Paenibacillus curdlanolyticus B-6. β-Glucan in the extract was purified to homogeneity with a single and symmetrical peak using 650M DEAE Toyopearl and Sepharose CL-6B column chromatography. The purity of β-glucan was confirmed by high-performance size-exclusion chromatography. Purified β-glucan was obtained at a purity of up to 90.2%. The Congo red reaction and atomic force microscopy indicated that the purified β-glucan exhibited a triple helix conformation. Purified β-glucan was able to effectively up-regulate the functions of macrophages such as nitric oxide (NO) and tumor necrosis factor (TNF-α) production.

  16. Novel Enzymes for Targeted Hydrolysis of Algal Cell Walls

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel

    urchins are known algae-eaters and may therefore be inhabited by endosymbiotic bacteria that help in degradation of algal cell wall constituents. This thesis work investigated bacteria associated with seaweed, seagrass and sea urchins for their enzymatic activities against algal cell wall polysaccharides....... These enzymes degraded fucoidan extracted from brown algae of the order Fucales, but displayed individual substrate preference and degradation pattern. This work adds substantial information to a protein family which is largely undiscovered to date. Several of the enzyme activities discovered in this thesis...

  17. Impact of cell wall-degrading enzymes on water-holding capacity and solubility of dietary fibre in rye and wheat bran.

    Science.gov (United States)

    Petersson, Karin; Nordlund, Emilia; Tornberg, Eva; Eliasson, Ann-Charlotte; Buchert, Johanna

    2013-03-15

    Rye and wheat bran were treated with several xylanases and endoglucanases, and the effects on physicochemical properties such as solubility, viscosity, water-holding capacity and particle size as well as the chemical composition of the soluble and insoluble fractions of the bran were studied. A large number of enzymes with well-defined activities were used. This enabled a comparison between enzymes of different origins and with different activities as well as a comparison between the effects of the enzymes on rye and wheat bran. The xylanases derived from Bacillus subtilis were the most effective in solubilising dietary fibre from wheat and rye bran. There was a tendency for a higher degree of degradation of the soluble or solubilised dietary fibre in rye bran than in wheat bran when treated with most of the enzymes. None of the enzymes increased the water-holding capacity of the bran or the viscosity of the aqueous phase. The content of insoluble material decreased as the dietary fibre was solubilised by the enzymes. The amount of material that may form a network to retain water in the system was thereby decreased. © 2012 Society of Chemical Industry.

  18. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  19. Cellulose degradation by oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  20. Discovery of novel algae-degrading enzymes from marine bacteria

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    Algal cell wall polysaccharides, and their derived oligosaccharides, display a range of health beneficial bioactive properties. Enzymes capable of degrading algal polysaccharides into oligosaccharides may be used to produce biomolecules with new functionalities for the food and pharma industry....... Some marine bacteria are specialized in degrading algal biomass and secrete enzymes that can decompose the complex algal cell wall polysaccharides. In order to identify such bacteria and enzymatic activities, we have used a combination of traditional cultivation and isolation methods, bioinformatics...... and functional screening. This resulted in the discovery of a novel marine bacterium which displays a large enzymatic potential for degradation of red algal polysaccharides e.g. agar and carrageenan. In addition, we searched metagenome sequence data and identified new enzyme candidates for degradation...

  1. Rye bran modified with cell wall-degrading enzymes influences the kinetics of plant lignans but not of enterolignans in multicatheterized pigs

    DEFF Research Database (Denmark)

    Bolvig, Anne Katrine; Nørskov, Natalja; van Vliet, Sophie

    2017-01-01

    Background: Whole-grain intake is associated with a lower risk of chronic Western-style diseases, possibly brought about by the high concentration of phytochemicals, among them plant lignans (PLs), in the grains. Objective: We studied whether treatment of rye bran with cell wall–degrading enzymes...... rich in PLs and based on nontreated lignan-rich (LR) [lignan concentration: 20.2 mg dry matter (DM)/kg] or enzymatically treated lignan-rich (ENZLR, lignan concentration: 27.8 mg DM/kg) rye bran. Plasma concentrations of PLs and enterolignans were quantified with the use of targeted LC-tandem mass...... after intake of both the ENZLR and LR diets. Postprandially, consumption of ENZLR resulted in a 4-times-greater (P

  2. Controlled enzyme catalyzed heteropolysaccharide degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard

    of the progress of enzymatic hydrolysis of different xylan substrates was developed. The method relies on dividing the HPSEC elution profiles into fixed time intervals and utilizing the linear refractive index response (area under the curve) of defined standard compounds. In order to obtain optimal high......-performance size exclusion chromatography profiles, the method was designed using 0.1 M CH3COONa in both the mobile phase and as the sample solution. This was based on the systematic evaluation of the influence of the mobile phase, including the type, ionic strength and pH, on the refractive index detector...... response. A time study of the enzyme catalyzed hydrolysis of birchwood xylan and wheat bran by BsX was used as an example to demonstrate the workability of the new HPSEC method for obtaining progress curves describing the evolution in the product profile during enzyme catalysis. Flaxseed mucilage (FM) has...

  3. Bacterial enzymes involved in lignin degradation.

    Science.gov (United States)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-10-20

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)processing of lignocellulosic feedstocks, more effective degradation methods of lignin are in demand. Nature has found ways to fully degrade lignin through the production of dedicated ligninolytic enzyme systems. While such enzymes have been well thoroughly studied for ligninolytic fungi, only in recent years biochemical studies on bacterial enzymes capable of lignin modification have intensified. This has revealed several types of enzymes available to bacteria that enable them to act on lignin. Two major classes of bacterial lignin-modifying enzymes are DyP-type peroxidases and laccases. Yet, recently also several other bacterial enzymes have been discovered that seem to play a role in lignin modifications. In the present review, we provide an overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignin-derived products. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. Cell wall-associated enzymes in fungi.

    Science.gov (United States)

    Rast, Dora M; Baumgartner, Daniel; Mayer, Christoph; Hollenstein, G O

    2003-09-01

    This review compiles and discusses previous reports on the identity of wall-associated enzymes (WAEs) in fungi and addresses critically the widely different terminologies used in the literature to specify the type of bonding of WAEs to other entities of the cell wall compartment, the extracellular matrix (ECM). A facile and rapid fractionation protocol for catalytically active WAEs is presented, which uses crude cell walls as the experimental material, a variety of test enzymes (including representatives of polysaccharide synthases and hydrolases, phosphatases, gamma-glutamyltransferases, pyridine-nucleotide dehydrogenases and phenol-oxidising enzymes) and a combination of simple hydrophilic and hydrophobic extractants. The protocol provides four fully operationally defined classes of WAEs, with constituent members of each class displaying the same basic type of physicochemical interaction with binding partners in situ. The routine application of the protocol to different species and cell types could yield easily accessible data useful for building-up a general objective information retrieval system of WAEs, suitable as an heuristic basis both for the unravelling of the role and for the biotechnological potentialities of WAEs. A detailed account is given of the function played in the ECM by WAEs in the metabolism of chitin (chitin synthase, chitinase and beta-N-acetylhexosaminidase) and of phenols (tyrosinase).

  5. Purification of highly chlorinated dioxins degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Furuichi, T.; Koike, K.; Kuboshima, M. [Hokkaido Univ. (Japan). Division of Environment Resource Engineering, Graduate School of Engineering

    2004-09-15

    Soil contamination caused by dioxins in and around sites of incinerators for municipal solid waste (MSW) is a concern in Japan. For example, scattering wastewater from a wet gas scrubber at an MSW incinerator facility in Nose, Osaka caused soil and surface water contamination. The concentration of dioxins in the soil was about 8,000 pg-TEQ/g. Other contamination sites include soils on which fly ash has been placed directly or improperly stored and landfill sites that have received bottom and fly ash over a long period. Some countermeasures are required immediately at these dioxins-contaminated sites. We have previously developed bioreactor systems for dioxin-contaminated water and soil. We have shown that a fungus, Pseudallescheria boydii (P. boydii), isolated from activated sludge treating wastewater that contained dioxins, has the ability to degrade highly chlorinated dioxins. A reaction product of octachlorinated dibenzo-p-dioxin (OCDD) was identified as heptachlorinated dibenzo-p-dioxin. Therefore, one of the pathways for degradation of OCDD by this fungus was predicted to be as follows: OCDD is transformed by dechlorination and then one of the remaining aromatic rings is oxidized. To apply P. boydii to on-site technologies (e.g., bioreactor systems), as well as in situ technologies, enzyme treatment using a dioxin-degrading enzyme from P. boydii needs to be developed because P. boydii is a weak pathogenic fungus, known to cause opportunistic infection. As a result, we have studied enzyme purification of nonchlorinated dioxin, namely, dibenzo-pdioxin (DD). However, we did not try to identify enzymes capable of degrading highly chlorinated dioxins. This study has elucidated a method of enzyme assay for measuring OCDD-degrading activity, and has attempted to purify OCDD-degrading enzymes from P. boydii using enzyme assay. In addition, as first step toward purifying 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-TCDD degradation tests were carried out

  6. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  7. Redox regulation of insulin degradation by insulin-degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Crystal M Cordes

    Full Text Available Insulin-degrading enzyme (IDE is a thiol sensitive peptidase that degrades insulin and amyloid β, and has been linked to type 2 diabetes mellitus and Alzheimer's disease. We examined the thiol sensitivity of IDE using S-nitrosoglutathione, reduced glutathione, and oxidized glutathione to distinguish the effects of nitric oxide from that of the redox state. The in vitro activity of IDE was studied using either partially purified cytosolic enzyme from male Sprague-Dawley rats, or purified rat recombinant enzyme. We confirm that nitric oxide inhibits the degrading activity of IDE, and that it affects proteasome activity through this interaction with IDE, but does not affect the proteasome directly. Oxidized glutathione inhibits IDE through glutathionylation, which was reversible by dithiothreitol but not by ascorbic acid. Reduced glutathione had no effect on IDE, but reacted with partially degraded insulin to disrupt its disulfide bonds and accelerate its breakdown to trichloroacetic acid soluble fragments. Our results demonstrate the sensitivity of insulin degradation by IDE to the redox environment and suggest another mechanism by which the cell's oxidation state may contribute to the development of, and the link between, type 2 diabetes and Alzheimer's disease.

  8. Combinatorial efficacy of Trichoderma spp. and Pseudomonas fluorescens to enhance suppression of cell wall degrading enzymes produced by Fusarium wilt of Arachis hypogaea.L

    Directory of Open Access Journals (Sweden)

    P Rajeswari

    2017-12-01

    Full Text Available Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf (1+2%, followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf (1.5+2% and Trichoderma viride + Trichoderma harzianum (Tv+Th (1+1.5%. However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2% was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.

  9. Overview of PAF-Degrading Enzymes.

    Science.gov (United States)

    Karasawa, Ken; Inoue, Keizo

    2015-01-01

    Because the acetyl group of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) is essential for its biological activity, the degradation of PAF is the most important mechanism that regulates the level of PAF. The enzyme that catalyzes the hydrolysis of acetyl group at the sn-2 position of PAF was termed PAF-acetylhydrolase (PAF-AH). Subsequent research revealed that the PAF-AH family includes intracellular forms called PAF-AH I and PAF-AH II as well as an extracellular isoform, plasma PAF-AH. PAF-AH I forms a complex consisting of catalytic subunits α1, α2, and β regulatory subunits. PAF-AH I was identified from the brain, and previous studies focused on the role of PAF-AH I in brain development. However, subsequent studies found that PAF-AH I is involved in diverse functions such as spermatogenesis, amyloid-β generation, cancer pathogenesis, and protein trafficking. Another intracellular enzyme, PAF-AH II, has no homology with PAF-AH I, although this enzyme shares sequence similarity to plasma PAF-AH. Because PAF-AH preferentially hydrolyzes oxidatively modulated or truncated phospholipids, it is considered to play a protective role against oxidative stress. Homologs of this enzyme are widely distributed among evolutionarily diverse organisms. For example, studies of Caenorhabditis elegans PAF-AH II demonstrate its contribution to epidermal morphogenesis. Extracellular plasma PAF-AH associates strongly with plasma lipoproteins. Because PAF-AH is mainly associated with LDL particles, it is considered to play an anti-inflammatory role by removing oxidized phospholipids generated in LDLs exposed to oxidative stress. In this overview, we describe the crucial roles of these three PAF-degrading enzymes in cell function and cell pathology. © 2015 Elsevier Inc. All rights reserved.

  10. Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation.

    OpenAIRE

    Giudicelli, S; Tomasz, A

    1984-01-01

    High concentrations of choline and phosphorylcholine blocked the adsorption of pneumococcal autolytic enzyme to homologous cell walls and inhibited enzymatic cell wall hydrolysis in a noncompetitive manner. Enzyme adsorption had an absolute requirement for the presence of choline residues in the wall teichoic acid. Other amino alcohols and derivatives such as ethanolamine, monomethylaminoethanolamine , and phosphorylethanolamine had no effect on enzyme adsorption or hydrolytic activity. It is...

  11. Enzymes and other agents that enhance cell wall extensibility

    Science.gov (United States)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  12. A 3-D Model of a Perennial Ryegrass Primary Cell Wall and Its Enzymatic Degradation

    Directory of Open Access Journals (Sweden)

    Indrakumar Vetharaniam

    2014-05-01

    Full Text Available We have developed a novel 3-D, agent-based model of cell-wall digestion to improve our understanding of ruminal cell-wall digestion. It offers a capability to study cell walls and their enzymatic modification, by providing a representation of cellulose microfibrils and non-cellulosic polysaccharides and by simulating their spatial and catalytic interactions with enzymes. One can vary cell-wall composition and the types and numbers of enzyme molecules, allowing the model to be applied to a range of systems where cell walls are degraded and to the modification of cell walls by endogenous enzymes. As a proof of principle, we have modelled the wall of a mesophyll cell from the leaf of perennial ryegrass and then simulated its enzymatic degradation. This is a primary, non-lignified cell wall and the model includes cellulose, hemicelluloses (glucuronoarabinoxylans, 1,3;1,4-β-glucans, and xyloglucans and pectin. These polymers are represented at the level of constituent monosaccharides, and assembled to form a 3-D, meso-scale representation of the molecular structure of the cell wall. The composition of the cell wall can be parameterised to represent different walls in different cell types and taxa. The model can contain arbitrary combinations of different enzymes. It simulates their random diffusion through the polymer networks taking collisions into account, allowing steric hindrance from cell-wall polymers to be modelled. Steric considerations are included when target bonds are encountered, and breakdown products resulting from enzymatic activity are predicted.

  13. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting

    Directory of Open Access Journals (Sweden)

    Ajay Badhan

    2015-01-01

    Full Text Available Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  14. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  15. Thermostable Alginate degrading enzymes and their methods of use

    NARCIS (Netherlands)

    Hreggvidsson, Gudmundur Oli; Jonsson, Oskar W.J.; Bjornsdottir, Bryndis; Fridjonsson, Hedinn O; Altenbuchner, Josef; Watzlawick, Hildegard; Dobruchowska, Justyna; Kamerling, Johannis

    2015-01-01

    The present invention relates to the identification, production and use of thermostable alginate lyase enzymes that can be used to partially degrade alginate to yield oligosaccharides or to give complete degradation of alginate to yield (unsaturated) mono-uronates.

  16. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production.

    Science.gov (United States)

    Gerken, Henri G; Donohoe, Bryon; Knoshaug, Eric P

    2013-01-01

    Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. We characterized enzymes that can digest the cell wall and weaken this defense for the purpose of protoplasting or lipid extraction. A growth inhibition screen demonstrated that chitinase, lysozyme, pectinase, sulfatase, β-glucuronidase, and laminarinase had the broadest effect across the various Chlorella strains tested and also inhibited Nannochloropsis and Nannochloris strains. Chlorella is typically most sensitive to chitinases and lysozymes, both enzymes that degrade polymers containing N-acetylglucosamine. Using a fluorescent DNA stain, we developed rapid methodology to quantify changes in permeability in response to enzyme digestion and found that treatment with lysozyme in conjunction with other enzymes has a drastic effect on cell permeability. Transmission electron microscopy of enzymatically treated Chlorella vulgaris indicates that lysozyme degrades the outer surface of the cell wall and removes hair-like fibers protruding from the surface, which differs from the activity of chitinase. This action on the outer surface of the cell causes visible protuberances on the cell surface and presumably leads to the increased settling rate when cells are treated with lysozyme. We demonstrate radical ultrastructural changes to the cell wall in response to treatment with various enzyme combinations which, in some cases, causes a greater than twofold increase in the thickness of the cell wall. The enzymes characterized in this study should prove useful in the engineering and extraction of oils from microalgae.

  17. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  18. Technological Implications of Modifying the Extent of Cell Wall-Proanthocyanidin Interactions Using Enzymes

    Directory of Open Access Journals (Sweden)

    Ana Belén Bautista-Ortín

    2016-01-01

    Full Text Available The transference and reactivity of proanthocyanidins is an important issue that affects the technological processing of some fruits, such as grapes and apples. These processes are affected by proanthocyanidins bound to cell wall polysaccharides, which are present in high concentrations during the processing of the fruits. Therefore, the effective extraction of proanthocyanidins from fruits to their juices or derived products will depend on the ability to manage these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the role of pure hydrolytic enzymes (polygalacturonase and cellulose and a commercial enzyme containing these two activities on the extent of proanthocyanidin-cell wall interactions. The results showed that the modification promoted by enzymes reduced the amount of proanthocyanidins adsorbed to cell walls since they contributed to the degradation and release of the cell wall polysaccharides, which diffused into the model solution. Some of these released polysaccharides also presented some reactivity towards the proanthocyanidins present in a model solution.

  19. Cell wall and enzyme changes during the graviresponse of the leaf-sheath pulvinus of oat (Avena sativa)

    Science.gov (United States)

    Gibeaut, David M.; Karuppiah, Nadarajah; Chang, S.-R.; Brock, Thomas G.; Vadlamudi, Babu; Kim, Donghern; Ghosheh, Najati S.; Rayle, David L.; Carpita, Nicholas C.; Kaufman, Peter B.

    1990-01-01

    The graviresponse of the leaf-sheath pulvinus of oat (Avena sativa) involves an asymmetric growth response and asymmetric processes involving degradation of starch and cell wall synthesis. Cellular and biochemical events were studied by investigation of the activities of related enzymes and changes in cell walls and their constituents. It is suggested that an osmotic potential gradient acts as the driving factor for growth, while wall extensibility is a limiting factor in pulvinus growth.

  20. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  1. Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Dipanwita Sinha

    Full Text Available Innate immune responses are induced in plants and animals through perception of Damage Associated Molecular Patterns. These immune responses are suppressed by pathogens during infection. A number of studies have focussed on identifying functions of plant pathogenic bacteria that are involved in suppression of Pathogen Associated Molecular Pattern induced immune responses. In comparison, there is very little information on functions used by plant pathogens to suppress Damage Associated Molecular Pattern induced immune responses. Xanthomonasoryzae pv. oryzae, a gram negative bacterial pathogen of rice, secretes hydrolytic enzymes such as LipA (Lipase/Esterase that damage rice cell walls and induce innate immune responses. Here, we show that Agrobacterium mediated transient transfer of the gene for XopN, a X. oryzae pv. oryzae type 3 secretion (T3S system effector, results in suppression of rice innate immune responses induced by LipA. A xopN (- mutant of X. oryzae pv. oryzae retains the ability to suppress these innate immune responses indicating the presence of other functionally redundant proteins. In transient transfer assays, we have assessed the ability of 15 other X. oryzae pv. oryzae T3S secreted effectors to suppress rice innate immune responses. Amongst these proteins, XopQ, XopX and XopZ are suppressors of LipA induced innate immune responses. A mutation in any one of the xopN, xopQ, xopX or xopZ genes causes partial virulence deficiency while a xopN (- xopX (- double mutant exhibits a greater virulence deficiency. A xopN (- xopQ (- xopX (- xopZ (- quadruple mutant of X. oryzae pv. oryzae induces callose deposition, an innate immune response, similar to a X. oryzae pv. oryzae T3S(- mutant in rice leaves. Overall, these results indicate that multiple T3S secreted proteins of X. oryzae pv. oryzae can suppress cell wall damage induced rice innate immune responses.

  2. Mycelial growth interactions and mannan-degrading enzyme ...

    African Journals Online (AJOL)

    Palm kernel cake (PKC), a by-product of the palm kernel oil extraction process contains mannan as its main polysaccharide. Mixed culture microbial degradation may enhance mannan-degrading enzymes production. Therefore, the objective of the study was to examine the nature of mycelial interactions and corresponding ...

  3. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the

  4. Lignocellulose degradation, enzyme production and protein ...

    African Journals Online (AJOL)

    Microbial conversion of corn stover by white rot fungi has the potential to increase its ligninolysis and nutritional value, thereby transforming it into protein-enriched animal feed. Response surface methodology was applied to optimize conditions for the production of lignocellulolytic enzymes by Trametes versicolor during ...

  5. Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics

    DEFF Research Database (Denmark)

    Dehghani, Mohammad Reza; Weisbjerg, Martin Riis; Hvelplund, Torben

    2012-01-01

    digestibility decreased in treated maize stover silage. Potential NDF degradability decreased due to enzyme treatments but not for all maize stover treatments. Treatments with combination of enzymes with glucanase, β-glucanase and pectinase activity mostly resulted in increases in fermentation products compared...... solubilise some of the easily digestible parts of cell wall carbohydrates and thereby supply substrates for lactate fermentation. Therefore enzyme addition could be efficient to improve silage quality in forages which are difficult to ensile due to low sugar concentration and/or high protein concentration...... and buffer capacity. Further, treatment with the enzymes reduced the NDF concentration and thereby might increase the energy value and enzyme treatment might be beneficial to increase DM digestibility in high producing dairy cattle with short rumen retention time. Abbreviations EZ, enzyme; DM, dry matter...

  6. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    Science.gov (United States)

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  7. Mannan-Degrading Enzymes from Cellulomonas fimi

    Science.gov (United States)

    Stoll, Dominik; Stålbrand, Henrik; Warren, R. Antony J.

    1999-01-01

    The genes man26a and man2A from Cellulomonas fimi encode mannanase 26A (Man26A) and β-mannosidase 2A (Man2A), respectively. Mature Man26A is a secreted, modular protein of 951 amino acids, comprising a catalytic module in family 26 of glycosyl hydrolases, an S-layer homology module, and two modules of unknown function. Exposure of Man26A produced by Escherichia coli to C. fimi protease generates active fragments of the enzyme that correspond to polypeptides with mannanase activity produced by C. fimi during growth on mannans, indicating that it may be the only mannanase produced by the organism. A significant fraction of the Man26A produced by C. fimi remains cell associated. Man2A is an intracellular enzyme comprising a catalytic module in a subfamily of family 2 of the glycosyl hydrolases that at present contains only mammalian β-mannosidases. PMID:10347049

  8. Enzymatic cell wall degradation of high-pressure-homogenized tomato puree and its effect on lycopene bioaccessibility.

    Science.gov (United States)

    Palmero, Paola; Colle, Ines; Lemmens, Lien; Panozzo, Agnese; Nguyen, Tuyen Thi My; Hendrickx, Marc; Van Loey, Ann

    2016-01-15

    High-pressure homogenization disrupts cell structures, assisting carotenoid release from the matrix and subsequent micellarization. However, lycopene bioaccessibility of tomato puree upon high-pressure homogenization is limited by the formation of a process-induced barrier. In this context, cell wall-degrading enzymes were applied to hydrolyze the formed barrier and enhance lycopene bioaccessibility. The effectiveness of the enzymes in degrading their corresponding substrates was evaluated (consistency, amount of reducing sugars, molar mass distribution and immunolabeling). An in vitro digestion procedure was applied to evaluate the effect of the enzymatic treatments on lycopene bioaccessibility. Enzymatic treatments with pectinases and cellulase were proved to effectively degrade their corresponding cell wall polymers; however, no further significant increase in lycopene bioaccessibility was obtained. A process-induced barrier consisting of cell wall material is not the only factor governing lycopene bioaccessibility upon high-pressure homogenization. © 2015 Society of Chemical Industry.

  9. Partial purification of saccharifying and cell wall-hydrolyzing enzymes from malt in waste from beer fermentation broth.

    Science.gov (United States)

    Khattak, Waleed Ahmad; Kang, Minkyung; Ul-Islam, Mazhar; Park, Joong Kon

    2013-06-01

    A number of hydrolyzing enzymes that are secreted from malt during brewing, including cell wall-hydrolyzing, saccharide-hydrolyzing, protein-degrading, lipid-hydrolyzing, and polyphenol and thiol-hydrolyzing enzymes, are expected to exist in an active form in waste from beer fermentation broth (WBFB). In this study, the existence of these enzymes was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, after which enzyme extract was partially purified through a series of purification steps. The hydrolyzing enzyme activity was then measured under various conditions at each purification step using carboxymethyl cellulose as a substrate. The best hydrolyzing activities of partially purified enzymes were found at pH 4.5 and 50 °C in a citrate buffer system. The enzymes showed highest thermal stability at 30 °C when exposed for prolonged time. As the temperature increased gradually from 25 to 70 °C, yeast cells in the chemically defined medium with enzyme extract lost their cell wall and viability earlier than those without enzyme extract. Cell wall degradation and the release of cell matrix into the culture media at elevated temperature (45-70 °C) in the presence of enzyme extract were monitored through microscopic pictures. Saccharification enzymes from malt were relatively more active in the original WBFB than supernatant and diluted sediments. The presence of hydrolyzing enzymes from malt in WBFB is expected to play a role in bioethanol production using simultaneous saccharification and fermentation without the need for additional enzymes, nutrients, or microbial cells via a cell-free enzyme system.

  10. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.

    Science.gov (United States)

    Janusz, Grzegorz; Pawlik, Anna; Sulej, Justyna; Swiderska-Burek, Urszula; Jarosz-Wilkolazka, Anna; Paszczynski, Andrzej

    2017-11-01

    Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. © FEMS 2017.

  11. Pseudomonas Chlororaphis Microorganism, Polyurethane Degrading Enzyme Obtained Therefrom and Method of Using Enzyme,

    Science.gov (United States)

    1995-03-31

    PSEUDOMONAS CHLOROR4PHIS MICROORGANISM, POLYURETHANE DEGRADING 4 ENZYME OBTAINED THEREFROM AND METHOD 5 OF USING ENZYME 6 7 Background of the Invention a 1...including ester, 20 amide, urethane, urea, and biuret bonds. It has been possible to 21 isolate microorganisms from polyurethane-coated surfaces in the 22...causes a readily visible change in the culture medium, such as 5 clearing. 6 Any assay method that can compare the polyurethanase activity 7 of one

  12. Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts

    Directory of Open Access Journals (Sweden)

    Normand Philippe

    2008-01-01

    genomes, suggesting that plant cell wall polysaccharide degradation may not be crucial to root infection, or that this degradation varies among strains. We hypothesize that the relative lack of secreted polysaccharide-degrading enzymes in Frankia reflects a strategy used by these bacteria to avoid eliciting host defense responses. The esterases, lipases, and proteases found in the core Frankia secretome might facilitate hyphal penetration through the cell wall, release carbon sources, or modify chemical signals. The core secretome also includes extracellular solute-binding proteins and Frankia-specific hypothetical proteins that may enable the actinorhizal symbiosis.

  13. Activity of cell wall degrading glycanases in methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It was found previously that methyl jasmonate (JA-Me induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was shown that JA-Me markedly increased the total activities of cellulase, polygalacturonase, pectinase and xylanase in petioles, but did not affect activities of these enzymes in the blades and apical part of shoots of K. blossfeldiana. These results suggest that methyl jasmonate promotes the degradation of cell wall polysaccharides in the abscission zone and in this way induces leaf abscission in Kalanchoe blossfeldiana.

  14. Novel Aflatoxin-Degrading Enzyme from Bacillus shackletonii L7

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2017-01-01

    Full Text Available Food and feed contamination by aflatoxin (AFB1 has adverse economic and health consequences. AFB1 degradation by microorganisms or microbial enzymes provides a promising preventive measure. To this end, the present study tested 43 bacterial isolates collected from maize, rice, and soil samples for AFB1-reducing activity. The higher activity was detected in isolate L7, which was identified as Bacillus shackletonii. L7 reduced AFB1, AFB2, and AFM1 levels by 92.1%, 84.1%, and 90.4%, respectively, after 72 h at 37 °C. The L7 culture supernatant degraded more AFB1 than viable cells and cell extracts; and the degradation activity was reduced from 77.9% to 15.3% in the presence of proteinase K and sodium dodecyl sulphate. A thermostable enzyme purified from the boiled supernatant was designated as Bacillus aflatoxin-degrading enzyme (BADE. An overall 9.55-fold purification of BADE with a recovery of 39.92% and an activity of 3.85 × 103 U·mg−1 was obtained using chromatography on DEAE-Sepharose. BADE had an estimated molecular mass of 22 kDa and exhibited the highest activity at 70 °C and pH 8.0, which was enhanced by Cu2+ and inhibited by Zn2+, Mn2+, Mg2+, and Li+. BADE is the major protein involved in AFB1 detoxification. This is the first report of a BADE isolated from B. shackletonii, which has potential applications in the detoxification of aflatoxins during food and feed processing.

  15. Novel Aflatoxin-Degrading Enzyme from Bacillus shackletonii L7.

    Science.gov (United States)

    Xu, Liang; Eisa Ahmed, Mohamed Farah; Sangare, Lancine; Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Wang, Yan; Yang, Hongping; Liu, Yang

    2017-01-14

    Food and feed contamination by aflatoxin (AF)B₁ has adverse economic and health consequences. AFB₁ degradation by microorganisms or microbial enzymes provides a promising preventive measure. To this end, the present study tested 43 bacterial isolates collected from maize, rice, and soil samples for AFB₁-reducing activity. The higher activity was detected in isolate L7, which was identified as Bacillus shackletonii . L7 reduced AFB₁, AFB₂, and AFM₁ levels by 92.1%, 84.1%, and 90.4%, respectively, after 72 h at 37 °C. The L7 culture supernatant degraded more AFB₁ than viable cells and cell extracts; and the degradation activity was reduced from 77.9% to 15.3% in the presence of proteinase K and sodium dodecyl sulphate. A thermostable enzyme purified from the boiled supernatant was designated as Bacillus aflatoxin-degrading enzyme (BADE). An overall 9.55-fold purification of BADE with a recovery of 39.92% and an activity of 3.85 × 10³ U·mg -1 was obtained using chromatography on DEAE-Sepharose. BADE had an estimated molecular mass of 22 kDa and exhibited the highest activity at 70 °C and pH 8.0, which was enhanced by Cu 2+ and inhibited by Zn 2+ , Mn 2+ , Mg 2+ , and Li⁺. BADE is the major protein involved in AFB₁ detoxification. This is the first report of a BADE isolated from B. shackletonii , which has potential applications in the detoxification of aflatoxins during food and feed processing.

  16. Screening for distinct xylan degrading enzymes in complex shake flask fermentation supernatants

    NARCIS (Netherlands)

    Gool, van M.P.; Vansco, I.; Schols, H.A.; Toth, K.; Szakacs, G.; Gruppen, H.

    2011-01-01

    The efficient degradation of complex xylans needs collaboration of many xylan degrading enzymes. Assays for xylan degrading activities based on reducing sugars or PNP substrates are not indicative for the presence of enzymes able to degrade complex xylans: They do not provide insight into the

  17. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  19. Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts

    Science.gov (United States)

    Chiang, Herbert; Pudlo, Nicholas A.; Wu, Meng; McNulty, Nathan P.; Abbott, D. Wade; Henrissat, Bernard; Gilbert, Harry J.; Bolam, David N.; Gordon, Jeffrey I.

    2011-01-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of

  20. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

    Directory of Open Access Journals (Sweden)

    Eric C Martens

    2011-12-01

    Full Text Available Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target

  1. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  2. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose

    Science.gov (United States)

    Payne, Christina M.; Resch, Michael G.; Chen, Liqun; Crowley, Michael F.; Himmel, Michael E.; Taylor, Larry E.; Sandgren, Mats; Ståhlberg, Jerry; Stals, Ingeborg; Tan, Zhongping; Beckham, Gregg T.

    2013-01-01

    Plant cell-wall polysaccharides represent a vast source of food in nature. To depolymerize polysaccharides to soluble sugars, many organisms use multifunctional enzyme mixtures consisting of glycoside hydrolases, lytic polysaccharide mono-oxygenases, polysaccharide lyases, and carbohydrate esterases, as well as accessory, redox-active enzymes for lignin depolymerization. Many of these enzymes that degrade lignocellulose are multimodular with carbohydrate-binding modules (CBMs) and catalytic domains connected by flexible, glycosylated linkers. These linkers have long been thought to simply serve as a tether between structured domains or to act in an inchworm-like fashion during catalytic action. To examine linker function, we performed molecular dynamics (MD) simulations of the Trichoderma reesei Family 6 and Family 7 cellobiohydrolases (TrCel6A and TrCel7A, respectively) bound to cellulose. During these simulations, the glycosylated linkers bind directly to cellulose, suggesting a previously unknown role in enzyme action. The prediction from the MD simulations was examined experimentally by measuring the binding affinity of the Cel7A CBM and the natively glycosylated Cel7A CBM-linker. On crystalline cellulose, the glycosylated linker enhances the binding affinity over the CBM alone by an order of magnitude. The MD simulations before and after binding of the linker also suggest that the bound linker may affect enzyme action due to significant damping in the enzyme fluctuations. Together, these results suggest that glycosylated linkers in carbohydrate-active enzymes, which are intrinsically disordered proteins in solution, aid in dynamic binding during the enzymatic deconstruction of plant cell walls. PMID:23959893

  3. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, M.

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover from Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.

  4. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice.

    Directory of Open Access Journals (Sweden)

    Lavanya Tayi

    Full Text Available Xanthomonas oryzae pv.oryzae (Xoo causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bioinformatics analysis indicated the presence of four pectin homogalacturonan (HG degrading genes in the genome of Xoo. The four HG degrading genes include one polygalacturonase (pglA, one pectin methyl esterase (pmt and two pectate lyases (pel and pelL. There was no difference in the expression of pglA, pmt and pel genes by laboratory wild type Xoo strain (BXO43 grown in either nutrient rich PS medium or in plant mimic XOM2 medium whereas the expression of pelL gene was induced in XOM2 medium as indicated by qRT-PCR experiments. Gene disruption mutations were generated in each of these four genes. The polygalacturonase mutant pglA- was completely deficient in degrading the substrate Na-polygalacturonicacid (PGA. Strains carrying mutations in the pmt, pel and pelL genes were as efficient as wild type Xoo (BXO43 in cleaving PGA. These observations clearly indicate that PglA is the major pectin degrading enzyme produced by Xoo. The pectin methyl esterase, Pmt, is the pectin de-esterifying enzyme secreted by Xoo as evident from the enzymatic activity assay performed using pectin as the substrate. Mutations in the pglA, pmt, pel and pelL genes have minimal effects on virulence. This suggests that, as compared to cellulases and xylanases, the HG degrading enzymes may not have a major role in the pathogenicity of Xoo.

  5. Insights into Plant Cell Wall Degradation from the Genome Sequence of the Soil Bacterium Cellvibrio japonicus▿ †

    Science.gov (United States)

    DeBoy, Robert T.; Mongodin, Emmanuel F.; Fouts, Derrick E.; Tailford, Louise E.; Khouri, Hoda; Emerson, Joanne B.; Mohamoud, Yasmin; Watkins, Kisha; Henrissat, Bernard; Gilbert, Harry J.; Nelson, Karen E.

    2008-01-01

    The plant cell wall, which consists of a highly complex array of interconnecting polysaccharides, is the most abundant source of organic carbon in the biosphere. Microorganisms that degrade the plant cell wall synthesize an extensive portfolio of hydrolytic enzymes that display highly complex molecular architectures. To unravel the intricate repertoire of plant cell wall-degrading enzymes synthesized by the saprophytic soil bacterium Cellvibrio japonicus, we sequenced and analyzed its genome, which predicts that the bacterium contains the complete repertoire of enzymes required to degrade plant cell wall and storage polysaccharides. Approximately one-third of these putative proteins (57) are predicted to contain carbohydrate binding modules derived from 13 of the 49 known families. Sequence analysis reveals approximately 130 predicted glycoside hydrolases that target the major structural and storage plant polysaccharides. In common with that of the colonic prokaryote Bacteroides thetaiotaomicron, the genome of C. japonicus is predicted to encode a large number of GH43 enzymes, suggesting that the extensive arabinose decorations appended to pectins and xylans may represent a major nutrient source, not just for intestinal bacteria but also for microorganisms that occupy terrestrial ecosystems. The results presented here predict that C. japonicus possesses an extensive range of glycoside hydrolases, lyases, and esterases. Most importantly, the genome of C. japonicus is remarkably similar to that of the gram-negative marine bacterium, Saccharophagus degradans 2-40T. Approximately 50% of the predicted C. japonicus plant-degradative apparatus appears to be shared with S. degradans, consistent with the utilization of plant-derived complex carbohydrates as a major substrate by both organisms. PMID:18556790

  6. Degradation of teriparatide by gastro-intestinal proteolytic enzymes.

    Science.gov (United States)

    Werle, Martin; Samhaber, Annette; Bernkop-Schnürch, Andreas

    2006-04-01

    Teriparatide, a recombinant parathyroid hormone (1-34) is the first approved agent for the treatment of osteoporosis that stimulates new bone formation. Currently, the drug is administered daily by s.c. injection. Because of the obvious advantages of oral teriparatide administration, the development of such a delivery system would be of great benefit. Besides other barriers, the enzymatic barrier caused by gastro-intestinal (GI) proteolytic enzymes is believed to be responsible for negligible teriparatide oral bioavailability. It was therefore the aim of the study to evaluate the stability of teriparatide towards a variety of GI proteases under physiological conditions. Results indicate that teriparatide is entirely degraded by trypsin, chymotrypsin and pepsin within 5 min. In contrast, even after 3 h of incubation with elastase about 85% of undegraded teriparatide could still be detected. Within an incubation period of 3 h in the presence of rat small intestinal mucosa, approximately half of the teriparatide was degraded. Experiments with isolated aminopeptidase N demonstrated that this membrane bound peptidase is primarily involved in the degradation process. Results gained from and recorded in this study provide a precise characterisation of the enzymatic barrier for oral teriparatide administration and represents a prerequisite for the development of oral teriparatide delivery systems.

  7. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Science.gov (United States)

    Busk, Peter K; Lange, Mette; Pilgaard, Bo; Lange, Lene

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  8. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Directory of Open Access Journals (Sweden)

    Peter K Busk

    Full Text Available The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  9. Pathogenicity and cell wall-degrading enzyme activities of some ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2005-12-17

    Dec 17, 2005 ... chlorotic leaf development, stunted growth etc. Production of pectinases ... the optimization of production, which is still grossly at the .... C ladosporium sp. Alternaria sp.Fusarium sp. Aspergillus niger. Fusarium sem itectum. Penicillium sp. Fusarium oxysporum. Fusarium solani Control. Fungal Isolates. % s e.

  10. Enzymic degradation of lignin by white-rot-fungi

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, J.M.; Evans, C.S.

    1983-01-01

    A possible pathway for the depolymerization of lignin is presented. The ether bond is the prinicpal bond resulting in the polymerization of the phenylpropanoid precursors. The ether bond is very stable and unlikely to be degraded during the initial steps of depolymerization of lignin outside of the cell. Chemical analysis of the breakdown products suggests that the main reactions leading to the depolymerization are the cleavage of the aryl-alpha-carbon bond or the bond between the alpha and beta-carbons of the alkyl side chain. Physiological experiments show that high oxygen concentrations stimulate the rate of breakdown of lignin; this could be the result of the activation of an enzyme with low affinity for oxygen such as laccase or polyphenol oxidase. It is also possible that high oxygen concentrations result in the appearance of free radicals of oxygen in the assay system. It is proposed that laccase in the presence of hydroxyl radicals has the capacity to act as an exoligninase, removing aryl monomers that contain a free phenolic group. The mechanism of depolymerization of derivatives in which the phenolic group actually participates in an ether linkage is less clear. This may be achieved through the action of an extracellular alcohol oxidase that converts the primary alcohol to an aldehyde, resulting in the cleavage of the alphaC-betaC bond. This enzyme may be considered an endoligninase. (Refs. 30).

  11. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  12. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.

    Science.gov (United States)

    Zhao, Zhongtao; Liu, Huiquan; Wang, Chenfang; Xu, Jin-Rong

    2013-04-23

    Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex

  13. Production of cell wall enzymes in pepper seedlings, inoculated with ...

    African Journals Online (AJOL)

    Pepper seedlings inoculated with arbuscular mycorrhizal AM fungus, Glomus etunicatum, produced cellulase, polygal-acturonase and pectin methylestrase enzymes. The activities of the enzymes increased as the pepper seedlings matured in age, showing that the activity of the enzymes in the seedlings was age mediated.

  14. Changes in Activities of Three Enzymes Degrading Galactomannan During and Following Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Yan-fang REN

    2007-12-01

    Full Text Available To investigate the relationships among β-mannanase, β-mannosidase and α-galactosidase required for degrading galactomannan in cell wall during and following rice seed germination, the activities of the three enzymes and the effects of ABA and GA3 on them were surveyed. The activities of β-mannosidase and α-galactosidase presented in dry and pre-germinated rice seeds, and increased slowly during and following germination. However, the activity of β-mannanase was detected only after germination. GA3 could promote the activities of β-mannanase and α-galactosidase. ABA had little effect on the activities of β-mannosidase and α-galactosidase, but it could seriously inhibit the activity of β-mannanase.

  15. Enzymic hydrolysis of wood and straw polysaccharides. 10. Effect of the morphological structure of cell walls on hydrolysis. [Cellulase, Cellokoningin P10 X, Celloviridin G3X, Cellolignorin

    Energy Technology Data Exchange (ETDEWEB)

    Katkevich, Y.Y.; Gromov, V.S.; Vevere, P.; Samokhvalova, T.A.

    1982-01-01

    Treatment of powdered wood and straw with cellulolytic enzymes (cellulase, Cellokoningin P10 X, Celloviridin G3X, and Cellolignorin) resulted in the degradation of cell wall biopolymers and facilitated the hydrolysis of polysaccharides of the powdered material. The rate of hydrolysis depended on the high degree of disintegration of wood (from aspen and spruce), straw (wheat and rye), and cellulose sulfate (from henbane). The outer layers of cellulose fibers were most resistant to cellulases. Kinetics of the enzymic reactions are given.

  16. Hemicellulose biosynthesis and degradation in tobacco cell walls

    NARCIS (Netherlands)

    Compier, M.G.M.

    2005-01-01

    Natural fibres have a wide range of technological applications, such as in paper and textile industries. The basic properties and the quality of plant fibres are determined by the composition of the plant cell wall. Characteristic for fibres are thick secondary cell walls, which consist of cellulose

  17. Neurospora crassa glutamine synthetase. Role of enzyme synthesis and degradation on the regulation of enzyme concentration during exponential growth.

    Science.gov (United States)

    Quinto, C; Mora, J; Palacios, R

    1977-12-10

    The specific activity of Neurospora crassa glutamine synthetase varies according to the nitrogen source in which the organism is grown. In a poor nitrogen source such as glutamate, the specific activity of the enzyme is higher than that found in good nitrogen sources such as ammonium or glutamine. These differences in specific enzyme activity correspond to differences in enzyme concentration. The relative rates of glutamine synthetase synthesis and degradation were measured in exponential cultures grown in different nitrogen sources. The differences in enzyme concentration are explained by differences in the relative rate of enzyme synthesis.

  18. Biomass degrading enzymes from Penicillium – cloning and characterization

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer

    2008-01-01

    . Størstedelen af den forskning, der er foregået indenfor cellulosenedbrydende enzymer er med enzymer produceret af svampen Trichoderma reesei. Under mit Ph.D.studium har jeg undersøgt biomassenedbrydende enzymer fra forskellige Penicillium arter. Hovedvægten af forskningen har været indenfor...... cellulosenedbrydende enzymer.Penicillium arter er blandt de hyppigst forekommende mikroorganismer i skovjord, hvori der netop nedbrydes store mængder plantemateriale. Ved en sammenligning af produktionen af biomassenedbrydende enzymer fra forskellige Penicillium arter blev der fundet flere interessante enzymsystemer...

  19. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    Science.gov (United States)

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  20. Ineffective Degradation of Immunogenic Gluten Epitopes by Currently Available Digestive Enzyme Supplements

    Science.gov (United States)

    Janssen, George; Christis, Chantal; Kooy-Winkelaar, Yvonne; Edens, Luppo; Smith, Drew

    2015-01-01

    Background Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP). Methods Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays. Findings The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data. Conclusion Currently available digestive enzyme

  1. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements.

    Directory of Open Access Journals (Sweden)

    George Janssen

    Full Text Available Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP.Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1 enzyme assays and 2 mass spectrometric identification. Gluten epitope degradation was monitored by 1 R5 ELISA, 2 mass spectrometric analysis of the degradation products and 3 T cell proliferation assays.The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data.Currently available digestive enzyme supplements are ineffective in

  2. Influence of exogenous fibrolytic enzymes on in vitro and in sacco degradation of forages for ruminants

    Directory of Open Access Journals (Sweden)

    Lorenzo Carreón

    2010-02-01

    Full Text Available An in vitro assay was carried out to evaluate the effects of exogenous fibrolytic enzymes (1, 2, 3 and 4 g/kg DM powder preparation containing xylanase and cellulase from Aspergillus niger and Trichoderma viride on DM, NDF and ADF degradation of alfalfa hay, corn silage, corn stover, elephant grass, Guinea grass and oat straw. Kinetics data of in vitro degradations were analyzed. The potentially degradable fraction and degradation rate of NDF and ADF of alfalfa increased quadratically (P<0.05 as the inclusion level of enzyme increased up to 3 g. The others forages were not affected by the enzyme. An in sacco trail was performed using four Holstein steers fitted with ruminal cannulas to evaluate the effects of the exogenous fibrolytic enzymes (3 g/kg DM on DM, NDF and ADF degradation of alfalfa hay and corn stover. Kinetics data were also analyzed. The potentially degradable fraction degradation of NDF (62.0 vs 65.7% and ADF (52.8 vs 56.9%, of alfalfa hay were increased (P<0.05 by the exogenous fibrolytic enzymes, but no differences were found for corn stover. These results suggest that the enzymes increased in vitro and in sacco fibre degradation only for alfalfa hay.

  3. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.

    Science.gov (United States)

    Zhao, Zhongtao; Liu, Huiquan; Wang, Chenfang; Xu, Jin-Rong

    2014-01-03

    The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH

  4. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    Abstract The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed

  5. Experimental strategy to discover microbes with gluten-degrading enzyme activities

    Science.gov (United States)

    Helmerhorst, Eva J.; Wei, Guoxian

    2014-06-01

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  6. Early-branching Gut Fungi Possess A Large, And Comprehensive Array Of Biomass-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kevin V.; Haitjema, Charles; Henske, John K.; Gilmore, Sean P.; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Theodorou, Michael K.; Grigoriev, Igor V.; Regev, Aviv; Thompson, Dawn; O' Malley, Michelle A.

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. Its more primitive members, however, remain relatively unexploited. We developed a systems-level approach that integrates RNA-Seq, proteomics, phenotype and biochemical studies of relatively unexplored early-branching free-living fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, unpretreated plant biomass, and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite repressed, and are further regulated by a rich landscape of noncoding regulatory RNAs. Furthermore, we identified several promising sequence divergent enzyme candidates for lignocellulosic bioprocessing.

  7. Accessory enzymes from Aspergillus involved in xylan and pectin degradation

    NARCIS (Netherlands)

    Vries, de R.P.

    1999-01-01

    The xylanolytic and pectinolytic enzyme systems from Aspergillus have been the subject of study for many years. Although the main chain cleaving enzymes and their encoding genes have been studied in detail, little information is available about most of the accessory

  8. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard

    2015-01-01

    was performed on T. asperellum growing on PDA agar, wheat bran and duckweed, respectively. T. asperellum proved to be able to produce a wide enzyme profile, including both depolymerization and debranching enzymes, mainly consisting of hemi-cellulases. The secretome analysis showed specific glycoside hydrolase......-induction on duckweed compared with growth on wheat bran and PDA, including a GH62 $-L-arabinofuranosidase, a promising candidate enzyme for the degradation of duckweed. The enzyme cocktail from T. asperellum proved capable of degrading pretreated duckweed, obtaining up to 60% of the theoretical glucose yield, making...

  9. Hydrolysis of Brewers' Spent Grain by Carbohydrate Degrading Enzymes

    NARCIS (Netherlands)

    Forssell, P.; Kontkanen, H.; Schols, H.A.; Hinz, S.W.A.; Eijsink, V.G.H.; Treimo, J.; Robertson, J.A.; Waldron, K.W.; Faulds, C.B.; Buchert, J.

    2008-01-01

    In this work four commercial cellulase-hemicellulase mixtures with different activity profiles were used for solubilization of carbohydrates from brewers' spent grain (BSG). After the enzyme treatment, both the solubilised fraction and the unhydrolysed residue were characterized. Treatment with

  10. Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system.

    Science.gov (United States)

    Zhu, Ning; Liu, Jiawen; Yang, Jinshui; Lin, Yujian; Yang, Yi; Ji, Lei; Li, Meng; Yuan, Hongli

    2016-01-01

    The genome of Schizophyllum commune encodes a diverse repertoire of degradative enzymes for plant cell wall breakdown. Recent comparative genomics study suggests that this wood decayer likely has a mode of biodegradation distinct from the well-established white-rot/brown-rot models. However, much about the extracellular enzyme system secreted by S. commune during lignocellulose deconstruction remains unknown and the underlying mechanism is poorly understood. In this study, extracellular proteins of S. commune colonizing Jerusalem artichoke stalk were analyzed and compared with those of two white-rot fungi Phanerochaete chrysosporium and Ceriporiopsis subvermispora and a brown-rot fungus Gloeophyllum trabeum. Under solid-state fermentation (SSF) conditions, S. commune displayed considerably higher levels of hydrolytic enzyme activities in comparison with those of P. chrysosporium, C. subvermispora and G. trabeum. During biodegradation process, this fungus modified the lignin polymer in a way which was consistent with a hydroxyl radical attack, similar to that of G. trabeum. The crude enzyme cocktail derived from S. commune demonstrated superior performance over a commercial enzyme preparation from Trichoderma longibrachiatum in the hydrolysis of pretreated lignocellulosic biomass at low enzyme loadings. Secretomic analysis revealed that compared with three other fungi, this species produced a higher diversity of carbohydrate-degrading enzymes, especially hemicellulases and pectinases acting on polysaccharide backbones and side chains, and a larger set of enzymes potentially supporting the generation of hydroxyl radicals. In addition, multiple non-hydrolytic proteins implicated in enhancing polysaccharide accessibility were identified in the S. commune secretome, including lytic polysaccharide monooxygenases (LPMOs) and expansin-like proteins. Plant lignocellulose degradation by S. commune involves a hydroxyl radical-mediated mechanism for lignocellulose modification

  11. Effect of commercial enzymes on berry cell wall deconstruction in the context of intravineyard ripeness variation under winemaking conditions

    DEFF Research Database (Denmark)

    Gao, Yu; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2016-01-01

    Significant intravineyard variation in grape berry ripening occurs within vines and between vines. However, no cell wall data are available on such variation. Here we used a checkerboard panel design to investigate ripening variation in pooled grape bunches for enzyme-assisted winemaking. The vin......Significant intravineyard variation in grape berry ripening occurs within vines and between vines. However, no cell wall data are available on such variation. Here we used a checkerboard panel design to investigate ripening variation in pooled grape bunches for enzyme-assisted winemaking...... at the berry cell wall polymer level and occurred within the experimental vineyard block. Furthemore, all enzyme treatments reduced cell wall variation via depectination. Interestingly, cell wall esterification levels were unaffected by enzyme treatments. This study provides clear evidence that enzymes can...... positively influence the consistency of winemaking and provides a foundation for further research into the relationship between grape berry cell wall architecture and enzyme formulations....

  12. Enzymic degradation of sorghum glucuronoarabinoxylans leading to tentative structures.

    NARCIS (Netherlands)

    Verbruggen, M.A.; Beldman, G.; Voragen, A.G.J.

    1998-01-01

    Three glucuronoarabinoxylan (GAX) populations, obtained from water-unextractable cell wall material from sorghum by different alkali extractants, were digested by combinations of endo-xylanases (Xyl I, Xyl III and GXH), arabinofuranosidases (AXH and AraB) and an -glucuronidase (GlcAase). All three

  13. Petroleum-Degrading Enzymes: Bioremediation and New Prospects

    Directory of Open Access Journals (Sweden)

    R. S. Peixoto

    2011-01-01

    Full Text Available Anthropogenic forces, such as petroleum spills and the incomplete combustion of fossil fuels, have caused an accumulation of petroleum hydrocarbons in the environment. The accumulation of petroleum and its derivatives now constitutes an important environmental problem. Biocatalysis introduces new ways to improve the development of bioremediation strategies. The recent application of molecular tools to biocatalysis may improve bioprospecting research, enzyme yield recovery, and enzyme specificity, thus increasing cost-benefit ratios. Enzymatic remediation is a valuable alternative as it can be easier to work with than whole organisms, especially in extreme environments. Furthermore, the use of free enzymes avoids the release of exotic or genetically modified organisms (GMO in the environment.

  14. It’s War Out There: Fighting for life with xenobiotic degrading enzymes

    Science.gov (United States)

    It’s War Out There: Fighting for life with xenobiotic degrading enzymes Beta-lactamase enzymes are well studied because of their tremendous impact on medicine. Their prominent role is in resistance to beta-lactam (four membered lactam ring) antibiotics including the first and most famous fungally d...

  15. Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics

    NARCIS (Netherlands)

    Martens-Uzunova, E.S.; Schaap, P.J.

    2009-01-01

    The saprobic fungus Aspergillus niger is an efficient producer of a suite of extracellular enzymes involved in carbohydrate modification and degradation. Genome mining has resulted in the prediction of at least 39 genes encoding enzymes involved in the depolymerisation of the backbone of pectin.

  16. Degradative Enzymes from the Pharmacy or Health Food Store: Interesting Examples for Introductory Biology Laboratories

    Science.gov (United States)

    Deutch, Charles E.

    2007-01-01

    Degradative enzymes in over-the-counter products from pharmacies and health food stores provide good examples of biological catalysis. These include [beta]-galactosidase in Lactaid[TM], [alpha]-galactosidase in Beano[R], [alpha]-amylase and proteases in digestive aids, and proteases in contact lens cleaners. These enzymes can be studied…

  17. Understanding Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Resch, M.; Donohoe, B.; Katahira, R.; Ashutosh, M.; Beckham, G.; Himmel, M.; Decker, S.

    2014-04-01

    Fungal free enzymes and bacterial complexed cellulosomes deconstruct biomass using different physical mechanisms. Free enzymes, which typically contain a large proportion of GH7 cellobiohydrolase, diffuse throughout the substrate and hydrolyze primarily from the cellulose reducing end, resulting in 'sharpened' macrofibrils. In contrast, complexed cellulosomes contain a diverse array of carbohydrate binding modules and multiple catalytic specificities leading to delamination and physical peeling of the cellulose macrofibril structures. To investigate how cellulose structure contributes to recalcitrance, we compared the deconstruction of cellulose I, II, and III; using free and complexed enzyme systems. We also evaluated both systems on Clean Fractionation and alkaline pretreated biomass, which remove much of the lignin, to determine the impact on enzyme loading reduction. Free fungal enzymes demonstrated a swelling of the outer surface of the plant cell walls while removing localized disruptions, resulting in a smooth surface appearance. Cellulosomes produced cell wall surfaces with localized areas of disruption and little surface layer swelling. These studies contribute to the overall understanding of biomass recalcitrance and how combining different enzymatic paradigms may lead to the formulation of new enzyme cocktails to reduce the cost of producing sugars from plant cell wall carbohydrates.

  18. Production and regulation of lignin degrading enzymes from ...

    African Journals Online (AJOL)

    The importance of mycelia extension and enhanced enzyme production has biotechnological applications in wood and pulp, textile and tanning, as well as in oil industries. Key words: Basidiomycetes, Lentinus squarrosulus, Psathyrella atroumbonata, ligninase, cofactors. African Journal of Biotechnology Vol.2(11) 2003: ...

  19. Structural biology of starch-degrading enzymes and their regulation

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Svensson, Birte

    2016-01-01

    disproportionating enzyme and a self-stabilised conformation of amylose accommodated in the active site of plant α-glucosidase. Important inhibitor complexes include a flavonol glycoside, montbretin A, binding at the active site of human pancreatic α-amylase and barley limit dextrinase inhibitor binding...

  20. Influence of non starch polysaccharide-degrading enzymes on the ...

    African Journals Online (AJOL)

    enzymes on the performance, meat yield, water intake, litter moisture and jejunal digesta viscosity of chicks fed wheat/barley based diet. A total of 195 1-d-old male broiler chicks (Ross 308) were allocated to 5 treatment groups, with 3 replicates per ...

  1. Mycelial growth interactions and mannan-degrading enzyme ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Substrate solution and crude enzyme extract in the ratio of 3:1 were pipetted into test tubes and incubated for 15 min in a water bath at 50°C. The reducing sugar released was measured as mannose equivalent by the Somogyi-Nelson method. (Somogyi, 1952; Nelson, 1944). The α-galactosidase and β-.

  2. Degradation of methylmercaptan by crude enzyme extracts of ...

    African Journals Online (AJOL)

    MICHAEL

    To these vials were then added xml. (0.05 to 0.5ml) of the crude enzyme extract sample. RESULTS AND DISCUSSION. Influence of Tris/HCl Buffer: Figure 1 shows the calculated mg equivalents of protein per dL when standards in Tis/HCl are read against standards with. NaCl solution as blank. The values obtained show.

  3. Recombinant Sox Enzymes from Paracoccus pantotrophus Degrade Hydrogen Sulfide, a Major Component of Oral Malodor.

    Science.gov (United States)

    Ramadhani, Atik; Kawada-Matsuo, Miki; Komatsuzawa, Hitoshi; Oho, Takahiko

    2017-03-31

    Hydrogen sulfide (H2S) is emitted from industrial activities, and several chemotrophs possessing Sox enzymes are used for its removal. Oral malodor is a common issue in the dental field and major malodorous components are volatile sulfur compounds (VSCs), including H2S and methyl mercaptan. Paracoccus pantotrophus is an aerobic, neutrophilic facultatively autotrophic bacterium that possesses sulfur-oxidizing (Sox) enzymes in order to use sulfur compounds as an energy source. In the present study, we cloned the Sox enzymes of P. pantotrophus GB17 and evaluated their VSC-degrading activities for the prevention of oral malodor. Six genes, soxX, soxY, soxZ, soxA, soxB, and soxCD, were amplified from P. pantotrophus GB17. Each fragment was cloned into a vector for the expression of 6×His-tagged fusion proteins in Escherichia coli. Recombinant Sox (rSox) proteins were purified from whole-cell extracts of E. coli using nickel affinity chromatography. The enzyme mixture was investigated for the degradation of VSCs using gas chromatography. Each of the rSox enzymes was purified to apparent homogeneity, as confirmed by SDS-PAGE. The rSox enzyme mixture degraded H2S in dose- and time-dependent manners. All rSox enzymes were necessary for degrading H2S. The H2S-degrading activities of rSox enzymes were stable at 25-80°C, and the optimum pH was 7.0. The amount of H2S produced by periodontopathic bacteria or oral bacteria collected from human subjects decreased after an incubation with rSox enzymes. These results suggest that the combination of rSox enzymes from P. pantotrophus GB17 is useful for the prevention of oral malodor.

  4. Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles.

    Science.gov (United States)

    Gao, Yuan; Truong, Yen Bach; Cacioli, Paul; Butler, Phil; Kyratzis, Ilias Louis

    2014-01-10

    Bioremediation using enzymes has become an attractive approach for removing hazardous chemicals such as organophosphate pesticides from the environment. Enzymes immobilized on solid carriers are particularly suited for such applications. In this study, the organophosphate degrading enzyme A (OpdA) was covalently immobilized on highly porous nonwoven polyester fabrics for organophosphate pesticide degradation. The fabrics were first activated with ethylenediamine to introduce free amine groups, and the enzyme was then attached using the bifunctional crosslinker glutaraldehyde. The immobilization only slightly increased the Km (for methyl parathion, MP), broadened the pH profile such that the enzyme had significant activity at acidic pH, and enhanced the stability of the enzyme. The OpdA-functionalized fabrics could be stored in a phosphate buffer or in the dry state at 4°C for at least 4 weeks without a large loss of activity. When used in batch mode, the functionalized textiles could degrade 20 μM MP in un-buffered water at liquor to fabric ratios as high as 5000:1 within 2h, and could be used repeatedly. The fabrics could also be made into columns for continuous pesticide degradation. The columns were able to degrade 50 μM MP at high flow rates, and could be used repeatedly over 2 months. These results demonstrate that OpdA immobilized on nonwoven polyester fabrics is useful in environmental remediation of organophosphate compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    DEFF Research Database (Denmark)

    Schiott, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter

    2010-01-01

    with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal...... clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens....

  6. Enzymes and Genes Involved in Aerobic Alkane Degradation

    Directory of Open Access Journals (Sweden)

    Zongze eShao

    2013-05-01

    Full Text Available Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes , transport across cell membrane of alkanes , the regulation of alkane degradation gene and initial oxidation.

  7. [Ligninolytic enzyme production by white rot fungi during paraquat (herbicide) degradation].

    Science.gov (United States)

    Camacho-Morales, Reyna L; Gerardo-Gerardo, José Luis; Guillén Navarro, Karina; Sánchez, José E

    Paraquat is a widely used herbicide in agriculture. Its inappropriate use and wide distribution represents a serious pollution problem for soil and water. White rot fungi are capable of degrading pollutants having a similar structure to that of lignin, such as paraquat. This study evaluated the degradation effect of paraquat on the production of ligninolytic enzymes by white rot fungi isolated from the South of Mexico. Six fungal strains showed tolerance to the herbicide in solid culture. Three of the six evaluated strains showed levels of degradation of 32, 26 and 47% (Polyporus tricholoma, Cilindrobasidium laeve and Deconica citrispora, respectively) after twelve days of cultivation in the presence of the xenobiotic. An increase in laccase and manganese peroxidase (MnP) activities was detected in the strains showing the highest percentage of degradation. Experiments were done with enzyme extracts from the extracellular medium with the two strains showing more degradation potential and enzyme production. After 24hours of incubation, a degradation of 49% of the initial paraquat concentration was observed for D. citrispora. These results suggest that paraquat degradation can be attributed to the presence of extracellular enzymes from white rot fungi. In this work the first evidence of the biodegradation potential of D. citrispora and Cilindrobasidium leave is shown. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Vis4Heritage: visual analytics approach on Grotto wall painting degradations.

    Science.gov (United States)

    Zhang, Jiawan; Kang, Kai; Liu, Dajian; Yuan, Ye; E, Yanli

    2013-12-01

    For preserving the Grotto wall paintings and protecting these historic cultural icons from the damage and deterioration in nature environment, a visual analytics framework and a set of tools are proposed for the discovery of degradation patterns. In comparison with the traditional analysis methods that used restricted scales, our method provides users with multi-scale analytic support to study the problems on site, cave, wall and particular degradation area scales, through the application of multidimensional visualization techniques. Several case studies have been carried out using real-world wall painting data collected from a renowned World Heritage site, to verify the usability and effectiveness of the proposed method. User studies and expert reviews were also conducted through by domain experts ranging from scientists such as microenvironment researchers, archivists, geologists, chemists, to practitioners such as conservators, restorers and curators.

  9. Selective degradation of the recalcitrant cell wall of Scenedesmus quadricauda CASA CC202.

    Science.gov (United States)

    Reshma, Ragini; Arumugam, Muthu

    2017-07-06

    An eco-friendly cell wall digestion strategy was developed to enhance the availability of nutritionally important bio molecules of edible microalgae and exploit them for cloning, transformation, and expression of therapeutic proteins. Microalgae are the source for many nutritionally important bioactive compounds and potential drugs. Even though edible microalgae are rich in nutraceutical, bioavailability of all these molecules is very less due to their rigid recalcitrant cell wall. For example, the cell wall of Scenedesmus quadricauda CASA CC202 is made up of three layers comprising of rigid outer pectin and inner cellulosic layer separated by a thin middle layer. In the present investigation, a comprehensive method has been developed for the selective degradation of S. quadricauda CASA CC202 cell wall, by employing both mechanical and enzymatic treatments. The efficiency of cell wall removal was evaluated by measuring total reducing sugar (TRS), tannic acid-ferric chloride staining, calcoflour white staining, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analysis. It was confirmed that the yield of TRS increased from 129.82 mg/g in 14 h from pectinase treatment alone to 352.44 mg/g by combined sonication and enzymatic treatment within 12 h. As a result, the combination method was found to be effective for the selective degradation of S. quadricauda CASA CC202 cell wall. This study will form a base for our future works, where this will help to enhance the digestibility and availability of nutraceutically important proteins.

  10. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates.

    Science.gov (United States)

    Malgas, Samkelo; Thoresen, Mariska; van Dyk, J Susan; Pletschke, Brett I

    2017-08-01

    Cellulosic ethanol production relies on the biochemical (enzymatic) conversion of lignocellulose to fermentable sugars and ultimately to bioethanol. However, the cost of lignocellulolytic enzymes is a limiting factor in the commercialisation of this technology. This therefore necessitates the optimisation of lignocellulolytic enzyme cocktails through the elucidation of synergistic interactions between enzymes so as to improve lignocellulose hydrolysis and also lower protein loadings in these reactions. However, many factors affect the synergism that occurs between these lignocellulolytic enzymes, such as enzyme ratios, substrate characteristics, substrate loadings, enzyme loadings and time. This review examines the effect of time on the synergistic dynamics between lignocellulolytic enzymes during the hydrolysis of both complex (true) lignocellulosic substrates and model substrates. The effect of sequential and simultaneous application of the lignocellulolytic enzymes on the synergistic dynamics during the hydrolysis of these substrates is also explored in this review. Finally, approaches are further proposed for efficient and synergistic hydrolysis of both complex lignocellulosic substrates and model substrates. With respect to the synergistic enzymatic hydrolysis of lignocellulosic biomass, this review exposed knowledge gaps that should be covered in future work in order to fully understand how enzyme synergism works: e.g. elucidating protein to protein interactions that exist between these enzymes in establishing synergy; and the effect of lignocellulose degradation products of one enzyme on the behaviour of the other enzyme and ultimately their synergistic relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria.

    Directory of Open Access Journals (Sweden)

    Erik C Hett

    2010-07-01

    Full Text Available Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB, a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA, an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1, as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through protein-protein interactions between enzymes with antagonistic functions.

  12. Optical coherence tomography assessment of vessel wall degradation in thoracic aortic aneurysms

    Science.gov (United States)

    Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Díez, Marta Calvo; Fernando Val-Bernal, José; Mayorga, Marta; Revuelta, José M.; López-Higuera, José M.; Conde, Olga M.

    2013-12-01

    Optical coherence tomography images of human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall. These disorders can be employed as indicators for wall degradation and, therefore, become a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. Two approaches are followed to evaluate this risk: the analysis of the reflectivity decay along the penetration depth and the textural analysis of a two-dimensional spatial distribution of the aortic wall backscattering. Both techniques require preprocessing stages for the identification of the air-sample interface and for the segmentation of the media layer. Results show that the alterations in the media layer of the aortic wall are better highlighted when the textural approach is considered and also agree with a semiquantitative histopathological grading that assesses the degree of wall degradation. The correlation of the co-occurrence matrix attains a sensitivity of 0.906 and specificity of 0.864 when aneurysm automatic diagnosis is evaluated with a receiver operating characteristic curve.

  13. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  14. Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme.

    Directory of Open Access Journals (Sweden)

    Po-Ting Chen

    Full Text Available Upregulation of neprilysin (NEP to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer's disease (AD. This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12-16AAC (with the sequence VHHQKAAC, which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12-16AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12-16AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE, but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1-7C [which is sensitive to NEP and insulin-degrading enzyme (IDE], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1-7C and qf-Aβ(12-16AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells.

  15. Targeted discovery and functional characterisation of complex-xylan degrading enzymes

    NARCIS (Netherlands)

    Gool, van M.P.

    2012-01-01

    This thesis describes the development of a screening method to discover efficient hemicellulase producers in a wide range of fungi. The method is based on the potential of soil fungi to degrade soluble and insoluble xylan-rich substrates, by assigning various individual enzyme activities. Released

  16. Catabolite repression and nitrogen control of allantoin-degrading enzymes in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, D.B.; Drift, C. van der

    1983-01-01

    The formation of the allantoin-degrading enzymes allantoinase, allantoicase and ureidoglycolase in Pseudomonas aeruginosa was found to be regulated by induction, catabolite repression and nitrogen control. Induction was observed when urate, allantoin or allantoate were included in the growth medium,

  17. Degradation study of XVIII century graffiti on the walls of Chiaramonte Palace (Palermo, Italy)

    Science.gov (United States)

    Alberghina, M. F.; Barraco, R.; Brai, M.; Casaletto, M. P.; Ingo, G. M.; Marrale, M.; Policarpo, D.; Schillaci, T.; Tranchina, L.

    2010-09-01

    A systematic investigation of the original materials and the degradation phenomena induced by soluble salts on the wall matrix and on the graffiti of the Inquisition jails of Chiaramonte Palace in Palermo (Italy) was carried out. Built in the XIV century, Chiaramonte Palace was used as Inquisition court during the XV-XVI centuries. The ancient graffiti, recently discovered, represent a unique historical witness of the prisoners that lived during that terrible period. In order to study the nature, the amount and the distribution of the salts in the masonry, stone materials sampled at different depth from the wall matrix and saline efflorescences were analysed. Different physical techniques were used, such as X-ray Photoelectron Spectroscopy, X-ray Fluorescence, Laser Induced Breakdown Spectroscopy, X-ray Diffraction and Ionic Chromatography. Results of the chemical and physical characterisation showed that the main cause of the degradation of graffiti and wall paintings was the presence of soluble salts, such as nitrates, chlorides and sulphates. Traces of oxalates, coming from a previous conservation treatment, were also found. The results obtained by the stratigraphical characterisation of soluble salts in the wall matrix can be used to recommend a procedure based on air humidification at high relative humidity values in order to avoid salt crystallisation and to prevent the crumbling process of the graffiti.

  18. Understanding Lignin-Degrading Reactions of Ligninolytic Enzymes: Binding Affinity and Interactional Profile

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Tan, Zhongyang; Jiang, Min; Li, Hui; Liu, Lifeng; Zhu, Yi; Yu, Zhen; Wei, Zhen; Liu, Yuanyuan; Xie, Gengxin

    2011-01-01

    Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity. PMID:21980516

  19. Influence of enzyme and chemical adsorption on the thermal degradation path for eucalyptus pulp

    Energy Technology Data Exchange (ETDEWEB)

    Barneto, Agustin G., E-mail: agustin.garcia@diq.uhu.es [Chemical Engineering Department, El Carmen Campus, University of Huelva, 21071 Huelva (Spain); Valls, Cristina [Textile and Paper Engineering Department, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain); Ariza, Jose [Chemical Engineering Department, El Carmen Campus, University of Huelva, 21071 Huelva (Spain); Roncero, M. Blanca [Textile and Paper Engineering Department, Universitat Politecnica de Catalunya, Colom 11, E-08222 Terrassa (Spain)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer Enzymes and chemicals adsorption changes thermal degradation path of cellulose. Black-Right-Pointing-Pointer Adsorptions on pulp fibres increase their amorphous cellulose content. Black-Right-Pointing-Pointer Charring/volatilization ratio of pulp is affected by adsorptions. - Abstract: Changes in thermal degradation path of eucalyptus pulp support enzymes (laccase from Trametes villosa) and chemicals (Tris-HCl or tartrate-tartaric buffer) adsorption on cellulose during biobleaching, thereby increasing cellulose amount that degrades at low temperature and decreasing the apparent crystallinity (ApC) of cellulose crystallites. Changes in ApC, which can be assessed by thermogravimetric analysis -but not X-ray diffraction spectroscopy-affect cellulose volatilization; thus, the higher ApC is, the lower is char production and the higher the volatilization temperature. A linear relationship between ApC and the volatilization/charring ratio (V/C) was observed in this work.

  20. Effects of serum albumin on the degradation and cytotoxicity of single-walled carbon nanotubes.

    Science.gov (United States)

    Ding, Yun; Tian, Rong; Yang, Zhen; Chen, Jianfa; Lu, Naihao

    2017-03-01

    Neutrophil myeloperoxidase (MPO) and peroxynitrite (ONOO-) can oxidatively biodegrade carboxylated single-walled carbon nanotubes (SWCNTs). The protein-SWCNTs interactions will play an important role in the degradation and cytotoxicity of nanotubes. Here, we investigated the binding of bovine serum albumin (BSA, a common and well-characterized model blood serum protein) to SWCNTs, and found that the hydrophobic and electrostatic interactions might be crucial factors in stabilizing the binding of SWCNTs with BSA. The binding of BSA could impair SWCNTs biodegradation in vitro through the competitive adsorption to nanotube. Both SWCNTs and BSA-SWCNTs were significantly degraded in zymosan-stimulated macrophages, and the degradation degree was more for BSA-SWCNTs. The mechanism for SWCNTs degradation in activated macrophages was further investigated to demonstrate the dominant participation of MPO and ONOO--driven pathways. Moreover, binding of BSA to SWCNTs reduced cytotoxicity and degraded nanotubes induced less cytotoxicity than non-degraded nanotubes. The binding of BSA may be an important determinant for the biodegradation and cytotoxicity of SWCNTs in inflammatory cells, and therefore, provide a new route to mitigate the potential toxicity of nanotubes in future biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Metabolic adaptation via regulated enzyme degradation in the pathogenic yeast Candida albicans.

    Science.gov (United States)

    Ting, S Y; Ishola, O A; Ahmed, M A; Tabana, Y M; Dahham, S; Agha, M T; Musa, S F; Muhammed, R; Than, L T L; Sandai, D

    2017-03-01

    The virulence of Candida albicans is dependent upon fitness attributes as well as virulence factors. These attributes include robust stress responses and metabolic flexibility. The assimilation of carbon sources is important for growth and essential for the establishment of infections by C. albicans. Previous studies showed that the C. albicans ICL1 genes, which encode the glyoxylate cycle enzymes isocitratelyase are required for growth on non-fermentable carbon sources such as lactate and oleic acid and were repressed by 2% glucose. In contrast to S. cerevsiae, the enzyme CaIcl1 was not destabilised by glucose, resulting with its metabolite remaining at high levels. Further glucose addition has caused CaIcl1 to lose its signal and mechanisms that trigger destabilization in response to glucose. Another purpose of this study was to test the stability of the Icl1 enzyme in response to the dietary sugars, fructose, and galactose. In the present study, the ICL1 mRNAs expression was quantified using Quantitative Real Time PCR, whereby the stability of protein was measured and quantified using Western blot and phosphoimager, and the replacing and cloning of ICL1 ORF by gene recombination and ubiquitin binding was conducted via co-immuno-precipitation. Following an analogous experimental approach, the analysis was repeated using S. cerevisiaeas a control. Both galactose and fructose were found to trigger the degradation of the ICL1 transcript in C. albicans. The Icl1 enzyme was stable following galactose addition but was degraded in response to fructose. C. albicans Icl1 (CaIcl1) was also subjected to fructose-accelerated degradation when expressed in S. cerevisiae, indicating that, although it lacks a ubiquitination site, CaIcl1 is sensitive to fructose-accelerated protein degradation. The addition of an ubiquitination site to CaIcl1 resulted in this enzyme becoming sensitive to galactose-accelerated degradation and increases its rate of degradation in the

  2. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis.

    Directory of Open Access Journals (Sweden)

    Nicolas Durand

    Full Text Available Odorant-Degrading Enzymes (ODEs are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant.Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants.SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.

  3. Ruminant Nutrition Symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes.

    Science.gov (United States)

    Adesogan, A T; Ma, Z X; Romero, J J; Arriola, K G

    2014-04-01

    This paper aimed to summarize published responses to treatment of cattle diets with exogenous fibrolytic enzymes (EFE), to discuss reasons for variable EFE efficacy in animal trials, to recommend strategies for improving enzyme testing and EFE efficacy in ruminant diets, and to identify proteomic differences between effective and ineffective EFE. A meta-analysis of 20 dairy cow studies with 30 experiments revealed that only a few increased lactational performance and the response was inconsistent. This variability is attributable to several enzyme, feed, animal, and management factors that were discussed in this paper. The variability reflects our limited understanding of the synergistic and sequential interactions between exogenous glycosyl hydrolases, autochthonous ruminal microbes, and endogenous fibrolytic enzymes that are necessary to optimize ruminal fiber digestion. An added complication is that many of the standard methods of assaying EFE activities may over- or underestimate their potential effects because they are based on pure substrate saccharification and do not simulate ruminal conditions. Our recent evaluation of 18 commercial EFE showed that 78 and 83% of them exhibited optimal endoglucanase and xylanase activities, respectively, at 50 °C, and 77 and 61% had optimal activities at pH 4 to 5, respectively, indicating that most would likely act suboptimally in the rumen. Of the many fibrolytic activities that act synergistically to degrade forage fiber, the few usually assayed, typically endoglucanase and xylanase, cannot hydrolyze the recalcitrant phenolic acid-lignin linkages that are the main constraints to ruminal fiber degradation. These factors highlight the futility of random addition of EFE to diets. This paper discusses reasons for the variable animal responses to dietary addition of fibrolytic enzymes, advances explanations for the inconsistency, suggests a strategy to improve enzyme efficacy in ruminant diets, and describes differences

  4. Aqueous enzymatic process for cell wall degradation and lipid extraction from Nannochloropsis sp.

    Science.gov (United States)

    Wu, Chongchong; Xiao, Ye; Lin, Weiguo; Li, Jiaquan; Zhang, Saisai; Zhu, Junying; Rong, Junfeng

    2017-01-01

    An effective cell disruption method, including alkaline pretreatment and subsequent enzymatic treatment, was established to break cell walls and extract lipid from Nannochloropsis sp. A synergistic effect was found between alkaline pretreatment and enzymatic treatment. The combination of commercialize enzymes (cellulase, protease, lysozyme, and pectinase) achieved higher lipid yield compared with a single enzyme application. With the compromise between economic feasibility and lipid yield, the optimum reaction conditions were obtained with alkaline pretreatment at pH 10.5 at 110°C for 4h, and subsequent enzymatic treatment at pH 4 at 50°C for 30min with the dosage of each enzyme at 200IU/g. As high as 90.0% of lipid was extracted under optimal conditions from Nannochloropsis sp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes.

    Science.gov (United States)

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Trygg, Johan; Vivier, Melané A

    2015-03-18

    Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.

  6. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass.

    Science.gov (United States)

    Jin, Lixia; Son, Yowhan; Yoon, Tae Kyung; Kang, Yu Jin; Kim, Woong; Chung, Haegeun

    2013-02-01

    Nanomaterials such as single-walled carbon nanotubes (SWCNTs) may enter the soil environment with unknown consequences resulting from the development of nanotechnology for a variety of applications. We determined the effects of SWCNTs on soil enzyme activity and microbial biomass through a 3-week incubation of urban soils treated with different concentrations of SWCNTs ranging from 0 to 1000 μg g(-1) soil. The activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase and microbial biomass were measured in soils treated with powder and suspended forms of SWCNTs. SWCNTs of concentrations at 300-1000 μg g(-1) soil significantly lowered activities of most enzymes and microbial biomass. It is noteworthy that the SWCNTs showed similar effects to that of multi-walled carbon nanotubes (MWCNTs), but at a concentration approximately 5 times lower; we suggest that this is mainly due to the higher surface area of SWCNTs than that of MWCNTs. Indeed, our results show that surface area of CNTs has significant negative relationship with relative enzyme activity and biomass, which suggests that greater microorganism-CNT interactions could increase the negative effect of CNTs on microorganisms. Current work may contribute to the preparation of a regulatory guideline for the release of CNTs to the soil environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Experimental recreation of the evolution of lignin-degrading enzymes from the Jurassic to date.

    Science.gov (United States)

    Ayuso-Fernández, Iván; Martínez, Angel T; Ruiz-Dueñas, Francisco J

    2017-01-01

    Floudas et al. ( Science 336: 1715) established that lignin-degrading fungi appeared at the end of Carboniferous period associated with the production of the first ligninolytic peroxidases. Here, the subsequent evolution of these enzymes in Polyporales, where most wood-rotting fungi are included, is experimentally recreated using genomic information. With this purpose, we analyzed the evolutionary pathway leading to the most efficient lignin-degrading peroxidases characterizing Polyporales species. After sequence reconstruction from 113 genes of ten sequenced genomes, the main enzyme intermediates were resurrected and characterized. Biochemical changes were analyzed together with predicted sequences and structures, to understand how these enzymes acquired the ability to degrade lignin and how this ability changed with time. The most probable first peroxidase in Polyporales would be a manganese peroxidase (Mn 3+ oxidizing phenolic lignin) that did not change substantially until the appearance of an exposed tryptophan (oxidizing nonphenolic lignin) originating an ancestral versatile peroxidase. Later, a quick evolution, with loss of the Mn 2+ -binding site, generated the first lignin peroxidase that evolved to the extant form by improving the catalytic efficiency. Increased stability at acidic pH, which strongly increases the oxidizing power of these enzymes, was observed paralleling the appearance of the exposed catalytic tryptophan. We show how the change in peroxidase catalytic activities meant an evolutionary exploration for more efficient ways of lignin degradation by fungi, a key step for carbon recycling in land ecosystems. The study provides ancestral enzymes with a potential biotechnological interest for the sustainable production of fuels and chemicals in a biomass-based economy.

  8. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    Specific enzymes from plant-pathogenic microbes demonstrate high effectiveness for natural lignocellulosic biomass degradation and utilization. The secreted lignocellulolytic enzymes of Fusarium species have not been investigated comprehensively, however. In this study we compared cellulose...... and hemicellulose-degrading enzymes of classical fungal enzyme producers with those of Fusarium species. The results indicated that Fusarium species are robust cellulose and hemicellulose degraders. Wheat bran, carboxymethylcellulose and xylan-based growth media induced a broad spectrum of lignocellulolytic enzymes...... in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose...

  9. Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture.

    Science.gov (United States)

    Bootten, T J; Joblin, K N; McArdle, B H; Harris, P J

    2011-11-01

    To compare the abilities of the monocentric rumen fungi Neocallimastix frontalis, Piromyces communis and Caecomyces communis, growing in coculture with Methanobrevibacter smithii, to colonize and degrade lignified secondary cell walls of lucerne (alfalfa) hay. The cell walls of xylem cylinders isolated from stems of lucerne contained mostly xylans, cellulose and lignin together with a small proportion of pectic polysaccharides. All of these major components were removed during incubation with the three fungi, and differing cell wall polysaccharides were degraded to different extents. The greatest dry weight loss was found with N. frontalis and least with C. communis, and scanning electron microscopy revealed that these extensively colonized different cell types. C. communis specifically colonized secondary xylem fibres and showed much less degradation than N. frontalis and P. communis. Neocallimastix frontalis and P. communis were efficient degraders of the cell walls of lucerne xylem cylinders. Degradation occurred of pectic polysaccharides, xylan and cellulose. Loss of lignin from the xylem cylinders probably resulted from the cleavage of xylan releasing xylan-lignin complexes. Unlike rumen bacteria, the rumen fungi N. frontalis, P. communis and C. communis are able to degrade lignified secondary walls in lucerne stems. These fungi could improve forage utilization by ruminants and may have potential in the degradation of lignocellulosic biomass in the production of biofuels. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  10. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    Science.gov (United States)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  11. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  12. Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Im, Jong-Kwon; Heo, Jiyong; Boateng, Linkel K. [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States); Her, Namguk [Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon, 135-1, Changhari, Kokyungmeon, Young-cheon, Gyeongbuk 770-849 (Korea, Republic of); Flora, Joseph R.V. [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States); Yoon, Jaekyung [Korea Institute of Energy Research, New and Renewable Energy Research Division, 71-2 Jang-Dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Zoh, Kyung-Duk [Department of Environmental Health, School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Yeomin, E-mail: yoony@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2013-06-15

    Highlights: • Sonodegradation of acetaminophen and naproxen was performed. • Degradation was enhanced with the dispersion of SWNTs under US irradiation. • Synergistic effect on the degradation PhACs was observed in US/SWNT process. • Significant removal of dissolved organic carbon was achieved. -- Abstract: Ultrasonic (US) and single-walled carbon nanotube (SWNT)-catalyzed ultrasonic (US/SWNT) degradation of a pharmaceutical (PhAC) mixture of acetaminophen (AAP) and naproxen (NPX) used as analgesics was carried out in water. In the absence of SWNTs, maximum degradations of AAP and NPX occurred at a high frequency (1000 kHz) and under acidic conditions (pH 3) and different solution temperatures (25 °C at 28 kHz and 35 °C at 1000 kHz) during US reactions. Rapid degradation of PhACs occurred within 10 min at 28 kHz (44.5% for AAP; 90.3% for NPX) and 1000 kHz (39.2% for AAP; 74.8% for NPX) at a SWNT concentration of 45 mg L{sup −1} under US/SWNT process, compared with 28 kHz (5.2% for AAP; 10.6% for NPX) and 1000 kHz (29.1% for AAP; 46.2% for NPX) under US process. Degradation was associated with the dispersion of SWNTs; small particles acted as nuclei during US reactions, enhancing the H{sub 2}O{sub 2} production yield. NPX removal was greater than AAP removal under all US-induced reaction and SWNT adsorption conditions, which is governed by the chemical properties of PhACs. Based on the results, the optimal treatment performance was observed at 28 kHz with 45 mg L{sup −1} SWNTs (US/SWNT) within 10 min.

  13. Probiotic activity of lignocellulosic enzyme as bioactivator for rice husk degradation

    Science.gov (United States)

    Lamid, Mirni; Al-Arif, Anam; Warsito, Sunaryo Hadi

    2017-02-01

    The utilization of lignocellulosic enzyme will increase nutritional value of rice husk. Cellulase consists of C1 (β-1, 4-glucan cellobiohydrolase or exo-β-1,4glucanase), Cc (endo-β-1,4-glucanase) and component and cellobiose (β-glucocidase). Hemicellulase enzyme consists of endo-β-1,4-xilanase, β-xilosidase, α-L arabinofuranosidase, α-D-glukuronidaseand asetil xilan esterase. This research aimed to study the activity of lignocellulosic enzyme, produced by cows in their rumen, which can be used as a bioactivator in rice husk degradation. This research resulted G6 and G7 bacteria, producing xylanase and cellulase with the activity of 0.004 U mL-1 and 0.021 U mL-1; 0.003 ( U mL-1) and 0.026 (U mL-1) respectively.

  14. Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation.

    Science.gov (United States)

    Botha, Jonathan; Mizrachi, Eshchar; Myburg, Alexander A; Cowan, Don A

    2017-11-06

    Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.

  15. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2010-12-01

    Full Text Available Abstract Background Leaf-cutting (attine ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. Results We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21% of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Conclusions Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to

  16. Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi.

    Science.gov (United States)

    Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter; Boomsma, Jacobus J

    2010-12-31

    Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus Leucocoprinus gongylophorus that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth. We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in Acromyrmex echinatior leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade. Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by Acromyrmex leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.

  17. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis.

    Directory of Open Access Journals (Sweden)

    Anna P Lucarelli

    Full Text Available The selection and soaring spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB and extensively drug-resistant strains (XDR-TB is a severe public health problem. Currently, there is an urgent need for new drugs for tuberculosis treatment, with novel mechanisms of action and, moreover, the necessity to identify new drug targets. Mycobacterial phosphoribosylpyrophosphate synthetase (MtbPRPPase is a crucial enzyme involved in the biosynthesis of decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Moreover, phosphoribosylpyrophosphate, which is the product of the PRPPase catalyzed reaction, is the precursor for the biosynthesis of nucleotides and of some amino acids such as histidine and tryptophan. In this context, the elucidation of the molecular and functional features of MtbPRPPase is mandatory. MtbPRPPase was obtained as a recombinant form, purified to homogeneity and characterized. According to its hexameric form, substrate specificity and requirement of phosphate for activity, the enzyme proved to belong to the class I of PRPPases. Although the sulfate mimicked the phosphate, it was less effective and required higher concentrations for the enzyme activation. MtbPRPPase showed hyperbolic response to ribose 5-phosphate, but sigmoidal behaviour towards Mg-ATP. The enzyme resulted to be allosterically activated by Mg(2+ or Mn(2+ and inhibited by Ca(2+ and Cu(2+ but, differently from other characterized PRPPases, it showed a better affinity for the Mn(2+ and Cu(2+ ions, indicating a different cation binding site geometry. Moreover, the enzyme from M. tuberculosis was allosterically inhibited by ADP, but less sensitive to inhibition by GDP. The characterization of M. tuberculosis PRPPase provides the starting point for the development of inhibitors for antitubercular drug design.

  18. Enzymes and fungal virulence

    African Journals Online (AJOL)

    Plant pathogenic fungi secrete extracellular enlymes that are capable of degrading the cell walls of their host plants. These CWDES may be necessary for penetration ofthc cell wall harricr. as well as for generation of simple molecules that can he assimilated for growth. Most of these enzymes are substrawinducible and both ...

  19. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    Directory of Open Access Journals (Sweden)

    Henrissat Bernard

    2011-01-01

    Full Text Available Abstract Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs and a high number of glycosyl transferases (GTs and carbohydrate esterases (CEs. A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars, chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota.

  20. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    Science.gov (United States)

    2011-01-01

    Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy) annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota. PMID:21241472

  1. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions.

    Science.gov (United States)

    Chan-Cupul, Wilberth; Heredia-Abarca, Gabriela; Rodríguez-Vázquez, Refugio

    2016-01-01

    This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.

  2. Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus.

    Science.gov (United States)

    Schmid, Georg; René, Sandra Bosch; Boll, Matthias

    2015-09-01

    The Fe(III)-respiring Ferroglobus placidus is the only known archaeon and hyperthermophile for which a complete degradation of aromatic substrates to CO2 has been reported. Recent genome and transcriptome analyses proposed a benzoyl-coenzyme A (CoA) degradation pathway similar to that found in the phototrophic Rhodopseudomonas palustris, which involves a cyclohex-1-ene-1-carboxyl-CoA (1-enoyl-CoA) forming, ATP-dependent key enzyme benzoyl-CoA reductase (BCR). In this work, we demonstrate, by first in vitro studies, that benzoyl-CoA is ATP-dependently reduced by two electrons to cyclohexa-1,5-dienoyl-CoA (1,5-dienoyl-CoA), which is further degraded by hydration to 6-hydroxycyclohex-1-ene-1-carboxyl-CoA (6-OH-1-enoyl-CoA); upon addition of NAD(+) , the latter was subsequently converted to β-oxidation intermediates. The four candidate genes of BCR were heterologously expressed, and the enriched, oxygen-sensitive enzyme catalysed the two-electron reduction of benzoyl-CoA to 1,5-dienoyl-CoA. A gene previously assigned to a 2,3-didehydropimeloyl-CoA hydratase was heterologously expressed and shown to act as a typical 1,5-dienoyl-CoA hydratase that does not accept 1-enoyl-CoA. A gene previously assigned to a 1-enoyl-CoA hydratase was heterologously expressed and identified to code for a bifunctional crotonase/3-OH-butyryl-CoA dehydrogenase. In summary, the results consistently provide biochemical evidence that F. placidus and probably other archaea predominantly degrade aromatics via the Thauera/Azoarcus type and not or only to a minor extent via the predicted R. palustris-type benzoyl-CoA degradation pathway. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Production of hemicellulose- and cellulose-degrading enzymes by various strains of Sclerotium rolfsii.

    Science.gov (United States)

    Sachslehner, A; Haltrich, D; Nidetzky, B; Kulbe, K D

    1997-01-01

    A number of wild-type isolates of Sclerotium rolfsii were screened for their capacity to produce lignocellulolytic enzymes when grown on a cellulose-based medium.S. rolfsii proved to be an efficient producer of hemicellulolytic enzymes under the conditions selected for this screening, although there was a great variability in enzyme activities formed by the different isolates. In addition to xylanase and mannanase, which were produced in remarkably high levels, a number of accessory enzymes, which are important for the complete degradation of substituted hemicelluloses and include a-arabinosidase, acetyl esterase, and a-galactosidase, are formed by S. rolfsii. Efficient production of xylanase and mannanase was achieved when cellulose-based media were used for growth. Under these conditions, enhanced levels of endoglucanase were formed as well. Formation of xylanase and mannanase could be more specifically induced when using xylan or mannan as growth substrates, although the enzyme activities thus obtained were significantly lower compared to cultivations on cellulose as main inducing substrate.

  4. Carbon-degrading enzyme activities stimulated by increased nutrient availability in Arctic tundra soils.

    Directory of Open Access Journals (Sweden)

    Akihiro Koyama

    Full Text Available Climate-induced warming of the Arctic tundra is expected to increase nutrient availability to soil microbes, which in turn may accelerate soil organic matter (SOM decomposition. We increased nutrient availability via fertilization to investigate the microbial response via soil enzyme activities. Specifically, we measured potential activities of seven enzymes at four temperatures in three soil profiles (organic, organic/mineral interface, and mineral from untreated native soils and from soils which had been fertilized with nitrogen (N and phosphorus (P since 1989 (23 years and 2006 (six years. Fertilized plots within the 1989 site received annual additions of 10 g N · m(-2 · year(-1 and 5 g P · m(-2 · year(-1. Within the 2006 site, two fertilizer regimes were established--one in which plots received 5 g N · m(-2 · year(-1 and 2.5 g P · m(-2 · year(-1 and one in which plots received 10 g N · m(-2 · year(-1 and 5 g P · m(-2 · year(-1. The fertilization treatments increased activities of enzymes hydrolyzing carbon (C-rich compounds but decreased phosphatase activities, especially in the organic soils. Activities of two enzymes that degrade N-rich compounds were not affected by the fertilization treatments. The fertilization treatments increased ratios of enzyme activities degrading C-rich compounds to those for N-rich compounds or phosphate, which could lead to changes in SOM chemistry over the long term and to losses of soil C. Accelerated SOM decomposition caused by increased nutrient availability could significantly offset predicted increased C fixation via stimulated net primary productivity in Arctic tundra ecosystems.

  5. Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease

    Science.gov (United States)

    Wei, Guoxian; Tian, Na; Siezen, Roland; Schuppan, Detlef

    2016-01-01

    Gluten are proline- and glutamine-rich proteins present in wheat, barley, and rye and contain the immunogenic sequences that drive celiac disease (CD). Rothia mucilaginosa, an oral microbial colonizer, can cleave these gluten epitopes. The aim was to isolate and identify the enzymes and evaluate their potential as novel enzyme therapeutics for CD. The membrane-associated R. mucilaginosa proteins were extracted and separated by DEAE chromatography. Enzyme activities were monitored with paranitroanilide-derivatized and fluorescence resonance energy transfer (FRET) peptide substrates, and by gliadin zymography. Epitope elimination was determined in R5 and G12 ELISAs. The gliadin-degrading Rothia enzymes were identified by LC-ESI-MS/MS as hypothetical proteins ROTMU0001_0241 (C6R5V9_9MICC), ROTMU0001_0243 (C6R5W1_9MICC), and ROTMU0001_240 (C6R5V8_9MICC). A search with the Basic Local Alignment Search Tool revealed that these are subtilisin-like serine proteases belonging to the peptidase S8 family. Alignment of the major Rothia subtilisins indicated that all contain the catalytic triad with Asp (D), His (H), and Ser (S) in the D-H-S order. They cleaved succinyl-Ala-Ala-Pro-Phe-paranitroanilide, a substrate for subtilisin with Pro in the P2 position, as in Tyr-Pro-Gln and Leu-Pro-Tyr in gluten, which are also cleaved. Consistently, FRET substrates of gliadin immunogenic epitopes comprising Xaa-Pro-Xaa motives were rapidly hydrolyzed. The Rothia subtilisins and two subtilisins from Bacillus licheniformis, subtilisin A and the food-grade Nattokinase, efficiently degraded the immunogenic gliadin-derived 33-mer peptide and the immunodominant epitopes recognized by the R5 and G12 antibodies. This study identified Rothia and food-grade Bacillus subtilisins as promising new candidates for enzyme therapeutics in CD. PMID:27469368

  6. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Surang Chankhamhaengdecha

    2013-01-01

    Full Text Available Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL quorum sensing (QS system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9% and 68 (51.5% of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30±3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  7. Structure based discovery of small molecules to regulate the activity of human insulin degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Bilal Çakir

    Full Text Available BACKGROUND: Insulin-degrading enzyme (IDE is an allosteric Zn(+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD and type 2 diabetes mellitus (T2DM, respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. CONCLUSION/SIGNIFICANCE: This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible.

  8. Degradation of Perennial Ryegrass Leaf and Stem Cell Walls by the Anaerobic Fungus Neocallimastix sp. Strain CS3b.

    Science.gov (United States)

    Sijtsma, L; Tan, B

    1996-04-01

    The degradation of cell walls isolated from stems and leaves of perennial ryegrass by the anaerobic fungus Neocallimastix sp. strain CS3b was studied in a defined medium. The combined cellulose and hemicellulose fraction represented 53.1 (wt/wt) and 63.3% (wt/wt) of the dry weight of control grass leaf and stem cell walls, respectively. In both leaf and stem cell walls, glucose was the major neutral monosaccharide, followed by xylose, arabinose, and galactose. After 2 days of fermentation with Neocallimastix sp. strain CS3b, treated cell walls contained smaller amounts of neutral sugars compared with those of undigested cell walls. These results were more evident for glucose, xylose, and arabinose than for galactose. Furthermore, the sugar content of leaf cell walls decreased before a decline in the sugar content of stem cell walls was observed. Data from formate and hydrogen production indicated that the growth of Neocallimastix sp. strain CS3b was completed in 4 days in the culture system used. During this period, the fungus liberated about 95% of the fermentable sugars in untreated material. On a percentage basis, no significant differences were found in final extent of degradation of glucose, xylose, and arabinose. Galactose, however, was degraded to a lesser extent.

  9. Lignin degradation, ligninolytic enzymes activities and exopolysaccharide production by Grifola frondosa strains cultivated on oak sawdust

    Science.gov (United States)

    Fernandes, Nona A.; Isikhuemhen, Omoanghe S.; Ohimain, Elijah I.

    2011-01-01

    Fourteen strains of Grifola frondosa (Dicks.) S. F. Gray, originating from different regions (Asia, Europe and North America) were tested for lignin degradation, ligninolytic enzyme activities, protein accumulation and exopolysaccharide production during 55 days of cultivation on oak sawdust. Lignin degradation varied from 2.6 to7.1 % of dry weight of the oak sawdust substrate among tested strains. The loss of dry matter in all screened fungi varied between 11.7 and 33.0%, and the amount of crude protein in the dry substrate varied between 0.94 to 2.55%. The strain, MBFBL 596, had the highest laccase activity (703.3 U/l), and the maximum peroxidase activity of 22.6 U/l was shown by the strain MBFBL 684. Several tested strains (MBFBL 21, 638 and 662) appeared to be good producers of exopolysaccharides (3.5, 3.5 and 3.2 mg/ml respectively). PMID:24031728

  10. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis.

    Science.gov (United States)

    Kunst, F; Rapoport, G

    1995-05-01

    Growth under conditions of salt stress has important effects on the synthesis of degradative enzymes in Bacillus subtilis. Salt stress strongly stimulates the expression of sacB, encoding levansucrase (about ninefold), and downregulates the expression of aprE, encoding alkaline protease (about sixfold). It is suggested that the DegS-DegU two-component system is involved in sensing salt stress. Moreover, it has been shown that the level of sacB expression strongly depends on the growth conditions; its expression level is about eightfold higher in cells grown on agar plates than in cells grown in liquid medium.

  11. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    Science.gov (United States)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  12. Degradation kinetics of forchlorfenuron in typical grapevine soils of India and its influence on specific soil enzyme activities.

    Science.gov (United States)

    Banerjee, Kaushik; Dasgupta, Soma; Oulkar, Dasharath P; Patil, Sangram H; Adsule, Pandurang G

    2008-05-01

    The rate of degradation of forchlorfenuron, a cytokinin-based plant growth regulator (PGR) was explored in typical grapevine soils of India with simultaneous evaluation of its effect on biochemical attributes of the test soils in terms of the activities of specific soil microbial enzymes. In all the test soils, namely clay, sandy-loam and silty-clay, the dissipation rate was faster at the beginning, which slowed down with time, indicating a non-linear pattern of degradation. Degradation in soils could best be explained by two-compartment 1st+1st order kinetics with half-life ranging between 4-10 days. The results suggest that organic matter might be playing a major role in influencing the rate of degradation of forchlorfenuron in soil. The rate of degradation in sandy-loam soil was fastest followed by clay and silty-clay soils, respectively. Comparison of the rate of degradation in natural against sterilized soils suggests that microbial degradation might be the major pathway of residue dissipation. Changes in soil enzyme activities as a consequence of forchlorfenuron treatment were studied for extra-cellular enzymes namely acid phosphatase, alkaline phosphatase and beta -glucosidase and intracellular enzyme-dehydrogenase. Although small changes in enzyme activities were observed, forchlorfenuron did not have any significant deleterious effect on the enzymatic activity of the test soils. Simple correlation studies between degradation percentage and individual enzyme activities did not establish any significant relationships. The pattern and change of enzyme activity was primarily the effect of the incubation period rather than the effect of forchlorfenuron itself.

  13. Post-mortem degradation of myosin heavy chain in intact fish muscle: Effects of pH and enzyme inhibitors

    OpenAIRE

    Wang, P. A.; Vang, B.; Pedersen, A M; Martínez, Iciar; Olsen, R L

    2011-01-01

    Fish muscle is rapidly degraded during post-mortem storage, due to proteolytic enzymes acting probably both on muscle cells and connective tissue. In this work we have developed a model system which may be used to study the enzymatic degradation occurring in intact post-mortem fish muscle. Degradation of myosin heavy chain (MHC) was monitored in muscle with pH adjusted to 6.05, 6.3 and 6.9 and in the presence of the enzyme inhibitors PMSF, EDTA, phenanthroline, pepstatin A, antipain, E-64 and...

  14. Degradation of toluene by ortho cleavage enzymes in Burkholderia fungorum FLU100

    Science.gov (United States)

    Dobslaw, Daniel; Engesser, Karl-Heinrich

    2015-01-01

    Burkholderia fungorum FLU100 simultaneously oxidized any mixture of toluene, benzene and mono-halogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumulated transiently, being further mineralized only after a lag phase of 2 h in case of cells pre-grown on benzene or mono-halogen benzenes. No lag phase, however, occurred after growth on toluene. Cultures inhibited by chloramphenicol after growth on benzene or mono-halogen benzenes were unable to metabolize 2-ML supplied externally, even after prolonged incubation. A control culture grown with toluene did not show any lag phase and used 2-ML as a substrate. This means that 2-ML is an intermediate of toluene degradation and converted by specific enzymes. The conversion of 4-methylcatechol as a very minor by-product of toluene degradation in strain FLU100 resulted in the accumulation of 4-carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone, 4-ML) as a dead-end product, excluding its nature as a possible intermediate. Thus, 3-methylcyclohexa-3,5-diene-1,2-diol, 3-methylcatechol, 2-methyl muconate and 2-ML were identified as central intermediates of productive ortho cleavage pathways for toluene metabolism in B. fungorum FLU100. PMID:25130674

  15. Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Vestergaard, Mike; Jessen, Flemming

    2017-01-01

    Gluten free products have emerged during the last decades, as a result of a growing public concern and technological advancements allowing gluten reduction in food products. One approach is to use gluten degrading enzymes, typically at low or ambient temperatures, whereas many food production...... processes occur at elevated temperature. We present in this paper, the discovery, cloning and characterisation of a novel recombinant thermostable gluten degrading enzyme, a proline specific prolyl endoprotease (PEP) from Sphaerobacter thermophiles. The molecular mass of the prolyl endopeptidase...... at 63 °C was higher than 75 %. The enzyme was activated and stabilized by Co2+ and inhibited by Mg2+, K+ and Ca2+ followed by Zn2+, Na+, Mn2+, Al3+, and Cu2+. The Km and kcat values of the purified enzyme for different substrates were evaluated. The ability to degrade immunogenic gluten peptides...

  16. Direct immunofluorescence and enzyme-linked immunosorbent assays for evaluating chlorinated hydrocarbon degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Franck, M.M.; Brey, J.; Fliermans, C.B. [Westinghouse Savannah River, Aiken, SC (United States). Environmental Biotechnology Section; Scott, D.; Lanclos, K. [Medical Coll. of Georgia, Augusta, GA (United States)

    1997-06-01

    Immunological procedures were developed to enumerate chlorinated hydrocarbon degrading bacteria. Polyclonal antibodies (Pabs) were produced by immunizing New Zealand white rabbits against 18 contaminant-degrading bacteria. These included methanotrophic and chlorobenzene (CB) degrading species. An enzyme-linked immunosorbent assay (ELISA) was used to test for specificity and sensitivity of the Pabs. Direct fluorescent antibodies (DFAs) were developed with these Pabs against select methanotrophic bacteria isolated from a trichloroethylene (TCE) contaminated landfill at the Savannah River Site (SRS) and cultures from the American Type Culture Collection (ATCC). Analysis of cross reactivity testing data showed some of the Pabs to be group specific while others were species specific. The threshold of sensitivity for the ELISA is 105 bacteria cells/ml. The DFA can detect as few as one bacterium per ml after concentration. Results from the DFA and ELISA techniques for enumeration of methanotrophic bacteria in groundwater were higher but not significantly different (P < 0.05) compared to indirect microbiological techniques such as MPN. These methods provide useful information on in situ community structure and function for bioremediation applications within 1--4 hours of sampling.

  17. Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes

    Directory of Open Access Journals (Sweden)

    Nisita Ratnasari

    2017-07-01

    Full Text Available This study used polysaccharide degrading enzymes and protein precipitation to extract polyphenols from oats and to determine their bioactivity. Duplicate oat brans were treated with viscozyme (Vis, cellulase (Cel or no enzyme (control, CTL then, proteins were removed in one set (Vis1, Cel1, CTL1 and not in the other (Vis2, Cel2, CTL2. HPLC analyses showed that for cellulase treated brans, precipitation of proteins increased phenolic acids and avenanthramides by 14%. Meanwhile, a decreased of 67% and 20% respectively was found for viscozyme and control brans. The effect of protein precipitation on soluble polyphenols is therefore dependent of the carbohydrase, as proteins with different compositions will interact differently with other molecules. Radical scavenging data showed that Cel1 and Vis1 had higher quenching effects on ROO• radicals with activities of 22.1 ± 0.8 and 23.5 ± 1.2 μM Trolox Equivalents/g defatted brans. Meanwhile, CTL2 had the highest HO• radicals inhibition (49.4 ± 2.8% compared to 10.8–32.3% for others. Samples that highly inhibited lipoxygenase (LOX, an enzyme involved in lipid oxidation were Cel1 (23.4 ± 2.3% and CTL1 (18 ± 0.4%.

  18. PhaC Synthases and PHA Depolymerases: The Enzymes that Produce and Degrade Plastic

    Directory of Open Access Journals (Sweden)

    Amro A. Amara

    2011-12-01

    Full Text Available PHAs are a group of intracellular biodegradable polymer produced by (most bacteria under unbalanced growth conditions. A series of enzymes are involved in different PHAs synthesis, however PhaC synthases are responsible for the polymerization step. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reduces equivalents. PHAs are converted again to soluble components by another pathways and enzymes for the degradation process. PHAs depolymerases are the responsible enzymes. This review is designed to give the non-specialists a condense background about PHAs especially for researcher and students in medicinal and pharmaceutical filled. ABSTRAK: PHAs (polyhydroxyalkanoate merupakan sekumpulan polimer terbiodegradasikan intrasel yang dihasilkan oleh (kebanyakan bakteria di bawah keadaan tumbesaran tak seimbang. Satu rangkaian enzim terlibat dalam sistesis PHAs yang berbeza, namun sintesis PhaC bertanggungjawab dalam peringkat pempolimeran. PHAs dikumpulkan dalam sel bakteria dari bentuk larut dan tak larut sebagai bahan simpan di dalam jasad terangkum semasa nutrisi tak seimbang atau untuk menyelamatkan organisma daripada pengurangan tak keseimbangan. PHAs ditukarkan sekali lagi kepada komponen larut dengan cara lain dan enzim lain untuk proses degradasi. PHAs depoly-merases (enzim yang memangkin penguraian makro molekul kepada molekul yang lebih mudah merupakan enzim yang bertanggunjawab. Kajian semula ini direka untuk memberi mereka yang bukan pakar, satu ringkasan tentang PHAs terutamanya penyelidik dan penuntut dalam bidang peubatan dan farmaseutikal.

  19. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides

    DEFF Research Database (Denmark)

    Luis, Ana S.; Briggs, Jonathon; Zhang, Xiaoyang

    2018-01-01

    utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show......The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide...... PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms....

  20. Sulfur isotopic fractionation of carbonyl sulfide during degradation by soil bacteria and enzyme

    Science.gov (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Ogawa, Takahiro; Toyoda, Sakae; Kato, Hiromi; Katayama, Yoko; Yoshida, Naohiro

    2017-04-01

    Carbonyl sulfide (COS) is an atmospheric trace gas that possess great potential for tracer of carbon cycle (Campbell et al., 2008). COS is taken up by vegetation during photosynthesis like absorption of carbon dioxide but COS can not emit by respiration of vegetation, suggesting possible tracer for gross primary production. However, some studies show the COS-derived GPP is larger than the estimates by using carbon dioxide flux because COS flux by photolysis and soil flux are not distinguished (e.g. Asaf et al., 2013). Isotope analysis is a useful tool to trace sources and transformations of trace gases. Recently our group developed a promising new analytical method for measuring the stable sulfur isotopic compositions of COS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ enabling us to easily analyze sulfur isotopes in COS (Hattori et al., 2015). Soil is thought to be important as both a source and a sink of COS in the troposphere. In particular, soil has been reported as a large environmental sink for atmospheric COS. Bacteria isolated from various soils actively degrade COS, with various enzymes such as carbonic anhydrase and COSase (Ogawa et al., 2013) involved in COS degradation. However, the mechanism and the magnitude of bacterial contribution in terms of a sink for atmospheric COS is still uncertain. Therefore, it is important to quantitatively evaluate this contribution using COS sulfur isotope analysis. We present isotopic fractionation constants for COS by laboratory incubation experiments during degradation by soil bacteria and COSase. Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, Cupriavidus, and Thiobacillus, isolated from natural soil or activated sludge and enzyme purified from a bacteria. As a result, the isotopic compositions of OCS were increased during degradation of

  1. Degradation of wheat straw cell wall by white rot fungi Phanerochaete chrysosporium

    Science.gov (United States)

    Zeng, Jijiao

    The main aim of this dissertation research was to understand the natural microbial degradation process of lignocellulosic materials in order to develop a new, green and more effective pretreatment technology for bio-fuel production. The biodegradation of wheat straw by white rot fungi Phanerochaete chrysosporium was investigated. The addition of nutrients significantly improved the performance of P.chrysosporium on wheat straw degradation. The proteomic analysis indicated that this fungus produced various pepetides related to cellulose and lignin degradation while grown on the biomass. The structural analysis of lignin further showed that P.chrysosporium preferentially degraded hydroxycinnamtes in order to access cellulose. In details, the effects of carbon resource and metabolic pathway regulating compounds on manganeses peroxidase (MnP) were studied. The results indicated that MnP activity of 4.7 +/- 0.31 U mL-1 was obtained using mannose as a carbon source. The enzyme productivity further reached 7.36 +/- 0.05 U mL-1 and 8.77 +/- 0.23 U mL -1 when the mannose medium was supplemented with cyclic adenosine monophosphate (cAMP) and S-adenosylmethionine (SAM) respectively, revealing highest MnP productivity obtained by optimizing the carbon sources and supplementation with small molecules. In addition, the effects of nutrient additives for improving biological pretreatment of lignocellulosic biomass were studied. The pretreatment of wheat straw supplemented with inorganic salts (salts group) and tween 80 was examined. The extra nutrient significantly improved the ligninase expression leading to improve digestibility of lignocellulosic biomass. Among the solid state fermentation groups, salts group resulted in a substantial degradation of wheat straw within one week, along with the highest lignin loss (25 %) and ˜ 250% higher efficiency for the total sugar release through enzymatic hydrolysis. The results were correlated with pyrolysis GC-MS (Py

  2. Degradation of wall paints due to sodium sulphate and sodium chloride crystallization

    Directory of Open Access Journals (Sweden)

    Díaz Gonçalves, T.

    2003-03-01

    Full Text Available A test method for evaluating wall paints behaviour to soluble salts crystallization was developed at LNEC. in the present paper, a recent set of tests is described and discussed. The major objectives were: analysing and comparing the behaviour of a common emulsion {"plastic" paint and a silicate-based paint; observing and comparing the effect of sodium sulphate, sodium chloride and distilled water on the paints and on a non-painted stone; evaluating this test method adequacy and effectiveness. The silicate-based paint showed a resistance to soluble salts crystallization greater than the one of the plastic paint. However, the degradation pattern of the silicate-based paint (blistering of a filmic layer was similar to the one of organic paints and distinct from the one of pure mineral paints. The amount of damage that a saline solution can cause to wall paints cannot be inferred from the amount of damage it can cause to stone. Sodium chloride seems to be able to cause more severe degradation to wall paints than sodium sulphate. To the unpainted stone, sodium sulphate seems to be more damaging than sodium chloride. The test method seems adequate to observe and compare the behaviour of wall paints under soluble salts action. However, lower (around 0.5% concentrations for both sodium sulphate and sodium chloride should be tested in the future.

    RESUMEN En el LNEC se desarrolló una metodología de ensayo para evaluar la respuesta de pinturas aplicadas sobre paredes, frente a la cristalización de sales solubles. En este trabajo, se describen y discuten un conjunto de ensayos recientes. Los principales objetivos fueron: el análisis y la comparación del comportamiento de una pintura de emulsión común {''pintura plástica" y la de una pintura de silicato; la observación y la comparación de los efectos del sulfato de sodio, del cloruro de sodio y del agua destilada sobre las pinturas y sobre piedra no pintada; la evaluación de la adecuaci

  3. Plant cell wall glycosyltransferases: High-throughput recombinant expression screening and general requirements for these challenging enzymes.

    Directory of Open Access Journals (Sweden)

    Ditte Hededam Welner

    Full Text Available Molecular characterization of plant cell wall glycosyltransferases is a critical step towards understanding the biosynthesis of the complex plant cell wall, and ultimately for efficient engineering of biofuel and agricultural crops. The majority of these enzymes have proven very difficult to obtain in the needed amount and purity for such molecular studies, and recombinant cell wall glycosyltransferase production efforts have largely failed. A daunting number of strategies can be employed to overcome this challenge, including optimization of DNA and protein sequences, choice of expression organism, expression conditions, co-expression partners, purification methods, and optimization of protein solubility and stability. Hence researchers are presented with thousands of potential conditions to test. Ultimately, the subset of conditions that will be sampled depends on practical considerations and prior knowledge of the enzyme(s being studied. We have developed a rational approach to this process. We devise a pipeline comprising in silico selection of targets and construct design, and high-throughput expression screening, target enrichment, and hit identification. We have applied this pipeline to a test set of Arabidopsis thaliana cell wall glycosyltransferases known to be challenging to obtain in soluble form, as well as to a library of cell wall glycosyltransferases from other plants including agricultural and biofuel crops. The screening results suggest that recombinant cell wall glycosyltransferases in general have a very low soluble:insoluble ratio in lysates from heterologous expression cultures, and that co-expression of chaperones as well as lysis buffer optimization can increase this ratio. We have applied the identified preferred conditions to Reversibly Glycosylated Polypeptide 1 from Arabidopsis thaliana, and processed this enzyme to near-purity in unprecedented milligram amounts. The obtained preparation of Reversibly Glycosylated

  4. Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis.

    Science.gov (United States)

    Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin

    2016-11-16

    This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.

  5. Efficient production of mannan-degrading enzymes by the basidiomycete Sclerotium rolfsii.

    Science.gov (United States)

    Sachslehner, A; Haltrich, D; Gübitz, G; Nidetzky, B; Kulbe, K D

    1998-01-01

    Sclerotium rolfsii CBS 191.62 was cultivated on a number of carbon (C) sources, including mono- and disaccharides, as well as on polysaccharides, to study the formation of different mannan-degrading enzyme activities. Highest levels of mannanase activity were obtained when alpha-cellulose-based media were used for growth, but formation of mannanase could not be enhanced by employing galactomannan as the only carbon source. Although both xylanase and cellulase formation was almost completely repressed when S. rolfsii was grown on more readily metabolizable carbohydrates, including glucose or mannose, considerable amounts of mannanase activity were secreted under these growth conditions. Enhanced mannanase production only commenced when glucose was depleted in the medium. The maximal mannanase activity of 240 IU/mL obtained in a laboratory fermentation is remarkable. Mannanase activity formed under these derepressed conditions could be mainly attributed to one major, acidic mannanase isoenzyme with a pI value of 2.75.

  6. Somatostatin modulates insulin-degrading-enzyme metabolism: implications for the regulation of microglia activity in AD.

    Directory of Open Access Journals (Sweden)

    Grazia Tundo

    Full Text Available The deposition of β-amyloid (Aβ into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimer's disease (AD. Insulin-degrading-enzyme (IDE is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.

  7. Retinoblastoma protein co-purifies with proteasomal insulin-degrading enzyme: Implications for cell proliferation control

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Razvan T., E-mail: ratura@gmx.net [Molecular Concepts Research (MCR), Muenster (Germany); Duckworth, William C. [Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ (United States); Levy, Jennifer L. [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States); Fawcett, Janet, E-mail: janet.fawcett@va.gov [Research Service, Phoenix VA Health Care System, Phoenix, AZ (United States)

    2010-04-30

    Previous investigations on proteasomal preparations containing insulin-degrading enzyme (IDE; EC 3.4.24.56) have invariably yielded a co-purifying protein with a molecular weight of about 110 kDa. We have now found both in MCF-7 breast cancer and HepG2 hepatoma cells that this associated molecule is the retinoblastoma tumor suppressor protein (RB). Interestingly, the amount of RB in this protein complex seemed to be lower in HepG2 vs. MCF-7 cells, indicating a higher (cytoplasmic) protein turnover in the former vs. the latter cells. Moreover, immunofluorescence showed increased nuclear localization of RB in HepG2 vs. MCF-7 cells. Beyond these subtle differences between these distinct tumor cell types, our present study more generally suggests an interplay between RB and IDE within the proteasome that may have important growth-regulatory consequences.

  8. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, Daniel J.

    2015-11-25

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.

  9. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

    Directory of Open Access Journals (Sweden)

    Tingting Ning

    2017-02-01

    Full Text Available Objective This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR silage. Methods The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR or Leymus chinensis hay (LTMR, corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens, B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion The microbial amylase contributes to starch hydrolysis during the

  10. Degradation of toluene by ortho cleavage enzymes in Burkholderia fungorum FLU100.

    Science.gov (United States)

    Dobslaw, Daniel; Engesser, Karl-Heinrich

    2015-01-01

    Burkholderia fungorum FLU100 simultaneously oxidized any mixture of toluene, benzene and mono-halogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumulated transiently, being further mineralized only after a lag phase of 2 h in case of cells pre-grown on benzene or mono-halogen benzenes. No lag phase, however, occurred after growth on toluene. Cultures inhibited by chloramphenicol after growth on benzene or mono-halogen benzenes were unable to metabolize 2-ML supplied externally, even after prolonged incubation. A control culture grown with toluene did not show any lag phase and used 2-ML as a substrate. This means that 2-ML is an intermediate of toluene degradation and converted by specific enzymes. The conversion of 4-methylcatechol as a very minor by-product of toluene degradation in strain FLU100 resulted in the accumulation of 4-carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone, 4-ML) as a dead-end product, excluding its nature as a possible intermediate. Thus, 3-methylcyclohexa-3,5-diene-1,2-diol, 3-methylcatechol, 2-methyl muconate and 2-ML were identified as central intermediates of productive ortho cleavage pathways for toluene metabolism in B. fungorum FLU100. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products.

    Science.gov (United States)

    Scholl, Chris; Eshelman, Bruce D; Barnes, David M; Hanlon, Paul R

    2011-04-01

    The biological activity of cruciferous vegetables is hypothesized to be due to the metabolites of a class of phytochemicals called glucosinolates. The chemical properties of these metabolites, including isothiocyanates, determine the biological activity of these compounds and thus their effects on human health. The 2 primary radish (Raphanus sativus L.) glucosinolates, glucoraphasatin, and glucoraphenin, were isolated using solid phase extraction followed by preparative HPLC purification. In an aqueous environment, 77.6% of the maximum amount of sulforaphene produced by the metabolism of glucoraphenin was present after 24 h. Under the same conditions raphasatin, the isothiocyanate metabolite of glucoraphasatin and the oxidized counterpart of sulforaphene, was highly unstable with a half-life of less than 30 min and no raphasatin was detectable after 24 h. In HepG2 cells, raphasatin-induced quinone reductase activity and the RNA expression of several phase 1 and 2 detoxification enzymes by a significantly greater amount than the degradation products of raphasatin. Raphasatin, but not its degradation products, activated the antioxidant response element (ARE) in a stably-transfected reporter cell line. Mice fed a diet consisting of 20% freeze dried radishes for 2 wk had significantly higher liver expression of cytochrome P450 (CYP) 1A1, 1A2, quinone reductase, microsomal epoxide hydrolase, and glutathione S-transferase α2 than mice fed a nutritionally-matched control diet.   Glucoraphasatin, the primary glucosinolate in radishes, is metabolized into an isothiocyanate (raphasatin) that has biological activity but is also unstable in an aqueous environment. Despite the instability of raphasatin, dietary exposure to radishes produced significant induction of detoxification enzymes. Understanding the chemical properties of raphasatin, both in terms of biological activity and instability, could help develop processing methods to retain the most activity from radishes

  12. Double Walled Carbon Nanotube/TiO2 Nanocomposites for Photocatalytic Dye Degradation

    Directory of Open Access Journals (Sweden)

    Alex T. Kuvarega

    2016-01-01

    Full Text Available Double walled carbon nanotube (DWCNT/N,Pd codoped TiO2 nanocomposites were prepared by a modified sol-gel method and characterised using FTIR, Raman spectroscopy, TGA, DRUV-Vis, XRD, SEM, and TEM analyses. TEM images showed unique pearl-bead-necklace structured morphologies at higher DWCNT ratios. The nanocomposite materials showed characteristic anatase TiO2 Raman bands in addition to the carbon nanotube D and G bands. Red shifts in the UV-Vis absorption edge were observed at low DWCNT percentages. The photocatalytic activity of DWCNT/N,Pd TiO2 nanocomposite was evaluated by the photocatalytic degradation of eosin yellow under simulated solar light irradiation and the 2% DWCNT/N,Pd TiO2 nanocomposite showed the highest photoactivity while the 20% DWCNT/N,Pd TiO2 hybrid was the least efficient. The photocatalytic enhancement was attributed to the synergistic effects of the supporting and electron channeling role of the DWCNTs as well as the electron trapping effects of the platinum group metal. These phenomena favour the separation of the photogenerated electron-hole pairs, reducing their recombination rate, which consequently lead to significantly enhanced photoactivity.

  13. Unsteady turbulent flow in 90° bend under the wall thinning degradation environment

    Energy Technology Data Exchange (ETDEWEB)

    Rani, H.P., E-mail: hprani@nitw.ac.in [Department of Mathematics, NIT Warangal (India); Divya, T. [Department of Mathematics, NIT Warangal (India); Sahaya, R.R. [Nuclear Power Corporation of India Limited, NU Bhavan, Anushakti Nagar, Mumbai (India); Kain, Vivekanand [Material Science Division, Bhabha Atomic Research Center, Mumbai (India); Barua, D.K. [Nuclear Power Corporation of India Limited, NU Bhavan, Anushakti Nagar, Mumbai (India)

    2014-02-15

    A detailed investigation of fully developed transient flow in a 90° bend has been undertaken. The demineralised water has been considered as the working fluid under the operating conditions of wall thinning degradation mechanism in Indian nuclear power plant (NPP). The large eddy simulation (LES) model was employed to compute the large eddies and sub grid scale model was employed to compute the small eddies (unresolved eddies). The LES uses a spatial filtering approach to separate the large and small eddies instead of time averaging operation. The considered flow is of transient nature, hence, apart from the initial disturbances, the flow is observed to be quite random and continuously oscillating with the mean flow for all time. The swirling nature is captured in terms of streamlines at different cross sectional planes. Also the streamlines were captured at a critical sectional plane for every minute. The swirling nature, in terms of large and small eddies, is observed to be strong in the vicinity of the bend. The swirling strength was calculated and it is observed to be more at the bend as well as at the downstream of bend. The flow instability is analyzed and captured in terms of transient iso-surfaces of axial velocity. Also the most important parameter which is vulnerable to flow accelerated corrosion (FAC) i.e., mass transfer coefficient is calculated and analyzed. These results will help to analyze the transient variations in pipe at the locations which are vulnerable to FAC.

  14. PPAR{gamma} transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jing; Zhang, Lang; Liu, Shubo; Zhang, Chi [Protein Science Key Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, School of Medicine, Tsinghua University, Beijing 100084 (China); Huang, Xiuqing; Li, Jian [The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730 (China); Zhao, Nanming [Protein Science Key Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Zhao, E-mail: zwang@tsinghua.edu.cn [Protein Science Key Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2009-06-12

    Insulin-degrading enzyme (IDE) is a protease that has been demonstrated to play a key role in degrading both A{beta} and insulin and deficient in IDE function is associated with Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) pathology. However, little is known about the cellular and molecular regulation of IDE expression. Here we show IDE levels are markedly decreased in DM2 patients and positively correlated with the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) levels. Further studies show that PPAR{gamma} plays an important role in regulating IDE expression in rat primary neurons through binding to a functional peroxisome proliferator-response element (PPRE) in IDE promoter and promoting IDE gene transcription. Finally, we demonstrate that PPAR{gamma} participates in the insulin-induced IDE expression in neurons. These results suggest that PPAR{gamma} transcriptionally induces IDE expression which provides a novel mechanism for the use of PPAR{gamma} agonists in both DM2 and AD therapies.

  15. Lignin degradation, ligninolytic enzymes activities and exopolysaccharide production by Grifola frondosa strains cultivated on oak sawdust

    Directory of Open Access Journals (Sweden)

    Nona A Mikiashvili

    2011-09-01

    Full Text Available Fourteen strains of Grifola frondosa (Dicks. S. F. Gray, originating from different regions (Asia, Europe and North America were tested for lignin degradation, ligninolytic enzyme activities, protein accumulation and exopolysaccharide production during 55 days of cultivation on oak sawdust. Lignin degradation varied from 2.6 to7.1 % of dry weight of the oak sawdust substrate among tested strains. The loss of dry matter in all screened fungi varied between 11.7 and 33.0%, and the amount of crude protein in the dry substrate varied between 0.94 to 2.55%. The strain, MBFBL 596, had the highest laccase activity (703.3 U/l, and the maximum peroxidase activity of 22.6 U/l was shown by the strain MBFBL 684. Several tested strains (MBFBL 21, 638 and 662 appeared to be good producers of exopolysaccharides (3.5, 3.5 and 3.2 mg/ml respectively.

  16. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones.

    Science.gov (United States)

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H; Kleiner, Ralph E; Du, Xiu Quan; Leissring, Malcolm A; Tang, Wei-Jen; Charron, Maureen J; Seeliger, Markus A; Saghatelian, Alan; Liu, David R

    2014-07-03

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.

  17. Insulin-degrading enzyme is exported via an unconventional protein secretion pathway

    Directory of Open Access Journals (Sweden)

    Leissring Malcolm A

    2009-01-01

    Full Text Available Abstract Insulin-degrading enzyme (IDE is a ubiquitously expressed zinc-metalloprotease that degrades several pathophysiologically significant extracellular substrates, including insulin and the amyloid β-protein (Aβ, and accumulating evidence suggests that IDE dysfunction may be operative in both type 2 diabetes mellitus and Alzheimer disease (AD. Although IDE is well known to be secreted by a variety of cell types, the underlying trafficking pathway(s remain poorly understood. To address this topic, we investigated the effects of known inhibitors or stimulators of protein secretion on the secretion of IDE from murine hepatocytes and HeLa cells. IDE secretion was found to be unaffected by the classical secretion inhibitors brefeldin A (BFA, monensin, or nocodazole, treatments that readily inhibited the secretion of α1-antitrypsin (AAT overexpressed in the same cells. Using a novel cell-based Aβ-degradation assay, we show further that IDE secretion was similarly unaffected by multiple stimulators of protein secretion, including glyburide and 3'-O-(4-benzoylbenzoyl-ATP (Bz-ATP. The calcium ionophore, A23187, increased extracellular IDE activity, but only under conditions that also elicited cytotoxicity. Our results provide the first biochemical evidence that IDE export is not dependent upon the classical secretion pathway, thereby identifying IDE as a novel member of the select class of unconventionally secreted proteins. Further elucidation of the mechanisms underlying IDE secretion, which would be facilitated by the assays described herein, promises to uncover processes that might be defective in disease or manipulated for therapeutic benefit.

  18. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.

    Directory of Open Access Journals (Sweden)

    Riffat I Munir

    Full Text Available Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes, sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199 and carbohydrate binding modules (95 were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.

  19. Regulation of the synthesis of pulp degrading enzymes in Bacillus isolated from cocoa fermentation.

    Science.gov (United States)

    Ouattara, Honoré G; Reverchon, Sylvie; Niamke, Sébastien L; Nasser, William

    2017-05-01

    Pectin degrading enzymes are essential for quality of product from cocoa fermentation. Previously, we studied purified pectate lyases (Pel) produced by Bacillus strains from fermenting cocoa and characterized the cloned pel genes. This study aims to search for biological signals that modulates Pel production and regulators that influence pel gene expression. Strains were grown to the end of exponential phase in media containing various carbon sources. Pel enzymes production in Bacillus was unaffected by simple sugar content variation up to 2%. Additionally, it appeared that pel gene is not under the control of the most common carbon and pectin catabolism regulators ccpA and kdgR, which could explain the insensitivity of Pel production to carbon source variation. However, a 6-fold decrease in Pel production was observed when bacteria were grown in LB rich medium as opposed to basal mineral medium. Subsequently, bioinformatics analysis of cloned pel gene promoter region revealed the presence of DegU binding site. Furthermore, the deletion of degU gene dramatically reduces the pel gene expression, as revealed by real time quantitative PCR, showing an activation effect of DegU on Pel synthesis in Bacillus strains studied. We assumed that, during the latter stage of cocoa fermentation when simple sugars are depleted, production of Pel in Bacillus is stimulated by DegU to supply microbial cells with carbon source from polymeric pectic compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evaluation of the Activities of Concentrated Crude Mannan-degrading Enzymes Produced by Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Siti Norita, M.

    2010-01-01

    Full Text Available The mannan-degrading enzymes produced by Aspergillus niger were concentrated and the activities were evaluated. The optimum pH for β-mannanase, endoglucanase and α-galactosidase were obtained at pH 3.5 while pH optimum for β-mannosidase was occurred at pH 3.0. The β-mannanase, endoglucanase, β-mannosidase and α-galactosidase was stable at pH 3.5 to 7, pH 3.5 to 6.5, pH 4 to 7 and pH 3.5 to 5.0, respectively. The enzymes obtained in this study were characterized and defined as acidic proteins. The β-mannanases from A. niger had two optimum temperatures (at 50 °C and 60 °C and its half-life was 6 h and 4 h at 60 °C and 70 °C, respectively. The β-mannosidase, endoglucanase and α-galactosidase displayed optimal activity at 70 °C, 60 °C and 50 – 60 °C, respectively. The β-mannosidase had half-life of 1.5 h at 70 °C, while α-galactosidase had a half-life of 2.5 h at 60 °C and endoglucanase had a half-life of 6 h at 60 °C and 45 min at 70 °C.

  1. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation

    DEFF Research Database (Denmark)

    Agger, Jane W.; Isaksen, Trine; Várnai, Anikó

    2014-01-01

    The recently discovered lytic polysaccharide monooxygenases (LPMOs) are known to carry out oxidative cleavage of glycoside bonds in chitin and cellulose, thus boosting the activity ofwell-known hydrolytic depolymerizing enzymes. Because biomass-degrading microorganisms tend to produce a plethora...

  2. From 20th century metabolic wall charts to 21st century systems biology: database of mammalian metabolic enzymes.

    Science.gov (United States)

    Corcoran, Callan C; Grady, Cameron R; Pisitkun, Trairak; Parulekar, Jaya; Knepper, Mark A

    2017-03-01

    The organization of the mammalian genome into gene subsets corresponding to specific functional classes has provided key tools for systems biology research. Here, we have created a web-accessible resource called the Mammalian Metabolic Enzyme Database ( https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/MetabolicEnzymeDatabase.html) keyed to the biochemical reactions represented on iconic metabolic pathway wall charts created in the previous century. Overall, we have mapped 1,647 genes to these pathways, representing ~7 percent of the protein-coding genome. To illustrate the use of the database, we apply it to the area of kidney physiology. In so doing, we have created an additional database ( Database of Metabolic Enzymes in Kidney Tubule Segments: https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/), mapping mRNA abundance measurements (mined from RNA-Seq studies) for all metabolic enzymes to each of 14 renal tubule segments. We carry out bioinformatics analysis of the enzyme expression pattern among renal tubule segments and mine various data sources to identify vasopressin-regulated metabolic enzymes in the renal collecting duct. Copyright © 2017 the American Physiological Society.

  3. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design.

    Science.gov (United States)

    Suwannarangsee, Surisa; Bunterngsook, Benjarat; Arnthong, Jantima; Paemanee, Atchara; Thamchaipenet, Arinthip; Eurwilaichitr, Lily; Laosiripojana, Navadol; Champreda, Verawat

    2012-09-01

    Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Crystal structure of an essential enzyme in seed starch degradation - barley limit dextrinase in complex with cyclodextrins

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Abou Hachem, Maher; Svensson, Birte

    2010-01-01

    Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of Hv...... provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation....

  5. Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles.

    Science.gov (United States)

    Shetty, Radhakrishna; Vestergaard, Mike; Jessen, Flemming; Hägglund, Per; Knorr, Verena; Koehler, Peter; Prakash, H S; Hobley, Timothy John

    2017-12-01

    Gluten free products have emerged during the last decades, as a result of a growing public concern and technological advancements allowing gluten reduction in food products. One approach is to use gluten degrading enzymes, typically at low or ambient temperatures, whereas many food production processes occur at elevated temperature. We present in this paper, the discovery, cloning and characterisation of a novel recombinant thermostable gluten degrading enzyme, a proline specific prolyl endoprotease (PEP) from Sphaerobacter thermophiles. The molecular mass of the prolyl endopeptidase was estimated to be 77kDa by using SDS-PAGE. Enzyme activity assays with a synthetic dipeptide Z-Gly-Pro-p-nitroanilide as the substrate revealed that the enzyme had optimal activity at pH 6.6 and was most active from pH 5.0-8.0. The optimum temperature was 63 °C and residual activity after one hour incubation at 63 °C was higher than 75 %. The enzyme was activated and stabilized by Co2+ and inhibited by Mg2+, K+ and Ca2+ followed by Zn2+, Na+, Mn2+, Al3+, and Cu2+. The Km and kcat values of the purified enzyme for different substrates were evaluated. The ability to degrade immunogenic gluten peptides (PQPQLPYPQPQLPY (a-gliadin) and SQQQFPQPQQPFPQQP (γ-hordein)) was also confirmed by enzymatic assays and mass spectrometric analysis of cleavage fragments. Addition of the enzyme during small scale mashing of barley malt reduced the gluten content. The findings here demonstrate the potential of enzyme use during mashing to produce gluten free beer, and provide new insights into the effects of proline specific proteases on gluten degradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Enzymes with activity toward Xyloglucan

    NARCIS (Netherlands)

    Vincken, J.P.

    2003-01-01

    Xyloglucans are plant cell wall polysaccharides, which belong to the hemicellulose class. Here the structural variations of xyloglucans will be reviewed. Subsequently, the anchoring of xyloglucan in the plant cell wall will be discussed. Enzymes involved in degradation or modification of xyloglucan

  7. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance.

    Science.gov (United States)

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K; Hahn, Michael G; Mohnen, Debra; Westpheling, Janet

    2014-01-01

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. The combination of microbial digestion and plant biomass analysis provides a new and important platform to

  8. Unravelling the Interactions between Hydrolytic and Oxidative Enzymes in Degradation of Lignocellulosic Biomass by Sporothrix carnis under Various Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Olusola A. Ogunyewo

    2016-01-01

    Full Text Available The mechanism underlying the action of lignocellulolytic enzymes in biodegradation of lignocellulosic biomass remains unclear; hence, it is crucial to investigate enzymatic interactions involved in the process. In this study, degradation of corn cob by Sporothrix carnis and involvement of lignocellulolytic enzymes in biodegradation were investigated over 240 h cultivation period. About 60% degradation of corn cob was achieved by S. carnis at the end of fermentation. The yields of hydrolytic enzymes, cellulase and xylanase, were higher than oxidative enzymes, laccase and peroxidase, over 144 h fermentation period. Maximum yields of cellulase (854.4 U/mg and xylanase (789.6 U/mg were at 96 and 144 h, respectively. Laccase and peroxidase were produced cooperatively with maximum yields of 489.06 U/mg and 585.39 U/mg at 144 h. Drastic decline in production of cellulase at 144 h (242.01 U/mg and xylanase at 192 h (192.2 U/mg indicates that they play initial roles in biodegradation of lignocellulosic biomass while laccase and peroxidase play later roles. Optimal degradation of corn cob (76.6% and production of hydrolytic and oxidative enzymes were achieved with 2.5% inoculum at pH 6.0. Results suggest synergy in interactions between the hydrolytic and oxidative enzymes which can be optimized for improved biodegradation.

  9. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  10. Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells

    Science.gov (United States)

    Kim, Byoung Chan; Lee, Inseon; Kwon, Seok-Joon; Wee, Youngho; Kwon, Ki Young; Jeon, Chulmin; An, Hyo Jin; Jung, Hee-Tae; Ha, Su; Dordick, Jonathan S.; Kim, Jungbae

    2017-01-01

    CNTs need to be dispersed in aqueous solution for their successful use, and most methods to disperse CNTs rely on tedious and time-consuming acid-based oxidation. Here, we report the simple dispersion of intact multi-walled carbon nanotubes (CNTs) by adding them directly into an aqueous solution of glucose oxidase (GOx), resulting in simultaneous CNT dispersion and facile enzyme immobilization through sequential enzyme adsorption, precipitation, and crosslinking (EAPC). The EAPC achieved high enzyme loading and stability because of crosslinked enzyme coatings on intact CNTs, while obviating the chemical pretreatment that can seriously damage the electron conductivity of CNTs. EAPC-driven GOx activity was 4.5- and 11-times higher than those of covalently-attached GOx (CA) on acid-treated CNTs and simply-adsorbed GOx (ADS) on intact CNTs, respectively. EAPC showed no decrease of GOx activity for 270 days. EAPC was employed to prepare the enzyme anodes for biofuel cells, and the EAPC anode produced 7.5-times higher power output than the CA anode. Even with a higher amount of bound non-conductive enzymes, the EAPC anode showed 1.7-fold higher electron transfer rate than the CA anode. The EAPC on intact CNTs can improve enzyme loading and stability with key routes of improved electron transfer in various biosensing and bioelectronics devices.

  11. Disruption of the Mucosal Barrier during Gut Ischemia Allows Entry of Digestive Enzymes into the Intestinal Wall

    OpenAIRE

    Chang, Marisol; Kistler, Erik B.; Schmid-Schönbein, Geert W

    2012-01-01

    Intestinal ischemia is associated with high morbidity and mortality but the underlying mechanisms are uncertain. We hypothesize that during ischemia the intestinal mucosal barrier becomes disrupted, allowing digestive enzymes access into the intestinal wall initiating autodigestion. We used a rat model of splanchnic ischemia by occlusion of the superior mesenteric and celiac arteries up to 30 min with and without luminal injection of tranexamic acid as a trypsin inhibitor. We determined the l...

  12. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension suppleme......The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...... hydrolysis of filter cake from wet-oxidised wheat straw for 48 h with an enzyme loading of 5 FPU/g biomass resulted in glucose yields from cellulose of 58% (w/w) and 39% (w/w) using enzymes produced by R brasilianum and a commercial enzyme mixture, respectively. At higher enzyme loading (25 FPU/g biomass......) using either enzyme mixtures the glucose yield from cellulose was in the range of 77-79% (w/w)....

  13. Disruption of the mucosal barrier during gut ischemia allows entry of digestive enzymes into the intestinal wall.

    Science.gov (United States)

    Chang, Marisol; Kistler, Erik B; Schmid-Schönbein, Geert W

    2012-03-01

    Intestinal ischemia is associated with high morbidity and mortality, but the underlying mechanisms are uncertain. We hypothesize that during ischemia the intestinal mucosal barrier becomes disrupted, allowing digestive enzymes access into the intestinal wall initiating autodigestion. We used a rat model of splanchnic ischemia by occlusion of the superior mesenteric and celiac arteries up to 30 min with and without luminal injection of tranexamic acid as a trypsin inhibitor. We determined the location and activity of digestive proteases on intestinal sections with in situ zymography, and we examined the disruption of two components of the mucosal barrier: mucin isoforms and the extracellular and intracellular domains of E cadherin with immunohistochemistry and Western blot techniques. The results indicate that nonischemic intestine has low levels of protease activity in its wall. After 15-min ischemia, protease activity was visible at the tip of the villi, and after 30 min, enhanced activity was seen across the full thickness of the intestinal wall. This activity was accompanied by disruption of the mucin layer and loss of both intracellular and extracellular domains of E cadherin. Digestive protease inhibition in the intestinal lumen with tranexamic acid reduced morphological damage and entry of digestive enzymes into the intestinal wall. This study demonstrates that disruption of the mucosal epithelial barrier within minutes of intestinal ischemia allows entry of fully activated pancreatic digestive proteases across the intestinal barrier triggering autodigestion.

  14. Machine Learning and Molecular Dynamics Based Insights into Mode of Actions of Insulin Degrading Enzyme Modulators.

    Science.gov (United States)

    Jamal, Salma; Goyal, Sukriti; Shanker, Asheesh; Grover, Abhinav

    2017-01-01

    Alzheimer's disease (AD) is one of the most common lethal neurodegenerative disorders having impact on the lives of millions of people worldwide. The disease lacks effective treatment options and the unavailability of the drugs to cure the disease necessitates the development of effectual anti-Alzheimer drugs. Several mechanisms have been reported underlying the association of the two disorders, diabetes and dementia, one among which is the insulin-degrading enzyme (IDE) which is known to degrade insulin as well beta-amyloid peptides. The present study is aimed to generate accurate classification models using machine learning techniques, which could identify IDE modulators from a bioassay dataset consisting of IDE inhibitors as well as non-inhibitors. The identified compounds were subjected to docking and Molecular dynamics (MD) studies for an in-depth analysis of the binding modes along with the complex stability. This study proposes that the identified potential active compounds, STK026154 (PubChem ID: CID2927418) with Glide score of -7.70 kcal/mol and BAS05901102 (PubChem ID: CID3152845) with Glide score of -7.06 kcal/mol, could serve as promising leads for the development of novel drugs against AD. The present study shows that such in silico approaches can be effectively used to discover and select active compounds from unseen data for accelerated drug development process. The machine learning models generated in the present study were used to screen Traditional Chinese Medicine (TCM) database to identify the phytocompounds already been reported to have therapeutic effects against AD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity.

    Science.gov (United States)

    Shahbazi, Razieh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Moosavi-Nejad, Zahra; Borzooee, Faezeh

    2013-06-01

    Sodium dodecyl sulfate (SDS) is one of the main surfactant components in detergents and cosmetics, used in high amounts as a detergent in products such as shampoos, car wash soap and toothpaste. Therefore, its bioremediation by suitable microorganisms is important. Alkylsulfatase is an enzyme that hydrolyses sulfate -ester bonds to give inorganic sulfate and alcohol. The purpose of this study was to isolate SDS-degrading bacteria from Tehran city car wash wastewater, study bacterial alkylsulfatase enzyme activity and identify the alkylsulfatase enzyme coding gene. Screening of SDS-degrading bacteria was carried out on basal salt medium containing SDS as the sole source of carbon. Amount of SDS degraded was assayed by methylene blue active substance (MBAS). Identification of the sdsA gene was carried by PCR and subsequent sequencing of the 16S rDNA gene and biochemical tests identified Pseudomonas aeruginosa. This bacterium is able to degrade 84% of SDS after four days incubation. Bacteria isolated from car wash wastewater were shown to carry the sdsA gene (670bp) and the alkylsulfatase enzyme specific activity expressed from this gene was determined to be 24.3 unit/mg. The results presented in this research indicate that Pseudomonas aeruginosa is a suitable candidate for SDS biodegradation.

  16. Effects of processing technologies and pectolytic enzymes on degradability of nonstarch polysaccharides from rapeseed meal in broilers

    NARCIS (Netherlands)

    Vries, de S.; Pustjens, A.M.; Kabel, M.A.; Kwakkel, R.P.; Gerrits, W.J.J.

    2014-01-01

    Rapeseed meal (RSM) contains a high level of nonstarch polysaccharides (NSP) that are not well degraded in poultry and interfere with digestion of other nutrients as protein, starch, and fat. By altering physicochemical properties of NSP from RSM, processing and enzyme technologies might improve

  17. Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Granouillet, P.; Olsson, Lisbeth

    2006-01-01

    The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer's spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum...

  18. 3-Ketosteroid 9 alpha-hydroxylase enzymes : Rieske non-heme monooxygenases essential for bacterial steroid degradation

    NARCIS (Netherlands)

    Petrusma, Mirjan; van der Geize, Robert; Dijkhuizen, Lubbert

    Various micro-organisms are able to use sterols/steroids as carbon- and energy sources for growth. 3-Ketosteroid 9 alpha-hydroxylase (KSH), a two component Rieske non-heme monooxygenase comprised of the oxygenase KshA and the reductase KshB, is a key-enzyme in bacterial steroid degradation. It

  19. Mechanism of action of penicillin: triggering of the pneumococcal autolytic enzyme by inhibitors of cell wall synthesis.

    Science.gov (United States)

    Tomasz, A; Waks, S

    1975-10-01

    During penicillin treatment of an autolysin defective mutant pneumococcus we have observed three novel phenomena: (i) Growth of the mutant cultures is inhibited by the same concentrations of penicillin that induce lysis in the wild type. (ii) Mutant bacteria treated with the minimum growth inhibitory concentration of penicillin will lyse upon the addition of wild-type autolysin to the growth medium. Chloramphenicol and other inhibitors of protein synthesis protect the cells against lysis by exogenous enzyme. Sensitivity of the cells to exogenous autolysin requires treatment with penicillin or other inhibitors of cell wall synthesis (e.g., D-cycloserine or fosfonomycin) since exogenous autolysin alone has no effect on bacterial growth. (iii) Treatment with penicillin (or other inhibitors of cell wall synthesis) causes the escape into the medium of a choline-containing macromolecule that has properties suggesting that it contains pneumococcal lipoteichoic acid (Forssman antigen). Each one of these three phenomena (growth inhibition, sensitization to exogenous autolysin, and leakage of lipoteichoic acid) shows the same dose response as that of the penicillin-induced lysis of wild-type pneumococci. On the basis of these findings we propose a new hypothesis for the mechanism of penicillin-induced lysis of bacteria. It is suggested that inhibition of cell wall synthesis by any means triggers bacterial autolytic enzymes by destabilizing the endogenous complex of an autolysin inhibitor (lipoteichoic acid) and autolytic enzyme. Escape of lipoteichoic acid-like material to the growth medium is a consequence of this labilization. Chloramphenicol protects bacteria against penicillin-induced lysis by interfering with the activity of the autolytic enzyme, rather than by depleting the concentration of the enzyme at the cell surface.

  20. A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials.

    Science.gov (United States)

    Kotchey, Gregg P; Hasan, Saad A; Kapralov, Alexander A; Ha, Seung Han; Kim, Kang; Shvedova, Anna A; Kagan, Valerian E; Star, Alexander

    2012-10-16

    Over the past three decades, revolutionary research in nanotechnology by the scientific, medical, and engineering communities has yielded a treasure trove of discoveries with diverse applications that promise to benefit humanity. With their unique electronic and mechanical properties, carbon nanomaterials (CNMs) represent a prime example of the promise of nanotechnology with applications in areas that include electronics, fuel cells, composites, and nanomedicine. Because of toxicological issues associated with CNMs, however, their full commercial potential may not be achieved. The ex vitro, in vitro, and in vivo data presented in this Account provide fundamental insights into the biopersistence of CNMs, such as carbon nanotubes and graphene, and their oxidation/biodegradation processes as catalyzed by peroxidase enzymes. We also communicate our current understanding of the mechanism for the enzymatic oxidation and biodegradation. Finally, we outline potential future directions that could enhance our mechanistic understanding of the CNM oxidation and biodegradation and could yield benefits in terms of human health and environmental safety. The conclusions presented in this Account may catalyze a rational rethinking of CNM incorporation in diverse applications. For example, armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation and biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. In nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. On the other hand, in the construction of aircraft, a CNM composite should be stable to oxidizing conditions in the environment. Therefore, pristine, inert CNMs would be ideal for this application. Finally, the incorporation of CNMs with defect sites in consumer goods could provide a facile mechanism that promotes the

  1. Major amyloid-β-degrading enzymes, endothelin-converting enzyme-2 and neprilysin, are expressed by distinct populations of GABAergic interneurons in hippocampus and neocortex.

    Science.gov (United States)

    Pacheco-Quinto, Javier; Eckman, Christopher B; Eckman, Elizabeth A

    2016-12-01

    Impaired clearance of amyloid-β peptide (Aβ) has been postulated to significantly contribute to the amyloid accumulation typical of Alzheimer's disease. Among the enzymes known to degrade Aβ in vivo are endothelin-converting enzyme (ECE)-1, ECE-2, and neprilysin (NEP), and evidence suggests that they regulate independent pools of Aβ that may be functionally significant. To better understand the differential regulation of Aβ concentration by its physiological degrading enzymes, we characterized the cell and region-specific expression pattern of ECE-1, ECE-2, and NEP by in situ hybridization and immunohistochemistry in brain areas relevant to Alzheimer's disease. In contrast to the broader distribution of ECE-1, ECE-2 and NEP were found enriched in GABAergic neurons. ECE-2 was majorly expressed by somatostatin-expressing interneurons and was active in isolated synaptosomes. NEP messenger RNA was found mainly in parvalbumin-expressing interneurons, with NEP protein localized to perisomatic parvalbuminergic synapses. The identification of somatostatinergic and parvalbuminergic synapses as hubs for Aβ degradation is consistent with the possibility that Aβ may have a physiological function related to the regulation of inhibitory signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Characterization of cell wall degrading enzymes from Chrysosporium lucknowense C1 and their use to degrade sugar beet pulp

    NARCIS (Netherlands)

    Kühnel, S.

    2011-01-01

    Key words: Pectin, arabinan, biorefinery, mode of action, branched arabinose oligomers, ferulic acid esterase, arabinohydrolase, pretreatment Sugar beet pulp is the cellulose and pectin-rich debris remaining after sugar extraction from sugar beets. In order to use sugar beet pulp for biorefinery

  3. Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin

    Directory of Open Access Journals (Sweden)

    Benoit Isabelle

    2012-07-01

    Full Text Available Abstract Background Pectins are diverse and very complex biomolecules and their structure depends on the plant species and tissue. It was previously shown that derivatives of pectic polymers and oligosaccharides from pectins have positive effects on human health. To obtain specific pectic oligosaccharides, highly defined enzymatic mixes are required. Filamentous fungi are specialized in plant cell wall degradation and some produce a broad range of pectinases. They may therefore shed light on the enzyme mixes needed for partial hydrolysis. Results The growth profiles of 12 fungi on four pectins and four structural elements of pectins show that the presence/absence of pectinolytic genes in the fungal genome clearly correlates with their ability to degrade pectins. However, this correlation is less clear when we zoom in to the pectic structural elements. Conclusions This study highlights the complexity of the mechanisms involved in fungal degradation of complex carbon sources such as pectins. Mining genomes and comparative genomics are promising first steps towards the production of specific pectinolytic fractions.

  4. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes.

    Science.gov (United States)

    Bogan, B W; Lamar, R T

    1996-05-01

    The ability of Phanerochaete laevis HHB-1625 to transform polycyclic aromatic hydrocarbons (PAHs) in liquid culture was studied in relation to its complement of extracellular ligninolytic enzymes. In nitrogen-limited liquid medium, P. laevis produced high levels of manganese peroxidase (MnP). MnP activity was strongly regulated by the amount of Mn2+ in the culture medium, as has been previously shown for several other white rot species. Low levels of laccase were also detected. No lignin peroxidase (LiP) was found in the culture medium, either by spectrophotometric assay or by Western blotting (immunoblotting). Despite the apparent reliance of the strain primarily on MnP, liquid cultures of P. laevis were capable of extensive transformation of anthracene, phenanthrene, benz[a]anthracene, and benzo[a]pyrene. Crude extracellular peroxidases from P. laevis transformed all of the above PAHs, either in MnP-Mn2+ reactions or in MnP-based lipid peroxidation systems. In contrast to previously published studies with Phanerochaete chrysosporium, metabolism of each of the four PAHs yielded predominantly polar products, with no significant accumulation of quinones. Further studies with benz[a]anthracene and its 7,12-dione indicated that only small amounts of quinone products were ever present in P. laevis cultures and that quinone intermediates of PAH metabolism were degraded faster and more extensively by P. laevis than by P. chrysosporium.

  5. Endothelin-converting enzymes degrade α-synuclein and are reduced in dementia with Lewy bodies.

    Science.gov (United States)

    Miners, James Scott; Love, Seth

    2017-04-01

    We have examined the roles of the endothelin-converting enzyme-1 and -2 (ECE-1 and ECE-2) in the homeostasis of α-synuclein (α-syn) and pathogenesis of Lewy body disease. The ECEs are named for their ability to convert inactive big endothelin to the vasoactive peptide endothelin-1 (EDN1). We have found that ECE-1 and ECE-2 cleave and degrade α-syn in vitro and siRNA-mediated knockdown of ECE-1 and ECE-2 in SH-SY5Y neuroblastoma cells significantly increased α-syn both intracellularly (within the cell lysate) (p Lewy body disease, we measured ECE-1 and ECE-2 levels by sandwich ELISA in post-mortem samples of cingulate cortex (a region with a predilection for Lewy body pathology) in dementia with Lewy bodies (DLB) and age-matched controls. ECE-1 (p Lewy body pathology as indicated by the level of α-syn phosphorylated at Ser129 (r = -0.54, p < 0.01 for ECE-1 and r = -0.49, p < 0.05 for ECE-2). Our novel findings suggest a role for ECEs in the metabolism of α-syn that could contribute to the development and progression of DLB. © 2017 International Society for Neurochemistry.

  6. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Directory of Open Access Journals (Sweden)

    Daishi Yui

    Full Text Available Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD model mice showed decreased insulin-degrading enzyme (IDE levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/- mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3; Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  7. Newly isolated Penicillium oxalicum A592-4B secretes enzymes that degrade milled rice straw with high efficiency.

    Science.gov (United States)

    Aoyama, Akihisa; Kurane, Ryuichiro; Matsuura, Akira; Nagai, Kazuo

    2015-01-01

    An enzyme producing micro-organism, which can directly saccharify rice straw that has only been crushed without undergoing the current acid or alkaline pretreatment, was found. From the homology with the ITS, 28S rDNA sequence, the strain named A592-4B was identified as Penicillium oxalicum. Activities of the A592-4B enzymes and commercial enzyme preparations were compared by Novozymes Cellic CTec2 and Genencore GC220. In the present experimental condition, activity of A592-4B enzymes was 2.6 times higher than that of CTec2 for degrading milled rice straw. Furthermore, even when a quarter amount of A592-4B enzyme was applied to the rice straw, the conversion rate was still higher than that by CTec2. By utilizing A592-4B enzymes, improved lignocellulose degradation yields can be achieved without pre-treatment of the substrates; thus, contributing to cost reduction as well as reducing environmental burden.

  8. Assessment of dry-stone terrace wall degradation with a 3D approach

    Science.gov (United States)

    Djuma, Hakan; Camera, Corrado; Faka, Marina; Bruggeman, Adriana; Hermon, Sorin

    2016-04-01

    In the Mediterranean basin, terracing is a common element of agricultural lands. Terraces retained by dry-stone walls are used to conserve arable soil, delay erosion processes and retain rainfall runoff. Currently, agricultural land abandonment is widespread in the Mediterranean region leading to terrace wall failure due to lack of maintenance and consequently an increase in soil erosion. The objective of this study is to test the applicability of digital 3D documentation on mountainous agricultural areas for assessing changes in terrace wall geometry, including terrace wall failures and associated soil erosion. The study area is located at 800-1100 m above sea level, in the Ophiolite complex of the Troodos Mountains in Cyprus. Average annual precipitation is 750 mm. Two sites with dry-stone terraces were selected for this study. The first site had a sequence of three terrace walls that were surveyed. The uppermost terrace wall was collapsed at several locations; the middle at few locations; and the lowest was still intact. Three fieldwork campaigns were conducted at this site: during the dry season (initial conditions), the middle and end of the wet season. The second site had one terrace wall that was almost completely collapsed. This terrace was restored during a communal terrace rehabilitation event. Two fieldwork campaigns were conducted for this terrace: before and after the terrace wall restoration. Terrace walls were documented with a set of digital images, and transformed into a 3D point cloud (using web-based services and commercial software - Autodesk 123D catch and Menci Software uMap, respectively). A set of points, registered with the total station and geo-referenced with a GPS, enabled the scaling of the 3D model and aligning the terrace walls within the same reference system. The density (distance between each point) of the reconstructed point clouds is 0.005 m by Umap and 0.025 m by 123D Catch. On the first site, the model analysis identified wall

  9. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    Science.gov (United States)

    Lu, Naihao; Li, Jiayu; Tian, Rong; Peng, Yi-Yuan

    2014-06-16

    Previous studies have shown that carboxylated single-walled carbon nanotubes (SWCNTs) can be catalytically biodegraded by hypochlorite (OCl-) and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase (MPO). However, the importance of protein-SWCNT interactions in the biodegradation of SWCNTs was not stressed. Here, we used both experimental and theoretical approaches to investigate the interactions of SWCNTs with human serum albumin (HSA, one of the most abundant proteins in blood circulation) and found that the binding was involved in the electrostatic interactions of positively charged Arg residues of HSA with the carboxyls on the nanotubes, along with the π-π stacking interactions between SWCNTs and aromatic Tyr residues in HSA. Compared with SWCNTs, the binding of HSA could result in a reduced effect for OCl- (or the human MPO system)-induced SWCNTs degradation in vitro. However, the HSA-SWCNT interactions would enhance cellular uptake of nanotubes and stimulate MPO release and OCl- generation in neutrophils, thereby creating the conditions favorable for the degradation of the nanotubes. Upon zymosan stimulation, both SWCNTs and HSA-SWCNTs were significantly biodegraded in neutrophils, and the degree of biodegradation was more for HSA-SWCNTs under these relevant in vivo conditions. Our findings suggest that the binding of HSA may be an important determinant for MPO-mediated SWCNT biodegradation in human inflammatory cells and therefore shed light on the biomedical and biotechnological applications of safe carbon nanotubes by comprehensive preconsideration of their interactions with human serum proteins.

  10. Chemistry of Peptidoglycan in Mycobacterium tuberculosis life style: an off-the-wall balance of synthesis and degradation.

    Science.gov (United States)

    Squeglia, Flavia; Ruggiero, Alessia; Berisio, Rita

    2017-09-19

    The cell wall envelope of mycobacteria is structurally distinct from that of both Gram-positive and Gram-negative bacteria. In Mycobacterium tuberculosis, this cell wall has unique structural features and plays a crucial role in drug resistance and macrophage survival under stress conditions. Peptidoglycan is the major constituent of this cell wall, with an important structural role, giving structural strength, and counteracting the osmotic pressure of the cytoplasm. Synthesis of this complex polymer takes place in three stages that occur at three different locations in the cell, from the cytoplasm to the external side of the cell membrane, where polymerization occurs. A fine balance of peptidoglycan synthesis and degradation is responsible for a plethora of molecular mechanisms which are key to the pathogenicity of M. tuberculosis. Enlargement of mycobacterial cells can occur via synthesis of new peptidoglycan, autolysis of old peptidoglycan or a combination of both processes. Here, we discuss the chemical aspects of peptidoglycan synthesis and degradation, in relation to metabolic stages of M. tuberculosis. In a travel from inside the mycobacterial cytoplasm to outside its membrane, we describe the assembly line of peptidoglycan synthesis and polymerization, to continue with its depolymerization events and their consequences on mycobacterial life and resuscitation from dormancy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improved mannan-degrading enzymes' production by Aspergillus niger through medium optimization.

    Science.gov (United States)

    Mohamad, Siti Norita; Ramanan, Ramakrishnan Nagasundara; Mohamad, Rosfarizan; Ariff, Arbakariya B

    2011-02-28

    The effect of different carbon and nitrogen sources on the production of mannan-degrading enzymes, focussing on β-mannanase, by Aspergillus niger was investigated using shake flask culture. The β-mannanase activity obtained during growth of A. niger on guar gum (GG, 1495 nkat mL(-1)) was much higher than those observed on other carbon substrates, locust bean gum (1148 nkat mL(-1)), α-cellulose (10.7 nkat mL(-1)), glucose (8.8 nkat mL(-1)) and carboxymethylcellulose (4.6 nkat mL(-1)). For fermentation using GG as a carbon source, bacteriological peptone gave the highest β-mannanase activity (1744 nkat mL(-1)) followed by peptone from meat (1168 nkat mL(-1)), yeast extract (817 nkat mL(-1)), ammonium sulphate (241 nkat mL(-1)), ammonium nitrate (113 nkat mL(-1)) and ammonium chloride (99 nkat mL(-1)) when used as a nitrogen source. The composition of bacteriological peptone and initial pH of the medium were further optimized using response surface methodology (RSM). Medium consisted of 21.3 g L(-1) GG and 57 g L(-1) peptone with initial culture pH of 5.5 was optimum for β-mannanase production (2063 nkat mL(-1)) by A. niger. The β-mannanase production obtained in this study using A. niger was significantly higher than those reported in the literature. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Development of monoclonal antibodies and quantitative ELISAs targeting insulin-degrading enzyme

    Directory of Open Access Journals (Sweden)

    Dickson Dennis W

    2009-10-01

    Full Text Available Abstract Background Insulin-degrading enzyme (IDE is a widely studied zinc-metalloprotease implicated in the pathogenesis of type 2 diabetes mellitus, Alzheimer disease (AD and varicella zoster virus infection. Despite more than six decades of research on IDE, progress has been hampered by the lack of well-characterized reagents targeting this biomedically important protease. To address this important need, we generated and characterized new mouse monoclonal antibodies (mAbs targeting natively folded human and rodent IDE. Results Eight monoclonal hybridoma cell lines were derived in house from mice immunized with full-length, natively folded, recombinant human IDE. The mAbs derived from these lines were shown to detect IDE selectively and sensitively by a wide range of methods. Two mAbs in particular—designated 6A1 and 6H9—proved especially selective for IDE in immunocytochemical and immunohistochemical applications. Using a variety of methods, we show that 6A1 selectively detects both human and rodent IDE, while 6H9 selectively detects human, but not rodent, IDE, with both mAbs showing essentially no cross reactivity with other proteins in these applications. Using these novel anti-IDE mAbs, we also developed sensitive and quantitative sandwich ELISAs capable of quantifying IDE levels present in human brain extracts. Conclusion We succeeded in developing novel mAbs that selectively detect rodent and/or human IDE, which we have shown to be suitable for a wide range of applications, including western blotting, immunoprecipitation, immunocytochemistry, immunohistochemistry, and quantitative sandwich ELISAs. These novel anti-IDE mAbs and the assays derived from them constitute important new tools for addressing many unresolved questions about the basic biology of IDE and its role in multiple highly prevalent human diseases.

  13. Inhibition of insulin degrading enzyme by racecadotril in the brain of Wistar rats.

    Science.gov (United States)

    Lee, J-P; Cheng, K-C; Chung, H-H; Wu, H-T; Chen, C-T; Cheng, J-T

    2011-06-01

    Racecadotril is an enkephalinase inhibitor used to treat abdominal discomfort in the clinic. The blood-glucose lowering action of racecadotril has been observed in rats; however, the mechanisms remain obscure. 8-week-old Wistar rats were intravenously injected with racecadotril and the levels of insulin in the brain were measured. Additionally, brain homogenates were co-incubated with racecadotril or thiorphan to evaluate insulin degrading enzyme (IDE) activity. Otherwise, rats were pretreated by intracerebroventricular (i. c. v.) injection of insulin antibody or glibenclamide at a dose sufficient to inhibit K (ATP) channels prior to injection of racecadotril. Moreover, rats were vagotomized to evaluate the role of the cholinergic nerve. Racecadotril significantly decreased the plasma glucose in rats; this action of racecadotril was abolished by i. c. v. pretreatment with insulin antibody or glibenclamide. Also, i. c. v. injection of thiorphan, the active form of racecadotril, lowered blood glucose, but this effect disappeared in the presence of the insulin antibody. In rat brain homogenates, racecadotril and thiorphan inhibited IDE activity and increased the cerebral insulin level. The blood-glucose lowering action of racecadotril or thiorphan was diminished in vagotomized rats. Our results suggest that racecadotril lowers blood glucose mainly through inhibition of IDE activity and increases endogenous insulin in the brain. Subsequently, the increased insulin might activate insulin receptor, which opens the K (ATP) channel and induces peripheral insulin release through the vagal nerve. Thus, we provide the new finding that racecadotril has the ability to inhibit IDE in rat brain. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin.

    Directory of Open Access Journals (Sweden)

    Malcolm A Leissring

    2010-05-01

    Full Text Available Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE, a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged.We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6 times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin.The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  15. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    Energy Technology Data Exchange (ETDEWEB)

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J. (Harvard-Med); (BWH); (Yale-MED); (Scripps); (UC); (Mayo)

    2010-09-20

    Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are {approx} 10{sup 6} times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-a-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's 'closed,' inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  16. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles - SERDP Annual (Interim) Report, 12/98

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.M.

    1999-01-18

    The current stockpile of energetic materials requiring disposal contains about half a million tons. Through 2001, over 2.1 million tons are expected to pass through the stockpile for disposal. Safe and environmentally acceptable methods for disposing of these materials are needed. This project is developing safe, economical, and environmentally sound processes using biocatalyst (enzymes) to degrade energetic materials and to convert them into economically valuable products. Alternative methods for destroying these materials are hazardous, environmentally unacceptable, and expensive. These methods include burning, detonation, land and sea burial, treatment at high temperature and pressure, and treatment with harsh chemicals. Enzyme treatment operates at room temperature and atmospheric pressure in a water solution.

  17. Neuroprotective mechanism of Kai Xin San: upregulation of hippocampal insulin-degrading enzyme protein expression and acceleration of amyloid-beta degradation

    Directory of Open Access Journals (Sweden)

    Na Wang

    2017-01-01

    Full Text Available Kai Xin San is a Chinese herbal formula composed of Radix Ginseng , Poria , Radix Polygalae and Acorus Tatarinowii Rhizome . It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-β (Aβ-induced cognitive dysfunction and is neuroprotective in vivo , but its precise mechanism remains unclear. Expression of insulin-degrading enzyme (IDE, which degrades Aβ, is strongly correlated with cognitive function. Here, we injected rats with exogenous Aβ42 (200 μM, 5 μL into the hippocampus and subsequently administered Kai Xin San (0.54 or 1.08 g/kg/d intragastrically for 21 consecutive days. Hematoxylin-eosin and Nissl staining revealed that Kai Xin San protected neurons against Aβ-induced damage. Furthermore, enzyme-linked immunosorbent assay, western blot and polymerase chain reaction results showed that Kai Xin San decreased Aβ42 protein levels and increased expression of IDE protein, but not mRNA, in the hippocampus. Our findings reveal that Kai Xin San facilitates hippocampal Aβ degradation and increases IDE expression, which leads, at least in part, to the alleviation of hippocampal neuron injury in rats.

  18. Neuroprotective mechanism of Kai Xin San: upregulation of hippocampal insulin-degrading enzyme protein expression and acceleration of amyloid-beta degradation.

    Science.gov (United States)

    Wang, Na; Jia, Yong-Ming; Zhang, Bo; Xue, Di; Reeju, Maharjan; Li, Yan; Huang, Shu-Ming; Liu, Xue-Wei

    2017-04-01

    Kai Xin San is a Chinese herbal formula composed of Radix Ginseng, Poria, Radix Polygalae and Acorus Tatarinowii Rhizome. It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-β (Aβ)-induced cognitive dysfunction and is neuroprotective in vivo, but its precise mechanism remains unclear. Expression of insulin-degrading enzyme (IDE), which degrades Aβ, is strongly correlated with cognitive function. Here, we injected rats with exogenous Aβ42 (200 μM, 5 μL) into the hippocampus and subsequently administered Kai Xin San (0.54 or 1.08 g/kg/d) intragastrically for 21 consecutive days. Hematoxylin-eosin and Nissl staining revealed that Kai Xin San protected neurons against Aβ-induced damage. Furthermore, enzyme-linked immunosorbent assay, western blot and polymerase chain reaction results showed that Kai Xin San decreased Aβ42 protein levels and increased expression of IDE protein, but not mRNA, in the hippocampus. Our findings reveal that Kai Xin San facilitates hippocampal Aβ degradation and increases IDE expression, which leads, at least in part, to the alleviation of hippocampal neuron injury in rats.

  19. Peroxidase-induced degradation of single-walled carbon nanotubes: hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, I I; Vakhrusheva, T V; Sokolov, A V; Kostevich, V A [Research Institute for Physico-Chemical Medicine, FMBA, M. Pirogovskaya Str. 1a, Moscow (Russian Federation); Ragimov, A A, E-mail: irina.vlasova@yahoo.com [National Research Centre of Surgery, RAMS, Abrikosovskiy per. 2, Moscow (Russian Federation)

    2011-04-01

    Due to their extraordinary properties, single-walled carbon nanotubes (SWNTs) have a tremendous potential for medical applications such as clinical diagnostics, targeted drug (or gene) delivery and cancer therapy. Hence, effects of SWNTs on living systems as well as mechanisms for biodegradation of SWTNs are of great importance and must be studied before starting to explore SWNTs for medical use. This study was undertaken to compare the potential of different peroxidases in degrading carboxylated SWNT (c-SWNT) and to elucidate the role of peroxidase-generated reactive products in this process. A detailed study showed that neither reactive intermediate products nor free radicals generated via peroxidase cycle can considerably oxidize c-SWNT. Biodegradation of c-SWNT in model system can be induced by free radicals generated as a result of heme degradation. The latter explains why hemoglobin, which is a pseudo-peroxidase possessing low peroxidase activity, is able to oxidize carbon nanotubes with a higher efficiency than horseradish peroxidase. However, c-SWNT in the presence of blood plasma (15 vol %) demonstrated no degradation even at high concentrations of hemoglobin and H{sub 2}O{sub 2}. The comparison of the ability of various peroxidases to degrade SWNTs in vitro revealed that MPO, due to its ability to produce hypochlorite, and lactoperoxidase, due to its ability to produce hypobromite, are extremely efficient in degrading carbon nanotubes. Since neutrophils are a main source of human MPO, we tested the effect of SWNTs on these cells. SWNTs were unable to stimulate neutrophils. On the other hand, they dose-dependently enhanced opsonized zymosan-induced cell stimulation as detected by measuring the amount of hypochlorite produced. This finding may be relevant to the in vivo situation, for example, at inflammatory sites. In order to imitate conditions characteristic of phagosomes and inflammatory sites, we titrated the suspension of c-SWNT in the presence of

  20. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Pilgaard, Bo

    2014-01-01

    . In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important...... feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases...... only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based...

  1. Effects of nitric oxide treatment on the cell wall softening related enzymes and several hormones of papaya fruit during storage.

    Science.gov (United States)

    Guo, Qin; Wu, Bin; Chen, Weixin; Zhang, Yuli; Wang, Jide; Li, Xueping

    2014-06-01

    Papaya fruits (Carica papaya L. cv 'Sui you 2') harvested with papaya fruits treated with nitric oxide had a significantly lower rate of ethylene production and a lesser loss of firmness during storage. A decrease in polygalacturonase, pectin methyl esterase, pectate lyase and cellulase activities was observed in nitric oxide treated fruit. In addition, the contents of indole acetic acid, abscisic acid and zeatin riboside were reduced in nitric oxide treated fruit, but no significant reduction in the level of gibberellin was found. These results indicate that nitric oxide treatment can effectively delay the softening and ripening of papaya fruit, likely via the regulation of cell wall softening related enzymes and certain hormones.

  2. Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation.

    Directory of Open Access Journals (Sweden)

    Madan L Verma

    Full Text Available BACKGROUND: The aim of this work is to investigate the structure and function of enzymes immobilised on nanomaterials. This work will allow better understanding of enzyme-nanomaterial interactions, as well as designing functional protein-nanomaterial conjugates. METHODOLOGY/PRINCIPAL FINDINGS: Multiwalled carbon nanotubes (MWNTs were functionalised with amino groups to improve solubility and biocompatibility. The pristine and functionalised forms of MWNTs were characterised with Fourier-transform infrared spectroscopy. Thermogravimetric analysis was done to examine the degree of the functionalisation process. An immobilised biocatalyst was prepared on functionalised nanomaterial by covalent binding. Thermomyces lanuginosus lipase was used as a model enzyme. The structural change of the immobilised and free lipases were characterised with transmission electron Microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and Circular dichroism spectroscopy. Biochemical characterisation of immobilised enzyme showed broader pH and thermal optima compared to soluble form. Reusability of the immobilised enzyme for hydrolysis of long chain esters was demonstrated up to ten cycles. CONCLUSION/SIGNIFICANCE: Lipase immobilised on MWNTs has exhibited significantly improved thermal stability. The exploration of advanced nanomaterial for enzyme immobilisation support using sophisticated techniques makes nanobiocatalyst of potential interest for biosensor applications.

  3. The Cell Wall Teichuronic Acid Synthetase (TUAS Is an Enzyme Complex Located in the Cytoplasmic Membrane of Micrococcus luteus

    Directory of Open Access Journals (Sweden)

    Lingyi Lynn Deng

    2010-01-01

    composed of disaccharide repeating units [-4-β-D-ManNAcAp-(1→6α-D-Glcp−1-]n, which is covalently anchored to the peptidoglycan on the inner cell wall and extended to the outer surface of the cell envelope. An enzyme complex responsible for the TUA chain biosynthesis was purified and characterized. The 440 kDa enzyme complex, named teichuronic acid synthetase (TUAS, is an octomer composed of two kinds of glycosyltransferases, Glucosyltransferase, and ManNAcA-transferase, which is capable of catalyzing the transfer of disaccharide glycosyl residues containing both glucose and the N-acetylmannosaminuronic acid residues. TUAS displays hydrophobic properties and is found primarily associated with the cytoplasmic membrane. The purified TUAS contains carotinoids and lipids. TUAS activity is diminished by phospholipase digestion. We propose that TUAS serves as a multitasking polysaccharide assembling station on the bacterial membrane.

  4. Effect of the combined probiotics with aflatoxin B₁-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression.

    Science.gov (United States)

    Zuo, Rui-yu; Chang, Juan; Yin, Qing-qiang; Wang, Ping; Yang, Yu-rong; Wang, Xiao; Wang, Guo-qiang; Zheng, Qiu-hong

    2013-09-01

    In order to degrade aflatoxin B₁ (AFB₁), AFB₁-degrading microbes (probiotics) such as Lactobacillus casei, Bacillus subtilis and Pichia anomala, and the AFB₁-degrading enzyme from Aspergillus oryzae were selected and combined to make feed additive. Seventy-five 43-day-old male Arbor Acres broilers were randomly divided into 5 groups, 15 broilers for each group. The broilers were given with 5 kinds of diets such as the basal diet, 400 μg/kg AFB₁ supplement without feed additive, and 200, 400, 800 μg/kg AFB₁ supplement with 0.15% feed additive. The feeding experimental period was 30 d, which was used to determine production performance of broilers. In addition, serum, liver and chest muscle were selected for measuring AFB₁ residues, gene expressions, microscopic and antioxidant analyses. The results showed that adding 0.15% feed additive in broiler diets could significantly relieve the negative effect of AFB₁ on chicken's production performance and nutrient metabolic rates (Pimmune system and metabolic process (P<0.05). It could be concluded that the feed additive was able to degrade AFB₁ and improve animal production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity

    OpenAIRE

    Shahbazi, Razieh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Moosavi-Nejad, Zahra; Borzooee, Faezeh

    2013-01-01

    Background and Objectives Sodium dodecyl sulfate (SDS) is one of the main surfactant components in detergents and cosmetics, used in high amounts as a detergent in products such as shampoos, car wash soap and toothpaste. Therefore, its bioremediation by suitable microorganisms is important. Alkylsulfatase is an enzyme that hydrolyses sulfate -ester bonds to give inorganic sulfate and alcohol. The purpose of this study was to isolate SDS?degrading bacteria from Tehran city car wash wastewater,...

  6. Potential efficacy of Lactobacillus casei IBRC_M10711 on expression and activity of insulin degrading enzyme but not insulin degradation.

    Science.gov (United States)

    Neyazi, Nadia; Mohammadi Farsani, Taiebeh; Nouri, Zahra; Ghahremani, Mohammad Hossein; Khorramizadeh, Mohammad Reza; Tajerian, Roksana; Motevaseli, Elahe

    2017-01-01

    Type 2 diabetes (T2D) is a condition with insufficient insulin production or in the setting of insulin resistance with many origins including intestinal microbiota-related molecular mechanism. Insulin-degrading enzyme (IDE) is responsible for insulin breakdown in various tissues and is known as a potential drug target for T2D. Here, we assessed the effects of cell-free supernatant (CFS) and UV-killed Lactobacillus casei IBRC_M10711 on IDE expression, IDE activity, and insulin degradation in Caco-2 cell line. It was found that CFS and UV-killed L. casei IBRC_M10711 led to lower expression of IDE. UV-killed L. casei IBRC_M10711 significantly inhibited IDE activity but CFS did not. Insulin degradation was affected with none of them. In conclusion, L. casei IBRC_M10711 is effective on IDE expression and its activity, but not on insulin degradation. Future studies are recommended to explore the effect of this probiotic on other substrates of IDE.

  7. Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes.

    Science.gov (United States)

    Lacerda Júnior, Gileno V; Noronha, Melline F; de Sousa, Sanderson Tarciso P; Cabral, Lucélia; Domingos, Daniela F; Sáber, Mírian L; de Melo, Itamar S; Oliveira, Valéria M

    2017-02-01

    The litterfall is the major organic material deposited in soil of Brazilian Caatinga biome, thus providing the ideal conditions for plant biomass-degrading microorganisms to thrive. Herein, the phylogenetic composition and lignocellulose-degrading capacity have been explored for the first time from a fosmid library dataset of Caatinga soil by sequence-based screening. A complex bacterial community dominated by Proteobacteria and Actinobacteria was unraveled. SEED subsystems-based annotations revealed a broad range of genes assigned to carbohydrate and aromatic compounds metabolism, indicating microbial ability to utilize plant-derived material. CAZy-based annotation identified 7275 genes encoding 37 glycoside hydrolases (GHs) families related to hydrolysis of cellulose, hemicellulose, oligosaccharides and other lignin-modifying enzymes. Taxonomic affiliation of genes showed high genetic potential of the phylum Acidobacteria for hemicellulose degradation, whereas Actinobacteria members appear to play an important role in celullose hydrolysis. Additionally, comparative analyses revealed greater GHs profile similarity among soils as compared to the digestive tract of animals capable of digesting plant biomass, particularly in the hemicellulases content. Combined results suggest a complex synergistic interaction of community members required for biomass degradation into fermentable sugars. This large repertoire of lignocellulolytic enzymes opens perspectives for mining potential candidates of biochemical catalysts for biofuels production from renewable resources and other environmental applications. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Interaction of Carthamus tinctorius lignan arctigenin with the binding site of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase☆

    Science.gov (United States)

    Temml, Veronika; Kuehnl, Susanne; Schuster, Daniela; Schwaiger, Stefan; Stuppner, Hermann; Fuchs, Dietmar

    2013-01-01

    Mediterranean Carthamus tinctorius (Safflower) is used for treatment of inflammatory conditions and neuropsychiatric disorders. Recently C. tinctorius lignans arctigenin and trachelogenin but not matairesinol were described to interfere with the activity of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in peripheral blood mononuclear cells in vitro. We examined a potential direct influence of compounds on IDO enzyme activity applying computational calculations based on 3D geometry of the compounds. The interaction pattern analysis and force field-based minimization was performed within LigandScout 3.03, the docking simulation with MOE 2011.10 using the X-ray crystal structure of IDO. Results confirm the possibility of an intense interaction of arctigenin and trachelogenin with the binding site of the enzyme, while matairesinol had no such effect. PMID:24251110

  9. Different effects of matrix degrading enzymes towards biofilms formed by E. faecalis and E. faecium clinical isolates.

    Science.gov (United States)

    Torelli, Riccardo; Cacaci, Margherita; Papi, Massimiliano; Paroni Sterbini, Francesco; Martini, Cecilia; Posteraro, Brunella; Palmieri, Valentina; De Spirito, Marco; Sanguinetti, Maurizio; Bugli, Francesca

    2017-10-01

    E. faecalis and E. faecium cause urinary tract infections highly resistant to therapies due to a protective extracellular matrix. To exploit a new strategy able to treat infections without increasing antibiotic doses, we used enzymes targeting specific biofilm matrix components in combination with Vancomycin. We investigated the activity of Vancomycin combined with two matrix-degrading enzymes, Alginate Lyase (AlgL) and Deoxyribonuclease I (DNase I) against in vitro biofilm of E. faecalis and E. faecium clinical isolates. The heterogeneity of matrix composition leads to defined physiological responses of biofilm communities to their environment: we demonstrated that the use of DNase I and AlgL enzymes affects biofilm structure, cell viability and reduces MBEC values of Vancomycin in E. faecalis and E. faecium, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development of Quantum Dot Probes for Studies of Synergy Between Components of the Wood-Degrading Fungal Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haw [Princeton Univ., NJ (United States). Dept. of Chemistry; Nixon, B. Tracy [Pennsylvania State Univ., University Park, PA (United States); Tien, Ming [Pennsylvania State Univ., University Park, PA (United States). Dept. of Biochemistry and Molecular Biology

    2011-09-01

    “Development of Quantum Dot Probes for Studies of Synergy Between Components of the Wood-Degrading Fungal Enzymes,” aims to develop quantum dot-based tagging and imaging technologies tailored for simultaneously monitoring, in real time and in the natural fungal / lignocellulose environment, the mode of action of several lignocellulosic enzymes at the single-molecule level. With a three-year research scope, it is designed to be the first project of a long-term research program for which the overarching goal is to bridge the aforementioned knowledge gap by a quantitative determination of the biochemical and biophysical properties of these fungal enzymes in realistic plant biomass-microbe milieus.

  11. Mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, from Variovorax paradoxus strain B4 is the key enzyme of mercaptosuccinate degradation.

    Science.gov (United States)

    Brandt, Ulrike; Schürmann, Marc; Steinbüchel, Alexander

    2014-10-31

    The versatile thiol mercaptosuccinate has a wide range of applications, e.g. in quantum dot research or in bioimaging. Its metabolism is investigated in Variovorax paradoxus strain B4, which can utilize this compound as the sole source of carbon and sulfur. Proteomic studies of strain B4 resulted in the identification of a putative mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, possibly representing the key enzyme in the degradation of mercaptosuccinate. Therefore, the putative mercaptosuccinate dioxygenase was heterologously expressed, purified, and characterized in this study. The results clearly demonstrated that the enzyme utilizes mercaptosuccinate with concomitant consumption of oxygen. Thus, the enzyme is designated as mercaptosuccinate dioxygenase. Succinate and sulfite were verified as the final reaction products. The enzyme showed an apparent Km of 0.4 mM, and a specific activity (Vmax) of 20.0 μmol min(-1) mg(-1) corresponding to a kcat of 7.7 s(-1). Furthermore, the enzyme was highly specific for mercaptosuccinate, no activity was observed with cysteine, dithiothreitol, 2-mercaptoethanol, and 3-mercaptopropionate. These structurally related thiols did not have an inhibitory effect either. Fe(II) could clearly be identified as metal cofactor of the mercaptosuccinate dioxygenase with a content of 0.6 mol of Fe(II)/mol of enzyme. The recently proposed hypothesis for the degradation pathway of mercaptosuccinate based on proteome analyses could be strengthened in the present study. (i) Mercaptosuccinate is first converted to sulfinosuccinate by this mercaptosuccinate dioxygenase; (ii) sulfinosuccinate is spontaneously desulfinated to succinate and sulfite; and (iii) whereas succinate enters the central metabolism, sulfite is detoxified by the previously identified putative molybdopterin oxidoreductase. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Abiotic degradation of lignified cell walls by carbonate and copper salt.

    Science.gov (United States)

    Durot, Nathalie; Pollet, Brigitte; Lapierre, Catherine; Kurek, Bernard

    2004-02-25

    This study reports on the destructuration of Wheat straw and Spruce wood cell walls after maceration in potassium carbonate or sodium hydroxide at pH = 10 in the presence of copper acetate. The alkaline treatments had a predominant impact on the wheat straw cell wall components over copper acetate. Either K-carbonate or Na-hydroxide extracted from wheat straw a particular lignin fraction rich in condensed C-C linkages, leading to the unmasking of new ether-linked sub-structures in the cell wall. This unmasking was increased in the presence of copper salt but only in the nonextracted Wheat straw sample incubated in carbonate and not in the corresponding extractive-free sample. This difference was related to the leaching of compounds from the nonextracted cell wall, which could sustain oxidative activity of copper by hindering its precipitation into inactive hydroxide and/or carbonate species. In Spruce wood samples, copper salt was the principal factor impacting on the lignin structure over alkali alone. Its effect was, however, only detected at the level of C-C linked dimers. These results confirmed that unmasking of lignin sub-structures also occurred in Spruce wood, but probably through mechanisms different from that evidenced in Wheat straw.

  13. Fabrication highly dispersed Fe3O4 nanoparticles on carbon nanotubes and its application as a mimetic enzyme to degrade Orange II.

    Science.gov (United States)

    Deng, Jingheng; Wen, Xianghua; Li, Jiaxi

    2016-09-01

    Fe3O4 nanoparticles were grown in situ on carbon nanotubes (CNTs) by a solvothermal method. The Fe3O4/CNTs composites were characterised by the Brunauer-Emmett-Teller method and transmission electron microscopy. The results indicated that the Fe3O4 nanoparticles were uniformly deposited on CNTs, and the average diameter was approximately 7.0 nm. The Fe3O4/CNTs were applied as an enzyme mimetic to decompose Orange II, and the decomposing conditions were optimised. At 500 mg L(-1) of Fe3O4/CNTs in the presence of 15.0 mmol L(-1) of H2O2, at 30°C, it degraded 94.0% of Orange II (0.25 mmol L(-1), pH = 3.5), showing higher catalytic activity than pure Fe3O4 nanoparticles. The high activity was attributed to the uniform Fe3O4 nanoparticles growing on the side walls of the CNTs and the synergetic effect between Fe3O4 and CNTs. The Fe3O4/CNTs maintained their activity at temperatures as high as 65°C. The Fe3O4/CNTs presented high reusability and stability even after eight uses. These data proved that the Fe3O4/CNTs-catalysed degradation is a promising technique for wastewater treatment. Fe3O4 nanoparticles were grown in situ on carbon nanotubes (CNTs) by a solvothermal method. The Fe3O4/CNTs was applied as a mimetic enzyme to decompose Orange II. The Fe3O4/CNTs were collected after the reaction by applying an external magnetic field and can use repeatedly.

  14. Enhanced Gene Detection Assays for Fumarate-Adding Enzymes Allow Uncovering of Anaerobic Hydrocarbon Degraders in Terrestrial and Marine Systems

    Science.gov (United States)

    von Netzer, Frederick; Pilloni, Giovanni; Kleindienst, Sara; Krüger, Martin; Knittel, Katrin; Gründger, Friederike

    2013-01-01

    The detection of anaerobic hydrocarbon degrader populations via catabolic gene markers is important for the understanding of processes at contaminated sites. Fumarate-adding enzymes (FAEs; i.e., benzylsuccinate and alkylsuccinate synthases) have already been established as specific functional marker genes for anaerobic hydrocarbon degraders. Several recent studies based on pure cultures and laboratory enrichments have shown the existence of new and deeply branching FAE gene lineages, such as clostridial benzylsuccinate synthases and homologues, as well as naphthylmethylsuccinate synthases. However, established FAE gene detection assays were not designed to target these novel lineages, and consequently, their detectability in different environments remains obscure. Here, we present a new suite of parallel primer sets for detecting the comprehensive range of FAE markers known to date, including clostridial benzylsuccinate, naphthylmethylsuccinate, and alkylsuccinate synthases. It was not possible to develop one single assay spanning the complete diversity of FAE genes alone. The enhanced assays were tested with a range of hydrocarbon-degrading pure cultures, enrichments, and environmental samples of marine and terrestrial origin. They revealed the presence of several, partially unexpected FAE gene lineages not detected in these environments before: distinct deltaproteobacterial and also clostridial bssA homologues as well as environmental nmsA homologues. These findings were backed up by dual-digest terminal restriction fragment length polymorphism diagnostics to identify FAE gene populations independently of sequencing. This allows rapid insights into intrinsic degrader populations and degradation potentials established in aromatic and aliphatic hydrocarbon-impacted environmental systems. PMID:23124238

  15. High-throughput screening of carbohydrate-degrading enzymes using novel insoluble chromogenic substrate assay kits

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Willats, William George Tycho

    2016-01-01

    of CAZymes exist in nature (especially in microorganisms) and hundreds of thousands have been cataloged and described in the carbohydrate active enzyme database (CAZy). However, the rate of discovery of putative enzymes has outstripped our ability to biochemically characterize their activities. One reason...

  16. Screening for cellulose and hemicellulose degrading enzymes from the fungal genus Ulocladium

    DEFF Research Database (Denmark)

    Pedersen, Mads; Hollensted, Morten; Lange, L.

    2009-01-01

    The fungal genus Ulocladium consists mostly of saprotrophic species and can readily be isolated from dead vegetation, rotten wood. paper, textiles and other cellulose containing materials. Thus, they must produce cellulolytic and hemicellulolytic enzymes. In this study fifty Ulocladium strains fr...... that species identity as well as isolation source must be considered when screening microorganisms for enzymes....

  17. Characterization and mode of action of enzymes degrading galactan structures of arabinogalactans

    NARCIS (Netherlands)

    Vis, van de J.W.

    1994-01-01

    Agricultural biomass consisting mainly of cellulose, hemicellulose and lignin, is a renewable source of fuels and chemicals. An interesting option is enzymic conversion of biomass to readily usable material. To improve the overall economics of enzymic conversion of biomass not only

  18. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    Science.gov (United States)

    Vlasova, Irina I; Vakhrusheva, Tatyana V; Sokolov, Alexey V; Kostevich, Valeria A; Gusev, Alexandr A; Gusev, Sergey A; Melnikova, Viktoriya I; Lobach, Anatolii S

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Deciphering the signaling mechanisms of the plant cell wall degradation machinery in Aspergillus oryzae

    DEFF Research Database (Denmark)

    Udatha, D. B. R. K. Gupta; Topakas, Evangelos; Salazar, Margarita Pena

    2015-01-01

    is required to rationally engineer filamentous fungi for more efficient bioconversion of different types of biomass. Results: In this study we focused on ten chemically defined inducers to drive expression of cellulases, hemicellulases and accessory enzymes in the model filamentous fungus Aspergillus oryzae....... oryzae genome were only partially explained by the chemical similarity of the enzyme inducers. Genes encoding enzymes that have attracted considerable interest such as cellobiose dehydrogenases and copper-dependent polysaccharide mono-oxygenases presented a substrate-specific induction. Several homology...... in 2360 reactions in the genome scale metabolic network of A. oryzae, was performed through a two-step molecular docking against the binding pockets of the transcription factors AoXlnR and AoAmyR. A total of six metabolites viz., sulfite (H2SO3), sulfate (SLF), uroporphyrinogen III (UPGIII), ethanolamine...

  20. Degradation of lucerne stem cell walls by five rumen bacterial species

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.; Weimer, P.J.

    2004-01-01

    The rumen bacterial strains Butyrivibrio fibrisolvens H17c, Fibrobacter succinogenes S85, Lachnospira multiparus 40, Ruminococcus albus 7 and R. flavefaciens FD-1 were compared individually and as a five-species mixture with a rumen inoculum for their ability to degrade lucerne (Medicago sativa L.)

  1. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  2. Deactivation and activation of lignocellulose degrading enzymes in the presence of laccase.

    Science.gov (United States)

    Ladeira Ázar, Rafaela I S; Morgan, Túlio; Dos Santos, Antonio Carlos Freitas; de Aquino Ximenes, Eduardo; Ladisch, Michael R; Guimarães, Valéria M

    2018-02-01

    Cellulase and hemicellulase activities in a 1:1 ratio of enzymes extracted from Chrysoporthe cubensis and Penicillium pinophilum were evaluated in the presence of known monocomponent phenolic inhibitors and also with phenol mixtures derived from alkali pretreated sugarcane bagasse. The cellulolytic activities from C. cubensis:P. pinophilum displayed a much higher tolerance to phenolic inhibitors than equivalent enzyme activities obtained from Trichoderma reesei and Aspergillus niger. Enzymes from T. reesei and A. niger were deactivated at 0.3 and 1.5mg phenols/mg protein, respectively, as reported previously, while enzymes from C. cubensis:P. pinophilum resisted deactivation at 35mg phenols/mg protein. However, tolerance of xylanase with respect to phenols required the presence of laccase. Removal of laccase (enzyme) activity using sodium azide resulted in a 2x higher xylanase deactivation (from 40% to 80%). This paper identifies enzymes that are phenol tolerant, and whose adoption for lignocellulose hydrolysis could contribute to reductions in enzyme loading needed to hydrolyze alkali pretreated lignocellulosic substrates in the presence of lignin derived phenols. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Enzymatic degradation of plant cell wall polysaccharides: the kinetic effect of competitive adsorption

    DEFF Research Database (Denmark)

    Bergsøe, Merete Norsker; Bloch, Line; Adler-Nissen, Jens

    1999-01-01

    Insoluble potato dietary fibre, isolated from potato pulp, can be enzymatically hydrolysed with the pectolytic enzyme preparation Pectinex Ultra SP from Novo Nordisk A/S, in order to produce soluble fibre. The soluble fibre has valuable functional properties for the food industry. Cloned monocomp...

  4. Binding of human IgG to single-walled carbon nanotubes accelerated myeloperoxidase-mediated degradation in activated neutrophils.

    Science.gov (United States)

    Ding, Yun; Tian, Rong; Yang, Zhen; Chen, Jianfa; Lu, Naihao

    2016-11-01

    The binding of protein to carboxylated single-walled carbon nanotubes (SWCNTs) was believed to play an important role in the biological effects of nanotubes. However, the effects of protein-SWCNTs interactions on the oxidative degradation of nanotubes were not stressed enough. Here, we investigated the binding of human immunoglobulin G (IgG) to SWCNTs, and found that the preferred binding site was located in the Fc region of IgG. The hydrophobic and electrostatic interactions might be the crucial factors in stabilizing the binding of SWCNTs with IgG. Through the competitive binding of IgG and myeloperoxidase (MPO) to nanotube surfaces, the binding of IgG could impair MPO-induced SWCNTs biodegradation in vitro. However, both SWCNTs and IgG-SWCNTs were significantly degraded in zymosan-stimulated neutrophils, and the degradation degree was more for IgG-SWCNTs. These results suggest that the binding of IgG may be an important determinant for MPO-mediated SWCNTs biodegradation in activated human inflammatory cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Science.gov (United States)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  6. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schoonneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2017-08-22

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  7. Enzymes involved in 3,5-diaminohexanoate degradation by Brevibacterium sp.

    Science.gov (United States)

    Barker, H A; Kahn, J M; Chew, S

    1980-01-01

    Cell-free extracts of Brevibacterium sp. L5 grown on DL-erythro-3,5-diaminohexanoate were found to contain a 3-keto-5-aminohexanoate cleavage enzyme that converts 3-keto-5-aminohexanoate and acetyl-coenzyme A (CokA) to 3-aminobutyryl-CoA and acetoacetate and a deaminase that coverts L-3-aminobutyryl-CoA to crotonyl-CoA. The cleavage enzyme has been purified extensively, and some of its properties have been determined for comparison with the 3-keto-6-acetamido-hexanoate cleavage enzyme of Pseudomonas sp. B4. The deaminase has been partially purified and characterized. Both the cleavage enzyme and the deaminase are induced by growth on 3,5-diaminohexanoate. The presence of these and other accessory enzymes in Brevibacterium sp. extracts accounts for the results of earlier tracer experiments which showed that C-1 and C-2 of 3-keto-5-aminohexanoate are converted mainly to acetoacetate and acetate, whereas C-3 to C-6 are converted mainly to 3-hydroxybutyrate or its coenzyme A thiolester. The enzymes observed in extracts of Brevibacterium sp. can account for the conversion of 3,5-diaminohexanoate to acetyl-CoA. PMID:7410315

  8. Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of Cell Wall-Degrading Enzymatic Activities and Molecular Diversity Analysis of Antagonists.

    Science.gov (United States)

    Hirpara, Darshna G; Gajera, Harsukh P; Hirpara, Hitesh Z; Golakiya, Balubhai A

    2017-01-01

    The fungus Trichoderma is a teleomorph of the Hypocrea genus and associated with biological control of plant diseases. The microscopic, biochemical, and molecular characterization of Trichoderma was carried out and evaluated for in vitro antagonistic activity against the fungal pathogen Sclerotium rolfsii causing stem rot disease in groundnut. In total, 11 isolates of Trichoderma were examined for antagonism at 6 and 12 days after inoculation (DAI). Out of 11, T. virens NBAII Tvs12 evidenced the highest (87.91%) growth inhibition of the test pathogen followed by T. koningii MTCC 796 (67.03%), T. viride NBAII Tv23 (63.74%), and T. harzianum NBAII Th1 (60.44%). Strong mycoparasitism was observed in the best antagonist Tvs12 strain during 6-12 DAI. The specific activity of cell wall-degrading enzymes - chitinase and β-1,3-glucanase - was positively correlated with growth inhibition of the test pathogen. In total, 18 simple sequence repeat (SSR) polymorphisms were reported to amplify 202 alleles across 11 Trichoderma isolates. The average polymorphism information content for SSR markers was found to be 0.80. The best antagonist Tvs 12 was identified with 7 unique SSR alleles amplified by 5 SSR markers. Clustering patterns of 11 Trichoderma strains showed the best antagonist T. virens NBAII Tvs 12 outgrouped with a minimum 3% similarity from the rest of Trichoderma. © 2017 S. Karger AG, Basel.

  9. Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production

    Directory of Open Access Journals (Sweden)

    Bruna Silveira Lamanes dos Santos

    2015-09-01

    Full Text Available Nineteen fungi and seven yeast strains were isolated from sugarcane bagasse piles from an alcohol plant located at Brazilian Cerrado and identified up to species level on the basis of the gene sequencing of 5.8S-ITS and 26S ribosomal DNA regions. Four species were identified: Kluyveromyces marxianus, Aspergillus niger, Aspergillus sydowii and Aspergillus fumigatus, and the isolates were screened for the production of key enzymes in the saccharification of lignocellulosic material. Among them, three strains were selected as good producers of hemicellulolitic enzymes: A. niger (SBCM3, A. sydowii (SBCM7 and A. fumigatus (SBC4. The best β-xylosidase producer was A. niger SBCM3 strain. This crude enzyme presented optimal activity at pH 3.5 and 55 °C (141 U/g. For β-glucosidase and xylanase the best producer was A. fumigatus SBC4 strain, whose enzymes presented maximum activity at 60 °C and pH 3.5 (54 U/g and 4.0 (573 U/g, respectively. All these crude enzymes presented stability around pH 3.0–8.0 and up to 60 °C, which can be very useful in industrial processes that work at high temperatures and low pHs. These enzymes also exhibited moderate tolerance to ethanol and the sugars glucose and xylose. These similar characteristics among these fungal crude enzymes suggest that they can be used synergistically in cocktails in future studies of biomass conversion with potential application in several biotechnological sectors.

  10. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans.

    Science.gov (United States)

    Bezsudnova, Ekaterina Yu; Sorokin, Dimitry Yu; Tikhonova, Tamara V; Popov, Vladimir O

    2007-12-01

    Thiohalophilus thiocyanoxidans is a first halophilic sulfur-oxidizing chemolithoautotrophic bacterium capable of growth with thiocyanate as an electron donor at salinity up to 4 M NaCl. The cells, grown with thiocyanate, but not with thiosulfate, contained an enzyme complex hydrolyzing thiocyanate to sulfide and ammonia under anaerobic conditions with carbonyl sulfide as an intermediate. Despite the fact of utilization of the , high cyanase activity was also detected in thiocyanate-induced cells. Three-stage column chromotography resulted in a highly purified thiocyanate-hydrolyzing protein with an apparent molecular mass of 140 kDa that consists of three subunits with masses 17, 19 and 29 kDa. The enzyme is a Co,Fe-containing protein resembling on its function and subunit composition the enzyme thiocyanate hydrolase from the Betaproteobacterium Thiobacillus thioparus. Cyanase, copurified with thiocyanate hydrolase, is a bisubstrate multisubunit enzyme with an apparent subunit molecular mass of 14 kDa. A possible role of cyanase in thiocyanate degradation by T. thiocyanoxidans is discussed.

  11. Biochemical characterization and bioinformatic analysis of two large multi-domain enzymes from Microbacterium aurum B8.A involved in native starch degradation

    NARCIS (Netherlands)

    Valk, Vincent

    2017-01-01

    Microbacterium aurum B8.A is a unique bacterium with the ability to degrade starch granules through pore formation. In this study two enzymes (MaAmyA and MaAmyB) which are involved in granular starch degradation and were specific for the M. aurum B8.A strain, have been characterized in detail. Both

  12. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay

    Science.gov (United States)

    Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Masahiro Samejima; David Hibbett; Bernard Henrissat; Dan Cullen

    2013-01-01

    To degrade the polysaccharides, wood-decay fungi secrete a variety of glycoside hydrolases (GHs) and carbohydrate esterases (CEs) classified into various sequence-based families of carbohydrate-active enzymes (CAZys) and their appended carbohydrate-binding modules (CBM). Oxidative enzymes, such as cellobiose dehydrogenase (CDH) and lytic polysaccharide monooxygenase (...

  13. Indigenous West African plants as novel sources of polysaccharide degrading enzymes: application in the reduction of the viscosity of cereal porridges

    NARCIS (Netherlands)

    Dicko, M.H.; Hilhorst, M.H.; Traore, A.S.

    2005-01-01

    Ethnobotanical and biochemical surveys revealed that some local plants from West Africa are novel sources of polysaccharide degrading enzymes such as amylases and glucanases. The study shows that these enzymes could be used for various biotechnological applications. In a crude extract of Curculigo

  14. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust.

    Science.gov (United States)

    Song, Huifang; Zhang, Jianqin; Li, Daqi; Cooper, Anastasia M W; Silver, Kristopher; Li, Tao; Liu, Xiaojian; Ma, Enbo; Zhu, Kun Yan; Zhang, Jianzhen

    2017-07-01

    Application of RNA interference (RNAi) for insect pest management is limited by variable efficiency of RNAi in different insect species. In Locusta migratoria, RNAi is highly efficient through injection of dsRNA, but oral delivery of dsRNA is much less effective. Efforts to understand this phenomenon have shown that dsRNA is more rapidly degraded in midgut fluid than in hemolymph due to nuclease enzyme activity. In the present study, we identified and characterized two full-length cDNAs of double-stranded RNA degrading enzymes (dsRNase) from midgut of L. migratoria, which were named LmdsRNase2 and LmdsRNase3. Gene expression analysis revealed that LmdsRNase2 and LmdsRNase3 were predominantly expressed in the midgut, relatively lower expression in gastric caeca, and trace expression in other tested tissues. Incubation of dsRNA in midgut fluid from LmdsRNase3-suppressed larvae or control larvae injected with dsGFP resulted in high levels of degradation; however, dsRNA incubated in midgut fluid from LmdsRNase2-suppressed larvae was more stable, indicating LmdsRNase2 is responsible for dsRNA degradation in the midgut. To verify the biological function of LmdsRNase2 in vivo, nymphs were injected with dsGFP, dsLmdsRNase2 or dsLmdsRNase3 and chitinase 10 (LmCht10) or chitin synthase 1 (LmCHS1) dsRNA were orally delivered. Mortality associated with reporter gene knockdown was observed only in locusts injected with dsLmdsRNase2 (48% and 22%, for dsLmCht10 and dsLmCHS1, respectively), implicating LmdsRNase2 in reducing RNAi efficiency. Furthermore, recombinantly expressed LmdsRNase2 fusion proteins degraded dsRNA rapidly, whereas LmdsRNase3 did not. These results suggest that rapid degradation of dsRNA by dsRNase2 in the midgut is an important factor causing low RNAi efficiency when dsRNA is orally delivered in the locust. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage

    Science.gov (United States)

    Ren, Haiyu; Richard, Tom L.; Moore, Kenneth J.

    Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

  16. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus

    Science.gov (United States)

    Harshavardhan Doddapaneni; Venkataramanan Subramanian; Bolei Fu; Dan Cullen

    2013-01-01

    The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three...

  17. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from alicyclobacillus acidocaldarius and related organisms, methods

    Science.gov (United States)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Reed, David W.; Lacey, Jeffrey A.; Henriksen, Emily D.

    2010-12-28

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  18. Thermophilic and thermoacidophilic biopolymer degrading genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N; Apel, William A; Thompson, Vicki S; Reed, David W; Lacey, Jeffrey A; Henriksen, Emily D.

    2016-08-02

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  19. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Reed, David W.; Lacey, Jeffrey A.; Henriksen, Emily D.

    2018-02-20

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  20. Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover.

    Science.gov (United States)

    Xu, Chunyan; Ma, Fuying; Zhang, Xiaoyu

    2009-11-01

    The white rot fungus Irpex lacteus CD2 was incubated on corn stover under solid-state fermentation conditions for different durations, from 5 days up to 120 days. Lignocellulose component loss, enzyme production and Fe3+-reducing activity were studied. The average weight loss ranged from 1.7% to 60.5% during the period of 5-120 days. In contrast to lignin, hemicellulose and cellulose were degraded during the initial time period. After 15 days, 63.0% of hemicellulose was degraded. Cellulose was degraded the most during the first 10 days, and 17.2% was degraded after 10 days. Lignin was significantly degraded and modified, with acid insoluble lignin loss being nearly 80% after 60 days. That weight loss, which was lower than the total component loss, indicated that not all of the lost lignocellulose was converted to carbon dioxide and water, which was indicated by the increase in soluble reducing sugars and acid soluble lignin. Filter paper activity, which corresponds to total cellulase activity, peaked at day 5 and remained at a high level from 40 to 60 days. High hemicellulase activity appeared after 30 days. No ligninases activity was detected during the incipient stage of lignin removal and only low lignin peroxidase activity was detected after 25 days. Apparently, neither of the enzymatic peaks coincided well with the highest amount of component loss. Fe3+-reducing activity could be detected during all the decay periods, which might play an important role in lignin biodegradation by I. lacteus CD2.

  1. Diversity in Production of Xylan-Degrading Enzymes Among Species Belonging to the Trichoderma Section Longibrachiatum

    NARCIS (Netherlands)

    Toth, K.; Gool, van M.P.; Schols, H.A.; Samuels, G.J.; Gruppen, H.; Szakacs, G.

    2013-01-01

    Xylan is an important part of plant biomass and represents a renewable raw material for biorefineries. Contrary to cellulose, the structure of hemicellulose is quite complex. Therefore, the biodegradation of xylan needs the cooperation of many enzymes. For industrial production of xylanase

  2. Diversity in production of xyaln-degrading enzymes among species belonging to the Trichoderma section Longibrachiatum

    Science.gov (United States)

    Xylan is an important part of plant biomass and represents a renewable raw material for biorefineries. Contrary to cellulose, the structure of hemicellulose is quite complex. Therefore, the biodegradation of xylan needs the cooperation of many enzymes. For industrial production of xylanase multienzy...

  3. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides.

    Science.gov (United States)

    Ramalho, Teodorico C; de Castro, Alexandre A; Silva, Daniela R; Silva, Maria Cristina; Franca, Tanos C C; Bennion, Brian J; Kuca, Kamil

    2016-01-01

    The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.

  4. Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi.

    Science.gov (United States)

    Zerva, Anastasia; Zervakis, Georgios I; Christakopoulos, Paul; Topakas, Evangelos

    2017-12-01

    Olive mill wastewater (OMWW) is a major problem in olive oil - producing countries, due to its high organic load and concentration in phenols that are toxic for marine life, plants and soil microorganisms. In the present study, two mushroom species were tested in regard to their OMWW's oxidative capacity, Pleurotus citrinopileatus LGAM 28684 and Irpex lacteus LGAM 238. OMWW (25% v/v) degradation was investigated for several culture conditions, namely pH, agitation speed, nitrogen-based supplements and their concentration. The selected values were pH 6, agitation rate 150 rpm, 30 g L-1 corn steep liquor as nitrogen source for P. citrinopileatus and 20 g L-1 diammonium tartrate for I. lacteus. The two strains performed well in cultures supplemented with OMWW, generating very high titers of oxidative enzymes and achieving more than 90% color and phenols reduction within a 24 days cultivation period. In addition, the amount of glucans present in the fungal biomass was assessed. Hence, P. citrinopileatus and I. lacteus appear as potent degraders of OMWW with the ability to use the effluent as a substrate for the production of biotechnologically important enzymes and valuable fungal glucans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Phage lytic enzymes targeting streptococci

    Science.gov (United States)

    Streptococcal pathogens contribute to a wide variety of human and livestock diseases. There is a need for new antimicrobials to replace over-used conventional antibiotics. Bacteriophage (viruses that infect bacteria) endolysins (enzymes that help degrade the bacterial cell wall) are ideal candidat...

  6. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.

    Science.gov (United States)

    van Munster, Jolanda M; Daly, Paul; Delmas, Stéphane; Pullan, Steven T; Blythe, Martin J; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C M; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B

    2014-11-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Application of fluorescent antibody and enzyme-linked immunosorbent assays for TCE and PAH degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Franck, M.; Brey, J.; Scott, D.; Lanclos, K.; Fliermans, C.

    1996-07-01

    Historically, methods used to identify methanotrophic and polyaromatic hydrocarbon-degrading (PAH) bacteria in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate specific bacteria from other environmental microorganisms. Methanotrophic bacteria have been isolated and characterized from TCE-contaminated soils (Bowman et al. 1993; Fliermans et al., 1988). Fliermans et al., (1988) and others demonstrated that cultures enriched with methane and propane could cometabolically degrade a wide variety of chlorinated aliphatic hydrocarbons including ethylene; 1,2-cisdichloroethylene (c-DCE); 1,2-trans-dichloroethylene (t-DCE); vinyl chloride (VC); toluene; phenol and cresol. Characterization of select microorganisms in the natural setting is important for the evaluation of bioremediation potential and its effectiveness. This realization has necessitated techniques that are selective, sensitive and easily applicable to soils, sediments, and groundwater (Fliermans, et al., 1994). Additionally these techniques can identify and quantify microbial types in situ in real time

  8. Synthesis and Testing of Polymers Susceptible to Degradation by Proteolytic Enzymes

    Science.gov (United States)

    1975-05-01

    Chymotrypsln Degradation of L,L-D1ester- dlurea and L-PolyCester-urea) LIST OF FIGURES Crosslinked Gelatin Fiber (75x). Gelatin: Glycerin : HgO = 20:10...Figure 6. Stress-Strain Curves for Crossllnked Gelatin as Function of Crossltnklng Time. Plast1c1zer: glycerin Figure 7. Stress-Strain Curves for...mixture, as air bubbles would complicate later melt spinning. Extru- sion of gelatin filaments, using an Instron Rheometer, was carried out at the

  9. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity.

    Science.gov (United States)

    Yao, Xiangyang; Li, Guilan; Lü, Chaotian; Xu, Hui; Yin, Zhimin

    2012-10-01

    Arctigenin, a natural dibenzylbutyrolactone lignan compound, has been reported to possess anti-inflammatory properties. Previous works showed that arctigenin decreased lipopolysaccharide (LPS)-induced iNOS at transcription level. However, whether arctigenin could regulate iNOS at the post-translational level is still unclear. In the present study, we demonstrated that arctigenin promoted the degradation of iNOS which is expressed under LPS stimulation in murine macrophage-like RAW 264.7 cells. Such degradation of iNOS protein is due to CHIP-associated ubiquitination and proteasome-dependency. Furthermore, arctigenin decreased iNOS phosphorylation through inhibiting ERK and Src activation, subsequently suppressed iNOS enzyme activity. In conclusion, our research displays a new finding that arctigenin can promote the ubiqitination and degradation of iNOS after LPS stimulation. iNOS activity regulated by arctigenin is likely to involve a multitude of crosstalking mechanisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Bingzhi Chen

    Full Text Available Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation and GH43 (hemicellulose and pectin degradation, and the lyase families PL1, PL3 and PL4 (pectin degradation but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3'-tag digital gene expression (DGE reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.

  11. Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Min; Guo, Qing; Guo, Liang; Lenz, Martin; Qian, Feng; Koenen, Rory R.; Xu, Hua; Schilling, Alexander B.; Weber, Christian; Ye, Richard D.; Dinner, Aaron R.; Tang, Wei-Jen (IIT); (Aachen); (UC); (UIC)

    2010-12-07

    Macrophage inflammatory protein-1 (MIP-1), MIP-1{alpha} (CCL3) and MIP-1{beta} (CCL4) are chemokines crucial for immune responses towards infection and inflammation. Both MIP-1{alpha} and MIP-1{beta} form high-molecular-weight aggregates. Our crystal structures reveal that MIP-1 aggregation is a polymerization process and human MIP-1{alpha} and MIP-1{beta} form rod-shaped, double-helical polymers. Biophysical analyses and mathematical modelling show that MIP-1 reversibly forms a polydisperse distribution of rod-shaped polymers in solution. Polymerization buries receptor-binding sites of MIP-1{alpha}, thus depolymerization mutations enhance MIP-1{alpha} to arrest monocytes onto activated human endothelium. However, same depolymerization mutations render MIP-1{alpha} ineffective in mouse peritoneal cell recruitment. Mathematical modelling reveals that, for a long-range chemotaxis of MIP-1, polymerization could protect MIP-1 from proteases that selectively degrade monomeric MIP-1. Insulin-degrading enzyme (IDE) is identified as such a protease and decreased expression of IDE leads to elevated MIP-1 levels in microglial cells. Our structural and proteomic studies offer a molecular basis for selective degradation of MIP-1. The regulated MIP-1 polymerization and selective inactivation of MIP-1 monomers by IDE could aid in controlling the MIP-1 chemotactic gradient for immune surveillance.

  12. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes

    KAUST Repository

    Zhang, Meiling

    2014-08-18

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xy-lose- configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM fromits homolog in the Prevotella bryantii B 14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. Aminimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  13. Growth of bacteria and yeast on enzymically degraded alkali treated rice and wheat straws

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, J.K.; Shirkot, C.K.; Dhawan, S.

    1981-01-01

    An enzyme filtrate of Trichoderma viride QM 9414 was used to saccharify rice and wheat straw. Delignification of the straw by alkali treatment increased the enzymic saccharification of both materials to approximately 70%. The optimum conditions for delignification were autoclaving at 120 degrees for 30 minutes with 2% Sodium Hydroxide. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Lactobacillus acidophilus, Bacillus megaterium, and Saccharomyces cerevisiae grew very well on enriched hydrolyzates of rice and wheat straws. Even nonenriched straw hydrolyzates supported better growth of L. acidophilus, B. megaterium, and E. coli on rice straw than the enriched synthetic medium containing equivalent glucose. S. cerevisiae grown in shake flasks containing 25 mL of enriched rice and wheat straw hydrolyzates yielded 0.595 g and 0.450 g of dry cells, respectively. The corresponding yield was 0.396 g from enriched synthetic medium containing equal amounts of glucose.

  14. Discovery and Characterization of Enzymes for Degradation of Xyloglucan and Extensin

    DEFF Research Database (Denmark)

    Feng, Tao; Mikkelsen, Jørn Dalgaard

    for the highest xyloglucanase activity. PmXEG12 was very efficient with a relatively high kcat/KM value. Meanwhile, it had a much lower pH optimum (pH 4.0) than that of other xyloglucanases. PmXEG12 accommodated unbranched Glcp at subsite -1 and also cleaving the xyloglucan in endo-mode. The third enzyme (Prt1......) is an extracellular zinc-binding metalloprotease from Protobacterium carotovora identified previously. Prt1 has a pro-peptide functioning as signal peptide for secretion and a pre-peptide functioning as chaperon peptide, which were sequentially removed by the enzyme itself automatically. It has been demonstrated...... that Prt1 could cleave proline and hydroxyproline-rich proteins, like casein, collagen, lectin and extensins....

  15. Biochemical Control of Fungal Biomass and Enzyme Production During Native Hawaiian Litter Degradation

    Science.gov (United States)

    Amatangelo, K. L.; Cordova, T. P.; Vitousek, P. M.

    2007-12-01

    Microbial growth and enzyme production during decomposition is controlled by the availability of carbon substrates, essential elements, and the ratios of these (such as lignin:N). We manipulated carbon:nutrient stoichiometry during decomposition using a natural fertility gradient in Hawaii and litter of varying initial biochemistry. We collected freshly senesced litter of seven biochemically distinct species from three sites offering differing levels of N, P, cations, and 15N , but similar yearly rainfall and temperature patterns. Litter types were decomposed at both the sites they were collected, and at the other site(s) that species was found. Litter was collected at multiple time points, and after one year of decomposition, calculated K constants varied an order of magnitude, from 0.276 to 2.76. Decomposition rates varied significantly with both litter site of origin and deployment, except at the oldest, P-limited site, where litter site of origin was not significantly correlated with decomposition within species. As microbial exocellular enzymes provide the catalyst for the breakdown of organic molecules including phenols, cellulose, and cutin, we assayed polyphenol oxidase, cellobiohydrolase, cutinase, chitinase, and lignin peroxidase to evaluate the breakdown sequence of different litter types. To measure the fungal biomass accumulating during decomposition, we extracted (22E)-Ergosta-5,7,22-trien-3beta- ol (ergosterol) on a subset of samples. The production of particular exocellular enzymes on litter species responded distinctly to origin and decomposition sites: after six months, chitinase and cellobiohydrolase were significantly affected by origin site, whereas polyphenol oxidase activity was controlled by deployment site. We conclude that site characteristics can alter the interaction between litter carbon:nutrient ratios and decomposition rate, mediated through microbial biomass and enzyme production.

  16. Degradation of Benzene by Pseudomonas veronii 1YdBTEX2 and 1YB2 Is Catalyzed by Enzymes Encoded in Distinct Catabolism Gene Clusters.

    Science.gov (United States)

    de Lima-Morales, Daiana; Chaves-Moreno, Diego; Wos-Oxley, Melissa L; Jáuregui, Ruy; Vilchez-Vargas, Ramiro; Pieper, Dietmar H

    2015-10-16

    Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46.

    Science.gov (United States)

    Zimmermann, T; Kulla, H G; Leisinger, T

    1982-12-01

    Orange II azoreductase [NAD(P)H: 1-(4'-sulfophenylazo)-2-naphthol oxidoreductase], an enzyme catalyzing the reductive cleavage of the azo bridge of Orange II and related dyes, was purified to electrophoretic homogeneity from Pseudomonas species, strain KF46. This organism utilized carboxy-Orange II [1-(4'-carboxyphenylazo)-2-naphthol] but not Orange II as the sole source of carbon, energy, and nitrogen. Orange II azoreductase was induced 80-fold by both Orange II and carboxy-Orange II. With two successive runs of affinity chromatography using two chromatographic media with different triazinyl dyes as ligands, the enzyme was purified 120-fold with 43% yield. The purified enzyme is a monomer with a molecular weight of 30,000. Its Km values were 1.5 microM for both Orange II and carboxy-Orange II, 5 microM for NADPH, and 180 microM for NADH. A survey of the efficiency of various Orange dyes as substrates for Orange II azoreductase showed that: (a) a hydroxy group in the 2-position of the naphthol ring is required; (b) charged groups in proximity to the azo group hinder the reaction; (c) a second polar substituent on the dye molecule impedes the reaction; (d) electron-withdrawing groups on the phenyl ring accelerate the reaction.

  18. Development and validation of an enzyme-linked immunosorbent assay for the quantification of a specific MMP-9 mediated degradation fragment of type III collagen--A novel biomarker of atherosclerotic plaque remodeling

    DEFF Research Database (Denmark)

    Barascuk, Natasha; Vassiliadis, Efstathios; Larsen, Lise

    2011-01-01

    Degradation of collagen in the arterial wall by matrix metalloproteinases is the hallmark of atherosclerosis. We have developed an ELISA for the quantification of type III collagen degradation mediated by MMP-9 in urine....

  19. Nitrate-Dependent Degradation of Acetone by Alicycliphilus and Paracoccus Strains and Comparison of Acetone Carboxylase Enzymes

    Science.gov (United States)

    Dullius, Carlos Henrique; Chen, Ching-Yuan; Schink, Bernhard

    2011-01-01

    A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601T by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria. PMID:21841031

  20. Changes in expression of drug-metabolizing enzymes by single-walled carbon nanotubes in human respiratory tract cells.

    Science.gov (United States)

    Hitoshi, Kotaro; Katoh, Miki; Suzuki, Tomoko; Ando, Yoshinori; Nadai, Masayuki

    2012-03-01

    Single-walled carbon nanotubes (SWCNTs) have attracted attention for biomedical and biotechnological applications, such as drug delivery. However, there are concerns about the safety of SWCNTs for use in humans. To investigate the potential use of SWCNTs for targeted drug delivery to the lung, we examined their effect on drug-metabolizing enzymes in primary normal human bronchial epithelial (NHBE) cells from two donors and the lung carcinoma A549 cell line. Exposure of NHBE and A549 cells to SWCNTs dysregulated some of the important drug-metabolizing enzymes expressed in the human respiratory organs. Exposure of NHBE cells to SWCNTs for 24 h had a pronounced effect on expression of CYP1A1 and CYP1B1 mRNAs, which were reduced to less than 1% of control cells. These effects were also observed in A549 cells. Exposure of A549, HepG2 hepatic carcinoma cells, and MCF-7 breast carcinoma cells to tetrachlorodibenzo-p-dioxin induced the expression and enzymatic activity of CYP1A1 and CYP1B1, which were also suppressed by SWCNTs, suggesting that SWCNTs down-regulated both basal and induced CYP1A1 and CYP1B1 activities. Chromatin immunoprecipitation assays revealed that the down-regulatory effect of SWCNTs may be due to inhibition of activated aryl hydrocarbon receptor binding to the enhancer regions of the CYP1A1 and CYP1B1 genes. Down-regulation of CYP1A1 and CYP1B1 genes by SWCNTs may affect the defense mechanisms by reducing procarcinogen bioactivation in the human lung.

  1. Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger

    Science.gov (United States)

    Lopes, Fernanda Cortez; Silva, Lucas André Dedavid e; Tichota, Deise Michele; Daroit, Daniel Joner; Velho, Renata Voltolini; Pereira, Jamile Queiroz; Corrêa, Ana Paula Folmer; Brandelli, Adriano

    2011-01-01

    A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism. PMID:22007293

  2. Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Fernanda Cortez Lopes

    2011-01-01

    Full Text Available A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism.

  3. Suppressive effects of dietary EPA-rich fish oil on the degradation of elastin fibers in the aortic wall in nicotine-administered mice.

    Science.gov (United States)

    Kugo, Hirona; Zaima, Nobuhiro; Onozato, Megumi; Miyamoto, Chie; Hashimoto, Keisuke; Yanagimoto, Kenichi; Moriyama, Tatsuya

    2017-08-01

    Abdominal aortic aneurysm (AAA) is a vascular disease involving gradual dilation of the abdominal aorta. Recent studies suggest that nicotine, which is a primary component in cigarette smoke, is closely associated with the development and rupture of an AAA. Nicotine accelerates AAA development through the weakening of the vascular wall by increasing oxidative stress and matrix metalloproteinase (MMP)-2 expression. However, little is known about preventing the AAA induced by nicotine. A non-surgical means of preventing the weakening of the vascular wall before the onset of AAA by functional food factors would be a valuable option over surgery. Fish oil is a functional food that is rich in n-3 polyunsaturated fatty acids that have an anti-inflammatory effect. In this study, we evaluated the effect of dietary fish oil on the weakening of the aortic wall due to nicotine administration in a mouse model. Histological analysis showed that the dietary fish oil suppressed the degradation of elastin fibers in the nicotine-administered mice. Additionally, the dietary fish oil suppressed the protein level of MMP-12, macrophage infiltration, and the oxidative stress in the vascular wall. These results suggest that fish oil could suppress the weakening of the vascular wall by suppressing the elastin fiber degradation caused by nicotine. By suppressing the nicotine induced weakening of the vascular wall, fish oil might help prevent the development of AAA.

  4. Growth and regulation of enzyme synthesis in the nitrilotriacetic acid (NTA)-degrading bacterium Chelatobacter heintzii ATCC 29600.

    Science.gov (United States)

    Bally, M; Wilberg, E; Kühni, M; Egli, T

    1994-08-01

    In the aerobic bacterium Chelatobacter heintzii, growth and regulation of enzymes involved in nitrilotriacetic acid (NTA) degradation have been investigated in chemostat culture during cultivation with glucose, NTA or mixtures thereof. In batch culture mu max with NTA was 0.18 h-1 and with glucose 0.22 h-1. Growth yields for both substrates were reduced at low dilution rates. During growth with NTA specific activity of the NTA monooxygenase (NTA-MO) exhibited a maximum at D = 0.03 h-1 and gradually decreased with increasing dilution rates. In glucose-grown cells the specific activity as well as immunologically detectable NTA-MO protein was always close to the detection limit. During cultivation with different mixtures of NTA and glucose at a dilution rate of 0.06 h-1, both substrates were utilized simultaneously, irrespective of the NTA/glucose ratio and the presence of excess ammonia. Synthesis of both NTA-MO and iminodiacetic acid dehydrogenase became induced when NTA contributed to more than approximately 1-3% of the total carbon in the substrate mixture supplied. However, NTA was also degraded when the proportion of NTA in the mixture was lower than 1%, which is consistent with the low constitutive level of expression for NTA-MO observed. Results are discussed with respect to NTA biodegradation during sewage treatment and in ecosystems.

  5. Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds.

    Science.gov (United States)

    Hehemann, Jan-Hendrik; Smyth, Leo; Yadav, Anuj; Vocadlo, David J; Boraston, Alisdair B

    2012-04-20

    Agars are abundant polysaccharides from marine red algae, and their chemical structure consists of alternating D-galactose and 3,6-anhydro-L-galactose residues, the latter of which are presumed to make the polymer recalcitrant to degradation by most terrestrial bacteria. Here we study a family 117 glycoside hydrolase (BpGH117) encoded within a recently discovered locus from the human gut bacterium Bacteroides plebeius. Consistent with this locus being involved in agarocolloid degradation, we show that BpGH117 is an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase that removes the 3,6-anhydrogalactose from the non-reducing end of neoagaro-oligosaccharides. A Michaelis complex of BpGH117 with neoagarobiose reveals the distortion of the constrained 3,6-anhydro-L-galactose into a conformation that favors catalysis. Furthermore, this complex, supported by analysis of site-directed mutants, provides evidence for an organization of the active site and positioning of the catalytic residues that are consistent with an inverting mechanism of catalysis and suggests that a histidine residue acts as the general acid. This latter feature differs from the vast majority of glycoside hydrolases, which use a carboxylic acid, highlighting the alternative strategies that enzymes may utilize in catalyzing the cleavage of glycosidic bonds.

  6. Effects of the novel pyrimidynyloxybenzoic herbicide ZJ0273 on enzyme activities, microorganisms and its degradation in Chinese soils.

    Science.gov (United States)

    Cai, Zhiqiang; Li, Shanshan; Zhang, Wenjie; Ma, Jiangtao; Wang, Jing; Cai, Jinyan; Yang, Guanghua

    2015-03-01

    Enzyme activity and microbial population in soils have important roles in keeping soil fertility. ZJ0273 is a novel pyrimidynyloxybenzoic-based herbicide, which was recently developed in China. The effect of ZJ0273 on soil enzyme activity and microbial population in two different soils was investigated in this study for the first time. The protease activity was significantly inhibited by ZJ0273 and this inhibiting effect gradually weakened after 60-day incubation. The results also showed that ZJ0273 had different stimulating effects on the activities of dehydrogenase, urease, and catalase. Dehydrogenase was consistently stimulated by all the applied concentrations of ZJ0273. The stimulating effect on urease weakened after 60-day incubation. Catalase activity was subject to variations during the period of the experiments. The results of microbial population showed that the number of bacteria and actinomycetes increased in ZJ0273-treated soil compared with the control after 20 days of incubation, while fungal number decreased after only 10 days of incubation in soils. DT50 (half-life value) and k (degradation rate constant) of ZJ0273 in S1 (marine-fluvigenic yellow loamy soil) and S2 (Huangshi soil) were found 69.31 and 49.50 days and 0.010 and 0.014 day(-1), respectively.

  7. Purification and characterization of the enzymes involved in nicotinamide adenine dinucleotide degradation by Penicillium brevicompactum NRC 829.

    Science.gov (United States)

    Ali, Thanaa Hamed; El-Ghonemy, Dina Helmy

    2016-06-01

    The present study was conducted to investigate a new pathway for the degradation of nicotinamide adenine dinucleotide (NAD) by Penicillium brevicompactum NRC 829 extracts. Enzymes involved in the hydrolysis of NAD, i.e. alkaline phosphatase, aminohydrolase and glycohydrolase were determined. Alkaline phosphatase was found to catalyse the sequential hydrolysis of two phosphate moieties of NAD molecule to nicotinamide riboside plus adenosine. Adenosine was then deaminated by aminohydrolase to inosine and ammonia. While glycohydrolase catalyzed the hydrolysis of the nicotinamide-ribosidic bond of NAD+ to produce nicotinamide and ADP-ribose in equimolar amounts, enzyme purification through a 3-step purification procedure revealed the existence of two peaks of alkaline phosphatases, and one peak contained deaminase and glycohydrolase activities. NAD deaminase was purified to homogeneity as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis with an apparent molecular mass of 91 kDa. Characterization and determination of some of NAD aminohydrolase kinetic properties were conducted due to its biological role in the regulation of cellular NAD level. The results also revealed that NAD did not exert its feedback control on nicotinamide amidase produced by P. brevicompactum.

  8. Rapid degradation of an active formylglycine generating enzyme variant leads to a late infantile severe form of multiple sulfatase deficiency.

    Science.gov (United States)

    Schlotawa, Lars; Radhakrishnan, Karthikeyan; Baumgartner, Matthias; Schmid, Regula; Schmidt, Bernhard; Dierks, Thomas; Gärtner, Jutta

    2013-09-01

    Multiple sulfatase deficiency (MSD) is a rare inborn error of metabolism affecting posttranslational activation of sulfatases by the formylglycine generating enzyme (FGE). Due to mutations in the encoding SUMF1 gene, FGE's catalytic capacity is impaired resulting in reduced cellular sulfatase activities. Both, FGE protein stability and residual activity determine disease severity and have previously been correlated with the clinical MSD phenotype. Here, we report a patient with a late infantile severe course of disease. The patient is compound heterozygous for two so far undescribed SUMF1 mutations, c.156delC (p.C52fsX57) and c.390A>T (p.E130D). In patient fibroblasts, mRNA of the frameshift allele is undetectable. In contrast, the allele encoding FGE-E130D is expressed. FGE-E130D correctly localizes to the endoplasmic reticulum and has a very high residual molecular activity in vitro (55% of wildtype FGE); however, it is rapidly degraded. Thus, despite substantial residual enzyme activity, protein instability determines disease severity, which highlights that potential MSD treatment approaches should target protein folding and stabilization mechanisms.

  9. Prion degradation in soil: possible role of microbial enzymes stimulated by the decomposition of buried carcasses.

    Science.gov (United States)

    Rapp, Delphine; Potier, Patrick; Jocteur-Monrozier, Lucile; Richaume, Agnès

    2006-10-15

    This study is part of a European project focused on understanding the biotic and abiotic mechanisms involved in the retention and dissemination of transmissible spongiform encephalopathies (TSE) infectivity in soil in order to propose practical recommendations to limit environmental contamination. A 1-year field experiment was conducted with lamb carcasses buried in a pasture soil at three depths (25, 45, and 105 cm). Microbial community response to carcasses was monitored through the potential proteolytic activity and substrate induced respiration (SIR). Soil above carcasses and control soil exhibited low proteolytic capacity, whatever the depth of burial. Contrastingly, in soil beneath the carcasses, proteolysis was stimulated. Decomposing carcasses also stimulated SIR, i.e., microbial biomass, suggesting that proteolytic populations specifically developed on lixiviates from animal tissues. Decomposition of soft tissues occurred within 2 months at subsurface while it lasted at least 1 year at deeper depth where proteolytic activities were season-dependent. The ability of soil proteases to degrade the beta form of prion protein was shown in vitro and conditions of burial relevant to minimize the risk of prion protein dissemination are discussed.

  10. Bifidobacterium longum subsp. longum Exo-β-1,3-Galactanase, an Enzyme for the Degradation of Type II Arabinogalactan

    Science.gov (United States)

    Sakaguchi, Takenori; Sakamoto, Ayami; Shimokawa, Michiko; Kitahara, Kanefumi

    2014-01-01

    Type II arabinogalactan (AG-II) is a suitable carbohydrate source for Bifidobacterium longum subsp. longum, but the degradative enzymes have never been characterized. In this study, we characterized an exo-β-1,3-galactanase, BLLJ_1840, belonging to glycoside hydrolase family 43 from B. longum subsp. longum JCM1217. The recombinant BLLJ_1840 expressed in Escherichia coli hydrolyzed β-1,3-linked galactooligosaccharides but not β-1,4- and β-1,6-linked galactooligosaccharides. The enzyme also hydrolyzed larch wood arabinogalactan (LWAG), which comprises a β-1,3-linked galactan backbone with β-1,6-linked galactan side chains. The kcat/Km ratio of dearabinosylated LWAG was 24-fold higher than that of β-1,3-galactan. BLLJ_1840 is a novel type of exo-β-1,3-galactanase with a higher affinity for the β-1,6-substituted β-1,3-galactan than for nonsubstituted β-1,3-galactan. BLLJ_1840 has 27% to 28% identities with other characterized exo-β-1,3-galactanases from bacteria and fungi. The homologous genes are conserved in several strains of B. longum subsp. longum and B. longum subsp. infantis but not in other bifidobacteria. Transcriptional analysis revealed that BLLJ_1840 is intensively induced with BLLJ_1841, an endo-β-1,6-galactanase candidate, in the presence of LWAG. This is the first report of exo-β-1,3-galactanase in bifidobacteria, which is an enzyme used for the acquisition of AG-II in B. longum subsp. longum. PMID:24837371

  11. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.

  12. Extracellular matrix components and matrix degrading enzymes in the feline placenta during gestation.

    Science.gov (United States)

    Walter, I; Schönkypl, S

    2006-01-01

    In the endotheliochorial placenta of the cat, the maternal surface epithelium and parts of the connective tissue have to be removed to bring the fetal blood vessels in close contact to the maternal capillaries. The composition of the extracellular matrix (ECM) in the feline uterus is not known and it is still not clear if and which parts of the maternal ECM persist during gestation in the placental labyrinth. We demonstrated various extracellular matrix components (collagen types I, III, IV, and laminin) and matrix metalloproteinases (MMP-1, -2, -13) using immunohistochemistry and studied the distribution of intermediate filaments (vimentin, cytokeratin) and alpha-smooth muscle actin (SMA) in the placental girdle on specimens of different stages of gestation. Collagen types I and III were mainly present in the fetal chorionic lamellae whereas diminished in the maternal placental labyrinth part. Collagen IV and laminin were expressed in fetal basement membranes and mesenchyme. Maternal endothelial cells and stromal cells showed a positive immunoreaction for anti-collagen type IV and laminin. MMP-2 was identified in the maternal stroma, including decidual cells. Endothelia of maternal blood vessels within the labyrinth contained MMP-1, -2 and -13, probably associated with angiogenesis. In the trophoblast MMP-1 and -13 were demonstrated. Maternal stem vessels were accompanied by a thick layer of syncytiotrophoblast. Around these vessels, collagen type I and SMA were present in a periendothelial region between the endothelium and the trophoblast. These findings indicate that a strictly regulated balance between ECM deposition and ECM degradation in the feline placental labyrinth is necessary for proper placental development and function.

  13. Mediobasal hypothalamic and adenohypophyseal TRH-degrading enzyme (PPII) is down-regulated by zinc deficiency.

    Science.gov (United States)

    Alvarez-Salas, Elena; Alcántara-Alonso, Viridiana; Matamoros-Trejo, Gilberto; Vargas, Miguel Angel; Morales-Mulia, Marcela; de Gortari, Patricia

    2015-11-01

    Thyrotropin-releasing hormone (TRH) synthesized in hypothalamic paraventricular nucleus directs hypothalamus-pituitary-thyroid (HPT) axis function, regulating thyrotropin release from adenohypophysis and thyroid hormones serum concentration. Pyroglutamyl aminopeptidase II (PPII), a Zn-dependent metallopeptidase located in adenohypophysis and medial-basal-hypothalamus degrades TRH released from the median eminence and participates in HPT axis function by regulating TRH-induced thyrotropin release from adenohypophysis. It is unknown whether dietary Zn deficiency down-regulates PPII. Our aim was to compare adenohypohyseal and medial-basal-hypothalamic PPII activity and expression of adult rats fed a Zn-deficient diet (2ppm) throughout their lifespan (DD), prenatally (DC) or after weaning (CD) vs. that of animals fed a control diet (20ppm:CC). Female rats consumed a Zn-deficient or control diet from two weeks before gestation and up to the end of lactation. We analyzed adenohypophyseal and medial-basal-hypothalamic PPII activity of dams and male offspring when adults; its relation to median eminence TRH, serum thyrotropin, leptin and thyroid hormones concentration. Offspring ate the same diet as their dams (CC, DD) or were switched from dietary regime after weaning (CD, DC) and until 2.5 months of age. DD males showed decreased adenohypophyseal and medial-basal-hypothalamic PPII activity, along with high thyrotropin serum concentration. Post-weaning Zn-deficiency (CD) decreased PPII activity only in adenohypophysis and increased thyrotropin circulating levels. Zn-replenishment (DC) normalized PPII activity in both regions and serum thyrotropin concentration. Adenohypophyseal PPII activity decreased and prolactin levels increased in Zn-deficient dams. We concluded that long-term changes in dietary Zn down-regulate PPII activity independently of T3, increasing thyrotropin serum concentration, overall resembling sub-clinical hypothyroidism. Copyright © 2015 Elsevier Ltd

  14. Structural and functional characterization of pathogenic non- synonymous genetic mutations of human insulin-degrading enzyme by in silico methods.

    Science.gov (United States)

    Shaik, Noor A; Kaleemuddin, Mohammed; Banaganapalli, Babajan; Khan, Fazal; Shaik, Nazia S; Ajabnoor, Ghada; Al-Harthi, Sameer E; Bondagji, Nabeel; Al-Aama, Jumana Y; Elango, Ramu

    2014-04-01

    Insulin-degrading enzyme (IDE) is a key protease involved in degrading insulin and amyloid peptides in human body. Several non-synonymous genetic mutations of IDE gene have been recently associated with susceptibility to both diabetes and Alzheimer's diseases. However, the consequence of these mutations on the structure of IDE protein and its substrate binding characteristics is not well elucidated. The computational investigation of genetic mutation consequences on structural level of protein is recently found to be an effective alternate to traditional in vivo and in vitro approaches. Hence, by using a combination of empirical rule and support vector machine based in silico algorithms, this study was able to identify that the pathogenic nonsynonymous genetic mutations corresponding to p.I54F, p.P122T, p.T533R, p.P581A and p.Y609A have more potential role in structural and functional deviations of IDE activity. Moreover, molecular modeling and secondary structure analysis have also confirmed their impact on the stability and secondary properties of IDE protein. The molecular docking analysis of IDE with combinational substrates has revealed that peptide inhibitors compared to small non-peptide inhibitor molecules possess good inhibitory activity towards mutant IDE. This finding may pave a way to design novel potential small peptide inhibitors for mutant IDE. Additionally by un-translated region (UTR) scanning analysis, two regulatory pathogenic genetic mutations i.e., rs5786997 (3' UTR) and rs4646954 (5' UTR), which can influence the translation pattern of IDE gene through sequence alteration of upstream-Open Reading Frame and Internal Ribosome Entry Site elements were identified. Our findings are expected to help in narrowing down the number of IDE genetic variants to be screened for disease association studies and also to select better competitive inhibitors for IDE related diseases.

  15. EFFECT OF DIETARY SUPPLEMENTATION OF NON-STARCH POLYSACCHARIDE DEGRADING ENZYMES ON GROWTH PERFORMANCE OF BROILER CHICKS

    Directory of Open Access Journals (Sweden)

    M. A. Nadeem, M. I. Anjum, A. G. Khan and A. Azim

    2005-10-01

    Full Text Available An experiment was conducted to study the performance and carcass parameters of broilers chicks fed diets with and without supplementing non-starch polysaccharide degrading enzymes (NSPDE at the rate of 0.5 g/kg diet. A total of 300 day-old broiler chicks were randomly divided into 12 sets (replicates each comprising 25 chicks and three sets per treatment group, reared on deep litter from 1-42 days post-hatch. Group A was fed diets without NSPDE supplementation, while group B was fed diets supplemented with NSPDE (0.5 g/kg. Group C was fed diets containing 50 kcal/kg less metabolizable energy (ME without NSPDE and group D was fed diets having 50 kcal/kg less ME with NSPDE (0.5 g/kg supplementation. Feed and water were provided ad libitum. Feed intake and feed conversion ratio (FCR from 1-28 days and 1-42 days was significantly (p<0.05 improved in chicks fed NSPDE supplemented diets (groups B and D compared to non-supplemented diets (groups A and C. However, during 29-42 days of growing period enzymes supplementation did not influence feed intake and FCR. Body weight gain, dressing percentage and relative weights of heart, gizzard and shank at 42 days of age was found to be non-significantly different among all groups. However, liver weight reduced significantly (p<0.05 in NSPDE supplemented groups. The study suggested that NSPDE supplementation was beneficial in enhancing feed utilization during the starter phase, while its effects on weight gain, dressing percentage and weights of organs, except liver weight, were found to be non-significant.

  16. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; Purvine, Samuel O.; Smith, Richard D.; Lipton, Mary S.; Burnum-Johnson, Kristin E.; Currie, Cameron R.

    2015-08-28

    Leaf-cutter ants are prolific and conspicuous Neotropical herbivores that derive energy from specialized fungus gardens they cultivate using foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain lignocellulases that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as it is foraged by the ants. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous lignocellulases likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three-quarters of all lignocellulases identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 23 lignocellulases enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.

  17. [Effect of tongluo xingnao effervescent tablet on learning and memory of AD rats and expression of insulin-degrading enzyme in hippocampus].

    Science.gov (United States)

    Zhang, Yin-Jie; Dai, Yuan; Hu, Yong; Ma, Yun-Tong; Xu, Shi-Jun; Wang, Yong-Yan

    2013-09-01

    To study the effect of Tongluo Xingnao effervescent tablet on learning and memory of dementia rats induced by injection of Abeta25-35 in hippocampus and expression of insulin-degrading enzyme in hippocampus, in order to provide basis for preventing and treating senile dementia. The dementia rat model was established by injecting Abeta25-35 in hippocampus. The rats were divided into the model control group, the Aricept (1.4 mg x kg(-1)) group, and Tongluo Xingnao effervescent tablet high dose (7.56 g x kg(-1)), middle dose (3.78 g x kg(-1)) and low dose (1.59 g x kg(-1)) groups. A sham operation group was established by injecting normal saline in hippocampus. The rats were orally given drugs for 90 days, once a day. Their learning and memory were tested by using Morris water maze. Immunohistochemistry and image analysis were utilized for a quantitative analysis on the expression of insulin-degrading enzyme in hippocampus. Tongluo Xingnao effervescent tablet could significantly shorten the escape latency of rats in the directional navigation test, prolong the retention time in the first quadrant dwell, decrease the retention time in the third quadrant dwell, increase the frequency of crossing the platform, show a more notable statistical significance than the model control group (P hippocampus, promote the expression of insulin-degrading enzyme in hippocampus, and show a more notable statistical significance than the model control group (P learning and memory capacity of AD rats and promoting the expression of insulin-degrading enzyme in hippocampus. Its effect in promoting intelligence will be related to increased insulin-degrading enzyme in hippocampus.

  18. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis.

    Science.gov (United States)

    Dahl, M K; Msadek, T; Kunst, F; Rapoport, G

    1992-07-15

    Two classes of mutations were identified in the degS and degU regulatory genes of Bacillus subtilis, leading either to deficiency of degradative enzyme synthesis (degS or degU mutations) or to a pleiotropic phenotype which includes overproduction of degradative enzymes and the loss of genetic competence (degS(Hy) or degU(Hy) mutations). We have shown previously that the DegS protein kinase and the DegU response regulator form a signal transduction system in B. subtilis. We now demonstrate that the DegS protein kinase also acts as a DegU phosphatase. We present evidence that the DegU response regulator has two active conformations: a phosphorylated form which is necessary for degradative enzyme synthesis and a nonphosphorylated form required for expression of genetic competence. The degU146-encoded response regulator, allowing expression of genetic competence, has been purified and seems to be modified within the putative phosphorylation site (D56----N) since it is no longer phosphorylated by DegS. Both the degU146 mutation as well as the degS220 mutation, which essentially abolishes DegS protein kinase activity, lead to deficiency of degradative enzyme synthesis, indicating the requirement of phosphorylated DegU for the expression of this phenotype. We also purified the degU32(Hy)-encoded protein and showed that this response regulator is phosphorylated by the DegS protein kinase in vitro. In addition, the phosphorylated form of the degU32(Hy)-encoded protein presented a strongly increased stability as compared with the wild type DegU protein, thus leading to hyperproduction of degradative enzymes in vivo.

  19. Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice.

    Science.gov (United States)

    Caravaggio, Justin W; Hasu, Mirela; MacLaren, Robin; Thabet, Mohamed; Raizman, Joshua E; Veinot, John P; Marcel, Yves L; Milne, Ross W; Whitman, Stewart C

    2013-01-01

    Insulin-degrading enzyme (IDE), a protease implicated in several chronic diseases, associates with the cytoplasmic domain of the macrophage Type A scavenger receptor (SR-A). Our goal was to investigate the effect of IDE deficiency (Ide(-/-)) on diet-induced atherosclerosis in low density lipoprotein-deficient (Ldlr(-/-)) mice and on SR-A function. Irradiated Ldlr(-/-) or Ide(-/-)Ldlr(-/-) mice were reconstituted with wild-type or Ide(-/-) bone marrow and, 6 weeks later, were placed on a high-fat diet for 8 weeks. After 8 weeks on a high-fat diet, male Ldlr(-/-) recipients of Ide(-/-) bone marrow had more atherosclerosis, higher serum cholesterol and increased lesion-associated β-amyloid, an IDE substrate, and receptor for advanced glycation end products (RAGE), a proinflammatory receptor for β-amyloid, compared to male Ldlr(-/-) recipients of wild-type bone marrow. IDE deficiency in male Ldlr(-/-) recipient mice did not affect atherosclerosis or cholesterol levels and moderated the effects of IDE deficiency of bone marrow-derived cells. No differences were seen between Ldlr(-/-) and Ide(-/-)Ldlr(-/-) female mice reconstituted with Ide(-/-) or wild-type bone marrow. IDE deficiency in macrophages did not alter SR-A levels, cell surface SR-A, or foam cell formation. IDE deficiency in bone marrow-derived cells results in larger atherosclerotic lesions, increased lesion-associated Aβ and RAGE, and higher serum cholesterol in male, Ldlr(-/-) mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Plant cell wall glycosyltransferases: High-throughput recombinant expression screening and general requirements for these challenging enzymes

    DEFF Research Database (Denmark)

    Welner, Ditte Hededam; Shin, David; Tomaleri, Giovani P.

    2017-01-01

    knowledge of the enzyme(s) being studied. We have developed a rational approach to this process. We devise a pipeline comprising in silico selection of targets and construct design, and high-throughput expression screening, target enrichment, and hit identification. We have applied this pipeline to a test...

  1. The plant cell wall in the feeding sites of cyst nematodes

    Directory of Open Access Journals (Sweden)

    Holger eBohlmann

    2014-03-01

    Full Text Available Plant parasitic cyst nematodes (genera Heterodera and Globodera are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2 and migrate intracellularly towards the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  2. The plant cell wall in the feeding sites of cyst nematodes

    Science.gov (United States)

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium. PMID:24678316

  3. Concordant association of insulin degrading enzyme gene (IDE variants with IDE mRNA, Abeta, and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Minerva M Carrasquillo

    2010-01-01

    Full Text Available The insulin-degrading enzyme gene (IDE is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD.We examined conserved regions of IDE and its 10 kb flanks in 269 AD cases and 252 controls thereby identifying 17 putative functional polymorphisms. These variants formed eleven haplotypes that were tagged with ten variants. Four of these showed significant association with IDE transcript levels in samples from 194 LOAD cerebella. The strongest, rs6583817, which has not previously been reported, showed unequivocal association (p = 1.5x10(-8, fold-increase = 2.12,; the eleven haplotypes were also significantly associated with transcript levels (global p = 0.003. Using an in vitro dual luciferase reporter assay, we found that rs6583817 increases reporter gene expression in Be(2-C (p = 0.006 and HepG2 (p = 0.02 cell lines. Furthermore, using data from a recent genome-wide association study of two Croatian isolated populations (n = 1,879, we identified a proxy for rs6583817 that associated significantly with decreased plasma Abeta40 levels (ss = -0.124, p = 0.011 and total measured plasma Abeta levels (b = -0.130, p = 0.009. Finally, rs6583817 was associated with decreased risk of LOAD in 3,891 AD cases and 3,605 controls. (OR = 0.87, p = 0.03, and the eleven IDE haplotypes (global p = 0.02 also showed significant association.Thus, a previously unreported variant unequivocally associated with increased IDE expression was also associated with reduced plasma Abeta40 and decreased LOAD susceptibility. Genetic association between LOAD and IDE has been difficult to replicate. Our findings suggest that targeted testing of expression SNPs (eSNPs strongly associated with altered transcript levels in autopsy brain samples may be a powerful way to identify genetic associations with LOAD that would otherwise be difficult to detect.

  4. The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide

    Science.gov (United States)

    Shinohara, Naoki; Sunagawa, Naoki; Tamura, Satoru; Yokoyama, Ryusuke; Ueda, Minoru; Igarashi, Kiyohiko; Nishitani, Kazuhiko

    2017-04-01

    Cellulose is an economically important material, but routes of its industrial processing have not been fully explored. The plant cell wall - the major source of cellulose - harbours enzymes of the xyloglucan endotransglucosylase/hydrolase (XTH) family. This class of enzymes is unique in that it is capable of elongating polysaccharide chains without the requirement for activated nucleotide sugars (e.g., UDP-glucose) and in seamlessly splitting and reconnecting chains of xyloglucan, a naturally occurring soluble analogue of cellulose. Here, we show that a recombinant version of AtXTH3, a thus far uncharacterized member of the Arabidopsis XTH family, catalysed the transglycosylation between cellulose and cello-oligosaccharide, between cellulose and xyloglucan-oligosaccharide, and between xyloglucan and xyloglucan-oligosaccharide, with the highest reaction rate observed for the latter reaction. In addition, this enzyme formed cellulose-like insoluble material from a soluble cello-oligosaccharide in the absence of additional substrates. This newly found activity (designated “cellulose endotransglucosylase,” or CET) can potentially be involved in the formation of covalent linkages between cellulose microfibrils in the plant cell wall. It can also comprise a new route of industrial cellulose functionalization.

  5. Fibre degrading enzymes and Lactobacillus plantarum influence liquid feed characteristics and the solubility of fibre components and dry matter in vitro

    DEFF Research Database (Denmark)

    Christensen, P.; Glitso, V.; Pettersson, D.

    2007-01-01

    The effect of fibre degrading enzymes in combination with Lactobacillus plantarum on feed viscosity and pH and on solubilisation of non-starch polysaccharides (NSP) was studied in vitro using diets composed of cereals and soybean meal. The diet was incubated over time up to 24 It as liquid feed o...... in comparison with the control based on the original dry feed. It may be concluded that enzyme supplementation to liquid or fermented feed may cause a reduction in the insoluble dietary fibre content as well as a reduction in feed viscosity, while the pH is not influenced....... reduction in pH down to a level of about pH 4.3. This development was irrespective of enzyme supplementation level. The L. plantarum treatment had already reached a pH of 4.2 after 8 h and a pH of 3.6 after 24 It. The viscosity was reduced with supplementation with a high enzyme dose (6000 FXU and 600 FBG...... per kg diet), compared to the control diet (without enzymes). Treatment with L. plantarum (1.8 x 1011 CFU/kg feed) increased the viscosity over time, even with enzyme supplementation, compared to the control treatment. Diets without and with enzyme supplementation and pre-treated as dry feed (control...

  6. Calcium-dependent, interleukin 1-converting enzyme inhibitor-insensitive degradation of lamin B1 and DNA fragmentation in isolated thymocyte nuclei.

    Science.gov (United States)

    McConkey, D J

    1996-09-13

    Recent work suggests that the proteolytic degradation of the nuclear lamins is a common event in apoptosis, although the nature of the proteases involved is still not clear. Our previous work showed that the degradation of lamin B1 in glucocorticoid-treated thymocytes occurs via a Ca2+-sensitive mechanism and that exogenous Ca2+ promotes lamin degradation in isolated thymocyte nuclei from untreated cells. Here we demonstrate that peptide-based inhibitors of the interleukin 1beta-converting enzyme family of cysteine proteases (Tyr-Val-Ala-Asp fluoromethyl ketone) and of the nuclear scaffold multicatalytic proteinase (Ala-Pro-Phe chloromethyl ketone) block the degradation of lamin B1 to a 21-kDa fragment in thymocytes treated with glucocorticoid, the Ca2+-mobilizing agent thapsigargin, or antibodies to the T cell receptor. However, among a panel of inhibitors specific for several different proteases implicated in apoptosis, only tosylphenylalanyl chloromethyl ketone and the nuclear scaffold protease inhibitor block lamin degradation, histone H1 cleavage, and DNA fragmentation in isolated thymocyte nuclei incubated with Ca2+. Overexpression of human BCL-2 in nuclei by stable transfection resulted in an inhibition of Ca2+-stimulated lamin degradation and DNA fragmentation, suggesting that endogenous nuclear BCL-2 regulates activation of the nuclear scaffold protease. The results demonstrate the existence of an alternative pathway of lamin degradation and DNA fragmentation mediated by a resident Ca2+-stimulated nuclear protease that is not directly dependent upon activation of the interleukin 1beta-converting enzyme family of cell death regulators.

  7. A new generation of versatile chromogenic substrates for high-throughput analysis of biomass-degrading enzymes

    DEFF Research Database (Denmark)

    Kracun, Stjepan Kresimir; Schückel, Julia; Westereng, Bjørge

    2015-01-01

    of carbohydrate-acting enzymes to be putatively identified. However, there is a paucity of methods for rapidly screening the biochemical activities of these enzymes, and this is a serious bottleneck in the development of enzyme-reliant bio-refining processes. Results: We have developed a new generation of multi-coloured...

  8. The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica.

    Science.gov (United States)

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods.

  9. Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis.

    Science.gov (United States)

    Charton, Julie; Gauriot, Marion; Guo, Qing; Hennuyer, Nathalie; Marechal, Xavier; Dumont, Julie; Hamdane, Malika; Pottiez, Virginie; Landry, Valerie; Sperandio, Olivier; Flipo, Marion; Buee, Luc; Staels, Bart; Leroux, Florence; Tang, Wei-Jen; Deprez, Benoit; Deprez-Poulain, Rebecca

    2014-05-22

    Insulin degrading enzyme (IDE) is a highly conserved zinc metalloprotease that is involved in the clearance of various physiologically peptides like amyloid-beta and insulin. This enzyme has been involved in the physiopathology of diabetes and Alzheimer's disease. We describe here a series of small molecules discovered by screening. Co-crystallization of the compounds with IDE revealed a binding both at the permanent exosite and at the discontinuous, conformational catalytic site. Preliminary structure-activity relationships are described. Selective inhibition of amyloid-beta degradation over insulin hydrolysis was possible. Neuroblastoma cells treated with the optimized compound display a dose-dependent increase in amyloid-beta levels. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. A novel analytical method for D-glucosamine quantification and its application in the analysis of chitosan degradation by a minimal enzyme cocktail

    DEFF Research Database (Denmark)

    Mekasha, Sophanit; Toupalová, Hana; Linggadjaja, Eka

    2016-01-01

    Enzymatic depolymerization of chitosan, a β-(1,4)-linked polycationic polysaccharide composed of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) provides a possible route to the exploitation of chitin-rich biomass. Complete conversion of chitosan to mono-sugars requires the synergistic...... action of endo- and exo- chitosanases. In the present study we have developed an efficient and cost-effective chitosan-degrading enzyme cocktail containing only two enzymes, an endo-attacking bacterial chitosanase, ScCsn46A, from Streptomyces coelicolor, and an exo-attacking glucosamine specific β...... was easily detected, which is about 1000-fold better than the sensitivity of more commonly used detection methods based on refractive index. We also obtained qualitative insight into product development during the enzymatic degradation reaction by means of ElectroSpray Ionization-Mass Spectrometry (ESI-MS)....

  11. Front walls fight for atmospheric aggressions. Coatings for degrading pollutants; Les facades se defendent contre les agressions atmospheriques. Des enduits pour degrader les polluants

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, V.

    2002-06-01

    Titanium dioxide-based paints developed in the framework of a European project named Picada (Vinci-GTMC (France), CTG Italcementi (Italy), Millenium Chemicals (USA), Dansk Beton Technik (Denmark)) allow the transformation of nitrogen oxides into nitrates or nitrous acids. TiO{sub 2} also prevents the adherence of stain on walls when a regularly washing is performed by rainfalls. Short article. (J.S.)

  12. Modification of cell wall polysaccharides during retting of cassava roots.

    Science.gov (United States)

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Characterisation and enzymic degradation of non-starch polysccharides in lignocellulosic by-products : a study on sunflower meal and palm-kernel meal

    OpenAIRE

    Duesterhoeft, E.M.

    1993-01-01

    Non-starch polysaccharides (NSP) constitute a potentially valuable part of plant by- products deriving from the food and agricultural industries. Their use for various applications (fuel, feed, food) requires the degradation and modification of the complex plant materials. This can be achieved by enzymatic processes which, in comparison with chemical or physical methods, are regarded as energy-saving and non-polluting. However, a major disadvantage of enzymic processes often is their...

  14. Degradação ruminal da silagem de milho e da palha de arroz utilizando enzimas fibrolíticas exógenas = Ruminal degradation of corn silage and rice straw using exogenous fibrolityc enzymes

    Directory of Open Access Journals (Sweden)

    Adriana de Souza Martins

    2008-10-01

    . Soluble fraction of DM and CP corn silage increased with enzyme supplementation. There was no effect of enzymes on the cell wall degradation of roughages.The enzyme addition did not alter the ADIN/total N level of corn silage; however, this ratio was increased on the rice straw incubated during 12 and 48 h. In general, the SEM observations showed increased bacterial colonization on the cell wall of roughages with fibrolytic enzymes addition, although without effect on ruminal degradation.

  15. C allele of the rs2209972 single nucleotide polymorphism of the insulin degrading enzyme gene and Alzheimer's disease in type 2 diabetes, a case control study.

    Science.gov (United States)

    Gutiérrez-Hermosillo, Hugo; Díaz De León-González, Enrique; Palacios-Corona, Rebeca; Cedillo-Rodríguez, Javier Armando; Camacho-Luis, Abelardo; Reyes-Romero, Miguel Arturo; Medina-Chávez, Juan Humberto; Blandón, Pedro A

    2015-02-20

    In the last few decades we have witnessed an interesting transformation of the population pyramids throughout the world. As the population's life expectancy increases, there are more chronic diseases such as diabetes mellitus and dementias, and both of them have shown an association. To determine the association between Alzheimer's disease in diabetic patients and the insulin degrading enzyme in outpatients of a second level Hospital in Monterrey, Mexico. This was a case control study in which we included outpatients from the Geriatrics Clinic of a Hospital in Northeastern Mexico. Cases were patients with a Mini Mental Score Exam (MMSE) below 24 and DSM-IV criteria for Dementia. Controls were patients who had MMSE scores greater than 24. Data from 97 patients were analyzed. Regarding physical examination and the results of laboratory tests, there were no differences between the two groups (p>0.05). A 98% prevalence of the insulin degrading enzyme was documented in the sample studied. We found an association between a homozygous status for the CC genotype and Dementia with an estimated Odds Ratio (OR) of 2.5 (CI 95% 1.6-3.3) on the bivariate test, while, on the multivariate analysis, the OR was estimated 3.3 (CI 95% 1.3-8.2). Evidence shows that cognitive impairment is more frequent among those exposed to the C allele of the rs2209972 SNP of the insulin degrading enzyme gene. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  16. Examinations of a new long-term degradable electrospun polycaprolactone scaffold in three rat abdominal wall models

    DEFF Research Database (Denmark)

    Jangö, Hanna; Gräs, Søren; Christensen, Lise

    2017-01-01

    together, the long-term degradable polycaprolactone scaffold provided biomechanical reinforcement by inducing a marked foreign-body response and attracting numerous inflammatory cells to form a strong neo-tissue construct. However, cells from the muscle fiber fragments did not survive in this milieu....... Properties of the new neo-tissue construct must be evaluated at the time of full degradation of the scaffold before its possible clinical value in pelvic organ prolapse surgery can be evaluated....

  17. Effects of Hypertension and Anti-Hypertensive Treatment on Amyloid-β (Aβ) Plaque Load and Aβ-Synthesizing and Aβ-Degrading Enzymes in Frontal Cortex.

    Science.gov (United States)

    Ashby, Emma L; Miners, James S; Kehoe, Patrick G; Love, Seth

    2016-01-01

    Epidemiological data associate hypertension with a predisposition to Alzheimer's disease (AD), and a number of postmortem and in vivo studies also demonstrate that hypertension increases amyloid-β (Aβ) pathology. In contrast, anti-hypertensive medications reportedly improve cognition and decrease the risk of AD, while certain classes of anti-hypertensive drugs are associated with decreased AD-related pathology. We investigated the effects of hypertension and anti-hypertensive treatment on Aβ plaque load in postmortem frontal cortex in AD. Aβ load was significantly increased in hypertensive (n = 20) relative to normotensive cases (n = 62) and was also significantly higher in treated (n = 9) than untreated hypertensives (n = 11). We then looked into mechanisms by which hypertension and treatment might increase Aβ load, focusing on Aβ-synthesizing enzymes, β- and γ-secretase, and Aβ-degrading enzymes, angiotensin-converting enzyme (ACE), insulin-degrading enzyme (IDE) and neprilysin. ACE and IDE protein levels were significantly lower in hypertensive (n = 21) than normotensive cases (n = 64), perhaps translating to decreased Aβ catabolism in hypertensives. ACE level was significantly higher in treated (n = 9) than untreated hypertensives (n = 12), possibly reflecting feedback upregulation of the renin-angiotensin system. Prospective studies in larger cohorts stratified according to anti-hypertensive drug class are needed to confirm these initial findings and to elucidate the interactions between hypertension, anti-hypertensive treatments, and Aβ metabolism.

  18. Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes.

    Science.gov (United States)

    Serrano, Guilherme Coutinho de Mello; Rezende e Silva Figueira, Thaís; Kiyota, Eduardo; Zanata, Natalia; Arruda, Paulo

    2012-03-23

    Lysine degradation through the saccharopine pathway has been shown only in plants and animals. Here, we show that bacteria possess the genes encoding lysine-ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH). In Silicibacter, the contiguous lkr and sdh genes are interspersed, in another frame, by a polypeptide of unknown function. The bacterial enzyme does not contain the 110-amino-acid interdomain (ID) that intersperses the LKR and SDH domains of the plant enzyme. The ID was found in Cyanobacteria interspersing polypeptides without similarities and activities of LKR and SDH. The LKR/SDH bifunctional polypeptide of animals and plants may have arisen from a α-proteobacterium with a configuration similar to that of Silicibacter, whereas the ID in the plant enzyme may have been inherited from Cyanobacteria. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Structure of the PLP Degradative Enzyme 2-Methyl-3-hydroxypyridine-5-carboxylic Acid Oxygenase from Mesorhizobium loti MAFF303099 and Its Mechanistic Implications

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E.; Cornell

    2009-06-12

    A vitamin B{sub 6} degradative pathway has recently been identified and characterized in Mesorhizobium loti MAFF303099. One of the enzymes on this pathway, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO), is a flavin-dependent enzyme and catalyzes the oxidative ring-opening of 2-methyl-3-hydroxypyridine-5-carboxylic acid to form E-2-(acetamino-methylene)succinate. The gene for this enzyme has been cloned, and the corresponding protein has been overexpressed in Escherichia coli and purified. The crystal structure of MHPCO has been solved to 2.1 {angstrom} using SAD phasing with and without the substrate MHPC bound. These crystal structures provide insight into the reaction mechanism and suggest roles for active site residues in the catalysis of a novel oxidative ring-opening reaction.

  20. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels

    OpenAIRE

    Willis, Jonathan D.; Mazarei, Mitra; Stewart, C. Neal

    2016-01-01

    Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most res...

  1. Lignin peroxidase from the wood-degrading basidiomycete Trametes versicolor. Studies of enzymic properties and gene structure

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Leif

    1994-01-01

    This study is a contribution to the identification and characterization, at a molecular level, of the enzymic machinery utilized by Trametes versicolor to effect ligninolysis. Emphasis has been given to lignin peroxidase and the genes encoding this enzyme. The characterization of genes contributes to the knowledge of the primary structure of fungal peroxidases. Although much has been gained from studies of complex systems, such as fungal cultures or crude enzyme preparations, a final characterization cannot be reached without the use of defined reaction components. Enzyme purification, studies of the action of pure enzyme preparations on well defined substrates, and characterization of enzyme structure have therefore been given attention. Since ligninolytic peroxidases appear to be produced by T.versicolor during secondary metabolism, the time required for enzyme production tends to be rather long. Adequate supply of enzyme, preferably in the form of pure isozymes, would be helpful for further studies of the structure, action, and mechanism of ligninolytic peroxidases. Molecular genetic approaches, such as heterologous expression of overproduction of isolated genes, are usually valuable tools in this regard, especially for detailed studies of structure and function by use of site-directed mutagenesis

  2. Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature.

    Science.gov (United States)

    Chen, Ming; Qin, Xiaosheng; Zeng, Guangming

    2016-11-01

    The question how microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds (LMCs) are affected by the release of single-walled carbon nanotube (SWCNT) into the environment remains to be addressed at the molecular level. We have, therefore concentrated the effects of SWCNT on some important properties associated with enzyme activity and function during microbial oxidation of polycyclic aromatic hydrocarbons (benzo(a)pyrene, acenaphthene and anthracene), LMCs (2,6-dimethoxyphenol, guaiacol and veratryl alcohol) and β-hexachlorocyclohexane, including the behaviour of water molecules, hydrogen bonds (HBs) and hydrophobic interactions (HYs) between ligand and the enzyme, and conformational dynamics in N- and C-terminus. Our study revealed that SWCNT significantly affected the behaviour of water molecules within 5 Å of both these substrates and their respective enzymes during oxidation (p < 0.01), by increasing or decreasing the water number near them. SWCNT tended to significantly enhance or reduce the stability of atom pairs that formed the HBs and HYs (p < 0.01). N- and C-terminus conformations underwent transitions between positive and negative states or between positive state or between negative state in all analyzed complexes. Significant conformational transitions were found for all C-terminus, but only for a part of N-terminus after the inclusion of the SWCNT. These results showed that SWCNT release would significantly affect the microbial enzyme-catalyzed processes of organic pollutants and LMCs in nature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Expeditious Quantification of Lignocellulolytic Enzymes from Indigenous Wood Rot and Litter Degrading Fungi from Tropical Dry Evergreen Forests of Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Jenefar Sudarson

    2014-01-01

    Full Text Available In this study thirty wood rotting and litter degrading basidiomycetes were screened for the production of lignocellulolytic enzymes such as, laccase, peroxidase, and cellulase using rapid micro quantification assay. Out of the 30 indigenous isolates Trametes gibbosa was identified to be a potential lignocellulolytic enzyme producer, producing a maximum amount of cellulase (299.66±1.59 IU/L and laccase (257.94±1.79 U/L. Moreover, it is the second leading producer of peroxidase enzyme (170.19±1.98 U/L. Tricholomopsis sp. a wood rot basidiomycete was found to be the leading lignin decomposer with maximum peroxidase activity (287.84±2 U/L and second maximum laccase activity (250.19±1.83 U/L. However, its cellulolytic potential was found to be moderate (100.04±1.13 U/L. A higher level of lignocellulolytic enzymes was recorded in wood rotting basidiomycetes, whereas very low levels of lignolytic enzymes were found in litter inhabiting basidiomycetes. However, their cellulolytic potential was found to be moderate.

  4. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.

    Science.gov (United States)

    Trakarnpaiboon, Srisakul; Srisuk, Nantana; Piyachomkwan, Kuakoon; Sakai, Kenji; Kitpreechavanich, Vichien

    2017-09-14

    In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8 g:10 g:2 g yielded the highest enzyme production of 201.6 U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5 × 10 6 spores/mL inoculum, which gave the highest enzyme activity of 389.5 U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2 g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300 g raw cassava chips/L with cane molasses.

  5. The effect of dietary faba bean and non-starch polysaccharide degrading enzymes on the growth performance and gut physiology of young turkeys.

    Science.gov (United States)

    Mikulski, D; Juskiewicz, J; Przybylska-Gornowicz, B; Sosnowska, E; Slominski, B A; Jankowski, J; Zdunczyk, Z

    2017-12-01

    The aim of this study was to investigate the effect of dietary replacement of soya bean meal (SBM) with faba bean (FB) and a blend of non-starch polysaccharide (NSP) degrading enzymes on the gastrointestinal function, growth performance and welfare of young turkeys (1 to 56 days of age). An experiment with a 2×2 factorial design was performed to compare the efficacy of four diets: a SBM-based diet and a diet containing FB, with and without enzyme supplementation (C, FB, CE and FBE, respectively). In comparison with groups C, higher dry matter content and lower viscosity of the small intestinal digesta were noted in groups FB. The content of short-chain fatty acids (SCFAs) in the small intestinal digesta was higher in groups FB, but SCFA concentrations in the caecal digesta were comparable in groups C and FB. In comparison with control groups, similar BW gains, higher feed conversion ratio (FCR), higher dry matter content of excreta and milder symptoms of footpad dermatitis (FPD) were noted in groups FB. Enzyme supplementation increased the concentrations of acetate, butyrate and total SCFAs, but it did not increase the SCFA pool in the caecal digesta. The enzymatic preparation significantly improved FCR, reduced excreta hydration and the severity of FPD in turkeys. It can be concluded that in comparison with the SBM-based diet, the diet containing 30% of FB enables to achieve comparable BW gains accompanied by lower feed efficiency during the first 8 weeks of rearing. Non-starch polysaccharide-degrading enzymes can be used to improve the nutritional value of diets for young turkeys, but more desirable results of enzyme supplementation were noted in the SBM-based diet than in the FB-based diet.

  6. Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa

    OpenAIRE

    Samal, Areejit; Craig, James P; Coradetti, Samuel T.; Benz, J. Philipp; Eddy, James A.; Nathan D Price; Glass, N. Louise

    2017-01-01

    Background Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. Results To expand this knowledge base, a d...

  7. Inhibition and kinetic studies of cellulose and hemicellulose degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, Arthy; Siddiqui, Yasmeen; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-02-05

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secrets extracellular hydrolytic enzymes. Which play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by G.boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (Vmax and Km ) and the stability of the hydrolytic enzymes were also characterised. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely, uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Amongst all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G.boninsense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G.boninses with naturally occurring phenolic compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burnum-Johnson, Kristin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tringe, Susannah G. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Teiling, Clotilde [Roche Diagnostics, Indianapolis, IN (United States); Tremmel, Daniel [Univ. of Wisconsin, Madison, WI (United States); Moeller, Joseph [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scott, Jarrod J. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barry, Kerrie W. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Piehowski, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicora, Carrie D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Malfatti, Stephanie [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Monroe, Matthew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goodwin, Lynne A. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weinstock, George [Washington Univ. School of Medicine, St. Louis, MS (United States); Gerardo, Nicole [Emory Univ., Atlanta, GA (United States); Suen, Garret [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Currie, Cameron R. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smothsonian Tropical Research Inst., Balboa (Panama)

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  9. Linking expression of fructan active enzymes, cell wall invertases and sucrose transporters with fructan profiles in growing taproot of chicory (Cichorium intybus: Impact of hormonal and environmental cues

    Directory of Open Access Journals (Sweden)

    Hongbin Wei

    2016-12-01

    Full Text Available In chicory taproot, the inulin-type fructans serve as carbohydrate reserve. Inulin metabolism is mediated by fructan active enzymes (FAZYs: sucrose:sucrose 1-fructosyltransferase (1-SST; fructan synthesis, fructan:fructan-1-fructosyltransferase (1-FFT; fructan synthesis and degradation, and fructan 1-exohydrolases (1-FEH1/2a/2b; fructan degradation. In developing taproot, fructan synthesis is affected by source-to-sink sucrose transport and sink unloading. In the present study, expression of FAZYs, sucrose transporter and CWI isoforms, vacuolar invertase and sucrose synthase was determined in leaf blade, petiole and taproot of young chicory plants (taproot diameter: 2cm and compared with taproot fructan profiles for the following scenarios: i N-starvation, ii abscisic acid (ABA treatment, iii ethylene treatment (via 1-aminoyclopropane-1-carboxylic acid [ACC], and iv cold treatment. Both N-starvation and ABA treatment induced an increase in taproot oligofructans. However, while under N-starvation this increase reflected de novo synthesis, under ABA treatment gene expression profiles indicated a role for both de novo synthesis and degradation of long-chain fructans. Conversely, under ACC and cold treatment oligofructans slightly decreased, correlating with reduced expression of 1-SST and 1-FFT and increased expression of FEHs and VI. Distinct SUT and CWI expression profiles were observed, indicating a functional alignment of SUT and CWI expression with taproot fructan metabolism under different source-sink scenarios.

  10. Effect of prolonged intravenous glucose and essential amino acid infusion on nitrogen balance, muscle protein degradation and ubiquitin-conjugating enzyme gene expression in calves

    Directory of Open Access Journals (Sweden)

    Scaife Jes R

    2008-02-01

    Full Text Available Abstract Background Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose (to stimulate insulin and essential amino acids (EAA would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of

  11. Physiological Degradation of Pectin in Papaya Cell Walls: Release of Long Chains Galacturonans Derived from Insoluble Fractions During Postharvest Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Samira Prado

    2016-07-01

    Full Text Available Papaya (Carica papaya L. is a fleshy fruit that presents a rapid pulp softening during ripening. However, the timeline on how papaya pectinases act in polysaccharide solubilization and the consequent modification of the cell wall fractions during ripening is still not clear. In this work, the gene expression correlations between, on one hand, 16 enzymes potentially acting during papaya cell wall disassembling and, on the other hand, the monosaccharide composition of cell wall fractions during papaya ripening were evaluated. In order to explain differences in the ripening of papaya samplings, the molecular mass distribution of polysaccharides from water-soluble and oxalate-soluble fractions (WSF and OSF, respectively, as well as the oligosaccharide profiling from the WSF fraction, were evaluated by high performance size exclusion chromatography coupled to a refractive index detector (HPSEC-RID and high performance anion-exchange chromatography coupled to pulse amperometric detection (HPAEC-PAD analyses, respectively. Results showed that up-regulated polygalacturonase and β-galactosidase genes were positively correlated with some monosaccharide profiles. In addition, an overall increase in the retention time of high molecular weight (HMW and low molecular weight (LMW polysaccharides in WSF and OSF was shown. The apparent disappearance of one HMW peak of the OSF may result from the conversion of pectin that were crosslinked with calcium into more soluble forms through the action of PGs, which would increase the solubilization of polysaccharides by lowering their molecular weight. Thus, the results allowed us to propose a detailed process of papaya cell wall disassembling that would affect sensorial properties and post-harvesting losses of this commercially important fruit.

  12. Characterisation of cell wall polysaccharides in bilberries and black currants

    NARCIS (Netherlands)

    Hilz, H.

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these

  13. Extractability and digestibility of plant cell wall polysaccharides during hydrothermal and enzymatic degradation of wheat straw (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Hansen, Mads A.T.; Ahl, Louise I.; Pedersen, Henriette L.

    2014-01-01

    to about 20, but mostly around 3-8, and notably more acetylated in stems. Arabinoxylan (AX) and mixed-linkage glucan (MLG) became water-extractable while xylan, xyloglucan (XG), mannan and glucan remained only alkali-extractable. All polysaccharides became partly digestible after pretreatment however......, regardless their extractability in water or only alkali. Based on the results, AX and MLG appear to be loosely bound in the cell wall matrix while the other polysaccharides are bound more tightly and shielded from enzymatic attack by AX and MLG until pretreatment. The gradual solubilisation and digestion...

  14. Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation.

    Science.gov (United States)

    Laothanachareon, Thanaporn; Bunterngsook, Benjarat; Suwannarangsee, Surisa; Eurwilaichitr, Lily; Champreda, Verawat

    2015-12-01

    Synergism between core cellulases and accessory hydrolytic/non-hydrolytic enzymes is the basis of efficient hydrolysis of lignocelluloses. In this study, the synergistic action of three recombinant accessory enzymes, namely GH62 α-l-arabinofuranosidase (ARA), CE8 pectin esterase (PET), and GH10 endo-1,4-beta-xylanase (XYL) from Aspergillus aculeatus expressed in Pichia pastoris to a commercial Trichoderma reesei cellulase (Accellerase® 1500; ACR) on hydrolysis of alkaline pretreated rice straw was studied using a mixture design approach. Applying the full cubic model, the optimal ratio of quaternary enzyme mixture was predicted to be ACR:ARA:PET:XYL of 0.171:0.079:0.100:0.150, which showed a glucose releasing efficiency of 0.173 gglc/FPU, higher than the binary ACR:XYL mixture (0.122 gglc/FPU) and ACR alone (0.081 gglc/FPU) leading to a 47.3% increase in glucose yield compared with that from ACR at the same cellulase dosage. The result demonstrates the varying degree of synergism of accessory enzymes to cellulases useful for developing tailor-made enzyme systems for bio-industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support.

    Science.gov (United States)

    Rehman, Haneef Ur; Aman, Afsheen; Zohra, Raheela Rahmat; Qader, Shah Ali Ul

    2014-02-15

    Pectinase from Bacillus licheniformis KIBGE IB-21 was immobilized in agar-agar matrix using entrapment technique. Effect of different concentrations of agar-agar on pectinase immobilization was investigated and it was found that maximum immobilization was achieved at 3.0% agar-agar with 80% enzyme activity. After immobilization, the optimum temperature of enzyme increased from 45 to 50 °C and reaction time from 5 to 10 minutes as compared to free enzyme. Due to the limited diffusion of high molecular weight substrate, K(m) of immobilized enzyme slightly increased from 1.017 to 1.055 mg ml(-1), while Vmax decreased from 23,800 to 19,392 μM min(-1) as compared to free enzyme. After 120 h entrapped pectinase retained their activity up to 82% and 71% at 30 °C and 40 °C, respectively. The entrapped pectinase showed activity until 10th cycle and maintain 69.21% activity even after third cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes

    Directory of Open Access Journals (Sweden)

    Korpan Ya. I.

    2010-02-01

    Full Text Available Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2 for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD. To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the ìStat 200 device («DropSens», Spain. The enzymes were immobilised in glutaraldehyde vapour. Results. The method of formation of bioselective matrix based on immobilised GOD with MNP-NH2 on the surface of gold amperometric electrodes was optimised. Optimal working conditions of the biosensor developed were determined. Conclusion. MWCNT integration into a bioselective matrix improves the biosensor analytical characteristics which means: higher signal value, wider linear range of glucose analysis, and possibility of substrate determination in wide range of working potential.

  17. Proteomic Investigation of Rhizoctonia solani AG 4 Identifies Secretome and Mycelial Proteins with roles in Plant Cell Wall Degradation and Virulence

    KAUST Repository

    Lakshman, Dilip

    2016-03-28

    Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. Here we used a proteomics approach to characterize both intracellular proteins and the secretome of R. solani AG 4 isolate Rs23A under several growth conditions; the secretome being highly important in pathogenesis. From over 500 total secretome and soluble intracellular protein spots from 2-D gels, 457 protein spots were analyzed and 318 proteins positively matched with fungal proteins of known function by comparison with available R. solani genome databases specific for anastomosis groups 1-IA, 1-IB, and 3. These proteins were categorized to possible cellular locations and functional groups; and for some proteins their putative roles in plant cell wall degradation and virulence. The majority of the secreted proteins were grouped to extracellular regions and contain hydrolase activity.

  18. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues?

    Science.gov (United States)

    Blánquez, Alba; Ball, Andrew S; González-Pérez, José Antonio; Jiménez-Morillo, Nicasio T; González-Vila, Francisco; Arias, M Enriqueta; Hernández, Manuel

    2017-01-01

    The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA-) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA-). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA- and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation.

  19. Molecular Basis for the Recognition and Cleavages of IGF-II, TGF-[alpha], and Amylin by Human Insulin-Degrading Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qing; Manolopoulou, Marika; Bian, Yao; Schilling, Alexander B.; Tang, Wei-Jen (UC); (UIC)

    2010-02-11

    Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-{beta}, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-{alpha} (TGF-{alpha}) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-{alpha}, amylin, reduced amylin, and amyloid-{beta} by human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-{alpha} at 2.3 {angstrom} and IDE-amylin at 2.9 {angstrom}. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.

  20. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria.

    Science.gov (United States)

    Wynant, Niels; Santos, Dulce; Verdonck, Rik; Spit, Jornt; Van Wielendaele, Pieter; Vanden Broeck, Jozef

    2014-03-01

    RNA interference (RNAi) has become a widely used reverse genetics tool in eukaryotes and holds great potential to contribute to the development of novel strategies for insect pest control. While previous studies clearly demonstrated that injection of dsRNA into the body cavity of the desert locust, Schistocerca gregaria, is highly effective to induce gene silencing effects, we observed that the RNAi response is much less sensitive to orally delivered dsRNA. In line with this, we report on the presence of a potent dsRNA degrading activity in the midgut juice. Four different dsRNase sequences that belong to the DNA/RNA Non-specific Nuclease superfamily were retrieved from a transcriptome database of the desert locust. Surprisingly, we have found that, in the publicly available eukaryote nucleotide sequence databases, the presence of this group of enzymes is restricted to insects and crustaceans. Nonetheless, phylogenetic analyses predict a common origin of these enzymes with the Endonuclease G (EndoG) Non-specific Nucleases that display a widespread taxonomic distribution. Moreover, in contrast to the Sg-endoG transcript, the four Sg-dsRNase transcripts appear to be specifically expressed in the gut. Finally, by means of RNAi, we provide evidence for an important contribution of dsRNase2 to the dsRNA degrading activity that is present in the gut lumen of S. gregaria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis.

    Science.gov (United States)

    Pulido, Pablo; Llamas, Ernesto; Llorente, Briardo; Ventura, Salvador; Wright, Louwrance P; Rodríguez-Concepción, Manuel

    2016-01-01

    The lifespan and activity of proteins depend on protein quality control systems formed by chaperones and proteases that ensure correct protein folding and prevent the formation of toxic aggregates. We previously found that the Arabidopsis thaliana J-protein J20 delivers inactive (misfolded) forms of the plastidial enzyme deoxyxylulose 5-phosphate synthase (DXS) to the Hsp70 chaperone for either proper folding or degradation. Here we show that the fate of Hsp70-bound DXS depends on pathways involving specific Hsp100 chaperones. Analysis of individual mutants for the four Hsp100 chaperones present in Arabidopsis chloroplasts showed increased levels of DXS proteins (but not transcripts) only in those defective in ClpC1 or ClpB3. However, the accumulated enzyme was active in the clpc1 mutant but inactive in clpb3 plants. Genetic evidence indicated that ClpC chaperones might be required for the unfolding of J20-delivered DXS protein coupled to degradation by the Clp protease. By contrast, biochemical and genetic approaches confirmed that Hsp70 and ClpB3 chaperones interact to collaborate in the refolding and activation of DXS. We conclude that specific J-proteins and Hsp100 chaperones act together with Hsp70 to recognize and deliver DXS to either reactivation (via ClpB3) or removal (via ClpC1) depending on the physiological status of the plastid.

  2. Production of a biodegradable plastic-degrading enzyme from cheese whey by the phyllosphere yeast Pseudozyma antarctica GB-4(1)W.

    Science.gov (United States)

    Watanabe, Takashi; Shinozaki, Yukiko; Suzuki, Ken; Koitabashi, Motoo; Yoshida, Shigenobu; Sameshima-Yamashita, Yuka; Kuze Kitamoto, Hiroko

    2014-08-01

    Cheese whey is a by-product of cheese production and has high concentrations of lactose (about 5%) and other nutrients. Pseudozyma antarctica produces a unique cutinase-like enzyme, named PaE, that efficiently degrades biodegradable plastics. A previous study showed that a combination of 1% oil and 0.5% lactose increased cutinase-like enzyme production by another species of yeast. In this study, to produce PaE from cheese whey, we investigated the effects of soybean oil on PaE production (expressed as biodegradable plastic-degrading activity) by P. antarctica growing on lactose or cheese whey. In flask cultures, the final PaE activity was only 0.03 U/ml when soybean oil was used as the sole carbon source, but increased to 1.79 U/ml when a limited amount of soybean oil (under 0.5%) was combined with a relatively high concentration of lactose (6%). Using a 5-L jar fermentor with lactose fed-batch cultivation and periodic soybean oil addition, about 14.6 U/ml of PaE was obtained after 5 days of cultivation. When the lactose was replaced with cheese whey, PaE production was 10.8 U/ml after 3 days of cultivation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  4. Paper-based 1-MCP treatment suppresses cell wall metabolism and delays softening of Huanghua pears during storage.

    Science.gov (United States)

    Chen, Yihui; Sun, Junzheng; Lin, Hetong; Hung, Yen-Con; Zhang, Shen; Lin, Yifen; Lin, Ting

    2017-06-01

    Huanghua pear will lose its firmness quickly during postharvest storage at ambient temperature, and hence has limited storage and marketing potential. In this study, Huanghua pears treated with paper containing 0 (control) or 0.9 μL L-1 1-methylcyclopropene (1-MCP) for 12 h, and then stored at (25 ± 1) °C for 30 days, were investigated for the effect on fruit firmness, cell wall composition and activities of cell wall-degrading enzymes. Huanghua pears without 1-MCP treatment softened rapidly during room-temperature storage and cell wall composition analyses showed an increase in water-soluble pectin (WSP) and decreases in cell wall materials (CWM) and cell wall components such as Na2 CO3 -soluble pectin (NSP), cellulose and hemicellulose. In contrast, the 1-MCP-treated fruits maintained higher firmness than the control; also, the treatment prevented the formation of WSP and reduced the degradation of CWM and cell wall components including NSP, cellulose and hemicellulose. 1-MCP treatment also significantly lowered the activities of cell wall-degrading enzymes such as pectinesterase, polygalacturonase, β-galactosidase and cellulase during storage. 1-MCP treatment can slow down the softening of Huanghua pears through reducing cell wall-degrading enzyme activities and hence maintain the integrity of the cell wall structure. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  6. Degradation of proteins by enzymes exuded by Allium porrum roots - a potentially important strategy for acquiring organic nitrogen by plants.

    Science.gov (United States)

    Adamczyk, Bartosz; Godlewski, Mirosław; Smolander, Aino; Kitunen, Veikko

    2009-10-01

    Nitrogen is one of the crucial elements that regulate plant growth and development. It is well-established that plants can acquire nitrogen from soil in the form of low-molecular-mass compounds, namely nitrate and ammonium, but also as amino acids. Nevertheless, nitrogen in the soil occurs mainly as proteins or proteins complexed with other organic compounds. Proteins are believed not to be available to plants. However, there is increasing evidence to suggest that plants can actively participate in proteolysis by exudation of proteases by roots and can obtain nitrogen from digested proteins. To gain insight into the process of organic nitrogen acquisition from proteins by leek roots (Allium porrum L. cv. Bartek), casein, bovine serum albumin and oxidized B-chain of insulin were used; their degradation products, after exposure to plant culture medium, were studied using liquid chromatography-mass spectrometry (LC-MS). Casein was degraded to a great extent, but the level of degradation of bovine serum albumin and the B-chain of insulin was lower. Proteases exuded by roots cleaved proteins, releasing low-molecular-mass peptides that can be taken up by roots. Various peptide fragments produced by digestion of the oxidized B-chain of insulin suggested that endopeptidase, but also exopeptidase activity was present. After identification, proteases were similar to cysteine protease from Arabidopsis thaliana. In conclusion, proteases exuded by roots may have great potential in the plant nitrogen nutrition.

  7. Oral activity of FMRFamide-related peptides on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut.

    Science.gov (United States)

    Down, Rachel E; Matthews, H June; Audsley, Neil

    2011-11-10

    Insect myosuppressins and myosuppressin analogues were tested for oral toxicity against the pea aphid Acyrthosiphon pisum (Harris) by incorporation into an artificial diet. Acyrthosiphon pisum myosuppressin (Acypi-MS) and leucomyosuppressin (LMS) had significant dose-dependent effects (0.1-0.5μg peptide/μl diet) on feeding suppression, mortality, reduced growth and fecundity compared with control insects, but Acypi-MS was more potent than LMS. One hundred percent of aphids had died after 10days of feeding on 0.5μg Acypi-MS/μl diet whereas 40% of aphids feeding on 0.5μg LMS/μl diet were still alive after 13days. Myosuppressins were degraded by aphid gut enzymes; degradation was most likely due to a carboxypeptidase-like protease, an aminopeptidase and a cathepsin L cysteine protease. The estimated half-life of Acypi-MS in a gut extract was 30min, whereas LMS was degraded more slowly (t½=54min). No toxicity was observed when the analogues δR(9) LMS and citrolline(9) Acypi-MS or FMRFamide were fed to the pea aphid. These findings not only help to better understand the biological effects of myosuppressins in aphids but also demonstrate the potential use of myosuppressins in a strategy to control aphid pests. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  8. Plant pathogens as a source of diverse enzymes for lignocellulose digestion.

    Science.gov (United States)

    Gibson, Donna M; King, Brian C; Hayes, Marshall L; Bergstrom, Gary C

    2011-06-01

    The plant cell wall is a major barrier that many plant pathogens must surmount for successful invasion of their plant hosts. Full genome sequencing of a number of plant pathogens has revealed often large, complex, and redundant enzyme systems for degradation of plant cell walls. Recent surveys have noted that plant pathogenic fungi are highly competent producers of lignocellulolytic enzymes, and their enzyme activity patterns reflect host specificity. We propose that plant pathogens may contribute to biofuel production as diverse sources of accessory enzymes for more efficient conversion of lignocellulose into fermentable sugars. Copyright © 2011. Published by Elsevier Ltd.

  9. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice.

    Science.gov (United States)

    Wei, Xiuqing; Ke, Bilun; Zhao, Zhiyun; Ye, Xin; Gao, Zhanguo; Ye, Jianping

    2014-01-01

    Insulin degrading enzyme (IDE) is a potential drug target in the treatment of type 2 diabetes (T2D). IDE controls circulating insulin through a degradation-dependent clearance mechanism in multiple tissues. However, there is not sufficient information about IDE regulation in obesity. In this study, we test obesity-associated factors and pioglitazone in the regulation of IDE in diet-induced obese (DIO) C57BL/6 mice. The enzyme activity and protein level of IDE were increased in the liver of DIO mice. Pioglitazone (10 mg/kg/day) administration for 2 months significantly enhanced the enzyme activity (75%), protein (180%) and mRNA (100%) of IDE in DIO mice. The pioglitazone-induced changes were coupled with 50% reduction in fasting insulin and 20% reduction in fasting blood glucose. The mechanism of IDE regulation in liver was investigated in the mouse hepatoma cell line (Hepa 1c1c7 cells), in which pioglitazone (5 µM) increased IDE protein and mRNA in a time-dependent manner in an 8 h study. Free fatty acid (palmitate 300 µM) induced IDE protein, but reduced the mRNA. Glucagon induced, and TNF-α decreased IDE protein. Insulin did not exhibit any activity in the same condition. In summary, pioglitazone, FFA and glucagon directly increased, but TNF-α decreased the IDE activity in hepatocytes. The results suggest that IDE activity is regulated in liver by multiple factors in obesity and pioglitazone may induce IDE activity in the control of T2D.

  10. Effect of thiol compounds and flavins on mercury and organomercurial degrading enzymes in mercury resistant aquatic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pahan, K.; Ray, S.; Gachhui, R.; Chaudhuri, J.; Mandal, A. (Univ. College of Science, Calcutta (India))

    1990-02-01

    Plasmid-determined mercuric and organomercurial resistance in microorganisms has been studied by several workers. Mercury reductase, catalyzing the reduction of mercury depends on sulfhydryl compounds. Organomercurial lyase that catalyzes the splitting of C-Hg linkages also needs thiol compounds for its activity. Until recently, no study has been reported on thiol specificity of these enzymes from various sources. In the present study, the authors report on enzymatic volatilization of HgCl{sub 2} by fourteen Hg-resistant bacterial strains. They have also studied thiol specificity of Hg-reductases and organomercurial lyases isolated from the above bacterial species. Hg-reductase is known to have FAD-moiety which stimulates enzyme activity whereas FMN and riboflavin are ineffective in this regard. The effect of flavins, namely FAD, FMN and riboflavin, on Hg-reductase and organomercurial lyase activity is also reported here.

  11. Treatment of colored effluents with lignin-degrading enzymes: An emerging role of marine-derived fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; DeSouza-Ticlo, D.; Verma, A.K.

    - tional treatments. Bacteria and fungi along with their products such as enzymes (Whiteley and Lee 2006) and exopolymeric substances (Liao et al. 2001) aid in bioremediation. The appli- cation of bioremediation has remained limited due to incom- plete... peroxidase. candidates for bioremediation along with the fungi, responsible for their production (Reddy 1995). The process of bioremediation can be monitored by measur- ing any of the following factors: (1) by measuring the redox po- tential, together with p...

  12. Biochemical characterisation of the tissue degrading enzyme, collagenase, in the spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae

    Directory of Open Access Journals (Sweden)

    Ghamari Mahboob

    2014-07-01

    Full Text Available Podisus maculiventris (Say is a generalist predator attacking many insect species from different orders. The bug injects saliva into its prey's body. The ingested hemolymph and liquefied internal tissues pass through the bug's alimentary tract. Collagenase working on peptide bonds of collagen and basement membrane proteins, leads to the disintegration of the prey's internal organs. As yet, there is an almost complete lack of knowledge on the collagenase activity in P. maculiventris. The collagenase activity of the salivary glands and midgut was optimum at pH 8.0 which was congruent with the optimal pH of the total proteolytic activity of the salivary glands. More collagenolytic activity was determined in the posterior lobe of the salivary glands and anterior midgut. Significant inhibition of collagenolytic activity by ethylenediaminetetraacetic acid (EDTA revealed the enzyme is a metalloproteinase. The collagenase activity notably decreased when the bug went hungry. The salivary gland collagenase is a vital enzyme in extra-oral digestion and facilitates the action of other digestive enzymes. The midgut collagenase may be involved in the digestion of the ingested muscle fibers. The collagenase probably acts as an intoxicating agent in the saliva (venom of P. maculiventris. Paralysing toxins are present in the salivary gland secretion.

  13. A molecular analysis of (hemi-)cellulose degradation by Aspergilli

    NARCIS (Netherlands)

    Gielkens, M.M.C.

    1999-01-01

    Glycosylhydrolases like cellulases and xylanases are of great importance for the ecological recycling of biomass. The saprophytic fungi, e.g Aspergillus niger , are capable of degrading plant cell wall material by secreting these enzymes. Because of their properties, a

  14. Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century

    Science.gov (United States)

    Magnin, Florence; Josnin, Jean-Yves; Ravanel, Ludovic; Pergaud, Julien; Pohl, Benjamin; Deline, Philip

    2017-08-01

    High alpine rock wall permafrost is extremely sensitive to climate change. Its degradation has a strong impact on landscape evolution and can trigger rockfalls constituting an increasing threat to socio-economical activities of highly frequented areas; quantitative understanding of permafrost evolution is crucial for such communities. This study investigates the long-term evolution of permafrost in three vertical cross sections of rock wall sites between 3160 and 4300 m above sea level in the Mont Blanc massif, from the Little Ice Age (LIA) steady-state conditions to 2100. Simulations are forced with air temperature time series, including two contrasted air temperature scenarios for the 21st century representing possible lower and upper boundaries of future climate change according to the most recent models and climate change scenarios. The 2-D finite element model accounts for heat conduction and latent heat transfers, and the outputs for the current period (2010-2015) are evaluated against borehole temperature measurements and an electrical resistivity transect: permafrost conditions are remarkably well represented. Over the past two decades, permafrost has disappeared on faces with a southerly aspect up to 3300 m a.s.l. and possibly higher. Warm permafrost (i.e. > - 2 °C) has extended up to 3300 and 3850 m a.s.l. in N and S-exposed faces respectively. During the 21st century, warm permafrost is likely to extend at least up to 4300 m a.s.l. on S-exposed rock walls and up to 3850 m a.s.l. depth on the N-exposed faces. In the most pessimistic case, permafrost will disappear on the S-exposed rock walls at a depth of up to 4300 m a.s.l., whereas warm permafrost will extend at a depth of the N faces up to 3850 m a.s.l., but possibly disappearing at such elevation under the influence of a close S face. The results are site specific and extrapolation to other sites is limited by the imbrication of local topographical and transient effects.

  15. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture.

    Science.gov (United States)

    Abu Laban, Nidal; Selesi, Draženka; Rattei, Thomas; Tischler, Patrick; Meckenstock, Rainer U

    2010-10-01

    Anaerobic benzene degradation was studied with a highly enriched iron-reducing culture (BF) composed of mainly Peptococcaceae-related Gram-positive microorganisms. The proteomes of benzene-, phenol- and benzoate-grown cells of culture BF were compared by SDS-PAGE. A specific benzene-expressed protein band of 60 kDa, which could not be observed during growth on phenol or benzoate, was subjected to N-terminal sequence analysis. The first 31 amino acids revealed that the protein was encoded by ORF 138 in the shotgun sequenced metagenome of culture BF. ORF 138 showed 43% sequence identity to phenylphosphate carboxylase subunit PpcA of Aromatoleum aromaticum strain EbN1. A LC/ESI-MS/MS-based shotgun proteomic analysis revealed other specifically benzene-expressed proteins with encoding genes located adjacent to ORF 138 on the metagenome. The protein products of ORF 137, ORF 139 and ORF 140 showed sequence identities of 37% to phenylphosphate carboxylase PpcD of A. aromaticum strain EbN1, 56% to benzoate-CoA ligase (BamY) of Geobacter metallireducens and 67% to 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX) of A. aromaticum strain EbN1 respectively. These genes are proposed as constituents of a putative benzene degradation gene cluster (∼ 17 kb) composed of carboxylase-related genes. The identified gene sequences suggest that the initial activation reaction in anaerobic benzene degradation is probably a direct carboxylation of benzene to benzoate catalysed by putative anaerobic benzene carboxylase (Abc). The putative Abc probably consists of several subunits, two of which are encoded by ORFs 137 and 138, and belongs to a family of carboxylases including phenylphosphate carboxylase (Ppc) and 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (UbiD/UbiX). © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Degradation products of the artificial azo dye, Allura red, inhibit esterase activity of carbonic anhydrase II: A basic in vitro study on the food safety of the colorant in terms of enzyme inhibition.

    Science.gov (United States)

    Esmaeili, Sajjad; Ashrafi-Kooshk, Mohammad Reza; Khaledian, Koestan; Adibi, Hadi; Rouhani, Shohre; Khodarahmi, Reza

    2016-12-15

    Allura red is a widely used food colorant, but there is debate on its potential security risk. In the present study, we found that degradation products of the dye were more potent agents with higher carbonic anhydrase inhibitory action than the parent dye. The mechanism by which the compounds inhibit the enzyme activity has been determined as competitive mode. In addition, the enzyme binding properties of the compounds were investigated employing different spectroscopic techniques and molecular docking. The analyses of fluorescence quenching data revealed the existence of the same binding site for the compounds on the enzyme molecule. The thermodynamic parameters of ligand binding were not similar, which indicates that different interactions are responsible in binding of the parent dye and degradation products to the enzyme. It appears that enzyme inhibition should be considered, more seriously, as a new opened dimension in food safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry by processing and enzyme technologies: A review

    NARCIS (Netherlands)

    Vries, de S.; Pustjens, A.M.; Schols, H.A.; Hendriks, W.H.; Gerrits, W.J.J.

    2012-01-01

    The effects of processing technologies, whether or not combined with cell wall degrading enzymes, on the physicochemical properties of non-starch polysaccharides (NSP) and the resulting effects on NSP degradation in both pigs and poultry were reviewed. Evaluation of the effects of processing

  18. Fabrication of highly electro catalytic active layer of multi walled carbon nanotube/enzyme for Pt-free dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Arbab, Alvira Ayoub, E-mail: alvira_arbab@yahoo.com [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Sun, Kyung Chul, E-mail: hytec@hanyang.ac.kr [Department of Fuel cells and hydrogen technology, Hanyang University, Seoul 133-791 (Korea, Republic of); Sahito, Iftikhar Ali, E-mail: iftikhar.sahito@faculty.muet.edu.pk [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Qadir, Muhammad Bilal, E-mail: bilal_ntu81@hotmail.com [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeong, Sung Hoon, E-mail: shjeong@hanyang.ac.kr [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • We prepared three different types of enzyme dispersed multiwall carbon nanotube (E-MWCNT) layer for application in Pt-free dye sensitized solar cell (DSSCs). • E-MWCNT catalysts exhibited an extremely good electro-catalytic activity (ECA), compared with the conventional catalyst, when synthesized with lipase enzyme. • E-MWCNT as counter electrode exhibits a high power conversion efficiency (PCE) of 7.5%, which can be compared to 8% efficiency of Pt catalyst. - Abstract: Highly dispersed conductive suspensions of multi walled carbon nanotubes (MWCNT) can have intrinsic electrical and electrochemical characteristics, which make them useful candidate for platinum (Pt)-free, dye sensitized solar cells (DSSCs). High energy conversion efficiency of 7.52% is demonstrated in DSSCs, based on enzyme dispersed MWCNT (E-MWCNT) layer deposited on fluorine doped tin oxide (FTO) glass. The E-MWCNT layer shows a pivotal role as platform to reduce large amount of iodide species via electro catalytically active layer, fabricated by facile tape casting under air drying technique. The E-MWCNT layer with large surface area, high mechanical adhesion, and good interconnectivity is derived from an appropriate enzyme dispersion, which provides not only enhanced interaction sites for the electrolyte/counter electrode interface but also improved electron transport mechanism. The surface morphology and structural characterization were investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electronic microscopy techniques. Electro catalytic activity (ECA) and electrochemical properties of E-MWCNT counter electrode (CE) were investigated using cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The high power conversion efficiency (PCE) of E-MWCNT CE is associated with the low charge transfer

  19. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  20. Degradation of cellulose by basidiomycetous fungi.

    Science.gov (United States)

    Baldrian, Petr; Valásková, Vendula

    2008-05-01

    Cellulose is the main polymeric component of the plant cell wall, the most abundant polysaccharide on Earth, and an important renewable resource. Basidiomycetous fungi belong to its most potent degraders because many species grow on dead wood or litter, in environment rich in cellulose. Fungal cellulolytic systems differ from the complex cellulolytic systems of bacteria. For the degradation of cellulose, basidiomycetes utilize a set of hydrolytic enzymes typically composed of endoglucanase, cellobiohydrolase and beta-glucosidase. In some species, the absence of cellobiohydrolase is substituted by the production of processive endoglucanases combining the properties of both of these enzymes. In addition, systems producing hydroxyl radicals based on cellobiose dehydrogenase, quinone redox cycling or glycopeptide-based Fenton reaction are involved in the degradation of several plant cell wall components, including cellulose. The complete cellulolytic complex used by a single fungal species is typically composed of more than one of the above mechanisms that contribute to the utilization of cellulose as a source of carbon or energy or degrade it to ensure fast substrate colonization. The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulose degradation in the physiology and ecology of the individual groups.

  1. Effect of forage type, harvesting time and exogenous enzyme application on degradation characteristics measured using in vitro technique

    DEFF Research Database (Denmark)

    Moharrery, Ali; Hvelplund, Torben; Weisbjerg, Martin Riis

    2009-01-01

    Five forage species cut at different harvest times were studied for their degradation characteristics using in vitro digestibility technique. The forage species were two grasses and three legumes growing in two seasons (spring growth and second re-growth). Grass and legume forages were harvested...... at three harvesting times being early (E), middle (M) and late (L), both during the spring growth and the second re-growth. The grasses included perennial ryegrass (Lolium perenne), and festulolium (XFestulolium), and the legumes included white clover (Trifolium repens), red clover (Trifolium pratense...... as a form of pre-treatment improved (Pdigestibility (8 h incubation) compared with control. Data suggest that pre-treatment of forage with fibrolytic enzymes can solubilise some fibre and improve digestibilities...

  2. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood.

    Science.gov (United States)

    Liers, Christiane; Arnstadt, Tobias; Ullrich, René; Hofrichter, Martin

    2011-10-01

    The degradation of lignocellulose and the secretion of extracellular oxidoreductases were investigated in beech-wood (Fagus sylvatica) microcosms using 11 representative fungi of four different ecophysiological and taxonomic groups causing: (1) classic white rot of wood (e.g. Phlebia radiata), (2) 'nonspecific' wood rot (e.g. Agrocybe aegerita), (3) white rot of leaf litter (Stropharia rugosoannulata) or (4) soft rot of wood (e.g. Xylaria polymorpha). All strong white rotters produced manganese-oxidizing peroxidases as the key enzymes of ligninolysis (75-2200 mU g(-1)), whereas lignin peroxidase activity was not detectable in the wood extracts. Interestingly, activities of two recently discovered peroxidases - aromatic peroxygenase and a manganese-independent peroxidase of the DyP-type - were detected in the culture extracts of A. aegerita (up to 125 mU g(-1)) and Auricularia auricula-judae (up to 400 mU g(-1)), respectively. The activity of classic peroxidases correlated to some extent with the removal of wood components (e.g. Klason lignin) and the release of small water-soluble fragments (0.5-1.0 kDa) characterized by aromatic constituents. In contrast, laccase activity correlated with the formation of high-molecular mass fragments (30-200 kDa). The differences observed in the degradation patterns allow to distinguish the rot types caused by basidiomycetes and ascomycetes and may be suitable for following the effects of oxidative key enzymes (ligninolytic peroxidases vs. laccases, role of novel peroxidases) during wood decay. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Cloning, expression and purification of extracellular serine protease Esp, a biofilm-degrading enzyme, from Staphylococcus epidermidis.

    Science.gov (United States)

    Sugimoto, S; Iwase, T; Sato, F; Tajima, A; Shinji, H; Mizunoe, Y

    2011-12-01

    Staphylococcus epidermidis Esp, an extracellular serine protease, inhibits Staphylococcus aureus biofilm formation and nasal colonization. To further expand the biotechnological applications of Esp, we developed a highly efficient and economic method for the purification of recombinant Esp based on a Brevibacillus choshinensis expression-secretion system. The esp gene was fused with the N-terminal Sec-dependent signal sequence of the B. choshinensis cell wall protein and a C-terminal hexa-histidine-tag gene. The recombinant Esp was expressed and secreted into the optimized medium as an immature form and subsequently activated by thermolysin. The mature Esp was easily purified by a single purification step using nickel affinity chromatography and showed proteolytic activity as well as Staph. aureus biofilm destruction activity. The purification yield of the developed extracellular production system was 5 mg recombinant mature Esp per 20-ml culture, which was much higher than that of an intracellular production system in Escherichia coli (3 mg recombinant Esp per 1-l culture). Our findings will be a powerful tool for the production and purification of recombinant Esp and also applicable to a large variety of recombinant proteins used for basic researches and biotechnological applications. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  4. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase.

    Science.gov (United States)

    Miyazawa, Ken; Yoshimi, Akira; Zhang, Silai; Sano, Motoaki; Nakayama, Mayumi; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.

  5. Development of an enzyme-linked immunosorbent assay to detect benzylpenicilloic acid, a degradation product of penicillin G in adulterated milk.

    Science.gov (United States)

    Zhang, Yan; Jiang, Yueming; Wang, Shuo

    2010-07-28

    To avoid detection of penicillin G, some producers/merchants illegally add beta-lactamase to milk to degrade it into benzylpenicilloic acid (BPA). This degradation product can cause allergic reactions in humans and, therefore, is a potential hazard to human health. To detect BPA in milk, we established a rapid direct competitive enzyme-linked immunosorbent assay (ELISA) with an IC(50) of 0.32 +/- 0.01 microg L(-1), and a detection limit of 0.030 +/- 0.002 microg L(-1). Matrix effects in the milk samples were easily eliminated by centrifugation and dilution. Recoveries were 72.75-93.25%. Also heat treatments of raw milk did not affect the detection of the BPA. To validate BPA-ELISA, the spiked milk samples were analyzed by ELISA and LC-MS; the results showed a strong correlation (r(2) = 0.99). Incurred samples obtained from Tianjin Entry-Exit Inspection and Quarantine Bureau (TJCIQ) were tested by BPA-ELISA. The results showed an almost 100% correlation (r(2) = 0.99) with the results supplied by the TJCIQ.

  6. Bile acid TUDCA improves insulin clearance by increasing the expression of insulin-degrading enzyme in the liver of obese mice.

    Science.gov (United States)

    Vettorazzi, Jean Franciesco; Kurauti, Mirian Ayumi; Soares, Gabriela Moreira; Borck, Patricia Cristine; Ferreira, Sandra Mara; Branco, Renato Chaves Souto; Michelone, Luciana de Souza Lima; Boschero, Antonio Carlos; Junior, Jose Maria Costa; Carneiro, Everardo Magalhães

    2017-11-01

    Disruption of insulin secretion and clearance both contribute to obesity-induced hyperinsulinemia, though reduced insulin clearance seems to be the main factor. The liver is the major site for insulin degradation, a process mainly coordinated by the insulin-degrading enzyme (IDE). The beneficial effects of taurine conjugated bile acid (TUDCA) on insulin secretion as well as insulin sensitivity have been recently described. However, the possible role of TUDCA in insulin clearance had not yet been explored. Here, we demonstrated that 15 days treatment with TUDCA reestablished plasma insulin to physiological concentrations in high fat diet (HFD) mice, a phenomenon associated with increased insulin clearance and liver IDE expression. TUDCA also increased IDE expression in human hepatic cell line HepG2. This effect was not observed in the presence of an inhibitor of the hepatic membrane bile acid receptor, S1PR2, nor when its downstream proteins were inhibited, including IR, PI3K and Akt. These results indicate that treatment with TUDCA may be helpful to counteract obesity-induced hyperinsulinemia through increasing insulin clearance, likely through enhanced liver IDE expression in a mechanism dependent on S1PR2-Insulin pathway activation.

  7. Structure-activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme.

    Science.gov (United States)

    Charton, Julie; Gauriot, Marion; Totobenazara, Jane; Hennuyer, Nathalie; Dumont, Julie; Bosc, Damien; Marechal, Xavier; Elbakali, Jamal; Herledan, Adrien; Wen, Xiaoan; Ronco, Cyril; Gras-Masse, Helene; Heninot, Antoine; Pottiez, Virginie; Landry, Valerie; Staels, Bart; Liang, Wenguang G; Leroux, Florence; Tang, Wei-Jen; Deprez, Benoit; Deprez-Poulain, Rebecca

    2015-01-27

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Charton, Julie; Gauriot, Marion; Totobenazara, Jane; Hennuyer, Nathalie; Dumont, Julie; Bosc, Damien; Marechal, Xavier; Elbakali, Jamal; Herledan, Adrien; Wen, Xiaoan; Ronco, Cyril; Gras-Masse, Helene; Heninot, Antoine; Pottiez, Virginie; Landry, Valerie; Staels, Bart; Liang, Wenguang G.; Leroux, Florence; Tang, Wei-Jen; Deprez, Benoit (INSRM-France); (UC); (IP-France)

    2015-10-30

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.

  9. Suppression of RNAi by dsRNA-degrading RNaseIII enzymes of viruses in animals and plants.

    Directory of Open Access Journals (Sweden)

    Isabel Weinheimer

    2015-03-01

    Full Text Available Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant and Caenorhabditis elegans (nematode and found that it cleaves double-stranded small interfering RNA (ds-siRNA molecules that are pivotal in the host RNA interference (RNAi pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA--mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3 produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are

  10. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide.

    Science.gov (United States)

    Saleh, Tawfik A; Gupta, Vinod K

    2012-04-01

    The high rate of electron/hole pair recombination reduces the quantum yield of the processes with TiO(2) and represents its major drawback. Adding a co-adsorbent increases the photocatalytic efficiency of TiO(2). In order to hybridize the photocatalytic activity of TiO(2) with the adsorptivity of carbon nanotube, a composite of multi-walled carbon nanotubes and titanium dioxide (MWCNT/TiO(2)) has been synthesized. The composite was characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared absorption spectroscopy (FTIR), and diffuse reflectance UV-vis spectroscopy. The catalytic activity of this composite material was investigated by application of the composite for the degradation of methyl orange. It was observed that the composite exhibits enhanced photocatalytic activity compared with TiO(2). The enhancement in photocatalytic performance of the MWCNT/TiO(2) composite is explained in terms of recombination of photogenerated electron-hole pairs. In addition, MWCNT acts as a dispersing agent preventing TiO(2) from agglomerating activity during the catalytic process, providing a high catalytically active surface area. This work adds to the global discussion of how CNTs can enhance the efficiency of catalysts. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Pedrini, Nicolás; Zhang, Shizhu; Juárez, M Patricia; Keyhani, Nemat O

    2010-08-01

    The insect epicuticle or waxy layer comprises a heterogeneous mixture of lipids that include abundant levels of long-chain alkanes, alkenes, wax esters and fatty acids. This structure represents the first barrier against microbial attack and for broad-host-range insect pathogens, such as Beauveria bassiana, it is the initial interface mediating the host-pathogen interaction, since these organisms do not require any specialized mode of entry and infect target hosts via the cuticle. B. bassiana is able to grow on straight chain alkanes up to n-C(33) as a sole source of carbon and energy. The cDNA and genomic sequences, including putative regulatory elements, for eight cytochrome P450 enzymes, postulated to be involved in alkane and insect epicuticle degradation, were isolated and characterized. Expression studies using a range of alkanes as well as an insect-derived epicuticular extract from the blood-sucking bug Triatomas infestans revealed a differential expression pattern for the P450 genes examined, and suggest that B. bassiana contains a series of hydrocarbon-assimilating enzymes with overlapping specificity in order to target the surface lipids of insect hosts. Phylogenetic analysis of the translated ORFs of the sequences revealed that the enzyme which displayed the highest levels of induction on both alkanes and the insect epicuticular extract represents the founding member of a new cytochrome P450 family, with three of the other sequences assigned as the first members of new P450 subfamilies. The remaining four proteins clustered with known P450 families whose members include alkane monooxygenases.

  12. Dissecting the functional significance of non-catalytic carbohydrate binding modules in the deconstruction of plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center

    2017-03-16

    The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plant cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.

  13. Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract

    NARCIS (Netherlands)

    Bindelle, J.; Pieper, R.; Montoya, C.A.; Geurts van Kessel, A.H.M.; Leterme, P.

    2011-01-01

    An in vitro experiment was carried out to assess how nonstarch polysaccharide (NSP)-degrading enzymes influence the fermentation of dietary fiber in the pig large intestine. Seven wheat and barley products and cultivars with differing carbohydrate fractions were hydrolyzed using pepsin and

  14. Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium.

    Science.gov (United States)

    Sprague, E A; Steinbach, B L; Nerem, R M; Schwartz, C J

    1987-09-01

    Fluid mechanical steady-state laminar wall shear stresses of 30 dyne/cm2 (high stress) and less than 1 dyne/cm2 (low stress) have been applied for varying times to confluent cultures of bovine aortic endothelial cells (BAECs) by means of two parallel plate channel flow chambers in series. BAEC cultures not exposed to shear or flow (no stress) were also studied. A shear stress of 30 dyne/cm2 resulted in cellular elongation and alignment, changes that were largely complete by 24 hr. In experiments in which BAECs were incubated with 125I-labeled low-density lipoprotein for 2 or 24 hr in the presence of shear stress levels, 125I-LDL internalization at 24 hr was increased (p less than .05) in response to high-stress conditions. This increased uptake of 125I-LDL was observed in BAECs prealigned for 24 hr under high stress and in BAECs undergoing alignment in the presence of circulating 125I-LDL. BAECs were also exposed to shear stress for 24 hr in the presence of a lipoprotein-deficient circulating medium to maximize LDL receptor expression. Receptor-mediated 125I-LDL internalization and degradation measured immediately after shear stress were both significantly enhanced (p less than .01) in BAECs exposed to high stress. Furthermore, 125I-LDL binding studies at 4 degrees C revealed a significant increase (p less than .01) in specific 125I-LDL binding to BAECs exposed to high stress relative to those exposed to low or no stress. Nonspecific 125I-LDL endocytosis was not influenced by shear stress levels.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - from the field to the test tube and back.

    Science.gov (United States)

    Papenbrock, J; Riemenschneider, A; Kamp, A; Schulz-Vogt, H N; Schmidt, A

    2007-09-01

    Due to the clean air acts and subsequent reduction of emission of gaseous sulfur compounds sulfur deficiency became one of the major nutrient disorders in Northern Europe. Typical sulfur deficiency symptoms can be diagnosed. Especially plants of the Cruciferae family are more susceptible against pathogen attack. Sulfur fertilization can in part recover or even increase resistance against pathogens in comparison to sulfur-deficient plants. The term sulfur-induced resistance (SIR) was introduced, however, the molecular basis for SIR is largely unknown. There are several sulfur-containing compounds in plants which might be involved in SIR, such as high levels of thiols, glucosinolates, cysteine-rich proteins, phytoalexins, elemental sulfur, or H2S. Probably more than one strategy is used by plants. Species- or even variety-dependent differences in the development of SIR are probably used. Our research focussed mainly on the release of H2S as defence strategy. In field experiments using different BRASSICA NAPUS genotypes it was shown that the genetic differences among BRASSICA genotypes lead to differences in sulfur content and L-cysteine desulfhydrase activity. Another field experiment demonstrated that sulfur supply and infection with PYRENOPEZIZA BRASSICA influenced L-cysteine desulfhydrase activity in BRASSICA NAPUS. Cysteine-degrading enzymes such as cysteine desulfhydrases are hypothesized to be involved in H2S release. Several L- and D-cysteine-specific desulfhydrase candidates have been isolated and partially analyzed from the model plant ARABIDOPSIS THALIANA. However, it cannot be excluded that H2S is also released in a partial back reaction of O-acetyl-L-serine(thiol)lyase or enzymes not yet characterized. For the exact determination of the H2S concentration in the cell a H2S-specific microsensor was used the first time for plant cells. The transfer of the results obtained for application back on BRASSICA was initiated.

  16. Lignocellulose-degrading enzymes, free-radical transformations during composting of lignocellulosic waste and biothermal phases in small-scale reactors.

    Science.gov (United States)

    Bohacz, Justyna

    2017-02-15

    Environmentally friendly strategies of waste management are both part of legal solutions currently in place and a focus of interest worldwide. Large-scale composting plants are set up across various regions while home composting is becoming increasingly popular. A variety of microbial groups are successively at work during composting and enzymatic activities detected in the composting mass fluctuate accordingly. Changes in the activities of oxidoreductases and hydrolases, i.e. glucose oxidase, horseradish peroxidase, lignin peroxidase, laccase, xylanase, superoxide dismutase and keratinase, low-molecular weight compounds, i.e. methoxyphenolic and hydroxyphenolic compounds, and the relative level of superoxide radicals and glucose were determined periodically in water extracts of composts to investigate the process of biochemical transformations of ligninocellulose in relation to biothermal phases and to identify a potential priming effect in two composts containing different ratios of lignocellulosic waste and chicken feathers. Composting was conducted for 30weeks. An important aim of the study was to demonstrate that a positive priming effect was induced during composting of a variety of lignocellulosic waste types using native keratin (chicken feathers) as a source of N. The effect was more evident in compost containing grass, which was related to a more rapid depletion of easily available sources of C and energy (glucose) during composting. Ligninolytic enzymes known to biodegrade recalcitrant organic matter were induced in subsequent biothermal phases of composting. Compost I enriched with grass (pine bark, grass, sawdust and chicken feathers) exhibited a higher enzymatic activity than compost II which did not contain any grass but which had a greater number of hardly-degradable components (pine bark, wheat straw, sawdust, chicken feathers). Similar observations were made for the concentrations of low-molecular weight compounds. The enzymes activities and

  17. Effects of Manduca sexta allatostatin and an analog on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut.

    Science.gov (United States)

    Down, Rachel E; Matthews, H June; Audsley, Neil

    2010-03-01

    The C-type allatostatin, Manduca sexta allatostatin (Manse-AS) and the analog delta R(3)delta R(5)Manse-AS, where R residues were replaced by their d-isomers, were tested for oral toxicity against the pea aphid Acyrthosiphon pisum (Harris) by incorporation into an artificial diet. Both peptides had significant dose-dependent feeding suppression effects, resulting in mortality, reduced growth and fecundity compared with control insects. The delta R(3)delta R(5)Manse-AS analog had an estimated LC(50) of 0.18 microg/microl diet, and was more potent than Manse-AS. At a dose of 0.35 microg delta R(3)delta R(5)Manse-AS/microl diet, 98% of aphids were dead within 3 days, at a rate similar to those aphids that had been starved (no diet controls). On comparison, it required 13 days and three times the dose of Manse-AS fed to aphids to attain 96% mortality. It is possible that the feeding suppression effects of Manse-AS on aphids are due to the inhibition of gut motility. The estimated half-life of Manse-AS when incubated with a gut extract from A. pisum was 54 min. Degradation was most likely due to cathepsin L cysteine and/or trypsin-like proteases, by an unidentified glutamine-specific protease and by a carboxypeptidase-like enzyme. The d-isomers of R in the Manse-AS analog appeared to prevent hydrolysis by cathepsin L cysteine and trypsin-like enzymes, and enhance its half-life (145 min). However delta R(3)delta R(5)Manse-AS was cleaved by enzymes with carboxypeptidase-like and chymotrypsin-like activity. The increased stability of the Manse-AS analog may explain its enhanced feeding suppression effects when continually fed to aphids, and demonstrates the potential use of Manse-AS in a strategy to control aphid pests. (c) 2009. Published by Elsevier Inc. All rights reserved.

  18. Three pectin methylesterase inhibitors protect cell wall integrity for arabidopsis immunity to Botrytis

    DEFF Research Database (Denmark)

    Lionetti, Vincenzo; Fabri, Eleonora; Caroli, Monica De

    2017-01-01

    Infection by necrotrophs is a complex process that starts with the breakdown of the cell wall (CW) matrix initiated by CW-degrading enzymes and results in an extensive tissue maceration. Plants exploit induced defense mechanisms based on biochemical modification of the CW components to protect...

  19. Maternal Lead Exposure Induces Down-regulation of Hippocampal Insulin-degrading Enzyme and Nerve Growth Factor Expression in Mouse Pups.

    Science.gov (United States)

    Li, Xing; Li, Ning; Sun, Hua Lei; Yin, Jun; Tao, Yu Chang; Mao, Zhen Xing; Yu, Zeng Li; Li, Wen Jie; Bogden, John D

    2017-03-01

    Lead exposure is a known potential risk factor for neurodegenerative diseases such as Alzheimer's disease (AD). Exposure to lead during the critical phase of brain development has been linked with mental retardation and hypophrenia in later life. This study was aimed to investigate the effects of lead exposure of pregnant mice on the expressions of insulin-degrading enzyme (IDE) and nerve growth factor (NGF) in the hippocampus of their offspring. Blood samples were collected from the tail vein, and after anesthetizing the pups, the brain was excised on postnatal day 21. Lead concentrations were determined by graphite furnace atomic absorption spectrophotometry, and the expressions of IDE and NGF were determined by immunohistochemistry and Western blotting. Results showed that the reduction in IDE and NGF expression in the hippocampus of pups might be associated with impairment of learning and memory and dementia induced by maternal lead exposure during pregnancy and lactation. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  20. Effect of extrusion conditions and hydrolysis with fiber-degrading enzymes on the production of C5 and C6 sugars from brewers’ spent grain for bioethanol production

    Directory of Open Access Journals (Sweden)

    Erick Heredia-Olea

    2015-03-01

    Full Text Available The bioconversion of brewers’ spent grain into bioethanol was investigated in the present study using thermoplastic extrusion and the use of fiber degrading enzymes. The extrusion conditions i.e. tempering moisture, screws speed, and temperature of last zone of the barrel were taken into account in order to optimize the yield of C5 and C6 sugars during the subsequent enzymatic hydrolysis step of the fibers. The most important variable that affected the sugar yield was the extrusion temperature, followed by the screws speed. The best extrusion conditions were 20% tempering moisture, 200 rpm and 50 °C. No enzymatic and yeast inhibitors were detected in any of the enzymatically-treated fiber hydrolyzates. The fermentation resulted in 5.43 mL bioethanol per 100g of extruded brewers’ spent grain (dry weight basis. The only sugar consumed was glucose. The free amino nitrogen amount quantified in the hydrolyzates was as low as >20 mg L-1, negatively affecting sugars consumption during the fermentation and consequently the ethanol yield.

  1. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus.

    Science.gov (United States)

    Tani, Shuji; Yuki, Shota; Kunitake, Emi; Sumitani, Jun-Ichi; Kawaguchi, Takashi

    2017-06-01

    We screened for factors involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes from approximately 12,000 Aspergillus aculeatus T-DNA insertion mutants harboring a transcriptional fusion between the FIII-avicelase gene (cbhI) promoter and the orotidine 5'-monophosphate decarboxylase gene. Analysis of 5-fluoroorodic acid (5-FOA) sensitivity, cellulose utilization, and cbhI expression of the mutants revealed that a mutant harboring T-DNA at the dipeptidyl peptidase IV (dppIV) locus had acquired 5-FOA resistance and was deficient in cellulose utilization and cbhI expression. The deletion of dppIV resulted in a significant reduction in the cellulose-responsive expression of both cbhI as well as genes controlled by XlnR-independent and XlnR-dependent signaling pathways at an early phase in A. aculeatus. In contrast, the dppIV deletion did not affect the xylose-responsive expression of genes under the control of XlnR. These results demonstrate that DppIV participates in cellulose-responsive induction in A. aculeatus.

  2. 2009 Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes GRC

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Harry [Univ. of Newcastle, Callaghan, NSW (Australia)

    2009-07-26

    The 2009 Gordon Conference on Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes will present cutting-edge research on the enzymatic degradation of cellulose and other plant cell wall polysaccharides. The Conference will feature a wide range of topics that includes the enzymology of plant structural degradation, regulation of the degradative apparatus, the mechanism of protein complex assembly, the genomics of cell wall degrading organisms, the structure of the substrate and the industrial application of the process particularly within the biofuel arena. Indeed the deployment of plant cell wall degrading enzymes in biofuel processes will be an important feature of the meeting. It should be emphasized that the 2009 Conference will be expanded to include, in addition to cellulase research, recent advances in other plant cell wall degrading enzymes, and contributions from people working on hemicellulases and pectinases will be particularly welcome. Invited speakers represent a variety of scientific disciplines, including biochemistry, structural biology, genetics and cell biology. The interplay between fundamental research and its industrial exploitation is a particularly important aspect of the meeting, reflecting the appointment of the chair and vice-chair from academia and industry, respectively. The meeting will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with more established figures in the field. Indeed, some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. The Conference is likely to be heavily subscribed so we would recommend that you submit

  3. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis.

    Directory of Open Access Journals (Sweden)

    Jorge Corbacho

    Full Text Available BACKGROUND: Mature-fruit abscission (MFA in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation. PRINCIPAL FINDINGS: The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression. Although some genes displayed similar regulation in both early and late induction of abscission, such as EXT1-EXT4, EGase1, IAA2, ERF1, AP2D15, FLC, MADS2, ERAF17, SAP5 and SCL13 genes, the majority had different expression patterns. This implies that time-specific events occur during MFA, and emphasizes the value of characterizing multiple time-specific abscission transcriptomes. Analysis of gene-expression from these AZs reveal that a sequential induction of cell-wall-degrading genes is associated with the upregulation of genes involved in endo and exocytosis, and a shift in plant-hormone metabolism and signaling genes during MFA. This is accompanied by transcriptional activity of small-GTPases and synthaxins together with tubulins, dynamins, V-type ATPases and kinesin-like proteins potentially involved in MFA signaling. Early events are potentially controlled by down-regulation of MADS-box, AP2/ERF and Aux/IAA transcription-factors, and up-regulation of homeobox, zinc finger, bZIP, and WRKY transcription-factors, while late events may be controlled by up-regulation of MYB transcription-factors. SIGNIFICANCE: Overall, the data provide a comprehensive view on MFA in fleshy-fruit, identifying candidate genes and pathways associated with early induction of MFA. Our comprehensive gene-expression profile will be very useful for elucidating gene regulatory networks of the MFA in

  4. Phage-encoded colanic acid-degrading enzyme permits lytic phage infection of a capsule-forming resistant mutant Escherichia coli strain.

    Science.gov (United States)

    Kim, Min Soo; Kim, Young Deuk; Hong, Sung Sik; Park, Kwangseo; Ko, Kwan Soo; Myung, Heejoon

    2015-02-01

    In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation.

    Science.gov (United States)

    Msadek, T; Dartois, V; Kunst, F; Herbaud, M L; Denizot, F; Rapoport, G

    1998-03-01

    The nucleotide sequence of the Bacillus subtilis clpP gene was determined. The predicted protein shows very high similarity to members of the ClpP family of proteolytic subunits (68% amino acid sequence identity with that of Escherichia coli). We show that ClpP plays an essential role in stationary phase adaptive responses. Indeed, a delta clpP mutant was constructed and shown to display a pleiotropic phenotype, including a deficiency in both sporulation initiation and competence for DNA uptake. The delta clpP mutant has a highly filamentous morphology and appears to be non-motile, as judged by swarm plate assays. Expression of clpP is strongly induced under heat shock conditions, and ClpP is shown to be essential for growth of B. subtilis at high temperature. The role of ClpP in the sporulation and competence regulatory pathways was investigated. ClpP is required for expression of the spollA and spollG operons, encoding the sigmaF and sigmaE sporulation-specific sigma factors. ClpP is also necessary for the expression of the comK gene, encoding a positive transcriptional regulator of competence genes. ComK-dependent transcription of sacB, encoding the exocellular degradative enzyme levansucrase, was found to be abolished in the delta clpP mutant. MecA has been characterized previously as a negative regulator of comK expression, whose overproduction inhibits both sporulation and competence development. Expression of a mecA'-'lacZ translational fusion is shown to be increased in the delta clpP mutant. We suggest that ClpP is involved in controlling MecA levels in the cell through proteolysis. Increased levels of MecA in the absence of ClpP are at least partly responsible for the observed pleiotropic phenotype of the delta clpP mutant.

  6. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species.

    Science.gov (United States)

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J; Paton, Lois; Woof, Jenny M; von Pawel-Rammingen, Ulrich

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use.

  7. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N.

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  8. Effect of using the Matrix Values for NSP-degrading enzymes on performance, water intake, litter moisture and jejunal digesta viscosity of broilers fed barley-based diet

    Directory of Open Access Journals (Sweden)

    Seyed Adel Moftakharzadeh

    2017-02-01

    Full Text Available In this study, we have evaluated the effect of three multi-enzymes nutrient matrix values and compared the results with that fed barley and the corn diets without enzyme. In entire period, addition of all enzymes to the barley-based diet significantly (p 0.05. Litter moisture and water to feed ratio at 15, 25, and 33 days of age significantly decreased by addition of all enzymes (p < 0.05. In conclusion, considering nutrient matrix values for all used enzymes improved performance of broilers and can be used in formulating diets commercial broiler diets based on barley.

  9. Effects of cell wall degrading enzymes on carbohydrate fractions and metabolites in stomach and ileum of pigs fed wheat bran based diets

    NARCIS (Netherlands)

    Meulen, van der J.; Inborr, J.; Bakker, J.G.M.

    2001-01-01

    Pigs were fed diets containing 40 heat bran incubated with a water:acetic acid mixture (control, C) and a cellulase (Cel-i) or xylanase (Xyl-i) preparation or with addition of the cellulase (Cel-a) or xylanase (Xyl-a) preparation immediately before feeding. Stomach and ileal samples were analysed

  10. Repression of a novel isoform of disproportionating enzyme (stDPE2) in potato leads to inhibition of starch degradation in leaves but not tubers stored at low temperature

    DEFF Research Database (Denmark)

    Lloyd, J.R.; Blennow, A.; Burhenne, K.

    2004-01-01

    A potato (Solanum tuberosum) cDNA encoding an isoform of disproportionating enzyme (stDPE2) was identified in a functional screen in Escherichia coli. The stDPE2 protein was demonstrated to be present in chloroplasts and to accumulate at times of active starch degradation in potato leaves...... tuber extracts and could be demonstrated to transfer glucose from maltose to oyster glycogen....

  11. Effective enhancement of polylactic acid-degrading enzyme production by Amycolatopsis sp. strain SCM_MK2-4 using statistical and one-factor-at-a-time approaches.

    Science.gov (United States)

    Penkhrue, Watsana; Kanpiengjai, Apinun; Khanongnuch, Chartchai; Masaki, Kazuo; Pathom-Aree, Wasu; Punyodom, Winita; Lumyong, Saisamorn

    2017-08-09

    This study aims to find the optimal medium and conditions for polylactic acid (PLA)-degrading enzyme production by Amycolatopsis sp. SCM_MK2-4. Screening of the most effective components in the enzyme production medium by Plackett-Burman design revealed that the silk cocoon and PLA film were the most significant variables enhancing the PLA-degrading enzyme production. After an response surface methodology, a maximum amount of PLA-degrading enzyme activity at 0.74 U mL-1 was predicted and successfully validated at 95% after 0.39% (w/v) silk cocoon and 1.62% (w/v) PLA film were applied to the basal medium. The optimal initial pH value, temperature, and inoculum size were evaluated by a method considering one-factor-at-a-time. The values were recorded at an initial pH in the range of 7.5-9.0, a temperature of 30-32°C, and an inoculum size of 4-10%. The highest activity of approximately 0.95 U mL-1 was achieved after 4 days of cultivation using the optimized medium and under optimized conditions in a shake flask. Upscaling to the use of a 3-L stirred tank fermenter was found to be successful with a PLA-degrading activity of 5.53 U mL-1; which represents a 51-fold increase in the activity compared with that obtained from the nonoptimized medium and conditions in the shake flask.

  12. Degradação ruminal da silagem de milho e da palha de arroz utilizando enzimas fibrolíticas exógenas - DOI: 10.4025/actascianimsci.v30i4.6462 Ruminal degradation of corn silage and rice straw using exogenous fibrolityc enzymes - DOI: 10.4025/actascianimsci.v30i4.6462

    Directory of Open Access Journals (Sweden)

    Telma Teresinha Berchielli

    2009-03-01

    . Soluble fraction of DM and CP corn silage increased with enzyme supplementation. There was no effect of enzymes on the cell wall degradation of roughages. The enzyme addition did not alter the ADIN/total N level of corn silage; however, this ratio was increased on the rice straw incubated during 12 and 48 h. In general, the SEM observations showed increased bacterial colonization on the cell wall of roughages with fibrolytic enzymes addition, although without effect on ruminal degradation.

  13. Comparison of a xylanase and a complex of non starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets.

    Science.gov (United States)

    Vahjen, Wilfried; Osswald, Tanja; Schäfer, Klaus; Simon, Ortwin

    2007-04-01

    Weaned piglets were fed a wheat based diet either non-supplemented or supplemented with a multi-enzyme preparation or a xylanase mono-enzyme preparation, respectively. Both enzyme preparations increased live weight gain nonsignificantly, but only animals of the xylanase group showed a trend (p = 0.076) for an improved feed conversion. Only precaecal digestibility of total amino acids was improved significantly when the mono-enzyme preparation was added. Improvements of digestibility of crude fat, crude protein and starch did not reach the significance level. Both enzyme preparations reduced jejunal viscosity, however viscosity in the colon was only reduced by the mono-enzyme preparation. Both enzymes significantly reduced Lactobacillus spp. cell numbers as well as bacterial metabolites in the stomach and showed similar nonsignificant modifications in jejunum contents except for acetate in the mono-enzyme group. Total jejunal bile acids were unchanged. Compared to the control, the ratio of the main conjugated to the main deconjugated bile acid was significantly higher in the mono-enzyme group. This study has shown that the mono- and multi-enzyme preparation can lead to improved performance in wheat based diets for piglets. Like in poultry, the main mode of action seems to be the reduction of small intestinal viscosity. However, the generation of fermentable carbohydrates by the multi-enzyme preparation may mask beneficial effects on performance due to the development of an active bile acid deconjugating microbiota in the small intestine.

  14. Discriminated release of phenolic substances from red wine grape skins (Vitis vinifera L.) by multicomponent enzymes treatment

    DEFF Research Database (Denmark)

    Arnous, Anis; Meyer, Anne S.

    2010-01-01

    the enzymatic treatment; phenolic acids, including hydroxybenzoic acids and hydroxycinnamic acids, were released as a function of monosaccharides liberation, i.e. as a function of the enzyme catalyzed cell wall degradation of the skins, and with some of the phenolic acids perhaps released from the lignin....... The data moreover suggest that p-coumaric acid was also released during enzyme catalyzed degradation of acylated anthocyanins, probably as a result of cinnamate esterase activity. The data thus provided unexpected new clues as to how the enzymatic treatment with multicomponent pectinolytic enzymes may...

  15. EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G

    2010-01-01

    the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...... an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...

  16. Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.

    Science.gov (United States)

    Martins, Isabel; Garcia, Helga; Varela, Adélia; Núñez, Oscar; Planchon, Sébastien; Galceran, Maria Teresa; Renaut, Jenny; Rebelo, Luís P N; Silva Pereira, Cristina

    2014-02-26

    Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretome. Cork degradation by fungi remains largely overlook. Herein we aimed at understanding how A. nidulans colonise cork cell walls and how this relates to wood colonisation. To address this, the protein species consistently present in the secretome were analysed, as well as major alterations occurring in the substrate, including lignin degradation compounds being released. The obtained data demonstrate that this fungus has superficially attacked the cork cell walls apparently by

  17. Involvement of insulin-degrading enzyme in the clearance of beta-amyloid at the blood-CSF barrier: Consequences of lead exposure

    Directory of Open Access Journals (Sweden)

    Zhang Yanshu

    2009-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by the deposition of beta-amyloid (Aβ peptides in the brain extracellular matrix, resulting in pathological changes and neurobehavioral deficits. Previous work from this laboratory demonstrated that the choroid plexus (CP possesses the capacity to remove Aβ from the cerebrospinal fluid (CSF, and exposure to lead (Pb compromises this function. Since metalloendopeptidase insulin-degrading enzyme (IDE, has been implicated in the metabolism of Aβ, we sought to investigate whether accumulation of Aβ following Pb exposure was due to the effect of Pb on IDE. Methods Rats were injected with a single dose of Pb acetate or an equivalent concentration of Na-acetate; CP tissues were processed to detect the location of IDE by immunohistochemistry. For in vitro studies, choroidal epithelial Z310 cells were treated with Pb for 24 h in the presence or absence of a known IDE inhibitor, N-ethylmaleimide (NEM to assess IDE enzymatic activity and subsequent metabolic clearance of Aβ. Additionally, the expression of IDE mRNA and protein were determined using real time PCR and western blots respectively. Results Immunohistochemistry and confocal imaging revealed the presence of IDE towards the apical surface of the CP tissue with no visible alteration in either its intensity or location following Pb exposure. There was no significant difference in the expressions of either IDE mRNA or protein following Pb exposure compared to controls either in CP tissues or in Z310 cells. However, our findings revealed a significant decrease in the IDE activity following Pb exposure; this inhibition was similar to that seen in the cells treated with NEM alone. Interestingly, treatment with Pb or NEM alone significantly increased the levels of intracellular Aβ, and a greater accumulation of Aβ was seen when the cells were exposed to a combination of both. Conclusion These data suggest that Pb exposure inhibits IDE

  18. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  19. Potential fungal inhibition by immobilized hydrolytic enzymes from Trichoderma asperellum.

    Science.gov (United States)

    Silva, Bárbara Dumas S; Ulhoa, Cirano J; Batista, Karla A; Yamashita, Fábio; Fernandes, Kátia F

    2011-08-10

    The use of cell wall degrading enzymes from Trichoderma asperellum immobilized on biodegradable support is an alternative for food packaging. In this study, hydrolytic enzymes produced by T. asperellum were tested as a fungal growth inhibitor, in free form or immobilized on a biodegradable film composed of cassava starch and poly(butylene adipate-co-terephtalate) (PBAT). The inhibitory activity was tested against Aspergillus niger , Penicillium sp., and Sclerotinia sclerotiorum , microorganisms that frequently degrade food packaging. The use of chitin as carbon source in liquid medium induced T. asperellun to produce N-acetylglucosaminidase, β-1,3-glucanase, chitinase, and protease. The presence of T. asperellun cell wall degradating enzymes (T-CWD) immobilized by adsorption or covalent attachment resulted in effective inhibition of fungal growth. The enzymatic activity of T-CWD was stronger on S. sclerotiorum than on the Aspergillus or Penicillum isolates tested. These results suggest that T-CWD can be used in a free or immobilized form to suppress fungi that degrade food packaging.

  20. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Pinto, P.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.M.; Cone, J.W.

    2008-01-01

    A series of in vitro experiments were completed to evaluate the potential of enzyme extracts, obtained from the white-rot fungi Trametes versicolor (TV1, TV2), Bjerkandera adusta (BA) and Fomes fomentarius (FF), to increase degradation of cell wall components of wheat straw. The studies were

  1. Transforming growth factor activating kinase 1 regulates extracellular matrix degrading enzymes and pain-related molecule expression following tumor necrosis factor-α stimulation of synovial cells: an in vitro study.

    Science.gov (United States)

    Uchida, Kentaro; Takano, Shotaro; Matsumoto, Toshihide; Nagura, Naoshige; Inoue, Gen; Itakura, Makoto; Miyagi, Masayuki; Aikawa, Jun; Iwase, Dai; Minatani, Atsushi; Fujimaki, Hisako; Takaso, Masashi

    2017-07-01

    Recent studies have suggested that the tumor necrosis factor-α (TNF-α) pathway is a potential target for the management of osteoarthritis (OA). Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is essential in several cytokine-mediated cascades, including the TNF-α, interleukin-1 (IL-1), and TGF-β pathways. The role of TAK1 in synovial tissue in OA is not fully understood. Using synovial cells harvested from OA patients during surgery, we investigated whether TAK1 inhibition suppresses production of TNF-α-induced extracellular matrix degrading enzymes and expression of pain-related molecules. Synovial tissues were harvested from ten subjects with radiographic evidence of osteoarthritis (OA) during total knee arthroplasty. Synovial cells were cultured and stimulated with control (culture media), 10 ng/mL human recombinant TNF-α, or 10 ng/mL TNF-α and 10 μM of the TAK1 inhibitor (5Z)-7-oxozeaenol for 24 h. Real-time polymerase chain reaction (PCR) analysis was used to monitor expression of mRNA of the extracellular matrix degrading enzymes matrix metalloproteinase-3 (MMP-3) and a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 4 (ADAMTS-4); and of the pain-related molecules cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), and nerve growth factor (NGF). MMP-3 and NGF protein concentrations in cell supernatant were measured by enzyme-linked immunosorbent assay (ELISA). COX-2, mPGES-1 and ADAMTS-4 protein expression was also evaluated by western blotting. TNF-α stimulated increases in ADAMTS-4 and MMP3 mRNA (2.0-fold and 1.6-fold, respectively, p matrix degrading enzymes and pain-related molecule expression. TAK1 may be a potential target for therapeutic strategies aimed at preventing osteoarthritis progression and pain.

  2. Rumen degradation of oil palm fronds is improved through pre-digestion with white rot fungi but not through supplementation with yeast or enzymes

    NARCIS (Netherlands)

    Hassim, H.A.; Lourenco, M.; Goh, Y.M.; Baars, J.J.P.; Fievez, V.

    2012-01-01

    Rumen fermentation kinetics of oil palm fronds (OPF) supplemented or not with enzymes (Hemicell® or Allzyme SSF®) or yeasts (Levucell®SC or Yea-Sacc®) were studied through an in vitro gas production test (96 h) (exp. 1). In exp. 2, enzymes were supplemented to OPF pre-treated during 3 or 9 wk with

  3. Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds.

    Science.gov (United States)

    Xu, Changmou; Yagiz, Yavuz; Borejsza-Wysocki, Wlodzimierz; Lu, Jiang; Gu, Liwei; Ramírez-Rodrigues, Milena M; Marshall, Maurice R

    2014-08-15

    Enzyme degradation of plant cell wall polysaccharides can potentially enhance the release of bioactive phenolics. The aim of this study was to evaluate various combinations of solvent and enzyme, enzyme type (cellulase, pectinase, ß-glucosidase), and hydrolysis time (1, 4, 8, 24 h) on the release of muscadine grape skin and seed phenolics, and their antioxidant activities. Results showed that pre-treated muscadine skins and seeds with enzymes decreased total phenolic yield compared with solvent (50% ethanol) alone. Enzyme release of phenolics from skins of different muscadine varieties was significantly different while release from seeds was similar. Enzyme hydrolysis was found to shorten extraction time. Most importantly, enzyme hydrolysis modified the galloylated form of polyphenols to low molecular weight phenolics, releasing phenolic acids (especially gallic acid), and enhancing antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery

    Science.gov (United States)

    Cho, Hongbaek; Uehara, Tsuyoshi; Bernhardt, Thomas G.

    2014-01-01

    SUMMARY Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality-control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development. PMID:25480295

  5. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  6. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases.

    Science.gov (United States)

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2015-05-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification. Copyright © 2015. Published by Elsevier Ireland Ltd.

  7. Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation

    NARCIS (Netherlands)

    Tomassen, M.M.M.; Barrett, D.M.; Valk, van der H.C.P.M.; Woltering, E.J.

    2007-01-01

    An important aspect of the ripening process of tomato fruit is softening. Softening is accompanied by hydrolysis of the pectin in the cell wall by pectinases, causing loss of cell adhesion in the middle lamella. One of the most significant pectin-degrading enzymes is polygalacturonase (PG). Previous

  8. Non-destructive mapping of dampness and salts in degraded wall paintings in hypogeous buildings: the case of St. Clement at mass fresco in St. Clement Basilica, Rome.

    Science.gov (United States)

    Di Tullio, Valeria; Proietti, Noemi; Gobbino, Marco; Capitani, Donatella; Olmi, Roberto; Priori, Saverio; Riminesi, Cristiano; Giani, Elisabetta

    2010-03-01

    As is well known, the deterioration of wall paintings due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of microclimate monitoring, unilateral nuclear magnetic resonance (NMR), and evanescent-field dielectrometry (EFD) was applied to map non-destructively, in situ, and in a quantitative way the distribution of the moisture in an ancient deteriorated wall painting of the eleventh century. Both unilateral NMR and EFD are quite new, fully portable, and non-destructive techniques, and their combination is absolutely new. The approach reported here is proposed as a new analytical protocol to afford the problem of mapping, non-destructively, the moisture in a deteriorated wall painting in a hypogeous building such as that of the second level of St. Clement Basilica, Rome (Italy), where the use of IR thermography is impaired due to the environmental conditions, and the gravimetric tests are forbidden due to the preciousness of the artifact. The moisture distribution was mapped at different depths, from the very first layers of the painted film to a depth of 2 cm. It has also been shown how the map obtained in the first layers of the artwork is affected by the environmental conditions typical of a hypogeous building, whereas the maps obtained at higher depths are representative of the moisture due to the capillary rise of water from the ground. The quantitative analysis of the moisture was performed by calibrating NMR and EFD signals with purposely prepared specimens. This study may be applied before and after performing any intervention aimed at restoring and improving the state of conservation of this type of artwork and reducing the dampness or extracting salts (driven by the variation of moisture content) and monitoring the effectiveness of the performed interventions during the time. This protocol is applicable to any type of porous material.

  9. Fermentation characteristics in hay from Cynodon and crop stubble treated with exogenous enzymes

    Directory of Open Access Journals (Sweden)

    Yânez André Gomes Santana

    Full Text Available ABSTRACT The effect of treatment with xylanase and β-glucanase was evaluated for gas production and the ruminal degradation of nutrients from the hay of Tifton 85 grass and the stubble of maize, sorghum, peanut, sunflower and sesame crops. Two commercial fibrolytic enzymes were used (Dyadic xylanase PLUS - Xylanase; BrewZyme LP-β-glucanase, added to the hay at doses of 7.5 units of endoglucanase and 0.46 units of xylanase per 500 mg/gDM, for the cellulase and xylanase products respectively. The chemical composition of the hay was determined for no enzyme application and 24 hours after enzyme treatment, and the in vitro gas production and in situ microbial degradation was estimated for dry matter, organic matter, neutral detergent fibre and truly-degradable organic matter after 24 hours of incubation in the rumen. Enzyme treatment of the hay from Tifton 85 grass and the stubble of maize, sorghum, sunflower, peanut and sesame crops with the exogenous fibrolytic enzymes β-glucanase and xylanase influences in vitro gas production, and the in situ degradation of dry matter, organic matter, neutral detergent fibre and truly-degradable organic matter in the rumen. This variation can be attributed to differences in the chemical composition of the hay from the grass and the crop stubble, and to the different ways the enzymes act upon the cell wall.

  10. Pectinases: aplicações industriais e perspectivas Pectinolytic enzymes: industrial applications and future perspectives

    Directory of Open Access Journals (Sweden)

    Mariana Uenojo

    2007-04-01

    Full Text Available Pectic substances are structural heteropolysaccharides that occur in the middle lamellae and primary cell walls of higher plants. They are composed of partially methyl-esterified galacturonic acid residues linked by alpha-1, 4-glycosidic bonds. Pectinolytic enzymes are complex enzymes that degrade pectic polymers and there are several classes of enzymes, which include pectin esterases, pectin and pectate lyases and polygalacturonases. Plants, filamentous fungi, bacteria and yeasts are able to produce pectinases. In the industrial world, pectinases are used in fruit juice clarification, in the production of wine, in the extraction of olive oil, fiber degumming and fermentation of tea, coffee and cocoa.

  11. Two-stage in vitro digestibility assay, a tool for formulating non-starch polysaccharide degrading enzyme combinations for commonly used feed ingredients of poultry rations

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2013-05-01

    Full Text Available Aim: An attempt was made to assess the effect of pure enzyme combinations with the objective of formulating customized enzyme mixtures based on sugar release when subjected to two-stage in vitro digestion assay. Materials and Methods: A two-stage in vitro digestibility assay was carried out for commonly used feed ingredients for poultry viz., maize, soy bean meal, sunflower cake, and de-oiled rice bran supplemented with three concentrations of xylanase (5000; 7500 and 10000 IU/kg, cellulase (50; 100 and 400 IU/kg and â-D-glucanase (100; 200 and 400 IU/kg were used to formulate various NSP enzymes combinations. In total 27 NSP enzyme combinations (3x3x3 were formulated and the sugar released due to NSP digestion was quantified by phenol sulphuric acid method. Results: The total sugar release was significantly (P<0.05 higher with supplementation of various enzymes combinations for maize, sunflower cake and de-oiled rice bran where as no significant (P<0.05 interaction of various NSP enzymes combinations was observed for soy bean meal. The NSP digestibility was highest in combination (xylanase-5000, cellulase-50 and â-D-glucanase-400 IU/kg, (xylanase-10000, cellulase-50 and â-D-glucanase-200 IU/kg and (xylanase-7500, cellulase- 100 and â-D-glucanase-100 IU/kg for maize, sunflower cake and de-oiled rice bran respectively. In case of sunflower cake, significant (P<0.01 three way interaction was observed among the xylanase, cellulose, and â-D-glucanase enzymes and the two-way interactions between the enzymes were also significant (P<0.01. Conclusion: It is concluded that 'n' number of non-starch Polysaccharide enzymes combinations can be screened for their efficiency to digest non-starch Polysaccharides present in various feed ingredients commonly used in poultry rations by employing two-stage in vitro digestibility assay as a tool. [Vet World 2013; 6(8.000: 525-529

  12. Synthesis and characterization of titanate nanotube/single-walled carbon nanotube (TNT/SWCNT) porous nanocomposite and its photocatalytic activity on 4-chlorophenol degradation under UV and solar irradiation

    Science.gov (United States)

    Payan, A.; Fattahi, M.; Jorfi, S.; Roozbehani, B.; Payan, S.

    2018-03-01

    The titanate nanotube/single-wall carbon nanotube (TNT/SWCNT) nanocomposites from different titania precursors were prepared by a two-step hydrothermal process. These nanocomposites were characterized by XRD, BET, Raman, FESEM, TEM, EDX, EDS, EIS, UV-vis DRS and FTIR techniques. The FESEM and TEM images showed the high porous nanocomposites with two types of tubular structure relating to TNTs and SWCNTs which were interwoven together uniformly. The XRD and Raman analysis further corroborated the chemical interaction between the SWCNT and the TNT in the nanocomposites. The photocatalytic performance of the as-synthesized composites were examined by the photodegradation of 4-CP under solar and UV illumination. The results revealed an impressive enhancement in photocatalytic activity of the nanocomposites under both irradiation conditions comparison to bare TNPs and TNTs. Amongst the TNT/SWCNT nanocomposites, 10% loading of SWCNT under UV irradiation and 5% loading of SWCNT under solar irradiation exhibited the maximum photocatalytic performance while the photocatalytic degradation efficiency of nanocomposites were not affected considerably by the type of precursor. Moreover, the mechanism and role of SWCNT were investigated and the plausible degradation pathways of 4-CP was suggested. TOC analyses was performed for determination of 4-CP mineralization rate and results showed complete mineralization after 240 and 390 min under UV and solar irradiation, respectively. The trapping experiments corroborated the O2- and OH radicals as the main reactive species in 4-CP degradation process. Langmuir-Hinshelwood kinetic model was fittingly matched with the experimental data (R2: 0.9218 and 0.9703 for UV and solar irradiation). Additionally, the stability of the nanocomposites were investigated and revealed 8% decrease in degradation efficiency after four cycles.

  13. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts

    Science.gov (United States)

    Blanco-Ulate, Barbara; Morales-Cruz, Abraham; Amrine, Katherine C. H.; Labavitch, John M.; Powell, Ann L. T.; Cantu, Dario

    2014-01-01

    Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue. PMID:25232357

  14. Aspects Regarding the Degradation of a Retaining Wall With the Destination to Reinforce the Stability of the Site Arrangement of Residential Buildings

    Directory of Open Access Journals (Sweden)

    Florin L. Tamaş

    2008-01-01

    Full Text Available Performing the diggings nearby and/under the implantation quota of some existing buildings may trigger on the structural elements and/or over the arrangement site states of efforts or additional deformations, which may diminish the reinforcing capacity and/or loss of local/general stability given certain conditions of induced load. The paper herein presents situation generated by the execution of a section of domestic sewage, near and under the implantation foundation of a retaining wall having the role of maintaining stability of the arrangement site of residential buildings.

  15. Microbial taxa and functional genes shift in degraded soil with bacterial wilt

    Science.gov (United States)

    Zhang, Hongchun; Wang, Rui; Chen, Shu; Qi, Gaofu; He, Zhili; Zhao, Xiuyun

    2017-01-01

    Soil degradation is a serious global problem, but little is known about how soil microbial communities respond to soil degradation as well as their feedback to ecosystem functioning. In this study, we found the microbial community composition, structure and functional potential significantly altered in the degraded soils with bacterial wilt (termed as degraded soils). Compared with healthy soils, OTU richness of beneficial microorganisms were significantly decreased, but OTU richness of pathogenic microorganisms were significantly increased in the degraded soils. Functional gene array (GeoChip 5.0) analysis showed the functional metabolic potential of genes involved in stress, virulence, sulfur cycle, metal resistance, degradation of plant cell wall was significantly increased in the degraded soils. Increased functional metabolic potential of these genes may be related to the acidification and severe plant disease of degraded soils. Biological activity of degraded soils was obviously decreased with weakened soil enzyme activities when compared to the healthy soils. Soil pH and enzyme activities were negatively correlated with the abundance of genes involved in sulfur cycle, virulence, and stress responses. This study provides new insights into our understanding of soil microbial community responses to soil degradation. PMID:28051173

  16. Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes.

    Science.gov (United States)

    Delaunois, Bertrand; Colby, Thomas; Belloy, Nicolas; Conreux, Alexandra; Harzen, Anne; Baillieul, Fabienne; Clément, Christophe; Schmidt, Jürgen; Jeandet, Philippe; Cordelier, Sylvain

    2013-02-08

    The extracellular space or apoplast forms a path through the whole plant and acts as an interface with the environment. The apoplast is composed of plant cell wall and space within which apoplastic fluid provides a means of delivering molecules and facilitates intercellular communications. However, the apoplastic fluid extraction from in planta systems remains challenging and this is particularly true for grapevine (Vitis vinifera L.), a worldwide-cultivated fruit plant. Large-scale proteomic analysis reveals the protein content of the grapevine leaf apoplastic fluid and the free interactive proteome map considerably facilitates the study of the grapevine proteome. To obtain a snapshot of the grapevine apoplastic fluid proteome, a vacuum-infiltration-centrifugation method was optimized to collect the apoplastic fluid from non-challenged grapevine leaves. Soluble apoplastic protein patterns were then compared to whole leaf soluble protein profiles by 2D-PAGE analyses. Subsequent MALDI-TOF/TOF mass spectrometry of tryptically digested protein spots was used to identify proteins. This large-scale proteomic analysis established a well-defined proteomic map of whole leaf and leaf apoplastic soluble proteins, with 223 and 177 analyzed spots, respectively. All data arising from proteomic, MS and MS/MS analyses were deposited in the public database world-2DPAGE. Prediction tools revealed a high proportion of (i) classical secreted proteins but also of non-classical secreted proteins namely Leaderless Secreted Proteins (LSPs) in the apoplastic protein content and (ii) proteins potentially involved in stress reactions and/or in cell wall metabolism. This approach provides free online interactive reference maps annotating a large number of soluble proteins of the whole leaf and the apoplastic fluid of grapevine leaf. To our knowledge, this is the first detailed proteome study of grapevine apoplastic fluid providing a comprehensive overview of the most abundant proteins

  17. Characterisation and enzymic degradation of non-starch polysccharides in lignocellulosic by-products : a study on sunflower meal and palm-kernel meal

    NARCIS (Netherlands)

    Duesterhoeft, E.M.

    1993-01-01

    Non-starch polysaccharides (NSP) constitute a potentially valuable part of plant by- products deriving from the food and agricultural industries. Their use for various applications (fuel, feed, food) requires the degradation and modification of the complex plant materials. This can be

  18. Removal of polycyclic aromatic hydrocarbons from aqueous media by the marine fungus NIOCC 312: Involvement of lignin-degrading enzymes and exopolysaccharides

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Shailaja, M.S.; Parameswaran, P.S.; Singh, S.K.

    film, Mar Biol, 136 (2000) 603-609. 20 Barassa J M, Gutieprez A, Escaso V, Guillen F, Martinez M J, & Martinez A T, Electron and fluorescence microscopy of extracellular glucan and aryl-alcohol-oxidase during wheat- straw degradation by Pleurotus...

  19. Nutritional Stress Induced by Tryptophan-Degrading Enzymes Results in ATF4-Dependent Reprogramming of the Amino Acid Transporter Profile in Tumor Cells

    DEFF Research Database (Denmark)

    Timosenko, Elina; Ghadbane, Hemza; Silk, Jonathan D

    2016-01-01

    Tryptophan degradation is an immune escape strategy shared by many tumors. However, cancer cells' compensatory mechanisms remain unclear. We demonstrate here that a shortage of tryptophan caused by expression of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) resulted in AT...

  20. Degradation of cyanogenic glycosides of bitter apricot seeds (Prunus armeniaca) by endogenous and added enzymes as affected by heat treatments and particle size.

    NARCIS (Netherlands)

    Tuncel, G.; Nout, M.J.R.; Brimer, L.

    1998-01-01

    Bitter apricot (Prunus armeniaca) seeds (kernels) are by-products of the apricot processing industry. They contain approximately 50-150 μMol/g (dry weight basis) of potentially toxic cyanogenic glycosides, mainly amygdalin and prunasin. The present paper deals with the degradation of these

  1. Cooperation of Aspergillus nidulans enzymes increases plant polysaccharide saccharification

    NARCIS (Netherlands)

    Tramontina, Robson; Robl, Diogo; Maitan-Alfenas, Gabriela Piccolo; de Vries, Ronald P

    2016-01-01

    Efficient polysaccharide degradation depends on interaction between enzymes acting on the main chain and the side chains. Previous studies demonstrated cooperation between several enzymes, but not all enzyme combinations have been explored. A better understanding of enzyme cooperation would enable

  2. Chiral quizalofop-ethyl and its metabolite quizalofop-acid in soils: Enantioselective degradation, enzymes interaction and toxicity to Eisenia foetida.

    Science.gov (United States)

    Ma, Lin; Liu, Hui; Qu, Han; Xu, Yangguang; Wang, Peng; Sun, Mingjing; Zhou, Zhiqiang; Liu, Donghui

    2016-06-01

    An enantioselective chromatographic method to analyze enantiomers of quizalofop-ethyl and its metabolite quizalofop-acid was established using a high-performance liquid chromatography (HPLC) on (R, R) Whelk-O 1 column. The enantioselective degradation kinetics of quizalofop-ethyl and quizalofop-acid in three soils were investigated. Moreover, the interaction with urease and catalase in the soils and the acute toxicity to Eisenia foetida of quizalofop-ethyl were also determined in order to assess their metabolism mechanism and environmental risk. From the results, quizalofop-ethyl was configurationally stable and was hydrolyzed rapidly to quizalofop-acid, which also degraded enantioselectively but slowly, and the inversion of the S-(-)-quizalofop-acid into the R-(+)-quizalofop-acid was observed in Xinxiang soil. In addition, quizalofop-ethyl and quizalofop-acid enantioselectively affected urease activity but not catalase. The acute toxicity assays to earthworm indicated that the racemic quizalofop-ethyl and quizalofop-acid were more toxic than quizalofop-p-ethyl and quizalofop-p-acid respectively, dramatically, the toxicity of the metabolite was much higher than the parent compound. These results revealed the enantioselective degradation of quizalofop-ethyl and quizalofop-acid, and the differences of toxicity among the enantiomers of the parent compound and the metabolite, which should be considered in future environmental risk evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rapid shifts in Atta cephalotes fungus-garden enzyme activity after a change in fungal substrate (Attini, Formicidae)

    DEFF Research Database (Denmark)

    Kooij, P W; Schiøtt, M; Boomsma, J J

    2011-01-01

    Fungus gardens of the basidiomycete Leucocoprinus gongylophorus sustain large colonies of leaf-cutting ants by degrading the plant material collected by the ants. Recent studies have shown that enzyme activity in these gardens is primarily targeted toward starch, proteins and the pectin matrix...... associated with cell walls, rather than toward structural cell wall components such as cellulose and hemicelluloses. Substrate constituents are also known to be sequentially degraded in different sections of the fungus garden. To test the plasticity in the extracellular expression of fungus-garden enzymes......, we measured the changes in enzyme activity after a controlled shift in fungal substrate offered to six laboratory colonies of Atta cephalotes. An ant diet consisting exclusively of grains of parboiled rice rapidly increased the activity of endo-proteinases and some of the pectinases attacking...

  4. Hydrolytic enzymes of "Streptococcus milleri".

    Science.gov (United States)

    Ruoff, K L; Ferraro, M J

    1987-01-01

    Seventy-two isolates classified as "Streptococcus milleri" were examined for the presence of various hydrolytic enzymes. While no protein or lipid-degrading activities were demonstrated, some isolates showed DNase and mucopolysaccharide-degrading activities. Beta-hemolytic isolates were more likely to produce these enzymes than were nonhemolytic strains. Isolates of one "S. milleri" biotype (mannitol fermentation positive) were uniformly devoid of all enzyme activities tested. PMID:2958496

  5. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Directory of Open Access Journals (Sweden)

    De Fine Licht Henrik H

    2012-06-01

    Full Text Available Abstract Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily

  6. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Science.gov (United States)

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  7. Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face

    Directory of Open Access Journals (Sweden)

    L. Fischer

    2006-01-01

    Full Text Available The Monte Rosa east face, Italian Alps, is one of the highest flanks in the Alps (2200–4500 m a.s.l.. Steep hanging glaciers and permafrost cover large parts of the wall. Since the end of the Little Ice Age (about 1850, the hanging glaciers and firn fields have retreated continuously. During recent decades, the ice cover of the Monte Rosa east face experienced an accelerated and drastic loss in extent. Some glaciers have completely disappeared. New slope instabilities and detachment zones of gravitational mass movements developed and enhanced rock fall and debris flow activity was observed. This study is based on multidisciplinary investigations and shows that most of the detachment zones of rock fall and debris flows are located in areas, where the surface ice disappeared only recently. Furthermore, most of these detachment zones are located in permafrost zones, for the most part close to the modelled and estimated lower boundary of the regional permafrost distribution. In the view of ongoing or even enhanced atmospheric warming and associated changes it is therefore very likely that the slope instabilities in the Monte Rosa east face will continue to represent a critical hazard source.

  8. Degradation kinetics of peroxidase enzyme, phenolic content, and physical and sensorial characteristics in broccoli (Brassica oleracea L. ssp. Italica) during blanching.

    Science.gov (United States)

    Gonçalves, Elsa M; Pinheiro, Joaquina; Alegria, Carla; Abreu, Marta; Brandão, Teresa R S; Silva, Cristina L M

    2009-06-24

    The effects of water blanching treatment on peroxidase inactivation, total phenolic content, color parameters [-a*/b* and hue (h degrees*)], texture (maximum shear force), and sensory attributes (color and texture, evaluated by a trained panel) of broccoli (Brassica oleracea L. ssp. Italica) were studied at five temperatures (70, 75, 80, 85, and 90 degrees C). Experimental results showed that all studied broccoli quality parameters suffered significative changes due to blanching treatments. The vegetal total phenolic content showed a marked decline. Degradation on objective color and texture measurements and alterations in sensorial attributes were detected. Correlations between sensory and instrumental measurements have been found. Under the conditions 70 degrees C and 6.5 min or 90 degrees C and 0.4 min, 90% of the initial peroxidase activity was reduced. At these conditions, no significant alterations were detected by panelists, and a small amount of phenolic content was lost (ca. 16 and 10%, respectively). The peroxidase inactivation and phenolic content degradation were found to follow first-order reaction models. The zero-order reaction model showed a good fit to the broccoli color (-a*/b* and h degrees*), texture, and sensory parameters changes. The temperature effect was well-described by the Arrhenius law.

  9. Impact of microbial growth inhibition and proteolytic activity on the stability of a new formulation containing a phytate-degrading enzyme obtained from mushroom.

    Science.gov (United States)

    Spier, Michele R; Siepmann, Francieli B; Staack, Larissa; Souza, Priscila Z; Kumar, Vikas; Medeiros, Adriane B P; Soccol, Carlos R

    2016-10-02

    The development of stable enzymes is a key issue in both the food and feed industries. Consequently, the aim of the current study is to evaluate the impact of various additives (sodium chloride, sodium citrate, mannitol, methylparaben, polyethylene glycol 3350, ethylenediaminetetraacetic acid disodium salt, and a serine protease inhibitor) on the stability of a mushroom phytase produced by solid-state cultivation and recovery. Also observed was the effect of the additives on microbial growth inhibition by monitoring both the change in optical density over 30 days of storage and proteolytic activity. Initially, eight experimental formulations were prepared along with a control. After screening, a 3(2) factorial design was applied to define suitable concentrations of the selected additives. Among the eight formulations tested, the formulation containing NaCl, PEG 3350, and methylparaben retained all of the initial phytase activity after 50 days of storage, with no detected interference from protease activity. Sodium citrate, a metal chelation agent, presented the unusual effect of reducing protease activity in the formulations. Although all formulations presented better phytase stability when compared to the control, NaCl and PEG were both able to prolong the stability of the enzyme activity and also to inhibit microbial growth during storage, making them favorable for application as food and feed additives.

  10. Has substrate-dependent co-evolution of enzyme function occured in the attine ant-fungus symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the plant material that the ants provide or different efficiencies of enzyme function. Here we present the fist partial amino acid sequences from a fungal xylanase gene to test the hypothesis that fungal enzymes that degrade plant cell walls have functionally co-evolved with the ants....... as substrate for their fungus gardens, whereas the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down...

  11. Nutritional Stress Induced by Tryptophan-Degrading Enzymes Results in ATF4-Dependent Reprogramming of the Amino Acid Transporter Profile in Tumor Cells.

    Science.gov (United States)

    Timosenko, Elina; Ghadbane, Hemza; Silk, Jonathan D; Shepherd, Dawn; Gileadi, Uzi; Howson, Lauren J; Laynes, Robert; Zhao, Qi; Strausberg, Robert L; Olsen, Lars R; Taylor, Stephen; Buffa, Francesca M; Boyd, Richard; Cerundolo, Vincenzo

    2016-11-01

    Tryptophan degradation is an immune escape strategy shared by many tumors. However, cancer cells' compensatory mechanisms remain unclear. We demonstrate here that a shortage of tryptophan caused by expression of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) resulted in ATF4-dependent upregulation of several amino acid transporters, including SLC1A5 and its truncated isoforms, which in turn enhanced tryptophan and glutamine uptake. Importantly, SLC1A5 failed to be upregulated in resting human T cells kept under low tryptophan conditions but was enhanced upon cognate antigen T-cell receptor engagement. Our results highlight key differences in the ability of tumor and T cells to adapt to tryptophan starvation and provide important insights into the poor prognosis of tumors coexpressing IDO and SLC1A5. Cancer Res; 76(21); 6193-204. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Impact of fermentation and addition of non-starch polysaccharide-degrading enzymes on microbial population and on digestibility of dried distillers grains with solubles in pigs

    DEFF Research Database (Denmark)

    Venås Jakobsen, Grethe; Jensen, Bent Borg; Knudsen, Knud Erik Bach

    2015-01-01

    Fluctuating prices on feedstock has led to a growing interest in alternative feed ingredients. Co-products from the biofuel industry are hence interesting to include in pig feeds, primarily due to the high protein content. Low nutritional value due to a high content of dietary fibre, however......, limits the use of these ingredients. The current study aimed to increase the digestibility of dried distillers grains with solubles (DDGS), based on 80% wheat and 20% barley, by fermentation and enzyme addition. Four experimental diets were prepared based on 60% DDGS (fermented or not, without...... of cellulase and xylanase (CelXyl). Microbial population during fermentation of the treatments was determined and apparent ileal and total tract digestibility were measured on eight barrows surgically fitted with a simple T-shaped cannula at the distal ileum and fed the four treatments according to a double...

  13. Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray

    DEFF Research Database (Denmark)

    Sillo, Fabiano; Fangel, Jonatan Ulrik; Henrissat, Bernard

    2016-01-01

    MAIN CONCLUSION: A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant-microbe interactions...... on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus...... avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes...

  14. Effects of Manduca sexta allatostatin and an analogue on the peach-potato aphid Myzus persicae (hemiptera: aphididae) and degradation by enzymes in the aphid gut.

    Science.gov (United States)

    Matthews, H June; Down, Rachel E; Audsley, Neil

    2010-11-01

    The oral toxicity of the C-type allatostatin, Manduca sexta allatostatin (Manse-AS) and the analogue δR³δR⁵Manse-AS, where R residues were replaced by their D-isomers, were tested against the peach-potato aphid Myzus persicae by incorporation into an artificial diet. Both peptides had significant dose-dependent effects on mortality, growth, and fecundity compared with control insects. The analogue, δR³δR⁵Manse-AS, had an estimated LC₅₀ of 0.31 µg/µl diet and was more potent than Manse-AS (estimated LC₅₀ of 0.58 µg/µl diet). At a dose of 0.35 µg δR³δR⁵Manse-AS/µl diet, 76% of the aphids were dead after 6 days and all were dead after 10 days. In comparison, three times the dose of Manse-AS was required to achieve 74% mortality after 8 days and 98% mortality after 16 days. The degradation of both peptides by extracts prepared from the gut of M. persicae was investigated. The estimated half-life of Manse-AS, when incubated with the gut extract from M. persicae, was 31 min. Degradation was due to a cathepsin L-like cysteine protease, carboxypeptidase-like activity, endoprotease activity with glutamine specificity, pyroglutamate aminopeptidase activity, and possibly trypsin-like proteases. The half-life of the δR³δR⁵ Manse-AS analogue was enhanced (73 min) with the D-isomers of R appearing to prevent cleavage around the R residues by cathepsin L-like cysteine proteases or from trypsin-like proteases. The greater stability of the analogue may explain its increased potency in M. persicae. This work demonstrates the potential use of Manse-AS and analogues, with greater resistance to enzymatic attack, in aphid control strategies. © 2010 Wiley Periodicals, Inc.

  15. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.

    Science.gov (United States)

    Strakowska, Judyta; Błaszczyk, Lidia; Chełkowski, Jerzy

    2014-07-01

    The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development and Application of a New Microarray- Based Method for High-Throughput Screening of Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia

    . The applicability of the method to identify the substrate specificities of purified uncharacterised enzymes as well as for screening CAZyme activities in complex enzyme mixtures, such as crude culture broths and plant extracts, is shown by examples presented in this thesis. We envisage that the method......The effective and sustainable use of plant biomass for second generation biofuels is of vital importance for reducing dependence on fossil fuels. Carbohydrate-active enzymes (CAZymes) that degrade lignocellulosic plant cell wall material are an important part of this effort. CAZymes have multiple......-quantitative screening technique is sensitive, reproducible and robust. The possibilities of the method, regarding both substrates and enzymes, have been extensively explored, demonstrating its broad versatility. The catalytic activities of single enzymes, enzyme mixtures and crude culture broths can be assessed against...

  17. Transgenic plant-produced hydrolytic enzymes and the potential of insect gut-derived hydrolases for biofuels

    Directory of Open Access Journals (Sweden)

    Jonathan eWillis

    2016-05-01

    Full Text Available Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review.

  18. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels.

    Science.gov (United States)

    Willis, Jonathan D; Mazarei, Mitra; Stewart, C Neal

    2016-01-01

    Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review.

  19. Transcripts of pectin-degrading enzymes and isolation of complete cDNA sequence of a pectate lyase gene induced by coffee white stem borer (Xylotrechus quadripes) in the bark tissue of Coffea canephora (robusta coffee).

    Science.gov (United States)

    Bharathi, Kosaraju; Santosh, P; Sreenath, H L

    2017-05-01

    Of the two commercially cultivated coffee (Coffea) species, C. arabica (arabica) is highly susceptible and C. canephora (robusta) is highly resistant to the insect pest Xylotrechus quadripes (Coleoptera: Cerambycidae), commonly known as coffee white stem borer (CWSB). We constructed a forward-subtracted cDNA library by Suppression Subtractive Hybridization (SSH) from robusta bark tissue for profiling genes induced by CWSB infestation. Among the 265 unigenes of the SSH EST library, 7 unigenes (5 contigs and 2 singletons) matching different pectin-degrading enzymes were discovered. These ESTs matched one pectate lyase, three polygalacturonases, and one pectin acetylesterase gene. Quantitative real-time PCR (qRT-PCR) revealed that CWSB infestation strongly induces the pectate lyase gene at 72 h. Complete cDNA sequence of the pectate lyase gene was obtained through 3' and 5' RACE reactions. It was a 1595 bp long sequence that included full CDS and both UTRs. Against C. canephora genome sequences in Coffee Genome Hub database ( http://coffee-genome.org/ ), it had 22 matches to different pectate lyase genes mapped on 9 of the 11 pseudochromosomes, the top match being Cc07_g00190 Pectate lyase. In NCBI database, it matched pectate lyase sequences of several plants. Apart from C. canephora, the closest pectate lyase matches were from Sesamum indicum and Nicotiana tabacum. The pectinolytic enzymes discovered here are thought to play a role in the production of oligogalacturonides (OGs) which act as Damage-Associated Molecular Pattern (DAMP) signals eliciting innate immunity in plants. The pectate lyase gene, induced by CWSB infestation, along with other endogenous pectinolytic enzymes and CWSB-specific elicitors, may be involved in triggering basal defense responses to protect the CWSB-damaged tissue against pathogens, as well as to contain CWSB in robusta.

  20. Dipeptidylpeptidase-­IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats

    Directory of Open Access Journals (Sweden)

    E. Tarantola

    2012-10-01

    Full Text Available Given the scarcity of donors, moderately fatty livers (FLs are currently being considered as possible grafts for orthotopic liver transplantation (OLT, notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille’s heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV, was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa, using as controls lean Zucker (fa/+ and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8. In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver

  1. Dipeptidylpeptidase--IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats.

    Science.gov (United States)

    Tarantola, E; Bertone, V; Milanesi, G; Capelli, E; Ferrigno, A; Neri, D; Vairetti, M; Barni, S; Freitas, I

    2012-10-08

    Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille's heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns

  2. Probing the structural details of xylan degradation by real-time NMR spectroscopy

    DEFF Research Database (Denmark)

    Petersen, Bent O.; Lok, Finn; Meier, Sebastian

    2014-01-01

    fraction of cereal cell wall polysaccharides consists of arabinoxylans. Arabinoxylan and its degradation products are therefore present in a variety of agro-industrial residues and products. Here, we undertook to track the structural details of wheat arabinoxylan degradation with high resolution NMR...... and in products. Reaction progress was visualized for the biodegradation of arabinoxylan by different crude microbial enzyme preparations. The direct observation of structural details in complex mixtures containing arabinoxylan fragments is significant, as such structural details reportedly modulate the health......-promoting functions of arabinoxylan fragments....

  3. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers.

    Science.gov (United States)

    Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G

    2015-09-01

    Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae.

    Science.gov (United States)

    Lee, Kieran J D; Dekkers, Bas J W; Steinbrecher, Tina; Walsh, Cherie T; Bacic, Antony; Bentsink, Leónie; Leubner-Metzger, Gerhard; Knox, J Paul

    2012-11-01

    In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics.

  5. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael

    2012-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families...... responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids...... to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem transferases utilize aa-tRNA to form peptide bridges that link strands of peptidoglycan. These bridges vary among the bacterial species in which they are present...

  6. Pancreatic Enzymes

    Science.gov (United States)

    ... NOW HONOR/MEMORIAL GENERAL DONATION MONTHLY PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  7. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  8. Produção, purificação, clonagem e aplicação de enzimas líticas Production, purification, cloning and application of lytic enzymes

    Directory of Open Access Journals (Sweden)

    Luciana Francisco Fleuri

    2005-10-01

    Full Text Available Lytic enzymes such as beta-1,3 glucanases, proteases and chitinases are able to hydrolyse, respectively, beta-1,3 glucans, mannoproteins and chitin, as well as the cell walls of many yeast species. Lytic enzymes are useful in a great variety of applications including the preparation of protoplasts; the extraction of proteins, enzymes, pigments and functional carbohydrates; pre-treatment for the mechanical rupture of cells; degradation of residual yeast cell mass for the preparation of animal feed; analysis of the yeast cell wall structure and composition; study of the yeast cell wall synthesis and the control of pathogenic fungi. This review presents the most important aspects with respect to lytic enzymes, especially their production, purification, cloning and application.

  9. Considerations on the Use of Exogenous Fibrolytic Enzymes to Improve Forage Utilization

    Directory of Open Access Journals (Sweden)

    Germán D. Mendoza

    2014-01-01

    Full Text Available Digestion of cell wall fractions of forage in the rumen is incomplete due to the complex links which limit their degradation. It is therefore necessary to find options to optimize the use of forages in ruminant production systems. One alternative is to use exogenous enzymes. Exogenous fibrolytic enzymes are of fungal or bacterial origin and increase nutrient availability from the cell wall, which consists of three fractions in different proportions depending on the species of forage: digestible, potentially digestible, and indigestible. The response to addition of exogenous enzymes varies with the type of forage; many researchers infer that there are enzyme-forage interactions but fail to explain the biological mechanism. We hypothesize that the response is related to the proportion of the potentially digestible fraction. The exogenous enzyme activity depends on several factors but if the general conditions for enzyme action are available, the potentially digestible fraction may determine the magnitude of the response. Results of experiments with exogenous fibrolytic enzymes in domestic ruminants are inconsistent. This, coupled with their high cost, has made their use unattractive to farmers. Development of cheaper products exploring other microorganisms with fibrolytic activity, such as Fomes fomentarius or Cellulomonas flavigena, is required.

  10. Considerations on the Use of Exogenous Fibrolytic Enzymes to Improve Forage Utilization

    Science.gov (United States)

    Mendoza, Germán D.; Plata-Pérez, Fernando X.

    2014-01-01

    Digestion of cell wall fractions of forage in the rumen is incomplete due to the complex links which limit their degradation. It is therefore necessary to find options to optimize the use of forages in ruminant production systems. One alternative is to use exogenous enzymes. Exogenous fibrolytic enzymes are of fungal or bacterial origin and increase nutrient availability from the cell wall, which consists of three fractions in different proportions depending on the species of forage: digestible, potentially digestible, and indigestible. The response to addition of exogenous enzymes varies with the type of forage; many researchers infer that there are enzyme-forage interactions but fail to explain the biological mechanism. We hypothesize that the response is related to the proportion of the potentially digestible fraction. The exogenous enzyme activity depends on several factors but if the general conditions for enzyme action are available, the potentially digestible fraction may determine the magnitude of the response. Results of experiments with exogenous fibrolytic enzymes in domestic ruminants are inconsistent. This, coupled with their high cost, has made their use unattractive to farmers. Development of cheaper products exploring other microorganisms with fibrolytic activity, such as Fomes fomentarius or Cellulomonas flavigena, is required. PMID:25379525

  11. Paradigmatic status of an endo- and exoglucanase and its effect on crystalline cellulose degradation

    Directory of Open Access Journals (Sweden)

    Moraïs Sarah

    2012-10-01

    Full Text Available Abstract Background Microorganisms employ a multiplicity of enzymes to efficiently degrade the composite structure of plant cell wall cellulosic polysaccharides. These remarkable enzyme systems include glycoside hydrolases (cellulases, hemicellulases, polysaccharide lyases, and the carbohydrate esterases. To accomplish this challenging task, several strategies are commonly observed either separately or in combination. These include free enzyme systems, multifunctional enzymes, and multi-enzyme self-assembled designer cellulosome complexes. Results In order to compare these different paradigms, we employed a synthetic biology approach to convert two different cellulases from the free enzymatic system of the well-studied bacterium, Thermobifida fusca, into bifunctional enzymes with different modular architectures. We then examined their performance compared to those of the combined parental free-enzyme and equivalent designer-cellulosome systems. The results showed that the cellulolytic activity displayed by the different architectures of the bifunctional enzymes was somewhat inferior to that of the wild-type free enzyme system. Conclusions The activity exhibited by the designer cellulosome system was equal or superior to that of the free system, presumably reflecting the combined proximity of the enzymes and high flexibility of the designer cellulosome components, thus enabling efficient enzymatic activity of the catalytic modules.

  12. Combining hydrothermal pretreatment with enzymes de-pectinates and exposes the innermost xyloglucan-rich hemicellulose layers of wine grape pomace

    DEFF Research Database (Denmark)

    Zietsman, Anscha J.J.; Moore, John P.; Fangel, Jonatan Ulrik

    2017-01-01

    Chardonnay grape pomace was treated with pressurized heat followed by enzymatic hydrolysis, with commercial or pure enzymes, in buffered conditions. The pomace was unfermented as commonly found for white winemaking wastes and treatments aimed to simulate biovalorization processing. Cell wall...... profiling techniques showed that the pretreatment led to depectination of the outer layers thereby exposing xylan polymers and increasing the extractability of arabinans, galactans, arabinogalactan proteins and mannans. This higher extractability is believed to be linked with partial degradation and opening......-up of cell wall networks. Pectinase-rich enzyme preparations were presumably able to access the inner rhamnogalacturonan I dominant coating layers due to the hydrothermal pretreatment. Patterns of epitope abundance and the sequential release of cell wall polymers with specific combinations of enzymes led...

  13. The biophysics of plant cell wall degradation

    DEFF Research Database (Denmark)

    Digaitis, Ramūnas

    different lignocellulosic biomass materials, namely flax (Linum usitatissimum L.) fibres and Scots pine (Pinus sylvestris L.) veneers. Mechanical and enzymatic treatments were applied either individually, simultaneously or in a sequential manner, where enzymatic hydrolysis was preceded or proceeded...

  14. Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray.

    Science.gov (United States)

    Sillo, Fabiano; Fangel, Jonatan U; Henrissat, Bernard; Faccio, Antonella; Bonfante, Paola; Martin, Francis; Willats, William G T; Balestrini, Raffaella

    2016-08-01

    A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant-microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.

  15. Cell wall polysaccharides hydrolysis of malting barley (Hordeum vulgare L.: a review

    Directory of Open Access Journals (Sweden)

    Jamar, C.

    2011-01-01

    Full Text Available Malting quality results from the different steps of the malting process. Malting uses internal changes of the seed occurring during germination, such as enzymes synthesis, to obtain a good hydrolysis process and the components required. Among the three main hydrolytic events observed, that are namely starch degradation, cell wall breakdown and protein hydrolysis, an efficient cell wall polysaccharides hydrolysis is an essential condition for a final product of quality. Indeed, because of the physical barrier of the cell wall, cell wall polysaccharides hydrolysis is one of the first steps expected from the process to gain access to the cell components. Moreover, viscosity problem and haze formation in malting industry are related to their presence during the process when inefficient degradation occurs, leading to increased production time and cost. Understanding the key elements in cell wall degradation is important for a better control. (1-3,1-4-β-glucans and arabinoxylans are the main constituents of cell wall. (1-3,1-4-β-glucans are unbranched chains of β-D-glucopyranose residues with β-(1,3 linkages and β-(1,4 linkages. Arabinoxylan consists in a backbone of D-xylanopyranosyl units linked by β-(1-4 bonds connected to single L-arabinofuranose by α-(1→2 or α-(1→3-linkages. Degradation of (1-3,1-4-β-glucans is processed by the (1-3,1-4-β-glucanases, the β-glucosidases and the β-glucane exohydrolases. It seems that the (1-3-β-glucanases are also involved. Arabinoxylans are mainly decomposed by (1-4-β-xylan endohydrolase, arabinofuranosidase and β-xylosidase.

  16. Proteomic data on enzyme secretion and activity in the bacterium Chitinophaga pinensis

    Directory of Open Access Journals (Sweden)

    Johan Larsbrink

    2017-04-01

    Full Text Available The secretion of carbohydrate-degrading enzymes by a bacterium sourced from a softwood forest environment has been investigated by mass spectrometry. The findings are discussed in full in the research article “Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis” in Journal of Proteomics by Larsbrink et al. ([1], doi: 10.1016/j.jprot.2017.01.003. The bacterium was grown on three carbon sources (glucose, glucomannan, and galactomannan which are likely to be nutrient sources or carbohydrate degradation products found in its natural habitat. The bacterium was grown on solid agarose plates to mimic the natural behaviour of growth on a solid surface. Secreted proteins were collected from the agarose following trypsin-mediated hydrolysis to peptides. The different carbon sources led to the secretion of different numbers and types of proteins. Most carbohydrate-degrading enzymes were found in the glucomannan-induced cultures. Several of these enzymes may have biotechnological potential in plant cell wall deconstruction for biofuel or biomaterial production, and several may have novel activities. A subset of carbohydrate-active enzymes (CAZymes with predicted activities not obviously related to the growth substrates were also found in samples grown on each of the three carbohydrates. The full dataset is accessible at the PRIDE partner repository (ProteomeXchange Consortium with the identifier PXD004305, and the full list of proteins detected is given in the supplementary material attached to this report.

  17. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  18. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...... and flat, “ambiguous walls” combine softness, tectonics and three-dimensionality. The paper considers a selection of luminious surfaces and reflects on the extent of their ambiguous qualities. Initial ideas for new directions for the wall will be essayed through the discussion....

  19. Changes of pectin nanostructure and cell wall stiffness induced in vitro by pectinase.

    Science.gov (United States)

    Kozioł, Arkadiusz; Cybulska, Justyna; Pieczywek, Piotr M; Zdunek, Artur

    2017-04-01

    Structural modifications of fruit cell-wall pectins are controlled by various enzymes. In this in vitro study, the cell wall material (CWM) from pear fruit (Pyrus communis L.) was treated using pectinases in two concentrations. Water soluble (WSP), chelator soluble (CSP) and sodium carbonate soluble (DASP) pectin fractions were extracted from CWM. By visualization of enzymatic-induced changes of structure and CWM stiffness using an atomic force microscopy (AFM), the role of pectins in the mechanical properties of cell walls was shown. Galacturonic acid (GalA) content in pectin fractions was assayed as well. This experiment unveiled evidence of the structural degradation of molecules in pectin fractions extracted from CWM caused by in vitro pectinase action and softening of CWM due to pectin removal that might be related to the creation of empty spaces in the cellulose-hemicellulose network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enzyme catalysed tandem reactions.

    Science.gov (United States)

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-04-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a reversible process to become irreversible, to shift the equilibrium reaction in such a way that enantiopure compounds can be obtained from prochiral or racemic substrates, reduce or eliminate problems due to product inhibition or prevent the shortage of substrates by dilution or degradation in the bulk media, etc. In this review we want to illustrate the developments of recent studies involving in vitro multi-enzyme reactions for the synthesis of different classes of organic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Structural Studies of Biomass Degrading Enzyme Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lunin, Vladimir V.; Alahuhta, Markus; Brunecky, Roman; Donohoe, Bryon; Xu, Qi; Bomble, Yannick J.; Himmel, Michael E.

    2014-08-05

    Renewable energy today comprises wind, photovoltaics, geothermal, and biofuels. Biomass is the leading source of renewable, sustainable energy used for the production of liquid transportation fuels. While the focus is shifting today from the ethanol towards next generation or advanced biofuels the real challenge however remains the same: reducing the recalcitrance of biomass to deconstruction, which yields the sugars needed for further processing.

  2. Cell Wall Growth and Modulation Dynamics in a Model Unicellular Green Alga—Penium margaritaceum: Live Cell Labeling with Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    David S. Domozych

    2011-01-01

    Full Text Available Penium margaritaceum is a unicellular charophycean green alga that possesses cell wall polymers similar to those of land plants. Several wall macromolecules of this alga are recognized by monoclonal antibodies specific for wall polymer epitopes of land plants. Immunofluorescence protocols using these antibodies may be employed to label specific cell wall constituents of live cells. Fluorescent labeling persists for several days, and this attribute allows for tracing of wall epitopes in both long- and short-term studies of cell development. Quantitative analysis of surface area covered by cell wall polymers is also easily performed. We show that significant cell expansion caused by incubation of cells in low levels of osmotically active agents like mannitol, glucose, or sucrose results from the inability of cells to undergo cytokinesis but does not result in significant changes to the amount of new cell wall. We also demonstrate that cells can be maintained for long periods of time in culture medium supplemented with specific cell wall-degrading enzymes where notable changes to wall infrastructure occur. These results demonstrate the great potential value of Penium in elucidating fundamental events during cell wall synthesis and modulation in plant cells.

  3. Polycyclic aromatic hydrocarbons (PAHs) degradation by laccase ...

    African Journals Online (AJOL)

    Laccase enzyme was produced from an isolate of the white rot fungus, Ganoderma lucidum Chaaim-001 BCU. The enzyme was subsequently evaluated for its degradative ability towards sixteen types of polycyclic aromatic hydrocarbons (PAHs). The G. lucidum laccase degraded antracene completely with or without a ...

  4. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This ef