WorldWideScience

Sample records for wall bounded mhd

  1. Appearance of three dimensionality in wall-bounded MHD flows.

    Science.gov (United States)

    Klein, R; Pothérat, A

    2010-01-22

    We characterize experimentally how three dimensionality appears in wall-bounded magnetohydrodynamic flows. Our analysis of the breakdown of a square array of vortices in a cubic container singles out two mechanisms: first, a form of three dimensionality we call weak appears through differential rotation in individual 2D vortices. Second, strong three dimensionality characterized by vortex disruption leads on the one hand to a remarkable vortex array that is both steady and 3D, and, on the other hand, to scale-selective breakdown of two dimensionality in chaotic flows. Most importantly, these phenomena are entirely driven by inertia, so they are relevant to other flows with a tendency to two dimensionality, such as rotating, or stratified flows in geophysics and astrophysics.

  2. MHD Electrode and wall constructions

    Science.gov (United States)

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  3. Wall functions for numerical modeling of laminar MHD flows

    CERN Document Server

    Widlund, O

    2003-01-01

    general wall function treatment is presented for the numerical modeling of laminar magnetohydrodynamic (MHD) flows. The wall function expressions are derived analytically from the steady-state momentum and electric potential equations, making use only of local variables of the numerical solution. No assumptions are made regarding the orientation of the magnetic field relative to the wall, nor of the magnitude of the Hartmann number, or the wall conductivity. The wall functions are used for defining implicit boundary conditions for velocity and electric potential, and for computing mass flow and electrical currents in near wall-cells. The wall function treatment was validated in a finite volume formulation, and compared with an analytic solution for a fully developed channel flow in a transverse magnetic field. For the case with insulating walls, a uniform 20 x 20 grid, and Hartmann numbers Ha = [10,30,100], the accuracy of pressure drop and wall shear stress predictions was [1.1%,1.6%,0.5%], respectively. Com...

  4. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    Science.gov (United States)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  5. Coherent structures in wall-bounded turbulence.

    Science.gov (United States)

    Dennis, David J C

    2015-01-01

    The inherent difficulty of understanding turbulence has led to researchers attacking the topic in many different ways over the years of turbulence research. Some approaches have been more successful than others, but most only deal with part of the problem. One approach that has seen reasonable success (or at least popularity) is that of attempting to deconstruct the complex and disorganised turbulent flow field into to a set of motions that are in some way organised. These motions are generally called "coherent structures". There are several strands to this approach, from identifying the coherent structures within the flow, defining their characteristics, explaining how they are created, sustained and destroyed, to utilising their features to model the turbulent flow. This review considers research on coherent structures in wall-bounded turbulent flows: a class of flow which is extremely interesting to many scientists (mainly, but not exclusively, physicists and engineers) due to their prevalence in nature, industry and everyday life. This area has seen a lot of activity, particularly in recent years, much of which has been driven by advances in experimental and computational techniques. However, several ideas, developed many years ago based on flow visualisation and intuition, are still both informative and relevant. Indeed, much of the more recent research is firmly indebted to some of the early pioneers of the coherent structures approach. Therefore, in this review, selected historical research is discussed along with the more contemporary advances in an attempt to provide the reader with a good overview of how the field has developed and to highlight the perspicacity of some of the early researchers, as well as providing an overview of our current understanding of the role of coherent structures in wall-bounded turbulent flows.

  6. Coherent structures in wall-bounded turbulence

    Directory of Open Access Journals (Sweden)

    David J.C. Dennis

    2015-06-01

    Full Text Available The inherent difficulty of understanding turbulence has led to researchers attacking the topic in many different ways over the years of turbulence research. Some approaches have been more successful than others, but most only deal with part of the problem. One approach that has seen reasonable success (or at least popularity is that of attempting to deconstruct the complex and disorganised turbulent flow field into to a set of motions that are in some way organised. These motions are generally called "coherent structures". There are several strands to this approach, from identifying the coherent structures within the flow, defining their characteristics, explaining how they are created, sustained and destroyed, to utilising their features to model the turbulent flow. This review considers research on coherent structures in wall-bounded turbulent flows: a class of flow which is extremely interesting to many scientists (mainly, but not exclusively, physicists and engineers due to their prevalence in nature, industry and everyday life. This area has seen a lot of activity, particularly in recent years, much of which has been driven by advances in experimental and computational techniques. However, several ideas, developed many years ago based on flow visualisation and intuition, are still both informative and relevant. Indeed, much of the more recent research is firmly indebted to some of the early pioneers of the coherent structures approach. Therefore, in this review, selected historical research is discussed along with the more contemporary advances in an attempt to provide the reader with a good overview of how the field has developed and to highlight the perspicacity of some of the early researchers, as well as providing an overview of our current understanding of the role of coherent structures in wall-bounded turbulent flows.

  7. Bernstein method for the MHD flow and heat transfer of a second grade fluid in a channel with porous wall

    Directory of Open Access Journals (Sweden)

    A. Sami Bataineh

    2016-09-01

    Full Text Available In this paper, we present an approximate solution method for the problem of magnetohydrodynamic (MHD flow and heat transfer of a second grade fluid in a channel with a porous wall. The method is based on the Bernstein polynomials with their operational matrices and collocation method. Under some regularity conditions, upper bounds of the absolute errors are given. We apply the residual correction procedure which may estimate the absolute error to the problem. We may estimate the absolute error by using a procedure depends on the sequence of the approximate solutions. For some certain cases, we apply the method to the problem in the numerical examples. Moreover, we test the impact of changing the flow parameters numerically. The results are consistent with the results of Runge-Kutta fourth order method and homotopy analysis method.

  8. Radiative MHD compressible Couette flow in a parallel channel with a naturally permeable wall

    Directory of Open Access Journals (Sweden)

    Vyas Paresh

    2014-01-01

    Full Text Available The paper pertains to investigations of thermal radiation effects on dissipative MHD Couette flow of a viscous compressible Newtonian heat- generating fluid in a parallel plate channel whose one wall is stationary and naturally permeable. Saffman’ slip condition is used at the clear fluid-porous interface. The fluid is considered to be optically thick and the radiative heat flux in the energy equation is assumed to follow Rossel and approximation. The momentum and energy equations have closed form solutions. The effects of various parameters on thermal regime are analyzed through graphs and tables.

  9. Energy transfer process of anisothermal wall-bounded flows

    Energy Technology Data Exchange (ETDEWEB)

    Aulery, Frédéric, E-mail: frederic.aulery@gmail.com [PROMES CNRS – UPR 8521, Rambla de la Thermodynamique, Tecnosud, Perpignan (France); Toutant, Adrien [PROMES CNRS – UPR 8521, Rambla de la Thermodynamique, Tecnosud, Perpignan (France); Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 66860 Perpignan Cedex 9 (France); Bataille, Françoise [PROMES CNRS – UPR 8521, Rambla de la Thermodynamique, Tecnosud, Perpignan (France); Florida State University, Department of Mathematics, Tallahassee, FL (United States); Zhou, Ye, E-mail: zhou3@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2015-07-31

    Strong temperature gradients introduce a major external agency into the wall-bounded turbulent flows. In these flows, the temperature field and the turbulent velocity field are highly correlated. In fact, standard RANS turbulent models are not able to accurately reproduce these flows. In order to improve the performance of the models, we need to understand how the energy is produced, transferred, and dissipated in a strong anisothermal wall-bounded flow. This letter presents a first detailed investigation on the roles played by each contributor in the energy transfer equation. - Highlights: • Turbulent flows subject to high temperature gradients are considered. • The influence of the “temperature gradients” on the energy transfer process is determined. • Inverse energy cascade in an anisotropic flow is observed.

  10. Effects of wall shear stress on unsteady MHD conjugate flow in a porous medium with ramped wall temperature.

    Science.gov (United States)

    Khan, Arshad; Khan, Ilyas; Ali, Farhad; Ulhaq, Sami; Shafie, Sharidan

    2014-01-01

    This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD) flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details.

  11. Influence of strong perturbations on wall-bounded flows

    Science.gov (United States)

    Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.

    2018-01-01

    Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is

  12. Heat and mass transfer analysis of unsteady MHD nanofluid flow through a channel with moving porous walls and medium

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Akbar

    2016-04-01

    Full Text Available The paper presents the numerical study of heat and mass transfer analysis in a viscous unsteady MHD nanofluid flow through a channel with porous walls and medium in the presence of metallic nanoparticles. The two cases for effective thermal conductivity are discussed in the analysis through H-C model. The impacts of the governing parameters on the flow, heat and mass transfer aspects of the issue are talked about. Under the patronage of small values of permeable Reynolds number and relaxation/contraction parameter, we locate that, when wall contraction is together with suction, flow turning is encouraged close to the wall where the boundary layer is shaped. On the other hand, when the wall relaxation is coupled with injection, the flow adjacent to the porous walls decreased. The outcome of the exploration may be beneficial for applications of biotechnology. Numerical solutions for the velocity, heat and mass transfer rate at the boundary are obtained and analyzed.

  13. DNS of turbulent wall bounded flows with a passive scalar

    Science.gov (United States)

    Araya, Juan Guillermo

    In this thesis, Direct Numerical Simulations (DNS) of the velocity and temperature fields are performed for incompressible turbulent flows in plane channels and spatially-developing boundary layers. The main goal is to numerically analyze the behavior of the momentum and thermal boundary layers subjected to different external and upstream conditions, the main focus is given to: (i) local flow perturbations, (ii) different Reynolds numbers, and, (iii) external pressure gradient. Two types of turbulent wall-bounded flows are examined in this investigation. One of them consists of the fully developed turbulent channel. Furthermore, after the developing section, the boundary layers generated by the lower and upper walls collapse. From this point to downstream, periodic boundary conditions are applicable due to the existent homogeneity. The second type of wall bounded flow explored possesses no restriction in the upper zone; consequently, the boundary layer may grow infinitely downstream. This streamwise non-homogeneous state does not allow to prescribe periodic boundary conditions along the direction of the flow. Therefore, time-dependent turbulent information must be assigned at the domain inlet, turning the numerical problem into a very challenging one. The spatially-developing turbulent boundary layer in a flat plate is a typical example of non-homogeneous flow. In the first part of this thesis, the influence of local forcing on an incompressible turbulent channel flow is numerically investigated. The extensive information provided by the DNS enable us to have a better understanding of the physical mechanism responsible for local heat transfer enhancement and drag reduction. Time-periodic blowing/suction is applied by means of thin spanwise slots located at the lower and upper walls of the channel at several forcing frequencies. It was found in Araya et al. (2008-a) the existence of a characteristic frequency, i.e. of f = 0.64 or f* = 0.044, at which maximum local

  14. Unsteady MHD free convection flow of rotating Jeffrey fluid embedded in a porous medium with ramped wall temperature

    Science.gov (United States)

    Zin, N. A. Mohd; Khan, I.; Shafie, S.

    2017-09-01

    The effect of radiative heat transfer on unsteady magnetohydrodynamic (MHD) free convection flow of rotating Jeffrey fluid past an infinite vertical plate saturated in a porous medium with ramped wall temperature is investigated. The incompressible fluid is taken electrically conducting under influence of transverse magnetic field which perpendicular to the flow. An appropriate dimensionless variables are employed to the governing equations and solved analytically by Laplace transform technique. The results of several controlling parameters for both ramped wall temperature and an isothermal plate are presented graphically with comprehensive discussions. It has been observed that, an increase in rotation parameter, reduced the primary velocity, but an opposite behaviour is noticed for the secondary velocity. Moreover, large values of Hartmann number tends to retard the fluid flow due to the Lorentz force.

  15. Successful experiments on an external MHD Accelerator: wall confinement of the plasma, annihilation of the electrothermal instability by magnetic gradient inversion, creation of a stable spiral current pattern

    Science.gov (United States)

    Petit, Jean-Pierre; Dore, Jean-Christophe

    2013-09-01

    MHD propulsion has been extensively studied since the fifties. To shift from propulsion to an MHD Aerodyne, one only needs to accelerate the air externally, along its outer skin, using Lorentz forces. We present a set of successful experiments, obtained around a model, placed in low density air. We successfully dealt with various problems: wall confinement of two-temperature plasma obtained by inversion of the magnetic pressure gradient, annihilation of the Velikhov electrothermal instability by magnetic confinement of the streamers, establishment of a stable spiral distribution of the current, obtained by an original method. Another direction of research is devoted to the study of an MHD-controlled inlet which, coupled with a turbofan engine and implying an MHD-bypass system, would extend the flight domain to hypersonic conditions. Research manager

  16. Particles in wall-bounded turbulent flows deposition, re-suspension and agglomeration

    CERN Document Server

    Pozorski, Jacek

    2017-01-01

    The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.

  17. Shear localization and effective wall friction in a wall bounded granular flow

    Directory of Open Access Journals (Sweden)

    Artoni Riccardo

    2017-01-01

    Full Text Available In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i the confining pressure, (ii the particle-wall friction coefficient, (iii the rotating velocity of the bottom wall and (iv the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  18. Heat transfer in particle-laden wall-bounded turbulent flows

    NARCIS (Netherlands)

    Jaszczur, M.; Portela, L.M.

    2006-01-01

    In present work heat transfer in particle-laden wall-bounded turbulent flows has been study with the fluid-particle one way interaction approach. Direct Numerical Simulation of the flow, combined with Lagrangian particle tracking technique has been performed to study the problem. In presented

  19. Upper and Lower Bound Limit Loads for Thin-Walled Pressure Vessels Used for Aerosol Cans

    Directory of Open Access Journals (Sweden)

    Stephen John Hardy

    2009-01-01

    Full Text Available The elastic compensation method proposed by Mackenzie and Boyle is used to estimate the upper and lower bound limit (collapse loads for one-piece aluminium aerosol cans, which are thin-walled pressure vessels subjected to internal pressure loading. Elastic-plastic finite element predictions for yield and collapse pressures are found using axisymmetric models. However, it is shown that predictions for the elastic-plastic buckling of the vessel base require the use of a full three-dimensional model with a small unsymmetrical imperfection introduced. The finite element predictions for the internal pressure to cause complete failure via collapse fall within the upper and lower bounds. Hence the method, which involves only elastic analyses, can be used in place of complex elastic-plastic finite element analyses when upper and lower bound estimates are adequate for design purposes. Similarly, the lower bound value underpredicts the pressure at which first yield occurs.

  20. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth

    Science.gov (United States)

    Melan, M. A.; Cosgrove, D. J.

    1988-01-01

    Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.

  1. Tightly Bound Binary Toxin in the Cell Wall of Bacillus sphaericus

    Science.gov (United States)

    Klein, Daniela; Uspensky, Igor; Braun, Sergei

    2002-01-01

    We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earlier than the appearance of the binary toxin crystal. It disappears with sporulation when the binary toxin activity reaches its peak. Disruption of the gene for the 42-kDa protein (P42) of the binary toxin abolishes both cell wall toxicity and crystal formation. However, the cell wall of B. sphaericus 2297, lacking P42, kills C. pipiens larvae when mixed with Escherichia coli cells expressing P42. Thus, the cell wall toxicity in strongly toxic B. sphaericus strains must be attributed to the presence in the cell wall of tightly bound 51-kDa (P51) and P42 binary toxin proteins. The synergism between binary toxin crystals and urea-treated cell wall preparations reflects suboptimal distribution of binary toxin subunits in both compartments. Binary toxin crystal is slightly deficient in P51, while cell wall is lacking in P42. PMID:12089007

  2. Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements

    Science.gov (United States)

    Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong

    2017-04-01

    Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7  ×  50.0  ×  14.4 mm3 (covering the entire depth of the channel) with a velocity resolution of  art 3D whole-field flow measurement techniques.

  3. Methods for Determining Cell Wall-Bound Phenolics in Maize Stem Tissues.

    Science.gov (United States)

    Santiago, Rogelio; López-Malvar, Ana; Souto, Carlos; Barros-Ríos, Jaime

    2018-01-26

    We compared two methods with different sample pretreatment, hydrolysis, and separation procedures to extract cell wall-bound phenolics. The samples were pith and rind tissues from six maize inbred lines reportedly containing different levels of cell wall-bound phenolics. In method 1, pretreated samples were extracted with a C18 solid-phase extraction cartridge, and it took 6 days to complete. In method 2, phenolics were extracted from crude samples with ethyl acetate, it took 2 days to complete, and the cost per sample was reduced more than 60%. Both methods extracted more 4-coumarate than ferulate. Overall, method 1 yielded more 4-coumarate, while method 2 yielded more ferulate. The lack of a genotype × method interaction and significant correlations between the results obtained using the two methods indicate that both methods are reliable for use in large-scale plant breeding programs. Method 2, scaled, is proposed for general plant biology research.

  4. Heat transfer in MHD unsteady stagnation point flow with variable wall temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.; Takhar, H.S.

    ) (J~+ P, [ wall temperature varies as Ax N is presented. Temparature profiles arc shown graphicaIIy for different values of N and the numerical values of the rate of heat transfer (- 0' (0», IJ...

  5. Differential responses of cell wall bound phenolic compounds in sensitive and tolerant varieties of rice in response to salinity.

    Science.gov (United States)

    Gupta, Poulami; De, Bratati

    2017-10-03

    In plants, cell wall bound phenolics change in response to stress. The aim of the study was to investigate the effect of NaCl induced stress on wall bound phenolics in four rice varieties, of which two (Bhutnath, Nonabokra) were salt tolerant and two (MTU 7029, Sujala) were salt sensitive. After germination, seedlings were grown in hydroponic solution and subjected to salinity stress (25 mM, 50 mM, 100 mM and 150 mM NaCl) on day 12. Wall bound phenolic compounds were determined by GC-MS based metabolite analysis. Total seven wall bound phenols were identified from the leaf tissues and eight from the root tissues. Ferulic acid and 4-hydroxycinnamic acid were found in all the four varieties. After NaCl treatment, these two wall bound phenols increased in the leaves of tolerant varieties only. Significant inverse correlation between leaf length and leaf fresh weight with wall bound ferulic acid and 4-hydroxycinnamic acid in Nonabokra suggests the positive role of these wall bound phenolics in salt tolerance.

  6. Spectral derivation of the classic laws of wall-bounded turbulent flows

    Science.gov (United States)

    Gioia, Gustavo; Chakraborty, Pinaki

    2017-08-01

    We show that the classic laws of the mean-velocity profiles (MVPs) of wall-bounded turbulent flows-the `law of the wall,' the `defect law' and the `log law'-can be predicated on a sufficient condition with no manifest ties to the MVPs, namely that viscosity and finite turbulent domains have a depressive effect on the spectrum of turbulent energy. We also show that this sufficient condition is consistent with empirical data on the spectrum and may be deemed a general property of the energetics of wall turbulence. Our findings shed new light on the physical origin of the classic laws and their immediate offshoot, Prandtl's theory of turbulent friction.

  7. Scrutiny of underdeveloped nanofluid MHD flow and heat conduction in a channel with porous walls

    Directory of Open Access Journals (Sweden)

    M. Fakour

    2014-11-01

    Full Text Available In this paper, laminar fluid flow and heat transfer in channel with permeable walls in the presence of a transverse magnetic field is investigated. Least square method (LSM for computing approximate solutions of nonlinear differential equations governing the problem. We have tried to show reliability and performance of the present method compared with the numerical method (Runge–Kutta fourth-rate to solve this problem. The influence of the four dimensionless numbers: the Hartmann number, Reynolds number, Prandtl number and Eckert number on non-dimensional velocity and temperature profiles are considered. The results show analytical present method is very close to numerically method. In general, increasing the Reynolds and Hartman number is reduces the nanofluid flow velocity in the channel and the maximum amount of temperature increase and increasing the Prandtl and Eckert number will increase the maximum amount of theta.

  8. Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump

    Science.gov (United States)

    Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus

    2017-11-01

    Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.

  9. Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Okulov, Valery

    2009-01-01

    Embedded vortices in turbulent wall-bounded flow over a flat plate, generated by a passive rectangular vane-type vortex generator with variable angle \\beta to the incoming flow in a low-Reynolds number flow (Re = 2600 based on the inlet grid mesh size L = 0:039 m and free stream velocity U......_{\\infty} = 1.0 ms^{-1}) have been studied with respect to helical symmetry. The studies were carried out in a low-speed closed-circuit wind tunnel utilizing Stereoscopic Particle Image Velocimetry (SPIV). The vortices have been shown to possess helical symmetry, allowing the flow to be described in a simple...

  10. A New Boundary Model for Simulating Complex and Flexible Wall Bounded Domain in Dissipative Particle Dynamics

    Directory of Open Access Journals (Sweden)

    Saeid Mokhtarian

    2014-01-01

    Full Text Available Despite extensive area of applications, simulation of complex wall bounded problems or any deformable boundary is still a challenge in a Dissipative Particle Dynamics simulation. This limitation is rooted in the soft force nature of DPD and the fact that we need to use an antipenetration model for escaped particles. In the present paper, we propose a new model of antipenetration which preserves the conservation of linear momentum on the boundaries and enables us to simulate complex and flexible boundaries. Finally by performing numerical simulations, we demonstrate the validity of our new model.

  11. Temporal slow-growth formulation for direct numerical simulation of compressible wall-bounded flows

    Science.gov (United States)

    Topalian, Victor; Oliver, Todd A.; Ulerich, Rhys; Moser, Robert D.

    2017-08-01

    A slow-growth formulation for DNS of wall-bounded turbulent flow is developed and demonstrated to enable extension of slow-growth modeling concepts to wall-bounded flows with complex physics. As in previous slow-growth approaches, the formulation assumes scale separation between the fast scales of turbulence and the slow evolution of statistics such as the mean flow. This separation enables the development of approaches where the fast scales of turbulence are directly simulated while the forcing provided by the slow evolution is modeled. The resulting model admits periodic boundary conditions in the streamwise direction, which avoids the need for extremely long domains and complex inflow conditions that typically accompany spatially developing simulations. Further, it enables the use of efficient Fourier numerics. Unlike previous approaches [Guarini, Moser, Shariff, and Wray, J. Fluid Mech. 414, 1 (2000), 10.1017/S0022112000008466; Maeder, Adams, and Kleiser, J. Fluid Mech. 429, 187 (2001), 10.1017/S0022112000002718; Spalart, J. Fluid Mech. 187, 61 (1988), 10.1017/S0022112088000345], the present approach is based on a temporally evolving boundary layer and is specifically tailored to give results for calibration and validation of Reynolds-averaged Navier-Stokes (RANS) turbulence models. The use of a temporal homogenization simplifies the modeling, enabling straightforward extension to flows with complicating features, including cold and blowing walls. To generate data useful for calibration and validation of RANS models, special care is taken to ensure that the mean slow-growth forcing is closed in terms of the mean and other quantities that appear in standard RANS models, ensuring that there is no confounding between typical RANS closures and additional closures required for the slow-growth problem. The performance of the method is demonstrated on two problems: an essentially incompressible, zero-pressure-gradient boundary layer and a transonic boundary layer over

  12. Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows

    Science.gov (United States)

    Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William

    2015-01-01

    The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.

  13. Convection-driven melting in an n-octane pool fire bounded by an ice wall

    DEFF Research Database (Denmark)

    Farahani, Hamed Farmahini; Alva, Wilson Ulises Rojas; Rangwala, Ali S.

    2017-01-01

    An experimental study on an n-octane pool fire bound on one side by an ice wall was carried out to investigate the effects on ice melting by convection within the liquid part of the fuel. Experiments were conducted in a square glass tray (9.6cm ×9.6cm ×5cm) with a 3cm thick ice wall (9.6cm ×6.5cm...... ×3cm) placed on one side of the tray. The melting front velocity, as an indicator of the melting rate of the ice, increased from 0.04cm/min to 1cm/min. The measurement of the burning rates and flame heights showed two distinctive behaviors; an induction period from the initial self-sustained flame...... separating from a primary horizontal flow on the top driven by Marangoni convection. As the burning rate/flame height increased the velocity and evolving flow patterns enhanced the melting rate of the ice wall. Experimentally determined temperature contours, using an array of finely spaced thermocouples...

  14. The dynamics of a capsule in a wall-bounded oscillating shear flow

    CERN Document Server

    Zhu, LaiLai; Brandt, Luca

    2015-01-01

    The motion of an initially spherical capsule in a wall-bounded oscillating shear flow is investigated via an accelerated boundary integral implementation. The neo-Hookean model is used as the constitutive law of the capsule membrane. The maximum wall-normal migration is observed when the oscillation period of the imposed shear is of the order of the relaxation time of the elastic membrane; hence, the optimal capillary number scales with the inverse of the oscillation frequency and the ratio agrees well with the theoretical prediction in the limit of high-frequency oscillation. The migration velocity decreases monotonically with the frequency of the applied shear and the capsule-wall distance. We report a significant correlation between the capsule lateral migration and the normal stress difference induced in the flow. The periodic variation of the capsule deformation is roughly in phase with that of the migration velocity and normal stress difference, with twice the frequency of the imposed shear. The maximum...

  15. Andreas Acrivos Dissertation Award Talk: Modeling drag forces and velocity fluctuations in wall-bounded flows at high Reynolds numbers

    Science.gov (United States)

    Yang, Xiang

    2017-11-01

    The sizes of fluid motions in wall-bounded flows scale approximately as their distances from the wall. At high Reynolds numbers, resolving near-wall, small-scale, yet momentum-transferring eddies are computationally intensive, and to alleviate the strict near-wall grid resolution requirement, a wall model is usually used. The wall model of interest here is the integral wall model. This model parameterizes the near-wall sub-grid velocity profile as being comprised of a linear inner-layer and a logarithmic meso-layer with one additional term that accounts for the effects of flow acceleration, pressure gradients etc. We use the integral wall model for wall-modeled large-eddy simulations (WMLES) of turbulent boundary layers over rough walls. The effects of rough-wall topology on drag forces are investigated. A rough-wall model is then developed based on considerations of such effects, which are now known as mutual sheltering among roughness elements. Last, we discuss briefly a new interpretation of the Townsend attached eddy hypothesis-the hierarchical random additive process model (HRAP). The analogy between the energy cascade and the momentum cascade is mathematically formal as HRAP follows the multi-fractal formulism, which was extensively used for the energy cascade.

  16. Self-sustaining processes at all scales in wall-bounded turbulent shear flows

    Science.gov (United States)

    Cossu, Carlo; Hwang, Yongyun

    2017-03-01

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.

  17. Predictions of canonical wall bounded turbulent flows via a modified $k-\\omega$ equation

    CERN Document Server

    Chen, Xi; She, Zhen-Su

    2016-01-01

    A major challenge in computation of engineering flows is to derive and improve turbulence models built on turbulence physics. Here, we present a physics-based modified $k-\\omega$ equation for canonical wall bounded turbulent flows (boundary layer, channel and pipe), predicting both mean velocity profile (MVP) and streamwise mean kinetic energy profile (SMKP) with high accuracy over a wide range of Reynolds number ($Re$). The result builds on a multi-layer quantification of wall flows, which allows a significant modification of the $k-\\omega$ equation. Three innovations are introduced: First, an adjustment of the Karman constant to 0.45 is set for the overlap region with a logarithmic MVP. Second, a wake parameter models the turbulent transport near the centerline. Third, an anomalous dissipation factor represents the effect of a meso layer in the overlap region. Then, a highly accurate (above 99\\%) prediction of MVPs is obtained in Princeton pipes, improving the original model prediction by up to 10\\%. Moreov...

  18. New scenario of turbulence theory and wall-bounded turbulence: Theoretical significance

    CERN Document Server

    Kambe, Tsutomu

    2016-01-01

    New general scenario of turbulence theory is proposed and applied to wall-bounded turbulence. Significance of the theory rests on a mathematical theorem closely related to the fundamental conservation law of current flux of fluid flow, expressed in a form of 4d physical space-time representation, which predicts a system of Maxwell-type equation and supports transverse waves traveling with a phase speed c_t. In streaky wall flows it is remarkable that there exist both dynamical mechanism exciting transverse waves and an energy channel of exchange between flow field and transverse wave field. In developed state of the wave field, energy is supplied from the flow field to the transverse wave field if wavelengths are sufficiently large. The waves are accompanied with a new mechanism of energy dissipation, i.e. an internal friction analogous to the Joule effect. Energy is supplied from the main flow to the wave field, and some part of the energy is dissipated into heat. Thus, there exists a sustaining mechanism, w...

  19. Turbulence modeling for flows in wall bounded porous media: An analysis based on direct numerical simulations

    Science.gov (United States)

    Jin, Y.; Kuznetsov, A. V.

    2017-04-01

    Various models are available for simulating turbulent flows in porous media. Models based on the eddy viscosity assumption are often adopted to close the Reynolds stress term. In order to validate the assumptions behind such turbulence models, we studied the dynamics of macroscopic momentum and turbulence kinetic energy in porous media flows by utilizing Direct Numerical Simulation (DNS). The generic porous matrix is composed of regularly arranged spheres. The resulting periodic porous medium is bounded by two walls. The DNS analyses with a Lattice Boltzmann method were performed for various values of the applied pressure gradient, pore size to channel width ratio, and porosity. The DNS results were averaged over time and volume to obtain macroscopic results. The results show that the macroscopic shear Reynolds stress in all Representative Elementary Volumes (REVs), independent of their location, is negligibly small, although the mean velocity gradient takes nonzero values near the wall. The turbulence kinetic energy production rate is generally balanced by the dissipation rate in each REV. The DNS results support a zero-equation turbulence model that accounts for the fact that turbulent structures are restricted in size by the pore scale. The DNS results also suggest that the Brinkman term, which expresses the diffusion of momentum, has an important effect near the wall where the gradient of the shear stress is large. Therefore, the Brinkman term should be taken into account in the macroscopic momentum equation as a component of the total drag. A preliminary macroscopic model for calculating turbulent porous media flows has been proposed and compared with our DNS results.

  20. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production.

    Science.gov (United States)

    Kukavica, Biljana; Mojovic, Milos; Vuccinic, Zeljko; Maksimovic, Vuk; Takahama, Umeo; Jovanovic, Sonja Veljovic

    2009-02-01

    The hydroxyl radical produced in the apoplast has been demonstrated to facilitate cell wall loosening during cell elongation. Cell wall-bound peroxidases (PODs) have been implicated in hydroxyl radical formation. For this mechanism, the apoplast or cell walls should contain the electron donors for (i) H(2)O(2) formation from dioxygen; and (ii) the POD-catalyzed reduction of H(2)O(2) to the hydroxyl radical. The aim of the work was to identify the electron donors in these reactions. In this report, hydroxyl radical (.OH) generation in the cell wall isolated from pea roots was detected in the absence of any exogenous reductants, suggesting that the plant cell wall possesses the capacity to generate .OH in situ. Distinct POD and Mn-superoxide dismutase (Mn-SOD) isoforms different from other cellular isoforms were shown by native gel electropho-resis to be preferably bound to the cell walls. Electron paramagnetic resonance (EPR) spectroscopy of cell wall isolates containing the spin-trapping reagent, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO), was used for detection of and differentiation between .OH and the superoxide radical (O(2)(-).). The data obtained using POD inhibitors confirmed that tightly bound cell wall PODs are involved in DEPMPO/OH adduct formation. A decrease in DEPMPO/OH adduct formation in the presence of H(2)O(2) scavengers demonstrated that this hydroxyl radical was derived from H(2)O(2). During the generation of .OH, the concentration of quinhydrone structures (as detected by EPR spectroscopy) increased, suggesting that the H(2)O(2) required for the formation of .OH in isolated cell walls is produced during the reduction of O(2) by hydroxycinnamic acids. Cell wall isolates in which the proteins have been denaturated (including the endogenous POD and SOD) did not produce .OH. Addition of exogenous H(2)O(2) again induced the production of .OH, and these were shown to originate from the Fenton reaction with tightly bound metal ions

  1. Chemical reaction and radiation effects on the transient MHD free convection flow of dissipative fluid past an infinite vertical porous plate with ramped wall temperature

    Directory of Open Access Journals (Sweden)

    V. RAJESH

    2011-06-01

    Full Text Available A finite-difference analysis is performed to study the effects of thermal radiation and chemical reaction on the transient MHD free convection and mass transform flow of a dissipative fluid past an infinite vertical porous plate subject to ramped wall temperature. The fluid considered here is a gray, absorbing/ /emitting radiation but a non-scattering medium. The dimensionless governing equations are unsteady, coupled and non-linear partial differential equations. An analytical method fails to give a solution. Hence an implicit finite difference scheme of Crank-Nicolson method is employed. The effect of the magnetic parameter (M, chemical reaction parameter (K, radiation parameter (F, buoyancy ratio parameter (N, Schmidt number (Sc on the velocity field and skin friction for both air (Pr = 0.71 and water (Pr = 7 in the presence of both aiding (N>0 and opposing (N<0 flows are extensively discussed with the help of graphs.

  2. MHD convective flow through porous medium in a horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    K.V.S. Raju

    2014-06-01

    Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.

  3. Model-based control of transitional and turbulent wall-bounded shear flows

    Science.gov (United States)

    Moarref, Rashad

    Turbulent flows are ubiquitous in nature and engineering. Dissipation of kinetic energy by turbulent flow around airplanes, ships, and submarines increases resistance to their motion (drag). In this dissertation, we have designed flow control strategies for enhancing performance of vehicles and other systems involving turbulent flows. While traditional flow control techniques combine physical intuition with costly numerical simulations and experiments, we have developed control-oriented models of wall-bounded shear flows that enable simulation-free and computationally-efficient design of flow controllers. Model-based approach to flow control design has been motivated by the realization that progressive loss of robustness and consequential noise amplification initiate the departure from the laminar flow. In view of this, we have used the Navier-Stokes equations with uncertainty linearized around the laminar flow as a control-oriented model for transitional flows and we have shown that reducing the sensitivity of fluctuations to external disturbances represents a powerful paradigm for preventing transition. In addition, we have established that turbulence modeling in conjunction with judiciously selected linearization of the flow with control can be used as a powerful control-oriented model for turbulent flows. We have illustrated the predictive power of our model-based control design in three concrete problems: preventing transition by (i) a sensorless strategy based on traveling waves and (ii) an optimal state-feedback controller based on local flow information; and (iii) skin-friction drag reduction in turbulent flows by transverse wall oscillations. We have developed analytical and computational tools based on perturbation analysis (in the control amplitude) for control design by means of spatially- and temporally- periodic flow manipulation in problems (i) and (iii), respectively. In problem (ii), we have utilized tools for designing structured optimal state

  4. Phase-space dynamics of opposition control in wall-bounded turbulent flows

    Science.gov (United States)

    Hwang, Yongyun; Ibrahim, Joseph; Yang, Qiang; Doohan, Patrick

    2017-11-01

    The phase-space dynamics of wall-bounded shear flow in the presence of opposition control is explored by examining the behaviours of a pair of nonlinear equilibrium solutions (exact coherent structures), edge state and life time of turbulence at low Reynolds numbers. While the control modifies statistics and phase-space location of the edge state and the lower-branch equilibrium solution very little, it is also found to regularise the periodic orbit on the edge state by reverting a period-doubling bifurcation. Only the upper-branch equilibrium solution and mean turbulent state are significantly modified by the control, and, in phase space, they gradually approach the edge state on increasing the control gain. It is found that this behaviour results in a significant reduction of the life time of turbulence, indicating that the opposition control significantly increases the probability that the turbulent solution trajectory passes through the edge state. Finally, it is shown that the opposition control increases the critical Reynolds number of the onset of the equilibrium solutions, indicating its capability of transition delay. This work is sponsored by the Engineering and Physical Sciences Research Council (EPSRC) in the UK (EP/N019342/1).

  5. MHD Effect on Unsteady Mixed Convection Boundary Layer Flow past a Circular Cylinder with Constant Wall Temperature

    Science.gov (United States)

    Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.

    2017-09-01

    Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.

  6. Low-complexity stochastic modeling of wall-bounded shear flows

    Science.gov (United States)

    Zare, Armin

    Turbulent flows are ubiquitous in nature and they appear in many engineering applications. Transition to turbulence, in general, increases skin-friction drag in air/water vehicles compromising their fuel-efficiency and reduces the efficiency and longevity of wind turbines. While traditional flow control techniques combine physical intuition with costly experiments, their effectiveness can be significantly enhanced by control design based on low-complexity models and optimization. In this dissertation, we develop a theoretical and computational framework for the low-complexity stochastic modeling of wall-bounded shear flows. Part I of the dissertation is devoted to the development of a modeling framework which incorporates data-driven techniques to refine physics-based models. We consider the problem of completing partially known sample statistics in a way that is consistent with underlying stochastically driven linear dynamics. Neither the statistics nor the dynamics are precisely known. Thus, our objective is to reconcile the two in a parsimonious manner. To this end, we formulate optimization problems to identify the dynamics and directionality of input excitation in order to explain and complete available covariance data. For problem sizes that general-purpose solvers cannot handle, we develop customized optimization algorithms based on alternating direction methods. The solution to the optimization problem provides information about critical directions that have maximal effect in bringing model and statistics in agreement. In Part II, we employ our modeling framework to account for statistical signatures of turbulent channel flow using low-complexity stochastic dynamical models. We demonstrate that white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics and develop models for colored-in-time forcing of the linearized Navier-Stokes equations. We also examine the efficacy of stochastically forced linearized NS equations and their

  7. Combine effects of Magnetohydrodynamics (MHD and partial slip on peristaltic Blood flow of Ree–Eyring fluid with wall properties

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-09-01

    Full Text Available In this article, combine effects of Magnetohydrodynamics and partial slip on Blood flow of Ree–Eyring fluid through a porous medium have been investigated. The walls of the non-uniform porous channel are considered as compliant. The governing equation of Ree–Eyring fluid for blood flow are simplified using long wavelength and low Reynolds number approximation. The obtained resulting equation are solved analytically and exact solution has been obtained. The impact of different physical parameters such as Hartmann number, slip parameter, porous parameter, wall rigidity parameter, wall tension and mass characterization parameter are taken into account. It is found that velocity distribution increases due to slip effects while its behavior is opposite for Hartmann number. Trapping mechanism has also taken under consideration by drawing contour streamlines.

  8. Influences of chemical reaction and wall properties on MHD Peristaltic transport of a Dusty fluid with Heat and Mass transfer

    Directory of Open Access Journals (Sweden)

    R. Muthuraj

    2016-03-01

    Full Text Available The influence of elasticity of flexible walls on peristaltic transport of a dusty fluid with heat and mass transfer in a horizontal channel in the presence of chemical reaction has been investigated under long wavelength approximation. Expressions have been constructed for stream function, temperature and concentration by using perturbation technique. The effects of various parameters on heat and mass transfer characteristics of the flow are discussed through graphs.

  9. In-medium bound-state formation and inhomogeneous condensation in Fermi gases in a hard-wall box

    Science.gov (United States)

    Roscher, Dietrich; Braun, Jens

    2017-10-01

    The formation of bosonic bound states underlies the formation of a superfluid ground state in the many-body phase diagram of ultracold Fermi gases. We study bound-state formation in a spin- and mass-imbalanced ultracold Fermi gas confined in a box with hard-wall boundary conditions. Because of the presence of finite Fermi spheres, the center-of-mass momentum of the potentially formed bound states can be finite, depending on the parameters controlling mass and spin imbalance as well as the coupling strength. We exploit this observation to estimate the potential location of inhomogeneous phases in the many-body phase diagram as a function of spin- and mass imbalance as well as the box size. Our results suggest that a hard-wall box does not alter substantially the many-body phase diagram calculated in the thermodynamic limit. Therefore, such a box may serve as an ideal trap potential to bring experiment and theory closely together and facilitate the search for exotic inhomogeneous ground states.

  10. Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows.

    Science.gov (United States)

    Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul

    2016-09-23

    The macroscopic behavior of dense suspensions of neutrally buoyant spheres in turbulent plane channel flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to deviate from the continuum limit in which its dynamics is well described by an effective suspension viscosity. This deviation is caused by the formation of a particle layer close to the wall with significant slip velocity. By assuming two distinct transport mechanisms in the near-wall layer and the turbulence in the bulk, we define an effective wall location such that the flow in the bulk can still be accurately described by an effective suspension viscosity. We thus propose scaling laws for the mean velocity profile of the suspension flow, together with a master equation able to predict the increase in drag as a function of the particle size and volume fraction.

  11. Life stages of wall-bounded decay of Taylor-Couette turbulence

    NARCIS (Netherlands)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Arza, Vamsi Spandan; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5×104. The effect of wall friction is

  12. Two-Phase Flow Frictional Characteristics in Porous Wall Bounded Microchannels

    Science.gov (United States)

    Lee, Eon Soo; Steinbrenner, Julie; Hidrovo, Carlos; Goodson, Kenneth; Eaton, John

    2013-11-01

    This presents experimental results from small rectangular channels for fuel cells in which three of the channel walls are smooth, impermeable solid and the fourth wall is a porous gas-diffusion layer. Experiments were performed on a straight 200 by 500 micron by 150 mm long rectangular channel. Three walls of the channel were machined into a solid piece of acrylic. One of the 500 micron wide walls was a commercial Toray carbon paper Gas-Diffusion Layer (GDL) material held in place by a flat sheet of acrylic. Water was forced through the GDL layer from four evenly spaced holes in the flat acrylic piece. A one-dimensional, two-phase flow model was developed which included the effect of air and water flows in both the channel and GDL. The analysis from experimental measurements showed that the product of the friction factor and the gas flow Reynolds number was very nearly a constant, indicating that the model captures the critical physical features of the flow and is useful for the prediction of gas flow rate or pressure drop in a fuel cell microchannel. Assistant Professor at New Jersey Institute of Technology.

  13. Numerical investigation of flow dynamics and scalar transport in a wall-bounded turbulent jet

    Science.gov (United States)

    Hrebtov, M.; Bazhenov, A.; Borynyak, K.

    2017-11-01

    We present the results of Large Eddy Simulation of a turbulent jet discharging into a confined slot with the wall spacing to jet inlet width ratio = 0.1 and Re = 104. The jet exhibits a meandering motion accompanied by formation of checkerboard pattern of large vortices in the mixing layer. A passive scalar transport was simulated with uniform inlet distribution of the scalar. It was found that the fluctuations of spanwise velocity component grow downstream and their maximum location is migrating from the lateral boundaries of the jet (free-shear layers) to the wall-boundary layers. Some evidence of counter-gradient turbulent scalar transport was found in the mixing layers of the jet, which may be attributed to the influence of observed large-scale checkerboard-type vortices.

  14. Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model

    Energy Technology Data Exchange (ETDEWEB)

    Seshasayanan, K [Laboratoire de Physique Statistique, CNRS UMR 8550, École Normale Supérieure, F-75005 Paris (France); Manneville, P, E-mail: paul.manneville@polytechnique.edu [Laboratoire d’Hydrodynamique, CNRS UMR7646, École Polytechnique, F-91128, Palaiseau (France)

    2015-06-15

    On its way to turbulence, plane Couette flow–the flow between counter-translating parallel plates–displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier–Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for spatiotemporal dynamics in the plane of the flow. Truncating this set beyond the lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at the cruder effective wall-normal resolution. Perspectives opened by this approach are discussed. (paper)

  15. CFD Model for Lift Force in a Wall-Bounded Flow

    Directory of Open Access Journals (Sweden)

    D. Baalbaki

    2013-12-01

    Full Text Available The modeling of the lift force in high shear rate pipe flow is an essential issue for the estimation of the droplet dispersion. The analytical models used in most CFD softwares, such as the popular models of Auton or Saffman, overestimate the intensity of the lift force for inertial particles at high particle Reynolds number. In this paper, after a review of DNS calculations, we present an overall solution for the lift force acting on a droplet in a shear flow, for moderate and high particle Reynolds number in the near-wall zone and for unbounded shear flow. Finally, some numerical results in a cylindrical pipe are presented.

  16. Numerical/Laplace transform analysis for MHD radiating heat/mass transport in a Darcian porous regime bounded by an oscillating vertical surfac

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed

    2015-03-01

    Full Text Available Analytical and numerical solutions of a non-linear MHD flow with heat and mass transfer characteristics of an incompressible, viscous, electrically conducting and Boussinesq’s fluid over a vertical oscillating plate embedded in a Darcian porous medium in the presence of thermal radiation effect have been presented. The fluid considered here is gray, absorbing/emitting radiating, but non-scattering medium. At time t > 0, the plate temperature and concentration near the plate raised linearly with time t. The dimensionless governing coupled, non-linear boundary layer partial differential equations are solved by an efficient, accurate, extensively validated and unconditionally stable finite difference scheme of the Crank–Nicolson type as well as by the Laplace Transform technique. An increase in porosity parameter (K is found to depress fluid velocities and shear stress in the regime. Also it has been found that, when the conduction-radiation (R increased, the fluid velocity and the temperature profiles decreased. Applications of the study arise in materials processing and solar energy collector systems.

  17. Turbulent kinetic energy budgets in wall bounded flows with pressure gradients and separation

    Science.gov (United States)

    Schiavo, Luiz A. C. A.; Wolf, William Roberto; Azevedo, João Luiz F.

    2017-11-01

    Numerical simulations are employed to investigate the turbulent kinetic energy (TKE) budgets in turbulent channel flows with pressure gradients and separation. Incompressible, highly resolved large eddy simulations are performed for Reτ = 170 and 615 to investigate the flow developing along a convergent-divergent channel. The aim of this work is to analyze the TKE budgets both in physical and Fourier spaces to characterize the important scales in the individual processes in such turbulent flows. The study is performed for different positions along the channel where favorable and adverse pressure gradients are present. Proper orthogonal decomposition is employed to understand the role of the most energetic structures in the TKE budgets. Results indicate that such structures account for most of the turbulent effects present in the flow, except for the transport term. A spectral TKE equation in Fourier space is developed for flows with one homogeneous direction to characterize the turbulent processes as a function of the wavelength in the channel spanwise direction. The results show that viscous effects occur at the same range of wavelengths for which production is found and that TKE is transported to the near-wall region, being dissipated by large spanwise scale motion. They also show that favorable pressure gradients change the distribution of processes along the spanwise wavelengths. In the adverse pressure gradient region, TKE is transported both toward the wall and toward the center of the channel, where it is balanced by the advection term.

  18. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows

    Science.gov (United States)

    Kametani, Yukinori; Kotake, Ayane; Fukagata, Koji; Tokugawa, Naoko

    2017-12-01

    Drag reduction capability of uniform blowing in supersonic turbulent boundary layers is investigated by means of direct numerical simulation of channel flows with uniform blowing on one side and suction on the other. The bulk Reynolds number based on the bulk density, the bulk mean velocity, the channel half-width, and the viscosity on the wall is set to Reb=3000 . The bulk Mach number is set at 0.8 and 1.5 to investigate a subsonic and a supersonic condition, respectively. The amplitude of the blowing or suction is set to be 0.1%, 0.3%, or 0.5% of the bulk mass flow rate. At both Mach numbers, modifications of the mean streamwise velocity profiles with blowing and suction are found to be similar to those in an incompressible turbulent channel flow: The skin friction is reduced on the blowing side, while it is increased on the suction side. As for the drag reducing effect of blowing, the drag reduction rate and net-energy saving rate are hardly affected by the Mach number, while the control gain is increased with the increase of Mach number due to the increased density near the wall. The compressibility effect of drag reduction and enhancement is also examined using the physical decomposition of the skin friction drag. A noticeable Mach number effect is found only for the contribution terms containing the viscosity, which is increased by the increased temperature.

  19. A multi-layer description of Reynolds stresses in canonical wall bounded flows

    Science.gov (United States)

    Chen, Xi; Hussain, Fazle; She, Zhen-Su

    2015-11-01

    A complete description of the Reynolds stress tensor is obtained for all three canonical wall turbulence (channel, pipe and turbulent boundary layer - TBL). The result builds on a multi-layer description of length (order) functions and their ratios, including viscous sublayer, buffer layer, meso-layer for the near wall (inner) region, and bulk flow or a central core (absent in TBL) for the outer region. It is shown that the streamwise mean kinetic-energy profile is quantified with high accuracy over the entire flow domain. The model contains only three Re-dependent parameters for Reynolds number (Re) covering nearly three decades. Furthermore, the inner peak location is predicted to be invariant at y+ = 15, while its magnitude shows notable Re and geometry effects, predicted to be .9.2 for high Re's pipe flows. A mechanism is proposed for the emergence of outer peak in pipes, whose magnitude is predicted to scale as .Reτ0. 05 beyond a critical Reτ about 104(). The recently reported logarithmic dependence in the bulk is recovered, but with an alternative explanation. The result is successfully extended to TBL flows by a fractional total stress and an absence of core. Equally accurate descriptions of vertical and spanwise kinetic-energy are also presented for the three flows. The result has been used to modify turbulent engineering models (i.e. k- ω model) with significant improvement.

  20. Magnetohydrodynamic (MHD) channel corner seal

    Science.gov (United States)

    Spurrier, Francis R.

    1980-01-01

    A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.

  1. Modelling of the batch biosorption system: study on exchange of protons with cell wall-bound mineral ions.

    Science.gov (United States)

    Mishra, Vishal

    2015-01-01

    The interchange of the protons with the cell wall-bound calcium and magnesium ions at the interface of solution/bacterial cell surface in the biosorption system at various concentrations of protons has been studied in the present work. A mathematical model for establishing the correlation between concentration of protons and active sites was developed and optimized. The sporadic limited residence time reactor was used to titrate the calcium and magnesium ions at the individual data point. The accuracy of the proposed mathematical model was estimated using error functions such as nonlinear regression, adjusted nonlinear regression coefficient, the chi-square test, P-test and F-test. The values of the chi-square test (0.042-0.017), P-test (proton concentrations. The zeta potential of the bacterium surface at various concentrations of protons was observed to validate the denaturation of active sites.

  2. Protein-Bound Uremic Toxins Stimulate Crosstalk between Leukocytes and Vessel Wall

    Science.gov (United States)

    Glorieux, Griet; Schepers, Eva; Cohen, Gerald; Gondouin, Bertrand; Van Landschoot, Maria; Eloot, Sunny; Rops, Angelique; Van de Voorde, Johan; De Vriese, An; van der Vlag, Johan; Brunet, Philippe; Van Biesen, Wim; Vanholder, Raymond

    2013-01-01

    Leukocyte activation and endothelial damage both contribute to cardiovascular disease, a major cause of morbidity and mortality in CKD. Experimental in vitro data link several protein-bound uremic retention solutes to the modulation of inflammatory stimuli, including endothelium and leukocyte responses and cardiovascular damage, corroborating observational in vivo data. However, the impact of these uremic toxins on the crosstalk between endothelium and leukocytes has not been assessed. This study evaluated the effects of acute and continuous exposure to uremic levels of indoxylsulfate (IS), p-cresylsulfate (pCS), and p-cresylglucuronide (pCG) on the recruitment of circulating leukocytes in the rat peritoneal vascular bed using intravital microscopy. Superfusion with IS induced strong leukocyte adhesion, enhanced extravasation, and interrupted blood flow, whereas pCS caused a rapid increase in leukocyte rolling. Superfusion with pCS and pCG combined caused impaired blood flow and vascular leakage but did not further enhance leukocyte rolling over pCS alone. Intravenous infusion with IS confirmed the superfusion results and caused shedding of heparan sulfate, pointing to disruption of the glycocalyx as the mechanism likely mediating IS-induced flow stagnation. These results provide the first clear in vivo evidence that IS, pCS, and pCG exert proinflammatory effects that contribute to vascular damage by stimulating crosstalk between leukocytes and vessels. PMID:24009240

  3. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    KAUST Repository

    Cheng, W.

    2014-01-29

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo [“Zero-pressure-gradient turbulent boundary layer,” Appl. Mech. Rev.50, 689 (1997)]). Comparison of LES results for Re θ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  4. Effect of Immersed Wall-Bounded Cylinders on Turbulent Boundary Layer Structure

    Science.gov (United States)

    Zheng, Shaokai; Longmire, Ellen; Hallberg, Michael; Ryan, Mitchell

    2012-11-01

    Single spanwise arrays of wall-mounted cylinders with H/ δ <= 0.2, where H is the cylinder height and δ is the boundary layer thickness, were used to modify turbulent boundary layers (Reτ=2500) in an attempt to affect the organization of the coherent structures in the logarithmic and outer regions. Flow downstream of several array spacings was investigated and compared against an unperturbed case. Instantaneous and averaged velocity fields in streamwise-spanwise planes were obtained by stereo PIV. The PIV cameras and laser sheet optics could be traversed at the local mean flow speed in order to track the evolution of larger structures in the flow. The results are analyzed to determine the streamwise evolution of dominant spanwise modes. Different array spacings are shown to either inhibit or reinforce the organization of vortex packet structures over streamwise distances up to 8 δ. The flying stereo PIV measurements suggest also that dominant structures upstream of the arrays can strongly affect the organization and location of structures downstream. supported by NSF CBET-0933341.

  5. Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings

    Energy Technology Data Exchange (ETDEWEB)

    Alletto, Michael

    2014-05-16

    The present work deals with the simulation of turbulent particle-laden flows at high mass loadings. In order to achieve this goal, the fluid flow is described by means of the eddy-resolving concept known as Large-Eddy Simulation (LES) and the particles are described in a Lagrangian frame of reference. Special emphasis is placed on the interparticle collisions and the impact of solid particles on rough walls. Both mechanisms are shown to be crucial for the correct description of the particle dynamics in wall-bounded flows. In order to distinguish the present methodology from the variety of methods available in the literature to treat turbulent flows laden with solid particles, the thesis starts with an overview of different simulation techniques to calculate this class of flows. In this overview special care is taken to underline the parameter space, where the different simulation methods are valid. After that, the governing equations and the boundary conditions applied for the continuous phase of the Euler-Lagrange approach used in the present thesis are given. In the subsequent section the governing equations for the solid particles and their interaction with smooth and rough walls are discussed. Here a new wall roughness model for the particles which incorporates an amplitude parameter used in technical applications such as the mean roughness height or the root-mean-squared roughness is presented. After that, the coupling mechanisms between the phases and the algorithmic realization are discussed. Furthermore, a new agglomeration model capable to treat interparticle collisions with friction is presented. However, the agglomeration model is not evaluated in such a detail as the interparticle collisions and the particle-wall collisions. The reason is that it does not represent a central aspect of this thesis. The numerical methods for the continuous and the disperse phase are presented in the subsequent section. The efficient algorithm to detect the interparticle

  6. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Elizabeth G.; MacNeill, Christopher M.; Levi-Polyachenko, Nicole H., E-mail: nlevi@wakehealth.edu [Wake Forest University School of Medicine, Department of Plastic and Reconstructive Surgery (United States)

    2013-05-15

    Peritoneal metastases of colorectal cancer are a significant challenge in the field of medicine today due to poor results of systemic chemotherapy caused by the poor diffusion of drugs across the blood-peritoneal barrier. Multi-walled carbon nanotubes (MWNTs) are a biocompatible nanomaterial that strongly absorb near-infrared light to locally heat the surrounding area. Colorectal cancer is known to overexpress folate receptor; therefore, folic acid (FA) was covalently attached to MWNTs to target colorectal cancer cells. Results from real-time polymerase chain reaction found differing expression of folate receptor-{alpha} in two colorectal cancer cell lines, RKO and HCT116, as well as a healthy epithelial cell line, HEPM. A spectrophotometric method was developed to quantify the mass of MWNTs bound to cells, and it was determined that FA-targeted MWNTs resulted in a 400-500 % greater affinity for colorectal cancer cells than untargeted MWNTs. The non-cancerous cell line, HEPM, had higher non-specific MWNT interaction and similar MWNT-FA affinity. Stimulated by 1,064 nm light, FA-functionalized MWNTs caused a 50-60 % decrease in colorectal cancer cell viability compared to a 4-10 % decrease caused by untargeted MWNTs. Our results indicate that FA-targeted MWNTs may increase the therapeutic index of MWNT-induced photothermal therapy.

  7. Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion.

    Science.gov (United States)

    Padayachee, Anneline; Netzel, Gabriele; Netzel, Michael; Day, Li; Mikkelsen, Deirdre; Gidley, Michael J

    2013-06-01

    Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only ∼20% of total anthocyanins to ∼30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial non-specific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.

  8. MHD Power Generation

    Science.gov (United States)

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  9. Combined effects of radiation and chemical reaction on MHD flow ...

    African Journals Online (AJOL)

    Influence of radiation and chemical reaction on MHD flow past a moving plate with Hall current is studied here. Earlier, we (2016) have studied unsteady MHD flow in porous media over exponentially accelerated plate with variable wall temperature and mass transfer along with Hall current. To study further, we are changing ...

  10. Broken Ergodicity in MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2010-01-01

    Ideal magnetohydrodynamic (MHD) turbulence may be represented by finite Fourier series, where the inherent periodic box serves as a surrogate for a bounded astrophysical plasma. Independent Fourier coefficients form a canonical ensemble described by a Gaussian probability density function containing a Hermitian covariance matrix with positive eigenvalues. The eigenvalues at lowest wave number can be very small, resulting in a large-scale coherent structure: a turbulent dynamo. This is seen in computations and a theoretical explanation in terms of 'broken ergodicity' contains Taylor s theory of force-free states. An important problem for future work is the case of real, i.e., dissipative flows. In real flows, broken ergodicity and coherent structure are still expected to occur in MHD turbulence at the largest scale, as suggested by low resolution simulations. One challenge is to incorporate coherent structure at the largest scale into the theory of turbulent fluctuations at smaller scales.

  11. MHD contractors' review meeting

    Science.gov (United States)

    The following research programs on magnetohydrodynamic conversion were described at the contractors' review meeting: MHD integrated topping cycle project; Activity summary for DOE's component development and integration facility; MHD bottoming cycle component testing at the coal fired flow facility; MHD heat recovery seed recovery system development; Diagnostic development and support of MHD test facilities; Heat and seed recovery technology project; TRW Econoseed process for MHD seed recovery and regeneration; and MIT magnet. Papers describe the objectives, the work to date, and results obtained. Papers have been processed separately for inclusion on the data base.

  12. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors.

    Directory of Open Access Journals (Sweden)

    Sophia Sonnewald

    Full Text Available Xanthomonas campestris pv. vesicatoria (Xcv possess a type 3 secretion system (T3SS to deliver effector proteins into its Solanaceous host plants. These proteins are involved in suppression of plant defense and in reprogramming of plant metabolism to favour bacterial propagation. There is increasing evidence that hexoses contribute to defense responses. They act as substrates for metabolic processes and as metabolic semaphores to regulate gene expression. Especially an increase in the apoplastic hexose-to-sucrose ratio has been suggested to strengthen plant defense. This shift is brought about by the activity of cell wall-bound invertase (cw-Inv. We examined the possibility that Xcv may employ type 3 effector (T3E proteins to suppress cw-Inv activity during infection. Indeed, pepper leaves infected with a T3SS-deficient Xcv strain showed a higher level of cw-Inv mRNA and enzyme activity relative to Xcv wild type infected leaves. Higher cw-Inv activity was paralleled by an increase in hexoses and mRNA abundance for the pathogenesis-related gene PRQ. These results suggest that Xcv suppresses cw-Inv activity in a T3SS-dependent manner, most likely to prevent sugar-mediated defense signals. To identify Xcv T3Es that regulate cw-Inv activity, a screen was performed with eighteen Xcv strains, each deficient in an individual T3E. Seven Xcv T3E deletion strains caused a significant change in cw-Inv activity compared to Xcv wild type. Among them, Xcv lacking the xopB gene (Xcv ΔxopB caused the most prominent increase in cw-Inv activity. Deletion of xopB increased the mRNA abundance of PRQ in Xcv ΔxopB-infected pepper leaves, but not of Pti5 and Acre31, two PAMP-triggered immunity markers. Inducible expression of XopB in transgenic tobacco inhibited Xcv-mediated induction of cw-Inv activity observed in wild type plants and resulted in severe developmental phenotypes. Together, these data suggest that XopB interferes with cw-Inv activity in planta to

  13. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors.

    Science.gov (United States)

    Sonnewald, Sophia; Priller, Johannes P R; Schuster, Julia; Glickmann, Eric; Hajirezaei, Mohammed-Reza; Siebig, Stefan; Mudgett, Mary Beth; Sonnewald, Uwe

    2012-01-01

    Xanthomonas campestris pv. vesicatoria (Xcv) possess a type 3 secretion system (T3SS) to deliver effector proteins into its Solanaceous host plants. These proteins are involved in suppression of plant defense and in reprogramming of plant metabolism to favour bacterial propagation. There is increasing evidence that hexoses contribute to defense responses. They act as substrates for metabolic processes and as metabolic semaphores to regulate gene expression. Especially an increase in the apoplastic hexose-to-sucrose ratio has been suggested to strengthen plant defense. This shift is brought about by the activity of cell wall-bound invertase (cw-Inv). We examined the possibility that Xcv may employ type 3 effector (T3E) proteins to suppress cw-Inv activity during infection. Indeed, pepper leaves infected with a T3SS-deficient Xcv strain showed a higher level of cw-Inv mRNA and enzyme activity relative to Xcv wild type infected leaves. Higher cw-Inv activity was paralleled by an increase in hexoses and mRNA abundance for the pathogenesis-related gene PRQ. These results suggest that Xcv suppresses cw-Inv activity in a T3SS-dependent manner, most likely to prevent sugar-mediated defense signals. To identify Xcv T3Es that regulate cw-Inv activity, a screen was performed with eighteen Xcv strains, each deficient in an individual T3E. Seven Xcv T3E deletion strains caused a significant change in cw-Inv activity compared to Xcv wild type. Among them, Xcv lacking the xopB gene (Xcv ΔxopB) caused the most prominent increase in cw-Inv activity. Deletion of xopB increased the mRNA abundance of PRQ in Xcv ΔxopB-infected pepper leaves, but not of Pti5 and Acre31, two PAMP-triggered immunity markers. Inducible expression of XopB in transgenic tobacco inhibited Xcv-mediated induction of cw-Inv activity observed in wild type plants and resulted in severe developmental phenotypes. Together, these data suggest that XopB interferes with cw-Inv activity in planta to suppress sugar

  14. Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense.

    Science.gov (United States)

    de Ascensao, Ana R F D C; Dubery, Ian A

    2003-07-01

    The accumulation of soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to cell wall-derived elicitor from the pathogen, Fusarium oxysporum, f.sp. cubense, race four, was investigated. The root tissue from the banana cultivar "Goldfinger" was found to respond strongly and rapidly towards the elicitor through the increased synthesis of phenolic compounds. Following elicitation, the conjugated and non-conjugated phenolic metabolites in the induced root tissue were extracted and quantified. Induced phenolic synthesis was rapid and reached near maximum values after 16 h. High-performance liquid chromatography revealed both compositional and quantitative differences between induced phenolics (p-coumaric, ferulic, and sinapic acids) and those constitutively present (p-coumaric- and ferulic acid). In addition, vanillic acid was found in the ester-bound fraction and protocatechuic acid in the cell-wall bound fraction of elicited tissue. The deposition and accumulation kinetics of polymerized phenolic monomers as lignin and lignin-like polymers was quantified over a time period of 0-36 h and found to reach maximum values after 24 h. Ionization difference UV spectra of lignin indicated compositional differences in the newly synthesized lignin fraction and correlated with increased concentrations of ferulic acid and sinapic acids esters. The results show that the increased flux through the phenylpropanoid pathway resulted in the synthesis of cinnamic acid and benzoic acid derivatives that were esterified and incorporated into the cell wall fraction as part of the anti-microbial defenses activated in the root tissue.

  15. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice.

    Science.gov (United States)

    He, Congwu; Ma, Jie; Wang, Lijun

    2015-05-01

    Silicon (Si) plays a large number of diverse roles in plants, but the structural and chemical mechanisms operating at the single-cell level remain unclear. We isolate the cell walls from suspension-cultured individual cells of rice (Oryza sativa) and fractionate them into three main fractions including cellulose (C), hemicellulose (HC) and pectin (P). We find that most of the Si is in HC as determined by inductively coupled plasma-mass spectrometry (ICP-MS), where Si may covalently crosslink the HC polysacchrides confirmed by X-ray photoelectron spectroscopy (XPS). The HC-bound form of Si could improve both the mechanical property and regeneration of the cell walls investigated by a combination of atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). This study provides further evidence that HC could be the major ligand bound to Si, which broadens our understanding of the chemical nature of 'anomalous' Si in plant cell walls. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. QTLs for cell wall-bound phenolics in relation to the photosynthetic apparatus activity and leaf water status under drought stress at different growth stages of triticale.

    Science.gov (United States)

    Hura, Tomasz; Tyrka, Mirosław; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga

    2017-04-01

    The present study aimed at identifying the regions of triticale genome responsible for cell wall saturation with phenolic compounds under drought stress during vegetative and generative growth. Moreover, the loci determining the activity of the photosynthetic apparatus, leaf water content (LWC) and osmotic potential (Ψ o) were identified, as leaf hydration and functioning of the photosynthetic apparatus under drought are associated with the content of cell wall-bound phenolics (CWPh). Compared with LWC and Ψ o, CWPh fluctuations were more strongly associated with changes in chlorophyll fluorescence. At the vegetative stage, CWPh fluctuations were due to the activity of three loci, of which only QCWPh.4B was also related to changes in F v/F m and ABS/CSm. In the other QTLs (QCWPh.6R.2 and QCWPh.6R.3), the genes of these loci determined also the changes in majority of chlorophyll fluorescence parameters. At the generative stage, the changes in CWPh in loci QCWPh.4B, QCWPh.3R and QCWPh.6R.1 corresponded to those in DIo/CSm. The locus QCWPh.6R.3, active at V stage, controlled majority of chlorophyll fluorescence parameters. This is the first study on mapping quantitative traits in triticale plants exposed to drought at different stages of development, and the first to present the loci for cell wall-bound phenolics.

  17. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan.

    Science.gov (United States)

    Avci, Utku; Pattathil, Sivakumar; Singh, Bir; Brown, Virginia L; Hahn, Michael G; Haigler, Candace H

    2013-01-01

    Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.

  18. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan.

    Directory of Open Access Journals (Sweden)

    Utku Avci

    Full Text Available Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh fiber was known to have an adhesive cotton fiber middle lamella (CFML that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb, the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.

  19. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission.

    Science.gov (United States)

    Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A

    2009-10-02

    A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.

  20. Long clinostation influence on the localization of free and weakly bound calcium in cell walls of Funaria hygrometrica moss protonema cells

    Science.gov (United States)

    Nedukha, E. M.

    The pyroantimonate method was used to study the localization of free and weakly bound calcium in cells of moss protonema of Funaria hygrometrica Hedw. cultivated on a clinostat (2 rev/min). Electroncytochemical study of control cells cultivated at 1 g revealed that granular precipitate marked chloroplasts, mitochondria, Golgi apparatus, lipid drops, nucleoplasma, nucleolus, nucleus membranes, cell walls and endoplasmic reticulum. In mitochondria the precipitate was revealed in stroma, in chloroplast it was found on thylakoids and envelope membranes. The cultivation of protonema on clinostat led to the intensification in cytochemical reaction product deposit. A considerable intensification of the reaction was noted in endomembranes, vacuoles, periplasmic space and cell walls. At the same time analysis of pectinase localization was made using the electroncytochemical method. A high reaction intensity in walls in comparison to that in control was found out to be a distinctive pecularity of the cells cultivated on clinostat. It testifies to the fact that increasing of freee calcium concentrations under conditions of clinostation is connected with pectinic substances hydrolysis and breaking of methoxy groups of pectins. Data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance of plant cells and the role of cell walls in gomeostasis of cell grown under conditions of simulated weighlessness.

  1. Dipole Alignment in Rotating MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  2. Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation

    Science.gov (United States)

    Chernysheva, Maria; Bednyakova, Anastasia; Al Araimi, Mohammed; Howe, Richard C. T.; Hu, Guohua; Hasan, Tawfique; Gambetta, Alessio; Galzerano, Gianluca; Rümmeli, Mark; Rozhin, Aleksey

    2017-03-01

    The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement.

  3. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops

    Directory of Open Access Journals (Sweden)

    Hui eWEI

    2015-05-01

    Full Text Available Identifying the cell wall-ionically bound glycoside hydrolases (GHs in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360 and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3. Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16, AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31, AT1G12240 (invertase, GH32 and AT2G28470 (β-galactosidase 8, GH35, were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.

  4. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops

    Science.gov (United States)

    Wei, Hui; Brunecky, Roman; Donohoe, Bryon S.; Ding, Shi-You; Ciesielski, Peter N.; Yang, Shihui; Tucker, Melvin P.; Himmel, Michael E.

    2015-01-01

    Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed. PMID:26029221

  5. Exciton-phonon bound complex in single-walled carbon nanotubes revealed by high-field magneto-optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weihang; Nakamura, Daisuke; Takeyama, Shojiro, E-mail: takeyama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Sasaki, Tatsuya; Saito, Hiroaki [Institute for Solid State Physics, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Department of Applied Physics, University of Tokyo, Hongo 113-8656 (Japan); Liu, Huaping [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kataura, Hiromichi [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562 (Japan)

    2013-12-02

    High-field magneto-optical spectroscopy was performed on highly enriched (6,5) single-walled carbon nanotubes. Spectra of phonon sidebands in both 1st and 2nd sub-bands were unchanged by an external magnetic field up to 52 T. The dark K-momentum singlet (D-K-S) exciton, which plays an important role for the external quantum efficiency of the system for both sub-bands in the near-infrared and the visible light region, respectively, was clarified to be the origin of the phonon sidebands.

  6. wall

    Directory of Open Access Journals (Sweden)

    Irshad Kashif

    2016-01-01

    Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.

  7. Accumulation of cell wall-bound phenolic metabolites and their upliftment in hairy root cultures of tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Mandal, Sudhamoy; Mitra, Adinpunya

    2008-07-01

    Alkaline hydrolysis of cell wall material of tomato hairy roots yielded ferulic acid as the major phenolic compound. Other phenolics were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. The content of phenolics was much higher at the early stage of hairy root growth. The ferulic acid content decreased up to 30 days and then sharply increased to 360 microg/g at 60 days of growth. Elicitation of hairy root cultures with Fusarium mat extract (FME) increased ferulic acid content 4-fold after 24 h. As the pathogen-derived elicitors have specific receptors in plants, FME may thus be used for inducing resistance against Fusarium oxysporum f. sp. lycopersici.

  8. Acceleration of inertial particles in wall bounded flows: DNS and LES with stochastic modelling of the subgrid acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zamansky, Remi; Vinkovic, Ivana; Gorokhovski, Mikhael, E-mail: ivana.vinkovic@univ-lyonl.fr [Laboratoire de Mecanique des Fluides et d' Acoustique CNRS UMR 5509 Ecole Centrale de Lyon, 36, av. Guy de Collongue, 69134 Ecully Cedex (France)

    2011-12-22

    Inertial particle acceleration statistics are analyzed using DNS for turbulent channel flow. Along with effects recognized in homogeneous isotropic turbulence, an additional effect is observed due to high and low speed vortical structures aligned with the channel wall. In response to those structures, particles with moderate inertia experience strong longitudinal acceleration variations. DNS is also used in order to assess LES-SSAM (Subgrid Stochastic Acceleration Model), in which an approximation to the instantaneous non-filtered velocity field is given by simulation of both, filtered and residual, accelerations. This approach allow to have access to the intermittency of the flow at subgrid scale. Advantages of LES-SSAM in predicting particle dynamics in the channel flow at a high Reynolds number are shown.

  9. Kinetic properties of cell wall bound superoxide dismutase in leaves of wheat (Triticum aestivum L.) following stripe rust (Puccinia striiformis) infection.

    Science.gov (United States)

    Asthir, Bavita; Koundal, A; Bains, N S

    2011-10-01

    Stripe rust (Puccinia striiformis f.sp. tritici) is the most devastating disease of wheat (Triticum aestivum L.) accounting huge economical losses to the industry worldwide. HD 2329 was a widely grown wheat cultivar which had become highly susceptible to stripe rust and was used to understand the biochemical aspects of the host pathogen interaction through characterization of superoxide dismutase (SOD). In the present study, two types of SOD, ionically or covalently bound to the particulate fraction were found in the stripe rust infected and uninfected wheat leaves of susceptible cultivar HD 2329. Cell walls of leaves contained a high level of SOD, of which 41-44% was extractable by 2 M NaCl and 10-13% by 0.5% EDTA in infected and uninfected leaves. The NaCl-released SOD constituted the predominant fraction. It exhibited maximum activity at pH 9.0, had a Km value of 1.82-2.51 for uninfected and 1.77-2.37 mM for infected, respectively with pyrogallol as the substrate, and a Vmax of 9.55-21.4 and 12.4-24.1 delta A min(-1)g(-1)FW. A temperature optimum of 20 degrees C was observed for SOD of both uninfected and infected leaves. SOD showed differential response to metal ions, suggesting their distinctive nature. Inhibition of wall bound SOD by iodine and its partial regeneration of activity by mercaptoethanol suggested the involvement of cysteine in active site of the enzyme. These two forms showed greater differences with respect to thermodynamic properties like energy of activation (Ea) and enthalpy change (delta H), while entropy change (delta S) and free energy change (delta G) were similar. The results further showed that pathogen infection of the leaves of susceptible wheat cultivar induced a decrease in the SOD activity and kinetics which might be critical during the response of plant cells to the infection.

  10. A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Yuan; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Shi, Rui; Sun, Ying-Hsuan; Wang, Jack P.; Liu, Jie; Loziuk, Philip; Edmunds, Charles W.; Miller, Zachary D.; Peszlen, Ilona; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2016-03-11

    Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 shows xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20% with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60% of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.

  11. Local conservative regularizations of compressible MHD and neutral flows

    CERN Document Server

    Krishnaswami, Govind S; Thyagaraja, Anantanarayanan

    2016-01-01

    Ideal systems like MHD and Euler flow may develop singularities in vorticity (w = curl v). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length lambda which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/omega_pe. Our regularization preserves the symmetries of the original systems, and with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied ...

  12. MHD Generating system

    Science.gov (United States)

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  13. Revisiting the quest for a universal log-law and the role of pressure gradient in "canonical" wall-bounded turbulent flows

    Science.gov (United States)

    Monkewitz, Peter A.

    2017-09-01

    The trinity of so-called "canonical" wall-bounded turbulent flows, comprising the zero pressure gradient turbulent boundary layer, abbreviated ZPG TBL, turbulent pipe flow, and channel/duct flows has continued to receive intense attention as new and more reliable experimental data have become available. Nevertheless, the debate on whether the logarithmic part of the mean velocity profile, in particular the Kármán constant κ , is identical for these three canonical flows or flow-dependent is still ongoing. In this paper, the asymptotic matching requirement of equal κ in the logarithmic overlap layer, which links the inner and outer flow regions, and in the expression for the centerline/free-stream velocity is reiterated and shown to preclude a universal logarithmic overlap layer in the three canonical flows. However, the majority of pipe and channel flow studies at friction Reynolds numbers Reτ below ≈104 extract from near-wall profiles the same κ of 0.38-0.39 as in the ZPG TBL. This apparent contradiction is resolved by a careful reanalysis of high-quality mean velocity profiles in the Princeton "Superpipe" and other pipes, channels, and ducts, which shows that the mean velocity in a near-wall region extending to around 700 "+" units in channels and ducts and 500 "+" units in pipes is the same as in the ZPG TBL. In other words, all the "canonical" flow profiles contain the lower end of the ZPG TBL log-region, which starts at a wall distance of 150 -200 "+" units with a universal κ of κZPG≈0.384 . This interior log-region is followed by a second logarithmic region with a flow specific κ >κZPG , which increases monotonically with pressure gradient. This second, exterior log-layer is the actual overlap layer matching up to the outer expansion, which implies equality of the exterior κ and κCL obtained from the evolution of the respective centerline velocity with Reynolds number. The location of the switch-over point implies furthermore that this second

  14. Proceedings of the workshop on nonlinear MHD and extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Reduced Extended MHD

    Science.gov (United States)

    Morrison, P. J.; Abdelhamid, H. M.; Grasso, D.; Hazeltine, R. D.; Lingam, M.; Tassi, E.

    2015-11-01

    Over the years various reduced fluid models have been obtained for modeling plasmas, with the goal of capturing important physics while maintaining computability. Such models have included the physics contained in various generalizations of Ohm's law, including Hall drift and electron inertia. In a recent publication it was shown that full 3D extended MHD is a Hamiltonian system by finding its noncanonical Poisson bracket. Subsequently, this bracket was shown to be derivable from that for Hall MHD by a series of remarkable transformations, which greatly simplifies the proof of the Jacobi identity and allows one to immediately obtain generalizations of the helicity and cross helicity. In this poster we use this structure to obtain exact reduced fluid models with the effects of full two-fluid theory. Results of numerical computations of collisionless reconnection using an exact reduced 4-field model will be presented and analytical comparisons of mode structure of previous reduced models will be made.

  16. Identification of Tyr74 and Tyr177 as substrate oxidation sites in cationic cell wall-bound peroxidase from Populus alba L.

    Science.gov (United States)

    Shigeto, Jun; Itoh, Yoshitaka; Tsutsumi, Yuji; Kondo, Ryuichiro

    2012-01-01

    Cationic cell wall-bound peroxidase (CWPO-C) has the capability to oxidize sinapyl alcohol, ferrocytochrome c, and synthetic lignin polymers, unlike most peroxidases that have been characterized in flowering plants, such as horseradish peroxidase and Arabidopsis thaliana peroxidase A2. It has been suggested that the oxidation site is located on the CWPO-C surface, and homology modeling and chemically modified CWPO-C studies suggest that Tyr74 and/or Tyr177 are possible participants in the catalytic site. The present study clarifies the importance of these Tyr residues for substrate oxidation, using recombinant CWPO-C and recombinant mutant CWPO-C with phenylalanine substitution(s) for tyrosine. Such recombinant proteins, produced in Escherichia coli as inclusion bodies, were successfully refolded to yield the active form, and purified recombinant protein solutions exhibited typical spectra of high-spin ferric protein and displayed H(2) O(2) -dependent oxidation of guaiacol, 2,6-dimethoxyphenol, and syringaldazine. Measurement of peroxidase activity with these guaiacyl and syringyl compounds as reducing substrates indicated that a single mutation, Y74F or Y177F, resulted in substantial loss of oxidation activity (∼ 40-60% and 82%, respectively). Also, over 95% of the oxidation activity was lost with a double mutation, Y74F/Y177F. These results indicated that Tyr74 and Tyr177, rather than the heme pocket, play a central role in the oxidation of these substrates. This is the first report of active residues on an enzyme surface being identified in a plant peroxidase. This study also suggests that sinapyl alcohol incorporation into lignin is performed by a peroxidase that generates Tyr radicals on its surface. © 2011 The Authors Journal compilation © 2011 FEBS.

  17. Statistical Theory of the Ideal MHD Geodynamo

    Science.gov (United States)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  18. Particle Acceleration by MHD Turbulence

    OpenAIRE

    Cho, Jungyeon; Lazarian, A.

    2005-01-01

    Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture of particle acceleration. We make use of the recently established scaling of slow and fast MHD modes in strong and weak MHD turbulence to provide a systematic study of particle acceleration in magnetic pressure (low-$\\beta$) and gaseous pressure (high-$\\beta$) dominated plasmas. We consider the acceleration by large scale compressions in both slow and fast particle diffusion limits. We c...

  19. Design Study: Rocket Based MHD Generator

    Science.gov (United States)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  20. Feedback control of resistive wall modes in the reversed field pinch

    OpenAIRE

    Yadikin, Dimitry

    2004-01-01

    A wide range of unstable current driven MHD modes is present in the re- versed τeld pinch (RFP) conτguration. An ideally conducting wall facing the plasma can stabilize the ideal MHD modes. In the presence of a resistive wall characterized by the wall time τw, fast mode rotation with the frequency exceeding the inverse wall time gives stabilization for resistive MHD modes. The ideal MHD modes in the RFP are non-rotating modes and can not be stabilized by the resistive wall. Instead they are c...

  1. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  2. MHD turbulence and distributed chaos

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.

  3. Basic MHD Turbulence

    Science.gov (United States)

    Beresnyak, Andrey

    2013-01-01

    Astrophysical fluids are conductive, magnetized and turbulent. This entails a variety of phenomena, two most basic of which is the dynamo and the energy cascade. Very well known empirically in hydrodynamics so called "zeroth law of turbulence" states that even if viscosity goes to zero, energy dissipation does not, but goes to a constant. It turns out that in MHD not only this still holds true, but another basic law, which I call "zeroth law of dynamo", is valid, namely that if Reynolds numbers are sufficiently high and magnetic energy is low, the latter will grow at a constant rate, which is a fraction of the total dissipation rate. Another point of interest for an astrophysicist is the properties of MHD cascade in the inertial range. I will argue that both theory and numerics favor Kolmogorov -5/3 slope and not -3/2 slope that was reported earlier. The most challenging problem is so-called imbalanced, or cross-helical case which appear whenever there is a localized source of perturbations, such as the Sun for the solar wind turbulence or the central engine in AGN jets. The standard Goldreich-Sridhar model does not apply in this case and it eluded theoretical description for a long time. The keys to understand energy cascades in the imbalanced case are the anisotropies of the Elsasser fields which turn out to be different. I will show the results of one of the highest resolution simulations ever performed, which were very helpful in discriminating between various viable models of MHD turbulence.

  4. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  5. Study of MHD Effects on Surface Waves in Liquid Gallium

    Science.gov (United States)

    Fox, W.; Ji, H.; Pace, D.; Rappaport, H.

    2001-10-01

    The liquid metal experiment (LMX) at the Princeton Plasma Physics Laboratory has been constructed to study magnetohydrodynamic (MHD) effects on the propagation of surface waves in liquid metals in an imposed horizontal magnetic field. The physics of liquid metal is of interest generally as a regime of small magnetic Reynolds number MHD and more specifically contributes basic knowledge to the applications of liquid lithium walls in a fusion reactor. Surface waves are driven by a wave driver controlled by a PC-based Labview system. A non-invasive diagnostic measures surface fluctuations at multiple locations accurately by reflecting an array of lasers off the surface and onto a screen recorded by an ICCD camera. The real part of the dispersion relation has been measured precisely and agrees well with a linear theory, revealing the role of surface oxidation. Experiments have also confirmed that a transverse magnetic field does not affect wave propagation, and have qualitatively observed MHD damping (a non-zero imaginary component of the dispersion relation) of waves propagating in a parallel magnetic field. Planned upgrades to LMX will enable quantitative measurement of this MHD damping rate as well as experiments on two-dimensional waves and nonlinear waves. Implications to the liquid metal wall concept in fusion reactors will be discussed.

  6. Production of MHD fluid

    Science.gov (United States)

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  7. Cell Wall Proteome in the Maize Primary Root Elongation Zone. II. Region-Specific Changes in Water Soluble and Lightly Ionically Bound Proteins under Water Deficit

    National Research Council Canada - National Science Library

    Jinming Zhu; Sophie Alvarez; Ellen L. Marsh; Mary E. LeNoble; In-Jeong Cho; Mayandi Sivaguru; Sixue Chen; Henry T. Nguyen; Yajun Wu; Daniel P. Schachtman; Robert E. Sharp

    2007-01-01

    Previous work on the adaptation of maize (Zea mays) primary roots to water deficit showed that cell elongation is maintained preferentially toward the apex, and that this response involves modification of cell wall extension properties...

  8. MHD program plan, FY 1991

    Science.gov (United States)

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  9. Heterocycles 36. Single-Walled Carbon Nanotubes-Bound N,N-Diethyl Ethanolamine as Mild and Efficient Racemisation Agent in the Enzymatic DKR of 2-Arylthiazol-4-yl-alanines

    Directory of Open Access Journals (Sweden)

    Denisa Leonte

    2015-12-01

    Full Text Available In this paper we describe the chemoenzymatic synthesis of enantiopure l-2-arylthiazol-4-yl alanines starting from their racemic N-acetyl derivatives; by combining the lipase-catalysed dynamic kinetic resolution of oxazol-5(4H-ones with a chemical and an enzymatic enantioselective hydrolytic step affording the desired products in good yields (74%–78% and high enantiopurities (ee > 99%. The developed procedure exploits the utility of the single-walled carbon nanotubes-bound diethylaminoethanol as mild and efficient racemisation agent for the dynamic kinetic resolution of the corresponding oxazolones.

  10. MHD considerations for a self-cooled liquid lithium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Sze, D.K.; Mattas, R.F.; Hull, A.B.; Picologlou, B.F.; Smith, D.L.

    1992-03-01

    The magnetohydrodynamic (MHD) effects can present a feasibility issue for a self-cooled liquid metal blanket of magnetically confined fusion reactors, especially inboard regime of a tokamak. This pressure drop can be significantly reduced by using insulated wall structure. A self-healing insulating coating has been identified, which will reduce the pressure drop by more than a factor of 10. The future research direction to further quantify the performance of this coating is also outlined.

  11. Hydrolysis and speciation of Al bound to pectin and plant cell wall material and its reaction with the dye chrome azurol S.

    Science.gov (United States)

    Wehr, J Bernhard; Blamey, F P C; Hanna, J V; Kopittke, P M; Kerven, G L; Menzies, N W

    2010-05-12

    Hydrolysis of aluminum (Al) in solution increases at pH >or= 4 and with an Al concentration. Pectin, an important anionic polysaccharide of plant cell walls, adsorbs Al, but this phenomenon is poorly understood. This study showed that Al(3+) hydrolysis results in binding of Al to pectin in excess of the stoichiometric equivalent, leading to oversaturation of the pectin with Al. However, the degree of pectin methyl-esterification did not affect the extent of Al hydrolysis. Binding of Al to purified cell wall material also resulted in Al hydrolysis in a pH- and soluble Al concentration-dependent manner, but the source of cell wall material had no effect at fixed pH. Staining of Al-treated pectin and cell wall material from wheat ( Triticum aestivum L.) and sunflower ( Helianthus annuus L.) with the Al-specific dye, chrome azurol S (CAS), resulted in the formation of a purple color, with the intensity related to the extent of Al hydrolysis.

  12. MHD-EMP protection guidelines

    Science.gov (United States)

    Barnes, P. R.; Vance, E. F.

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  13. Soluble and cell wall-bound phenolic acids and ferulic acid dehydrodimers in rye flour and five bread model systems: insight into mechanisms of improved availability.

    Science.gov (United States)

    Dynkowska, Wioletta M; Cyran, Malgorzata R; Ceglińska, Alicja

    2015-03-30

    The bread-making process influences bread components, including phenolics that significantly contribute to its antioxidant properties. Five bread model systems made from different rye cultivars were investigated to compare their impact on concentration of ethanol-soluble (free and ester-bound) and insoluble phenolics. Breads produced by a straight dough method without acid addition (A) and three-stage sourdough method with 12 h native starter preparation (C) exhibited the highest, genotype-dependent concentrations of free phenolic acids. Dough acidification by direct acid addition (method B) or by gradual production during prolonged starter fermentation (24 and 48 h, for methods D and E) considerably decreased their level. However, breads B were enriched in soluble ester-bound fraction. Both direct methods, despite substantial differences in dough pH, caused a similar increase in the amount of insoluble ester-bound fraction. The contents of phenolic fractions in rye bread were positively related to activity level of feruloyl esterase and negatively to those of arabinoxylan-hydrolysing enzymes in wholemeal flour. The solubility of rye bread phenolics may be enhanced by application of a suitable bread-making procedure with respect to rye cultivar, as the mechanisms of this process are also governed by a response of an individual genotype with specific biochemical profile. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. Numerical analysis of MHD flow structure behind a square rod

    Energy Technology Data Exchange (ETDEWEB)

    Satake, M. [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University (Japan)]. E-mail: msata@karma.qse.tohoku.ac.jp; Yuki, K. [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University (Japan); Chiba, S. [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University (Japan); Hashizume, H. [Advanced Fusion Reactor Engineering Laboratory, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University (Japan)

    2006-02-15

    In a liquid blanket system, the large MHD pressure drop for liquid lithium and/or LiPb makes it difficult to remove high heat load. Since the MHD pressure drop is proportional to the flow velocity, it is necessary to remove the high heat load under low velocity conditions. Meanwhile, in case of molten salt Flibe, which is a high Prandtl number fluid, it is also important to enhance the heat transfer performance. In this study, MHD flow structure behind a square rod inserted in a parallel channel to enhance the heat transfer is simulated numerically to clarify the interaction between the flow structure and the magnetic field by using a low-Reynolds number k-{epsilon} turbulent model and including MHD effects. The laminar flow analysis indicates that the disappearance of twin vortices and the change of the Karman's vortex street to the twin vortices occur around a Ha/Re {sub h} ratio of 0.7 and 0.07-0.09, respectively. The turbulent flow analysis confirms that installing the rod near the heating wall contributes to enhancing the heat transfer even in the presence of a magnetic field, although the turbulent kinetic energy decreases with increasing Hartmann number.

  15. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  16. Resistive Wall Mode Stability and Control in the Reversed Field Pinch

    OpenAIRE

    Yadikin, Dmitriy

    2006-01-01

    Control of MHD instabilities using a conducting wall together with external magnetic fields is an important route to improved performance and reliability in fusion devices. Active control of MHD modes is of interest for both the Advanced Tokamak and the Reversed Field Pinch (RFP) configurations. A wide range of unstable, current driven MHD modes is present in the RFP. An ideally conducting wall facing the plasma can in principle provide stabilization to these modes. However, a real, resistive...

  17. Problems in nonlinear resistive MHD

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  18. MHD pressure drop characteristics in a three-surface-multi-layered channel under a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, M., E-mail: mao@karma.qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, School of Engineering, Tohoku University, 6-6-01-2 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Ito, S.; Hashizume, H. [Department of Quantum Science and Energy Engineering, School of Engineering, Tohoku University, 6-6-01-2 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Muroga, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2010-12-15

    A three-surface-multi-layered channel is one of the possible methods for reducing the magnetohydrodynamic (MHD) pressure drop in a Li/V blanket. In this study, experimental and numerical evaluations of the liquid metal MHD flow in a three-surface-multi-layered channel were conducted to confirm the extent of MHD pressure reduction in the channel. The MHD flow was tested using a Bi-Sn eutectic alloy (MHD liquid) and an open annular channel under up to 5 T magnetic field. Experimentally determined pressure drops differed from those predicted by numerical analysis. This may be as a result of an increase in the friction force caused by an oxide appearing on the liquid free surface and a decrease in the electromagnetic force owing to the formation of a contact resistance between the Bi-Sn alloy and the bottom wall of the stainless steel channel.

  19. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Science.gov (United States)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  20. Bounded Rationality

    National Research Council Canada - National Science Library

    Ballester Pla, Coralio; Hernández, Penélope

    2012-01-01

    The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models...

  1. Bounding the $\

    CERN Document Server

    Gutiérrez-Rodríguez, A

    2003-01-01

    A bound on the nu /sup tau / magnetic moment is calculated through the reaction e/sup +/e/sup -/ to nu nu gamma at the Z/sub 1/-pole, and in the framework of a left-right symmetric model at LEP energies. We find that the bound is almost independent of the mixing angle phi of the model in the allowed experimental range for this parameter. (31 refs).

  2. The membrane bound LRR lipoprotein Slr, and the cell wall-anchored M1 protein from Streptococcus pyogenes both interact with type I collagen.

    Directory of Open Access Journals (Sweden)

    Marta Bober

    Full Text Available Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR have been identified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20-30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid. The streptococcal leucine rich (Slr protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1 and emm1 mutant strain (MC25 had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors.

  3. MHD Turbulence and Magnetic Dynamos

    Science.gov (United States)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  4. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  5. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  6. The Extracellular Wall-Bound β-N-Acetylglucosaminidase from Lactobacillus casei Is Involved in the Metabolism of the Human Milk Oligosaccharide Lacto-N-Triose.

    Science.gov (United States)

    Bidart, Gonzalo N; Rodríguez-Díaz, Jesús; Yebra, María J

    2015-11-06

    Human milk oligosaccharides (HMOs) are considered to play a key role in establishing and maintaining the infant gut microbiota. Lacto-N-triose forms part of both type 1 and type 2 HMOs and also of the glycan moieties of glycoproteins. Upstream of the previously characterized gene cluster involved in lacto-N-biose and galacto-N-biose metabolism from Lactobacillus casei BL23, there are two genes, bnaG and manA, encoding a β-N-acetylglucosaminidase precursor and a mannose-6-phosphate isomerase, respectively. In this work, we show that L. casei is able to grow in the presence of lacto-N-triose as a carbon source. Inactivation of bnaG abolished the growth of L. casei on this oligosaccharide, demonstrating that BnaG is involved in its metabolism. Interestingly, whole cells of a bnaG mutant were totally devoid of β-N-acetylglucosaminidase activity, suggesting that BnaG is an extracellular wall-attached enzyme. In addition to hydrolyzing lacto-N-triose into N-acetylglucosamine and lactose, the purified BnaG enzyme also catalyzed the hydrolysis of 3'-N-acetylglucosaminyl-mannose and 3'-N-acetylgalactosaminyl-galactose. L. casei can be cultured in the presence of 3'-N-acetylglucosaminyl-mannose as a carbon source, but, curiously, the bnaG mutant strain was not impaired in its utilization. These results indicate that the assimilation of 3'-N-acetylglucosaminyl-mannose is independent of BnaG. Enzyme activity and growth analysis with a manA-knockout mutant showed that ManA is involved in the utilization of the mannose moiety of 3'-N-acetylglucosaminyl-mannose. Here we describe the physiological role of a β-N-acetylglucosaminidase in lactobacilli, and it supports the metabolic adaptation of L. casei to the N-acetylglucosaminide-rich gut niche. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. MHD free convection flow of a non-Newtonian power-law fluid over ...

    African Journals Online (AJOL)

    In this study, we present a numerical analysis of free convection flow and heat transfer is presented for non-Newtonian power-law fluids with MHD effects over a vertical porous plate, the surface of which is exposed to a constant wall temperature. For analysis, the Continuty, Momentum and Energy equations are solved by ...

  8. Relaxed MHD equilibria inside 3D shaped conducting surfaces

    Science.gov (United States)

    Hassam, A.; Tenbarge, J.; Dorland, W.; Landreman, M.; Sengupta, W.

    2017-10-01

    A 3D nonlinear dissipative MHD code is developed to allow relaxation to low-beta MHD equilibrium inside a shaped 3D conducting boundary with prescribed conserved axial magnetic flux and no external current. Formation of magnetic islands is allowed. Heat sources would be eventually introduced to allow possible non-stationary convection depending on the MHD stability properties. The initial development is done using UMHD (Guzdar et al., PF, 1993). A primary objective is to minimize numerical boundary noise. In particular, codes which specify the normal magnetic field B.n on bounding surfaces are prone to boundary noise generation. We shape the boundary to conform to the desired field shape so that B.n is zero on the boundary, employing curvilinear coordinates. Significant noise reduction has been achieved by this approach. Boundary noise is strongly suppressed if the boundary is modeled as a sharp ramp-down in resistivity, allowing relaxation to equilibrium but no penetration into the low resistivity region. Initial results have been verified w.r.t. analytic calculation in the weak shaping limit. A rotational transform is observed in helical shaping. Relaxed equilibria inside helically symmetric conducting boundaries will be presented.

  9. MHD linear instability code user's manual. [MHD2V106

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, H.R.; Wooten, J.W.

    1976-06-01

    This handbook tells the casual user how to run the program MHD2V106, a computer program to determine linear growth rates and eigenmodes for an ideal MHD plasma in a cylinder or toroid of rectangular cross section.

  10. Comparison of three MHD flow control methods for self-cooled liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.S.; Picologlou, B.F.

    1986-01-01

    The heat deposition in a blanket is concentrated near the first wall. Uniform liquid-metal velocity in a self-cooled blanket is unattractive, because it leads to low mixed-mean temperature rise through the blanket and reduced power conversion efficiency. The objective of MHD flow control is to use the electromagnetic forces to produce a non-uniform velocity distribution which gives a uniform temperature distribution over the thickness of the blanket. Three methods of MHD flow control are presented here and the MHD pressure drops corresponding to the three methods are compared. One of the methods, although successful at achieving nonuniform velocity profiles, permits a large circulation of electric current which produces a high pressure drop. The analytical results do not indicate a clear choice between the other two methods. The analytical results do point to possible difference in heat transfer performance with the two methods.

  11. On wave turbulence in MHD

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2001-01-01

    Full Text Available We describe the fundamental differences between weak (wave turbulence in incompressible and weakly compressible MHD at the level of three-wave interactions. The main difference is in the structure of the resonant manifolds and the mechanisms of redistribution of spectral densities along the applied magnetic field B0. Similar to pure acoustic waves, a three-wave resonance between collinear wave vectors is observed but, in addition, we also have a resonance through tilted planes and spheres. The properties of resonances and their consequences for the asymptotics are also discussed.

  12. Ceramic components for MHD electrode

    Science.gov (United States)

    Marchant, D.D.

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf/sub x/In/sub y/A/sub z/O/sub 2/ where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  13. Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

  14. Transpiration cooled electrodes and insulators for MHD generators

    Science.gov (United States)

    Hoover, Jr., Delmer Q.

    1981-01-01

    Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.

  15. Feasibility of MHD submarine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  16. MHD (Magnetohydrodynamics) recovery and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)

    1988-10-01

    A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.

  17. Application of Magnetohydrodynamics (MHD) and Recent Research Trend

    Science.gov (United States)

    Harada, Nobuhiro

    As the applications of Magnetohydrodynamic (MHD) energy conversion, research and development for high-efficiency and low emission electric power generation system, MHD accelerations and/or MHD thrusters, and flow control around hypersonic and re-entry vehicles are introduced. For closed cycle MHD power generation, high-efficiency MHD single system is the most hopeful system and space power system using mixed inert gas (MIG) working medium is proposed. For open cycle MHD, high-efficiency coal fired MHD system with CO2 recovery has been proposed. As inverse process of MHD power generation, MHD accelerators/thrusters are expected as the next generation propulsion system. Heat flux reduction to protect re-entry vehicles is expected by an MHD process for safety return from space missions.

  18. Convective-diffusive transport in laminar MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, L.

    1993-09-01

    The two questions of main interest for the design of a fusion blanket are whether the heat transfer to the coolant is high enough that the temperature of the plasma facing wall does not exceed a critical value and whether the corrosion rate is below a certain limit. Both processes are governed by convective - diffusive transport mechanisms. A numerical code for the 3D-solution of these equations in the laminar flow regime is discussed. It is assumed that tthe flow is fully developed when entering the heated section of a blanket element. The interaction of the strong magnetic field with the electrically conducting fluid is taken into account by an asymptotic analysis valid for fully developed MHD flows in ducts with arbitrary shape of cross section. Heat transfer conditions are discussed for circular pipes and square ducts. The influence of the main parameters on wall temperature is analyzed in detail and summarized by an empirical correlation. As an example for an extended use of the heat transfer code the full numerical solution of fully developed MHD flows in circular and rectangular ducts is presented. (orig.) [Deutsch] Bei der Auslegung eines Fusionsblankets sind die wichtigen Fragen zu klaeren, ob die Waermeuebertragung an das Kuehlmedium ausreicht, damit die Temperatur der plasmanahen Wand einen kritischen Wert nicht uebersteigt, und ob die Korrosionsraten unterhalb eines gewissen Grenzwertes bleiben. Beide Prozesse werden durch Gleichungen fuer konvektiv - diffusive Transportvorgaenge beschrieben. Es wird ein numerisches Rechenverfahren zur Bestimmung von dreidimensionalen Loesungen dieser Gleichungen im Bereich laminarer Stroemungen vorgestellt. Dabei wird vorausgesetzt, dass die Stroemung beim Eintritt in den beheizten Teil des Blankets bereits voll ausgebildet ist. Die Wechselwirkung des starken Magnetfeldes mit dem elektrisch leitenden Fluid wird durch eine asymptotische Rechnung beruecksichtigt, die fuer voll ausgebildete MHD Stroemungen in Kanaelen mit

  19. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, I.R. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russia); Barleon, L. [Kernforschungszentrum Karlsruhe GmbH (Germany); Reed, C.B. [Argonne National Lab., IL (United States); Miyazaki, K. [Osaka Univ., Suita (Japan). Faculty of Engineering

    1994-07-01

    A review of experimental work on magnetohydrodynamic (MHD) and heat transfer (HT) characteristics of liquid metal flows in fusion relevant conditions is presented. Experimental data on MHD flow pressure drop in straight channels of round and rectangular cross-section with electroconducting walls in a transverse magnetic field show good agreement with theoretical predictions, and simple engineering formulas are confirmed. Less data are available on velocity distribution and HT characteristics, and even less data are available for channels with electroinsulating walls or artificially made self-heating electroinsulating coatings. Some experiments show an interesting phenomena of HT increase in the presence of a transverse or axial magnetic field. For channels of complex geometry -- expansions, contractions, bends, and manifolds -- few experimental data are available. Future efforts should be directed toward investigation of MHD/HT in straight channels with perfect and nonperfect electroinsulated walls, including walls with controlled imperfections, and in channels of complex geometry. International cooperation in manufacturing and operating experimental facilities with magnetic fields at, or even higher than, 5--7 T with comparatively large volumes may be of great help.

  20. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, I.R. [D. V. Efremov Scientific Research, Institute of Electrophysical Apparatus, 189631 St. Petersburg (Russian Federation); Reed, C.B. [Fusion Power Program, Technology Development Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Barleon, L. [Kernforschungszentrum Karlsruhe GmbH, IATF, Postfach 3640, W-7500 Karlsruhe 1 (Germany); Miyazaki, K. [Dept. of Nuclear Engineering, Faculty of Engineering, Osaka University Yamadaoka 2-1, Suita-shi, Osaka, 565-0 (Japan)

    1995-03-01

    A review of experimental work on magnetohydrodynamic (MHD) and heat transfer (HT) characteristics of liquid metal flows in fusion relevant conditions is presented. Experimental data on MHD flow pressure drop in straight channels of round and rectangular cross-section with electroconducting walls in a transverse magnetic field show good agreement with theoretical predictions, and simple engineering formulas are confirmed. Less data are available on velocity distribution and HT characteristics, and even less data are available for channels with electroinsulating walls or artificially made self-healing electroinsulating coatings. Some experiments show an interesting phenomena of HT increase in the presence of a transverse or axial magnetic field. For channels of complex geometry - expansions, contractions, bends, and manifolds - few experimental data are available. Future efforts should be directed toward investigation of MHD/HT in straight channels with perfect and nonperfect electroinsulated walls, including walls with controlled imperfections, and in channels of complex geometry. International cooperation in manufacturing and operating experimental facilities with magnetic fields at, or even higher than, 5-7 T with comparatively large volumes may be of great help. (orig.).

  1. Cosmological AMR MHD with Enzo

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory

    2009-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.

  2. Bounded Rationality

    Directory of Open Access Journals (Sweden)

    Ballester Pla, Coralio

    2012-03-01

    Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.

    La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.

  3. Disk MHD Conversion System for Nerva Reactor

    National Research Council Canada - National Science Library

    Jackson, W

    1992-01-01

    The principal results of the study have been to: (1) confirm that cesium seeded hydrogen plasma disk MHD generator can meet its expected performance while operating in a stable plasma regime; and (2...

  4. Open Boundary Conditions for Dissipative MHD

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  5. Global MHD simulations of Neptune's magnetosphere

    National Research Council Canada - National Science Library

    Mejnertsen, L; Eastwood, J. P; Chittenden, J. P; Masters, A

    2016-01-01

    A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres...

  6. The Influence of Uniform Suction/Injection on Heat Transfer of MHD Hiemenz Flow in Porous Media

    DEFF Research Database (Denmark)

    Ghsemi, E; Soleimani, S; Barari, Amin

    2012-01-01

    The steady two-dimensional laminar forced magneto-hydrodynamic (MHD) Hiemenz flow against a flat plate with variable wall temperature in a porous medium is analyzed. The transformed nonlinear boundary-layer equations are solved analytically by homotopy analysis method (HAM). Results for the veloc...

  7. Solar driven liquid metal MHD power generator

    Science.gov (United States)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  8. Center for Extended MHD Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Henry [HRS Fusion, West Orange, NJ (United States)

    2017-11-02

    This research was mostly concerned with asymmetric vertical displacement event (AVDE) disruptions, which are the worst case scenario for producing a large asymmetric wall force. This is potentially a serious problem in ITER.

  9. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    Science.gov (United States)

    Riggins, David W.

    2002-01-01

    shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.

  10. MHD equilibria with diamagnetic effects

    Science.gov (United States)

    Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.

    1997-11-01

    An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.

  11. MHD Integrated Topping Cycle Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  12. MHD Stability of Free Boundary Toroidal Z Pinch

    Science.gov (United States)

    Sugisaki, Kiwamu

    1990-06-01

    The Magnetohydrodynamic (MHD) stability of a free boundary toroidal Z pinch plasma is investigated. Equilibrium field profiles are chosen so that μ is nearly uniform in the central region, μ and dμ/dr vanish on the boundary and Suydam’s criterion is satisfied throughout the plasma. The stability of the equilibrium is examined for the ratio b of the conducting wall radius to the plasma radius and plasma pressure. The stability of non-resonant ideal modes is determined mainly from the safty factor on the axis. Non-resonant modes are dominant for low plasma pressure, whereas resonant modes are dominant for high plasma pressure. Tearing modes are stable only for b below 1.04. The width of the magnetic islands produced from the tearing modes is evaluated. As b increases, overlap of the magnetic islands occurs over a wide area in the plasma.

  13. Numerical study for MHD peristaltic flow in a rotating frame.

    Science.gov (United States)

    Hayat, T; Zahir, Hina; Tanveer, Anum; Alsaedi, A

    2016-12-01

    The aim of present investigation is to model and analyze the magnetohydrodynamic (MHD) peristaltic transport of Prandtl fluid in a channel with flexible walls. The whole system consisting of fluid and channel are in a rotating frame of reference with uniform angular velocity. Viscous dissipation in thermal equation is not ignored. The channel boundaries satisfy the convective conditions in terms of temperature. The arising complicated problems are reduced in solvable form using large wavelength and small Reynolds number assumptions. Numerical solution for axial and secondary velocities, temperature and heat transfer coefficient are presented. Main emphasis is given to the outcome of rotation and material parameters of Prandtl fluid on the physical quantities of interest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Quasi-bounded sets

    Directory of Open Access Journals (Sweden)

    Jan Kucera

    1990-01-01

    Full Text Available It is proved in [1] & [2] that a set bounded in an inductive limit E=indlim En of Fréchet spaces is also bounded in some En iff E is fast complete. In the case of arbitrary locally convex spaces En every bounded set in a fast complete indlim En is quasi-bounded in some En, though it may not be bounded or even contained in any En. Every bounded set is quasi-bounded. In a Fréchet space every quasi-bounded set is also bounded.

  15. Numerical study of MHD supersonic flow control

    Science.gov (United States)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  16. Euler potentials for the MHD Kamchatnov-Hopf soliton solution

    NARCIS (Netherlands)

    Semenov, VS; Korovinski, DB; Biernat, HK

    2002-01-01

    In the MHD description of plasma phenomena the concept of magnetic helicity turns out to be very useful. We present here an example of introducing Euler potentials into a topological MHD soliton which has non-trivial helicity. The MHD soliton solution (Kamchatnov, 1982) is based on the Hopf

  17. Ideal MHD stability and characteristics of edge localized modes on CFETR

    Science.gov (United States)

    Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team

    2018-01-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R  =  5.7 m, B T  =  5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a  =  1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R  =  6.6 m, B T  =  6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.

  18. High magnetic field MHD generator program. Final report, July 1, 1976-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Eustis, R. H.; Kruger, C. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Nakamura, T.

    1980-04-01

    A theoretical and experimental program was undertaken to investigate MHD channel phenomena which are important at high magnetic fields. The areas studied were inhomogeneity effects, boundary layers, Hall field breakdown and electrode configuration and current concentrations. In addition, a program was undertaken to study steady-state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions. The structure of the inhomogeneities in the Stanford M-2 was characterized and compared with theoretical results from a linearized perturbation analysis. General agreement was obtained and the analysis was used to compute stability regions for large size generators. The Faraday electrical connection was found to be more stable than the Hall or diagonal wall connections. Boundary layer profile measurements were compared with theoretical calculations with good agreement. Extrapolation of the calculations to pilot scale MHD channels indicates that Hartmann effects are important in the analysis of the sidewall, and Joule heating is important in calculating heat transfer and voltage drops for the electrode wall. Hall field breakdown was shown to occur both in the plasma and through the interelectrode insulator with the insulator breakdown threshold voltage lower than the plasma value. The threshold voltage was shown to depend on the interelectrode gap but was relatively independent of plasma conditions. Experiments were performed at 5.5 Tesla with both disk and linear MHD channels.

  19. Enhanced understanding of the MHD dynamics and ELM control experiments in KSTAR

    Science.gov (United States)

    Park, Hyeon K.

    2013-10-01

    In KSTAR, H-mode discharges have been achieved reliably at toroidal fields from 1.4 to 3.5 T with a heating power of ~ 5 MW. Using real-time plasma shape control the flattop time in H-mode has been extended to over ~ 16 s at 600 kA in the 2012 campaign and the extended plasma operation boundary has surpassed the n = 1 no-wall limit with βN /li up to 4.1. In order to achieve a high beta steady state operation in KSTAR, establishment of predictive MHD simulation and first-principle-based control of the harmful MHD are the first steps. Visualization of MHD dynamics via a 2-D Electron Cyclotron Emission Imaging (ECEI) has significantly enhanced the level of understanding of the MHD dynamics. Following the first 2-D ELM measurements in H-mode plasmas in KSTAR the measured 2-D ELM images were compared with synthetic images from the BOUT + + code. The physics of ELMs is characterized based on a wide range of measured mode numbers (n, m) local magnetic shear and pressure gradients. The observed ELM dynamics during control experiments have been enlightening and consistent with the stability models. Near the q ~ 2 surface, the island width and Δ' of the m = 2 tearing mode have been verified through the modified Rutherford model based on the 2-D images. With the aid of a second (toroidally separated) ECEI system installed in the 2012 KSTAR campaign, a 3-D reconstruction of the MHD instabilities has allowed further validation of the computed magnetic field pitch angles, rotation speeds, and toroidal asymmetries of the MHDs Work supported by NRF of Korea under contract No. 20120005920 and the U.S. DoE under contract No. DE-FG-02-99ER54531.

  20. Status of power generation experiments in the NASA Lewis closed cycle MHD facility

    Science.gov (United States)

    Sovie, R. J.; Nichols, L. D.

    1971-01-01

    The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  1. MHD marking using the MSE polarimeter optics in ILW JET plasmas.

    Science.gov (United States)

    Reyes Cortes, S; Alper, B; Alves, D; Baruzzo, M; Bernardo, J; Buratti, P; Coelho, R; Challis, C; Chapman, I; Hawkes, N; Hender, T C; Hobirk, J; Joffrin, E

    2016-11-01

    In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

  2. MHD marking using the MSE polarimeter optics in ILW JET plasmas

    CERN Document Server

    Reyes Cortes, S.; Alves, D.; Baruzzo, M.; Bernardo, J.; Buratti, P.; Coelho, R.; Challis, C.; Chapman, I.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Joffrin, E.

    2016-01-01

    In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

  3. MHD equilibrium and stability in heliotron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-09-01

    Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)

  4. Hodograph method in MHD orthogonal fluid flows

    Directory of Open Access Journals (Sweden)

    P. V. Nguyen

    1992-01-01

    Full Text Available Equations for steady plane MHD orthogonal flows of a viscous incompressible fluid of finite electrical conductivity are recast in the hodograph plane by using the Legendre transform function of the streamfunction. Three examples are studied to illustrate the developed theory. Solutions and geometries for these examples are determined.

  5. MHD Ballooning Instability in the Plasma Sheet

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Cheng; S. Zaharia

    2003-10-20

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum.

  6. MHD work related to a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, J.; Barleon, L.; Buehler, L. [IATF, Karlsruhe (Germany)] [and others

    1994-12-31

    For self cooled liquid metal blankets MHD pressure drop and velocity distributions are considered as critical issues. This paper summarizes MHD work performed for a DEMO-relevant Pb-17Li blanket which uses essential characteristics of a previous ANL design: The coolant flows downwards in the rear poloidal ducts, turns by 180{degrees} at the blanket bottom and is distributed from the ascending poloidal ducts into short radial channels which feed the toroidal First Wall coolant ducts (aligned with the main magnetic field direction). The flow through the subsequent radial channels is collected again in poloidal channels and the coolant leaves the blanket segment at the top. The blanket design is based on the use of flow channel inserts (FCIs) (which means electrically thin conducting walls for MHD) for all ducts except for the toroidal FW coolant channels. MHD related issues were defined and estimations of corresponding pressure drops were performed. Previous experimental work included a proof of principle of FCIs and a detailed experiment with a single {open_quotes}poloidal{sm_bullet}toroidal{sm_bullet}poloidal{close_quotes} duct (cooperation with ANL). In parallel, a numerical code based on the Core Flow Approximation (CFA) was developed to predict pressure drop and velocity distributions for arbitrary single duct geometries.

  7. Numerical study of the MHD flow characteristics in a three-surface-multi-layered channel with different inlet conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aoyagi, Mitsuhiro, E-mail: mao@karma.qse.tohoku.ac.jp; Ito, Satoshi; Hashizume, Hidetoshi

    2014-10-15

    A 3D MHD flow simulation was conducted to clarify the effects of the inlet flow conditions on the results of the validation experiment carried out previously and on the design window of the first wall using a three-surface-multi-layered channel. MHD pressure drop was largely influenced by the inlet condition. The numerical model with turbulent velocity profile showed qualitatively good agreement with the experimental result. The first wall temperature and pressure distributions obtained by the 3D simulation corresponded well to those obtained by the 2D simulation assuming fully developed flow. This suggested that complicated three-dimensional inlet flow condition generated in the L-shape elbow would not affects the existing design window.

  8. Coherent Eigenmodes in Homogeneous MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2010-01-01

    The statistical mechanics of Fourier models of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence is discussed, along with their relevance for dissipative magnetofluids. Although statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation, i.e., we have coherent structure. We use eigenanalysis of the modal covariance matrices in the probability density function to explain this phenomena in terms of `broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We provide examples from 2-D and 3-D magnetohydrodynamic simulations of homogeneous turbulence, and show new results from long-time simulations of MHD turbulence with and without a mean magnetic field

  9. Magnetic Reconnection in a Compressible MHD Plasma

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Zenitani, Seiji

    2011-01-01

    Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed

  10. MHD simulations on an unstructured mesh

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.R. [New York Univ., NY (United States); Park, W.; Belova, E.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Longcope, D.W. [Univ. of Montana, Missoula, MT (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  11. Bound states and the Bekenstein bound

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael

    2003-10-16

    We explore the validity of the generalized Bekenstein bound, S<= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  12. Inductive ionospheric solver for magnetospheric MHD simulations

    Directory of Open Access Journals (Sweden)

    H. Vanhamäki

    2011-01-01

    Full Text Available We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances and similar output is produced (ionospheric electric field. The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km−1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981.

  13. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  14. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, I.R. [Institute of Electrophysical, St. Petersburg (Russian Federation); Barleon, L. [IATF, Karlsruhe (Germany); Reed, C.B. [Argonne National Lab., IL (United States)] [and others

    1994-12-31

    Liquid metals (Li, Li17Pb83, Pb) are considered as coolants in many designs of fusion reactor blankets. To estimate their potential and to make an optimal design, one has to know the magnetohydrodynamic (MHD) and heat transfer characteristics of liquid metal flow in the magnetic field. Such flows with high characteristic parameter values (Hartmann number M and interaction parameter N) open up a relatively new field in Magnetohydrodynamics requiring both theoretical and experimental efforts. A review of experimental work done for the last ten years in different countries shows that there are some data on MHD/HT characteristics in straight channels of simple geometry under fusion reactor relevant conditions (M>>1, N>>1) and not enough data for complex flow geometries. Future efforts should be directed to investigation of MHD/HT in straight channels with perfect and imperfect electroinsulated walls, including those with controlled imperfections, and in channels of complex geometry. The experiments are not simple, since the fusion relevant conditions require facilities with magnetic fields at, or even higher than, 5-7 T in comparatively large volumes. International cooperation in constructing and operating these facilities may be of great help.

  15. Key contributions in MHD power generation. Quarterly report, 1 June 1979-31 August 1979

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J F

    1979-11-01

    Activities during the third quarter of the contract period are reported in detail. The tasks reported on include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage.

  16. NASA Lewis H2-O2 MHD program

    Science.gov (United States)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  17. ASDEX upgrade MHD equilibria reconstruction on distributed workstations

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, W. E-mail: wolfgang.schneider@ipp.mpg.de; McCarthy, P.J.; Lackner, K.; Gruber, O.; Behler, K.; Martin, P.; Merkel, R

    2000-08-01

    The identification of MHD equilibrium states on the ASDEX Upgrade tokamak is a prerequisite for interpreting measurements from a wide range of diagnostics which are correlated with the shape of the plasma. The availability in realtime of plasma parameters related to the MHD state is crucial for controlling the experiment. Function Parameterization is used as a standard tool to determine the position, shape, and other global parameters of the plasma as well as the MHD equilibrium flux surfaces. The recently developed interpretive equilibrium code CLISTE now enables the calculation of MHD equilibria on an intershot timescale. These calculations are parallelized by the use of a Message Passing Interface (MPI)

  18. The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition

    Science.gov (United States)

    Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit

    1998-01-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  19. Page 1 Materials for MHD channels 75 Figure 4. First Indian MHD ...

    Indian Academy of Sciences (India)

    under the influence of the electrical field also causes oxidation of the anodes. To minimise the possible deleterious reactions and degradation of the electrode system,. Mason et al (1975) have identified FeAl2O4—Fe3O4 spinel (figure 7) as a potential electrode for open cycle coal fired MHD cycles. This spinel-alumina ...

  20. Physical Uncertainty Bounds (PUB)

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  1. Superconducting magnet system for an experimental disk MHD facility

    NARCIS (Netherlands)

    Knoopers, H.G.; ten Kate, Herman H.J.; van de Klundert, L.J.M.; van de Klundert, L.J.M.

    1991-01-01

    A predesign of a split-pair magnet for a magnetohydrodynamic (MHD) facility for testing a 10-MW open-cycle disk or a 5-MW closed-cycle disk generator is presented. The magnet system consists of a NbTi and a Nb 3Sn section, which provide a magnetic field of 9 T in the active area of the MHD channel.

  2. Parameter regimes for slow, intermediate and fast MHD shocks

    NARCIS (Netherlands)

    Delmont, P.; Keppens, R.

    2011-01-01

    We investigate under which parameter regimes the magnetohydrodynamic (MHD) Rankine-Hugoniot conditions, which describe discontinuous solutions to the MHD equations, allow for slow, intermediate and fast shocks. We derive limiting values for the upstream and downstream shock parameters for which

  3. Annular MHD Physics for Turbojet Energy Bypass

    Science.gov (United States)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  4. The DMM Bound

    DEFF Research Database (Denmark)

    Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias

    2010-01-01

    In this paper we derive aggregate separation bounds, named after Davenport-Mahler-Mignotte (DMM), on the isolated roots of polynomial systems, specifically on the minimum distance between any two such roots. The bounds exploit the structure of the system and the height of the sparse (or toric) re...... bound on the number of steps that subdivision-based algorithms perform in order to isolate all real roots of a polynomial system. This leads to the first complexity bound of Milne's algorithm [22] in 2D....

  5. MHD natural convection in open inclined square cavity with a heated circular cylinder

    Science.gov (United States)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  6. MHD Equations with Regularity in One Direction

    Directory of Open Access Journals (Sweden)

    Zujin Zhang

    2014-01-01

    Full Text Available We consider the 3D MHD equations and prove that if one directional derivative of the fluid velocity, say, ∂3u∈Lp0, T;LqR3, with 2/p + 3/q = γ ∈ [1,3/2, 3/γ ≤ q ≤ 1/(γ - 1, then the solution is in fact smooth.  This improves previous results greatly.

  7. Magnetic stresses in ideal MHD plasmas

    DEFF Research Database (Denmark)

    Jensen, V.O.

    1995-01-01

    The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...... and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem...

  8. Ideal Magnetohydrodynamics Stability Spectrum with a Resistive Wall

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Jardin, S. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2008-05-01

    We show that the eigenvalue equations describing a cylindrical ideal magnetophydrodynamicsw (MHD) plasma interacting with a thin resistive wall can be put into the standard mathematical form: Α•χ = λΒ• χ. This is accomplished by using a finite element basis for the plasma, and by adding an extra degree of freedom corresponding to the electrical current in the thin wall. The standard form allows the use of linear eigenvalue solvers, without additional interations, to compute the complete spectrum of plasma modes in the presence of a surrounding restrictive wall at arbitrary separation. We show that our method recovers standard results in the limits of (1) an infinitely resistive wall (no wall), and (2) a zero resistance wall (ideal wall).

  9. Analysis and design of an ultrahigh temperature hydrogen-fueled MHD generator

    Science.gov (United States)

    Moder, Jeffrey P.; Myrabo, Leik N.; Kaminski, Deborah A.

    1993-01-01

    A coupled gas dynamics/radiative heat transfer analysis of partially ionized hydrogen, in local thermodynamic equilibrium, flowing through an ultrahigh temperature (10,000-20,000 K) magnetohydrodynamic (MHD) generator is performed. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer, and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using nongray, absorbing-emitting 2D and 3D P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation and through the temperature- and density-dependent absorption coefficient. The resulting nonlinear elliptic problem is solved by iterative methods. Design of such MHD generators as onboard, open-cycle, electric power supplies for a particular advanced airbreathing propulsion concept produced an efficient and compact 128-MWe generator characterized by an extraction ratio of 35.5 percent, a power density of 10,500 MWe/cu m, and a specific (extracted) energy of 324 MJe/kg of hydrogen. The maximum wall heat flux and total wall heat load were 453 MW/sq m and 62 MW, respectively.

  10. Effects of second-order slip on the flow of a fractional Maxwell MHD fluid

    Directory of Open Access Journals (Sweden)

    Yaqing Liu

    2017-10-01

    Full Text Available The magnetohydrodynamic (MHD flow of a generalized Maxwell fluid induced by a moving plate has been investigated, where the second-order slip between the wall and the fluid in the wall is considered. The fractional calculus approach is used to establish the constitutive relationship model of the non-Newtonian fluid model. Exact analytical solutions for the velocity field and shear stress in terms of Fox H-function are obtained by means of the Laplace transform. The solutions for the generalized Maxwell second-order slip model without magnetic field, the MHD flow of generalized Maxwell flow without slip effects or first-order slip model can be derived as the special cases. Furthermore, the influence of the order of fractional derivative, the magnetic body force, the slip coefficients and power index on the velocity and shear stress are analyzed and discussed in detail. The results show that the velocity corresponding to flows with slip condition is lower than that for flow with non-slip conditions, and the velocity with second-slip condition is lower than that with first-order slip condition.

  11. MHD stability analysis and global mode identification preparing for high beta operation in KSTAR

    Science.gov (United States)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Jiang, Y.; Ahn, J. H.; Han, H. S.; Bak, J. G.; Park, B. H.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Lee, J. H.; Ko, J. S.; in, Y. K.; Yoon, S. W.; Oh, Y. K.; Wang, Z.; Glasser, A. H.

    2017-10-01

    H-mode plasma operation in KSTAR has surpassed the computed n = 1 ideal no-wall stability limit in discharges exceeding several seconds in duration. The achieved high normalized beta plasmas are presently limited by resistive tearing instabilities rather than global kink/ballooning or RWMs. The ideal and resistive stability of these plasmas is examined by using different physics models. The observed m/ n = 2/1 tearing stability is computed by using the M3D-C1 code, and by the resistive DCON code. The global MHD stability modified by kinetic effects is examined using the MISK code. Results from the analysis explain the stabilization of the plasma above the ideal MHD no-wall limit. Equilibrium reconstructions used include the measured kinetic profiles and MSE data. In preparation for plasma operation at higher beta utilizing the planned second NBI system, three sets of 3D magnetic field sensors have been installed and will be used for RWM active feedback control. To accurately determine the dominant n-component produced by low frequency unstable RWMs, an algorithm has been developed that includes magnetic sensor compensation of the prompt applied field and the field from the induced current on the passive conductors. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-SC0016614.

  12. The role of MHD in causing impurity peaking in JET Hybrid plasmas

    CERN Document Server

    Hender, T C; Casson, F J; Alper, B; Baranov, Yu; Baruzzo, M; Challis, C D; Koechl, F; Marchetto, C; Nave, M F F; Pütterich, T; Cortes, S Reyes; Contributors, JET

    2015-01-01

    In Hybrid plasma operation in JET with its ITER-like wall (JET-ILW) it is found that n>1 tearing activity can significantly enhance the rate of on-axis peaking of tungsten impurities, which in turn significantly degrades discharge performance. Core n=1 instabilities can be beneficial in removing tungsten impurities from the plasma core (e.g. sawteeth or fishbones), but can conversely also degrade core confinement (particularly in combination with simultaneous n=3 activity). The nature of MHD instabilities in JET Hybrid discharges, with both its previous Carbon wall and subsequent JET-ILW, is surveyed statistically and the character of the instabilities is examined. Possible qualitative models for how the n>1 islands can enhance on-axis tungsten transport accumulation processes are presented.

  13. Heat transfer including radiation and slag particles evolution in MHD channel-I

    Energy Technology Data Exchange (ETDEWEB)

    Im, K H; Ahluwalia, R K

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  14. Bounded Parikh Automata

    Directory of Open Access Journals (Sweden)

    Michaël Cadilhac

    2011-08-01

    Full Text Available The Parikh finite word automaton model (PA was introduced and studied by Klaedtke and Ruess in 2003. Here, by means of related models, it is shown that the bounded languages recognized by PA are the same as those recognized by deterministic PA. Moreover, this class of languages is the class of bounded languages whose set of iterations is semilinear.

  15. Bounded Gaussian process regression

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

    2013-01-01

    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...

  16. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......-equipartition and a turbulent state. The generation and evolution of such strong magnetic fields is relevant for the understanding of dynamo action that occurs in stars and other astrophysical objects. Aims.We study the mode of operation of this dynamo, in the linear and non-linear saturation regimes. We also consider......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...

  17. MHD wave transmission in the Sun's atmosphere

    Science.gov (United States)

    Stangalini, M.; Del Moro, D.; Berrilli, F.; Jefferies, S. M.

    2011-10-01

    Magnetohydrodynamics (MHD) wave propagation inside the Sun's atmosphere is closely related to the magnetic field topology. For example, magnetic fields are able to lower the cutoff frequency for acoustic waves, thus allowing the propagation of waves that would otherwise be trapped below the photosphere into the upper atmosphere. In addition, MHD waves can be either transmitted or converted into other forms of waves at altitudes where the sound speed equals the Alfvén speed. We take advantage of the large field-of-view provided by the IBIS experiment to study the wave propagation at two heights in the solar atmosphere, which is probed using the photospheric Fe 617.3 nm spectral line and the chromospheric Ca 854.2 nm spectral line, and its relationship to the local magnetic field. Among other things, we find substantial leakage of waves with five-minute periods in the chromosphere at the edges of a pore and in the diffuse magnetic field surrounding it. By using spectropolarimetric inversions of Hinode SOT/SP data, we also find a relationship between the photospheric power spectrum and the magnetic field inclination angle. In particular, we identify well-defined transmission peaks around 25° for five-minute waves and around 15° for three-minute waves. We propose a very simple model based on wave transmission theory to explain this behavior. Finally, our analysis of both the power spectra and chromospheric amplification spectra suggests the presence of longitudinal acoustic waves along the magnetic field lines.

  18. MHD simulation of plasma compression experiments

    Science.gov (United States)

    Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter

    2017-10-01

    General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.

  19. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  20. Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Guillermo [Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutierrez, Chiapas 29000 (Mexico); Cuevas, Sergio [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico A.P. 34, Temixco, Mor. 62580 (Mexico)

    2010-10-15

    The dissipative processes that arise in a microchannel flow subjected to electromagnetic interactions, as occurs in a MHD (magnetohydrodynamic) micropump, are analyzed. The entropy generation rate is used as a tool for the assessment of the intrinsic irreversibilities present in the microchannel owing to viscous friction, heat flow and electric conduction. The flow in a parallel plate microchannel produced by a Lorentz force created by a transverse magnetic field and an injected electric current is considered assuming a thermally fully developed flow and conducting walls of finite thickness. The conjugate heat transfer problem in the fluid and solid walls is solved analytically using thermal boundary conditions of the third kind at the outer surfaces of the walls and continuity of temperature and heat flux across the fluid-wall interfaces. Velocity, temperature and current density fields in the fluid and walls are used to calculate the global entropy generation rate. Conditions under which this quantity is minimized are determined for specific values of the geometrical and physical parameters of the system. The Nusselt number is also calculated and explored for different conditions. Results can be used to determine optimized conditions that lead to a minimum dissipation consistent with the physical constraints demanded by the microdevice. (author)

  1. Insoluble-Bound Phenolics in Food.

    Science.gov (United States)

    Shahidi, Fereidoon; Yeo, Ju-Dong

    2016-09-11

    This contribution provides a review of the topic of insoluble-bound phenolics, especially their localization, synthesis, transfer and formation in plant cells, as well as their metabolism in the human digestive system and corresponding bioactivities. In addition, their release from the food matrix during food processing and extraction methods are discussed. The synthesis of phenolics takes place mainly at the endoplasmic reticulum and they are then transferred to each organ through transport proteins such as the ATP-binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) transporter at the organ's compartment membrane or via transport vesicles such as cytoplasmic and Golgi vesicles, leading to the formation of soluble and insoluble-bound phenolics at the vacuole and cell wall matrix, respectively. This part has not been adequately discussed in the food science literature, especially regarding the synthesis site and their transfer at the cellular level, thus this contribution provides valuable information to the involved scientists. The bound phenolics cannot be absorbed at the small intestine as the soluble phenolics do (5%-10%), thus passing into the large intestine and undergoing fermentation by a number of microorganisms, partially released from cell wall matrix of foods. Bound phenolics such as phenolic acids and flavonoids display strong bioactivities such as anticancer, anti-inflammation and cardiovascular disease ameliorating effects. They can be extracted by several methods such as acid, alkali and enzymatic hydrolysis to quantify their contents in foods. In addition, they can also be released from the cell wall matrix during food processing procedures such as fermentation, germination, roasting, extrusion cooking and boiling. This review provides critical information for better understanding the insoluble-bound phenolics in food and fills an existing gap in the literature.

  2. Analogue Kerr-like geometries in a MHD inflow

    CERN Document Server

    Noda, Sousuke; Takahashi, Masaaki

    2016-01-01

    We present a model of the analogue black hole in magnetohydrodynamic (MHD) flow. For a two dimensional axisymmetric stationary trans-magnetosonic inflow with a sink, using the dispersion relation of the MHD waves, we introduce the effective geometries for magnetoacoustic waves propagating in the MHD flow. Investigating the properties of the effective potentials for magnetoacoustic rays, we find that the effective geometries can be classified into five types which include analogue spacetimes of the Kerr black hole, ultra spinning stars with ergoregions and spinning stars without ergoregions. We address the effects of the magnetic pressure and the magnetic tension on each magnetoacoustic geometries.

  3. Activation of MHD reconnection on ideal timescales

    CERN Document Server

    Landi, S; Del Zanna, L; Tenerani, A; Pucci, F

    2016-01-01

    Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number $S$, up to $10^7$. Results confirm that when the critical aspect ratio of $S^{1/3}$ is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfv\\'enic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be ro...

  4. Application of electron closures in extended MHD

    Science.gov (United States)

    Held, Eric; Adair, Brett; Taylor, Trevor

    2017-10-01

    Rigorous closure of the extended MHD equations in plasma fluid codes includes the effects of electron heat conduction along perturbed magnetic fields and contributions of the electron collisional friction and stress to the extended Ohms law. In this work we discuss application of a continuum numerical solution to the Chapman-Enskog-like electron drift kinetic equation using the NIMROD code. The implementation is a tightly-coupled fluid/kinetic system that carefully addresses time-centering in the advance of the fluid variables with their kinetically-computed closures. Comparisons of spatial accuracy, computational efficiency and required velocity space resolution are presented for applications involving growing magnetic islands in cylindrical and toroidal geometry. The reduction in parallel heat conduction due to particle trapping in toroidal geometry is emphasized. Work supported by DOE under Grant Nos. DE-FC02-08ER54973 and DE-FG02-04ER54746.

  5. MHD stable regime of the tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Furth, H.P.; Boozer, A.H.

    1986-10-01

    A broad family of tokamak current profiles is found to be stable against ideal and resistive MHD kink modes for 1 less than or equal to q(0), with q(a) as low 2. For 0.5 less than or equal to q(0) < and q(a) > 1, current profiles can be found that are unstable only to the m = 1, n = 1 mode. A specific ''optimal'' tokamak profile can be selected from the range of stable solutions, by imposing a common upper limit on dj/dr - corresponding in ohmic equilibrium to a limitation of dT/sub e//dr by anomalous transport.

  6. MHD simulation of the Bastille day event

    Energy Technology Data Exchange (ETDEWEB)

    Linker, Jon, E-mail: linkerj@predsci.com; Torok, Tibor; Downs, Cooper; Lionello, Roberto; Titov, Viacheslav; Caplan, Ronald M.; Mikić, Zoran; Riley, Pete [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego CA, USA 92121 (United States)

    2016-03-25

    We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 10{sup 33} ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similar to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.

  7. MHD Instabilities in Simple Plasma Configuration

    Science.gov (United States)

    1984-01-01

    without subscripts. As already men- tioned there is no equilibrium flow of the plasma. We now scalar mul- tiply Eq. (III-1) by V to obtain av poV’ V...tearing modes. VIILA - MHD Modes With Two Dimensional Structure Recall from the last three chapters, that in slab geometry, the appropriate modes always had...P>V) =- (V• V- V<V>) (X-5a) <P>A-V+ a< +ji<V>-V<V>+pV-V<V> +<p><V> .VV+Vt 1 (Vxil) x <B> +(V x <B>) x > 41r = -v + <A- > Ot - Av .V<V> + <AsV> .V<V

  8. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  9. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  10. An Implicit, Conservative Multi-Temperature MHD Algorithm

    National Research Council Canada - National Science Library

    Shumlak, Uri

    2001-01-01

    .... The algorithm was based on a Roe-type approximate Riemann solver. The algorithm was implemented in a code to model the time-dependent, three-dimensional, arbitrary-geometry MHD model which includes viscous and resistive effects...

  11. 3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems

    Science.gov (United States)

    Hançerliogulları, Aybaba; Cini, Mesut

    2013-10-01

    In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).

  12. A Conserved Cross Helicity for Non-Barotropic MHD

    CERN Document Server

    Yahalom, A

    2016-01-01

    Cross helicity is not conserved in non-barotropic magnetohydrodynamics (MHD) (as opposed to barotropic or incompressible MHD). Here we show that variational analysis suggests a new kind of cross helicity which is conserved in the non barotropic case. The non barotropic cross helicity reduces to the standard cross helicity under barotropic assumptions. The new cross helicity is conserved even for topologies for which the variational principle does not apply.

  13. Evaluation of the ECAS open cycle MHD power plant design

    Science.gov (United States)

    Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.

    1978-01-01

    The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.

  14. Slip Analysis at Fluid-Solid Interface in MHD Squeezing Flow of Casson Fluid through Porous Medium

    Directory of Open Access Journals (Sweden)

    Mubashir Qayyum

    Full Text Available An unsteady squeezing flow of Casson fluid having Magneto Hydro Dynamic effect and passing through porous medium channel with slip at the boundaries has been modelled and analyzed. Similarity transformations are applied to the governing partial differential equations of the Casson model to get a highly non-linear fourth order ordinary differential equation. The obtained equation is then solved analytically using the Homotopy Perturbation Method (HPM for uniform and non-uniform slip at the boundaries. Five cases of boundary conditions, representing slip at upper wall only, uniform slip at both walls, non-uniform slip where slip at upper wall is greater than that of lower wall, non-uniform slip where slip at lower wall is greater than that of upper wall, and slip at lower wall only are considered and thoroughly investigated. Validation is performed by solving the equation numerically using fourth order explicit Runge Kutta method (ERK4. Both analytical and numerical results show good agreement. Lastly, the effects of various fluid parameters on the velocity profile are investigated for each case graphically. Analysis of these plots show that the positive and negative squeeze numbers have opposite effect on the velocity profile throughout all the cases. It is also observed that various fluid parameters like Casson, MHD, and Permeability have similar effects on the velocity profile in the cases when slip is occurring at the upper wall only, and non-uniform slip at both the boundaries with slip at lower wall is greater than upper wall. Furthermore, similar effects have been observed when slip is uniform at both the boundaries, and in case of non-uniform slip with slip at lower wall is less than the upper wall. Keywords: Squeezing flow, Casson fluid, Porous media, Magneto Hydro Dynamic, Slip parameter

  15. Broken Ergodicity in MHD Turbulence in a Spherical Domain

    Science.gov (United States)

    Shebalin, John V.; wang, Yifan

    2011-01-01

    Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.

  16. Experimental study of the MHD activity associated to the mode m=2, n=1 in the Tore Supra tokamak; Etude experimentale de l`activite MHD associee au mode m=2, n=1 dans le tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Turlur, S.

    1996-09-20

    In tokamaks such as Tore Supra, the plasma confinement magnetic structure can be severely affected when Magnetohydrodynamic (M.H.D.) instabilities are destabilized. Experimentally, these instabilities are detected as magnetic fluctuations with captors located against the inner wall of the vacuum vessel. Fourier analysis provides amplitude, frequency and wave numbers of magnetic modes. In case of fast or transient phenomena, the analysis of magnetic fluctuations is completed using the singular value decomposition. In this dissertation, these analysis techniques are used to study two specific examples of M.H.D. activity related to the m = 2, n = 1 mode. On Tore Supra, the onset of this mode have strong consequences on the stability of partially or fully non inductive discharges. A regular and persistent sawtooth-like regime is observed on the electronic temperature leading to a significant degradation of the central confinement. Heat exhaust and particle balance are also essential parameters to achieve stationary discharges. On Tore Supra, these are studied with the ergodic divertor which produces stochastic magnetic field lines at the plasma edge. For optimal operating conditions of the ergodic divertor, the growth of the m = 2, N = 1 mode can lead to sudden destruction of magnetic equilibrium. For both cases, understanding and characterization of mechanisms leading to the observed m = 2, n = 1 M.H.D. activity are fundamental to obtain stationary discharges. (author). 115 refs.

  17. Validation of EMP bounds

    Energy Technology Data Exchange (ETDEWEB)

    Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G. [Sandia National Labs., Albuquerque, NM (United States); Derr, W. [Derr Enterprises, Albuquerque, NM (United States)

    1996-07-01

    Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

  18. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...... and flat, “ambiguous walls” combine softness, tectonics and three-dimensionality. The paper considers a selection of luminious surfaces and reflects on the extent of their ambiguous qualities. Initial ideas for new directions for the wall will be essayed through the discussion....

  19. Status of power generation experiments in the NASA Lewis closed-cycle MHD facility.

    Science.gov (United States)

    Sovie, R. J.; Nichols, L. D.

    1972-01-01

    In this paper the design and operation of the closed-cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger (preheater), heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The heater can supply 1.1 MW of thermal power to a 2.27 kg/sec gas stream. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths (B = 0.2 T), the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. The Hall voltage and short circuit current decrease sharply with increasing magnetic field strength, however. Comparison of these data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  20. Bounded Tamper Resilience

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Faust, Sebastian; Mukherjee, Pratyay

    2013-01-01

    a bounded tamper and leakage resilient CCA secure public key cryptosystem based on the DDH assumption. We first define a weaker CPA-like security notion that we can instantiate based on DDH, and then we give a general compiler that yields CCA-security with tamper and leakage resilience. This requires...... a public tamper-proof common reference string. Finally, we explain how to boost bounded tampering and leakage resilience (as in 1. and 2. above) to continuous tampering and leakage resilience, in the so-called floppy model where each user has a personal hardware token (containing leak- and tamper...

  1. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  2. Structural properties of resonant electric and magnetic fields correlation with X-ray generation and MHD activity in tokamak

    Science.gov (United States)

    Salar Elahi, A.; Ghoranneviss, M.

    In this research we have investigated on a Runaway electron generation in IR-T1 tokamak. For this purpose we used the hard X-ray spectroscopy and magnetic diagnostic. Hard X-ray emission produces due to collision of the Runaway electrons with the plasma particles or tokamak limiters. Runaway electrons in tokamaks can cause serious damage to the first wall of the reactor and decrease its life time. Also, hard X-ray emission generated from high energy Runaway electrons lead to the plasma energy loss. Therefore, suggesting methods to minimize Runaway electrons in tokamaks are very important. Applying external resonant field is one of the methods for controlling the Magnetohydrodynamic (MHD) activity. Present study attempts to investigate the effects of limiter biasing and Resonant Helical magnetic Field (RHF) on the generation of Runaway electrons. For this purpose, plasma parameters such as plasma current, MHD oscillation, loop voltage, emitted hard X-ray intensity, Hα impurity, safety factor in the presence and absence of external fields, were measured. Frequency activity was investigated with FFT analysis. The results show that applying resonant fields can control the MHD activity, and then hard X-ray emitted from the Runaway electrons.

  3. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)

    2015-11-10

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  4. MHD oscillatory channel flow, heat and mass transfer in a physiological fluid in presence of chemical reaction

    Directory of Open Access Journals (Sweden)

    J.C. Misra

    2016-03-01

    Full Text Available In the present paper, the problem of oscillatory MHD flow of blood in a porous arteriole in presence of chemical reaction and an external magnetic field has been investigated. Heat and mass transfer during arterial blood flow are also studied. A mathematical model is developed and analyzed by using appropriate mathematical techniques. Expressions for the velocity profile, volumetric flow rate, wall shear stress and rates of heat and mass transfer have been obtained. Variations of the said quantities with different parameters are computed by using MATHEMATICA software. The quantitative estimates are presented through graphs and table.

  5. Effects of Chemical Reaction on Dissipative Radiative MHD Flow through a Porous Medium over a Nonisothermal Stretching Sheet

    Directory of Open Access Journals (Sweden)

    S. Mohammed Ibrahim

    2014-01-01

    Full Text Available The steady two-dimensional radiative MHD boundary layer flow of an incompressible, viscous, electrically conducting fluid caused by a nonisothermal linearly stretching sheet placed at the bottom of fluid saturated porous medium in the presence of viscous dissipation and chemical reaction is studied. The governing system of partial differential equations is converted to ordinary differential equations by using the similarity transformations, which are then solved by shooting method. The dimensionless velocity, temperature, and concentration are computed for different thermophysical parameters, namely, the magnetic parameter, permeability parameter, radiation parameter, wall temperature parameter, Prandtl number, Eckert number, Schmidt number, and chemical reaction.

  6. Bounded variation and around

    CERN Document Server

    Appell, Jürgen; Merentes Díaz, Nelson José

    2013-01-01

    This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.

  7. Born Level Bound States

    Science.gov (United States)

    Hoyer, Paul

    2017-05-01

    Bound state poles in the S-matrix of perturbative QED are generated by the divergence of the expansion in α . The perturbative corrections are necessarily singular when expanding around free, {O}( α ^0 ) in and out states that have no overlap with finite-sized atomic wave functions. Nevertheless, measurables such as binding energies do have well-behaved expansions in powers of α (and log α ). It is desirable to formulate the concept of "lowest order" for gauge theory bound states such that higher order corrections vanish in the α → 0 limit. This may allow to determine a lowest order term for QCD hadrons which incorporates essential features such as confinement and chiral symmetry breaking, and thus can serve as the starting point of a useful perturbative expansion. I discuss a "Born" (no loop, lowest order in \\hbar ) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. Gauss' law determines a distinct field A^0({\\varvec{x}}) for each instantaneous position of the charges. A Poincaré covariant boundary condition for the gluon field leads to a confining potential for q\\bar{q} and qqq states. In frames where the bound state is in motion the classical gauge field is obtained by a Lorentz boost of the rest frame field.

  8. Numerical investigation of MHD flow of blood and heat transfer in a stenosed arterial segment

    Energy Technology Data Exchange (ETDEWEB)

    Majee, Sreeparna; Shit, G.C., E-mail: gcs@math.jdvu.ac.in

    2017-02-15

    A numerical investigation of unsteady flow of blood and heat transfer has been performed with an aim to provide better understanding of blood flow through arteries under stenotic condition. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. The heat transfer characteristic has been analyzed by taking into consideration of the dissipation of energy due to applied magnetic field and the viscosity of blood. The vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman–Rachford Alternating Direction Implicit (ADI) scheme. The quantitative profile analysis of velocity, temperature and wall shear stress as well as Nusselt number is carried out over the entire arterial segment. The streamline and temperature contours have been plotted to understand the flow pattern in the diseased artery, which alters significantly in the downstream of the stenosis in the presence of magnetic field. Both the wall shear stress and Nusselt number increases with increasing magnetic field strength. However, wall shear stress decreases and Nusselt number enhances with Reynolds number. The results show that with an increase in the magnetic field strength upto 8 T, does not causes any damage to the arterial wall, but the study is significant for assessing temperature rise during hyperthermic treatment. - Highlights: • Fully numerical simulation is carried out for MHD blood flow in stenosed artery. • Dissipation of energy due to both magnetic field and blood viscosity is considered. • Strong Vortices are observed at the downstream of the stenosis in the arterial wall. • Flow reversal of blood is reduced by applying sufficient magnetic field strength. • Isothermal lines are strongly distorted in the presence of magnetic field strength.

  9. Feasibility and limitations of oxcarbazepine monitoring using salivary monohydroxycarbamazepine (MHD).

    Science.gov (United States)

    Miles, Michael V; Tang, Peter H; Ryan, Melody A; Grim, Shellee A; Fakhoury, Toufic A; Strawsburg, Richard H; DeGrauw, Ton J; Baumann, Robert J

    2004-06-01

    The purpose of this study is to determine the feasibility of using 10-hydroxy-10,11-dihydrocarbazepine (MHD) concentration in saliva as an alternative to serum for the therapeutic monitoring of oxcarbazepine (OXC) treatment. Investigators identified subjects seen in neurology clinics at the University of Kentucky Chandler Medical Center. Patients were eligible if they agreed to participate in this study, were taking oxcarbazepine, and if a serum MHD concentration had been ordered by their physician. Unstimulated saliva specimens (0.25 mL minimum) were collected in the clinic and frozen until analysis. Blood samples were obtained by phlebotomy. Serum specimens were analyzed by a reference laboratory. Saliva MHD concentrations were determined by high-performance liquid chromatography in the Clinical Laboratory at the Cincinnati Children's Hospital Medical Center. Linear regression analysis was used to evaluate correlations. Saliva and blood specimens were collected from 28 epilepsy patients, but usable samples were obtained from only 23. The mean serum MHD concentration was 23.9 +/- 10.0 microg/mL, and the mean saliva concentration was 23.1 +/- 10.1 microg/mL. There was a significant positive correlation between the serum and saliva concentrations: saliva (y) = 0.95 serum (x) + 0.39; r = 0.941; n = 23; P MHD concentration ratio was 0.96 +/- 0.15. The results of the current study indicate that the relationship between freely flowing (unstimulated) saliva and serum concentrations of MHD is sufficient for therapeutic drug monitoring. A limitation of saliva MHD monitoring is that individuals who have difficulty producing small quantities of saliva or who have viscous saliva should generally be avoided for this type of monitoring. It is also recommended to avoid saliva collection within 8 hours after OXC dosing to allow complete absorption and transformation of the parent drug.

  10. MHD Gauge Fields: Helicities and Casimirs

    Science.gov (United States)

    Hu, Q.; Webb, G. M.; Zank, G. P.; Anco, S.

    2016-12-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector P in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction B, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of Bis zero), is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether's theorem, and gauge symmetries are used to derive the conservation laws for (a) magnetic helicity (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations, which applies to Faraday's equation and Gauss's equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for a non-barotropic gas. The cross helicity and fluid helicity conservation are nonlocal conservation laws, that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982) satisfy the Casimir equations.

  11. Symmetry-preserving regularization of wall-bounded turbulent flows

    NARCIS (Netherlands)

    Trias, F.X.; Gorobets, A.; Verstappen, R.W.C.P.; Oliva, A.

    2011-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective

  12. A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Jawad; Shahzad, Azeem [Department of Basic Sciences, University of Engineering and Technology, Taxila 47050 (Pakistan); Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Ali, Ramzan, E-mail: alian.qau@gmail.com [Department of Applied Mathematics, TU-Dortmund (Germany); University of Central Asia, 720001 Bishkek (Kyrgyzstan)

    2015-11-15

    This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.

  13. Preliminary Study of Ideal Operational MHD Beta Limit in HL-2A Tokamak Plasmas

    Science.gov (United States)

    Shen, Yong; Dong, Jiaqi; He, Hongda; D. Turnbull, A.

    2009-04-01

    Magnetohydrodynamic (MHD) n = 1 kink mode with n the toroidal mode number is studied and the operational beta limit, constrained by the mode, is calculated for the equilibrium of HL-2A by using the GATO code. Approximately the same beta limit is obtained for configurations with a value of the axial safety factor q0 both larger and less than 1. Without the stabilization of the conducting wall, the beta limit is found to be 0.821% corresponding to a normalized beta value of βcN = 2.56 for a typical HL-2A discharge with a plasma current Ip = 0.245 MA, and the scaling of βcN ~constant is confirmed.

  14. A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet

    Directory of Open Access Journals (Sweden)

    Jawad Ahmed

    2015-11-01

    Full Text Available This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST and prescribed heat flux (PHF. Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.

  15. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Directory of Open Access Journals (Sweden)

    Aaiza Gul

    Full Text Available This study investigated heat transfer in magnetohydrodynamic (MHD mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4 was selected as a conventional base fluid. In addition, non-magnetic (Al2O3 aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  16. Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.

    Science.gov (United States)

    Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad

    2015-01-01

    This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.

  17. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    Science.gov (United States)

    Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi

    2010-08-01

    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.

  18. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  19. Azimuthal MHD stirring of metal in vessels with cross-sections of different configuration

    Science.gov (United States)

    Siraev, R. R.; Khripchenko, S. Yu

    2017-11-01

    Continuous casting of cylindrical ingots from aluminum and preparation of aluminum-based alloys and composites require intensive mixing of liquid metal phase in the crystallization area of the melt. It is evident that the topology of the flow in the liquid phase of an ingot should influence the processes occurring during crystallization. Contemporary continuous casting machines use MHD-stirrers that generate an azimuthal motion in a crystallizer with a warm top of circular cross-section in the presence of rotating magnetic field. The flow of metal in the liquid phase of an ingot is similar to its rotation in a solid state, and transport processes are most intensively carried out in the near near-wall region and near the ingot solidification front, where shear flows are essential. In this work, we consider the possibility of amplifying transport processes in the entire volume of a stirred metal by making the cross-section shape of the warm top of the crystallizer different from a circle. It has been found numerically that the total energy of the flow in a crucible of square cross-section is twice as lower as that in a crucible with circular cross-section at the same inductor current. Turbulent pulsations in the square crucible, as well as in the circular one, are concentrated mainly in the near-wall region. The energy of pulsations in the square crucible also reduces, but the time of stirring of the passive impurity introduced into the volume of the metal is less than in the circular crucible. The effect of MHD stirring on the vertical temperature distribution on the square crucible is higher than in the “round crucible”.

  20. Dynamo action in dissipative, forced, rotating MHD turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, John V. [Astromaterials Research Office, NASA Johnson Space Center, Houston, Texas 77058-3696 (United States)

    2016-06-15

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 64{sup 3} grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  1. A MHD channel study for the ETF conceptual design

    Science.gov (United States)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  2. MHD Flow Control and Power Generation in Low-Temperature Supersonic Flows

    National Research Council Canada - National Science Library

    Gogineni, Sivaram P; Adamovich, Igor V

    2006-01-01

    .... MHD effect on the flow is detected from flow static-pressure measurements. The observed static-pressure change is due to the MHD interaction and not Joule heating of the flow in the crossed discharge...

  3. Tokamak operation with safety factor q95 MHD stability.

    Science.gov (United States)

    Piovesan, P; Hanson, J M; Martin, P; Navratil, G A; Turco, F; Bialek, J; Ferraro, N M; La Haye, R J; Lanctot, M J; Okabayashi, M; Paz-Soldan, C; Strait, E J; Turnbull, A D; Zanca, P; Baruzzo, M; Bolzonella, T; Hyatt, A W; Jackson, G L; Marrelli, L; Piron, L; Shiraki, D

    2014-07-25

    Magnetic feedback control of the resistive-wall mode has enabled the DIII-D tokamak to access stable operation at safety factor q(95) = 1.9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at a given toroidal magnetic field. In tokamaks with a divertor, the limit occurs at q(95) = 2, as confirmed in DIII-D. Since the energy confinement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a whole new high-current regime not accessible before. This result brings significant possible benefits in terms of fusion performance, but it also extends resistive-wall mode physics and its control to conditions never explored before. In present experiments, the q(95) < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.

  4. Bound Exciton Complexes

    Science.gov (United States)

    Meyer, B. K.

    In the preceding chapter, we concentrated on the properties of free excitons. These free excitons may move through the sample and hit a trap, a nonradiative or a radiative recombination center. At low temperatures, the latter case gives rise to either deep center luminescence, mentioned in Sect. 7.1 and discussed in detail in Chap. 9, or to the luminescence of bound exciton complexes (BE or BEC). The chapter continues with the most prominent of these BECs, namely A-excitons bound to neutral donors. The next aspects are the more weakly BEs at ionized donors. The Sect. 7.4 treats the binding or localization energies of BEC from a theoretical point of view, while Sect. 7.5 is dedicated to excited states of BECs, which contain either holes from deeper valence bands or an envelope function with higher quantum numbers. The last section is devoted to donor-acceptor pair transitions. There is no section devoted specifically to excitons bound to neutral acceptors, because this topic is still partly controversially discussed. Instead, information on these A0X complexes is scattered over the whole chapter, however, with some special emphasis seen in Sects. 7.1, 7.4, and 7.5.

  5. Interstellar MHD Turbulence and Star Formation

    Science.gov (United States)

    Vázquez-Semadeni, Enrique

    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses

  6. Lattice Boltzmann Large Eddy Simulation Model of MHD

    CERN Document Server

    Flint, Christopher

    2016-01-01

    The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...

  7. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S

    2010-01-01

    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  8. MHD conversion of solar energy. [space electric power system

    Science.gov (United States)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  9. Oxygen-enriched air for MHD power plants

    Science.gov (United States)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  10. Ambipolar diffusion in low-mass star formation. I. General comparison with the ideal MHD case

    DEFF Research Database (Denmark)

    Masson, Jacques; Chabrier, Gilles; Hennebelle, Patrick

    2015-01-01

    braking processes, allowing the formation of disk structures. Magnetically supported outflows launched in ideal MHD models are weakened when using non-ideal MHD. Contrary to ideal MHD misalignment between the initial rotation axis and the magnetic field direction does not significantly affect the results...

  11. Wall Art

    Science.gov (United States)

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  12. A kinetic-MHD model for low frequency phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter {tau} and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented.

  13. Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow

    CERN Document Server

    Dimitrov, Z D; Hristov, T S; Mishonov, T M

    2011-01-01

    We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.

  14. MHD equilibrium of toroidal fusion plasma with stationary flows; Rownowaga MHD toroidalnej plazmy termojadrowej z przeplywami

    Energy Technology Data Exchange (ETDEWEB)

    Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.

  15. MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!

    Science.gov (United States)

    Goedbloed, J. P.

    2018-01-01

    The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not

  16. Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer

    Directory of Open Access Journals (Sweden)

    Kalidas Das

    2015-12-01

    Full Text Available The present paper investigates numerically the influence of melting heat transfer and thermal radiation on MHD stagnation point flow of an electrically conducting non-Newtonian fluid (Jeffrey fluid over a stretching sheet with partial surface slip. The governing equations are reduced to non-linear ordinary differential equations by using a similarity transformation and then solved numerically by using Runge–Kutta–Fehlberg method. The effects of pertinent parameters on the flow and heat transfer fields are presented through tables and graphs, and are discussed from the physical point of view. Our analysis revealed that the fluid temperature is higher in case of Jeffrey fluid than that in the case of Newtonian fluid. It is also observed that the wall stress increases with increasing the values of slip parameter but the effect is opposite for the rate of heat transfer at the wall.

  17. Dromions bound states

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio

    2003-03-01

    The asymptotic perturbation (AP) method is applied to the study of the nonlinear Klein-Gordon equation in 3+1 dimensions with harmonic potential and external periodic excitation supposed to be in primary resonance with the frequency of a generic mode. The AP method uses two different procedures for the solutions: introducing an asymptotic temporal rescaling and balancing of the harmonic terms with a simple iteration. Standard quantum mechanics can be used to derive the lowest order approximate solution and amplitude and phase modulation equations are obtained. External force-response and frequency-response curves are found and the existence of dromions trapped in bound states is demonstrated.

  18. Joint U. S. --U. S. S. R. test of U. S. MHD electrode systems in U. S. S. R. U-02 MHD facility (phase I). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hosler, W R [ed.

    1976-01-01

    The first (Phase I) joint U.S.-U.S.S.R. test of U.S. electrode materials was carried out in Moscow between September 25 and October 8, 1975 in the Soviet U-02 MHD facility. The test procedure followed closely a predetermined work plan designed to test five different zirconia based materials and the cathode and anode electrode wall modules under MHD operating conditions. The materials which were selected were 88Zr0/sub 2/-12Y/sub 2/0/sub 3/, 82Zr0/sub 2/-18Ce02, 50Zr0/sub 2/-50Ce0/sub 2/, 25Zr0/sub 2/-75Ce0/sub 2/ and 20Zr0/sub 2/-78Ce0/sub 2/-2Ta/sub 2/0/sub 5/. The electrode modules were constructed by Westinghouse Research and Development Laboratory. Each of the five electrode materials had four different current densities established between the anode and cathode during the experiment which lasted a total of 127 hours. There were four main phases in the test schedule: (1) start-up of the channel over a specific heating period. No seed (K/sub 2/C0/sub 3/) introduction - 18 hours. (2) Electrical tests at operating temperature to investigate electro-physical characteristics of the channel and electrodes - 6 hours. (3) Operating life test - 94 hours. (4) Shut-down of the channel over a specific cool down period - 9 hours. All except six electrode pairs performed satisfactorily during the entire test. These were the pairs which were designated to carry maximum or near maximum current density. Five pairs failed early in the life test and the sixth pair failed in the last several hours. Failure was not due to the electrode materials, however, but due to lead-out melting caused by joule heating in the platinum wires. The U-02 facility is described and the operational parameters are given for each phase of the test. The electrode and insulating walls are described and the appropriate parameters that are used to predict the performance of the module are given.

  19. Wall Layers

    Science.gov (United States)

    1992-01-14

    Sydney, Australia. December 6, 1990. Lumley, J. L. A dynamical-systems-theory approach to the wall region. Environmental Engineering Laboratory, CSIRO...Nonlinear Science. Holmes, P. Editor in Chief, Nonlinear Scinece Today. Holmes, P. Reviewer for Physica D, J. Sound Vib., J. Phys., Q. Appl. Math, Phys...Spring, 1994; Organizing committee member. Holmes, P. Editorial Board Member: Archive for Rational Mechanics and Analysis; Journal of Nonlinear Scinece

  20. CLIMBING WALL

    CERN Multimedia

    1999-01-01

    The FIRE AND RESCUE Group of TIS Commission informs that the climbing wall in the yard of the Fire-fighters Station, is intended for the sole use of the members of that service, and recalls that access to this installation is forbidden for safety reasons to all persons not belonging to the Service.CERN accepts no liability for damage or injury suffered as a result of failure to comply with this interdiction.TIS/DI

  1. Predesign of an experimental (5-10 MWt) disk MHD facility and prospects of commercial (1000 MWt) MHD/steam systems

    Science.gov (United States)

    Massee, P.; Degraaf, H. A. L.; Balemans, W. J. M.; Knoopers, H. G.; Tenkate, H. H. J.

    1990-10-01

    An experimental disk MHD (Magneto Hydro Dynamic) facility was designed. After designing the superconducting magnet for the open cycle disk MHD generator, the warm bore of the magnet was used as a constraint in designing the closed cycle disk MHD generator. In the experimental MHD facility an enthalpy extraction of 8.7 could be obtained with a 10 MWt open cycle MHD generator and 37.0 by means of a 5 MWt closed cycle MHD generator. System studies of four commercial scale MHD/steam systems were performed. The 1000 MWt open cycle disk generator leads to the smallest coal to busbar efficiency of 42.8. The highest coal to busbar efficiency of 50.0 is obtained in a commercial system with a closed cycle disk generator. The open cycle linear MHD/steam system leads to a coal to busbar efficiency of 49.4. When the details of the heat source and the required heat exchangers are considered, it can be anticipated that the system with an open cycle linear MHD generator will have the lowest cost of electricity (fl/kWh) of the four systems. The design of the superconducting magnet system for the experimental disk facility used principles that are valid also for large commercial systems. However, verification of these principles in an actual 1000 MWt superconducting magnet design needs further investigation.

  2. Self-organized criticality in MHD driven plasma edge turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Santos Lima, G.Z. dos, E-mail: gzampier@ect.ufrn.br [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59014-615, Natal, RN (Brazil); Iarosz, K.C.; Batista, A.M. [Programa de Pós-Graduação em Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05508-090, SP (Brazil); Guimarães-Filho, Z.O. [IIFS/PIIM, Université de Provence (France); Viana, R.L.; Lopes, S.R. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Nascimento, I.C.; Kuznetsov, Yu.K. [Instituto de Física, Universidade de São Paulo, 05508-090, SP (Brazil)

    2012-01-16

    We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfvén Brésillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high MHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation. -- Highlights: ► We analyze time correlations of the electrostatic turbulence in plasma. ► We study self-similar characteristics with low and high magnetohydrodynamics activity. ► We find evidence of self-organized criticality (SOC) behavior. ► SOC behavior is pronounced close to radial positions just after the limiter. ► We present a cellular automata that simulate the analyzed turbulence.

  3. 3D MHD Models of Active Region Loops

    Science.gov (United States)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  4. ALEGRA-MHD Simulations for Magnetization of an Ellipsoidal Inclusion

    Science.gov (United States)

    2017-08-01

    electromagnetic phenomena including magnetohydrodynamics (MHD). This multiphysics capability is a key feature of ALEGRA and the result of many years of...and are the electric and magnetic field and magnetic induction, respectively; is the electric current density of...free charges, is the speed of light in vacuum, and is electrical conductivity. In the boundary conditions, and are

  5. MHD--Developing New Technology to Meet the Energy Crisis

    Science.gov (United States)

    Fitch, Sandra S.

    1978-01-01

    Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)

  6. Generalized similarity method in unsteady two-dimensional MHD ...

    African Journals Online (AJOL)

    Introduced assumptions simplify considered problem in sake of mathematical solving, but adopted physical model is interesting from practical point of view, because its relation with large number of technically significant MHD flows. Obtained partial differential equations can be solved with modern numerical methods for ...

  7. Heat transfer with thermal radiation on MHD particle–fluid ...

    Indian Academy of Sciences (India)

    2017-09-12

    Sep 12, 2017 ... In this article, effects of heat transfer on particle–fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for ...

  8. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    Indian Academy of Sciences (India)

    In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling ...

  9. Nonadiabatic interaction between a charged particle and an MHD pulse

    Directory of Open Access Journals (Sweden)

    Y. Kuramitsu

    2008-03-01

    Full Text Available Interaction between a magnetohydrodynamic~(MHD pulse and a charged particle is discussed both numerically and theoretically. Charged particles can be accelerated efficiently in the presence of spatially correlated MHD waves, such as short large amplitude magnetic structures, by successive mirror reflection (Fermi process. In order to understand this process, we study the reflection probability of particles by the MHD pulses, focusing on the adiabaticity on the particle motion. When the particle velocity is small (adiabatic regime, the probability that the particle is reflected by the MHD pulse is essentially determined only by the pitch angle, independent from the velocity. On the other hand, in the non-adiabatic regime, the reflection probability is inversely proportional to the square root of the normalized velocity. We discuss our numerical as well as analytical results of the interaction process with various pulse amplitude, pulse shape, and the pulse winding number. The reflection probability is universally represented as a power law function independent from above pulse properties.

  10. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...

  11. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    An attempt has been made to study the unsteady MHD free convective flow past a vertical porous plate immersed in a porous medium with Hall current, thermal diffusion and heat source. Analytical solution has been found depending on the physical parameters including the Hartmann number M, the Prandtl number Pr, the ...

  12. Effect of chemical reaction on unsteady MHD free convective two ...

    African Journals Online (AJOL)

    The effect of chemical reaction on unsteady MHD free convective two immiscible fluids flow has been studied. Approximate analytical solutions to the governing equations are found for the coupled and linear differential equations using regular perturbation method. Graphs depicting the effect of chemical reaction parameter ...

  13. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and ...

  14. Unsteady MHD free convective flow past a vertical porous plate ...

    African Journals Online (AJOL)

    user

    been seen in MHD power generators, astrophysical and meteorological studies as well as in plasma physics. The Hall effect is due merely to ...... -3. Kg/ m ] fluid density in the boundary layer υ [ 2 -1. m s ] kinematic viscosity σ [ -1. -1. Ω m ] electrical conductivity θ [-] dimensionless temperature φ [. -3. Wm ] frictional heat. Ω [-].

  15. Numerical Calculation of the Output Power of a MHD Generator

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-12-01

    Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.

  16. Generalized similarity method in unsteady two-dimensional MHD ...

    African Journals Online (AJOL)

    user

    this research was stimulated by two problems: protection of spacecrafts from aerodynamic overheating and destruction during the passage through dense atmosphere layers; building the operational ability of high temperature MHD generators constructive elements for direct transformation of heat energy in to electricity.

  17. Validation of MHD Models using MST RFP Plasmas

    Science.gov (United States)

    Jacobson, C. M.; Chapman, B. E.; den Hartog, D. J.; McCollam, K. J.; Sarff, J. S.; Sovinec, C. R.

    2017-10-01

    Rigorous validation of computational models used in fusion energy sciences over a large parameter space and across multiple magnetic configurations can increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation with plasma current ranging from 60 kA to 500 kA. The resulting Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), ranges from 4 ×104 to 8 ×106 for standard RFP plasmas and provides substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 105 for single-fluid runs, and the magnetic Prandtl number Pm = 1 . Validation metric comparisons are presented, focusing on how normalized magnetic fluctuations at the edge b scale with S. Preliminary results for the dominant n = 6 mode are b S - 0 . 20 +/- 0 . 02 for single-fluid NIMROD, b S - 0 . 25 +/- 0 . 05 for DEBS, and b S - 0 . 20 +/- 0 . 02 for experimental measurements, however there is a significant discrepancy in mode amplitudes. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  18. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  19. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  20. Combined effects of radiation and chemical reaction on MHD flow ...

    African Journals Online (AJOL)

    Dr Uday Singh Rajput is a faculty member in the department of mathematics and astronomy, Lucknow University, India. He has more than 25 years of teaching experience at UG and PG levels and also guided students for PhD degree. He has published more than 70 research articles. His research areas include MHD flows, ...

  1. Unsteady MHD flow in porous media past over exponentially ...

    African Journals Online (AJOL)

    published more than 60 research articles. His research areas include MHD flows, Graph Theory and Operations Research. . Gaurav Kumar is research student in the department of mathematics and astronomy, Lucknow University, India. Received April 2016. Accepted May 2016. Final acceptance in revised form May 2016.

  2. Unsteady MHD flow in porous media past over exponentially ...

    African Journals Online (AJOL)

    ... mass transfer along with Hall current. We have used Laplace-transform technique to find the solution of the equations in the flow model. The results obtained are discussed with the help of graphs. The drag force at the boundary has been tabulated. Keywords: MHD, unsteady flow, inclined plate, Hall current, skin friction ...

  3. System studies of coal fired-closed cycle MHD for central station power plants

    Science.gov (United States)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  4. Refining Multivariate Value Set Bounds

    Science.gov (United States)

    Smith, Luke Alexander

    Over finite fields, if the image of a polynomial map is not the entire field, then its cardinality can be bounded above by a significantly smaller value. Earlier results bound the cardinality of the value set using the degree of the polynomial, but more recent results make use of the powers of all monomials. In this paper, we explore the geometric properties of the Newton polytope and show how they allow for tighter upper bounds on the cardinality of the multivariate value set. We then explore a method which allows for even stronger upper bounds, regardless of whether one uses the multivariate degree or the Newton polytope to bound the value set. Effectively, this provides an alternate proof of Kosters' degree bound, an improved Newton polytope-based bound, and an improvement of a degree matrix-based result given by Zan and Cao.

  5. Adding Drift Kinetics to a Global MHD Code

    Science.gov (United States)

    Lyon, J.; Merkin, V. G.; Zhang, B.; Ouellette, J.

    2015-12-01

    Global MHD models have generally been successful in describing thebehavior of the magnetosphere at large and meso-scales. An exceptionis the inner magnetosphere where energy dependent particle drifts areessential in the dynamics and evolution of the ring current. Even inthe tail particle drifts are a significant perturbation on the MHDbehavior of the plasma. The most common drift addition to MHD has beeninclusion of the Hall term in Faraday's Law. There have been attemptsin the space physics context to include gradient and curvature driftswithin a single fluid MHD picture. These have not been terriblysuccessful because the use of a single, Maxwellian distribution doesnot capture the energy dependent nature of the drifts. The advent ofmulti-fluid MHD codes leads to a reconsideration of this problem. TheVlasov equation can be used to define individual ``species'' whichcover a specific energy range. Each fluid can then be treated ashaving a separate evolution. We take the approach of the RiceConvection Model (RCM) that each energy channel can be described by adistribution that is essentially isotropic in the guiding centerpicture. In the local picture, this gives rise to drifts that can bedescribed in terms of the energy dependent inertial and diamagneticdrifts. By extending the MHD equations with these drifts we can get asystem which reduces to the RCM approach in the slow-flow innermagnetosphere but is not restricted to cases where the flow speed issmall. The restriction is that the equations can be expanded in theratio of the Larmor radius to the gradient scale lengths. At scalesapproaching di, the assumption of gyrotropic (or isotropic)distributions break down. In addition to the drifts, the formalism canalso be used to include finite Larmor radius effects on the pressuretensor (gyro-viscosity). We present some initial calculations with this method.

  6. Dimensionality, secondary flows and helicity in low-Rm MHD vortices

    CERN Document Server

    Baker, Nathaniel T; Davoust, Laurent

    2015-01-01

    In this paper, we examine the dimensionality of a single electrically driven vortex bounded by two no-slip and perfectly insulating horizontal walls distant by $h$. The study was performed in the weakly inertial limit by means of an asymptotic expansion, which is valid for any Hartmann number. We show that the dimensionality of the leading order can be fully described using the single parameter $l_z^\

  7. MHD and current profile control studies of reversed shear tokamak configurations

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.J.; Bonoli, P.T.; Porkolab, M. [M.I.T. Plasma Fusion Center, Cambridge, MA (United States)

    1996-12-31

    Given the observed enhancement of energy and particle confinement, and the possibility of achieving high betas and high bootstrap current fractions, reversed magnetic shear equilibria have become the leading concept in advanced tokamak scenarios. The performance limits for these configurations are most likely to be set by MHD stability constraints. The other essential issue for this advanced tokamak concept is the non-inductive, steady state sustainment of the current profile. These two topics are covered in the present work. We concentrate on equilibria with minimum value of q greater than 2 so as to avoid double-tearing mode problems and to have global access to the n={infinity} ballooning second stability region. Then the MHD limit is set by the n=1 (pressure-current driven) external mode. The critical parameters for the onset of the n=1 instability in terms of the plasma beta and current are obtained for several classes of equilibria, allowing for a systematic study of geometrical shaping and profile effects. It is shown that triangular shapes and broad profiles yield optimal results. The realistic sustainment of the reversed shear current profiles is investigated by generating equilibria with the ACCOME code. This simulation model combines a free boundary solution of the Grad-Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid waves, ICRF fast waves and bootstrap effects. Such equilibrium code is coupled to the JSOLVER and PEST-II codes in order to perform the stability analysis. Specific simulations for the ALCATOR C-mod and ITER tokamaks are provided. Optimal parameters for completely stable equilibria without conducting walls thus obtained reach {beta}{sub N}=3.7, {beta}=3.7%, {beta}*=5.0% and bootstrap fraction in excess of 75%.

  8. Development and Application of Predictive Tools for MHD Stability Limits in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Dylan [Princeton Univ., NJ (United States); Miller, G. P. [Univ. of Tulsa, Tulsa, AZ (United States)

    2016-10-03

    This is a project to develop and apply analytic and computational tools to answer physics questions relevant to the onset of non-ideal magnetohydrodynamic (MHD) instabilities in toroidal magnetic confinement plasmas. The focused goal of the research is to develop predictive tools for these instabilities, including an inner layer solution algorithm, a resistive wall with control coils, and energetic particle effects. The production phase compares studies of instabilities in such systems using analytic techniques, PEST- III and NIMROD. Two important physics puzzles are targeted as guiding thrusts for the analyses. The first is to form an accurate description of the physics determining whether the resistive wall mode or a tearing mode will appear first as β is increased at low rotation and low error fields in DIII-D. The second is to understand the physical mechanism behind recent NIMROD results indicating strong damping and stabilization from energetic particle effects on linear resistive modes. The work seeks to develop a highly relevant predictive tool for ITER, advance the theoretical description of this physics in general, and analyze these instabilities in experiments such as ASDEX Upgrade, DIII-D, JET, JT-60U and NTSX. The awardee on this grant is the University of Tulsa. The research efforts are supervised principally by Dr. Brennan. Support is included for two graduate students, and a strong collaboration with Dr. John M. Finn of LANL. The work includes several ongoing collaborations with General Atomics, PPPL, and the NIMROD team, among others.

  9. MHD control experiments in the Extrap T2R Reversed Field Pinch

    Science.gov (United States)

    Marrelli, L.; Bolzonella, T.; Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Gregoratto, D.; Manduchi, G.; Martin, P.; Ortolani, S.; Paccagnella, R.; Piovesan, P.; Spizzo, G.; Yadikin, D.; Zanca, P.

    2004-11-01

    We report here on MHD active control experiments performed in the Extrap T2R device, which has been recently equipped with a set of 32 feedback controlled saddle coils couples. Experiments aiming at selectively exciting a resonant resistive instability in order to actively induce Quasi Single Helicity states will be presented. Open loop experiments have in fact shown that a spectrum with one dominant mode can be excited in a high aspect ratio device like T2R. In addition, evidences of controlled braking of tearing modes, which spontaneously rotate in T2R, have been gathered, allowing the determination of a threshold for mode wall locking. Different feedback control schemes have been implemented. In particular, mode suppression schemes proved successful in delaying resistive wall modes growth and in increasing the discharge duration: this suggests a hybrid mode control scenario, in which RWM are suppressed and QSH is induced. Radiation imaging and internal magnetic field reconstructions performed with the ORBIT code will be presented.

  10. Bounding approaches to system identification

    CERN Document Server

    Norton, John; Piet-Lahanier, Hélène; Walter, Éric

    1996-01-01

    In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.

  11. with Bounded Failure Intensity

    Directory of Open Access Journals (Sweden)

    Preeti Wanti Srivastava

    2011-01-01

    Full Text Available This paper deals with the Bayes prediction of the future failures of a deteriorating repairable mechanical system subject to minimal repairs and periodic overhauls. To model the effect of overhauls on the reliability of the system a proportional age reduction model is assumed and the 2-parameter Engelhardt-Bain process (2-EBP is used to model the failure process between two successive overhauls. 2-EBP has an advantage over Power Law Process (PLP models. It is found that the failure intensity of deteriorating repairable systems attains a finite bound when repeated minimal repair actions are combined with some overhauls. If such a data is analyzed through models with unbounded increasing failure intensity, such as the PLP, then pessimistic estimates of the system reliability will arise and incorrect preventive maintenance policy may be defined. On the basis of the observed data and of a number of suitable prior densities reflecting varied degrees of belief on the failure/repair process and effectiveness of overhauls, the prediction of the future failure times and the number of failures in a future time interval is found. Finally, a numerical application is used to illustrate the advantages from overhauls and sensitivity analysis of the improvement parameter carried out.

  12. ExtremeBounds: Extreme Bounds Analysis in R

    Directory of Open Access Journals (Sweden)

    Marek Hlavac

    2016-08-01

    Full Text Available This article introduces the R package ExtremeBounds to perform extreme bounds analysis (EBA, a sensitivity test that examines how robustly the dependent variable of a regression model is related to a variety of possible determinants. ExtremeBounds supports Leamer's EBA that focuses on the upper and lower extreme bounds of regression coefficients, as well as Sala-i-Martin's EBA which considers their entire distribution. In contrast to existing alternatives, it can estimate models of a variety of user-defined sizes, use regression models other than ordinary least squares, incorporate non-linearities in the model specification, and apply custom weights and standard errors. To alleviate concerns about the multicollinearity and conceptual overlap of examined variables, ExtremeBounds allows users to specify sets of mutually exclusive variables, and can restrict the analysis to coefficients from regression models that yield a variance inflation factor within a prespecified limit.

  13. Strong MHD-intraction in hypersonic flows near bodies

    Science.gov (United States)

    Fomichev, Vladislav; Yadrenkin, Mikhail

    2017-10-01

    The results of experimental studies of local MHD interaction near bodies of various configurations are presented in the case when the work of the volumetric electromagnetic force leads to the deceleration of the hypersonic air flow, to the fixation of the ionization region in the flow, to the change of pressure in the interaction zone and to the appearance of a bow shock wave in front of the interaction zone. Shown, that at strong MHD-interaction the shape of the model slightly influences the final result of the change in the flow pattern, since the size of the interaction region becomes comparable, and in some cases larger than the size of the streamlined body.

  14. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Cheng; N.N. Gorelenkov; G.J. Kramer; E. Fredrickson

    2004-09-03

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions.

  15. Divergence-free MHD Simulations with the HERACLES Code

    Directory of Open Access Journals (Sweden)

    Vides J.

    2013-12-01

    Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.

  16. Bounds for Asian basket options

    Science.gov (United States)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle

    2008-09-01

    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  17. Flow of MHD Carreau Fluid in a Curved Channel

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    2013-01-01

    Full Text Available Analysis has been made for the curvature effects on the MHD peristaltic flow of an incompressible Carreau fluid in a channel. The flow problem is first reduced in the wave frame of reference and then solved after employing the long wavelength and low Reynolds number approximations. Expressions of stream function, pressure gradient, magnetic force function, induced magnetic field and current density are derived and then examined for various parameters of interest.

  18. Solar-Driven Liquid-Metal MHD Generator

    Science.gov (United States)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  19. MHD Stability of Polar Caps of Accreting Neutron Stars

    Science.gov (United States)

    Litwin, C.; Brown, E. F.; Rosner, R.

    2000-12-01

    We assess the stability of magnetic Rayleigh-Taylor type modes driven by the overpressure of magnetically confined accreted matter on the surface of a neutron star. We employ the magnetohydrodynamic (MHD) energy principle to analyze the stability of short-wavelength (ballooning) modes subject to line-tying in the neutron star crust. Research supported by ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago.

  20. MHD generator with improved network coupling electrodes to a load

    Science.gov (United States)

    Rosa, Richard J.

    1977-01-01

    An MHD generator has a plurality of segmented electrodes extending longitudinally of a duct, whereby progressively increasing high DC voltages are derived from a set of cathode electrodes and progressively increasing low DC voltages are derived from a set of anode electrodes. First and second load terminals are respectively connected to the cathode and anode electrodes by separate coupling networks, each of which includes a number of SCR's and a number of diode rectifiers.

  1. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  2. Intermittency in MHD turbulence and coronal nanoflares modelling

    Directory of Open Access Journals (Sweden)

    P. Veltri

    2005-01-01

    Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.

  3. MHD seed recovery and regeneration, Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This final report summarizes the work performed by the Space and Technology Division of the TRW Space and Electronics Group for the U.S. Department of Energy, Pittsburgh Energy Technology Center for the Econoseed process. This process involves the economical recovery and regeneration of potassium seed used in the MHD channel. The contract period of performance extended from 1987 through 1994 and was divided into two phases. The Phase II test results are the subject of this Final Report. However, the Phase I test results are presented in summary form in Section 2.3 of this Final Report. The Econoseed process involves the treatment of the potassium sulfate in spent MHD seed with an aqueous calcium formate solution in a continuously stirred reactor system to solubilize, as potassium formate, the potassium content of the seed and to precipitate and recover the sulfate as calcium sulfate. The slurry product from this reaction is centrifuged to separate the calcium sulfate and insoluble seed constituents from the potassium formate solution. The dilute solids-free potassium formate solution is then concentrated in an evaporator. The concentrated potassium formate product is a liquid which can be recycled as a spray into the MHD channel. Calcium formate is the seed regenerant used in the Econoseed process. Since calcium formate is produced in the United States in relatively small quantities, a new route to the continuous production of large quantities of calcium formate needed to support an MHD power industry was investigated. This route involves the reaction of carbon monoxide gas with lime solids in an aqueous medium.

  4. MHD Advanced Power Train Phase I, Final Report, Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    A. R. Jones

    1985-08-01

    This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.

  5. MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available This research explores the magnetohydrodynamic (MHD boundary layer flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness. An electrically conducting fluid is considered under the characteristics of magnetic field applied transverse to the sheet. The mathematical expressions are accomplished via boundary layer access, Brownian motion and thermophoresis phenomena. The flow analysis is subjected to a recently established conditions requiring zero nanoparticles mass flux. Adequate transformations are implemented for the reduction of partial differential systems to the ordinary differential systems. Series solutions for the governing nonlinear flow of momentum, temperature and nanoparticles concentration have been executed. Physical interpretation of numerous parameters is assigned by graphical illustrations and tabular values. Moreover the numerical data of drag coefficient and local heat transfer rate are executed and discussed. It is investigated that higher wall thickness parameter results in the reduction of velocity distribution. Effects of thermophoresis parameter on temperature and concentration profiles are qualitatively similar. Both the temperature and concentration profiles are enhanced for higher values of thermophoresis parameter. Keywords: MHD, Variable thicked surface, Powell-Eyring nanofluid, Zero mass flux conditions

  6. Hadron-nucleus bound states

    CERN Document Server

    Yamazaki, T

    2000-01-01

    A new type of nuclear spectroscopy to study hadron-nucleus bound states is described. The first successful experiment was to search for deeply bound pi sup - states in heavy nuclei using the sup 2 sup 0 sup 8 Pb(d, sup 3 He) reaction at GSI, in which a narrow peak arising from the 2p pi sup - orbital coupled with the neutron-hole states was observed at 135 MeV excitation energy. An improved experiment has just been carried out to separately identify the 1s and 2p pi sup - states. These experiments provide important information on the local potential strength, from which the effective mass of pi sup - is deduced to be 20 MeV. This method will be extended to search for eta and omega bound states as well as for K sup - bound states. The advantage of the bound-state spectroscopy versus invariant mass spectroscopy is emphasized.

  7. Market Access through Bound Tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and long...

  8. Market access through bound tariffs

    DEFF Research Database (Denmark)

    Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal

    2010-01-01

    on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and longterm...

  9. MHD magnet technology development program summary, September 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  10. Spectral slope and Kolmogorov constant of MHD turbulence.

    Science.gov (United States)

    Beresnyak, A

    2011-02-18

    The spectral slope of strong MHD turbulence has recently been a matter of controversy. While the Goldreich-Sridhar model predicts a -5/3 slope, shallower slopes have been observed in numerics. We argue that earlier numerics were affected by driving due to a diffuse locality of energy transfer. Our highest-resolution simulation (3072(2)×1024) exhibited the asymptotic -5/3 scaling. We also discover that the dynamic alignment, proposed in models with -3/2 slope, saturates and cannot modify the asymptotic, high Reynolds number slope. From the observed -5/3 scaling we measure the Kolmogorov constant C(KA)=3.27±0.07 for Alfvénic turbulence and C(K)=4.2±0.2 for full MHD turbulence, which is higher than the hydrodynamic value of 1.64. This larger C(K) indicates inefficient energy transfer in MHD turbulence, which is in agreement with diffuse locality.

  11. Magnus: A New Resistive MHD Code with Heat Flow Terms

    Science.gov (United States)

    Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-07-01

    We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.

  12. Control of MHD instabilities in the STOR-M tokamak

    Science.gov (United States)

    Xiao, Chijin; Elgriw, Sayf; Hirose, Akira; STOR-M Team

    2011-10-01

    Experiments to control the MHD activities have been carried out through compact torus injection (CTI) and resonant helical coils (RHC) on the STOR-M tokamak. The MHD instabilities have been measured by Mirnov coil arrays and miniature soft X-ray (SXR) pin-hole cameras. The data have been analyzed by singular value decomposition algorithm and the spatial Fourier harmonic analysis. Injection of a high density compact torus into STOR-M induced a transient phase with reduced m = 2 Mirnov oscillation amplitude. After appearance of an m = 1 gong mode burst the m = 2 oscillation amplitude returned to its nominal level before CTI. In the RHC experiments, an m = 2 helical coil was wound outside the vacuum chamber and powered by a capacitor bank through an IGBT switch. A current pulse of a few milliseconds was applied to RHC during the plasma current plateau. Once the current amplitude reaches a threshold level, the m = 2 MHD oscillation level was significantly reduced. Addition of equilibrium poloidal magnetic field calculated by TOSCA code, an assumed magnetic island perturbation, and the vacuum magnetic field produced by RHC also showed that the island can be eliminated when the RHC current reached a certain level. NSERC and the Canada Research Chair Program

  13. The computation of resistive MHD instabilities in axisymmetric toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harley, T.R.; Cheng, C.Z.; Jardin, S.C.

    1991-03-01

    We describe the linear MHD eigenmode code NOVA-R, which calculates the resistive stability of axisymmetric toroidal equilibria. A formulation has been adopted which accurately resolves the continuum spectrum of the ideal MHD operator. The resistive MHD stability equations are transformed into three coupled second order equations, one of which recovers the equation solved by the NOVA code in the ideal limit. The eigenfunctions are represented by a Fourier expansion and cubic B-spline finite elements which are packed about the internal boundary layer. Accurate results are presented for dimensionless resistivities as low as 10{sup {minus}30} in cylindrical geometry. For axisymmetric toroidal plasmas we demonstrate the accuracy of the NOVA-R code by recovering ideal results in the {eta} {yields} 0 limit, and cylindrical resistive interchange results in the a/R {yields} limit. {Delta}{prime} analysis performed using the eigenfunctions computed by the NOVA-R code agree with the asymptotic matching results from the resistive PEST code for zero beta equilibria. 33 refs., 30 figs.

  14. Current Generation in Extragalactic Jets by MHD Waves

    Science.gov (United States)

    Jafelice, L. C.; Opher, R.; de Assis, A. S.; Busnardo-Neto, J.

    1990-11-01

    ABSTRACT: Several observations indicate that strong extragalactic jets (EJ) appear to need magnetically aided confinement in order for the total (kinetic plus magnetic) external pressure to balance the jet total internal pressure. On the other hand, the motion of highly ionized EJ in a magnetic field is, in general, expected to excite MHD waves on the borders of EJ by the Kelvin-Helmholtz instability. We study transit-titne magnetic damping of magnetosonic and surface waves in these essentially collisionless plasmas, and show that these low-frequency compressiveNHi) waves produce appreciable electric currents, I,which can be dynamically important. Using indicated values from observations of strong EJ, we obtain for 2= 2c % lO-10, where I is the current required for confining these jets and EIB /BoI c5 the MHD perturbation level, with B (Bo) being the MHD wave background) magnetic field. We suggest that c may be self-regulating, perturbations > Qchoking-off the jet, requiring to return to c The model has also the advantage of admitting a distributed generator which acts along the jet length and avoids problems of previous models requiring a current generator at the galactic nucleus to maintain a huge circuit with length % EJ length. : GALAXIES-JETS - HYDROHAGNETICS

  15. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    Science.gov (United States)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  16. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  17. A randomized controlled trial of long term effect of BCM guided fluid management in MHD patients (BOCOMO study): rationales and study design.

    Science.gov (United States)

    Liu, Li; Long, Gang; Ren, Jianwei; Li, Jijun; Xu, Jinsheng; Lei, Jinghong; Li, Mao; Qiu, Moyan; Yuan, Ping; Sun, Weiming; Lin, Shan; Liu, Wenjun; Sun, Yi; Ma, Yingchun; Mao, Yonghui; Shen, Yulan; Zuo, Li

    2012-09-25

    Bioimpedance analysis (BIA) has been reported as helpful in identifying hypervolemia. Observation data showed that hypervolemic maintenance hemodialysis (MHD) patients identified using BIA methods have higher mortality risk. However, it is not known if BIA-guided fluid management can improve MHD patients' survival. The objectives of the BOCOMO study are to evaluate the outcome of BIA guided fluid management compared with standard care. This is a multicenter, prospective, randomized, controlled trial. More than 1300 participants from 16 clinical sites will be included in the study. The enrolment period will last 6 months, and minimum length of follow-up will be 36 months. MHD patients aged between 18 years and 80 years who have been on MHD for at least 3 months and meet eligibility criteria will be invited to participate in the study. Participants will be randomized to BIA arm or control arm in a 1:1 ratio. A portable whole body bioimpedance spectroscopy device (BCM-Fresenius Medical Care D GmbH) will be used for BIA measurement at baseline for both arms of the study. In the BIA arm, additional BCM measurements will be performed every 2 months. The primary intent-to-treat analysis will compare outcomes for a composite endpoint of death, acute myocardial infarction, stroke or incident peripheral arterial occlusive disease between groups. Secondary endpoints will include left ventricular wall thickness, blood pressure, medications, and incidence and length of hospitalization. Previous results regarding the benefit of strict fluid control are conflicting due to small sample sizes and unstable dry weight estimating methods. To our knowledge this is the first large-scale, multicentre, prospective, randomized controlled trial to assess whether BIS-guided volume management improves outcomes of MHD patients. The endpoints of the BOCOMO study are of utmost importance to health care providers. In order to obtain that aim, the study was designed with very careful important

  18. A randomized controlled trial of long term effect of BCM guided fluid management in MHD patients (BOCOMO study: rationales and study design

    Directory of Open Access Journals (Sweden)

    Liu Li

    2012-09-01

    Full Text Available Abstract Background Bioimpedance analysis (BIA has been reported as helpful in identifying hypervolemia. Observation data showed that hypervolemic maintenance hemodialysis (MHD patients identified using BIA methods have higher mortality risk. However, it is not known if BIA-guided fluid management can improve MHD patients’ survival. The objectives of the BOCOMO study are to evaluate the outcome of BIA guided fluid management compared with standard care. Methods This is a multicenter, prospective, randomized, controlled trial. More than 1300 participants from 16 clinical sites will be included in the study. The enrolment period will last 6 months, and minimum length of follow-up will be 36 months. MHD patients aged between 18 years and 80 years who have been on MHD for at least 3 months and meet eligibility criteria will be invited to participate in the study. Participants will be randomized to BIA arm or control arm in a 1:1 ratio. A portable whole body bioimpedance spectroscopy device (BCM—Fresenius Medical Care D GmbH will be used for BIA measurement at baseline for both arms of the study. In the BIA arm, additional BCM measurements will be performed every 2 months. The primary intent-to-treat analysis will compare outcomes for a composite endpoint of death, acute myocardial infarction, stroke or incident peripheral arterial occlusive disease between groups. Secondary endpoints will include left ventricular wall thickness, blood pressure, medications, and incidence and length of hospitalization. Discussions Previous results regarding the benefit of strict fluid control are conflicting due to small sample sizes and unstable dry weight estimating methods. To our knowledge this is the first large-scale, multicentre, prospective, randomized controlled trial to assess whether BIS-guided volume management improves outcomes of MHD patients. The endpoints of the BOCOMO study are of utmost importance to health care providers. In order to obtain

  19. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  20. Creating universes with thick walls

    CERN Document Server

    Ulvestad, Andrew

    2012-01-01

    We study the dynamics of a spherically symmetric false vacuum bubble embedded in a true vacuum region separated by a "thick wall", which is generated by a scalar field in a quartic potential. We study the "Farhi-Guth-Guven" (FGG) quantum tunneling process by constructing numerical solutions relevant to this process. The ADM mass of the spacetime is calculated, and we show that there is a lower bound that is a significant fraction of the scalar field mass. We argue that the zero mass solutions used to by some to argue against the physicality of the FGG process are artifacts of the thin wall approximation used in earlier work. We argue that the zero mass solutions should not be used to question the viability of the FGG process.

  1. Report of results of contract research. 'Research on magneto hydrodynamic (MHD) generation'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)

  2. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  3. Influence of Newtonian heating on three dimensional MHD flow of couple stress nanofluid with viscous dissipation and Joule heating.

    Science.gov (United States)

    Ramzan, Muhammad

    2015-01-01

    The present exploration discusses the influence of Newtonian heating on the magnetohydrodynamic (MHD) three dimensional couple stress nanofluid past a stretching surface. Viscous dissipation and Joule heating effects are also considered. Moreover, the nanofluid model includes the combined effects of thermophoresis and Brownian motion. Using an appropriate transformation, the governing non linear partial differential equations are converted into nonlinear ordinary differential equations. Series solutions using Homotopy Analysis method (HAM) are computed. Plots are presented to portrait the arising parameters in the problem. It is seen that an increase in conjugate heating parameter results in considerable increase in the temperature profile of the stretching wall. Skin friction coefficient, local Nusselt and local Sherwood numbers tabulated and analyzed. Higher values of conjugate parameter, Thermophoresis parameter and Brownian motion parameter result in enhancement of temperature distribution.

  4. MHD mixed convective boundary layer flow of a nanofluid through a porous medium due to an exponentially stretching sheet

    KAUST Repository

    Ferdows, M.

    2012-01-01

    Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed. 2012 M. Ferdows et al.

  5. Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-06-01

    Full Text Available In this article, the simultaneous effects of slip and Magnetohydrodynamics (MHD on peristaltic blood flow of Jeffrey fluid model have been investigated in a non-uniform porous channel. The governing equation of blood flow for Jeffrey fluid model is solved with the help of long wavelength and creeping flow regime. The solution of the resulting differential equation is solved analytically and a closed form solution is presented. The impact of all the physical parameters is plotted for velocity profile and pressure rise. Nowadays, Magnetohydrodynamics is applicable in various magnetic drug targeting for cancer diseases and also very helpful to control the flow. The present analysis is also described for Newtonian fluid (λ1→0 as a special case of our study. It is observed that magnitude of the velocity is opposite near the walls due to slip effects whereas similar behavior has been observed for magnetic field.

  6. MHD Mixed Convective Boundary Layer Flow of a Nanofluid through a Porous Medium due to an Exponentially Stretching Sheet

    Directory of Open Access Journals (Sweden)

    M. Ferdows

    2012-01-01

    Full Text Available Magnetohydrodynamic (MHD boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed.

  7. Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-09-01

    Full Text Available This paper is concerned with the entropy generation in a magnetohydrodynamic (MHD pseudo-plastic nanofluid flow through a porous channel with convective heating. Three different types of nanoparticles, namely copper, aluminum oxide and titanium dioxide are considered with pseudo-plastic carboxymethyl cellulose (CMC–water used as base fluids. The governing equations are solved numerically by shooting technique coupled with Runge–Kutta scheme. The effects of the pertinent parameters on the fluid velocity, temperature, entropy generation, Bejan number as well as the shear stresses at the channel walls are presented graphically and analyzed in detail. It is possible to determine optimum values of magnetic parameter, power-law index, Eckert number and Boit number which lead to a minimum entropy generation rate.

  8. Computational Lower Bounds Using Diagonalization

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Computational Lower Bounds Using Diagonalization - Languages, Turing Machines and Complexity Classes. M V Panduranga Rao. General Article Volume 14 Issue 7 July 2009 pp 682-690 ...

  9. Bounded Rationality in Transposition Processes

    DEFF Research Database (Denmark)

    Vollaard, Hans; Martinsen, Dorte Sindbjerg

    2014-01-01

    perspective may affect the commonly employed explanatory factors of administrative capacities, misfit and the heterogeneity of preferences among veto players. To prevent retrospective rationalisation of the transposition process, this paper traces this process as it unfolded in Denmark and the Netherlands....... As bounded rationality is apparent in the transposition processes in these relatively well-organised countries, future transposition studies should devote greater consideration to the bounded rationality perspective....

  10. Spectral Direct Numerical Simulations of low Rm MHD channel flows based on the least dissipative modes

    CERN Document Server

    Kornet, Kacper

    2014-01-01

    We put forward a new type of spectral method for the direct numerical simulation of flows where anisotropy or very fine boundary layers are present. The mean idea is to take advantage of the fact that such structures are dissipative and that their presence should reduce the number of degrees of freedom of the flow, when paradoxically, their fine resolution incurs extra computational cost in most current methods. The principle of this method is to use a functional basis with elements that already include these fine structure so as to avoid these extra costs. This leads us to develop an algorithm to implement a spectral method for arbitrary functional bases, and in particular, non-orthogonal ones. We construct a basic implementation of this algorithm to simulate Magnetohydrodynamic (MHD) channel flows with an externally imposed, transverse magnetic field, where very thin boundary layers are known to develop along the channel walls. In this case, the sought functional basis can be built out of the eigenfunctions...

  11. The experimental facility for investigation of MHD heat transfer in perspective coolants in nuclear energetics.

    Science.gov (United States)

    Batenin, B. M.; Belyaev, I. A.; Birukov, D. A.; Frick, P. G.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu; Razuvanov, N. G.; Sviridov, E. V.; Sviridov, V. G.

    2017-11-01

    Paper presents the current results of work conducted by a joint research group of MPEI–JIHT RAS for experimental study of liquid metals heat transfer. The team of specialists of MPEI–JIHT RAS put into operation a new mercury MHD facility RK-3. The main components of this stand are: a unique electromagnet, created by specialists of the Budker Institute of Nuclear Physics (BINP), and a sealed liquid-metal circuit. The facility will be explored lifting and standpipe flow of liquid metal in a transverse magnetic field in channels of different forms. For the experiments on the study of heat transfer and hydrodynamics of flows for measuring characteristics such as temperature, speed, pulse characteristics, probe method is used. Presents the first experimental results obtained for a pipe in a transverse magnetic field. During the experiments with various flow parameters data was obtained and processed with constructing temperature fields, dimensionless wall temperature distributions and heat transfer coefficients along the perimeter of the work area. Modes with low frequency pulsations of temperature were discovered. The boundaries where low frequency temperature fluctuations occur were defined in a circular tube.

  12. Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel

    Science.gov (United States)

    Jha, B. K.; Aina, B.

    2017-08-01

    The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.

  13. Scrape-off-layer currents during MHD activity and disruptions in HBT-EP

    Science.gov (United States)

    Levesque, J. P.; Desanto, S.; Battey, A.; Bialek, J.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.

    2017-10-01

    We report scrape-off layer (SOL) current measurements during MHD mode activity and disruptions in the HBT-EP tokamak. Currents are measured via Rogowski coils mounted on tiles in the low-field-side SOL, toroidal jumpers between otherwise-isolated vessel sections, and segmented plasma current Rogowski coils. These currents strongly depend on the plasma's major radius, mode amplitude, and mode phase. Plasma current asymmetries and SOL currents during disruptions reach 4% of the plasma current. Asymmetric toroidal currents between vessel sections rotate at tens of kHz through most of the current quench, then symmetrize once Ip reaches 30% of its pre-disruptive value. Toroidal jumper currents oscillate between co- and counter-Ip, with co-Ip being dominant on average during disruptions. Increases in local plasma current correlate with counter-Ip current in the nearest toroidal jumper. Measurements are interpreted in the context of two models that produce contrary predictions for the toroidal vessel current polarity during disruptions. Plasma current asymmetries are consistent with both models, and scale with plasma displacement toward the wall. Progress of ongoing SOL current diagnostic upgrades is also presented. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  14. 3D Resistive MHD Simulations of Formation, Compression, and Acceleration of Compact Tori

    Science.gov (United States)

    Woodruff, Simon; Meyer, Thomas; Stuber, James; Romero-Talamas, Carlos; Brown, Michael; Kaur, Manjit; Schaffner, David

    2017-10-01

    We present results from extended resistive 3D MHD simulations (NIMROD) pertaining to a new formation method for toroidal plasmas using a reconnection region that forms in a radial implosion, and results from the acceleration of CTs along a drift tube that are accelerated by a coil and are allowed to go tilt unstable and form a helical minimum energy state. The new formation method results from a reconnection region that is generated between two magnetic compression coils that are ramped to 320kV in 2 μs. When the compressing field is aligned anti-parallel to a pre-existing CT, a current sheet and reconnection region forms that accelerates plasma radially inwards up to 500km/s which stagnates and directed energy converts to thermal, raising temperatures to 500eV. When field is aligned parallel to the pre-existing CT, the configuration can be accelerated along a drift tube. For certain ratios of magnetic field to density, the CT goes tilt-unstable forming a twisted flux rope, which can also be accelerated and stagnated on an end wall, where temperature and field increases as the plasma compresses. We compare simulation results with adiabatic scaling relations. Work supported by ARPA-E ALPHA program and DARPA.

  15. MHD mixed convection analysis of non-Newtonian power law fluid in an open channel with round cavity

    Science.gov (United States)

    Bose, Pritom; Rakib, Tawfiqur; Das, Sourav; Rabbi, Khan Md.; Mojumder, Satyajit

    2017-06-01

    In this study, magneto-hydrodynamic (MHD) mixed convection flow through a channel with a round cavity at bottom wall using non-Newtonian power law fluid is analysed numerically. The cavity is kept at uniformly high temperature whereas rest of the bottom wall is insulated and top wall of the channel is maintained at a temperature lower than cavity temperature. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method is appointed to solve the continuity, momentum and energy equations. The problem is solved for wide range of pertinent parameters like Rayleigh number (Ra= 103 - 105), Hartmann number (Ha= 0 - 60) and power law index (n= 0.5 - 1.5) at constant Richardson number Ri= 1.0. The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study is illustrated by average Nusselt number plots. Result of this investigation indicates that heat transfer is highest for dilatant fluids at this configuration and they perform better (47% more heat transfer) in absence of magnetic field. The retardation of heat transfer is offset by shear thickening nature of non-Newtonian fluid.

  16. Unsteady MHD mixed convection in a T-shaped ventilated cavity filled with ferrofluid (Fe3O4-water)

    Science.gov (United States)

    Jhumur, Nandita Chakrabarty; Saha, Sourav

    2017-06-01

    MHD mixed convection has been one of the center points of attraction to the heat transfer engineers for many years. In this paper, unsteady mixed convection in a T-shaped ventilated cavity filled with single phase Ferrofluid (Fe3O4-water) is analyzed thoroughly under externally applied magnetic field. The top wall of the cavity is maintained at constant cold temperature while the bottom wall of the cavity is sinusoidally heated along with adiabatic vertical walls. For pure mixed convection (Ri = 1), two different inlet velocity profiles namely uniform and Poiseuille are considered in this analysis and numerical solution is obtained for each type of inlet velocity profile, considering constant solid volume fraction of nanofluid (ϕ = 0.05) and Hartman number (Ha = 25). Qualitative analyses are presented in terms of streamline and isotherm contours and quantitative analyses are presented through Nusselt number (Nu) and average temperature (Θav) inside the cavity. It has been observed that, Nu decreases over a certain range of time and then increases very slowly. Also, Nu is a little higher in case of uniform inlet flow profile compared to Poiseuille flow profile. Interestingly, convective heat transfer rate decreases and conduction heat transfer becomes dominating, due to the externally applied magnetic field.

  17. Control of linear modes in cylindrical resistive magnetohydrodynamics with a resistive wall, plasma rotation, and complex gain

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, D. P. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Finn, J. M. [Applied Mathematics and Plasma Physics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-10-15

    Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values β{sub rp,rw} < β{sub rp,iw} < β{sub ip,rw} < β{sub ip,iw} (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below β{sub rp,iw} because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above β{sub rp,iw} because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain G{sub i} to optimize in the presence of rotation in this regime with β > β{sub rp,iw} is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below β{sub rp,iw}.

  18. Coalescence of magnetic islands in the low-resistivity, Hall-MHD regime.

    Science.gov (United States)

    Knoll, D A; Chacón, L

    2006-04-07

    The coalescence of magnetic islands in the low-resistivity eta, Hall-MHD regime is studied. The interaction between the ion inertial length d(i) and the dynamically evolving current sheet scale length deltaJ is established. Initially, d(i) MHD model.

  19. Note: Tangential x-ray diagnosis for investigating fast MHD events in EAST tokamak.

    Science.gov (United States)

    Li, Erzhong; Hu, Liqun; Chen, Kaiyun; Zhang, Jizong; Chen, Yiebin; Zhou, Ruijie; Gan, Kaifu; Liu, Yong

    2010-10-01

    A tangential x-ray diagnosis has been installed in the experimental advanced superconducting tokamakvacuum vessel for the study of fast magnetohydrodynamics (MHD) events. This system is based on absolute x-ray ultraviolet detectors with a collimator which is processed by laser machine. The first experimental results have proved its ability to measure the small-scale and transient MHD perturbations.

  20. The optimization air separation plants for combined cycle MHD-power plant applications

    Science.gov (United States)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  1. Long period slow MHD waves in the solar wind source region

    OpenAIRE

    Dwivedi, B. N.; Srivastava, A. K.

    2006-01-01

    We consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfven waves.

  2. Design of heat-recovery and seed-recovery units in MHD power generation

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, P.D.; Joubert, J.I.; Demski, R.J.; Bienstock, D.

    1974-01-01

    Crucial and limiting engineering and materials problems associated with the design of an MHD steam bottoming plant are discussed. Existing experimental and theoretical results on corrosion, fouling and deposits, potassium seed recovery and regeneration, are reviewed. The state of knowledge regarding the design of heat recovery and seed recovery units for coal-fired MHD plants is inadequate at the present time.

  3. Chemical reaction in MHD flow past a vertical plate with mass ...

    African Journals Online (AJOL)

    Chemical reaction plays an important role in MHD flow. It has industrial applications, such as design of chemical processing equipments, food processing and cooling towers etc. In the present paper, chemical reaction effect on a viscous, incompressible and electrically conducting fluid with unsteady MHD flow past an ...

  4. Porting a Hall MHD Code to a Graphic Processing Unit

    Science.gov (United States)

    Dorelli, John C.

    2011-01-01

    We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.

  5. Analytical calculation of boozer magnetic coordinates for axisymmetric MHD equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Alladio, F.; Micozzi, P. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Energia

    1995-10-01

    A new analytical technique for extracting the Boozer magnetic coordinates in axisymmetric MHD equilibria is described. The method is based upon the correspondence between the expansion of the flux function in toroidal multipolar moments and the expansion in toroidal axisymmetric harmonics of the magnetic scalar potential {chi}{sub 0}, which appears in the covariant representation B={nabla}{sub {chi}0}+{beta}{nabla}{sub {psi}}-T of the magnetic field. An example of calculation of Boozer magnetic coordinates is given for an experimental highly shaped high {beta} equilibrium of DIIID.

  6. Comparative analysis of CCMHD power plants. [Closed Cycle MHD

    Science.gov (United States)

    Alyea, F. N.; Marston, C. H.; Mantri, V. B.; Geisendorfer, B. G.; Doss, H.

    1981-01-01

    A study of Closed Cycle MHD (CCMHD) power generation systems has been conducted which emphasizes both advances in component conceptual design and overall system performance. New design data are presented for the high temperature, regenerative argon heaters (HTRH) and the heat recovery/seed recovery (HRSR) subsystem. Contamination of the argon by flue gas adsorbed in the HTRH is examined and a model for estimation of contamination effects in operating systems is developed. System performance and cost data have been developed for the standard CCMHD/steam cycle as powered by both direct fired cyclone combustors and selected coal gasifiers. In addition, a new CCMHD thermodynamic cycle has been identified.

  7. An improved near-wall treatment for turbulent channel flows

    Science.gov (United States)

    El Gharbi, Najla; Absi, Rafik; Benzaoui, Ahmed; Bennacer, Rachid

    2011-01-01

    The success of predictions of wall-bounded turbulent flows requires an accurate description of the flow in the near-wall region. This article presents a comparative study between different near-wall treatments and presents an improved method. The study is applied to fully developed plane channel flow (i.e. the flow between two infinitely large plates). Simulations were performed using Fluent. Near-wall treatments available in Fluent were tested: standard wall functions, non-equilibrium wall function and enhanced wall treatment. A user defined function (UDF), based on an analytical profile for the turbulent kinetic energy (Absi, R., 2008. Analytical solutions for the modeled k-equation. ASME Journal of Applied Mechanics, 75 (4), 044501), is developed and implemented. Predicted turbulent kinetic energy profiles are presented and validated by DNS data.

  8. Simulated annealing for three-dimensional low-beta reduced MHD equilibria in cylindrical geometry

    CERN Document Server

    Furukawa, M

    2016-01-01

    Simulated annealing (SA) is applied for three-dimensional (3D) equilibrium calculation of ideal, low-beta reduced MHD in cylindrical geometry. The SA is based on the theory of Hamiltonian mechanics. The dynamical equation of the original system, low-beta reduced MHD in this study, is modified so that the energy changes monotonically while preserving the Casimir invariants in the artificial dynamics. An equilibrium of the system is given by an extremum of the energy, therefore SA can be used as a method for calculating ideal MHD equilibrium. Previous studies demonstrated that the SA succeeds to lead to various MHD equilibria in two dimensional rectangular domain. In this paper, the theory is applied to 3D equilibrium of ideal, low-beta reduced MHD. An example of equilibrium with magnetic islands, obtained as a lower energy state, is shown. Several versions of the artificial dynamics are developed that can effect smoothing.

  9. Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation

    Energy Technology Data Exchange (ETDEWEB)

    Lytle, J.M.; Marchant, D.D.

    1980-11-01

    The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

  10. Technical support for open-cycle MHD program. Progress report, April-June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bomkamp, D H [ed.

    1979-07-01

    The support program for open-cycle MHD at Argonne National Laboratory is developing the analytical tools needed to investigate the performance of the major components in the combined cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The project activities currently include modeling of the combustor, MHD channel, slag separator and the high temperature air heater. In addition, these models are combined into a complete system model which is presently capable of carrying out optimizations of the entire system on either thermodynamic efficiency or cost of electrical power. Also, in support of other aspects of the open-cycle program, test plans are developed and facility and program reviews are provided upon request to support the needs and requirements of the DOE/MHD Division.

  11. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)

  12. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    Science.gov (United States)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  13. Space-bounded communication complexity

    DEFF Research Database (Denmark)

    Brody, Joshua Eric; Chen, Shiteng; Papakonstantinou, Periklis A.

    2013-01-01

    -obliviousness shows up. For this model we also introduce new techniques through which certain limitations of space-bounded computation are revealed. One of the main motivations of this work is in understanding the difference in the use of space when computing the following functions: Equality (EQ), Inner Product (IP......In the past thirty years, Communication Complexity has emerged as a foundational tool to proving lower bounds in many areas of computer science. Its power comes from its generality, but this generality comes at a price---no superlinear communication lower bound is possible, since a player may...... communicate his entire input. However, what if the players are limited in their ability to recall parts of their interaction? We introduce memory models for 2-party communication complexity. Our general model is as follows: two computationally unrestricted players, Alice and Bob, each have s(n) bits of memory...

  14. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  15. Kinetic effects of energetic particles on resistive MHD stability.

    Science.gov (United States)

    Takahashi, R; Brennan, D P; Kim, C C

    2009-04-03

    We show that the kinetic effects of energetic particles can play a crucial role in the stability of the m/n=2/1 tearing mode in tokamaks (e.g., JET, JT-60U, and DIII-D), where the fraction of energetic particle beta(frac) is high. Using model equilibria based on DIII-D experimental reconstructions, the nonideal MHD linear stability of cases unstable to the 2/1 mode is investigated including a deltaf particle-in-cell model for the energetic particles coupled to the nonlinear 3D resistive MHD code NIMROD [C. C. Kim et al., Phys. Plasmas 15, 072507 (2008)10.1063/1.2949704]. It is observed that energetic particles have significant damping and stabilizing effects at experimentally relevant beta, beta(frac), and S, and excite a real frequency of the 2/1 mode. Extrapolation of the results is discussed for implications to JET and ITER, where the effects are projected to be significant.

  16. Observation of MHD phenomenon for SST-1 superconducting tokamak

    Science.gov (United States)

    Bhandarkar, Manisha; Dhongde, Jasraj; Pradhan, Subrata

    2017-04-01

    Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak (major radius = 1.1 m, minor radius = 0.2 m) and is operational at the Institute for Plasma Research (IPR), India. In the last few experimental campaigns SST-1 has successfully achieved plasma current in order of 60-70kA and plasma duration in excess of ∼ 500 ms at a central magnetic field of 1.5T. An attempt has made to study the behavior of the magneto-hydrodynamic (MHD) activity during different phases of plasma pulse which leads to major/minor disruptions, its present modes (poloidal/toroidal mode number i.e. m = 2, n = 1) impact on plasma confinement and signature of lock mode and its frequency in the SST-1 plasma using experimental data from Mirnov signals. Observed MHD phenomenon has also been correlated with other diagnostics (i.e. ECE, Density, Soft X-Ray etc.) and heating system (ECRH) for the recent campaigns of SST-1.

  17. Laser production and heating of plasma for MHD application

    Science.gov (United States)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  18. Computational Investigation of Extended-MHD Effects on Tokamak Plasmas

    Science.gov (United States)

    King, Jacob R.; Kruger, Scott E.

    2013-10-01

    We present studies with the extended-MHD NIMROD code of the tearing instability and edge-localized modes (ELMs). In our first study we use analytics and computations to examine tearing in a large-guide field with a nonzero pressure gradient where previous results show drift effects are stabilizing [Coppi, PoF (1964)]. Our work finds three new results: (1) At moderately large ion gyroradius the mode rotates at the electron drift velocity and there is no stabilization. (2) With collision-less drift reconnection, computations must also include electron gyroviscosity and advection. And (3) we derive a dispersion relation that exhibits diamagnetic stabilization and describes the transition between the electron-fluid-mediated regime of (1) and the semi-collisional regime [Drake and Lee, PoF (1977)]. Our second study investigates the transition from an ideal- to an extended-MHD model in an ELM unstable tokamak configuration. With the inclusion of a full generalized Ohm's law the growth rate is enhanced at intermediate wave-numbers and cut-off at large wave-numbers by diamagnetic effects consistent with analytics [Hastie et al., PoP (2003)]. Adding ion gyroviscosity to the model is stabilizing at large wave-numbers consistent with recent results [Xu et al., PoP (2013)]. Support provided by US DOE.

  19. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    Science.gov (United States)

    Myrabo, L. N.; Rosa, R. J.

    2004-03-01

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.

  20. High Field Side MHD Activity During Local Helicity Injection

    Science.gov (United States)

    Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.

    2017-10-01

    MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.

  1. Bounded Densities and Their Derivatives

    DEFF Research Database (Denmark)

    Kozine, Igor; Krymsky, V.

    2009-01-01

    This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing ...

  2. Physics with loosely bound nuclei

    Indian Academy of Sciences (India)

    nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare ...

  3. Distance bounds on quantum dynamics

    Science.gov (United States)

    Lidar, Daniel A.; Zanardi, Paolo; Khodjasteh, Kaveh

    2008-07-01

    We derive rigorous upper bounds on the distance between quantum states in an open-system setting in terms of the operator norm between Hamiltonians describing their evolution. We illustrate our results with an example taken from protection against decoherence using dynamical decoupling.

  4. Moderate deviations for bounded subsequences

    Directory of Open Access Journals (Sweden)

    George Stoica

    2006-01-01

    Full Text Available We study Davis' series of moderate deviations probabilities for Lp-bounded sequences of random variables (p>2. A certain subseries therein is convergent for the same range of parameters as in the case of martingale difference or i.i.d. sequences.

  5. Comparison of three artificial models of the MHD effect on the electrocardiogram

    Science.gov (United States)

    Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D.

    2013-01-01

    The Electrocardiogram (ECG) is often acquired during Magnetic Resonance Imaging (MRI) for both image acquisition synchronisation with heart activity and patient monitoring to alert for life-threatening events. Accurate ECG analysis is mandatory for cutting-edge applications, such as MRI guided interventions. Nevertheless, the majority of the clinical analysis of ECG acquired inside MRI is made difficult by the superposition of a voltage called the MagnetoHydroDynamic (MHD) effect. MHD is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolatisation period. In this study, a new MHD model is proposed which is an extension of several existing models and incorporates MRI-based blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models is made with our new model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a good agreement between our proposed model and the estimated MHD for most leads, although there are clearly some descrepencies with the observed signal which are likely to be due to remaining deficiencies in the model. However, the results demonstrate that our new model provides a closer approximation to observed MHD effects and a better depiction of the complexity of the MHD effect compared to the previously published models. The source code will be made freely available under and open source license to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect. PMID:24761753

  6. Experimental investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, I.A., E-mail: corpuskula@gmail.com; Sviridov, E.V.; Sviridov, V.G.; Razuvanov, N.G.

    2016-11-15

    Highlights: • Local and averaged heat transfer coefficient are measured. • Free convection influence on MHD-flow is investigated. • The region with the free convection effect of MHD-heat transfer is found. • Temperature low-frequency fluctuations of abnormally high amplitude are detected. • Analysis of the MHD-heat transfer experimental data is performed. - Abstract: The article is devoted to the results of experimental investigation of heat transfer for a downward mercury flow in a vertical round tube in the presence of a transverse magnetic with non-uniform heat flux along the tube circumference.

  7. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Vance, E.F. (Vance (E.F.), Fort Worth, TX (United States))

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  8. Rotation and Radiation Effects on MHD Flow through Porous Medium Past a Vertical Plate with Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Uday Singh Rajput

    2017-11-01

    Full Text Available Effects of rotation and radiation on unsteady MHD flow past a vertical plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we studied chemical reaction effect on unsteady MHD flow past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering radiation effect on fluid, and changing the geometry of the model. Here in this paper we are taking the plate positioned vertically upward and rotating with velocity Ω . Further, medium of the flow is taken as porous. The plate temperature and the concentration level near the plate increase linearly with time. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations under consideration have been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, desirable sets of the values of the parameters have been considered. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Nusselt number have been tabulated. We found that the values obtained for velocity, concentration and temperature are in concurrence with the actual flow of the fluid

  9. MHD Mixed Convection Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field with the Hall Effect

    Science.gov (United States)

    Mishra, A.; Sharma, B. K.

    2017-11-01

    A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.

  10. Near-Wall Models in Large Eddy Simulations of Flow Behind a Backward-Facing Step

    Science.gov (United States)

    Cabot, W.

    1996-01-01

    Accurate large eddy simulation (LES) of a wall-bounded flow generally requires a near-wall resolution comparable to that in direct numerical simulation (DNS). As much as 50% of the total grid points and computational costs are expended in the near-wall regions in a typical simulation. This limits LES to fairly low Reynolds numbers on current computers. To perform practical flow applications at realistically high Reynolds numbers, such as flow over an airfoil, it is desirable to replace very thin, near-wall regions in the LES with easily and inexpensively computed wall models to specify the near-wall boundary conditions.

  11. MHD simulations of coronal dark downflows considering thermal conduction

    Science.gov (United States)

    Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.

    2017-10-01

    While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

  12. Preface: MHD wave phenomena in the solar interior and atmosphere

    Science.gov (United States)

    Fedun, Viktor; Srivastava, A. K.

    2018-01-01

    The Sun is our nearest star and this star produces various plasma wave processes and energetic events. These phenomena strongly influence interplanetary plasma dynamics and contribute to space-weather. The understanding of solar atmospheric dynamics requires hi-resolution modern observations which, in turn, further advances theoretical models of physical processes in the solar interior and atmosphere. In particular, it is essential to connect the magnetohydrodynamic (MHD) wave processes with the small and large-scale solar phenomena vis-a-vis transport of energy and mass. With the advent of currently available and upcoming high-resolution space (e.g., IRIS, SDO, Hinode, Aditya-L1, Solar-C, Solar Orbiter), and ground-based (e.g., SST, ROSA, NLST, Hi-C, DKIST, EST, COSMO) observations, solar physicists are able to explore exclusive wave processes in various solar magnetic structures at different spatio-temporal scales.

  13. Structure and computation of two-dimensional incompressible extended MHD

    CERN Document Server

    Grasso, D; Abdelhamid, H M; Morrison, P J

    2016-01-01

    A comprehensive study of a reduced version of Lust's equations, the extended magnetohydrodynamic (XMHD) model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality, is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way energy conservation along with four families of Casimir invariants are naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.

  14. MHD Simulations of the Plasma Flow in the Magnetic Nozzle

    Science.gov (United States)

    Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.

    2013-01-01

    The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the

  15. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  16. Stellarator expansion methods for MHD equilibrium and stability calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, V.E.; Charlton, L.A.; Hicks, H.R.; Holmes, J.A.; Carreras, B.A.; Hender, T.C.; Garcia, L.

    1986-03-01

    Two methods for performing stellarator expansion, or average method, MHD calculations are described. The first method includes the calculation of vacuum, equilibrium, and stability, using the Greene and Johnson stellarator expansion in which the equilibrium is reduced to a 2-D problem by averaging over the geometric toroidal angle in real space coordinates. In the second method, the average is performed in a system of vacuum magnetic coordinates. Both methods are implemented to utilize realistic vacuum field information, making them applicable to configuration studies and machine design, as well as to basic research. Illustrative examples are presented to detail the sensitivities of the calculations to physical parameters and to show numerical convergence and the comparison of these methods with each other and with other methods.

  17. The SOL width and the MHD interchange instability in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, W. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pogutse, O. [Kurchatov institute, Moscow (Russian Federation)

    1994-07-01

    Instabilities in the SOL plasma can strongly influence the SOL plasma behaviour and in particular the SOL width. The SOL stability analysis shows that there exists a critical ratio of the thermal energy and the magnetic energy. If the SOL beta is greater than this critical value, the magnetic field cannot prevent the plasma displacement and a strong MHD instability in the SOL occurs. In the opposite case only slower resistive instabilities can develop. A theoretical investigation of the SOL plasma stability is presented for JET single-null and double-null divertor configurations. The dependence of the stability threshold on the SOL beta and on the sheath resistance is established. Applying a simple mixing length argument gives the scaling of the SOL width. 5 refs., 2 figs.

  18. Synchrotron Radiation Maps from Relativistic MHD Jet Simulations

    Directory of Open Access Journals (Sweden)

    Dimitrios Millas

    2017-11-01

    Full Text Available Relativistic jets from active galactic nuclei (AGN often display a non-uniform structure and are, under certain conditions, susceptible to a number of instabilities. An interesting example is the development of non-axisymmetric, Rayleigh-Taylor type instabilities in the case of differentially rotating two-component jets, with the toroidal component of the magnetic field playing a key role in the development or suppression of these instabilities. We have shown that higher magnetization leads to stability against these non-axisymmetric instabilities. Using ray-casting on data from relativistic MHD simulations of two-component jets, we now investigate the effect of these instabilities on the synchrotron emission pattern from the jets. We recover many well known trends from actual observations, e.g., regarding the polarization fraction and the distribution of the position angle of the electric field, in addition to a different emitting region, depending on the stability of the jet.

  19. Ionization fronts in coupled MHD-gas simulations

    Science.gov (United States)

    Wilson, A. D.; Diver, D. A.

    2017-09-01

    Partially ionized plasmas are ubiquitous in both nature and the laboratory, and their behaviour is best described by models which take into account the interactions between the neutral and charged species. We present a new non-linear, 3-dimensional, finite difference Gas-MHD Interactions Code designed to solve simultaneously the time evolution of fluid equations of both species in the conservation form as well as collisional interactions between them via appropriate choices of source term; in particular, we present results from this code in simulating Alfvén ionization in a partially ionized plasma. In this fashion, larger changes in the ionization fraction than were addressable in the linear limit are possible. Alfvén ionization is shown to impart plasmas with an inherent resistance to rapid recombination, where the recombination itself is significant enough to drive relative motion between the ionised and neutral species at speeds in excess of the critical velocity.

  20. Impact of measurement uncertainties on universal scaling of MHD turbulence

    Science.gov (United States)

    Gogoberidze, G.; Chapman, S. C.; Hnat, B.; Dunlop, M. W.

    2012-10-01

    Quantifying the scaling of fluctuations in the solar wind is central to testing predictions of turbulence theories. We study spectral features of Alfvénic turbulence in fast solar wind. We propose a general, instrument-independent method to estimate the uncertainty in velocity fluctuations obtained by in situ satellite observations in the solar wind. We show that when the measurement uncertainties of the velocity fluctuations are taken into account the less energetic Elsasser spectrum obeys a unique power law scaling throughout the inertial range as prevailing theories of magnetohydrodynamic (MHD) turbulence predict. Moreover, in the solar wind interval analysed, the two Elsasser spectra are observed to have the same scaling exponent γ = -1.54 throughout the inertial range.

  1. Creating universes with thick walls

    Science.gov (United States)

    Ulvestad, Andrew; Albrecht, Andreas

    2012-05-01

    We study the dynamics of a spherically symmetric false vacuum bubble embedded in a true vacuum region separated by a “thick wall”, which is generated by a scalar field in a quartic potential. We study the “Farhi-Guth-Guven” (FGG) quantum tunneling process by constructing numerical solutions relevant to this process. The Arnowitt-Deser-Misner mass of the spacetime is calculated, and we show that there is a lower bound that is a significant fraction of the scalar field mass. We argue that the zero mass solutions used to by some to argue against the physicality of the FGG process are artifacts of the thin wall approximation used in earlier work. We argue that the zero mass solutions should not be used to question the viability of the FGG process.

  2. The Substorm Cycle as Reproduced by Global MHD Models

    Science.gov (United States)

    Gordeev, E.; Sergee, V.; Tsyganenko, N.; Kuznetsova, M.; Rastaetter, Lutz; Raeder, J.; Toth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.

    2017-01-01

    Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to post processing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.

  3. Realistic radiative MHD simulation of a solar flare

    Science.gov (United States)

    Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.

    2017-08-01

    We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".

  4. Condensation and deposition of seed in the MHD bottoming plant

    Energy Technology Data Exchange (ETDEWEB)

    Im, K. H.; Patten, J.; Johnson, T. R.; Tempelmeyer, K.

    1979-01-01

    The computer models of slag vapor nucleation and particle deposition have been extended to predict the growth and deposition of seed particles in the steam and air heater sections of the MHD bottoming plant. The model represents a hot combustion gas stream, which contains vaporized seed and entrained slag particles of a selected initial size distribution, flowing through a bank of cooled tubes. The energy balance includes convective and radiant heat transfer to the cool surfaces. The material balance for the condensible species considers convective mass transport of seed vapor to cool surfaces, and the deposition of particles on cooled surfaces by thermophoresis. The analyses provide the bases for design trade-off studies of steam tube size and spacing, gas velocity, and system configuration to optimize the effectiveness and cost of the steam plant. In the absence of entrained slag particles, sample calculations indicated that, as the gas is cooled in passing through a tube bank, the bulk of the seed vapor condenses in the gas stream to form particles with diameters in the range of 0.02 to 0.2 ..mu..m. In the presence of the submicron slag particles formed upstream in the MHD diffuser, the largest fraction of the seed vapor condenses on the existing entrained particles, causing them to grow to a size in the range of approximately one micron. In both cases, these particles are deposited on heat exchange surfaces throughout the heat recovery system and a large fraction is present in the cool combustion gas entering the exhaust gas clean-up system.

  5. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    Science.gov (United States)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  6. Charged Domain Walls

    OpenAIRE

    Campanelli, L.; Cea, P.; Fogli, G. L.; Tedesco, L.

    2003-01-01

    In this paper we investigate Charged Domain Walls (CDW's), topological defects that acquire surface charge density $Q$ induced by fermion states localized on the walls. The presence of an electric and magnetic field on the walls is also discussed. We find a relation in which the value of the surface charge density $Q$ is connected with the existence of such topological defects.

  7. Lower bounds in differential privacy

    OpenAIRE

    De, Anindya

    2011-01-01

    This is a paper about private data analysis, in which a trusted curator holding a confidential database responds to real vector-valued queries. A common approach to ensuring privacy for the database elements is to add appropriately generated random noise to the answers, releasing only these {\\em noisy} responses. In this paper, we investigate various lower bounds on the noise required to maintain different kind of privacy guarantees.

  8. Geometry of Homogeneous Bounded Domains

    CERN Document Server

    Vesentini, E

    2011-01-01

    This title includes: S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Kahler manifolds; S.G. Greenfield: Extendibility properties of real submanifolds of Cn; W. Kaup: Holomorphische Abbildungen in Hyperbolische Raume; A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains; J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symetriques; S. Murakami: Plongements holomorphes de domaines symetriques; and E.M. Stein: The analogues of Fatous' theorem and estimates for maximal functions.

  9. Wronskian method for bound states

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Francisco M, E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Quimica Teorica, Boulevard 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2011-05-15

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider an exactly solvable model, the Gaussian potential well, and a two-well potential proposed earlier for the interpretation of the infrared spectrum of ammonia.

  10. Cyclotron transitions of bound ions

    Science.gov (United States)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  11. Technical support for open-cycle MHD program. Progress report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Berry, G.F. (ed.)

    1981-06-01

    The support program for open-cycle MHD at the Argonne National Laboratory consists of developing the analytical tools needed for investigation of the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and, also, in the integration of these analytical models into a mode for the entire power-producing system. The present project activities include modeling of the secondary combustor, generator, seed deposition, and formation and decomposition of NO. Costing models were developed and used to assess the effect of parameter changes on cost of electricity. Parametric studies were performed to evaluate the performance of the U-25B generator and to support the design of the US U-25B generator. Refinements and improvements to the MHD systems code and executive program are described.

  12. MHD Simulations of Magnetospheric Accretion, Ejection and Plasma-field Interaction

    Directory of Open Access Journals (Sweden)

    Romanova M. M.

    2014-01-01

    Full Text Available We review recent axisymmetric and three-dimensional (3D magnetohydrodynamic (MHD numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.

  13. Advanced Numerical Methods for Three-Dimensional Parallel Hybrid MHD/PIC

    National Research Council Canada - National Science Library

    McCrory, Robert

    1996-01-01

    .... The main conclusion of our study is that computationally efficient and physically sound description of nonsteady plasmas typical for these applications is possible using the advanced hybrid MHD/PIC...

  14. Variational approach to low-frequency kinetic-MHD in the current coupling scheme

    CERN Document Server

    Burby, J W

    2016-01-01

    Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which is described by a kinetic equation. When the Vlasov description is adopted for the energetic particles, different Vlasov-MHD models have been shown to lack an exact energy balance, which was recently recovered by the introduction of non-inertial force terms in the kinetic equation. These force terms arise from fundamental approaches based on Hamiltonian and variational methods. In this work we apply Hamilton's variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling hybrid schemes, in which energetic particle dynamics are expressed in either guiding-center or gyrocenter coordinates.

  15. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics.

    Science.gov (United States)

    Nakamura, T K M; Hayashi, D; Fujimoto, M; Shinohara, I

    2004-04-09

    We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed.

  16. Scramjet Inlet Control by Off-Body Energy Addition and MHD Deceleration

    National Research Council Canada - National Science Library

    Macheret, Sergey O; Shneider, Mikhail N; Miles, Richard B; Van Wie, David

    2003-01-01

    Analysis of interaction parameter for MHD control of cold hypersonic flows with external ionization shows that significant interaction can be achieved with energy-efficient ionization by electron beams...

  17. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    Science.gov (United States)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  18. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    Science.gov (United States)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  19. Chemical reaction in MHD flow past a vertical plate with mass ...

    African Journals Online (AJOL)

    Corresponding Author: e-mail: rajputneetulko@gmail.com. Abstract. Chemical reaction plays an important role in MHD flow. It has industrial applications, such as design of chemical processing equipments, food processing and cooling towers etc.

  20. Closed cycle MHD power generation experiments in the NASA Lewis facility

    Science.gov (United States)

    Sovie, R. J.; Nichols, L. D.

    1974-01-01

    Discussion of the performance improvements achieved through some modifications made in the closed cycle MHD facility. These modifications include a redesign of the MHD duct interior, addition of mixing bars, increased electrical isolation, and experimentation with various cesium seed vaporization and injection techniques. Uniform Faraday and Hall voltage profiles were obtained, and the Faraday open circuit voltage varied from 90 to 100% of the ideal uBh.

  1. Exact solutions for MHD flow of couple stress fluid with heat transfer

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2016-01-01

    Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.

  2. Methodology to assess the effects of magnetohydrodynamic electromagnetic pulse (MHD-EMP) on power systems

    Energy Technology Data Exchange (ETDEWEB)

    Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.

    1985-01-01

    This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig.

  3. Existencia global y estabilidad de soluciones para las ecuaciones de la magnetohidrodinámica (MHD)

    OpenAIRE

    Galeano Delgado, Juan Gabriel

    2009-01-01

    En este trabajo se demuestra la estabilidad de soluciones estacionarias para las ecuaciones de la MHD. Inicialmente se prueba que el problema estacionario para las Ecuaciones de la MHD, denido en un dominio acotado de R3; tiene una unica solucion fuerte, en el espacio de Lebesgue L3() Lm(), cuando m > 3=2. En segunda instancia se muestra que este tipo de soluciones estacionarias son exponencialmente estables, y se obtienen tasas de decaimiento rapido. Como consecuencia del res...

  4. Expected IPS variations due to a disturbance described by a 3-D MHD model

    Science.gov (United States)

    Tappin, S. J.; Dryer, M.; Han, S. M.; Wu, S. T.

    1988-01-01

    The variations of interplanetary scintillation due to a disturbance described by a three-dimensional, time-dependent, MHD model of the interplanetary medium are calculated. The resulting simulated IPS maps are compared with observations of real disturbances and it is found that there is some qualitative agreement. It is concluded that the MHD model with a more realistic choice of input conditions would probably provide a useful description of many interplanetary disturbances.

  5. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    Science.gov (United States)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  6. Relativistic particle transport in extragalactic jets: I. Coupling MHD and kinetic theory

    OpenAIRE

    Casse, F.; Marcowith, A.

    2003-01-01

    Multidimensional magneto-hydrodynamical (MHD) simulations coupled with stochastic differential equations (SDEs) adapted to test particle acceleration and transport in complex astrophysical flows are presented. The numerical scheme allows the investigation of shock acceleration, adiabatic and radiative losses as well as diffusive spatial transport in various diffusion regimes. The applicability of SDEs to astrophysics is first discussed in regards to the different regimes and the MHD code spat...

  7. Lower bounds for randomized Exclusive Write PRAMs

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, P.D.

    1995-05-02

    In this paper we study the question: How useful is randomization in speeding up Exclusive Write PRAM computations? Our results give further evidence that randomization is of limited use in these types of computations. First we examine a compaction problem on both the CREW and EREW PRAM models, and we present randomized lower bounds which match the best deterministic lower bounds known. (For the CREW PRAM model, the lower bound is asymptotically optimal.) These are the first non-trivial randomized lower bounds known for the compaction problem on these models. We show that our lower bounds also apply to the problem of approximate compaction. Next we examine the problem of computing boolean functions on the CREW PRAM model, and we present a randomized lower bound, which improves on the previous best randomized lower bound for many boolean functions, including the OR function. (The previous lower bounds for these functions were asymptotically optimal, but we improve the constant multiplicative factor.) We also give an alternate proof for the randomized lower bound on PARITY, which was already optimal to within a constant additive factor. Lastly, we give a randomized lower bound for integer merging on an EREW PRAM which matches the best deterministic lower bound known. In all our proofs, we use the Random Adversary method, which has previously only been used for proving lower bounds on models with Concurrent Write capabilities. Thus this paper also serves to illustrate the power and generality of this method for proving parallel randomized lower bounds.

  8. Onset of transition from laminar to chaos in MHD mixed convection of a lid-driven trapezoidal cavity filled with Cu-water nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Mohammad, E-mail: azam09mebuet@gmail.com; Hasanuzzaman, Md., E-mail: hasanuzzaman138@gmail.com; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    The present study investigates the thermal mixing scenarios of steady magneto-hydrodynamic (MHD) mixed convection in a two-dimensional lid-driven trapezoidal cavity filled with Cu-water nanofluid. The top wall of the cavity slides with a uniform velocity from left to right direction, while the other walls are fixed. The bottom wall is kept with a constant higher temperature than the top one. The governing mass, momentum and energy equations are expressed in non-dimensional forms and Galerkin finite element method has been employed to solve these equations. Special attention is paid on investigating the onset of transition from laminar to chaos at pure mixed convection case. Hence, the computations are carried out for a wide range of Reynolds numbers (Re = 0.1 − 400) and Grashof numbers (Gr = 10{sup −2} − 1.6 × 10{sup 5}) at unity Richardson number and fixed Hartmann number (Ha = 10). The variation of average Nusselt number of the bottom heated wall indicates the influence of governing parameters (Re and Gr) on heat transfer characteristics. The results are presented and explained through the visualisation of isotherms, streamlines and heatlines.

  9. Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field

    Directory of Open Access Journals (Sweden)

    N. V. Erkaev

    2002-01-01

    Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.

  10. Abdominal wall fat pad biopsy

    Science.gov (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... method of taking an abdominal wall fat pad biopsy . The health care provider cleans the skin on ...

  11. Heat Transfer In Magnetohydrodynamic (Mhd) Couette Flow Of A ...

    African Journals Online (AJOL)

    component plasma. The flow is induced by two horizontal walls moving relative to each other along their common axis in the presence of a uniformly applied transverse magnetic field and the analysis made under the following assumptions: (i) ...

  12. Towards Automatic Resource Bound Analysis for OCaml

    OpenAIRE

    Hoffmann, Jan; Das, Ankush; Weng, Shu-Chun

    2016-01-01

    This article presents a resource analysis system for OCaml programs. This system automatically derives worst-case resource bounds for higher-order polymorphic programs with user-defined inductive types. The technique is parametric in the resource and can derive bounds for time, memory allocations and energy usage. The derived bounds are multivariate resource polynomials which are functions of different size parameters that depend on the standard OCaml types. Bound inference is fully automatic...

  13. Distance hijacking attacks on distance bounding protocols

    OpenAIRE

    Cremers, Cas; Rasmussen, Kasper Bonne; Čapkun, Srdjan

    2011-01-01

    Distance bounding protocols are typically analyzed with respect to three types of attacks: Distance Fraud, Mafia Fraud, and Terrorist Fraud. We define and analyze a fourth main type of attack on distance bounding protocols, called Distance Hijacking. We show that many proposed distance bounding protocols are vulnerable to this type of attack, and we propose solutions to make these protocols resilient to Distance Hijacking. We further show that verifying distance bounding protocols using exist...

  14. Purity- and Gaussianity-bounded uncertainty relations

    Science.gov (United States)

    Mandilara, A.; Karpov, E.; Cerf, N. J.

    2014-01-01

    Bounded uncertainty relations provide the minimum value of the uncertainty assuming some additional information on the state. We derive analytically an uncertainty relation bounded by a pair of constraints, those of purity and Gaussianity. In a limiting case this uncertainty relation reproduces the purity-bounded derived by Man’ko and Dodonov and the Gaussianity-bounded one (Mandilara and Cerf 2012 Phys. Rev. A 86 030102R).

  15. Bounded rationality and heterogeneous expectations in macroeconomics

    NARCIS (Netherlands)

    Massaro, D.

    2012-01-01

    This thesis studies the effect of individual bounded rationality on aggregate macroeconomic dynamics. Boundedly rational agents are specified as using simple heuristics in their decision making. An important aspect of the type of bounded rationality described in this thesis is that the population of

  16. Labeling schemes for bounded degree graphs

    DEFF Research Database (Denmark)

    Adjiashvili, David; Rotbart, Noy Galil

    2014-01-01

    graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...

  17. Upper bound on quantum stabilizer codes

    Science.gov (United States)

    Li, Zhuo; Xing, Li-Juan

    2009-03-01

    By studying sets of operators having constant weight, we present an analytical upper bound on the pure quantum stabilizer codes whose underlying quantum system can be of arbitrary dimension, which outperforms the well-known quantum Hamming bound, the optimal analytical upper bound so far for small code length.

  18. Current systems of coronal loops in 3D MHD simulations

    Science.gov (United States)

    Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.

    2017-11-01

    Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system

  19. Experimental Bullard-von Karman dynamo: MHD saturated regimes

    Science.gov (United States)

    Miralles, Sophie; Plihon, Nicolas; Pinton, Jean-François

    2014-05-01

    The dynamo instability, converting kinetic energy into magnetic energy, creates the magnetic fields of many astrophysical bodies for which the flows are highly turbulent. Those turbulent fluctuations restricts the range of parameters of numerical and theoretical predictions. As laboratory experiments are closer from natural parameters, this approach is favored in this work. In the past decades, dynamo action has been observed in experiments involving laminar flows [1] or fully turbulent flows [2] in liquid sodium. Nevertheless, the saturation of the velocity field by the Lorentz force due to the dynamo magnetic field is weak in those experiment because the control parameter is always close to the threshold of the instability (which is not the case in astrophysical situations). The details of the mechanism of the back reaction of Lorentz force on the flow are not known. We present here an experimental semi-synthetic dynamo, for which a fluid turbulent induction mechanism ('omega' effect) is associated to an external amplification applying a current into a pair of coils. The flow, called von-Karman, is produced by the counter rotation of two coaxial propellers in a cylindrical tank filled with liquid gallium. The resulting flow is highly turbulent (Re > 10 ^ 5). The amplification, mimicking a turbulent 'alpha' effect, allow to observe the dynamo instability at low magnetic Reynolds number (Rm ~ 2), far below the threshold of natural homogeneous dynamo. This experiment reaches non linear regimes, for which the saturation is a MHD process, at control parameter several times the critical value. The instability grows through an on-off intermittent regime evolving into a full MHD saturated regime for which the Lorentz force is in balance with the inertial one. The power budget is strongly modified by the dynamo magnetic field and we give an insight of the estimated rate of conversion of kinetic energy into magnetic one from experimental data. Very rich regimes such as

  20. Contribution of domain wall networks to the CMB power spectrum

    Directory of Open Access Journals (Sweden)

    A. Lazanu

    2015-07-01

    Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  1. Green walls in Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)

    2007-07-01

    With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical

  2. In-situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation

    DEFF Research Database (Denmark)

    Hofmann, S; Sharma, R; Du, G

    2007-01-01

    We present atomic-scale, video-rate environmental transmission electron microscopy and in situ time-resolved X-ray photoelectron spectroscopy of surface-bound catalytic chemical vapor deposition of single-walled carbon nanotubes and nanofibers. We observe that transition metal catalyst nanopartic......We present atomic-scale, video-rate environmental transmission electron microscopy and in situ time-resolved X-ray photoelectron spectroscopy of surface-bound catalytic chemical vapor deposition of single-walled carbon nanotubes and nanofibers. We observe that transition metal catalyst...... nanoparticles on SiOx support show crystalline lattice fringe contrast and high deformability before and during nanotube formation. A single-walled carbon nanotube nucleates by lift-off of a carbon cap. Cap stabilization and nanotube growth involve the dynamic reshaping of the catalyst nanocrystal itself....... For a carbon nanofiber, the graphene layer stacking is determined by the successive elongation and contraction of the catalyst nanoparticle at its tip....

  3. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing

    Science.gov (United States)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle magnetohydrodynamic (MHD) power generation are reported. A user's manual for a two-dimensional MHD generator code and performance estimates for a nominal 30 MW argon segmented heater are given. The feedwater cooled Brayton cycle is discussed as well as the application of closed cycle MHD in an industrial cogeneration environment. Preliminary design for shell and tube primary heat exchanger and plant efficiency as a function of output power for open and closed cycle MHD power plants are also discussed.

  4. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1981 reported. This year, technological reexamination was conducted for a 2,000 MWt commercial MHD generation plant, with evaluation carried out on the cost performance including the construction and operation cost. In addition, for the purpose of intermediate R and D towards the practicability, examination was also conducted on a system structure, concrete specifications of component element, cost of R and D including operation expenses for example, concerning an 100 MWt class experimental plant and a 500 MWt class plant. In the investigation of the overseas trend, information was summarized in detail on the experimental devices, combustors, generation channels, electrode materials, electrode phenomena, theoretical analyses, seeds, slag, component equipment, instrumental technologies, conceptual designs of generation plant, commercial plant, etc., in Soviet Union, China, Holland, India and EPRI, on the basis of the materials from the 19th MHD symposium held in UTSI and from the coal MHD specialist conference held in Sydney. (NEDO)

  5. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Feng, Jingchao

    2015-12-15

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  6. MHD mode evolutions prior to minor and major disruptions in SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dhongde, Jasraj; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Bhandarkar, Manisha

    2017-01-15

    Highlights: • Observation of different regimes of MHD phenomena in SST-1 plasma. • MHD mode (m/n = 1/1, m/n = 2/1) evolutions prior to minor and major disruptions in SST-1 plasma. • MHD mode characteristics such as mode frequency, mode number, island width etc. in different regimes. - Abstract: Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak (R{sub 0} = 1.1 m, a = 0.2 m, B{sub T} = 1.5T, Ip ∼ 110 kA) in operation at the Institute for Plasma Research, India. SST-1 uniquely experiments large aspect ratio (∼5.5) plasma in different operation regimes. In these experiments, repeatable characteristic MHD phenomena have been consistently observed. As the large aspect ratio plasma pulse progresses, these MHD phenomena display minor-major disruptions ably indicated in Mirnov oscillations, Mirnov oscillations with saw teeth and locked modes etc. Even though somewhat similar observations have been found in some other machines, these observations are found for the first time in large aspect ratio plasma of SST-1. This paper elaborates the magnetic field perturbations and mode evolutions due to MHD activities from Mirnov coils (poloidal and toroidal), Soft X-ray diagnostics, ECE diagnostics etc. This work further, for the first time reports quantitatively different regimes of MHD phenomena observed in SST-1 plasma, their details of mode evolutions characteristics as well as the subsequently observed minor, major disruptions supported with the physical explanations. This study will help developing disruption mitigation and avoidance scenarios for having better confinement plasma experiments.

  7. Transition from weak to strong cascade in MHD turbulence.

    Science.gov (United States)

    Verdini, Andrea; Grappin, Roland

    2012-07-13

    The transition from weak to strong turbulence when passing from large to small scales in magnetohydrodynamic (MHD) turbulence with guide field is a cornerstone of anisotropic turbulence theory. We present the first check of this transition, using the Shell-RMHD, which combines a shell model of perpendicular nonlinear coupling and linear propagation along the guide field. This model allows us to reach Reynolds numbers around 10(6). We obtain surprisingly good agreement with the theoretical predictions, with a reduced perpendicular energy spectrum scaling as k(⊥)(-2) at large scales and as k(⊥)(-5/3) at small scales, where critical balance between nonlinear and propagation time is reached. However, even in the strong regime, a high level of excitation is found in the weak coupling region of Fourier space, which is due to the rich frequency spectrum of large eddies. A corollary is that the reduced parallel spectral slope is not a definite test of the spectral anisotropy, contrary to standard belief.

  8. Extended MHD turbulence and its applications to the solar wind

    CERN Document Server

    Abdelhamid, Hamdi M; Mahajan, Swadesh M

    2016-01-01

    Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfv\\'enic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal $\\left(k 1/\\lambda_e\\right)$ regimes; $k$ is the wavenumber and $\\lambda_s = c/\\omega_{p s}$ is the skin depth of species `$s$'. In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of $-11/3$ and $-13/3$ are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approxima...

  9. MHD Modeling of Coronal Loops: the Transition Region Throat

    Science.gov (United States)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-01-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods. We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 millikelvin. Results. We find that the area can change substantially with the quasi-steady heating rate, e.g., by approx. 40% at 0.5 millikelvin as the loop temperature varies between 1 millikelvin and 4 millikelvin, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves.

  10. MHD biconvective flow of Powell Eyring nanofluid over stretched surface

    Science.gov (United States)

    Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum

    2017-06-01

    The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

  11. MHD stability module for the National Transport Code Collaboration Library

    Science.gov (United States)

    Pletzer, A.; Manickam, J.; Jardin, S. C.; McCune, D.; Ludescher, Ch.; Klasky, S.; Randerson, L.

    1999-11-01

    There is a need to provide numerical tools to the fusion community that are robust, portable, easy to use, documented, and reviewed by independent peers. A web site (http://w3.pppl.gov/NTCC) where modules can be freely downloaded has been set up for that purpose [Status of the NTCC Modules Library (D McCune)]. The existence of such a library is in addition motivated by the increasing demand for programs that can be plugged into large packages with minimal effort. In particular, there has been some requests to make MHD stability codes such as the PEST, which are capable of simulating large scale plasma phenomena, available at the NTCC module library. Progress on the work to convert PEST to satisfy the NTCC module standards is presented. The resulting, new PEST interface is a collection of subroutines, which initialize, modify and extract data. Dynamic memory allocation is introduced to minimize memory requirements and allow for multiple runs. Embedded graphics routines are disabled and dependence on native binary files replaced by portable NetCDF files. To illustrate the flexibility of the module approach, numerical results obtained by integrating PEST-3, the mapping code DMAP and the equilibrium JSOLVER modules into a C++ and Java environment with remote database connectivity are presented.

  12. MHD modeling of coronal loops: the transition region throat

    Science.gov (United States)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-04-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  13. Automated Identification of MHD Mode Bifurcation and Locking in Tokamaks

    Science.gov (United States)

    Riquezes, J. D.; Sabbagh, S. A.; Park, Y. S.; Bell, R. E.; Morton, L. A.

    2017-10-01

    Disruption avoidance is critical in reactor-scale tokamaks such as ITER to maintain steady plasma operation and avoid damage to device components. A key physical event chain that leads to disruptions is the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their locking. An algorithm has been developed that automatically detects bifurcation of the mode toroidal rotation frequency due to loss of torque balance under resonant braking, and mode locking for a set of shots using spectral decomposition. The present research examines data from NSTX, NSTX-U and KSTAR plasmas which differ significantly in aspect ratio (ranging from A = 1.3 - 3.5). The research aims to examine and compare the effectiveness of different algorithms for toroidal mode number discrimination, such as phase matching and singular value decomposition approaches, and to examine potential differences related to machine aspect ratio (e.g. mode eigenfunction shape variation). Simple theoretical models will be compared to the dynamics found. Main goals are to detect or potentially forecast the event chain early during a discharge. This would serve as a cue to engage active mode control or a controlled plasma shutdown. Supported by US DOE Contracts DE-SC0016614 and DE-AC02-09CH11466.

  14. New aspects of plasma sheet dynamics - MHD and kinetic theory

    Directory of Open Access Journals (Sweden)

    H. Wiechen

    1999-05-01

    Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 RE tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection

  15. Magnetic fields in Planetary Nebulae: paradigms and related MHD frontiers

    Science.gov (United States)

    Blackman, Eric G.

    2009-04-01

    Many, if not all, post AGB stellar systems swiftly transition from a spherical to a powerful aspherical pre-planetary nebula (pPNE) outflow phase before waning into a PNe. The pPNe outflows require engine rotational energy and a mechanism to extract this energy into collimated outflows. Just radiation and rotation are insufficient but a symbiosis between rotation, differential rotation and large scale magnetic fields remains promising. Present observational evidence for magnetic fields in evolved stars is suggestive of dynamically important magnetic fields, but both theory and observation are rife with research opportunity. I discuss how magnetohydrodynamic outflows might arise in pPNe and PNe and distinguish different between approaches that address shaping vs. those that address both launch and shaping. Scenarios involving dynamos in single stars, binary driven dynamos, or accretion engines cannot be ruled out. One appealing paradigm involves accretion onto the primary post-AGB white dwarf core from a low mass companion whose decaying accretion supply rate owers first the pPNe and then the lower luminosity PNe. Determining observational signatures of different MHD engines is a work in progress. Accretion disk theory and large scale dynamos pose many of their own fundamental challenges, some of which I discuss in a broader context.

  16. Review of free-surface MHD experiments and modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Molokov, S.; Reed, C. B.

    2000-06-02

    This review paper was prepared to survey the present status of analytical and experimental work in the area of free surface MHD and thus provide a well informed starting point for further work by the Advanced Limiter-diverter Plasma-facing Systems (ALPS) program. ALPS were initiated to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/diverter systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2}, elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies.

  17. Ionospheric conductance distribution and MHD wave structure: observation and model

    Directory of Open Access Journals (Sweden)

    F. Budnik

    Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.

    Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.

  18. Ionospheric conductance distribution and MHD wave structure: observation and model

    Directory of Open Access Journals (Sweden)

    F. Budnik

    1998-02-01

    Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.

  19. Resistive MHD Stability Studies of Reversed-Field Pinch

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D.H.

    1996-11-01

    Resistive MHD stability studies of RFPs for various {mu} profiles and pressure profiles have been made. For the first time, a system which can simulate both the experimental hollow {mu} profiles and the locally flattened {mu} profiles has ben set up, thus enabling the extensive stability studies of equilibrium profiles. A {mu} profile locally flattened around the reversal surface is found to deteriorate the internal mode and the m=0 mode. It also expands the corresponding spectra of unstable modes. These may be associated with the increasing magnetic fluctuations. Broadening the {mu} profile is beneficial to stabilizing the internal modes. When a {mu} profile is hollow near the magnetic surface, the spectrum shrinks to low k{sub z} values and the field-reversal is deepened. Whether this hollow {mu} profile deteriorates RFP stability depends on its depth of hollowness and the pinch parameter. Furthermore, unstable modes in RFP are found to be very sensitive to the pressure gradient at the rational surface. Even for the typical {beta}{sub p}=0.1 case, the shaping of the pressure profile dramatically changes the stability of both the plasma core and the plasma boundary regions. These may cast doubt on the `free-force` assumption which is widely used in RFP simulations. 23 refs.

  20. Computer controlled MHD power consolidation and pulse generation system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Marcotte, K.; Donnelly, M.

    1990-01-01

    The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

  1. MHD simulation study of compact toroid injection into magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio; Kishimoto, Yasuaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hayashi, Takaya [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-06-01

    To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)

  2. Comparing MHD simulations of RFP plasmas to RELAX experiments

    Science.gov (United States)

    McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sauppe, J. P.; Masamune, S.; Sanpei, A.

    2015-11-01

    Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, which can be applied to general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we calculate linear stability and simulate the nonlinear evolution of plasmas similar to those in the RELAX RFP experiment, whose relatively modest Lundquist numbers of order 104 make the simulations tractable given present computing resources. The chosen RELAX cases cover a broad range of RFP reversal parameters and have also been previously simulated with the MIPS code (N. Mizuguchi et al., TH/P3-26, IAEA FEC, 2012). Experimental diagnostics that can be used for validation purposes include Thomson scattering for electron temperature, interferometry for electron density, SXR imaging, and external and internal magnetic probes. RELAX's small aspect ratio (~ 2) motivates a comparison study using toroidal and cylindrical geometries in NIMROD. This work is supported by the U.S. DOE and NSF and by the Japan Society for the Promotion of Science.

  3. Capacity Bounds for Parallel Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas

    2016-01-01

    A system consisting of parallel optical wireless channels with a total average intensity constraint is studied. Capacity upper and lower bounds for this system are derived. Under perfect channel-state information at the transmitter (CSIT), the bounds have to be optimized with respect to the power allocation over the parallel channels. The optimization of the lower bound is non-convex, however, the KKT conditions can be used to find a list of possible solutions one of which is optimal. The optimal solution can then be found by an exhaustive search algorithm, which is computationally expensive. To overcome this, we propose low-complexity power allocation algorithms which are nearly optimal. The optimized capacity lower bound nearly coincides with the capacity at high SNR. Without CSIT, our capacity bounds lead to upper and lower bounds on the outage probability. The outage probability bounds meet at high SNR. The system with average and peak intensity constraints is also discussed.

  4. Energy Transfer in Mixed Convection MHD Flow of Nanofluid Containing Different Shapes of Nanoparticles in a Channel Filled with Saturated Porous Medium.

    Science.gov (United States)

    Aaiza, Gul; Khan, Ilyas; Shafie, Sharidan

    2015-12-01

    Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.

  5. The Effects of Thermal Radiation on an Unsteady MHD Axisymmetric Stagnation-Point Flow over a Shrinking Sheet in Presence of Temperature Dependent Thermal Conductivity with Navier Slip.

    Science.gov (United States)

    Mondal, Sabyasachi; Haroun, Nageeb A H; Sibanda, Precious

    2015-01-01

    In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an unsteady and electrically conducting incompressible viscous fluid in with temperature dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear velocity. The magnetic field is imposed normally to the sheet. The model equations that describe this fluid flow are solved by using the spectral relaxation method. Here, heat transfer processes are discussed for two different types of wall heating; (a) a prescribed surface temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the various parameters affect the fluid flow, heat transfer and the temperature field with the aid of different graphical presentations and tabulated results.

  6. Performance Bounds of Quaternion Estimators.

    Science.gov (United States)

    Xia, Yili; Jahanchahi, Cyrus; Nitta, Tohru; Mandic, Danilo P

    2015-12-01

    The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed.

  7. Spectral computations for bounded operators

    CERN Document Server

    Ahues, Mario; Limaye, Balmohan

    2001-01-01

    Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...

  8. On order bounded subsets of locally solid Riesz spaces | Hong ...

    African Journals Online (AJOL)

    In a topological Riesz space there are two types of bounded subsets: order bounded subsets and topologically bounded subsets. It is natural to ask (1) whether an order bounded subset is topologically bounded and (2) whether a topologically bounded subset is order bounded. A classical result gives a partial answer to (1) ...

  9. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  10. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  11. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...

  12. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, A.C.W.(L.)

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  13. Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers

    Science.gov (United States)

    Grabbe, Crockett L.; Cairns, Iver H.

    1995-01-01

    A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a

  14. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  15. Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump.

    Science.gov (United States)

    Wang, Pei-Jen; Chang, Chia-Yuan; Chang, Ming-Lang

    2004-07-30

    MHD micro-pumps circumvent the wear and fatigue caused by high pressure-drop across the check valves of mechanical micro-pumps in micro-fluidic systems. Early analyses of the fluid flow for MHD micro-pumps were mostly made possible by the Poiseuille flow theory; however, this conventional laminar approach cannot illustrate the effects of various channel sizes and shapes. This paper, therefore, presents a simplified MHD flow model based upon steady state, incompressible and fully developed laminar flow theory to investigate the characteristics of a MHD pump. Inside the pump, flowing along the channel is the electrically conducting fluid flowing driven by the Lorentz forces in the direction perpendicular to both dc magnetic field and applied electric currents. The Lorentz forces were converted into a hydrostatic pressure gradient in the momentum equations of the MHD channel flow model. The numerical simulations conducted with the explicit finite difference method show that the channel dimensions and the induced Lorentz forces have significant influences on the flow velocity profile. Furthermore, the simulation results agree well with the experimental results published by other researchers.

  16. A simplified MHD model of capillary Z-Pinch compared with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)

    2016-11-15

    The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

    Science.gov (United States)

    Nabert, Christian; Othmer, Carsten; Glassmeier, Karl-Heinz

    2017-05-01

    The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD) simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms) magnetosheath data to estimate Earth's dipole moment.

  18. MHD heat and seed recovery technology project. Ninth quarterly report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, Michael; Johnson, Terry R.

    1980-05-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The primary effort of the HSR Technology Project at Argonne is directed toward experimental investigations of critical problem areas, such as (1) NO/sub x/ behavior in the radiant boiler and secondary combustor; (2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (4) formation, growth, and deposition of seed-slag particles; and (5) character of the combustion gas effluents. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, identification of ceramic and metallic materials for service in the MHD-steam plant, and evaluation of seed regeneration processes. Progress is described.

  19. MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  20. MHD activity in the ISX-B tokamak: experimental results and theoretical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, B.A.; Dunlap, J.L.; Bell, J.D.; Charlton, L.A.; Cooper, W.A.; Dory, R.A.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.

    1982-01-01

    The observed spectrum of MHD fluctuations in the ISX-B tokamak is clearly dominated by the n=1 mode when the q=1 surface is in the plasma. This fact agrees well with theoretical predictions based on 3-D resistive MHD calculations. They show that the (m=1; n=1) mode is then the dominant instability. It drives other n=1 modes through toroidal coupling and n>1 modes through nonlinear couplings. These theoretically predicted mode structures have been compared in detail with the experimentally measured wave forms (using arrays of soft x-ray detectors). The agreement is excellent. More detailed comparisons between theory and experiment have required careful reconstructions of the ISX-B equilibria. The equilibria so constructed have permitted a precise evaluation of the ideal MHD stability properties of ISX-B. The present results indicate that the high ..beta.. ISX-B equilibria are marginally stable to finite eta ideal MHD modes. The resistive MHD calculations also show that at finite ..beta.. there are unstable resistive pressure driven modes.

  1. Smoothed MHD equations for numerical simulations of ideal quasi-neutral gas dynamic flows

    Science.gov (United States)

    Popov, Mikhail V.; Elizarova, Tatiana G.

    2015-11-01

    We introduce a mathematical model and related numerical method for numerical modeling of ideal magnetohydrodynamic (MHD) gas flows as an extension of previously known quasi-gasdynamic (QGD) equations. This approach is based on smoothing, or averaging of the original MHD equation system over a small time interval that leads to a new equation system, named quasi-MHD, or QMHD system. The QMHD equations are closely related to the original MHD system except for additional strongly non-linear dissipative τ-terms with a small parameter τ as a factor. The τ-terms depend on the solution itself and decrease in regions with the small space gradients of the solution. In this sense the QMHD system could be regarded as an approach with adaptive artificial dissipation. The QMHD is a generalization of regularized (or quasi-) gas dynamic equation system suggested in last three decades. In the QMHD numerical method the evolution of all physical variables is presented in a non-split divergence form. Divergence-free evolution of the magnetic field provides by using a constrained transport method based on Faraday's law of induction. Accuracy and convergence of the QMHD method is verified on a wide set of standard MHD tests including the 3D Orszag-Tang vortex flow.

  2. The effects of weakly 3-D equilibrium on MHD stabiliyt of tokamak pedestals

    Science.gov (United States)

    Hegna, C. C.

    2013-10-01

    The stability of MHD modes is evaluated in the presence of an equilibrium perturbed by a topology-preserving 3-D distortion. The theory employs a perturbation approach assuming that the 3-D amplitude is small. In general, the 3-D distortion is destabilizing as it lowers the critical conditions for instability for the least stable mode. The theory is specialized to the MHD stability of pedestal modes in the presence of shielded RMP fields. Previous work has demonstrated that local MHD stability properties (and hence microinstabilities) can be significantly altered by the presence of applied 3-D fields. In this work, we expand these calculations in an effort to address whether RMP fields can affect `global' peeling-ballooning modes. For this application, the dominant 3-D modification is due to the localized resonant current responses at rational surfaces. These localized currents couple harmonics with different toroidal numbers and produce an MHD eigenmode with multiple toroidal harmonics. The physics of how the localized current structures affect the MHD stability of tokamak pedestals will be discussed. Research Supported by U. S. DoE grant no. DE-FG02-86ER53218.

  3. Using tolerance bounds in scientific investigations

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, J.R.

    1996-07-01

    Assessment of the variability in population values plays an important role in the analysis of scientific data. Analysis of scientific data often involves developing a bound on a proportion of a population. Sometimes simple probability bounds are obtained using formulas involving known mean and variance parameters and replacing the parameters by sample estimates. The resulting bounds are only approximate and fail to account for the variability in the estimated parameters. Tolerance bounds provide bounds on population proportions which account for the variation resulting from the estimated mean and variance parameters. A beta content, gamma confidence tolerance interval is constructed so that a proportion beta of the population lies within the region bounded by the interval with confidence gamma. An application involving corrosion measurements is used to illustrate the use of tolerance bounds for different situations. Extensions of standard tolerance intervals are applied to generate regression tolerance bounds, tolerance bounds for more general models of measurements collected over time, and tolerance intervals for varying precision data. Tolerance bounds also provide useful information for designing the collection of future data.

  4. Plasticity Approach to HSC Shear Wall Design

    DEFF Research Database (Denmark)

    Liu, Lunying; Nielsen, Mogens Peter

    1998-01-01

    The paper describes a simple theory for determining the ultimate strength of shear walls. It is based on application of the theory of perfectly plastic materials. When applied to concrete the theoretical solutions must be modified by inserting into the solutions a reduced compressive strength...... to 140 MPa and reinforcement yield strengths up to 1420 MPa. The work was carried out as a Ph.D. study by the first author, the second author supervising the study.Keywords: shear wall, plasticity, strut and tie, load-carrying capacity, concrete, reinforcement....... of concrete. The reduced strength is named the effective strength. The paper describes simple lower bound solutions. They consist of pure strut action or strut action combined with diagonal compression fields outside the struts. Near moment maximum and near supports the stress fields are modified to save...

  5. MHD Stagnation-Point Flow of Casson Fluid and Heat Transfer over a Stretching Sheet with Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Krishnendu Bhattacharyya

    2013-01-01

    Full Text Available The two-dimensional magnetohydrodynamic (MHD stagnation-point flow of electrically conducting non-Newtonian Casson fluid and heat transfer towards a stretching sheet have been considered. The effect of thermal radiation is also investigated. Implementing similarity transformations, the governing momentum, and energy equations are transformed to self-similar nonlinear ODEs and numerical computations are performed to solve those. The investigation reveals many important aspects of flow and heat transfer. If velocity ratio parameter (B and magnetic parameter (M increase, then the velocity boundary layer thickness becomes thinner. On the other hand, for Casson fluid it is found that the velocity boundary layer thickness is larger compared to that of Newtonian fluid. The magnitude of wall skin-friction coefficient reduces with Casson parameter (β. The velocity ratio parameter, Casson parameter, and magnetic parameter also have major effects on temperature distribution. The heat transfer rate is enhanced with increasing values of velocity ratio parameter. The rate of heat transfer is enhanced with increasing magnetic parameter M for B > 1 and it decreases with M for B < 1. Moreover, the presence of thermal radiation reduces temperature and thermal boundary layer thickness.

  6. Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation

    Science.gov (United States)

    Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan

    2017-12-01

    This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.

  7. Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2016-09-01

    Full Text Available Analytical solution of thermal diffusion and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium in the presence of thermal radiation and chemical reaction is obtained. Ramped wall temperature with ramped surface concentration, isothermal temperature with ramped surface concentration and isothermal temperature with constant surface concentration are taken into account. The governing non-dimensional equations are solved using Laplace transform technique and the solutions are presented in closed form. In order to get a perfect understanding of the physics of the problem we obtained numerical results using Matlab software and clarified with the help of graphical illustrations. With the help of velocity, temperature and concentration, Skin friction, Nusselt number and Sherwood number are obtained and represent through tabular form. Casson parameter is inversely proportional to the yield stress and it is observed that for the large value of Casson parameter, the fluid is close to the Newtonian fluid where the velocity is less than the non-Newtonian fluid. The intensification in values of Soret number produces a raise in the mass buoyancy force which results an increase in the value of velocity.

  8. MHD flow and heat transfer of an Ostwald–de Waele fluid over an unsteady stretching surface

    Directory of Open Access Journals (Sweden)

    K. Vajravelu

    2014-03-01

    Full Text Available An analysis is carried out to study the effects of variable thermo-physical properties on an unsteady MHD flow and heat transfer of an Ostwald–de Waele fluid over a stretching surface. The thermo-physical properties, namely, viscosity and thermal conductivity of the fluid are assumed to vary with temperature. Using similarity transformation, the governing partial differential equations are converted into coupled, non-linear ordinary differential equations with variable coefficients. The resulting non-linear equations are solved numerically by a second-order finite difference scheme known as the Keller-box method for various values of the pertinent parameters. Also, the numerical results are obtained for special cases and are found to be in good agreement with those of the results available in the literature. Further, the results obtained reveal many interesting behaviors that warrant further study of the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.

  9. MHD mixed convection analysis in an open channel by obstructed Poiseuille flow of non-Newtonian power law fluid

    Science.gov (United States)

    Rabbi, Khan Md.; Rakib, Tawfiqur; Das, Sourav; Mojumder, Satyajit; Saha, Sourav

    2016-07-01

    This paper demonstrates magneto-hydrodynamic (MHD) mixed convection flow through a channel with a rectangular obstacle at the entrance region using non-Newtonian power law fluid. The obstacle is kept at uniformly high temperature whereas the inlet and top wall of the channel are maintained at a temperature lower than obstacle temperature. Poiseuille flow is implemented as the inlet velocity boundary condition. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method has been appointed to solve the continuity, momentum and energy equations. The problem has been solved for wide range of pertinent parameters like Richardson number (Ri = 0.1 - 10) at a constant Reynolds number (Re = 100), Hartmann number (Ha = 0 - 100), power index (n = 0.6 - 1.6). The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study has been illustrated by average Nusselt number plots. It is observed that increment of Hartmann number (Ha) tends to decrease the heat transfer rate up to a critical value (Ha = 20) and then let increase the heat transfer performance. Thus maximum heat transfer rate has been recorded for higher Hartmann number and Rayleigh number in case of pseudo-plastic (n = 0.6) non-Newtonian fluid flow.

  10. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  11. Control of linear modes in cylindrical resistive magnetohydrodynamics with a resistive wall, plasma rotation, and complex gain

    Science.gov (United States)

    Brennan, D. P.; Finn, J. M.

    2014-10-01

    Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values βrp,rw βrp,iw is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below βrp,iw.

  12. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  13. Instanton bound states in ABJM theory

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.

  14. Distance hijacking attacks on distance bounding protocols

    OpenAIRE

    Cremers, Cas; Rasmussen, Kasper Bonne; Čapkun, Srdjan

    2011-01-01

    Distance bounding protocols are typically analyzed with respect to three types of attacks: Distance Fraud, Mafia Fraud, and Terrorist Fraud. We define a fourth main type of attacks on distance bounding protocols, called Distance Hijacking attacks. We show that many proposed distance bounding protocols are vulnerable to these attacks, and we propose solutions to make these protocols resilient to Distance Hijacking. Additionally, we generalize Distance Hijacking to Location Hijacking, to which ...

  15. Boundedly UC spaces: characterisations and preservation | Jain ...

    African Journals Online (AJOL)

    A metric space (X, d) is called a boundedly UC space if every closed and bounded subset of X is a UC space. A metric space (X, d) is called a UC space if each real-valued continuous function on (X, d) is uniformly continuous. In this paper, we study twenty-two equivalent conditions for a metric space to be a boundedly UC ...

  16. Bounded cohomology of discrete groups

    CERN Document Server

    Frigerio, Roberto

    2017-01-01

    The author manages a near perfect equilibrium between necessary technicalities (always well motivated) and geometric intuition, leading the readers from the first simple definition to the most striking applications of the theory in 13 very pleasant chapters. This book can serve as an ideal textbook for a graduate topics course on the subject and become the much-needed standard reference on Gromov's beautiful theory. -Michelle Bucher The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate student...

  17. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    Science.gov (United States)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  18. MHD mode activity and the velocity shear layer at TJ-II

    Science.gov (United States)

    van Milligen, B. Ph.; García, L.; Carreras, B. A.; Pedrosa, M. A.; Hidalgo, C.; Alonso, J. A.; Estrada, T.; Ascasíbar, E.

    2012-01-01

    Low-frequency MHD mode activity was studied at the TJ-II stellarator. A spatiotemporal Fourier technique was used to resolve frequency-degenerate modes. By means of this technique, several MHD modes could be identified in discharges with a spontaneous confinement transition in different but similar magnetic configurations. The configurations differed mainly with respect to the radial position of the rational surfaces, thus allowing the reconstruction of a poloidal mode rotation profile based on the mode activity, which was found to be consistent with earlier work. The detected mode spectrum also provided an explanation for the bicoherence observed in one of the configurations after the confinement transition. Both the mode spectrum and the velocity profile were closely reproduced by nonlinear resistive MHD calculations in simplified geometry. As a consequence, the magnetic Reynolds stress is hypothesized to play an important role in the establishment of the velocity shear layer in TJ-II and the concomitant confinement transition.

  19. Ideal MHD(-Einstein) Solutions Obeying The Force-Free Condition

    CERN Document Server

    Chu, Yi-Zen

    2016-01-01

    We find two families of analytic solutions to the ideal magnetohydrodynamics (iMHD) equations, in a class of 4-dimensional (4D) curved spacetimes. The plasma current is null, and as a result, the stress-energy tensor of the plasma itself can be chosen to take a cosmological-constant-like form. Despite the presence of a plasma, the force-free condition - where the electromagnetic current is orthogonal to the Maxwell tensor - continues to be maintained. Moreover, a special case of one of these two families leads us to a fully self-consistent solution to the Einstein-iMHD equations: we obtain the Vaidya-(anti-)de Sitter metric sourced by the plasma and a null electromagnetic stress tensor. We also provide a Mathematica code that researchers may use to readily verify analytic solutions to these iMHD equations in any curved 4D geometry.

  20. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    Science.gov (United States)

    González, J. J.; Guzmán, F.

    2015-12-01

    In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  1. The Effect of Magnetohydrodynamic (MHD) Energy Bypass on Specific Thrust for a Supersonic Turbojet Engine

    Science.gov (United States)

    Benyo, Theresa L.

    2010-01-01

    This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.

  2. Feasibility analysis of two-phase MHD energy conversion for liquid metal cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wu Qiao [Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR 97331 (United States)], E-mail: qiao@engr.orst.edu; Schubring, DuWayne L. [Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR 97331 (United States); Sienicki, James J. [Reactor Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2007-11-15

    A two-phase MHD energy conversion unit is proposed to a liquid metal cooled fast reactor. Using supercritical CO{sub 2} as the working fluid in the gas cycle without considering friction and heat losses, the optimized cycles efficiency is obtained, which is about 5% higher than that of the gas turbine Brayton cycle with the same regenerator/compressor configurations. Based on a simple MHD power analysis and the two-phase homogeneous flow model, the important system operational conditions were estimated. The results suggest that a liquid lead pump of at least 20% of the MHD power output is needed in order to convert the 400 MW reactor heat into electricity at the specified thermal efficiency, unless a mixture foam flow of void fraction greater than 80% is achievable at very high mixture velocity.

  3. Non-linear interaction between high energy ions and MHD-modes

    Energy Technology Data Exchange (ETDEWEB)

    Bergkvist, Tommy

    2001-12-01

    When heating a fusion plasma with ICRE or NBI a non-Maxwellian distribution function with high energy ions is created. Ions which are in resonance with a MHD mode will interact with the electric field from the mode and in some circumstances energy will flow from the particles to the mode or opposite. A quasi-linear model for the interaction between high energy ions and a MHD mode has been developed. To solve the time evolution of the MHD mode a module has been implemented into the Monte Carlo code FIDO, which is used for calculating a 3-dimensional distribution function. The model has been tested for an internal kink mode during fishbone oscillations.

  4. Bounded sets in fast complete inductive limits

    Directory of Open Access Journals (Sweden)

    Jan Kucera

    1984-01-01

    Full Text Available Let E1⊂E2⊂… be a sequence of locally convex spaces with all identity maps: En→En+1 continuous and E=indlim En fast complete. Then each set bounded in E is also bounded in some En iff for any Banach disk B bounded in E and n∈N, the closure of B⋂En in B is bounded in some Em. This holds, in particular, if all spaces En are webbed.

  5. Valuation models and Simon's bounded rationality

    National Research Council Canada - National Science Library

    Alexandra Strommer de Farias Godoi

    2009-01-01

    This paper aims at reconciling the evidence that sophisticated valuation models are increasingly used by companies in their investment appraisal with the literature of bounded rationality, according...

  6. Some Improved Nonperturbative Bounds for Fermionic Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)

    2016-06-15

    We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

  7. A strongly quasiconvex PAC-Bayesian bound

    DEFF Research Database (Denmark)

    Thiemann, Niklas; Igel, Christian; Wintenberger, Olivier

    We propose a new PAC-Bayesian bound and a way of constructing a hypothesis space, so that the bound is convex in the posterior distribution and also convex in a trade-off parameter between empirical performance of the posterior distribution and its complexity. The complexity is measured by the Ku......We propose a new PAC-Bayesian bound and a way of constructing a hypothesis space, so that the bound is convex in the posterior distribution and also convex in a trade-off parameter between empirical performance of the posterior distribution and its complexity. The complexity is measured...

  8. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...... is reduced. To investigate the possibilities, full-size wall elements with wooden cladding and different cavity design, type of cladding and type of wind barrier were exposed to natural climate on the outside and to a humid indoor climate on the inside. During the exposure period parts of the vapour barrier...

  9. Absence of complete finite-Larmor-radius stabilization in extended MHD.

    Science.gov (United States)

    Zhu, P; Schnack, D D; Ebrahimi, F; Zweibel, E G; Suzuki, M; Hegna, C C; Sovinec, C R

    2008-08-22

    The dominant finite-Larmour-radius (FLR) stabilization effects on interchange instability can be retained by taking into account the ion gyroviscosity or the generalized Ohm's law in an extended MHD model. However, recent simulations and theoretical calculations indicate that complete FLR stabilization of the interchange mode may not be attainable by ion gyroviscosity or the two-fluid effect alone in the framework of extended MHD. For a class of plasma equilibria in certain finite-beta or nonisentropic regimes, the critical wave number for complete FLR stabilization tends toward infinity.

  10. Study of fractal features of magnetized plasma through an MHD shell model

    Science.gov (United States)

    Domínguez, M.; Nigro, G.; Muñoz, V.; Carbone, V.

    2017-07-01

    A magnetohydrodynamic (MHD) shell model is used to describe the dissipative events which take place in magnetized plasmas. A scatter plot box-counting fractal dimension D is calculated for the time series of the magnetic energy dissipation rate obtained in the MHD shell model, and the correlation between D and the energy dissipation rate is analyzed. We show that, depending on the values of the viscosity and the diffusivity, the fractal dimension and the occurrence of bursts exhibit correlations similar to those observed in previous studies.

  11. Compressible MHD Turbulence in the Slow Solar Wind: Energy Transfer Rate

    Science.gov (United States)

    Sahraoui, F.; Andres, N.; Hadid, L.; Galtier, S.; Dmitruk, P.; Mininni, P. D.

    2016-12-01

    The role of compressible fluctuations in the MHD turbulence is investigated using direct numerical simulations and in-situ spacecraft in the solar wind. A focus is put on verifying the exact third-order law derived for compressible isothermal turbulence by Banerjee and Galtier, 2013. The numerical simulations use a 3D compressible MHD code in the isothermal limit ( =1) with low sonic Mach numbers (Ms<1). The main goal is to evaluate the relative importance of the new flux and source terms involved in the derived law. Direct comparison with spacecraft observations from the Themis spacecraft in the fast and slow solar wind will be made.

  12. Variational Integration for Ideal MHD with Built-in Advection Equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Qin, Hong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Burby, J. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-08-05

    Newcomb's Lagrangian for ideal MHD in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.

  13. Review and assessments of potential environmental, health and safety impacts of MHD technology. Final draft

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The purpose of this document is to develop an environmental, health and safety (EH and S) assessment and begin a site - specific assessment of these and socio - economic impacts for the magnetohydrodynamics program of the United States Department of Energy. This assessment includes detailed scientific and technical information on the specific EH and S issues mentioned in the MHD Environmental Development Plan. A review of current literature on impact-related subjects is also included. This document addresses the coal-fired, open-cycle MHD technology and reviews and assesses potential EH and S impacts resulting from operation of commercially-installed technology.

  14. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus

    Science.gov (United States)

    L. Braga, F.

    2013-10-01

    The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.

  15. New lower bound for the Capacitated Arc Routing Problem

    DEFF Research Database (Denmark)

    Wøhlk, Sanne

    2006-01-01

    We present a new lower bound, the Multiple Cuts Node Duplication Lower Bound, for the undirected Capacitated Arc Routing Problem.We prove that this new bound dominates the existing bounds for the problem. Computational results are also provided.......We present a new lower bound, the Multiple Cuts Node Duplication Lower Bound, for the undirected Capacitated Arc Routing Problem.We prove that this new bound dominates the existing bounds for the problem. Computational results are also provided....

  16. Anterior vaginal wall repair

    Science.gov (United States)

    ... may have you: Learn pelvic floor muscle exercises ( Kegel exercises ) Use estrogen cream in your vagina Try ... repair; Urinary incontinence - vaginal wall repair Patient Instructions Kegel exercises - self-care Self catheterization - female Suprapubic catheter ...

  17. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  18. Differential field equations for the MHD waves and wave equation of Alfven; Las ecuaciones diferenciales de campo para las ondas MHD y la ecuacion de onda de Alfven

    Energy Technology Data Exchange (ETDEWEB)

    Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-02-01

    In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.

  19. Bounded rationality and learning in complex markets

    NARCIS (Netherlands)

    Hommes, C.H.; Barkely Rosser Jr, J.

    2009-01-01

    This chapter reviews some work on bounded rationality, expectation formation and learning in complex markets, using the familiar demand-supply cobweb model. We emphasize two stories of bounded rationality, one story of adaptive learning and another story of evolutionary selection. According to the

  20. Bounded rationality and learning in complex markets

    NARCIS (Netherlands)

    Hommes, C.H.

    2007-01-01

    This chapter reviews some work on bounded rationality, expectation formation and learning in complex markets, using the familiar demand-supply cobweb model. We emphasize two stories of bounded rationality, one story of adaptive learning and another story of evolutionary selection. According to the