WorldWideScience

Sample records for walking speed results

  1. Walking speed-related changes in stride time variability: effects of decreased speed

    Directory of Open Access Journals (Sweden)

    Dubost Veronique

    2009-08-01

    Full Text Available Abstract Background Conflicting results have been reported regarding the relationship between stride time variability (STV and walking speed. While some studies failed to establish any relationship, others reported either a linear or a non-linear relationship. We therefore sought to determine the extent to which decrease in self-selected walking speed influenced STV among healthy young adults. Methods The mean value, the standard deviation and the coefficient of variation of stride time, as well as the mean value of stride velocity were recorded while steady-state walking using the GAITRite® system in 29 healthy young adults who walked consecutively at 88%, 79%, 71%, 64%, 58%, 53%, 46% and 39% of their preferred walking speed. Results The decrease in stride velocity increased significantly mean values, SD and CoV of stride time (p Conclusion The results support the assumption that gait variability increases while walking speed decreases and, thus, gait might be more unstable when healthy subjects walk slower compared with their preferred walking speed. Furthermore, these results highlight that a decrease in walking speed can be a potential confounder while evaluating STV.

  2. Establishing the Range of Perceptually Natural Visual Walking Speeds for Virtual Walking-In-Place Locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    to virtual motion. This paper describes two within-subjects studies performed with the intention of establishing the range of perceptually natural walking speeds for WIP locomotion. In both studies, subjects performed a series of virtual walks while exposed to visual gains (optic flow multipliers) ranging...... from 1.0 to 3.0. Thus, the slowest speed was equal to an estimate of the subjects normal walking speed, while the highest speed was three times greater. The perceived naturalness of the visual speed was assessed using self-reports. The first study compared four different types of movement, namely...... proportional to the degree of underestimation of the virtual speeds for both treadmill-mediated virtual walking and WIP locomotion. Combined, the results constitute a first attempt at establishing a set of guidelines specifying what virtual walking speeds WIP gestures should produce in order to facilitate...

  3. Optimal speeds for walking and running, and walking on a moving walkway.

    Science.gov (United States)

    Srinivasan, Manoj

    2009-06-01

    Many aspects of steady human locomotion are thought to be constrained by a tendency to minimize the expenditure of metabolic cost. This paper has three parts related to the theme of energetic optimality: (1) a brief review of energetic optimality in legged locomotion, (2) an examination of the notion of optimal locomotion speed, and (3) an analysis of walking on moving walkways, such as those found in some airports. First, I describe two possible connotations of the term "optimal locomotion speed:" that which minimizes the total metabolic cost per unit distance and that which minimizes the net cost per unit distance (total minus resting cost). Minimizing the total cost per distance gives the maximum range speed and is a much better predictor of the speeds at which people and horses prefer to walk naturally. Minimizing the net cost per distance is equivalent to minimizing the total daily energy intake given an idealized modern lifestyle that requires one to walk a given distance every day--but it is not a good predictor of animals' walking speeds. Next, I critique the notion that there is no energy-optimal speed for running, making use of some recent experiments and a review of past literature. Finally, I consider the problem of predicting the speeds at which people walk on moving walkways--such as those found in some airports. I present two substantially different theories to make predictions. The first theory, minimizing total energy per distance, predicts that for a range of low walkway speeds, the optimal absolute speed of travel will be greater--but the speed relative to the walkway smaller--than the optimal walking speed on stationary ground. At higher walkway speeds, this theory predicts that the person will stand still. The second theory is based on the assumption that the human optimally reconciles the sensory conflict between the forward speed that the eye sees and the walking speed that the legs feel and tries to equate the best estimate of the forward

  4. Biomechanical parameters in lower limbs during natural walking and Nordic walking at different speeds.

    Science.gov (United States)

    Dziuba, Alicja K; Żurek, Grzegorz; Garrard, Ian; Wierzbicka-Damska, Iwona

    2015-01-01

    Nordic Walking (NW) is a sport that has a number of benefits as a rehabilitation method. It is performed with specially designed poles and has been often recommended as a physical activity that helps reduce the load to limbs. However, some studies have suggested that these findings might be erroneous. The aim of this paper was to compare the kinematic, kinetic and dynamic parameters of lower limbs between Natural Walking (W) and Nordic Walking (NW) at both low and high walking speeds. The study used a registration system, BTS Smart software and Kistler platform. Eleven subjects walked along a 15-metre path at low (below 2 m⋅s-1) and high (over 2 m⋅s-1) walking speeds. The Davis model was employed for calculations of kinematic, kinetic and dynamic parameters of lower limbs. With constant speed, the support given by Nordic Walking poles does not make the stroke longer and there is no change in pelvic rotation either. The only change observed was much bigger pelvic anteversion in the sagittal plane during fast NW. There were no changes in forces, power and muscle torques in lower limbs. The study found no differences in kinematic, kinetic and dynamic parameters between Natural Walking (W) and Nordic Walking (NW). Higher speeds generate greater ground reaction forces and muscle torques in lower limbs. Gait parameters depend on walking speed rather than on walking style.

  5. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.

    Science.gov (United States)

    Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn

    2017-04-01

    To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.

  6. Influence of neuromuscular noise and walking speed on fall risk and dynamic stability in a 3D dynamic walking model.

    Science.gov (United States)

    Roos, Paulien E; Dingwell, Jonathan B

    2013-06-21

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The influence of gait speed on the stability of walking among the elderly.

    Science.gov (United States)

    Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo

    2016-06-01

    Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Energy cost of walking: solving the paradox of steady state in the presence of variable walking speed.

    Science.gov (United States)

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2009-02-01

    Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.

  9. Activating and relaxing music entrains the speed of beat synchronized walking

    OpenAIRE

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musi...

  10. Modulation of walking speed by changing optic flow in persons with stroke

    Directory of Open Access Journals (Sweden)

    Lamontagne Anouk

    2007-06-01

    Full Text Available Abstract Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF speed. The present study aims to: 1 compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2 investigate whether virtual environments (VE manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s, from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek. Instantaneous changes in gait speed (experiment 1 and the ratio of speed changes in the test trial over the control trial (experiment 2 were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1, an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p 0.05, T-test. Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when

  11. Effects of Door Width and Human Body Size on Walking Speed

    Directory of Open Access Journals (Sweden)

    Jetthumrong Siwalee

    2016-01-01

    Full Text Available Door width is one of the important factors to concern in layout or facilities design because it affects directly to traffic speed and overall traffic time simultaneously. Nowadays, common assessment method is computer simulation which is still not realistic due to the unchanged speed of model while walking through a door. This research aims to study an effect of door width to individual walking speed. Sixty subjects participated in the experiment and performed task by walking through the door that is set the width as 40, 50, 60, 70, 80, 90 and 100 centimetres. The optical motion capture system was used to determine walking speed. The results showed that Fitts’ law was applied to the participants with high weight. Door width below 70 centimetres significantly affected to changing speed at 0-0.5 m. before the door. Additionally, human size also affected changing speed. The factors include shoulder breadth, weight and interaction between shoulder breadth and weight were found to be significant. These factors explained 54.2% of changing speed.

  12. Effects of changing speed on knee and ankle joint load during walking and running.

    Science.gov (United States)

    de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren

    2015-01-01

    Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.

  13. EFFECTS OF UNSTABLE SHOES ON ENERGY COST DURING TREADMILL WALKING AT VARIOUS SPEEDS

    Directory of Open Access Journals (Sweden)

    Keiji Koyama

    2012-12-01

    Full Text Available In recent years, shoes having rounded soles in the anterior- posterior direction have been commercially introduced, which are commonly known as unstable shoes (US. However, physiological responses during walking in US, particularly at various speeds, have not been extensively studied to date. The purpose of this study was to investigate the effect of wearing unstable shoes while walking at low to high speeds on the rate of perceived exertion (RPE, muscle activation, oxygen consumption (VO2, and optimum speed. Healthy male adults wore US or normal walking shoes (WS, and walked at various speeds on a treadmill with no inclination. In experiment 1, subjects walked at 3, 4, 5, 6, and 7 km·h-1 (duration, 3 min for all speeds and were recorded on video from the right sagittal plane to calculate the step length and cadence. Simultaneously, electromyogram (EMG was recorded from six different thigh and calf muscles, and the integrated EMG (iEMG was calculated. In experiment 2, RPE, heart rate and VO2 were measured with the walking speed being increased from 3.6 to 7.2 km·h-1 incrementally by 0.9 km·h-1 every 6 min. The optimum speed, defined by the least oxygen cost, was calculated from the fitted quadratic relationship between walking speed and oxygen cost. Wearing US resulted in significantly longer step length and lower cadence compared with WS condition at any given speed. For all speeds, iEMG in the medial gastrocnemius and soleus muscles, heart rate, and VO2 were significantly higher in US than WS. However, RPE and optimum speed (US, 4.75 ± 0.32 km·h-1; WS, 4. 79 ± 0.18 km·h-1 did not differ significantly between the two conditions. These results suggest that unstable shoes can increase muscle activity of lower legs and energy cost without influencing RPE and optimum speed during walking at various speeds

  14. Activating and relaxing music entrains the speed of beat synchronized walking.

    Science.gov (United States)

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  15. Effects of walking speed on the step-by-step control of step width.

    Science.gov (United States)

    Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C

    2018-02-08

    Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.

  16. Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: a systematic review.

    Science.gov (United States)

    Nascimento, Lucas R; de Oliveira, Camila Quel; Ada, Louise; Michaelsen, Stella M; Teixeira-Salmela, Luci F

    2015-01-01

    After stroke, is walking training with cueing of cadence superior to walking training alone in improving walking speed, stride length, cadence and symmetry? Systematic review with meta-analysis of randomised or controlled trials. Adults who have had a stroke. Walking training with cueing of cadence. Four walking outcomes were of interest: walking speed, stride length, cadence and symmetry. This review included seven trials involving 211 participants. Because one trial caused substantial statistical heterogeneity, meta-analyses were conducted with and without this trial. Walking training with cueing of cadence improved walking speed by 0.23 m/s (95% CI 0.18 to 0.27, I(2)=0%), stride length by 0.21 m (95% CI 0.14 to 0.28, I(2)=18%), cadence by 19 steps/minute (95% CI 14 to 23, I(2)=40%), and symmetry by 15% (95% CI 3 to 26, random effects) more than walking training alone. This review provides evidence that walking training with cueing of cadence improves walking speed and stride length more than walking training alone. It may also produce benefits in terms of cadence and symmetry of walking. The evidence appears strong enough to recommend the addition of 30 minutes of cueing of cadence to walking training, four times a week for 4 weeks, in order to improve walking in moderately disabled individuals with stroke. PROSPERO (CRD42013005873). Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  17. A Case Study on the Walking Speed of Pedestrian at the Bus Terminal Area

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Mohd Firdaus

    2018-01-01

    Full Text Available Walking speed is one of the factors in understanding the pedestrian walking behaviours. Every pedestrian has different level of walking speed that are regulated by some factors such as gender and age. This study was conducted at a bus terminal area with two objectives in which the first one was to determine the average walking speed of pedestrian by considering the factors of age, gender, people with and without carrying baggage; and the second one was to make a comparison of the average walking speed that considered age as the factor of comparison between pedestrian at the bus terminal area and crosswalk. Demographic factor of pedestrian walking speed in this study are gender and age consist of male, female, and 7 groups of age categories that are children, adult men and women, senior adult men and women, over 70 and disabled person. Data of experiment was obtained by making a video recording of the movement of people that were walking and roaming around at the main lobby for 45 minutes by using a camcorder. Hence, data analysis was done by using software named Human Behaviour Simulator (HBS for analysing the data extracted from the video. The result of this study was male pedestrian walked faster than female with the average of walking speed 1.13m/s and 1.07m/s respectively. Averagely, pedestrian that walked without carrying baggage had higher walking speed compared to pedestrian that were carrying baggage with the speed of 1.02m/s and 0.70m/s respectively. Male pedestrian walks faster than female because they have higher level of stamina and they are mostly taller than female pedestrian. Furthermore, pedestrian with baggage walks slower because baggage will cause distractions such as pedestrian will have more weight to carry and people tend to walk slower.

  18. A Case Study on the Walking Speed of Pedestrian at the Bus Terminal Area

    Science.gov (United States)

    Firdaus Mohamad Ali, Mohd; Salleh Abustan, Muhamad; Hidayah Abu Talib, Siti; Abustan, Ismail; Rahman, Noorhazlinda Abd; Gotoh, Hitoshi

    2018-03-01

    Walking speed is one of the factors in understanding the pedestrian walking behaviours. Every pedestrian has different level of walking speed that are regulated by some factors such as gender and age. This study was conducted at a bus terminal area with two objectives in which the first one was to determine the average walking speed of pedestrian by considering the factors of age, gender, people with and without carrying baggage; and the second one was to make a comparison of the average walking speed that considered age as the factor of comparison between pedestrian at the bus terminal area and crosswalk. Demographic factor of pedestrian walking speed in this study are gender and age consist of male, female, and 7 groups of age categories that are children, adult men and women, senior adult men and women, over 70 and disabled person. Data of experiment was obtained by making a video recording of the movement of people that were walking and roaming around at the main lobby for 45 minutes by using a camcorder. Hence, data analysis was done by using software named Human Behaviour Simulator (HBS) for analysing the data extracted from the video. The result of this study was male pedestrian walked faster than female with the average of walking speed 1.13m/s and 1.07m/s respectively. Averagely, pedestrian that walked without carrying baggage had higher walking speed compared to pedestrian that were carrying baggage with the speed of 1.02m/s and 0.70m/s respectively. Male pedestrian walks faster than female because they have higher level of stamina and they are mostly taller than female pedestrian. Furthermore, pedestrian with baggage walks slower because baggage will cause distractions such as pedestrian will have more weight to carry and people tend to walk slower.

  19. Predicting the walking speed of pedestrians on stairs

    OpenAIRE

    Fujiyama, T.; Tyler, N.

    2010-01-01

    In this paper, we propose a framework in which the behaviour of a pedestrian is predicted based on the characteristics of both the pedestrian and the facility the pedestrian uses. As an example of its application, we develop a model to predict the walking speed of a pedestrian on stairs. We examine the physiology and biomechanics of walking on stairs, and then develop a model that predicts walking speed based on the weight and leg extensor power of the pedestrian, and the gradient of the stai...

  20. Activating and relaxing music entrains the speed of beat synchronized walking.

    Directory of Open Access Journals (Sweden)

    Marc Leman

    Full Text Available Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  1. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking

    Science.gov (United States)

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  2. Energetic consequences of human sociality: walking speed choices among friendly dyads.

    Directory of Open Access Journals (Sweden)

    Janelle Wagnild

    Full Text Available Research has shown that individuals have an optimal walking speed-a speed which minimizes energy expenditure for a given distance. Because the optimal walking speed varies with mass and lower limb length, it also varies with sex, with males in any given population tending to have faster optimal walking speeds. This potentially creates an energetic dilemma for mixed-sex walking groups. Here we examine speed choices made by individuals of varying stature, mass, and sex walking together. Individuals (N = 22 walked around a track alone, with a significant other (with and without holding hands, and with friends of the same and opposite sex while their speeds were recorded every 100 m. Our findings show that males walk at a significantly slower pace to match the females' paces (p = 0.009, when the female is their romantic partner. The paces of friends of either same or mixed sex walking together did not significantly change (p>0.05. Thus significant pace adjustment appears to be limited to romantic partners. These findings have implications for both mobility and reproductive strategies of groups. Because the male carries the energetic burden by adjusting his pace (slowing down 7%, the female is spared the potentially increased caloric cost required to walk together. In energetically demanding environments, we will expect to find gender segregation in group composition, particularly when travelling longer distances.

  3. Fast visual prediction and slow optimization of preferred walking speed.

    Science.gov (United States)

    O'Connor, Shawn M; Donelan, J Maxwell

    2012-05-01

    People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting 300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.

  4. Vitamin D and walking speed in older adults: Systematic review and meta-analysis.

    Science.gov (United States)

    Annweiler, Cedric; Henni, Samir; Walrand, Stéphane; Montero-Odasso, Manuel; Duque, Gustavo; Duval, Guillaume T

    2017-12-01

    Vitamin D is involved in musculoskeletal health. There is no consensus on a possible association between circulating 25-hydroxyvitamin D (25OHD) concentrations and walking speed, a 'vital sign' in older adults. Our objective was to systematically review and quantitatively assess the association of 25OHD concentration with walking speed. A Medline search was conducted on June 2017, with no limit of date, using the MeSH terms "Vitamin D" OR "Vitamin D Deficiency" combined with "Gait" OR "Gait disorders, Neurologic" OR "Walking speed" OR "Gait velocity". Fixed-effect meta-analyses were performed to compute: i) mean differences in usual and fast walking speeds and Timed Up and Go test (TUG) between participants with severe vitamin D deficiency (≤25nmol/L) (SVDD), vitamin D deficiency (≤50nmol/L) (VDD), vitamin D insufficiency (≤75nmol/L) (VDI) and normal vitamin D (>75nmol/L) (NVD); ii) risk of slow walking speed according to vitamin D status. Of the 243 retrieved studies, 22 observational studies (17 cross-sectional, 5 longitudinal) met the selection criteria. The number of participants ranged between 54 and 4100 (0-100% female). Usual walking speed was slower among participants with hypovitaminosis D, with a clinically relevant difference compared with NVD of -0.18m/s for SVDD, -0.08m/s for VDD and -0.12m/s for VDI. We found similar results regarding the fast walking speed (mean differences -0.04m/s for VDD and VDI compared with NVD) and TUG (mean difference 0.48s for SVDD compared with NVD). A slow usual walking speed was positively associated with SVDD (summary OR=2.17[95%CI:1.52-3.10]), VDD (OR=1.38[95%CI:1.01-1.89]) and VDI (OR=1.38[95%CI:1.04-1.83]), using NVD as the reference. In conclusion, this meta-analysis provides robust evidence that 25OHD concentrations are positively associated with walking speed among adults. Copyright © 2017. Published by Elsevier B.V.

  5. Effect of Traffic Noise and Relaxations Sounds on Pedestrian Walking Speed

    Directory of Open Access Journals (Sweden)

    Marek Franěk

    2018-04-01

    Full Text Available Exposure to noise in everyday urban life is considered to be an environmental stressor. A specific outcome of reactions to environmental stress is a fast pace of life that also includes a faster pedestrian walking speed. The present study examined the effect of listening to annoying acoustical stimuli (traffic noise compared with relaxation sounds (forest birdsong on walking speed in a real outdoor urban environment. The participants (N = 83 walked along an urban route of 1.8 km. They listened to either traffic noise or forest birdsong, or they walked without listening to any acoustical stimuli in the control condition. The results showed that participants listening to traffic noise walked significantly faster on the route than both the participants listening to forest birdsong sounds and the participants in the control condition. Participants who listened to forest birdsong walked slightly slower than those under control conditions; however, this difference was not significant. Analysis of the walk experience showed that participants who listened to forest birdsong during the walk liked the route more than those who listened to traffic sounds. The study demonstrated that exposure to traffic noise led to an immediate increase in walking speed. It was also shown that exposure to noise may influence participants’ perception of an environment. The same environment may be more liked in the absence of noise or in the presence of relaxation sounds. The study also documented the positive effect of listening to various kinds of relaxation sounds while walking in an outdoor environment with traffic noise.

  6. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.

    Science.gov (United States)

    Long, Leroy L; Srinivasan, Manoj

    2013-04-06

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.

  7. Factors associated with maximal walking speed among older community-living adults

    DEFF Research Database (Denmark)

    Sallinen, Janne; Mänty, Minna; Leinonen, Raija

    2011-01-01

    explained to 38%. Further adjusting for physical activity, smoking status and use of alcohol increased the variation explained by additional 7%. A minor further increase in variability explained was gained by adding chronic diseases and depressive symptoms in the model. In the final model, the single most...... 07330512) involving 605 community-living ambulatory adults aged 75-81 years. Maximal walking speed, leg extensor power, standing balance and body mass index were measured at the research center. Physical activity, smoking, use of alcohol, chronic diseases and depressive symptoms were self-reported using...... standard questionnaires. Results: The mean maximal walking speed was 1.4 m/s (range 0.3-2.9). In linear regression analysis, age, gender and body mass index explained 11% of the variation in maximal walking speed. Adding leg extensor power and standing balance into the model increased the variation...

  8. Treadmill Adaptation and Verification of Self-Selected Walking Speed: A Protocol for Children

    Science.gov (United States)

    Amorim, Paulo Roberto S.; Hills, Andrew; Byrne, Nuala

    2009-01-01

    Walking is a common activity of daily life and researchers have used the range 3-6 km.h[superscript -1] as reference for walking speeds habitually used for transportation. The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature and is identified as the most efficient walking speed, with…

  9. Effects of walking speed on asymmetry and bilateral coordination of gait

    Science.gov (United States)

    Plotnik, Meir; Bartsch, Ronny P.; Zeev, Aviva; Giladi, Nir; Hausdorff, Jeffery M.

    2013-01-01

    The mechanisms regulating the bilateral coordination of gait in humans are largely unknown. Our objective was to study how bilateral coordination changes as a result of gait speed modifications during over ground walking. 15 young adults wore force sensitive insoles that measured vertical forces used to determine the timing of the gait cycle events under three walking conditions (i.e., usual-walking, fast and slow). Ground reaction force impact (GRFI) associated with heel-strikes was also quantified, representing the potential contribution of sensory feedback to the regulation of gait. Gait asymmetry (GA) was quantified based on the differences between right and left swing times and the bilateral coordination of gait was assessed using the phase coordination index (PCI), a metric that quantifies the consistency and accuracy of the anti-phase stepping pattern. GA was preserved in the three different gait speeds. PCI was higher (reduced coordination) in the slow gait condition, compared to usual-walking (3.51% vs. 2.47%, respectively, p=0.002), but was not significantly affected in the fast condition. GRFI values were lower in the slow walking as compared to usual-walking and higher in the fast walking condition (pgait related changes in PCI were not associated with the slowed gait related changes in GRFI. The present findings suggest that left-right anti-phase stepping is similar in normal and fast walking, but altered during slowed walking. This behavior might reflect a relative increase in attention resources required to regulate a slow gait speed, consistent with the possibility that cortical function and supraspinal input influences the bilateral coordination of gait. PMID:23680424

  10. Tempo and walking speed with music in the urban context.

    Science.gov (United States)

    Franěk, Marek; van Noorden, Leon; Režný, Lukáš

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of

  11. Tempo and walking speed with music in the urban context

    Directory of Open Access Journals (Sweden)

    Marek eFranek

    2014-12-01

    Full Text Available The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al. 1999 on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of movement

  12. Tempo and walking speed with music in the urban context

    Science.gov (United States)

    Franěk, Marek; van Noorden, Leon; Režný, Lukáš

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of

  13. In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds.

    Science.gov (United States)

    Péter, A; Hegyi, A; Finni, T; Cronin, N J

    2017-12-01

    Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have examined FHL function during walking. Here, we investigated FHL fascicle behavior at different walking speeds. Ten healthy males walked overground at three different speeds while FHL fascicle length changes were recorded with ultrasound and muscle activity was recorded with surface electromyography (EMG). Fascicle length at heel strike at toe off and at peak EMG activity did not change with speed. Range of FHL fascicle length change (3.5-4.5 and 1.9-2.9 mm on average in stance and push-off phase, respectively), as well as minimum (53.5-54.9 and 53.8-55.7 mm) and maximum (58-58.4 and 56.8-57.7 mm) fascicle length did not change with speed in the stance or push-off phase. Mean fascicle velocity did not change in the stance phase, but increased significantly in the push-off phase between slow and fast walking speeds (P=.021). EMG activity increased significantly in both phases from slow to preferred and preferred to fast speed (P<.02 in all cases). FHL muscle fascicles worked near-isometrically during the whole stance phase (at least during slow walking) and operated at approximately the same length at different walking speeds. FHL and medial gastrocnemius (MG) have similar fiber length to muscle belly length ratios and, according to our results, also exhibit similar fascicle behavior at different walking speeds. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Walking during body-weight-supported treadmill training and acute responses to varying walking speed and body-weight support in ambulatory patients post-stroke.

    Science.gov (United States)

    Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf

    2013-05-01

    Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.

  15. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Guul, Martin Kjær; Nielsen, A. N.

    2017-01-01

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre...... of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve...... healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior...

  16. Impact of a Pilot Videogame-Based Physical Activity Program on Walking Speed in Adults with Schizophrenia.

    Science.gov (United States)

    Leutwyler, H; Hubbard, E; Cooper, B A; Dowling, G

    2017-11-10

    The purpose of this report is to describe the impact of a videogame-based physical activity program using the Kinect for Xbox 360 game system (Microsoft, Redmond, WA) on walking speed in adults with schizophrenia. In this randomized controlled trial, 28 participants played either an active videogame for 30 min (intervention group) or played a sedentary videogame for 30 min (control group), once a week for 6 weeks. Walking speed was measured objectively with the Short Physical Performance Battery at enrollment and at the end of the 6-week program. The intervention group (n = 13) showed an average improvement in walking speed of 0.08 m/s and the control group (n = 15) showed an average improvement in walking speed of 0.03 m/s. Although the change in walking speed was not statistically significant, the intervention group had between a small and substantial clinically meaningful change. The results suggest a videogame based physical activity program provides clinically meaningful improvement in walking speed, an important indicator of health status.

  17. The Perceived Naturalness of Virtual Walking Speeds during WIP Locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2016-01-01

    It is well established that individuals tend to underestimate visually presented walking speeds when relying on treadmills for virtual walking. However, prior to the present studies this perceptual distortion had not been observed in relation to Walking-in-Place (WIP) locomotion, and a number...... to how gait cycle characteristics, visual display properties, and methodological differences affect speed underestimation during treadmill and WIP locomotion. The studies suggested the following: A significant main effect was found for step frequency; both display and geometric field of view were...... inversely proportional to the degree of underestimation; varying degrees of peripheral occlusion and increased HMD weight did not yield significant main effects; and the choice of method (i.e., how the speeds were presented) had a significant effect on the upper and lower bounds of what speeds were...

  18. Measuring In-Home Walking Speed using Wall-Mounted RF Transceiver Arrays

    Science.gov (United States)

    Jacobs, Peter G.; Wan, Eric A.; Schafermeer, Erich; Adenwala, Fatema; Paul, Anindya S.; Preiser, Nick; Kaye, Jeffrey

    2014-01-01

    In this paper we present a new method for passively measuring walking speed using a small array of radio transceivers positioned on the walls of a hallway within a home. As a person walks between a radio transmitter and a receiver, the received signal strength (RSS) detected by the receiver changes in a repeatable pattern that may be used to estimate walking speed without the need for the person to wear any monitoring device. The transceivers are arranged as an array of 4 with a known distance between the array elements. Walking past the first pair of transceivers will cause a peak followed by a second peak when the person passes the second pair of transceivers. The time difference between these peaks is used to estimate walking speed directly. We further show that it is possible to estimate the walking speed by correlating the shape of the signal using a single pair of transceivers positioned across from each other in a hallway or doorframe. RMSE performance was less than 15 cm/s using a 2-element array, and less than 8 cm/s using a 4-element array relative to a gait mat used for ground truth. PMID:25570108

  19. Speed-related spinal excitation from ankle dorsiflexors to knee extensors during human walking

    DEFF Research Database (Denmark)

    Iglesias, Caroline; Nielsen, Jens Bo; Marchand-Pauvert, Véronique

    2008-01-01

    Automatic adjustments of muscle activity throughout the body are required for the maintenance of balance during human walking. One mechanism that is likely to contribute to this control is the heteronymous spinal excitation between human ankle dorsiflexors and knee extensors (CPQ-reflex). Here, we...... investigated the CPQ-reflex at different walking speeds (1-6 km/h) and stride frequencies (0.6-1.3 Hz) in healthy human subjects to provide further evidence of its modulation, and its role in ensuring postural stability during walking. The CPQ-reflex was small or absent at walking speeds below 2-3 km....../h, then increased with walking speeds about 3-4 km/h, and reached a plateau without any further change at walking speeds from 4 to 6 km/h. The reflex showed no modulation when the stride cycle was varied at constant speed (4 km/h; short steps versus long steps). These changes were unlikely to be only caused...

  20. A case study of energy expenditure based on walking speed reduction during walking upstairs situation at a staircase in FKAAS, UTHM, Johor building

    Science.gov (United States)

    Abustan, M. S.; Ali, M. F. M.; Talib, S. H. A.

    2018-04-01

    Walking velocity is a vector quantity that can be determined by calculating the time taken and displacement of a moving objects. In Malaysia, there are very few researches that were done to determine the walking velocity of citizens to be compared with other countries such as the study about walking upstairs during evacuation process is important when emergency case happen, if there are people in underground garages, they have to walk upstairs for exits and look for shelter and the walking velocity of pedestrian in such cases are necessary to be analysed. Therefore, the objective of this study is to determine the walking speed of pedestrian during walking upstairs situation, finding the relationship between pedestrian walking speed and the characteristics of the pedestrian as well as analysing the energy reduction by comparing the walking speed of pedestrian at the beginning and at the end of staircase. In this case study, an experiment was done to determine the average walking speed of pedestrian. The pedestrian has been selected from different gender, physical character, and age. Based on the data collected, the average normal walking speed of male pedestrian was 1.03 m/s while female was 1.08 m/s. During walking upstairs, the walking speed of pedestrian decreased as the number of floor increased. The average speed for the first stairwell was 0.90 m/s and the number decreased to 0.73 m/s for the second stairwell. From the reduction of speed, the energy used has been calculated and the average kinetic energy used was 1.69 J. Hence, the data collected can be used for further research of staircase design and plan of evacuation process.

  1. Inertial sensor-based methods in walking speed estimation: a systematic review.

    Science.gov (United States)

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  2. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Qingguo Li

    2012-05-01

    Full Text Available Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  3. Is perception of self-motion speed a necessary condition for intercepting a moving target while walking?

    Science.gov (United States)

    Morice, Antoine H P; Wallet, Grégory; Montagne, Gilles

    2014-04-30

    While it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed. On the other hand, the CBA strategy involves specific speed adjustments depending on the curvature of the target's trajectory, whereas the MRV does not. We hypothesized that one strategy is selected among the two depending on the informational content of the environment. We thus manipulated the curvature and display of the target's trajectory, and the relationship between physical walking speed and the GOFR (through eye height manipulations). Our results showed that when the target trajectory was not displayed, walking speed profiles were affected by curvature manipulations. Otherwise, walking speed profiles were less affected by curvature manipulations and were affected by the GOFR manipulations. Taken together, these results show that the use of the GOFR for intercepting a moving target while walking depends on the informational content of the environment. Finally we discuss the complementary roles of these two perceptual-motor strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Influence of Neuromuscular Noise and Walking Speed on Fall Risk and Dynamic Stability in a 3D Dynamic Walking Model

    OpenAIRE

    Roos, Paulien E.; Dingwell, Jonathan B.

    2013-01-01

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-r...

  5. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis

    OpenAIRE

    Juliana M. Rodrigues-Baroni; Lucas R. Nascimento; Louise Ada; Luci F. Teixeira-Salmela

    2014-01-01

    OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of rando...

  6. Treadmill walking of the pneumatic biped Lucy: Walking at different speeds and step-lengths

    Science.gov (United States)

    Vanderborght, B.; Verrelst, B.; Van Ham, R.; Van Damme, M.; Versluys, R.; Lefeber, D.

    2008-07-01

    Actuators with adaptable compliance are gaining interest in the field of legged robotics due to their capability to store motion energy and to exploit the natural dynamics of the system to reduce energy consumption while walking and running. To perform research on compliant actuators we have built the planar biped Lucy. The robot has six actuated joints, the ankle, knee and hip of both legs with each joint powered by two pleated pneumatic artificial muscles in an antagonistic setup. This makes it possible to control both the torque and the stiffness of the joint. Such compliant actuators are used in passive walkers to overcome friction when walking over level ground and to improve stability. Typically, this kind of robots is only designed to walk with a constant walking speed and step-length, determined by the mechanical design of the mechanism and the properties of the ground. In this paper, we show that by an appropriate control, the robot Lucy is able to walk at different speeds and step-lengths and that adding and releasing weights does not affect the stability of the robot. To perform these experiments, an automated treadmill was built

  7. Obesity does not impair walking economy across a range of speeds and grades.

    Science.gov (United States)

    Browning, Raymond C; Reynolds, Michelle M; Board, Wayne J; Walters, Kellie A; Reiser, Raoul F

    2013-05-01

    Despite the popularity of walking as a form of physical activity for obese individuals, relatively little is known about how obesity affects the metabolic rate, economy, and underlying mechanical energetics of walking across a range of speeds and grades. The purpose of this study was to quantify metabolic rate, stride kinematics, and external mechanical work during level and gradient walking in obese and nonobese adults. Thirty-two obese [18 women, mass = 102.1 (15.6) kg, BMI = 33.9 (3.6) kg/m(2); mean (SD)] and 19 nonobese [10 women, mass = 64.4 (10.6) kg, BMI = 21.6 (2.0) kg/m(2)] volunteers participated in this study. We measured oxygen consumption, ground reaction forces, and lower extremity kinematics while subjects walked on a dual-belt force-measuring treadmill at 11 speeds/grades (0.50-1.75 m/s, -3° to +9°). We calculated metabolic rate, stride kinematics, and external work. Net metabolic rate (Ė net/kg, W/kg) increased with speed or grade across all individuals. Surprisingly and in contrast with previous studies, Ė net/kg was 0-6% less in obese compared with nonobese adults (P = 0.013). External work, although a primary determinant of Ė net/kg, was not affected by obesity across the range of speeds/grades used in this study. We also developed new prediction equations to estimate oxygen consumption and Ė net/kg and found that Ė net/kg was positively related to relative leg mass and step width and negatively related to double support duration. These results suggest that obesity does not impair walking economy across a range of walking speeds and grades.

  8. Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study

    OpenAIRE

    Hamer, M.; Kivimaki, M.; Lahiri, A.; Yerramasu, A.; Deanfield, J. E.; Marmot, M. G.; Steptoe, A.

    2010-01-01

    Objective Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis.Design Cross-sectional.Setting Epidemiological cohort.Participants 530 adults (aged 63 +/- 6 years, 50.3% ma...

  9. Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study

    OpenAIRE

    Hamer, Mark; Kivimaki, Mika; Lahiri, Avijit; Yerramasu, Ajay; Deanfield, John E; Marmot, Michael G; Steptoe, Andrew

    2010-01-01

    Objective Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis. Design Cross-sectional. Setting Epidemiological cohort. Participants 530 adults (aged 63?6?years, 50.3% mal...

  10. Correlation between balance, speed, and walking ability in individuals with chronic hemiparesis

    Directory of Open Access Journals (Sweden)

    Heloisa Maria Jácome de Sousa Britto

    Full Text Available Abstract Alterations in balance and gait are frequently present in patients with hemiparesis. This study aimed at determining whether there is a correlation between static and functional balance, gait speed and walking capacity. To that end, 17 individuals with chronic hemiparesis of both sexes (58.8% men and 42.25 women, mean age of 56.3 ± 9.73 years, took part in the study. Static balance was assessed by computerized baropodometry, under two different sensory conditions: eyes open (EO and eyes closed (EC. Functional balance was evaluated by Berg Balance Scale and walking ability by the Functional Ambulation Classification. Gait speed was assessed by kinemetry. The Kolmogorov-Smirnov test was used to verify data distribution normality. Parametric variables were correlated by Pearson's test and their non-parametric parameters by Spearman's test. Functional balance showed a positive correlation with gait speed (p=0.005; r=0.64 and walking ability (p = 0.019; r = 0.56. Anteroposterior (AP and mediolateral (ML alterations with EO and EC exhibited negative correlations with gait speed (EO: AP amplitude (p = 0.0049 and r = -0.48; mean ML deviation (p = 0.019 and r =-0.56/ EC: mean AP deviation (p = 0.018 and r = -0.56 and mean ML deviation (p = 0.032 and r = -0.52; AP amplitude (p = 0.014 and r = -0.57 and ML amplitude (p = 0.032 and r = -0.52; postural instability (p = 0.019 and r = -0.55 and walking ability (EO: mean AP deviation (p = 0.05 and r = -0.47 and AP amplitude (p = 0.024 and r = -0.54. The results suggest correlations between static and functional balance and gait speed and walking ability, and that balance training can be an important component of gait recovery protocols.

  11. Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study.

    Science.gov (United States)

    Hamer, Mark; Kivimaki, Mika; Lahiri, Avijit; Yerramasu, Ajay; Deanfield, John E; Marmot, Michael G; Steptoe, Andrew

    2010-03-01

    Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis. Cross-sectional. Setting Epidemiological cohort. 530 adults (aged 63 + or - 6 years, 50.3% male) from the Whitehall II cohort study with no known history or objective signs of CVD. Electron beam computed tomography and ultrasound was used to assess the presence and extent of coronary artery calcification (CAC) and carotid intima-media thickness (IMT), respectively. High levels of CAC (Agatston score >100) were detected in 24% of the sample; the mean IMT was 0.75 mm (SD 0.15). Participants with no detectable CAC completed the walking course 0.16 s (95% CI 0.04 to 0.28) faster than those with CAC > or = 400. Objectively assessed, but not self-reported, faster walking speed was associated with a lower risk of high CAC (odds ratio 0.62, 95% CI 0.40 to 0.96) and lower IMT (beta=-0.04, 95% CI -0.01 to -0.07 mm) in comparison with the slowest walkers (bottom third), after adjusting for conventional risk factors. Faster walking speed was also associated with lower adiposity, C-reactive protein and low-density lipoprotein cholesterol. Short-distance walking speed is associated with metabolic risk and subclinical atherosclerosis in older adults without overt CVD. These data suggest that a non-aerobically challenging walking test reflects the presence of underlying vascular disease.

  12. The independent effects of speed and propulsive force on joint power generation in walking.

    Science.gov (United States)

    Browne, Michael G; Franz, Jason R

    2017-04-11

    Walking speed is modulated using propulsive forces (F P ) during push-off and both preferred speed and F P decrease with aging. However, even prior to walking slower, reduced F P may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time F P measurements to decouple and investigate the interaction between joint-level coordination, whole-body F P , and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9-1.3m/s). We immediately calculated the average F P from each speed. Subjects then walked at 1.3m/s while completing a series of biofeedback trials with instructions to match their instantaneous F P to their averaged F P from slower speeds. Walking slower decreased F P and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced F P , not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body F P , and walking speed in our aging population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development and validation of a new method to measure walking speed in free-living environments using the actibelt® platform.

    Directory of Open Access Journals (Sweden)

    Michaela Schimpl

    Full Text Available Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt® and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92-0.94 and a coverage probability CP1 of 0.46 (95%CI 0.12-0.70 for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94 when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure.

  14. Walking economy is predictably determined by speed, grade, and gravitational load.

    Science.gov (United States)

    Ludlow, Lindsay W; Weyand, Peter G

    2017-11-01

    The metabolic energy that human walking requires can vary by more than 10-fold, depending on the speed, surface gradient, and load carried. Although the mechanical factors determining economy are generally considered to be numerous and complex, we tested a minimum mechanics hypothesis that only three variables are needed for broad, accurate prediction: speed, surface grade, and total gravitational load. We first measured steady-state rates of oxygen uptake in 20 healthy adult subjects during unloaded treadmill trials from 0.4 to 1.6 m/s on six gradients: -6, -3, 0, 3, 6, and 9°. Next, we tested a second set of 20 subjects under three torso-loading conditions (no-load, +18, and +31% body weight) at speeds from 0.6 to 1.4 m/s on the same six gradients. Metabolic rates spanned a 14-fold range from supine rest to the greatest single-trial walking mean (3.1 ± 0.1 to 43.3 ± 0.5 ml O 2 ·kg -body -1 ·min -1 , respectively). As theorized, the walking portion (V̇o 2-walk  =  V̇o 2-gross - V̇o 2-supine-rest ) of the body's gross metabolic rate increased in direct proportion to load and largely in accordance with support force requirements across both speed and grade. Consequently, a single minimum-mechanics equation was derived from the data of 10 unloaded-condition subjects to predict the pooled mass-specific economy (V̇o 2-gross , ml O 2 ·kg -body + load -1 ·min -1 ) of all the remaining loaded and unloaded trials combined ( n = 1,412 trials from 90 speed/grade/load conditions). The accuracy of prediction achieved ( r 2  = 0.99, SEE = 1.06 ml O 2 ·kg -1 ·min -1 ) leads us to conclude that human walking economy is predictably determined by the minimum mechanical requirements present across a broad range of conditions. NEW & NOTEWORTHY Introduced is a "minimum mechanics" model that predicts human walking economy across a broad range of conditions from only three variables: speed, surface grade, and body-plus-load mass. The derivation

  15. Walking smoothness is associated with self-reported function after accounting for gait speed.

    Science.gov (United States)

    Lowry, Kristin A; Vanswearingen, Jessie M; Perera, Subashan; Studenski, Stephanie A; Brach, Jennifer S

    2013-10-01

    Gait speed has shown to be an indicator of functional status in older adults; however, there may be aspects of physical function not represented by speed but by the quality of movement. The purpose of this study was to determine the relations between walking smoothness, an indicator of the quality of movement based on trunk accelerations, and physical function. Thirty older adults (mean age, 77.7±5.1 years) participated. Usual gait speed was measured using an instrumented walkway. Walking smoothness was quantified by harmonic ratios derived from anteroposterior, vertical, and mediolateral trunk accelerations recorded during overground walking. Self-reported physical function was recorded using the function subscales of the Late-Life Function and Disability Instrument. Anteroposterior smoothness was positively associated with all function components of the Late-Life Function and Disability Instrument, whereas mediolateral smoothness exhibited negative associations. Adjusting for gait speed, anteroposterior smoothness remained associated with the overall and lower extremity function subscales, whereas mediolateral smoothness remained associated with only the advanced lower extremity subscale. These findings indicate that walking smoothness, particularly the smoothness of forward progression, represents aspects of the motor control of walking important for physical function not represented by gait speed alone.

  16. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    Science.gov (United States)

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  17. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity: A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking

    Science.gov (United States)

    Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; den Otter, Rob

    2014-01-01

    Background For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. Methods Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. Results The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. Conclusion Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible. PMID:25226302

  18. Mobility-Related Fatigue, Walking Speed, and Muscle Strength in Older People

    DEFF Research Database (Denmark)

    Mänty, Minna; Mendes de Leon, Carlos F.; Rantanen, Taina

    2012-01-01

    history, as well as performance-based assessment of walking speed and maximal isometric strength of knee extension, body extension, and handgrip. Results. In the cross-sectional baseline analysis, one unit increase in fatigue score was associated with 0.03 m/s (b = −.03, p ... the degree to which muscle strength accounts for this association. Methods. The study is based on baseline (n = 523) and 5-year follow-up data (n = 292) from a cohort of 75-year-old persons. Standardized assessments include self-report measures of mobility-related fatigue (score range 0–6) and medical......, p strength accounted up to 21% and among men up to 24% for the association. In the prospective analysis, fatigue at baseline was predictive of change in walking speed...

  19. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  20. The effect of walking speed on local dynamic stability is sensitive to calculation methods

    DEFF Research Database (Denmark)

    Stenum, Jan; Bruijn, Sjoerd M; Jensen, Bente Rona

    2014-01-01

    Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been...... reported. This might pertain to methodological differences in calculating λS. Therefore, the aim was to test if different calculation methods would induce different effects of walking speed on local dynamic stability. Ten young healthy participants walked on a treadmill at five speeds (60%, 80%, 100%, 120......% and 140% of preferred walking speed) for 3min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λS-a), (b) a fixed number...

  1. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Yoon Jungwon

    2012-08-01

    Full Text Available Abstract Background Virtual reality (VR technology along with treadmill training (TT can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW to more closely simulate over ground walking (OGW during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW, which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Methods Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. Results The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities

  2. Effect of the walking speed to the lower limb joint angular displacements, joint moments and ground reaction forces during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-ichiro; Nakazawa, Kimitaka; Akai, Masami

    2004-06-17

    The purpose of this study was to compare the changes in ground reaction forces (GRF), joint angular displacements (JAD), joint moments (JM) and electromyographic (EMG) activities that occur during walking at various speeds in water and on land. Fifteen healthy adults participated in this study. In the water experiments, the water depth was adjusted so that body weight was reduced by 80%. A video-motion analysis system and waterproof force platform was used to obtain kinematics and kinetics data and to calculate the JMs. Results revealed that (1) the anterior-posterior GRF patterns differed between walking in water and walking on land, whereas the medio-lateral GRF patterns were similar, (2) the JAD patterns of the hip and ankle were similar between water- and land-walking, whereas the range of motion at the knee joint was lower in water than on land, (3) the JMs in all three joints were lower in water than on land throughout the stance phase, and (4) the hip joint extension moment and hip extensor muscle EMG activity were increased as walking speed increase during walking in water. Rehabilitative water-walking exercise could be designed to incorporate large-muscle activities, especially of the lower-limb extensor muscles, through full joint range of motion and minimization of joint moments.

  3. Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running.

    Science.gov (United States)

    Giarmatzis, Georgios; Jonkers, Ilse; Wesseling, Mariska; Van Rossom, Sam; Verschueren, Sabine

    2015-08-01

    Exercise plays a pivotal role in maximizing peak bone mass in adulthood and maintaining it through aging, by imposing mechanical loading on the bone that can trigger bone mineralization and growth. The optimal type and intensity of exercise that best enhances bone strength remains, however, poorly characterized, partly because the exact peak loading of the bone produced by the diverse types of exercises is not known. By means of integrated motion capture as an input to dynamic simulations, contact forces acting on the hip of 20 young healthy adults were calculated during walking and running at different speeds. During walking, hip contact forces (HCFs) have a two-peak profile whereby the first peak increases from 4.22 body weight (BW) to 5.41 BW and the second from 4.37 BW to 5.74 BW, by increasing speed from 3 to 6 km/h. During running, there is only one peak HCF that increases from 7.49 BW to 10.01 BW, by increasing speed from 6 to 12 km/h. Speed related profiles of peak HCFs and ground reaction forces (GRFs) reveal a different progression of the two peaks during walking. Speed has a stronger impact on peak HCFs rather than on peak GRFs during walking and running, suggesting an increasing influence of muscle activity on peak HCF with increased speed. Moreover, results show that the first peak of HCF during walking can be predicted best by hip adduction moment, and the second peak of HCF by hip extension moment. During running, peak HCF can be best predicted by hip adduction moment. The present study contributes hereby to a better understanding of musculoskeletal loading during walking and running in a wide range of speeds, offering valuable information to clinicians and scientists exploring bone loading as a possible nonpharmacological osteogenic stimulus. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  4. Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Rémy Phan-Ba

    Full Text Available BACKGROUND AND RATIONALE: Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS. We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW, a corrected version of the T25FW with dynamic start (T25FW(+, the timed 100-meter walk (T100MW and the timed 500-meter walk (T500MW. METHODS: Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. RESULTS: The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. CONCLUSION: The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.

  5. [Factors associated with slow walking speed in older adults of a district in Lima, Peru].

    Science.gov (United States)

    Rodríguez, Gabriela; Burga-Cisneros, Daniella; Cipriano, Gabriela; Ortiz, Pedro J; Tello, Tania; Casas, Paola; Aliaga, Elizabeth; Varela, Luis F

    2017-01-01

    To determine the factors associated with slow walking speed in older adults living in a district of Lima, Peru. Analysis of secondary data. Adults older than 60 years were included in the study, while adults with physical conditions who did not allow the evaluation of the walking speed were excluded. The dependent variable was slow walking speed (less than 1 m/s), and the independent variables were sociodemographic, clinical, and geriatric data. Raw and adjusted prevalence ratios (PR) were calculated with 95% confidence intervals (95% CI). The study sample included 416 older adults aged 60 to 99 years, and 41% of the participants met the slow walking speed criterion. The factors associated with slow walking speed in this sample were female gender (PR, 1.45; 95% CI, 1.13-1.88), age > 70 years (PR, 1.73; 95% CI, 1.30- 2.30), lower level of education (PR, 2.07, 95% CI, 1.20-3.55), social-familial problems (PR, 1.66; 95% CI, 1.08-2.54), diabetes mellitus (PR, 1.35; 95% CI, 1.01-1.80), and depression (PR, 1.41; 95% CI, 1.02-1.95). The modifiable factors associated with slow walking speed in older adults included clinical and social-familial problems, and these factors are susceptible to interventions from the early stages of life.

  6. Mildly disabled persons with multiple sclerosis use similar net joint power strategies as healthy controls when walking speed increases

    DEFF Research Database (Denmark)

    Brincks, John; Sørensen, Henrik; Dalgas, Ulrik

    2018-01-01

    flexors in mildly disabled persons with MS and healthy controls at different walking speeds. METHODS:Thirteen persons with MS and thirteen healthy controls participated and peak net joint power was calculated using 3D motion analysis. RESULTS:In general, no differences were found between speed......-matched healthy controls and persons with MS, but the fastest walking speed was significantly higher in healthy controls (2.42 m/s vs. 1.70 m/s). The net joint power increased in hip flexors, hip extensors, hip abductors, knee extensors and plantar flexors in both groups, when walking speed increased. Significant...... correlations between changes in walking speed and changes in net joint power of plantar flexors, hip extensors and hip flexors existed in healthy controls and persons with MS, and in net knee extensor absorption power of persons with MS only. CONCLUSION:In contrast to previous studies, these findings suggest...

  7. Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds.

    Science.gov (United States)

    Yamaguchi, Takeshi; Suzuki, Akito; Hokkirigawa, Kazuo

    2017-01-01

    This study investigated the required coefficient of friction (RCOF) and the tangent of center of mass (COM)-center of pressure (COP) angle in the mediolateral (ML) and anteroposterior (AP) directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females) participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast). The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM-COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM-COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase). Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results.

  8. Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds.

    Directory of Open Access Journals (Sweden)

    Takeshi Yamaguchi

    Full Text Available This study investigated the required coefficient of friction (RCOF and the tangent of center of mass (COM-center of pressure (COP angle in the mediolateral (ML and anteroposterior (AP directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast. The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM-COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM-COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase. Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results.

  9. The Effect of Head Mounted Display Weight and Locomotion Method on the Perceived Naturalness of Virtual Walking Speeds

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    This poster details a study investigating the effect of Head Mounted Display (HMD) weight and locomotion method (Walking-In-Place and treadmill walking) on the perceived naturalness of virtual walking speeds. The results revealed significant main effects of movement type, but no significant effec...

  10. Effect of walking speed and placement position interactions in determining the accuracy of various newer pedometers

    Directory of Open Access Journals (Sweden)

    Wonil Park

    2014-06-01

    Full Text Available Older types of pedometers had varied levels of accuracy, which ranged from 0% to 45%. In addition, to obtain accurate results, it was also necessary to position them in a certain way. By contrast, newer models can be placed anywhere on the body; however, their accuracy is unknown when they are placed at different body sites. We determined the accuracy of various newer pedometers under controlled laboratory and free walking conditions. A total of 40 participants, who varied widely in age and body mass index, were recruited for the study. The numbers of steps recorded using five different pedometers placed at the waist, the chest, in a pocket, and on an armband were compared against those counted with a hand tally counter. With the exception of one, all the pedometers were accurate at moderate walking speeds, irrespective of their placement on the body. However, the accuracy tended to decrease at slower and faster walking speeds, especially when the pedometers were worn in the pockets or kept in the purse (p < 0.05. In conclusion, most pedometers examined were accurate when they were placed at the waist, chest, and armband irrespective of the walking speed or terrain. However, some pedometers had reduced accuracy when they were kept in a pocket or placed in a purse, especially at a slower and faster walking speeds.

  11. Human Skeleton Model Based Dynamic Features for Walking Speed Invariant Gait Recognition

    Directory of Open Access Journals (Sweden)

    Jure Kovač

    2014-01-01

    Full Text Available Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometrics can be captured at public places from a distance without subject's collaboration, awareness, and even consent. Although current approaches give encouraging results, we are still far from effective use in real-life applications. In general, methods set various constraints to circumvent the influence of covariate factors like changes of walking speed, view, clothing, footwear, and object carrying, that have negative impact on recognition performance. In this paper we propose a skeleton model based gait recognition system focusing on modelling gait dynamics and eliminating the influence of subjects appearance on recognition. Furthermore, we tackle the problem of walking speed variation and propose space transformation and feature fusion that mitigates its influence on recognition performance. With the evaluation on OU-ISIR gait dataset, we demonstrate state of the art performance of proposed methods.

  12. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.

    Science.gov (United States)

    Yoon, Jungwon; Park, Hyung-Soon; Damiano, Diane Louise

    2012-08-28

    different for 1.0 m/s gait velocities. Our treadmill control scheme implements similar gait biomechanics of TDW, which has been used for repetitive gait training in a small and constrained space as well as controlled and safe environments. These results reveal that users can walk as stably during UDW as TDW and employ similar strategies to maintain walking speed in both UDW and TDW. Furthermore, since UDW can allow a user to actively participate in the virtual reality (VR) applications with variable walking velocity, it can induce more cognitive activities during the training with VR, which may enhance motor learning effects.

  13. Age-Related Imbalance Is Associated With Slower Walking Speed: An Analysis From the National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri

    Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and

  14. Walking economy during cued versus non-cued self-selected treadmill walking in persons with Parkinson's disease.

    Science.gov (United States)

    Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing

    2014-01-01

    Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.

  15. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea J. M.; Krijnen, Wim P.; Van der Schans, Cees P.; De Groot, Martijn

    Purpose: To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  16. Reliability and validity of ten consumer activity trackers depend on walking speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea; Krijnen, Wim; van der Schans, Cees; de Groot, Martijn

    Purpose: To examine the test–retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  17. Changes in resting and walking energy expenditure and walking speed during pregnancy in obese women.

    Science.gov (United States)

    Byrne, Nuala M; Groves, Ainsley M; McIntyre, H David; Callaway, Leonie K

    2011-09-01

    Energy-conserving processes reported in undernourished women during pregnancy are a recognized strategy for providing the energy required to support fetal development. Women who are obese before conceiving arguably have sufficient fat stores to support the energy demands of pregnancy without the need to provoke energy-conserving mechanisms. We tested the hypothesis that obese women would show behavioral adaptation [ie, a decrease in self-selected walking (SSW) speed] but not metabolic compensation [ie, a decrease in resting metabolic rate (RMR) or the metabolic cost of walking] during gestation. RMR, SSW speed, metabolic cost of walking, and anthropometric variables were measured in 23 women aged 31 ± 4 y with a BMI (in kg/m(2)) of 33.6 ± 2.5 (mean ± SD) at ≈15 and 30 wk of gestation. RMR was also measured in 2 cohorts of nonpregnant control subjects matched for the age, weight, and height of the pregnant cohort at 15 (n = 23) and 30 (n = 23) wk. Gestational weight gain varied widely (11.3 ± 5.4 kg), and 52% of the women gained more weight than is recommended. RMR increased significantly by an average of 177 ± 176 kcal/d (11 ± 12%; P 80% of the cohort, the net oxygen cost of walking decreased in the same proportion of women. Although the increase in RMR was greater than that explained by weight gain, evidence of both behavioral and biological compensation in the metabolic cost of walking was observed in obese women during gestation. The trial is registered with the Australian Clinical Trials Registry as ACTRN012606000271505.

  18. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Choo, Hao Yu; Sato, Hirotaka

    2016-03-01

    We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. © 2016 The Author(s).

  19. Race Differences: Use of Walking Speed to Identify Community-Dwelling Women at Risk for Poor Health Outcomes--Osteoarthritis Initiative Study.

    Science.gov (United States)

    Kirkness, Carmen S; Ren, Jinma

    2015-07-01

    Onset of disability, risk for future falls, frailty, functional decline, and mortality are strongly associated with a walking speed of less than 1.0 m/s. The study objective was to determine whether there were differences in slow walking speed (differences in walking speed can be attributed to age, obesity, socioeconomic factors, disease severity, or comorbidities. A cross-sectional design was used. Community-dwelling adults were recruited from Baltimore, Maryland; Columbus, Ohio; Pittsburgh, Pennsylvania; and Pawtucket, Rhode Island. Participants were 2,648 women (23% African American) who were 45 to 79 years of age and had a self-selected baseline walking speed of 20 m/s in the Osteoarthritis Initiative Study. Mixed-effects logistic regression models were used to examine racial differences in walking speed (<1.0 m/s versus ≥1.0 m/s), with adjustments for demographic factors, socioeconomic factors, disease severity, and comorbidities. Walking speed was significantly slower for African American women than for white American women (mean walking speed=1.19 and 1.33 m/s, respectively). The prevalence of a walking speed of less than 1.0 m/s in this cohort of middle-aged women was 9%; about 50% of the women with a walking speed of less than 1.0 m/s were younger than 65 years. Women with a walking speed of less than 1.0 m/s had lower values for socioeconomic factors, higher values for disease severity, and higher prevalences of obesity and comorbidities than those with a walking speed of ≥1.0 m/s. After controlling for these covariates, it was found that African American women were 3 times (odds ratio=2.9; 95% confidence interval=2.0, 4.1) more likely to have a walking speed of less than 1.0 m/s than white American women. The study design made it impossible to know whether a walking speed of less than 1.0 m/s in women who were 45 years of age or older was a predictor of future poor health outcomes. In this study, race was independently associated with a walking speed

  20. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy.

    Science.gov (United States)

    Sloot, Lizeth H; Harlaar, Jaap; van der Krogt, Marjolein M

    2015-10-01

    While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the effect of self-paced (SP) versus fixed speed (FS) walking and of walking with and without a virtual reality (VR) in 11 typically developing (TD) children and nine children with cerebral palsy (CP). We found that subjects walked in SP mode with twice as much between-stride walking speed variability (pinteraction effects between SP and group (TD versus CP) were found for five out of 33 parameters. This suggests that children with CP might need more time to familiarize to SP walking, however, these differences were generally too small to be clinically relevant. The VR environment did not affect the kinematic or kinetic parameters, but walking with VR was rated as more similar to overground walking by both groups (p=0.02). The results of this study indicate that both SP and FS walking, with and without VR, can be used interchangeably for treadmill-based clinical gait analysis in children with and without CP. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. An observation of the walking speed of evacuees during a simulated tsunami evacuation in Padang, Indonesia

    Science.gov (United States)

    Yosritzal; Kemal, B. M.; Purnawan; Putra, H.

    2018-04-01

    This paper presents a simulation study to observe the walking speed of evacuee in the case of tsunami evacuation in Padang, West Sumatera, Indonesia. A number of 9 volunteers, 6 observers, 1 route with 5 segments were involved in the simulation. The chosen route is the easiest path and the volunteers were ordered to walk in hurry to a particular place which was assumed as a shelter. The observers were placed at some particular places to record the time when an evacuee passes their place. The distance between the observers were measured using a manual distance meter. The study found that the average walking speed during the evacuation was 1.419 m/s. Walking speed is varied by age and gender of the evacuee.

  2. Genetic Analysis of Daily Maximum Milking Speed by a Random Walk Model in Dairy Cows

    DEFF Research Database (Denmark)

    Karacaören, Burak; Janss, Luc; Kadarmideen, Haja

    Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models of ...... filter applications: random walk model could give online prediction of breeding values. Hence without waiting for whole lactation records, genetic evaluation could be made when the daily or monthly data is available......Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models...... of maximum milking speed. Wood curve did not provide a good fit to the data set. Quadratic random regressions gave better predictions compared with the random walk model. However random walk model does not need to be evaluated for different orders of regression coefficients. In addition with the Kalman...

  3. Mildly disabled persons with multiple sclerosis use similar net joint power strategies as healthy controls when walking speed increases.

    Science.gov (United States)

    Brincks, John; Christensen, Lars Ejsing; Rehnquist, Mette Voigt; Petersen, Jesper; Sørensen, Henrik; Dalgas, Ulrik

    2018-01-01

    To improve walking in persons with multiple sclerosis (MS), it is essential to understand the underlying mechanisms of walking. This study examined strategies in net joint power generated or absorbed by hip flexors, hip extensors, hip abductors, knee extensors, and plantar flexors in mildly disabled persons with MS and healthy controls at different walking speeds. Thirteen persons with MS and thirteen healthy controls participated and peak net joint power was calculated using 3D motion analysis. In general, no differences were found between speed-matched healthy controls and persons with MS, but the fastest walking speed was significantly higher in healthy controls (2.42 m/s vs. 1.70 m/s). The net joint power increased in hip flexors, hip extensors, hip abductors, knee extensors and plantar flexors in both groups, when walking speed increased. Significant correlations between changes in walking speed and changes in net joint power of plantar flexors, hip extensors and hip flexors existed in healthy controls and persons with MS, and in net knee extensor absorption power of persons with MS only. In contrast to previous studies, these findings suggest that mildly disabled persons with MS used similar kinetic strategies as healthy controls to increase walking speed.

  4. Combined application of FBG and PZT sensors for plantar pressure monitoring at low and high speed walking.

    Science.gov (United States)

    Suresh, R; Bhalla, S; Singh, C; Kaur, N; Hao, J; Anand, S

    2015-01-01

    Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation. The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds. For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d_{33} (thickness) coupling mode. A sensitivity of 7.06 mV/kPa and a pressure resolution of 0.14 kPa is obtained from these sensors, which are found to be suitable for foot pressure measurement during high speed walking and running. Both types of sensors are attached to the underside of the sole of commercially available shoes. In the experiments, a healthy male subject walks/runs over the treadmill wearing the fabricated shoes at various speeds and the peak pressure is measured using both the sensors. Commercially available low-cost hardware is used for interrogation of the two sensor types. The test results clearly show the feasibility of the FBG and the PZT sensors for measurement of plantar pressure. The PZT sensors are more accurate for measurement of pressure during walking at high speeds. The FBG sensors, on the other hand, are found to be suitable for static and quasi-dynamic (slow walking) conditions. Typically, the measured pressure varied from 400 to 600 kPa below the forefoot and 100 to 1000 kPa below the heel as the walking speed varied from 1

  5. Investigating the relationship between energy expenditure, walking speed and angle of turning in humans.

    Directory of Open Access Journals (Sweden)

    M A McNarry

    Full Text Available Recent studies have suggested that changing direction is associated with significant additional energy expenditure. A failure to account for this additional energy expenditure of turning has significant implications in the design and interpretation of health interventions. The purpose of this study was therefore to investigate the influence of walking speed and angle, and their interaction, on energy expenditure in 20 healthy adults (7 female; 28±7 yrs. On two separate days, participants completed a turning protocol at one of 16 speed- (2.5, 3.5, 4.5, 5.5 km∙h-1 and angle (0, 45, 90, 180° combinations, involving three minute bouts of walking, interspersed by three minutes seated rest. Each condition involved 5 m of straight walking before turning through the pre-determined angle with the speed dictated by a digital, auditory metronome. Tri-axial accelerometry and magnetometry were measured at 60 Hz, in addition to gas exchange on a breath-by-breath basis. Mixed models revealed a significant main effect for speed (F = 121.609, P < 0.001 and angle (F = 19.186, P < 0.001 on oxygen uptake ([Formula: see text] and a significant interaction between these parameters (F = 4.433, P < 0.001. Specifically, as speed increased, [Formula: see text] increased but significant increases in [Formula: see text] relative to straight line walking were only observed for 90° and 180° turns at the two highest speeds (4.5 and 5.5 km∙hr-1. These findings therefore highlight the importance of accounting for the quantity and magnitude of turns completed when estimating energy expenditure and have significant implications within both sport and health contexts.

  6. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds.

    Science.gov (United States)

    Fino, Peter; Lockhart, Thurmon E

    2014-04-11

    This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A comparison of at-home walking and 10-meter walking test parameters of individuals with post-stroke hemiparesis.

    Science.gov (United States)

    Nagano, Katsuhito; Hori, Hideaki; Muramatsu, Ken

    2015-02-01

    [Purpose] The purpose of this study was to clarify the difference in gait parameters of at-home walking and the 10-meter walking test results of individuals with hemiparesis. [Subjects] A total of 14 hemiparetic stroke recovery patients participated in this study. Inclusion criteria were: living at home, the ability to walk independently, and demonstrated low extremity on recovery stages III-V on the Brunnstrom Approach. The average age of the subjects was 66 years. [Methods] We used video surveillance and the inked footprint technique to record usual walking speed and maximum speed patterns both in subjects' homes and during the 10-meter walking test. From these methods, walking speed, stride length, and step rate were calculated. [Results] While both usual and maximum walking speeds of the 10-meter walking test correlated with stride length and step rate, at-home walking speeds only significantly correlated with stride length. [Conclusion] Walking patterns of the 10-meter walking test are quantifiably distinct from those demonstrated in patients' homes, and this difference is mainly characterized by stride length. In order to enhance in-home walking ability, exercises that improve length of stride rather than step rate should be recommended.

  8. IMPACT OF BODY WEIGHT SUPPORTED BACKWARD TREADMILL TRAINING ON WALKING SPEED IN CHILDREN WITH SPASTIC DIPLEGIA

    Directory of Open Access Journals (Sweden)

    Hamada El Sayed Abd Allah Ayoub

    2016-10-01

    Full Text Available Background: A lot of the ambulating children with spastic diplegia were able to walk with flexed hips, knees and ankles this gait pattern is known as crouch gait. The most needed functional achievement of diplegic children habilitation is to be able to walk appropriately. The development of an independent and efficient walking is one of the main objectives for children with cerebral palsy especially those with spastic diplegia. Method: Twenty children with spastic diplegia enrolled in this study, they were classified into two groups of equal number, eligibility to our study were ages ranged from seven to ten years, were able to ambulate, They had gait problems and abnormal gait kinematics. The control group (A received selected physical therapy program based on neurodevelopmental approach for such cases, while the study group (B received partial body weight supported backward treadmill training in addition to regular exercise program. Gait pattern was assessed using the Biodex Gait Trainer II for each group pre and post three months of the treatment program. Results: There was statistically significant improvement in walking speed in the study group (P<0.05 with significant difference when comparing post treatment results between groups (p<0.05. Conclusion: These findings suggested that partial body weight supported backward treadmill training can be included as a supplementary therapeutic modality to improve walking speed and functional abilities of children with diplegic cerebral palsy.

  9. Unstable footwear as a speed-dependent noise-based training gear to exercise inverted pendulum motion during walking.

    Science.gov (United States)

    Dierick, Frédéric; Bouché, Anne-France; Scohier, Mikaël; Guille, Clément; Buisseret, Fabien

    2018-05-15

    Previous research on unstable footwear has suggested that it may induce mechanical noise during walking. The purpose of this study was to explore whether unstable footwear could be considered as a noise-based training gear to exercise body center of mass (CoM) motion during walking. Ground reaction forces were collected among 24 healthy young women walking at speeds between 3 and 6 km h -1 with control running shoes and unstable rocker-bottom shoes. The external mechanical work, the recovery of mechanical energy of the CoM during and within the step cycles, and the phase shift between potential and kinetic energy curves of the CoM were computed. Our findings support the idea that unstable rocker-bottom footwear could serve as a speed-dependent noise-based training gear to exercise CoM motion during walking. At slow speed, it acts as a stochastic resonance or facilitator that reduces external mechanical work; whereas at brisk speed it acts as a constraint that increases external mechanical work and could mimic a downhill slope.

  10. Changes in Energy Cost and Total External Work of Muscles in Elite Race Walkers Walking at Different Speeds

    Directory of Open Access Journals (Sweden)

    Chwała Wiesław

    2014-12-01

    Full Text Available The aim of the study was to assess energy cost and total external work (total energy depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers.

  11. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures

    Science.gov (United States)

    Long, Leroy L.; Srinivasan, Manoj

    2013-01-01

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk–run mixture at intermediate speeds and a walk–rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients—a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk–run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill. PMID:23365192

  12. Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model

    Science.gov (United States)

    Gantert, Nina; Meiners, Matthias; Müller, Sebastian

    2018-03-01

    We consider biased random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. Axelson-Fisk and Häggström established for this model a phase transition for the asymptotic linear speed \\overline{v} of the walk. Namely, there exists some critical value λ c>0 such that \\overline{v}>0 if λ \\in (0,λ c) and \\overline{v}=0 if λ ≥ λ c. We show that the speed \\overline{v} is continuous in λ on (0,∞) and differentiable on (0,λ c/2). Moreover, we characterize the derivative as a covariance. For the proof of the differentiability of \\overline{v} on (0,λ c/2), we require and prove a central limit theorem for the biased random walk. Additionally, we prove that the central limit theorem fails to hold for λ ≥ λ c/2.

  13. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Science.gov (United States)

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  14. A clinically meaningful training effect in walking speed using functional electrical stimulation for motor-incomplete spinal cord injury.

    Science.gov (United States)

    Street, Tamsyn; Singleton, Christine

    2018-05-01

    The study aimed to investigate the presence of a training effect for rehabilitation of walking function in motor-incomplete spinal cord injury (SCI) through daily use of functional electrical stimulation (FES). A specialist FES outpatient centre. Thirty-five participants (mean age 53, SD 15, range 18-80; mean years since diagnosis 9, range 5 months - 39 years) with drop foot and motor-incomplete SCI (T12 or higher, ASIA Impairment Scale C and D) able to ambulate 10 metres with the use of a walking stick or frame. FES of the peroneal nerve, glutei and hamstrings as clinically indicated over six months in the community. The data was analysed for a training effect (difference between unassisted ten metre walking speed at baseline and after six months) and orthotic effects (difference between walking speed with and without FES) initially on day one and after six months. The data was further analysed for a minimum clinically important difference (MCID) (>0.06 m/s). A clinically meaningful, significant change was observed for initial orthotic effect (0.13m/s, CI: 0.04-0.17, P = 0.013), total orthotic effect (0.11m/s, CI: 0.04-0.18, P = 0.017) and training effect (0.09m/s, CI: 0.02-0.16, P = 0.025). The results suggest that daily independent use of FES may produce clinically meaningful changes in walking speed which are significant for motor-incomplete SCI. Further research exploring the mechanism for the presence of a training effect may be beneficial in targeting therapies for future rehabilitation.

  15. Effect of walking speed on the gait of king penguins: An accelerometric approach.

    Science.gov (United States)

    Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán

    2015-12-21

    Little is known about non-human bipedal gaits. This is probably due to the fact that most large animals are quadrupedal and that non-human bipedal animals are mostly birds, whose primary form of locomotion is flight. Very little research has been conducted on penguin pedestrian locomotion with the focus instead on their associated high energy expenditure. In animals, tri-axial accelerometers are frequently used to estimate physiological energy cost, as well as to define the behaviour pattern of a species, or the kinematics of swimming. In this study, we showed how an accelerometer-based technique could be used to determine the biomechanical characteristics of pedestrian locomotion. Eight king penguins, which represent the only family of birds to have an upright bipedal gait, were trained to walk on a treadmill. The trunk tri-axial accelerations were recorded while the bird was walking at four different speeds (1.0, 1.2, 1.4 and 1.6km/h), enabling the amplitude of dynamic body acceleration along the three axes (amplitude of DBAx, DBAy and DBAz), stride frequency, waddling and leaning amplitude, as well as the leaning angle to be defined. The magnitude of the measured variables showed a significant increase with increasing speed, apart from the backwards angle of lean, which decreased with increasing speed. The variability of the measured variables also showed a significant increase with speed apart from the DBAz amplitude, the waddling amplitude, and the leaning angle, where no significant effect of the walking speed was found. This paper is the first approach to describe 3D biomechanics with an accelerometer on wild animals, demonstrating the potential of this technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Does walking speed mediate the association between visual impairment and self-report of mobility disability? The Salisbury Eye Evaluation Study.

    Science.gov (United States)

    Swenor, Bonnielin K; Bandeen-Roche, Karen; Muñoz, Beatriz; West, Sheila K

    2014-08-01

    To determine whether performance speeds mediate the association between visual impairment and self-reported mobility disability over an 8-year period. Longitudinal analysis. Salisbury, Maryland. Salisbury Eye Evaluation Study participants aged 65 and older (N=2,520). Visual impairment was defined as best-corrected visual acuity worse than 20/40 in the better-seeing eye or visual field less than 20°. Self-reported mobility disability on three tasks was assessed: walking up stairs, walking down stairs, and walking 150 feet. Performance speed on three similar tasks was measured: walking up steps (steps/s), walking down steps (steps/s), and walking 4 m (m/s). For each year of observation, the odds of reporting mobility disability was significantly greater for participants who were visually impaired (VI) than for those who were not (NVI) (odds ratio (OR) difficulty walking up steps=1.58, 95% confidence interval (CI)=1.32-1.89; OR difficulty walking down steps=1.90, 95% CI=1.59-2.28; OR difficulty walking 150 feet=2.11, 95% CI=1.77-2.51). Once performance speed on a similar mobility task was included in the models, VI participants were no longer more likely to report mobility disability than those who were NVI (OR difficulty walking up steps=0.84, 95% CI=0.65-1.11; OR difficulty walking down steps=0.96, 95% CI=0.74-1.24; OR difficulty walking 150 feet=1.22, 95% CI=0.98-1.50). Slower performance speed in VI individuals largely accounted for the difference in the odds of reporting mobility disability, suggesting that VI older adults walk slower and are therefore more likely to report mobility disability than those who are NVI. Improving mobility performance in older adults with visual impairment may minimize the perception of mobility disability. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  17. The effect of walking speed on hamstrings length and lengthening velocity in children with spastic cerebral palsy

    NARCIS (Netherlands)

    Krogt, van der M.M.; Doorenbosch, C.A.M.; Harlaar, J.

    2009-01-01

    0.001). These data are important as a reference for valid interpretation of hamstrings length and velocity data in gait analyses at different walking speeds. The results indicate that the presence of spasticity is associated with reduced hamstrings length and lengthening velocity during gait, even

  18. The effect of waist twisting on walking speed of an amphibious salamander like robot

    Science.gov (United States)

    Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming

    2016-06-01

    Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.

  19. Tracking Steps on Apple Watch at Different Walking Speeds.

    Science.gov (United States)

    Veerabhadrappa, Praveen; Moran, Matthew Duffy; Renninger, Mitchell D; Rhudy, Matthew B; Dreisbach, Scott B; Gift, Kristin M

    2018-04-09

    QUESTION: How accurate are the step counts obtained from Apple Watch? In this validation study, video steps vs. Apple Watch steps (mean ± SD) were 2965 ± 144 vs. 2964 ± 145 steps; P Apple Watch steps when compared with the manual counts obtained from video recordings. Our study is one of the initial studies to objectively validate the accuracy of the step counts obtained from Apple watch at different walking speeds. Apple Watch tested to be an extremely accurate device for measuring daily step counts for adults.

  20. Exploring the Metabolic and Perceptual Correlates of Self-Selected Walking Speed under Constrained and Un-Constrained Conditions

    Directory of Open Access Journals (Sweden)

    David T Godsiff, Shelly Coe, Charlotte Elsworth-Edelsten, Johnny Collett, Ken Howells, Martyn Morris, Helen Dawes

    2018-03-01

    Full Text Available Mechanisms underpinning self-selected walking speed (SSWS are poorly understood. The present study investigated the extent to which SSWS is related to metabolism, energy cost, and/or perceptual parameters during both normal and artificially constrained walking. Fourteen participants with no pathology affecting gait were tested under standard conditions. Subjects walked on a motorized treadmill at speeds derived from their SSWS as a continuous protocol. RPE scores (CR10 and expired air to calculate energy cost (J.kg-1.m-1 and carbohydrate (CHO oxidation rate (J.kg-1.min-1 were collected during minutes 3-4 at each speed. Eight individuals were re-tested under the same conditions within one week with a hip and knee-brace to immobilize their right leg. Deflection in RPE scores (CR10 and CHO oxidation rate (J.kg-1.min-1 were not related to SSWS (five and three people had deflections in the defined range of SSWS in constrained and unconstrained conditions, respectively (p > 0.05. Constrained walking elicited a higher energy cost (J.kg-1.m-1 and slower SSWS (p 0.05. SSWS did not occur at a minimum energy cost (J.kg-1.m-1 in either condition, however, the size of the minimum energy cost to SSWS disparity was the same (Froude {Fr} = 0.09 in both conditions (p = 0.36. Perceptions of exertion can modify walking patterns and therefore SSWS and metabolism/ energy cost are not directly related. Strategies which minimize perceived exertion may enable faster walking in people with altered gait as our findings indicate they should self-optimize to the same extent under different conditions.

  1. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review

    Directory of Open Access Journals (Sweden)

    Davide Corbetta

    2015-07-01

    Full Text Available Question: In people after stroke, does virtual reality based rehabilitation (VRBR improve walking speed, balance and mobility more than the same duration of standard rehabilitation? In people after stroke, does adding extra VRBR to standard rehabilitation improve the effects on gait, balance and mobility? Design: Systematic review with meta-analysis of randomised trials. Participants: Adults with a clinical diagnosis of stroke. Intervention: Eligible trials had to include one these comparisons: VRBR replacing some or all of standard rehabilitation or VRBR used as extra rehabilitation time added to a standard rehabilitation regimen. Outcome measures: Walking speed, balance, mobility and adverse events. Results: In total, 15 trials involving 341 participants were included. When VRBR replaced some or all of the standard rehabilitation, there were statistically significant benefits in walking speed (MD 0.15 m/s, 95% CI 0.10 to 0.19, balance (MD 2.1 points on the Berg Balance Scale, 95% CI 1.8 to 2.5 and mobility (MD 2.3 seconds on the Timed Up and Go test, 95% CI 1.2 to 3.4. When VRBR was added to standard rehabilitation, mobility showed a significant benefit (0.7 seconds on the Timed Up and Go test, 95% CI 0.4 to 1.1, but insufficient evidence was found to comment about walking speed (one trial and balance (high heterogeneity. Conclusion: Substituting some or all of a standard rehabilitation regimen with VRBR elicits greater benefits in walking speed, balance and mobility in people with stroke. Although the benefits are small, the extra cost of applying virtual reality to standard rehabilitation is also small, especially when spread over many patients in a clinic. Adding extra VRBR time to standard rehabilitation also has some benefits; further research is needed to determine if these benefits are clinically worthwhile. [Corbetta D, Imeri F, Gatti R (2015 Rehabilitation that incorporates virtual reality is more effective than standard

  2. Age differences in the required coefficient of friction during level walking do not exist when experimentally-controlling speed and step length.

    Science.gov (United States)

    Anderson, Dennis E; Franck, Christopher T; Madigan, Michael L

    2014-08-01

    The effects of gait speed and step length on the required coefficient of friction (COF) confound the investigation of age-related differences in required COF. The goals of this study were to investigate whether age differences in required COF during self-selected gait persist when experimentally-controlling speed and step length, and to determine the independent effects of speed and step length on required COF. Ten young and 10 older healthy adults performed gait trials under five gait conditions: self-selected, slow and fast speeds without controlling step length, and slow and fast speeds while controlling step length. During self-selected gait, older adults walked with shorter step lengths and exhibited a lower required COF. Older adults also exhibited a lower required COF when walking at a controlled speed without controlling step length. When both age groups walked with the same speed and step length, no age difference in required COF was found. Thus, speed and step length can have a large influence on studies investigating age-related differences in required COF. It was also found that speed and step length have independent and opposite effects on required COF, with step length having a strong positive effect on required COF, and speed having a weaker negative effect.

  3. Validity of the Nike+ device during walking and running.

    Science.gov (United States)

    Kane, N A; Simmons, M C; John, D; Thompson, D L; Bassett, D R; Basset, D R

    2010-02-01

    We determined the validity of the Nike+ device for estimating speed, distance, and energy expenditure (EE) during walking and running. Twenty trained individuals performed a maximal oxygen uptake test and underwent anthropometric and body composition testing. Each participant was outfitted with a Nike+ sensor inserted into the shoe and an Apple iPod nano. They performed eight 6-min stages on the treadmill, including level walking at 55, 82, and 107 m x min(-1), inclined walking (82 m x min(-1)) at 5 and 10% grades, and level running at 134, 161, and 188 m x min(-1). Speed was measured using a tachometer and EE was measured by indirect calorimetry. Results showed that the Nike+ device overestimated the speed of level walking at 55 m x min(-1) by 20%, underestimated the speed of level walking at 107 m x min(-1) by 12%, but closely estimated the speed of level walking at 82 m x min(-1), and level running at all speeds (pNike+ device overestimated the EE of level walking by 18-37%, but closely estimated the EE of level running (pNike+ in-shoe device provided reasonable estimates of speed and distance during level running at the three speeds tested in this study. However, it overestimated EE during level walking and it did not detect the increased cost of inclined locomotion.

  4. Speed and duration of walking and other leisure time physical activity and the risk of heart failure: a prospective cohort study from the Copenhagen City Heart Study.

    Directory of Open Access Journals (Sweden)

    Hans Askelund Saevereid

    Full Text Available AIM: Physical activity (PA confers some protection against development of heart failure (HF but little is known of the role of intensity and duration of exercise. METHODS AND RESULTS: In a prospective cohort study of men and women free of previous MI, stroke or HF with one or more examinations in 1976-2003, we studied the association between updated self-assessed leisure-time PA, speed and duration of walking and subsequent hospitalization or death from HF. Light and moderate/high level of leisure-time PA and brisk walking were associated with reduced risk of HF in both genders whereas no consistent association with duration of walking was seen. In 18,209 subjects age 20-80 with 1580 cases of HF, using the lowest activity level as reference, the confounder-adjusted hazard ratios (HR for light and moderate/high leisure-time physical activity were 0.75 (0.66-0.86 and 0.80 (0.69-0.93, respectively. In 9,937 subjects with information on walking available and 542 cases of HF, moderate and high walking speed were associated with adjusted HRs of 0.53 (0.43-0.66 and 0.30 (0.21-0.44, respectively, and daily walking of ½-1 hrs, 1-2 and >2 hrs with HR of 0.80 (0.61-1.06, 0.82 (0.62-1.06, and 0.96 (0.73-1.27, respectively. Results were similar for both genders and remained robust after exclusion of HF related to coronary heart disease and after a series of sensitivity analyses. CONCLUSIONS: Speed rather than duration of walking was associated with reduced risk of HF. Walking is the most wide-spread PA and public health measures to curb the increase in HF may benefit from this information.

  5. Effect of Body Composition on Walking Economy

    Directory of Open Access Journals (Sweden)

    Maciejczyk Marcin

    2016-12-01

    Full Text Available Purpose. The aim of the study was to evaluate walking economy and physiological responses at two walking speeds in males with similar absolute body mass but different body composition. Methods. The study involved 22 young men with similar absolute body mass, BMI, aerobic performance, calf and thigh circumference. The participants differed in body composition: body fat (HBF group and lean body mass (HLBM group. In the graded test, maximal oxygen uptake (VO2max and maximal heart rate were measured. Walking economy was evaluated during two walks performed at two different speeds (4.8 and 6.0 km ‧ h-1. Results. The VO2max was similar in both groups, as were the physiological responses during slow walking. The absolute oxygen uptake or oxygen uptake relative to body mass did not significantly differentiate the studied groups. The only indicator significantly differentiating the two groups was oxygen uptake relative to LBM. Conclusions. Body composition does not significantly affect walking economy at low speed, while during brisk walking, the economy is better in the HLBM vs. HBF group, provided that walking economy is presented as oxygen uptake relative to LBM. For this reason, we recommend this manner of oxygen uptake normalization in the evaluation of walking economy.

  6. Design and field results of a walk-through EDS

    Science.gov (United States)

    Wendel, Gregory J.; Bromberg, Edward E.; Durfee, Memorie K.; Curby, William A.

    1997-01-01

    A walk-through portal sampling module which incorporates active sampling has been developed. The module uses opposing wands which actively brush the subjects exterior clothing to disturb explosive traces. These traces are entrained in an air stream and transported to a High Speed GC- chemiluminescence explosives detection system. This combination provides automatic screening of passengers at rates of 10 per minute. The system exhibits sensitivity and selectivity which equals or betters that available from commercially available manual equipment. The systems has been developed for deployment at border crossings, airports and other security screening points. Detailed results of laboratory tests and airport field trials are reviewed.

  7. Locomotion Mode Affects the Physiological Strain during Exercise at Walk-Run Transition Speed inElderly Men.

    Science.gov (United States)

    Freire, Raul; Farinatti, Paulo; Cunha, Felipe; Silva, Brenno; Monteiro, Walace

    2017-07-01

    This study investigated cardiorespiratory responses and rating of perceived exertion (RPE) during prolonged walking and running exercise performed at the walk-run transition speed (WRTS) in untrained healthy elderly men. 20 volunteers (mean±SE, age: 68.4±1.2 yrs; height: 170.0±0.02 cm; body mass: 74.7±2.3 kg) performed the following bouts of exercise: a) maximal cardiopulmonary exercise test (CPET); b) specific protocol to detect WRTS; and c) two 30-min walking and running bouts at WRTS. Expired gases were collected during exercise bouts via the Ultima CardiO 2 metabolic analyzer. Compared to walking, running at the WRTS resulted in higher oxygen uptake (>0.27 L·min -1 ), pulmonary ventilation (>7.7 L·min -1 ), carbon dioxide output (>0.23 L·min -1 ), heart rate (>15 beats·min -1 ), oxygen pulse (>0.88 15 mL·beats -1 ), energy expenditure (>27 kcal) and cost of oxygen transport (>43 mL·kg -1 ·km -1 ·bout -1 ). The increase of overall and local RPEs with exercise duration was similar across locomotion modes (Pexercise tolerance. © Georg Thieme Verlag KG Stuttgart · New York.

  8. How humans use visual optic flow to regulate stepping during walking.

    Science.gov (United States)

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Race walking gait and its influence on race walking economy in world-class race walkers.

    Science.gov (United States)

    Gomez-Ezeiza, Josu; Torres-Unda, Jon; Tam, Nicholas; Irazusta, Jon; Granados, Cristina; Santos-Concejero, Jordan

    2018-03-06

    The aim of this study was to determine the relationships between biomechanical parameters of the gait cycle and race walking economy in world-class Olympic race walkers. Twenty-One world-class race walkers possessing the Olympic qualifying standard participated in this study. Participants completed an incremental race walking test starting at 10 km·h -1 , where race walking economy (ml·kg -1 ·km -1 ) and spatiotemporal gait variables were analysed at different speeds. 20-km race walking performance was related to race walking economy, being the fastest race walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p < 0.001). Longer ground contact times, shorter flight times, longer midstance sub-phase and shorter propulsive sub-phase during stance were related to a better race walking economy (moderate effect, p < 0.05). According to the results of this study, the fastest race walkers were more economi cal than the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight times, as it may not only impair economy, but also lead to disqualification.

  10. Multicomponent Exercise Improves Hemodynamic Parameters and Mobility, but Not Maximal Walking Speed, Transfer Capacity, and Executive Function of Older Type II Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Hélio José Coelho Junior

    2018-01-01

    Full Text Available The present study aimed to investigate the effects of a 6-month multicomponent exercise program (MCEP on functional, cognitive, and hemodynamic parameters of older Type 2 diabetes mellitus (T2DM patients. Moreover, additional analyses were performed to evaluate if T2DM patients present impaired adaptability in response to physical exercise when compared to nondiabetic volunteers. A total of 72 T2DM patients and 72 age-matched healthy volunteers (CG were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. Results indicate T2DM and nondiabetic patients present an increase in mobility (i.e., usual walking speed after the MCEP. However, improvements in maximal walking speed, transfer capacity, and executive function were only observed in the CG. On the other hand, only T2DM group reveals a marked decline in blood pressure. In conclusion, data of the current study indicate that a 6-month MCEP improves mobility and reduce blood pressure in T2DM patients. However, maximal walking speed, transfer capacity, and executive function were only improved in CG, indicating that T2DM may present impaired adaptability in response to physical stimulus.

  11. Does dynamic stability govern propulsive force generation in human walking?

    Science.gov (United States)

    Browne, Michael G; Franz, Jason R

    2017-11-01

    Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.

  12. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed

    Directory of Open Access Journals (Sweden)

    Newman Anne B

    2005-07-01

    Full Text Available Abstract Background Decreased gait speed and increased stride time, stride length, double support time, and stance time variability have consistently been associated with falling whereas step width variability has not been strongly related to falls. The purpose was to examine the linear and nonlinear associations between gait variability and fall history in older persons and to examine the influence of gait speed. Methods Gait characteristics and fall history were obtained in 503 older adults (mean age = 79; 61% female participating in the Cardiovascular Health Study who could ambulate independently. Gait characteristics were recorded from two trials on a 4 meter computerized walkway at the subject's self-selected walking speed. Gait variability was calculated as the coefficient of variation. The presence of a fall in the past 12 months was determined by interview. The nonlinear association between gait variability and fall history was examined using a simple three level classification derived from the distribution of the data and from literature based cut-points. Multivariate logistic regression was used to examine the association between step width variability (extreme or moderate and fall history stratifying by gait speed (1.0 m/s and controlling for age and gender. Results Step length, stance time, and step time variability did not differ with respect to fall history (p > .33. Individuals with extreme step width variability (either low or high step width variability were more likely to report a fall in the past year than individuals with moderate step width variability. In individuals who walked ≥ 1.0 m/s (n = 281, after controlling for age, gender, and gait speed, compared to individuals with moderate step width variability individuals with either low or high step width variability were more likely to have fallen in the past year (OR and 95% CI 4.38 [1.79–10.72]. The association between step width variability and fall history was not

  13. Speed and Duration of Walking and Other Leisure Time Physical Activity and the Risk of Heart Failure

    DEFF Research Database (Denmark)

    Sævereid, Hans Askelund; Schnohr, Peter; Prescott, Eva

    2014-01-01

    in 1976-2003, we studied the association between updated self-assessed leisure-time PA, speed and duration of walking and subsequent hospitalization or death from HF. Light and moderate/high level of leisure-time PA and brisk walking were associated with reduced risk of HF in both genders whereas...... no consistent association with duration of walking was seen. In 18,209 subjects age 20-80 with 1580 cases of HF, using the lowest activity level as reference, the confounder-adjusted hazard ratios (HR) for light and moderate/high leisure-time physical activity were 0.75 (0.66-0.86) and 0.80 (0......-spread PA and public health measures to curb the increase in HF may benefit from this information....

  14. Motor modules in robot-aided walking

    Directory of Open Access Journals (Sweden)

    Gizzi Leonardo

    2012-10-01

    Full Text Available Abstract Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies. In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h and levels of body weight support (0 to 30%. Results The muscular activity of volunteers could be described by low dimensionality (4 modules, as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.

  15. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.

    Science.gov (United States)

    Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae

    2017-12-08

    This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reference values of maximum walking speed among independent community-dwelling Danish adults aged 60 to 79 years

    DEFF Research Database (Denmark)

    Tibaek, S; Holmestad-Bechmann, N; Pedersen, Trine B

    2015-01-01

    OBJECTIVES: To establish reference values for maximum walking speed over 10m for independent community-dwelling Danish adults, aged 60 to 79 years, and to evaluate the effects of gender and age. DESIGN: Cross-sectional study. SETTING: Danish companies and senior citizens clubs. PARTICIPANTS: Two ...

  17. Effects of high intensity resistance aquatic training on body composition and walking speed in women with mild knee osteoarthritis: a 4-month RCT with 12-month follow-up.

    Science.gov (United States)

    Waller, B; Munukka, M; Rantalainen, T; Lammentausta, E; Nieminen, M T; Kiviranta, I; Kautiainen, H; Häkkinen, A; Kujala, U M; Heinonen, A

    2017-08-01

    To investigate the effects of 4-months intensive aquatic resistance training on body composition and walking speed in post-menopausal women with mild knee osteoarthritis (OA), immediately after intervention and after 12-months follow-up. Additionally, influence of leisure time physical activity (LTPA) will be investigated. This randomised clinical trial assigned eighty-seven volunteer postmenopausal women into two study arms. The intervention group (n = 43) participated in 48 supervised intensive aquatic resistance training sessions over 4-months while the control group (n = 44) maintained normal physical activity. Eighty four participants continued into the 12-months' follow-up period. Body composition was measured with dual-energy X-ray absorptiometry (DXA). Walking speed over 2 km and the knee injury and osteoarthritis outcome score (KOOS) were measured. LTPA was recorded with self-reported diaries. After the 4-month intervention there was a significant decrease (P = 0.002) in fat mass (mean change: -1.17 kg; 95% CI: -2.00 to -0.43) and increase (P = 0.002) in walking speed (0.052 m/s; 95% CI: 0.018 to 0.086) in favour of the intervention group. Body composition returned to baseline after 12-months. In contrast, increased walking speed was maintained (0.046 m/s; 95% CI 0.006 to 0.086, P = 0.032). No change was seen in lean mass or KOOS. Daily LTPA over the 16-months had a significant effect (P = 0.007) on fat mass loss (f 2  = 0.05) but no effect on walking speed. Our findings show that high intensity aquatic resistance training decreases fat mass and improves walking speed in post-menopausal women with mild knee OA. Only improvements in walking speed were maintained at 12-months follow-up. Higher levels of LTPA were associated with fat mass loss. ISRCTN65346593. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Variability in energy cost and walking gait during race walking in competitive race walkers.

    Science.gov (United States)

    Brisswalter, J; Fougeron, B; Legros, P

    1998-09-01

    The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.

  19. 30 min of treadmill walking at self-selected speed does not increase gait variability in independent elderly.

    Science.gov (United States)

    Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P

    2018-06-01

    Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.

  20. Walking at speeds close to the preferred transition speed as an approach to obesity treatment

    Directory of Open Access Journals (Sweden)

    Ilić Duško

    2012-01-01

    Full Text Available Introduction. Increasing energy expenditure through certain exercise is an important component of effective interventions to enhance initial weight loss and prevent weight regain. Objective. The purpose of this study was to determine the effect of a 16-week weight loss exercise programme on morpho-functional changes in female adults and to examine the programme effects on two subpopulations with different levels of obesity. Methods. Fifty-six middle-aged women were divided into 2 groups according to their body mass index (BMI: 25-29.9 kg/m2 - overweight (OW and ≥30 kg/m2 - obese (OB. The exercise protocol included a walking technique based on hip rotation at horizontal plane at speeds close to the preferred transition speed (PTS. At the initiation of the study and after 16 weeks of the programme, anthropometric, morphological and cardiovascular parameters of all subjects were assessed. The main effects of Group (OW and OB and Time and the interaction effect of Group by Time were tested by time repeated measures General Linear Model (mixed between-within subjects ANOVA. Results. Mean weight loss during the programme was 10.3 kg and 20.1 kg in OW and OB, respectively. The average fat mass (FM loss was 9.4 kg in OW and 16.9 kg in OB. The Mixed ANOVA revealed a significant Group by Time interaction effects for waist circumference, body weight, body water, fat free mass, FM, %FM and BMI (p<0.05. Conclusion. The applied exercise protocol has proved as beneficial in the treatment of obesity, since it resulted in a significant weight loss and body composition changes. The reduction in body weight was achieved mainly on account of the loss of fat mass.

  1. Assessment of intersegmental coordination of rats during walking at different speeds - Application of continuous relative phase

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Nielsen, Louise R; Madsen, Stefan

    2018-01-01

    of the CRP (ACRP) and DP and on the mean ACRP and mean DP was established by statistical parametric mapping (SPM) and a one-way ANOVA for repeated measures. Absolute and relative reliability were assessed by measurement error and intra-class correlation coefficient. The SPM analysis revealed time dependent......The present study investigated the feasibility and reliability of continuous relative phase (CRP) and deviation phase (DP) to assess intersegmental hind limb coordination pattern and coordination variability in rats during walking. Twenty-six adult rats walked at 8 m/min, 12 m/min and 16 m....../min while two-dimensional kinematics were recorded. Segment angles and segment angular velocities of the paw, shank and thigh on the left hind-limb were extracted from 15 strides and CRP was calculated for the paw-shank and shank-thigh coupling. The effect of walking speed on the time point average curve...

  2. Daily intermittent hypoxia enhances walking after chronic spinal cord injury

    Science.gov (United States)

    Hayes, Heather B.; Jayaraman, Arun; Herrmann, Megan; Mitchell, Gordon S.; Rymer, William Z.

    2014-01-01

    Objectives: To test the hypothesis that daily acute intermittent hypoxia (dAIH) and dAIH combined with overground walking improve walking speed and endurance in persons with chronic incomplete spinal cord injury (iSCI). Methods: Nineteen subjects completed the randomized, double-blind, placebo-controlled, crossover study. Participants received 15, 90-second hypoxic exposures (dAIH, fraction of inspired oxygen [Fio2] = 0.09) or daily normoxia (dSHAM, Fio2 = 0.21) at 60-second normoxic intervals on 5 consecutive days; dAIH was given alone or combined with 30 minutes of overground walking 1 hour later. Walking speed and endurance were quantified using 10-Meter and 6-Minute Walk Tests. The trial is registered at ClinicalTrials.gov (NCT01272349). Results: dAIH improved walking speed and endurance. Ten-Meter Walk time improved with dAIH vs dSHAM after 1 day (mean difference [MD] 3.8 seconds, 95% confidence interval [CI] 1.1–6.5 seconds, p = 0.006) and 2 weeks (MD 3.8 seconds, 95% CI 0.9–6.7 seconds, p = 0.010). Six-Minute Walk distance increased with combined dAIH + walking vs dSHAM + walking after 5 days (MD 94.4 m, 95% CI 17.5–171.3 m, p = 0.017) and 1-week follow-up (MD 97.0 m, 95% CI 20.1–173.9 m, p = 0.014). dAIH + walking increased walking distance more than dAIH after 1 day (MD 67.7 m, 95% CI 1.3–134.1 m, p = 0.046), 5 days (MD 107.0 m, 95% CI 40.6–173.4 m, p = 0.002), and 1-week follow-up (MD 136.0 m, 95% CI 65.3–206.6 m, p walking improved walking speed and distance in persons with chronic iSCI. The impact of dAIH is enhanced by combination with walking, demonstrating that combinatorial therapies may promote greater functional benefits in persons with iSCI. Classification of evidence: This study provides Class I evidence that transient hypoxia (through measured breathing treatments), along with overground walking training, improves walking speed and endurance after iSCI. PMID:24285617

  3. The use of relative coupling intervals in horses during walk

    DEFF Research Database (Denmark)

    Olsen, Emil; Pfau, Thilo

    Walking speed varies between over-ground trials and a speed-independent gait-parameter does not exist for use in horses. We introduce relative (R) lateral (L) and diagonal (D) coupling intervals (CI) and hypothesize that both are independent of walking speed. Four horses were walked over 8 Kistler...

  4. Cardiorespiratory Responses to Pool Floor Walking in People Poststroke.

    Science.gov (United States)

    Jeng, Brenda; Fujii, Takuto; Lim, Hyosok; Vrongistinos, Konstantinos; Jung, Taeyou

    2018-03-01

    To compare cardiorespiratory responses between pool floor walking and overground walking (OW) in people poststroke. Cross-sectional study. University-based therapeutic exercise facility. Participants (N=28) were comprised of 14 community-dwelling individuals poststroke (5.57±3.57y poststroke) and 14 age- and sex-matched healthy adults (mean age, 58.00±15.51y; male/female ratio, 9:5). Not applicable. A telemetric metabolic system was used to collect cardiorespiratory variables, including oxygen consumption (V˙o 2 ), energy expenditure (EE), and expired volume per unit time (V˙e), during 6-minute walking sessions in chest-depth water and on land at a matched speed, determined by average of maximum walking speed in water. Individuals poststroke elicited no significant differences in cardiorespiratory responses between pool floor walking and OW. However, healthy controls showed significant increases in mean V˙o 2 values by 94%, EE values by 109%, and V˙e values by 94% (all Pstroke group did not. Our results indicate that people poststroke, unlike healthy adults, do not increase EE while walking in water compared with on land. Unlike stationary walking on an aquatic treadmill, forward locomotion during pool floor walking at faster speeds may have increased drag force, which requires greater EE from healthy adults. Without demanding excessive EE, walking in water may offer a naturally supportive environment for gait training in the early stages of rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.

  5. Effect of uphill and downhill walking on walking performance in geriatric patients using a wheeled walker.

    Science.gov (United States)

    Lindemann, Ulrich; Schwenk, Michael; Schmitt, Syn; Weyrich, Michael; Schlicht, Wolfgang; Becker, Clemens

    2017-08-01

    Wheeled walkers are recommended to improve walking performance in older persons and to encourage and assist participation in daily life. Nevertheless, using a wheeled walker can cause serious problems in the natural environment. This study aimed to compare uphill and downhill walking with walking level in geriatric patients using a wheeled walker. Furthermore, we investigated the effect of using a wheeled walker with respect to dual tasking when walking level. A total of 20 geriatric patients (median age 84.5 years) walked 10 m at their habitual pace along a level surface, uphill and downhill, with and without a standard wheeled walker. Gait speed, stride length and cadence were assessed by wearable sensors and the walk ratio was calculated. When using a wheeled walker while walking level the walk ratio improved (0.58 m/[steps/min] versus 0.57 m/[steps/min], p = 0.023) but gait speed decreased (1.07 m/s versus 1.12 m/s, p = 0.020) when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance when compared to level walking (0.54 m/[steps/min] versus 0.58 m/[steps/min], p = 0.023 and 0.55 m/[steps/min] versus 0.58 m/[steps/min], p = 0.001, respectively). At the same time, gait speed decreased (0.079 m/s versus 1.07 m/s, p walker improved the quality of level walking but the performance of uphill and downhill walking was worse compared to walking level when using a wheeled walker.

  6. Television Viewing, Walking Speed, and Grip Strength in a Prospective Cohort Study

    Science.gov (United States)

    KEEVIL, VICTORIA L.; WIJNDAELE, KATRIEN; LUBEN, ROBERT; SAYER, AVAN A.; WAREHAM, NICHOLAS J.; KHAW, KAY-TEE

    2015-01-01

    ABSTRACT Purpose Television (TV) watching is the most prevalent sedentary leisure time activity in the United Kingdom. We examined associations between TV viewing time, measured over 10 yr, and two objective measures of physical capability, usual walking speed (UWS) and grip strength. Methods Community-based participants (n = 8623; 48–92 yr old) enrolled in the European Prospective Investigation of Cancer—Norfolk study attended a third health examination (3HC, 2006–2011) for measurement of maximum grip strength (Smedley dynamometer) and UWS. TV viewing time was estimated using a validated questionnaire (n = 6086) administered during two periods (3HC, 2006–2007; 2HC, 1998–2000). Associations between physical capability and TV viewing time category (<2, 2 < 3, 3 < 4, and ≥4 h·d−1) at the 3HC, 2HC, and using an average of the two measures were explored. Sex-stratified analyses were adjusted for age, physical activity, anthropometry, wealth, comorbidity, smoking, and alcohol intake and combined if no sex–TV viewing time interactions were identified. Results Men and women who watched the least TV at the 2HC or 3HC walked at a faster usual pace than those who watched the most TV. There was no evidence of effect modification by sex (Pinteraction = 0.09), and in combined analyses, participants who watched for <2 h·d−1 on average walked 4.29 cm·s−1 (95% confidence interval, 2.56–6.03) faster than those who watched for ≥4 h·d−1, with evidence of a dose–response association (Ptrend < 0.001). However, no strong associations with grip strength were found. Conclusions TV viewing time predicted UWS in older adults. More research is needed to inform public health policy and prospective associations between other measures of sedentariness, such as total sitting time or objectively measured sedentary time, and physical capability should be explored. PMID:25785826

  7. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    Science.gov (United States)

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  8. Women with fibromyalgia walk with an altered muscle synergy.

    Science.gov (United States)

    Pierrynowski, Michael R; Tiidus, Peter M; Galea, Victoria

    2005-11-01

    Most individuals can use different movement and muscle recruitment patterns to perform a stated task but often only one pattern is selected which optimizes an unknown global objective given the individual's neuromusculoskeletal characteristics. Patients with fibromyalgia syndrome (FS), characterized by their chronic pain, reduced physical work capacity and muscular fatigue, could exhibit a different control signature compared to asymptomatic control volunteers (CV). To test this proposal, 22 women with FS, and 11 CV, were assessed in a gait analysis laboratory. Each subject walked repeatedly at self-selected slow, comfortable, and fast walking speeds. The gait analysis provided, for each walk, each subject's stride time, length, and velocity, and ground reaction force, and lower extremity joint kinematics, moments and powers. The data were then anthropometrically scaled and velocity normalized to reduce the influence of subject mass, leg length, and walking speed on the measured gait outcomes. Similarities and differences in the two groups' scaled and normalized gait patterns were then determined. Results show that FS and CV walk with externally similar stride lengths, times, and velocities, and joint angles and ground reaction forces but they use internally different muscle recruitment patterns. Specifically, FS preferentially power gait using their hip flexors instead of their ankle plantarflexors. Interestingly, CV use a similar muscle fatiguing recruitment pattern to walk fast which parallels the common complaint of fatigue reported by FS walking at comfortable speed.

  9. Comparison of the metabolic energy cost of overground and treadmill walking in older adults.

    Science.gov (United States)

    Berryman, Nicolas; Gayda, Mathieu; Nigam, Anil; Juneau, Martin; Bherer, Louis; Bosquet, Laurent

    2012-05-01

    We assessed whether the metabolic energy cost of walking was higher when measured overground or on a treadmill in a population of healthy older adults. We also assessed the association between the two testing modes. Participants (n = 20, 14 men and 6 women aged between 65 and 83 years of age) were randomly divided into two groups. Half of them went through the overground-treadmill sequence while the other half did the opposite order. A familiarization visit was held for each participant prior to the actual testing. For both modes of testing, five walking speeds were experimented (0.67, 0.89, 1.11, 1.33 and 1.67 m s(-1)). Oxygen uptake was monitored for all walking speeds. We found a significant difference between treadmill and track metabolic energy cost of walking, whatever the walking speed. The results show that walking on the treadmill requires more metabolic energy than walking overground for all experimental speeds (P < 0.05). The association between both measures was low to moderate (0.17 < ICC < 0.65), and the standard error of measurement represented 6.9-15.7% of the average value. These data indicate that metabolic energy cost of walking results from a treadmill test does not necessarily apply in daily overground activities. Interventions aiming at reducing the metabolic energy cost of walking should be assessed with the same mode as it was proposed during the intervention. If the treadmill mode is necessary for any purposes, functional overground walking tests should be implemented to obtain a more complete and specific evaluation.

  10. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.

    Science.gov (United States)

    Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A

    2018-04-01

    Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking

  11. Influence of treadmill acceleration on actual walk-to-run transition.

    Science.gov (United States)

    Van Caekenberghe, I; Segers, V; De Smet, K; Aerts, P; De Clercq, D

    2010-01-01

    When accelerating continuously, humans spontaneously change from a walking to a running pattern by means of a walk-to-run transition (WRT). Results of previous studies indicate that when higher treadmill accelerations are imposed, higher WRT-speeds can be expected. By studying the kinematics of the WRT at different accelerations, the underlying mechanisms can be unravelled. 19 young, healthy female subjects performed walk-to-run transitions on a constantly accelerating treadmill (0.1, 0.2 and 0.5 m s(-2)). A higher acceleration induced a higher WRT-speed, by effecting the preparation of transition, as well as the actual transition step. Increasing the acceleration caused a higher WRT-speed as a result of a greater step length during the transition step, which was mainly a consequence of a prolonged airborne phase. Besides this effect on the transition step, the direct preparation phase of transition (i.e. the last walking step before transition) appeared to fulfil specific constraints required to execute the transition regardless of the acceleration imposed. This highlights an important role for this step in the debate regarding possible determinants of WRT. In addition spatiotemporal and kinematical data confirmed that WRT remains a discontinuous change of gait pattern in all accelerations imposed. It is concluded that the walk-to-run transition is a discontinuous switch from walking to running which depends on the magnitude of treadmill belt acceleration. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Physiotherapy Effects in Gait Speed in Patients with Knee Osteoarthritis.

    Science.gov (United States)

    Tani, Klejda; Kola, Irena; Dhamaj, Fregen; Shpata, Vjollca; Zallari, Kiri

    2018-03-15

    Knee osteoarthritis is a chronic degenerative disease, known as the most common cause of difficulty walking in older adults and subsequently is associated with slow walking. Also one of the main symptoms is a degenerative and mechanics type of pain. Pain is very noticeable while walking in rugged terrain, during ascent and descent of stairs, when changing from sitting to standing position as well as staying in one position for a long time. Many studies have shown that the strength of the quadriceps femoris muscle can affect gait, by improving or weakening it. Kinesio Tape is a physiotherapeutic technique, which reduces pain and increases muscular strength by irritating the skin receptors. The aims of this study was first to verify if the application of Kinesio Tape on quadriceps femoris muscle increases gait speed in patients with knee osteoarthritis and secondly if applying Kinesio Tape on quadriceps femoris muscle reduces pain while walking. Seventy-four patients with primary knee osteoarthritis, aged 50 - 73 years, participated in this study. Firstly we observed the change of gait speed, while walking for 10 meters at normal speed for each patient, before, one day and three days after the application of Kinesio Tape on quadriceps femoris muscle, with the help of the 10 - meter walk test. Secondly, we observed the change of pain, while walking for 10 meters at normal speed for each patient, before, one day and three days after the application, with the help of Numerical Pain Rating Scale - NRS. Our results indicated that there was a significant increase in gait speed while walking for 10 meters one day and also three days after application of Kinesio Tape on quadriceps femoris muscle. Also, there was a significant reduction of pain level 1 and 3 days after application of Kinesio Tape, compared to the level of pain before its application. Our results indicated that there was a significant decrease in pain and increase of gait speed while walking for 10 meters

  13. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries

    DEFF Research Database (Denmark)

    Ladouceur, M.; Barbeau, H.

    2000-01-01

    This study investigated the changes in maximal overground walking speed (MOWS) that occurred during; walking training with a functional electrical stimulation (FES) orthosis by chronic spinal cord injured persons with incomplete motor function loss. The average walking: speed over a distance of 10...

  14. Elastic coupling of limb joints enables faster bipedal walking

    Science.gov (United States)

    Dean, J.C.; Kuo, A.D.

    2008-01-01

    The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360

  15. Impaired Economy of Gait and Decreased Six-Minute Walk Distance in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Leslie I. Katzel

    2012-01-01

    Full Text Available Changes in the biomechanics of gait may alter the energy requirements of walking in Parkinson's Disease (PD. This study investigated economy of gait during submaximal treadmill walking in 79 subjects with mild to moderate PD and the relationship between gait economy and 6-minute walk distance (6 MW. Oxygen consumption (VO2 at the self-selected treadmill walking speed averaged 64% of peak oxygen consumption (VO2 peak. Submaximal VO2 levels exceeded 70% of VO2 peak in 30% of the subjects. Overall the mean submaximal VO2 was 51% higher than VO2 levels expected for the speed and grade consistent with severe impairment in economy of gait. There was an inverse relationship between economy of gait and 6MW (r=−0.31, P<0.01 and with the self-selected walking speed (r=−0.35, P<0.01. Thus, the impairment in economy of gait and decreased physiologic reserve result in routine walking being performed at a high percentage of VO2 peak.

  16. Effects of upper body parameters on biped walking efficiency studied by dynamic optimization

    Directory of Open Access Journals (Sweden)

    Kang An

    2016-12-01

    Full Text Available Walking efficiency is one of the considerations for designing biped robots. This article uses the dynamic optimization method to study the effects of upper body parameters, including upper body length and mass, on walking efficiency. Two minimal actuations, hip joint torque and push-off impulse, are used in the walking model, and minimal constraints are set in a free search using the dynamic optimization. Results show that there is an optimal solution of upper body length for the efficient walking within a range of walking speed and step length. For short step length, walking with a lighter upper body mass is found to be more efficient and vice versa. It is also found that for higher speed locomotion, the increase of the upper body length and mass can make the walking gait optimal rather than other kind of gaits. In addition, the typical strategy of an optimal walking gait is that just actuating the swing leg at the beginning of the step.

  17. Dynamic optimization of a biped model: Energetic walking gaits with different mechanical and gait parameters

    Directory of Open Access Journals (Sweden)

    Kang An

    2015-05-01

    Full Text Available Energy consumption is one of the problems for bipedal robots walking. For the purpose of studying the parameter effects on the design of energetic walking bipeds with strong adaptability, we use a dynamic optimization method on our new walking model to first investigate the effects of the mechanical parameters, including mass and length distribution, on the walking efficiency. Then, we study the energetic walking gait features with the combinations of walking speed and step length. Our walking model is designed upon Srinivasan’s model. Dynamic optimization is used for a free search with minimal constraints. The results show that the cost of transport of a certain gait increases with the increase in the mass and length distribution parameters, except for that the cost of transport decreases with big length distribution parameter and long step length. We can also find a corresponding range of walking speed and step length, in which the variation in one of the two parameters has no obvious effect on the cost of transport. With fixed mechanical parameters, the cost of transport increases with the increase in the walking speed. There is a speed–step length relationship for walking with minimal cost of transport. The hip torque output strategy is adjusted in two situations to meet the walking requirements.

  18. Nordic Walking Practice Might Improve Plantar Pressure Distribution

    Science.gov (United States)

    Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto

    2011-01-01

    Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…

  19. Predictive neuromechanical simulations indicate why walking performance declines with ageing.

    Science.gov (United States)

    Song, Seungmoon; Geyer, Hartmut

    2018-04-01

    Although the natural decline in walking performance with ageing affects the quality of life of a growing elderly population, its physiological origins remain unknown. By using predictive neuromechanical simulations of human walking with age-related neuro-musculo-skeletal changes, we find evidence that the loss of muscle strength and muscle contraction speed dominantly contribute to the reduced walking economy and speed. The findings imply that focusing on recovering these muscular changes may be the only effective way to improve performance in elderly walking. More generally, the work is of interest for investigating the physiological causes of altered gait due to age, injury and disorders. Healthy elderly people walk slower and energetically less efficiently than young adults. This decline in walking performance lowers the quality of life for a growing ageing population, and understanding its physiological origin is critical for devising interventions that can delay or revert it. However, the origin of the decline in walking performance remains unknown, as ageing produces a range of physiological changes whose individual effects on gait are difficult to separate in experiments with human subjects. Here we use a predictive neuromechanical model to separately address the effects of common age-related changes to the skeletal, muscular and nervous systems. We find in computer simulations of this model that the combined changes produce gait consistent with elderly walking and that mainly the loss of muscle strength and mass reduces energy efficiency. In addition, we find that the slower preferred walking speed of elderly people emerges in the simulations when adapting to muscle fatigue, again mainly caused by muscle-related changes. The results suggest that a focus on recovering these muscular changes may be the only effective way to improve performance in elderly walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  20. Distinct sets of locomotor modules control the speed and modes of human locomotion

    Science.gov (United States)

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  1. Analytic results for asymmetric random walk with exponential transition probabilities

    International Nuclear Information System (INIS)

    Gutkowicz-Krusin, D.; Procaccia, I.; Ross, J.

    1978-01-01

    We present here exact analytic results for a random walk on a one-dimensional lattice with asymmetric, exponentially distributed jump probabilities. We derive the generating functions of such a walk for a perfect lattice and for a lattice with absorbing boundaries. We obtain solutions for some interesting moment properties, such as mean first passage time, drift velocity, dispersion, and branching ratio for absorption. The symmetric exponential walk is solved as a special case. The scaling of the mean first passage time with the size of the system for the exponentially distributed walk is determined by the symmetry and is independent of the range

  2. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury

    Science.gov (United States)

    Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Background: Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. Objective: The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Methods: Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Results: Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Conclusion: Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity. PMID:26364281

  3. Step-by-step variability of swing phase trajectory area during steady state walking at a range of speeds

    Science.gov (United States)

    Hurt, Christopher P.; Brown, David A.

    2018-01-01

    Background Step kinematic variability has been characterized during gait using spatial and temporal kinematic characteristics. However, people can adopt different trajectory paths both between individuals and even within individuals at different speeds. Single point measures such as minimum toe clearance (MTC) and step length (SL) do not necessarily account for the multiple paths that the foot may take during the swing phase to reach the same foot fall endpoint. The purpose of this study was to test a step-by-step foot trajectory area (SBS-FTA) variability measure that is able to characterize sagittal plane foot trajectories of varying areas, and compare this measure against MTC and SL variability at different speeds. We hypothesize that the SBS-FTA variability would demonstrate increased variability with speed. Second, we hypothesize that SBS-FTA would have a stronger curvilinear fit compared with the CV and SD of SL and MTC. Third, we hypothesize SBS-FTA would be more responsive to change in the foot trajectory at a given speed compared to SL and MTC. Fourth, SBS-FTA variability would not strongly co-vary with SL and MTC variability measures since it represents a different construct related to foot trajectory area variability. Methods We studied 15 nonimpaired individuals during walking at progressively faster speeds. We calculated SL, MTC, and SBS-FTA area. Results SBS-FTA variability increased with speed, had a stronger curvilinear fit compared with the CV and SD of SL and MTC, was more responsive at a given speed, and did not strongly co-vary with SL and MTC variability measures. Conclusion SBS foot trajectory area variability was sensitive to change with faster speeds, captured a relationship that the majority of the other measures did not demonstrate, and did not co-vary strongly with other measures that are also components of the trajectory. PMID:29370202

  4. Effects of Initial Stance of Quadruped Trotting on Walking Stability

    Directory of Open Access Journals (Sweden)

    Peisun Ma

    2008-11-01

    Full Text Available It is very important for quadruped walking machine to keep its stability in high speed walking. It has been indicated that moment around the supporting diagonal line of quadruped in trotting gait largely influences walking stability. In this paper, moment around the supporting diagonal line of quadruped in trotting gait is modeled and its effects on body attitude are analyzed. The degree of influence varies with different initial stances of quadruped and we get the optimal initial stance of quadruped in trotting gait with maximal walking stability. Simulation results are presented.

  5. Stride rate and walking intensity in healthy older adults.

    Science.gov (United States)

    Peacock, Leslie; Hewitt, Allan; Rowe, David A; Sutherland, Rona

    2014-04-01

    The study investigated (a) walking intensity (stride rate and energy expenditure) under three speed instructions; (b) associations between stride rate, age, height, and walking intensity; and (c) synchronization between stride rate and music tempo during overground walking in a population of healthy older adults. Twenty-nine participants completed 3 treadmill-walking trials and 3 overground-walking trials at 3 self-selected speeds. Treadmill VO2 was measured using indirect calorimetry. Stride rate and music tempo were recorded during overground-walking trials. Mean stride rate exceeded minimum thresholds for moderate to vigorous physical activity (MVPA) under slow (111.41 ± 11.93), medium (118.17 ± 11.43), and fast (123.79 ± 11.61) instructions. A multilevel model showed that stride rate, age, and height have a significant effect (p Music can be a useful way to guide walking cadence.

  6. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.

    Science.gov (United States)

    Yokoyama, Hikaru; Sato, Koji; Ogawa, Tetsuya; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Kawashima, Noritaka

    2018-01-01

    The adaptability of human bipedal locomotion has been studied using split-belt treadmill walking. Most of previous studies utilized experimental protocol under remarkably different split ratios (e.g. 1:2, 1:3, or 1:4). While, there is limited research with regard to adaptive process under the small speed ratios. It is important to know the nature of adaptive process under ratio smaller than 1:2, because systematic evaluation of the gait adaptation under small to moderate split ratios would enable us to examine relative contribution of two forms of adaptation (reactive feedback and predictive feedforward control) on gait adaptation. We therefore examined a gait behavior due to on split-belt treadmill adaptation under five belt speed difference conditions (from 1:1.2 to 1:2). Gait parameters related to reactive control (stance time) showed quick adjustments immediately after imposing the split-belt walking in all five speed ratios. Meanwhile, parameters related to predictive control (step length and anterior force) showed a clear pattern of adaptation and subsequent aftereffects except for the 1:1.2 adaptation. Additionally, the 1:1.2 ratio was distinguished from other ratios by cluster analysis based on the relationship between the size of adaptation and the aftereffect. Our findings indicate that the reactive feedback control was involved in all the speed ratios tested and that the extent of reaction was proportionally dependent on the speed ratio of the split-belt. On the contrary, predictive feedforward control was necessary when the ratio of the split-belt was greater. These results enable us to consider how a given split-belt training condition would affect the relative contribution of the two strategies on gait adaptation, which must be considered when developing rehabilitation interventions for stroke patients.

  7. Running for exercise mitigates age-related deterioration of walking economy.

    Directory of Open Access Journals (Sweden)

    Justus D Ortega

    Full Text Available Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy.To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults.15 older adults (69 ± 3 years who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s. We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study.Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016 and had walking economy similar to young sedentary adults over a similar range of speeds (p =  .237. We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p =  .461 and ∼ 26% worse walking economy than young adults (p<.0001.Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.

  8. Anticipatory changes in control of swing foot and lower limb joints when walking onto a moving surface traveling at constant speed.

    Science.gov (United States)

    Hsu, Wei-Chun; Wang, Ting-Ming; Lu, Hsuan-Lun; Lu, Tung-Wu

    2015-01-01

    Adapting to a predictable moving surface such as an escalator is a crucial part of daily locomotor tasks in modern cities. However, the associated biomechanics have remained unexplored. In a gait laboratory, fifteen young adults walked from the ground onto a moving or a static surface while their kinematic and kinetic data were obtained for calculating foot and pelvis motions, as well as the angles and moments of the lower limb joints. Between-surface-condition comparisons were performed using a paired t-test (α = 0.05). The results showed that anticipatory locomotor adjustments occurred at least a stride before successfully walking onto the moving surface, including increasing step length and speed in the trailing step (p moving surface (p > 0.05), mainly through reduced extension of the trailing hip but increased pelvic anterior tilt and leading swing ankle plantarflexion (p moving surfaces such as escalators. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Walking adaptability therapy after stroke: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Timmermans, Celine; Roerdink, Melvyn; van Ooijen, Marielle W; Meskers, Carel G; Janssen, Thomas W; Beek, Peter J

    2016-08-26

    Walking in everyday life requires the ability to adapt walking to the environment. This adaptability is often impaired after stroke, and this might contribute to the increased fall risk after stroke. To improve safe community ambulation, walking adaptability training might be beneficial after stroke. This study is designed to compare the effects of two interventions for improving walking speed and walking adaptability: treadmill-based C-Mill therapy (therapy with augmented reality) and the overground FALLS program (a conventional therapy program). We hypothesize that C-Mill therapy will result in better outcomes than the FALLS program, owing to its expected greater amount of walking practice. This is a single-center parallel group randomized controlled trial with pre-intervention, post-intervention, retention, and follow-up tests. Forty persons after stroke (≥3 months) with deficits in walking or balance will be included. Participants will be randomly allocated to either C-Mill therapy or the overground FALLS program for 5 weeks. Both interventions will incorporate practice of walking adaptability and will be matched in terms of frequency, duration, and therapist attention. Walking speed, as determined by the 10 Meter Walking Test, will be the primary outcome measure. Secondary outcome measures will pertain to walking adaptability (10 Meter Walking Test with context or cognitive dual-task and Interactive Walkway assessments). Furthermore, commonly used clinical measures to determine walking ability (Timed Up-and-Go test), walking independence (Functional Ambulation Category), balance (Berg Balance Scale), and balance confidence (Activities-specific Balance Confidence scale) will be used, as well as a complementary set of walking-related assessments. The amount of walking practice (the number of steps taken per session) will be registered using the treadmill's inbuilt step counter (C-Mill therapy) and video recordings (FALLS program). This process measure will

  10. Kinematic Adaptations of Forward and Backward Walking on Land and in Water

    Directory of Open Access Journals (Sweden)

    Cadenas-Sanchez Cristina

    2015-12-01

    Full Text Available The aim of this study was to compare sagittal plane lower limb kinematics during walking on land and submerged to the hip in water. Eight healthy adults (age 22.1 ± 1.1 years, body height 174.8 ± 7.1 cm, body mass 63.4 ± 6.2 kg were asked to cover a distance of 10 m at comfortable speed with controlled step frequency, walking forward or backward. Sagittal plane lower limb kinematics were obtained from three dimensional video analysis to compare spatiotemporal gait parameters and joint angles at selected events using two-way repeated measures ANOVA. Key findings were a reduced walking speed, stride length, step length and a support phase in water, and step length asymmetry was higher compared to the land condition (p<0.05. At initial contact, knees and hips were more flexed during walking forward in water, whilst, ankles were more dorsiflexed during walking backward in water. At final stance, knees and ankles were more flexed during forward walking, whilst the hip was more flexed during backward walking. These results show how walking in water differs from walking on land, and provide valuable insights into the development and prescription of rehabilitation and training programs.

  11. Differences in physical aging measured by walking speed: evidence from the English Longitudinal Study of Ageing.

    Science.gov (United States)

    Weber, Daniela

    2016-01-28

    Physical functioning and mobility of older populations are of increasing interest when populations are aging. Lower body functioning such as walking is a fundamental part of many actions in daily life. Limitations in mobility threaten independent living as well as quality of life in old age. In this study we examine differences in physical aging and convert those differences into the everyday measure of single years of age. We use the English Longitudinal Study of Ageing, which was collected biennially between 2002 and 2012. Data on physical performance, health as well as information on economics and demographics of participants were collected. Lower body performance was assessed with two timed walks at normal pace each of 8 ft (2.4 m) of survey participants aged at least 60 years. We employed growth curve models to study differences in physical aging and followed the characteristic-based age approach to illustrate those differences in single years of age. First, we examined walking speed of about 11,700 English individuals, and identified differences in aging trajectories by sex and other characteristics (e.g. education, occupation, regional wealth). Interestingly, higher educated and non-manual workers outperformed their counterparts for both men and women. Moreover, we transformed the differences between subpopulations into single years of age to demonstrate the magnitude of those gaps, which appear particularly high at early older ages. This paper expands research on aging and physical performance. In conclusion, higher education provides an advantage in walking of up to 15 years for men and 10 years for women. Thus, enhancements in higher education have the potential to ensure better mobility and independent living in old age for a longer period.

  12. Running for exercise mitigates age-related deterioration of walking economy.

    Science.gov (United States)

    Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger

    2014-01-01

    Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p =  .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p =  .461) and ∼ 26% worse walking economy than young adults (peconomy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.

  13. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.

    Science.gov (United States)

    Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh

    2011-05-27

    Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.

  14. Variability of leg kinematics during overground walking in persons with chronic incomplete spinal cord injury.

    Science.gov (United States)

    Sohn, Won Joon; Tan, Andrew Q; Hayes, Heather B; Pochiraju, Saahith; Deffeyes, Joan; Trumbower, Randy D

    2018-03-20

    Incomplete spinal cord injury (iSCI) often leads to partial disruption of spinal pathways that are important for motor control of walking. Persons with iSCI present with deficits in walking ability due, in part, to inconsistent leg kinematics during stepping. While kinematic variability is important for normal walking, growing evidence indicates that excessive variability may limit walking ability and increase reliance on assistive devices (AD) after iSCI. The purpose of this study was to assess the effects of iSCI-induced impairments on kinematic variability during overground walking. We hypothesized that iSCI results in greater variability of foot and joint displacement during overground walking compared to controls. We further hypothesized that variability is larger in persons with limited walking speed and greater reliance on ADs. To test these hypotheses, iSCI and control subjects walked overground. Kinematic variability was quantified as step-to-step foot placement variability (endpoint), and variability in hip-knee, hip-ankle, and knee-ankle joint space (angular coefficient of correspondence; ACC). We characterized sensitivity of kinematic variability to cadence, auditory cue, and AD. Supporting our hypothesis, persons with iSCI exhibited greater kinematic variability than controls, which scaled with deficits in overground walking speed (pvariability, and with walking speed, indicates both are markers of walking performance. Moreover, hip-knee and hip-ankle ACC discriminated between AD use, indicating that ACC may capture AD-specific control strategies. We conclude that increased variability of foot and joint displacement are indicative of motor impairment severity and may serve as therapeutic targets to restore walking after iSCI.

  15. Associations of Walking Speed, Grip Strength, and Standing Balance With Total and Cause-Specific Mortality in a General Population of Japanese Elders.

    Science.gov (United States)

    Nofuji, Yu; Shinkai, Shoji; Taniguchi, Yu; Amano, Hidenori; Nishi, Mariko; Murayama, Hiroshi; Fujiwara, Yoshinori; Suzuki, Takao

    2016-02-01

    Walking speed, grip strength, and standing balance are key components of physical performance in older people. The present study aimed to evaluate (1) associations of these physical performance measures with cause-specific mortality, (2) independent associations of individual physical performance measures with mortality, and (3) the added value of combined use of the 3 physical performance measures in predicting all-cause and cause-specific mortality. Prospective cohort study with a follow-up of 10.5 years. Tokyo Metropolitan Institute of Gerontology Longitudinal Interdisciplinary Study on Aging (TMIG-LISA), Japan. A total of 1085 initially nondisabled older Japanese aged 65 to 89 years. Usual walking speed, grip strength, and standing balance were measured at baseline survey. During follow-up, 324 deaths occurred (122 of cardiovascular disease, 75 of cancer, 115 of other causes, and 12 of unknown causes). All 3 physical performance measures were significantly associated with all-cause, cardiovascular, and other-cause mortality, but not with cancer mortality, independent of potential confounders. When all 3 physical performance measures were simultaneously entered into the model, each was significantly independently associated with all-cause and cardiovascular mortality. The C statistics for all-cause and cardiovascular mortality were significantly increased by adding grip strength and standing balance to walking speed (P balance predicted all-cause, cardiovascular, and other-cause mortality, but not cancer mortality, independent of covariates. Moreover, these 3 components of physical performance were independently associated with all-cause and cardiovascular mortality and their combined use increased prognostic power. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  16. Comparison of the Mini-Balance Evaluations Systems Test with the Berg Balance Scale in relationship to walking speed and motor recovery post stroke.

    Science.gov (United States)

    Madhavan, Sangeetha; Bishnoi, Alka

    2017-12-01

    The Mini-BESTest is a recently developed balance assessment tool that incorporates challenging dynamic balance tasks. Few studies have compared the psychometric properties of the Mini-BESTest to the commonly used Berg Balance Scale (BBS). However, the utility of these scales in relationship to post stroke walking speeds has not been explored. The purpose of this study was to compare the sensitivity and specificity of the Mini-BESTest and BBS to evaluate walking speeds in individuals with stroke. A retrospective exploratory design. Forty-one individuals with chronic stroke were evaluated with the Mini-BESTest, BBS, and 10-meter self-selected walk test (10MWT). Based on their self-selected gait speeds (below or above 0.8 m/s), participants were classified as slow and fast walkers. Significant linear correlations were observed between the Mini-BESTest vs. BBS (r = 0.72, p ≤ 0.001), Mini-BESTest vs. 10MWT (r = 0.58, p ≤ 0.001), and BBS vs. 10MWT (r = 0.30, p = 0.05). Independent t-tests comparing the balance scores for the slow and fast walkers revealed significant group differences for the Mini-BESTest (p = 0.003), but not for the BBS (p = 0.09). The Mini-BESTest demonstrated higher sensitivity (93%) and specificity (64%) compared to the BBS (sensitivity 81%, specificity 56%) for discriminating participants into slow and fast walkers. The Mini-BESTest has a greater discriminative ability than the BBS to categorize individuals with stroke into slow and fast walkers.

  17. Effects of different frequencies of rhythmic auditory cueing on the stride length, cadence, and gait speed in healthy young females.

    Science.gov (United States)

    Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng

    2015-02-01

    [Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.

  18. Walking on high heels changes muscle activity and the dynamics of human walking significantly

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Svendsen, Morten Bo Søndergaard; Nørreslet, Andreas

    2012-01-01

    The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five...... digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance...... phase was doubled when walking on high heels. The knee joint angle showed that high-heeled walking caused the subjects to flex the knee joint significantly more in the first half of the stance phase. In the frontal plane a significant increase was observed in the knee joint abductor moment and the hip...

  19. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    Science.gov (United States)

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  20. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila.

    Science.gov (United States)

    Gowda, Swetha B M; Paranjpe, Pushkar D; Reddy, O Venkateswara; Thiagarajan, Devasena; Palliyil, Sudhir; Reichert, Heinrich; VijayRaghavan, K

    2018-02-27

    Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila Our findings indicate that targeted down-regulation of the GABA A receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila . Copyright © 2018 the Author(s). Published by PNAS.

  1. Physiotherapy Effects in Gait Speed in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Klejda Tani

    2018-03-01

    CONCLUSIONS: Our results indicated that there was a significant decrease in pain and increase of gait speed while walking for 10 meters. Kinesio Tape can be used in patients with knee osteoarthritis, especially when changing walking stereotypes is a long-term goal of the treatment.

  2. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury.

    Science.gov (United States)

    Evans, Nicholas; Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity.

  3. Performance of a six-legged planetary rover - Power, positioning, and autonomous walking

    Science.gov (United States)

    Krotkov, Eric; Simmons, Reid

    The authors quantify several performance metrics for the Ambler, a six-legged robot configured for autonomous traversal of Mars-like terrain. They present power consumption measures for walking on sandy terrain and for vertical lifts at different velocities. They document the accuracy of a novel dead reckoning approach, and analyze the accuracy. They describe the results of autonomous walking experiments in terms of terrain traversed, walking speed, number of instructions executed and endurance.

  4. Metabolic cost and mechanics of walking in women with fibromyalgia syndrome.

    Science.gov (United States)

    MacPhee, Renée S; McFall, Kristen; Perry, Stephen D; Tiidus, Peter M

    2013-10-18

    Fibromyalgia syndrome (FS) is characterized by the presence of widespread pain, fatigue, muscle weakness and reduced work capacity. Previous research has demonstrated that women with fibromyalgia have altered walking (gait) patterns, which may be a consequence of muscular pain. This altered gait is characterized by greater reliance on hip flexors rather than ankle plantar flexors and resembles gait patterns seen in normal individuals walking at higher speeds, suggesting that gait of individuals with fibromyalgia may be less efficient.This study compared rates of energy expenditure of 6 females with FS relative to 6 normal, age and weight matched controls, at various walking speeds on a motorized treadmill. Metabolic measurements including V02 (ml/kg/min), respirations, heart rate and calculated energy expenditures as well as the Borg Scale of Perceived Exertion scale ratings were determined at baseline and for 10 min while walking at each of 2, 4 and 5 km/hour on 1% grade. Kinematic recordings of limb and body movements while treadmill walking and separate measurements of ground reaction forces while walking over ground were also determined. In addition, all subjects completed the RAND 36-Item Health Survey (1.0). Gait analysis results were similar to previous reports of altered gait patterns in FS females. Despite noticeable differences in gait patterns, no significant differences (p > 0.05) existed between the FS and control subjects on any metabolic measures at any walking speed. Total number of steps taken was also similar between groups. Ratings on the Borg Scale of Perceived Exertion, the RAND and self-reported levels of pain indicated significantly greater (p gait patterns and greater perceptions of effort and pain did not significantly increase the metabolic costs of walking in women with FS and hence, increased sensations of fatigue in FS women may not be related to alteration in metabolic cost of ambulation.

  5. Modeling pedestrian crossing speed profiles considering speed change behavior for the safety assessment of signalized intersections.

    Science.gov (United States)

    Iryo-Asano, Miho; Alhajyaseen, Wael K M

    2017-11-01

    Pedestrian safety is one of the most challenging issues in road networks. Understanding how pedestrians maneuver across an intersection is the key to applying countermeasures against traffic crashes. It is known that the behaviors of pedestrians at signalized crosswalks are significantly different from those in ordinary walking spaces, and they are highly influenced by signal indication, potential conflicts with vehicles, and intersection geometries. One of the most important characteristics of pedestrian behavior at crosswalks is the possible sudden speed change while crossing. Such sudden behavioral change may not be expected by conflicting vehicles, which may lead to hazardous situations. This study aims to quantitatively model the sudden speed changes of pedestrians as they cross signalized crosswalks under uncongested conditions. Pedestrian speed profiles are collected from empirical data and speed change events are extracted assuming that the speed profiles are stepwise functions. The occurrence of speed change events is described by a discrete choice model as a function of the necessary walking speed to complete crossing before the red interval ends, current speed, and the presence of turning vehicles in the conflict area. The amount of speed change before and after the event is modeled using regression analysis. A Monte Carlo simulation is applied for the entire speed profile of the pedestrians. The results show that the model can represent the pedestrian travel time distribution more accurately than the constant speed model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners.

    Science.gov (United States)

    McGregor, Stephen J; Busa, Michael A; Skufca, Joseph; Yaggie, James A; Bollt, Erik M

    2009-06-01

    Regularity statistics have been previously applied to walking gait measures in the hope of gaining insight into the complexity of gait under different conditions and in different populations. Traditional regularity statistics are subject to the requirement of stationarity, a limitation for examining changes in complexity under dynamic conditions such as exhaustive exercise. Using a novel measure, control entropy (CE), applied to triaxial continuous accelerometry, we report changes in complexity of walking and running during increasing speeds up to exhaustion in highly trained runners. We further apply Karhunen-Loeve analysis in a new and novel way to the patterns of CE responses in each of the three axes to identify dominant modes of CE responses in the vertical, mediolateral, and anterior/posterior planes. The differential CE responses observed between the different axes in this select population provide insight into the constraints of walking and running in those who may have optimized locomotion. Future comparisons between athletes, healthy untrained, and clinical populations using this approach may help elucidate differences between optimized and diseased locomotor control.

  7. Using GPS, accelerometry and heart rate to predict outdoor graded walking energy expenditure.

    Science.gov (United States)

    de Müllenheim, P-Y; Chaudru, S; Emily, M; Gernigon, M; Mahé, G; Bickert, S; Prioux, J; Noury-Desvaux, B; Le Faucheur, A

    2018-02-01

    To determine the best method and combination of methods among global positioning system (GPS), accelerometry, and heart rate (HR) for estimating energy expenditure (EE) during level and graded outdoor walking. Thirty adults completed 6-min outdoor walks at speeds of 2.0, 3.5, and 5.0kmh -1 during three randomized outdoor walking sessions: one level walking session and two graded (uphill and downhill) walking sessions on a 3.4% and a 10.4% grade. EE was measured using a portable metabolic system (K4b 2 ). Participants wore a GlobalSat ® DG100 GPS receiver, an ActiGraph™ wGT3X+ accelerometer, and a Polar ® HR monitor. Linear mixed models (LMMs) were tested for EE predictions based on GPS speed and grade, accelerometer counts or HR-related parameters (alone and combined). Root-mean-square error (RMSE) was used to determine the accuracy of the models. Published speed/grade-, count-, and HR-based equations were also cross-validated. According to the LMMs, GPS was as accurate as accelerometry (RMSE=0.89-0.90kcalmin -1 ) and more accurate than HR (RMSE=1.20kcalmin -1 ) for estimating EE during level walking; GPS was the most accurate method for estimating EE during both level and uphill (RMSE=1.34kcalmin -1 )/downhill (RMSE=0.84kcalmin -1 ) walking; combining methods did not increase the accuracy reached using GPS (or accelerometry for level walking). The cross-validation results were in accordance with the LMMs, except for downhill walking. Our study provides useful information regarding the best method(s) for estimating EE with appropriate equations during level and graded outdoor walking. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Differences in foot kinematics between young and older adults during walking.

    Science.gov (United States)

    Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic

    2014-02-01

    Our understanding of age-related changes to foot function during walking has mainly been based on plantar pressure measurements, with little information on differences in foot kinematics between young and older adults. The purpose of this study was to investigate the differences in foot kinematics between young and older adults during walking using a multi-segment foot model. Joint kinematics of the foot and ankle for 20 young (mean age 23.2 years, standard deviation (SD) 3.0) and 20 older adults (mean age 73.2 years, SD 5.1) were quantified during walking with a 12 camera Vicon motion analysis system using a five segment kinematic model. Differences in kinematics were compared between older adults and young adults (preferred and slow walking speeds) using Student's t-tests or if indicated, Mann-Whitney U tests. Effect sizes (Cohen's d) for the differences were also computed. The older adults had a less plantarflexed calcaneus at toe-off (-9.6° vs. -16.1°, d = 1.0, p = range of motion (ROM) of the midfoot (11.9° vs. 14.8°, d = 1.3, p = young adults. Walking speed did not influence these differences, as they remained present when groups walked at comparable speeds. The findings of this study indicate that independent of walking speed, older adults exhibit significant differences in foot kinematics compared to younger adults, characterised by less propulsion and reduced mobility of multiple foot segments. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Older adults adopted more cautious gait patterns when walking in socks than barefoot.

    Science.gov (United States)

    Tsai, Yi-Ju; Lin, Sang-I

    2013-01-01

    Walking barefoot or in socks is common for ambulating indoors and has been reported to be associated with increased risk of falls and related injuries in the elderly. This study sought to determine if gait patterns differed between these two conditions for young and older adults. A motion analysis system was used to record and calculate the stride characteristics and motion of the body's center of mass (COM) of 21 young and 20 older adults. For the walking tasks, the participants walked on a smooth floor surface at their preferred speed either barefoot or in socks in a random order. The socks were commercially available and commonly used. The results demonstrated that while walking in socks, compared with walking barefoot, older adults adopted a more cautious gait pattern including decreased walking speed and shortened stride length as well as reduced COM minimal velocity during the single limb support phase. Young adults, however, did not demonstrate significant changes. These findings suggest that walking with socks might present a greater balance threat for older adults. Clinically, safety precautions about walking in socks should be considered to be given to older adults, especially those with balance deficits. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Design of wheel-type walking-assist device

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Jung, Kyung Min; Lee, Sung Uk

    2006-03-01

    In this research, a outdoor wheel-type walking-assist device is developed to help an elder having a poor muscular strength at legs for walking, sitting and standing up easily at outdoors, and also for going and downing stairs. In conceptually designing, the environments of an elder's activity, the size of an elder's body and a necessary function of helping an elder are considered. This device has 4 wheels for stability. When an elder walks in incline plane with the proposed device, a rear-wing is rotated to keep the supporting device horizontal, regardless of an angle of inclination. A height-controlling device, which can control the height of the supporting device for adjusting an elder's height, is varied vertically to help an elder to sit and stand-up easily. Moreover, a outdoor wheel-type walking-assist device is conceptually designed and is made. In order to design it, the preview research is investigated firstly. On the basis of the proposed walking-assist device, the outdoor walking-assist device is designed and made. The outdoor wheel-type walking-assist device can go and down stairs automatically. This device go up and down the stair of having maximum 20cm height and an angle of 25 degrees with maximum 4 sec/stairs speed, and move at flatland with 60cm/sec speed

  11. Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight

    Science.gov (United States)

    Rosenberg, M. J. F.; Reschke, M. F.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; May-Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.; hide

    2016-01-01

    performed as part of pilot FT. To perform the Tandem Walk, subjects begin with their feet together, their arms crossed at their chest and eyes closed. When ready, they brought one foot forward and touched the heel of their foot to their toe, repeating with the other foot, and continuing for about 10 steps. Three trials were collected with the eyes closed and a fourth trial was collected with eyes open. There are four metrics which are used to determine the performance level of the Tandem Walk. The first is percent correct steps. For a step to be counted as correct, the foot could not touch the ground while bringing it forward (no side stepping), eyes must stay closed during the eyes closed trials, the heel and toe should be touching, or almost touching (no large gaps) and there shouldn't be more than a three second pause between steps. Three judges score each step and the median of the three scores is kept. The second metric is the average step speed, or the number of steps/time to complete them. Thirdly, the root mean squared (RMS) error in the resultant trunk acceleration is used to determine the amount of upper body instability observed during the task. Finally, the RMS error of the mediolateral center of pressure as measured by the Moticon insoles is used to determine the mediolateral instability at the foot level. These four parameters are combined into a new overall Tandem Walk Parameter. RESULTS: Preliminary results show that crewmembers perform the Tandem Walk significantly worse the first 24 hours after landing as compared to their baseline performance. We find that each of the four performance metrics is significantly worse immediately after landing. We will present the results of tandem walk performance during the FT thus far. We will also combine these with the 18 crewmembers that participated in the pilot FT, concentrating on the level of performance and recovery rate. CONCLUSION: The Tandem Walk data collected as part of the FT experiment will provide

  12. Influence of the swing ankle angle on walking stability for a passive dynamic walking robot with flat feet

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2016-03-01

    Full Text Available To achieve high walking stability for a passive dynamic walking robot is not easy. In this article, we aim to investigate whether the walking performance for a passive dynamic walking robot can be improved by just simply changing the swing ankle angle before impact. To validate this idea, a passive bipedal walking model with two straight legs, two flat feet, a hip joint, and two ankle joints was built in this study. The walking dynamics that contains double stance phase was derived. By numerical simulation of the walking in MATLAB, we found that the walking performance can be adjusted effectively by only simply changing the swing ankle angle before impact. A bigger swing ankle angle in a reasonable range will lead to a higher walking stability and a lower initial walking speed of the next step. A bigger swing ankle angle before impact leads to a bigger amount of energy lost during impact for the quasi-passive dynamic walking robot which will influence the walking stability of the next step.

  13. Energy costs and performance of transfemoral amputees and non-amputees during walking and running: A pilot study.

    Science.gov (United States)

    Mengelkoch, Larry J; Kahle, Jason T; Highsmith, M Jason

    2017-10-01

    Limited information is available concerning the effects of prosthetic foot components on energy costs and ambulatory performance for transfemoral amputees. Compare energy costs (VO 2 ; gait economy) and ambulatory performance (self-selected walking speeds, self-selected running speeds, peak running speeds) differences during walking and running for transfemoral amputees and matched, non-amputee runners. Repeated measures. Transfemoral amputees were accommodated and tested with three prosthetic feet: conventional foot, solid-ankle cushioned heel (SACH); energy storing and return foot, Renegade; and running-specific energy storing and return foot, Nitro. During walking, VO 2 was similar between transfemoral amputees but was increased compared to controls. Self-selected walking speeds were slower for SACH compared to Renegade and Nitro. For transfemoral amputees, gait economy was decreased and self-selected walking speeds were slower compared to controls. During fixed running speeds, transfemoral amputees ran using Nitro, and VO 2 was greater compared to controls. Transfemoral amputees ran at self-selected running speeds using Renegade and Nitro. Self-selected running speeds were slower for Renegade compared to Nitro. For transfemoral amputees, gait economy was decreased and self-selected running speeds were slower compared to controls. VO 2 peak was similar between transfemoral amputees and controls, but controls achieved greater peak running speeds and % grade. Energy costs were greater and ambulatory performance was lower for transfemoral amputees compared to matched, non-amputee controls for all prosthetic foot conditions. Clinical relevance Both types of energy storing and return feet may improve walking performance for transfemoral amputees by providing faster self-selected walking speeds. For transfemoral amputees interested in performing vigorous running (exercise and running competition), clinicians should recommend a running-specific energy storing and

  14. Effects of adding a virtual reality environment to different modes of treadmill walking.

    Science.gov (United States)

    Sloot, L H; van der Krogt, M M; Harlaar, J

    2014-03-01

    Differences in gait between overground and treadmill walking are suggested to result from imposed treadmill speed and lack of visual flow. To counteract this effect, feedback-controlled treadmills that allow the subject to control the belt speed along with an immersive virtual reality (VR) have recently been developed. We studied the effect of adding a VR during both fixed speed (FS) and self-paced (SP) treadmill walking. Nineteen subjects walked on a dual-belt instrumented treadmill with a simple endless road projected on a 180° circular screen. A main effect of VR was found for hip flexion offset, peak hip extension, peak knee extension moment, knee flexion moment gain and ankle power during push off. A consistent interaction effect between VR and treadmill mode was found for 12 out of 30 parameters, although the differences were small and did not exceed 50% of the within subject stride variance. At FS, the VR seemed to slightly improve the walking pattern towards overground walking, with for example a 6.5mm increase in stride length. At SP, gait became slightly more cautious by adding a VR, with a 9.1mm decrease in stride length. Irrespective of treadmill mode, subjects rated walking with the VR as more similar to overground walking. In the context of clinical gait analysis, the effects of VR are too small to be relevant and are outweighed by the gains of adding a VR, such as a more stimulating experience and possibility of augmenting it by real-time feedback. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A community-based Falls Management Exercise Programme (FaME) improves balance, walking speed and reduced fear of falling.

    Science.gov (United States)

    Yeung, Pui Yee; Chan, Wayne; Woo, Jean

    2015-04-01

    Although effective community falls prevention programmes for the older persons have been described, challenges remain in translating proven interventions into daily practice. To evaluate the efficacy, feasibility and acceptability of a falls prevention programme that can be integrated into daily activities in a group of community-dwelling older adults with risk of falling. A cohort study with intervention and comparison groups was designed to evaluate a 36-week group-based falls prevention exercise programme (FaME) in the community setting. Participants were aged 60 years or older, had fallen in the past 12 months, had fear of falling with avoidance of activities or had deficits in balance control. Primary outcome measures included assessment of balance control and mobility; secondary outcome measures included level of physical activity, assessment of fear of falling and health-related quality of life. There were 48 and 51 participants in the intervention and comparison groups, respectively. There were improvements in measurements of balance, walking speed and self-efficacy. The drop out rate was low (14.6% and 3.9% from the intervention and comparison groups, respectively). Overall compliance in the intervention group was 79%. Factors that motivated continued participation include the regular and long-term nature of the programme helping to reinforce their exercise habits, the simplicity of movements and friendliness of the group. The FaME programme improves balance, walking speed and reduces fear of falling. It could be widely promoted and integrated into regular health and social activities in community settings.

  16. Functional effects of treadmill-based gait training at faster speeds in stroke survivors: a prospective, single-group study.

    Science.gov (United States)

    Mohammadi, Roghayeh; Ershad, Navid; Rezayinejad, Marziyeh; Fatemi, Elham; Phadke, Chetan P

    2017-09-01

    To examine the functional effects of walking retraining at faster than self-selected speed (SSS). Ten individuals with chronic stroke participated in a 4-week training over a treadmill at walking speeds 40% faster than SSS, three times per week, 30 min/session. Outcome measures assessed before, after, and 2 months after the end of intervention were the Timed Up and Go, the 6-Minute Walk, the 10-Meter Walk test, the Modified Ashworth Scale, SSS, and fastest comfortable speed. After 4 weeks of training, all outcome measures showed clinically meaningful and statistically significant improvements (Ptraining. The results showed that a strategy of training at a speed 40% faster than SSS can improve functional activity in individuals with chronic stroke, with effects lasting up to 2 months after the intervention.

  17. Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship.

    Science.gov (United States)

    Carvalho, Cristiane; Sunnerhagen, Katharina S; Willén, Carin

    2013-05-01

    To evaluate the relation between muscle strength in the lower extremities and walking performance (speed and distance) in subjects in the later stage poststroke and to compare this with normative data. A cross-sectional observational study. University hospital department. Subjects poststroke (n=41; 31 men, 10 women) with a mean age of 59±5.8 years and a time from stroke onset of 52±36 months were evaluated. An urban sample (n=144) of 40- to 79-year-olds (69 men, 75 women) formed the healthy reference group. Not applicable. Muscle strength in the lower extremities was measured with an isokinetic dynamometer and combined into a strength index. Values for the 30-meter walk test for self-selected and maximum speed and the 6-minute walk test were measured. A nonlinear regression model was used. The average strength index was 730±309 in the subjects after stroke compared with 1112±362 in the healthy group. A nonlinear relation between walking performance and muscle strength was evident. The model explained 37% of the variance in self-selected speed in the stroke group and 20% in the healthy group, and 63% and 38%, respectively, in the maximum walking speed. For the 6-minute walk test, the model explained 44% of the variance in the stroke group. Subjects in the later stage poststroke were weaker than the healthy reference group, and their weakness was associated with walking performance. At the same strength index, subjects walked at lower speeds and shorter distances after stroke, indicating that there are multiple impairments that affect walking ability. Treatments focused on increasing muscle strength thus continue to hold promise. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Barriers and motivators for owners walking their dog: results from qualitative research.

    Science.gov (United States)

    Cutt, Hayley E; Giles-Corti, Billie; Wood, Lisa J; Knuiman, Matthew W; Burke, Valerie

    2008-08-01

    This qualitative research explored the relationship between dog ownership and dog-related, social environmental and physical environmental factors associated with walking with a dog. Seven focus groups with dog owners (n=51) were conducted. A pre-determined discussion guide was used and transcripts were analysed as group data, using content analysis to identify common themes. Many of the physical environmental barriers and facilitators that influenced dog owners to walk were similar to those found in the literature for general walking. However, a number of key motivators for walking, specific to dog owners, were identified. Dog owners reported that their dog was a strong source of motivation, companionship and social support that encouraged them to walk with their dog. The availability and accessibility of public open space (POS) for dogs and the provision of dog-related infrastructure within POS were also important environmental factors that affected whether owners walked with their dog. Results from this qualitative study were used to develop the Dogs and Physical Activity (DAPA) tool which is now being used to measure the walking behaviour of dog owners.

  19. The preferred walk to run transition speed in actual lunar gravity.

    Science.gov (United States)

    De Witt, John K; Edwards, W Brent; Scott-Pandorf, Melissa M; Norcross, Jason R; Gernhardt, Michael L

    2014-09-15

    Quantifying the preferred transition speed (PTS) from walking to running has provided insight into the underlying mechanics of locomotion. The dynamic similarity hypothesis suggests that the PTS should occur at the same Froude number across gravitational environments. In normal Earth gravity, the PTS occurs at a Froude number of 0.5 in adult humans, but previous reports found the PTS occurred at Froude numbers greater than 0.5 in simulated lunar gravity. Our purpose was to (1) determine the Froude number at the PTS in actual lunar gravity during parabolic flight and (2) compare it with the Froude number at the PTS in simulated lunar gravity during overhead suspension. We observed that Froude numbers at the PTS in actual lunar gravity (1.39±0.45) and simulated lunar gravity (1.11±0.26) were much greater than 0.5. Froude numbers at the PTS above 1.0 suggest that the use of the inverted pendulum model may not necessarily be valid in actual lunar gravity and that earlier findings in simulated reduced gravity are more accurate than previously thought. © 2014. Published by The Company of Biologists Ltd.

  20. The adaptation of limb kinematics to increasing walking speeds in freely moving mice 129/Sv and C57BL/6.

    Science.gov (United States)

    Serradj, Nadjet; Jamon, Marc

    2009-07-19

    The kinematics of locomotion was analyzed in two strains of great importance for the creation of mutated mice (C56BL/6 and 129/Sv). Different behavioral situations were used to trigger sequences of movement covering the whole range of velocities in the mice, and the variations of kinematic parameters were analyzed in relation with velocity. Both stride frequency and stride length contributed to the moving speed, but stride frequency was found to be the main contributor to the speed increase. A trot-gallop transition was detected at speed about 70 cm/s, in relation with a sharp shift in limb coordination. The results of this study were consistent with pieces of information previously published concerning the gait analyses of other strains, and provided an integrative view of the basic motor pattern of mice. On the other hand some qualitative differences were found in the movement characteristics of the two strains. The stride frequency showed a higher contribution to speed in 129/Sv than in C57BL/6. In addition, 129/Sv showed a phase shift in the forelimb and hindlimb, and a different position of the foot during the stance time that revealed a different gait and body position during walking. Overall, 129/Sv moved at a slower speed than C57BL/6 in any behavioral situation. This difference was related to a basal lower level of motor activity. The possibility that an alteration in the dopamine circuit was responsible for the different movement pattern in 129/Sv is discussed.

  1. Risk of falls in older people during fast-walking--the TASCOG study.

    Science.gov (United States)

    Callisaya, M L; Blizzard, L; McGinley, J L; Srikanth, V K

    2012-07-01

    To investigate the relationship between fast-walking and falls in older people. Individuals aged 60-86 years were randomly selected from the electoral roll (n=176). Gait speed, step length, cadence and a walk ratio were recorded during preferred- and fast-walking using an instrumented walkway. Falls were recorded prospectively over 12 months. Log multinomial regression was used to estimate the relative risk of single and multiple falls associated with gait variables during fast-walking and change between preferred- and fast-walking. Covariates included age, sex, mood, physical activity, sensorimotor and cognitive measures. The risk of multiple falls was increased for those with a smaller walk ratio (shorter steps, faster cadence) during fast-walking (RR 0.92, CI 0.87, 0.97) and greater reduction in the walk ratio (smaller increase in step length, larger increase in cadence) when changing to fast-walking (RR 0.73, CI 0.63, 0.85). These gait patterns were associated with poorer physiological and cognitive function (prisk of multiple falls was also seen for those in the fastest quarter of gait speed (p=0.01) at fast-walking. A trend for better reaction time, balance, memory and physical activity for higher categories of gait speed was stronger for fallers than non-fallers (prisk of multiple falls. There may be two distinct groups at risk--the frail person with short shuffling steps, and the healthy person exposed to greater risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The "Interval Walking in Colorectal Cancer" (I-WALK-CRC) study: Design, methods and recruitment results of a randomized controlled feasibility trial.

    Science.gov (United States)

    Banck-Petersen, Anna; Olsen, Cecilie K; Djurhuus, Sissal S; Herrstedt, Anita; Thorsen-Streit, Sarah; Ried-Larsen, Mathias; Østerlind, Kell; Osterkamp, Jens; Krarup, Peter-Martin; Vistisen, Kirsten; Mosgaard, Camilla S; Pedersen, Bente K; Højman, Pernille; Christensen, Jesper F

    2018-03-01

    Low physical activity level is associated with poor prognosis in patients with colorectal cancer (CRC). To increase physical activity, technology-based platforms are emerging and provide intriguing opportunities to prescribe and monitor active lifestyle interventions. The "Interval Walking in Colorectal Cancer"(I-WALK-CRC) study explores the feasibility and efficacy a home-based interval-walking intervention delivered by a smart-phone application in order to improve cardio-metabolic health profile among CRC survivors. The aim of the present report is to describe the design, methods and recruitment results of the I-WALK-CRC study.Methods/Results: The I-WALK-CRC study is a randomized controlled trial designed to evaluate the feasibility and efficacy of a home-based interval walking intervention compared to a waiting-list control group for physiological and patient-reported outcomes. Patients who had completed surgery for local stage disease and patients who had completed surgery and any adjuvant chemotherapy for locally advanced stage disease were eligible for inclusion. Between October 1st , 2015, and February 1st , 2017, 136 inquiries were recorded; 83 patients were eligible for enrollment, and 42 patients accepted participation. Age and employment status were associated with participation, as participants were significantly younger (60.5 vs 70.8 years, P CRC survivors was feasible but we aim to better the recruitment rate in future studies. Further, the study clearly favored younger participants. The I-WALK-CRC study will provide important information regarding feasibility and efficacy of a home-based walking exercise program in CRC survivors.

  3. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review.

    Science.gov (United States)

    Lefeber, Nina; Swinnen, Eva; Kerckhofs, Eric

    2017-10-01

    The integration of sufficient cardiovascular stress into robot-assisted gait (RAG) training could combine the benefits of both RAG and aerobic training. The aim was to summarize literature data on the immediate effects of RAG compared to walking without robot-assistance on metabolic-, cardiorespiratory- and fatigue-related parameters. PubMed and Web of Science were searched for eligible articles till February 2016. Means, SDs and significance values were extracted. Effect sizes were calculated. Fourteen studies were included, concerning 155 participants (85 healthy subjects, 39 stroke and 31 spinal cord injury patients), 9 robots (2 end-effectors, 1 treadmill-based and 6 wearable exoskeletons), and 7 outcome parameters (mostly oxygen consumption and heart rate). Overall, metabolic and cardiorespiratory parameters were lower during RAG compared to walking without robot-assistance (moderate to large effect sizes). In healthy subjects, when no body-weight support (BWS) was provided, RAG with an end-effector device was more energy demanding than walking overground (p > .05, large effect sizes). Generally, results suggest that RAG is less energy-consuming and cardiorespiratory stressful than walking without robot-assistance, but results depend on factors such as robot type, walking speed, BWS and effort. Additional research is needed to draw firm conclusions. Implications for Rehabilitation Awareness of the energy consumption and cardiorespiratory load of robot-assisted gait (RAG) training is important in the rehabilitation of (neurological) patients with impaired cardiorespiratory fitness and patients who are at risk of cardiovascular diseases. On the other hand, the integration of sufficient cardiometabolic stress in RAG training could combine the effects of both RAG and aerobic training. Energy consumption and cardiorespiratory load during walking with robot-assistance seems to depend on factors such as robot type, walking speed, body-weight support or amount of

  4. Ground reaction forces during level ground walking with body weight unloading

    Science.gov (United States)

    Barela, Ana M. F.; de Freitas, Paulo B.; Celestino, Melissa L.; Camargo, Marcela R.; Barela, José A.

    2014-01-01

    Background: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old) walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate. PMID:25590450

  5. Ground reaction forces during level ground walking with body weight unloading

    Directory of Open Access Journals (Sweden)

    Ana M. F. Barela

    2014-12-01

    Full Text Available Background: Partial body weight support (BWS systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate.

  6. Self-selected speeds and metabolic cost of longboard skateboarding.

    Science.gov (United States)

    Board, Wayne J; Browning, Raymond C

    2014-11-01

    The purpose of this study was to determine self-selected speeds, metabolic rate, and gross metabolic cost during longboard skateboarding. We measured overground speed and metabolic rate while 15 experienced longboarders traveled at their self-selected slow, typical and fast speeds. Mean longboarding speeds were 3.7, 4.5 and 5.1 m s(-1), during slow, typical and fast trials, respectively. Mean rates of oxygen consumption were 24.1, 29.1 and 37.2 ml kg(-1) min(-1) and mean rates of energy expenditure were 33.5, 41.8 and 52.7 kJ min(-1) at the slow, typical and fast speeds, respectively. At typical speeds, average intensity was ~8.5 METs. There was a significant positive relationship between oxygen consumption and energy expenditure versus speed (R(2) = 0.69 (P < 0.001), and R(2) = 0.78 (P < 0.001), respectively). The gross metabolic cost was ~2.2 J kg(-1) m(-1) at the typical speed, greater than that reported for cycling and ~50% smaller than that of walking. These results suggest that longboarding is a novel form of physical activity that elicits vigorous intensity, yet is economical compared to walking.

  7. Foot trajectory approximation using the pendulum model of walking.

    Science.gov (United States)

    Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J

    2014-01-01

    Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.

  8. Reduction and technical simplification of testing protocol for walking based on repeatability analyses: An Interreg IVa pilot study

    Directory of Open Access Journals (Sweden)

    Nejc Sarabon

    2010-12-01

    Full Text Available The aim of this study was to define the most appropriate gait measurement protocols to be used in our future studies in the Mobility in Ageing project. A group of young healthy volunteers took part in the study. Each subject carried out a 10-metre walking test at five different speeds (preferred, very slow, very fast, slow, and fast. Each walking speed was repeated three times, making a total of 15 trials which were carried out in a random order. Each trial was simultaneously analysed by three observers using three different technical approaches: a stop watch, photo cells and electronic kinematic dress. In analysing the repeatability of the trials, the results showed that of the five self-selected walking speeds, three of them (preferred, very fast, and very slow had a significantly higher repeatability of the average walking velocity, step length and cadence than the other two speeds. Additionally, the data showed that one of the three technical methods for gait assessment has better metric characteristics than the other two. In conclusion, based on repeatability, technical and organizational simplification, this study helped us to successfully define a simple and reliable walking test to be used in the main study of the project.

  9. Socioeconomic status, non-communicable disease risk factors, and walking speed in older adults: multi-cohort population based study.

    Science.gov (United States)

    Stringhini, Silvia; Carmeli, Cristian; Jokela, Markus; Avendaño, Mauricio; McCrory, Cathal; d'Errico, Angelo; Bochud, Murielle; Barros, Henrique; Costa, Giuseppe; Chadeau-Hyam, Marc; Delpierre, Cyrille; Gandini, Martina; Fraga, Silvia; Goldberg, Marcel; Giles, Graham G; Lassale, Camille; Kenny, Rose Anne; Kelly-Irving, Michelle; Paccaud, Fred; Layte, Richard; Muennig, Peter; Marmot, Michael G; Ribeiro, Ana Isabel; Severi, Gianluca; Steptoe, Andrew; Shipley, Martin J; Zins, Marie; Mackenbach, Johan P; Vineis, Paolo; Kivimäki, Mika

    2018-03-23

    To assess the association of low socioeconomic status and risk factors for non-communicable diseases (diabetes, high alcohol intake, high blood pressure, obesity, physical inactivity, smoking) with loss of physical functioning at older ages. Multi-cohort population based study. 37 cohort studies from 24 countries in Europe, the United States, Latin America, Africa, and Asia, 1990-2017. 109 107 men and women aged 45-90 years. Physical functioning assessed using the walking speed test, a valid index of overall functional capacity. Years of functioning lost was computed as a metric to quantify the difference in walking speed between those exposed and unexposed to low socioeconomic status and risk factors. According to mixed model estimations, men aged 60 and of low socioeconomic status had the same walking speed as men aged 66.6 of high socioeconomic status (years of functioning lost 6.6 years, 95% confidence interval 5.0 to 9.4). The years of functioning lost for women were 4.6 (3.6 to 6.2). In men and women, respectively, 5.7 (4.4 to 8.1) and 5.4 (4.3 to 7.3) years of functioning were lost by age 60 due to insufficient physical activity, 5.1 (3.9 to 7.0) and 7.5 (6.1 to 9.5) due to obesity, 2.3 (1.6 to 3.4) and 3.0 (2.3 to 4.0) due to hypertension, 5.6 (4.2 to 8.0) and 6.3 (4.9 to 8.4) due to diabetes, and 3.0 (2.2 to 4.3) and 0.7 (0.1 to 1.5) due to tobacco use. In analyses restricted to high income countries, the number of years of functioning lost attributable to low socioeconomic status by age 60 was 8.0 (5.7 to 13.1) for men and 5.4 (4.0 to 8.0) for women, whereas in low and middle income countries it was 2.6 (0.2 to 6.8) for men and 2.7 (1.0 to 5.5) for women. Within high income countries, the number of years of functioning lost attributable to low socioeconomic status by age 60 was greater in the United States than in Europe. Physical functioning continued to decline as a function of unfavourable risk factors between ages 60 and 85. Years of functioning

  10. Predictors of Gait Speeds and the Relationship of Gait Speeds to Falls in Men and Women with Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Samuel T. Nemanich

    2013-01-01

    Full Text Available Gait difficulties and falls are commonly reported in people with Parkinson disease (PD. Reduction in gait speed is a major characteristic of Parkinsonian gait, yet little is known about its underlying determinants, its ability to reflect an internal reservation about walking, or its relationship to falls. To study these issues, we selected age, disease severity, and nonmotor factors (i.e., depression, quality of life, balance confidence, and exercise beliefs and attitudes to predict self-selected (SELF, fast-as-possible (FAST, and the difference (DIFF between these walking speeds in 78 individuals with PD. We also examined gender differences in gait speeds and evaluated how gait speeds were related to a retrospective fall report. Age, disease severity, and balance confidence were strong predictors of SELF, FAST, and, to a lesser extent, DIFF. All three parameters were strongly associated with falling. DIFF was significantly greater in men compared to women and was significantly associated with male but not female fallers. The results supported the clinical utility of using a suite of gait speed parameters to provide insight into the gait difficulties and differentiating between fallers in people with PD.

  11. Kinematic control of walking.

    Science.gov (United States)

    Lacquaniti, F; Ivanenko, Y P; Zago, M

    2002-10-01

    The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power

  12. Treadmill training and body weight support for walking after stroke.

    Science.gov (United States)

    Mehrholz, Jan; Thomas, Simone; Elsner, Bernhard

    2017-08-17

    Treadmill training, with or without body weight support using a harness, is used in rehabilitation and might help to improve walking after stroke. This is an update of the Cochrane review first published in 2003 and updated in 2005 and 2014. To determine if treadmill training and body weight support, individually or in combination, improve walking ability, quality of life, activities of daily living, dependency or death, and institutionalisation or death, compared with other physiotherapy gait-training interventions after stroke. The secondary objective was to determine the safety and acceptability of this method of gait training. We searched the Cochrane Stroke Group Trials Register (last searched 14 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) and the Database of Reviews of Effects (DARE) (the Cochrane Library 2017, Issue 2), MEDLINE (1966 to 14 February 2017), Embase (1980 to 14 February 2017), CINAHL (1982 to 14 February 2017), AMED (1985 to 14 February 2017) and SPORTDiscus (1949 to 14 February 2017). We also handsearched relevant conference proceedings and ongoing trials and research registers, screened reference lists, and contacted trialists to identify further trials. Randomised or quasi-randomised controlled and cross-over trials of treadmill training and body weight support, individually or in combination, for the treatment of walking after stroke. Two review authors independently selected trials, extracted data, and assessed risk of bias and methodological quality. The primary outcomes investigated were walking speed, endurance, and dependency. We included 56 trials with 3105 participants in this updated review. The average age of the participants was 60 years, and the studies were carried out in both inpatient and outpatient settings. All participants had at least some walking difficulties and many could not walk without assistance. Overall, the use of treadmill training did not increase the chances of walking

  13. The efficacy of the Ankle Mimicking Prosthetic Foot prototype 4.0 during walking: Physiological determinants.

    Science.gov (United States)

    De Pauw, Kevin; Cherelle, Pierre; Roelands, Bart; Lefeber, Dirk; Meeusen, Romain

    2018-04-01

    Evaluating the effectiveness of a novel prosthetic device during walking is an important step in product development. To investigate the efficacy of a novel quasi-passive ankle prosthetic device, Ankle Mimicking Prosthetic Foot 4.0, during walking at different speeds, using physiological determinants in transtibial and transfemoral amputees. Nonrandomized crossover design for amputees. Six able-bodied subjects, six unilateral transtibial amputees, and six unilateral transfemoral amputees underwent a 6-min walk test at normal speed, followed by series of 2-min walking at slow, normal, and fast speeds. The intensity of effort and subjective measures were determined. Amputees performed all walking tests on a treadmill with current and novel prostheses. Shapiro-Wilk normality tests and parametric and nonparametric tests were conducted (p 4.0 is a novel quasi-passive ankle prosthesis with state-of-the-art technological parts. Subjective measures show the importance of this technology, but the intensity of effort during walking still remains higher compared to current passive prostheses, especially in transfemoral amputees.

  14. Full Step Cycle Kinematic and Kinetic Comparison of Barefoot Walking and a Traditional Shoe Walking in Healthy Youth: Insights for Barefoot Technology

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2017-01-01

    Full Text Available Objective. Barefoot technology shoes are becoming increasingly popular, yet modifications are still needed. The present study aims to gain valuable insights by comparing barefoot walking to neutral shoe walking in a healthy youth population. Methods. 28 healthy university students (22 females and 6 males were recruited to walk on a 10-meter walkway both barefoot and in neutral running shoes at their comfortable walking speed. Full step cycle kinematic and kinetic data were collected using an 8-camera motion capture system. Results. In the early stance phase, the knee extension moment (MK1, the first peak absorbed joint power at the knee joint (PK1, and the flexion angle of knee/dorsiflexion angle of the ankle were significantly reduced when walking in neutral running shoes. However, in the late stance, barefoot walking resulted in decreased hip joint flexion moment (MH2, second peak extension knee moment (MK3, hip flexors absorbed power (PH2, hip flexors generated power (PH3, second peak absorbed power by knee flexors (PK2, and second peak anterior-posterior component of joint force at the hip (APFH2, knee (APFK2, and ankle (APFA2. Conclusions. These results indicate that it should be cautious to discard conventional elements from future running shoe designs and rush to embrace the barefoot technology fashion.

  15. The effect of uphill and downhill walking on gait parameters: A self-paced treadmill study.

    Science.gov (United States)

    Kimel-Naor, Shani; Gottlieb, Amihai; Plotnik, Meir

    2017-07-26

    It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters. Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and -10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed. Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. Copyright © 2017. Published by Elsevier Ltd.

  16. Kinesthetic taping improves walking function in patients with stroke: a pilot cohort study.

    Science.gov (United States)

    Boeskov, Birgitte; Carver, Line Tornehøj; von Essen-Leise, Anders; Henriksen, Marius

    2014-01-01

    Stroke is an important cause of severe disability and impaired motor function. Treatment modalities that improve motor function in patients with stroke are needed. The objective of this study was to investigate the effect of kinesthetic taping of the anterior thigh and knee on maximal walking speed and clinical indices of spasticity in patients with stroke. Thirty-two patients (9 women) receiving rehabilitation after stroke (average, 50 days since stroke) who had impaired walking ability were recruited. Primary outcome was maximal walking speed measured by the 10-meter walk test. Secondary outcomes were number of steps taken during the test and clinical signs of spasticity measured by the Tardieu Scale. Tests were conducted before and immediately after application of kinesthetic tape to the anterior thigh and knee of the paretic lower limb. After application of the tape, the maximal walking speed increased, on average, by 0.08 m/s (95% CI, 0.04 to 0.12; P kinesthetic taping of the anterior thigh and knee provides an immediate improvement in walking function in patients with stroke. Such a positive effect on motor function could be a valuable adjunct in physical therapy and rehabilitation of patients with stroke.

  17. Steady and transient coordination structures of walking and running

    NARCIS (Netherlands)

    Lamoth, C. J. C.; Daffertshofer, A.; Huys, R.; Beek, P. J.

    We studied multisegmental coordination and stride characteristics in nine participants while walking and running on a treadmill. The study's main aim was to evaluate the coordination patterns of walking and running and their variance as a function of locomotion speed, with a specific focus on gait

  18. Steady and transient coordination structures of walking and running

    NARCIS (Netherlands)

    Lamoth, C.J.C.; Daffertshofer, A.; Huys, R.; Beek, P.J.

    2009-01-01

    We studied multisegmental coordination and stride characteristics in nine participants while walking and running on a treadmill. The study's main aim was to evaluate the coordination patterns of walking and running and their variance as a function of locomotion speed, with a specific focus on gait

  19. The Need for Speed in Rodent Locomotion Analyses

    Science.gov (United States)

    Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.

    2016-01-01

    Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. PMID:24890845

  20. Use of mobility aids reduces attentional demand in challenging walking conditions.

    Science.gov (United States)

    Miyasike-daSilva, Veronica; Tung, James Y; Zabukovec, Jeanie R; McIlroy, William E

    2013-02-01

    While mobility aids (e.g., four-wheeled walkers) are designed to facilitate walking and prevent falls in individuals with gait and balance impairments, there is evidence indicating that walkers may increase attentional demands during walking. We propose that walkers may reduce attentional demands under conditions that challenge balance control. This study investigated the effect of walker use on walking performance and attentional demand under a challenged walking condition. Young healthy subjects walked along a straight pathway, or a narrow beam. Attentional demand was assessed with a concurrent voice reaction time (RT) task. Slower RTs, reduced gait speed, and increased number of missteps (>92% of all missteps) were observed during beam-walking. However, walker use reduced attentional demand (faster RTs) and was linked to improved walking performance (increased gait speed, reduced missteps). Data from two healthy older adult cases reveal similar trends. In conclusion, mobility aids can be beneficial by reducing attentional demands and increasing gait stability when balance is challenged. This finding has implications on the potential benefit of mobility aids for persons who rely on walkers to address balance impairments. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking.

    Science.gov (United States)

    Llewellyn, M; Yang, J F; Prochazka, A

    1990-01-01

    Hoffman (H) reflexes were elicited from the soleus (SOL) muscle while subjects walked on a treadmill and on a narrow beam (3.5 cm wide, raised 34 cm from the floor). The speed of walking on the treadmill was selected for each subject to match the background activation level of their SOL muscle during beam walking. The normal reciprocal activation pattern of the tibialis anterior and SOL muscles in treadmill walking was replaced by a pattern dominated by co-contraction on the beam. In addition, the step cycle duration was more variable and the time spent in the swing phase was reduced on the beam. The H-reflexes were highly modulated in both tasks, the amplitude being high in the stance phase and low in the swing phase. The H-reflex amplitude was on average 40% lower during beam walking than treadmill walking. The relationship between the H-reflex amplitude and the SOL EMG level was quantified by a regression line relating the two variables. The slope of this line was on average 41% lower in beam walking than treadmill walking. The lower H-reflex gain observed in this study and the high level of fusimotor drive observed in cats performing similar tasks suggest that the two mechanisms which control the excitability of this reflex pathway (i.e. fusimotor action and control of transmission at the muscle spindle to moto-neuron synapse) may be controlled independently.

  2. Required friction during overground walking is lower among obese compared to non-obese older men, but does not differ with obesity among women.

    Science.gov (United States)

    Arena, Sara L; Garman, Christina R; Nussbaum, Maury A; Madigan, Michael L

    2017-07-01

    Obesity and aging have been independently associated with altered required friction during walking, but it is unclear how these factors interact to influence the likelihood of slipping. Therefore, the purpose of this study was to determine whether there are differences related to obesity and aging on required friction during overground walking. Fourteen older non-obese, 11 older obese, 20 younger non-obese, and 20 younger obese adults completed walking trials at both a self-selected and hurried speed. When walking at a hurried speed, older obese men walked at a slower gait speed and exhibited lower frictional demands compared both to older non-obese men and to younger obese men. No differences in required friction were found between non-obese and obese younger adults. These results suggest that the increased rate of falls among obese or older adults is not likely due to a higher risk of slip initiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Detection of Abnormal Muscle Activations during Walking Following Spinal Cord Injury (SCI)

    Science.gov (United States)

    Wang, Ping; Low, K. H.; McGregor, Alison H.; Tow, Adela

    2013-01-01

    In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI…

  4. Within-day variability on short and long walking tests in persons with multiple sclerosis.

    Science.gov (United States)

    Feys, Peter; Bibby, Bo; Romberg, Anders; Santoyo, Carme; Gebara, Benoit; de Noordhout, Benoit Maertens; Knuts, Kathy; Bethoux, Francois; Skjerbæk, Anders; Jensen, Ellen; Baert, Ilse; Vaney, Claude; de Groot, Vincent; Dalgas, Ulrik

    2014-03-15

    To compare within-day variability of short (10 m walking test at usual and fastest speed; 10MWT) and long (2 and 6-minute walking test; 2MWT/6MWT) tests in persons with multiple sclerosis. Observational study. MS rehabilitation and research centers in Europe and US within RIMS (European network for best practice and research in MS rehabilitation). Ambulatory persons with MS (Expanded Disability Status Scale 0-6.5). Subjects of different centers performed walking tests at 3 time points during a single day. 10MWT, 2MWT and 6MWT at fastest speed and 10MWT at usual speed. Ninety-five percent limits of agreement were computed using a random effects model with individual pwMS as random effect. Following this model, retest scores are with 95% certainty within these limits of baseline scores. In 102 subjects, within-day variability was constant in absolute units for the 10MWT, 2MWT and 6MWT at fastest speed (+/-0.26, 0.16 and 0.15m/s respectively, corresponding to +/-19.2m and +/-54 m for the 2MWT and 6MWT) independent on the severity of ambulatory dysfunction. This implies a greater relative variability with increasing disability level, often above 20% depending on the applied test. The relative within-day variability of the 10MWT at usual speed was +/-31% independent of ambulatory function. Absolute values of within-day variability on walking tests at fastest speed were independent of disability level and greater with short compared to long walking tests. Relative within-day variability remained overall constant when measured at usual speed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  5. Influence of water depth on energy expenditure during aquatic walking in people post stroke.

    Science.gov (United States)

    Lim, Hyosok; Azurdia, Daniel; Jeng, Brenda; Jung, Taeyou

    2018-05-11

    This study aimed to investigate the metabolic cost during aquatic walking at various depths in people post stroke. The secondary purpose was to examine the differences in metabolic cost between aquatic walking and land walking among individuals post stroke. A cross-sectional research design is used. Twelve participants post stroke (aged 55.5 ± 13.3 years) completed 6 min of walking in 4 different conditions: chest-depth, waist-depth, and thigh-depth water, and land. Data were collected on 4 separate visits with at least 48 hr in between. On the first visit, all participants were asked to walk in chest-depth water at their fastest speed. The walking speed was used as a reference speed, which was applied to the remaining 3 walking conditions. The order of remaining walking conditions was randomized. Energy expenditure (EE), oxygen consumption (VO 2 ), and minute ventilation (V E ) were measured with a telemetric metabolic system. Our findings showed statistically significant differences in EE, VO 2 , and V E among the 4 different walking conditions: chest-depth, waist-depth, and thigh-depth water, and land (all p stroke consume less energy in chest-depth water, which may allow them to perform prolonged duration of training. Thigh-depth water demonstrated greater EE compared with other water depths; thus, it can be recommended for time-efficient cardiovascular exercise. Waist-depth water showed similar EE to land walking, which may have been contributed by the countervailing effects of buoyancy and water resistance. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Lévy Walks Suboptimal under Predation Risk.

    Directory of Open Access Journals (Sweden)

    Masato S Abe

    2015-11-01

    Full Text Available A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator's movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field.

  7. Lévy Walks Suboptimal under Predation Risk

    Science.gov (United States)

    Abe, Masato S.; Shimada, Masakazu

    2015-01-01

    A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator’s movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field. PMID:26544687

  8. Walking football as sustainable exercise for older adults - A pilot investigation.

    Science.gov (United States)

    Reddy, Peter; Dias, Irundika; Holland, Carol; Campbell, Niyah; Nagar, Iaysha; Connolly, Luke; Krustrup, Peter; Hubball, Harry

    2017-06-01

    The health benefits of playing football and the importance of exercise and social contact for healthy ageing are well established, but few older adults in the UK take enough exercise. Football is popular, flexible in format and draws players into engrossing, effortful and social exercise, but the physical demands of play at full speed may make it unsustainable for some older adults. Restricted to walking pace, will play still be engaging? Will health benefits be retained? Will physical demands remain manageable? This pilot study aims to investigate: (1) the experience of older adults playing walking football every week, is it sustainable and rewarding, (2) the intensity and locomotor pattern of walking football, (3) the scale and nature of walking football health benefits and (4) possible cognitive benefits of playing walking football through measures of processing speed, selective and divided attention and updating and inhibition components of executive function.
 'Walking football' and 'waiting list' groups were compared before and after 12 weeks of one-hour per week football. Walking football was found to be engaging, sustainable for older adults and moderately intensive; however, selective health and cognitive benefits were not found from this brief intervention. Highlights Walking football is a lower impact but authentic form of football that enables older players to extend their active participation. Walking football is enjoyable and moderately demanding and may be a sustainable form of exercise for older adults. Health and cognitive benefits to playing walking football were not found.

  9. Functional roles of lower-limb joint moments while walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2005-02-01

    To clarify the functional roles of lower-limb joint moments and their contribution to support and propulsion tasks while walking in water compared with that on land. Sixteen healthy, young subjects walked on land and in water at several different speeds with and without additional loads. Walking in water is a major rehabilitation therapy for patients with orthopedic disorders. However, the functional role of lower-limb joint moments while walking in water is still unclear. Kinematics, electromyographic activities in biceps femoris and gluteus maximums, and ground reaction forces were measured under the following conditions: walking on land and in water at a self-determined pace, slow walking on land, and fast walking in water with or without additional loads (8 kg). The hip, knee, and ankle joint moments were calculated by inverse dynamics. The contribution of the walking speed increased the hip extension moment, and the additional weight increased the ankle plantar flexion and knee extension moment. The major functional role was different in each lower-limb joint muscle. That of the muscle group in the ankle is to support the body against gravity, and that of the muscle group involved in hip extension is to contribute to propulsion. In addition, walking in water not only reduced the joint moments but also completely changed the inter-joint coordination. It is of value for clinicians to be aware that the greater the viscosity of water produces a greater load on the hip joint when fast walking in water.

  10. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.

    Science.gov (United States)

    Huang, Tzu-wei P; Shorter, Kenneth A; Adamczyk, Peter G; Kuo, Arthur D

    2015-11-01

    The human ankle produces a large burst of 'push-off' mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental feature of push-off. Here, we show that greater metabolic energy expenditure is indeed explained by a greater demand for work. This is predicted by a simple model of walking on pendulum-like legs, because proper push-off reduces collision losses from the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy adults (N=8) walking on a treadmill at 1.4 m s(-1), using ankle-foot orthoses with steel cables limiting motion. These produced up to ∼50% reduction in ankle push-off power and work, resulting in up to ∼50% greater net metabolic power expenditure to walk at the same speed. For each 1 J reduction in ankle work, we observed 0.6 J more dissipative collision work by the other leg, 1.3 J more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss of ankle push-off required more positive work elsewhere to maintain walking speed; this additional work was performed by the knee, apparently at reasonably high efficiency. Ankle push-off may contribute to walking economy by reducing dissipative collision losses and thus overall work demand. © 2015. Published by The Company of Biologists Ltd.

  11. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: a randomized controlled trial.

    Science.gov (United States)

    Eich, H-J; Mach, H; Werner, C; Hesse, S

    2004-09-01

    To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.

  12. Implementing quantum walks using orbital angular momentum of classical light

    CSIR Research Space (South Africa)

    Goyal, SK

    2013-06-01

    Full Text Available –5]. This speed up gained in quantum walks promises ad- vantages when applied in quantum computation for cer- tain classes of quantum algorithms [6], for example, quan- tum search algorithms [7, 8]. Quantum walks have also been used to analyze energy transport...

  13. The effect of simulating weight gain on the energy cost of walking in unimpaired children and children with cerebral palsy.

    Science.gov (United States)

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2008-12-01

    To examine the effect of simulating weight gain on the energy cost of walking in children with cerebral palsy (CP) compared with unimpaired children. Repeated measures, matched subjects, controlled. University hospital clinical gait and movement analysis laboratory. Children (n=42) with CP and unimpaired children (n=42). Addition of 10% of body mass in weight belt. Energy cost of walking parameters consisting of walking speed, Physiological Cost Index, Total Heart Beat Index, oxygen uptake (VO2), gross oxygen cost, nondimensional net oxygen cost, and net oxygen cost with speed normalized to height were measured by using a breath-by-breath gas analysis system (K4b2) and a light beam timing gate system arranged around a figure 8 track. Two walking trials were performed in random order, with and the other without wearing a weighted belt. Children with CP and their unimpaired counterparts responded in fundamentally different ways to weight gain. The unimpaired population maintained speed and VO2 but the children with CP trended toward a drop in their speed and an increase in their VO2. The oxygen consumption of children with CP showed a greater dependence on mass than the unimpaired group (P=.043). An increase of a relatively small percentage in body mass began to significantly impact the energy cost of walking in children with CP. This result highlights the need for weight control to sustain the level of functional walking in these children.

  14. Cognitive processing speed is related to fall frequency in older adults with multiple sclerosis.

    Science.gov (United States)

    Sosnoff, Jacob J; Balantrapu, Swathi; Pilutti, Lara A; Sandroff, Brian M; Morrison, Steven; Motl, Robert W

    2013-08-01

    To examine mobility, balance, fall risk, and cognition in older adults with multiple sclerosis (MS) as a function of fall frequency. Retrospective, cross-sectional design. University research laboratory. Community-dwelling persons with MS (N=27) aged between 50 and 75 years were divided into 2 groups-single-time (n=11) and recurrent (n=16; >2 falls/12 mo) fallers-on the basis of fall history. Not applicable. Mobility was assessed using a variety of measures including Multiple Sclerosis Walking Scale-12, walking speed (Timed 25-Foot Walk test), endurance (6-Minute Walk test), and functional mobility (Timed Up and Go test). Balance was assessed with the Berg Balance Scale, posturography, and self-reported balance confidence. Fall risk was assessed with the Physiological Profile Assessment. Cognitive processing speed was quantified with the Symbol Digit Modalities Test and the Paced Auditory Serial Addition Test. Recurrent fallers had slower cognitive processing speed than single-time fallers (P ≤.01). There was no difference in mobility, balance, or fall risk between recurrent and single-time fallers (P>.05). Results indicated that cognitive processing speed is associated with fall frequency and may have implications for fall prevention strategies targeting recurrent fallers with MS. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled trial.

    Science.gov (United States)

    Combs-Miller, Stephanie A; Kalpathi Parameswaran, Anu; Colburn, Dawn; Ertel, Tara; Harmeyer, Amanda; Tucker, Lindsay; Schmid, Arlene A

    2014-09-01

    To compare the effects of body weight-supported treadmill training and overground walking training when matched for task and dose (duration/frequency/intensity) on improving walking function, activity, and participation after stroke. Single-blind, pilot randomized controlled trial with three-month follow-up. University and community settings. A convenience sample of participants (N = 20) at least six months post-stroke and able to walk independently were recruited. Thirty-minute walking interventions (body weight-supported treadmill training or overground walking training) were administered five times a week for two weeks. Intensity was monitored with the Borg Rating of Perceived Exertion Scale at five-minute increments to maintain a moderate training intensity. Walking speed (comfortable/fast 10-meter walk), walking endurance (6-minute walk), spatiotemporal symmetry, and the ICF Measure of Participation and ACTivity were assessed before, immediately after, and three months following the intervention. The overground walking training group demonstrated significantly greater improvements in comfortable walking speed compared with the body weight-supported treadmill training group immediately (change of 0.11 m/s vs. 0.06 m/s, respectively; p = 0.047) and three months (change of 0.14 m/s vs. 0.08 m/s, respectively; p = 0.029) after training. Only the overground walking training group significantly improved comfortable walking speed (p = 0.001), aspects of gait symmetry (p = 0.032), and activity (p = 0.003) immediately after training. Gains were maintained at the three-month follow-up (p training was more beneficial than body weight-supported treadmill training at improving self-selected walking speed for the participants in this study. © The Author(s) 2014.

  16. Negligible motion artifacts in scalp electroencephalography (EEG during treadmill walking

    Directory of Open Access Journals (Sweden)

    Kevin eNathan

    2016-01-01

    Full Text Available Recent Mobile Brain/Body Imaging (MoBI techniques based on active electrode scalp electroencephalogram (EEG allow the acquisition and real-time analysis of brain dynamics during active unrestrained motor behavior involving whole body movements such as treadmill walking, over-ground walking and other locomotive and non-locomotive tasks. Unfortunately, MoBI protocols are prone to physiological and non-physiological artifacts, including motion artifacts that may contaminate the EEG recordings. A few attempts have been made to quantify these artifacts during locomotion tasks but with inconclusive results due in part to methodological pitfalls. In this paper, we investigate the potential contributions of motion artifacts in scalp EEG during treadmill walking at three different speeds (1.5, 3.0, and 4.5 km/h using a wireless 64 channel active EEG system and a wireless inertial sensor attached to the subject’s head. The experimental setup was designed according to good measurement practices using state-of-the-art commercially-available instruments, and the measurements were analyzed using Fourier analysis and wavelet coherence approaches. Contrary to prior claims, the subjects’ motion did not significantly affect their EEG during treadmill walking although precaution should be taken when gait speeds approach 4.5 km/h. Overall, these findings suggest how MoBI methods may be safely deployed in neural, cognitive, and rehabilitation engineering applications.

  17. Relation between random walks and quantum walks

    Science.gov (United States)

    Boettcher, Stefan; Falkner, Stefan; Portugal, Renato

    2015-05-01

    Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.

  18. Influence of lower body pressure support on the walking patterns of healthy children and adults.

    Science.gov (United States)

    Kurz, Max J; Deffeyes, Joan E; Arpin, David J; Karst, Gregory M; Stuberg, Wayne A

    2012-11-01

    The purpose of this investigation was to evaluate the effect of a lower body positive pressure support system on the joint kinematics and activity of the lower extremity antigravity musculature of adults and children during walking. Adults (age = 25 ± 4 years) and children (age = 13 ± 2 years) walked at a preferred speed and a speed that was based on the Froude number, while 0-80% of their body weight was supported. Electrogoniometers were used to monitor knee and ankle joint kinematics. Surface electromyography was used to quantify the magnitude of the vastus lateralis and gastrocnemius muscle activity. There were three key findings: (1) The lower extremity joint angles and activity of the lower extremity antigravity muscles of children did not differ from those of adults. (2) The magnitude of the changes in the lower extremity joint motion and antigravity muscle activity was dependent upon an interaction between body weight support and walking speed. (3) Lower body positive pressure support resulted in reduced activation of the antigravity musculature, and reduced range of motion of the knee and ankle joints.

  19. Does Dog Walking Predict Physical Activity Participation: Results From a National Survey.

    Science.gov (United States)

    Richards, Elizabeth A

    2016-05-01

    The purpose of this study is to: (1) identify characteristics associated with dog owners who walk their dog, (2) describe the frequency and duration of walking the dog, and (3) determine whether dog owners who walk their dog participate in more physical activity than dog owners who do not walk their dog and non-dog owners. A cross-sectional study design was used. The study setting was nationwide. Adults (n = 4010) participating in the 2005 ConsumerStyles mail-panel survey were the study subjects. Measures used were demographic, physical activity, dog ownership, and dog walking questions from the 2005 ConsumerStyles mail-panel survey. Chi-square tests and analyses of variance were conducted to examine participant characteristics associated with dog walking and to describe the frequency and duration of dog walking. Analysis of covariance was used to determine whether dog owners who walk their dog participate in more physical activity than dog owners who do not walk their dog and non-dog owners. Among dog owners, 42% reported some dog walking in a typical week. Dog owners walked their dog an average 4.3 ± 0.1 times and 128.8 ± 5.6 minutes per week. There were no significant differences in weekly minutes of moderate or vigorous physical activity across the dog-ownership and dog walking groups. Most dog owners did not walk their dog. Dog owners were not more active than non-dog owners, except when considering the activity obtained via dog walking. © The Author(s) 2016.

  20. The Effect of Foot Progression Angle on Knee Joint Compression Force during Walking

    DEFF Research Database (Denmark)

    Baldvinsson, Henrik Koblauch; Heilskov-Hansen, Thomas; Alkjær, Tine

    2013-01-01

    males walked at a fixed speed of 4.5 km/h under three conditions: Normal walking, internally rotated and externally rotated. All gait-trials were recorded by six infrared cameras. Net joint moments were calculated by 3D inverse dynamics. The results revealed that the medial knee joint compartment......It is unclear how rotations of the lower limb affect the knee joint compression forces during walking. Increases in the frontal plane knee moment have been reported when walking with internally rotated feet and a decrease when walking with externally rotated feet. The aim of this study...... was to investigate the knee joint compressive forces during walking with internal, external and normal foot rotation and to determine if the frontal plane knee joint moment is an adequate surrogate for the compression forces in the medial and lateral knee joint compartments under such gait modifications. Ten healthy...

  1. The influence of step frequency on the range of perceptually natural visual walking speeds during walking-in-place and treadmill locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    Walking-In-Place (WIP) techniques make relatively natural walking experiences within immersive virtual environments possible when the physical interaction space is limited in size. In order to facilitate such experiences it is necessary to establish a natural connection between steps in place and...

  2. Dynamic optimization of walker-assisted FES-activated paraplegic walking: simulation and experimental studies.

    Science.gov (United States)

    Nekoukar, Vahab; Erfanian, Abbas

    2013-11-01

    In this paper, we propose a musculoskeletal model of walker-assisted FES-activated paraplegic walking for the generation of muscle stimulation patterns and characterization of the causal relationships between muscle excitations, multi-joint movement, and handle reaction force (HRF). The model consists of the lower extremities, trunk, hands, and a walker. The simulation of walking is performed using particle swarm optimization to minimize the tracking errors from the desired trajectories for the lower extremity joints, to reduce the stimulations of the muscle groups acting around the hip, knee, and ankle joints, and to minimize the HRF. The results of the simulation studies using data recorded from healthy subjects performing walker-assisted walking indicate that the model-generated muscle stimulation patterns are in agreement with the EMG patterns that have been reported in the literature. The experimental results on two paraplegic subjects demonstrate that the proposed methodology can improve walking performance, reduce HRF, and increase walking speed when compared to the conventional FES-activated paraplegic walking. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Gait characteristics under different walking conditions: Association with the presence of cognitive impairment in community-dwelling older people.

    Directory of Open Access Journals (Sweden)

    Anne-Marie De Cock

    Full Text Available Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear.Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients.The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length, swing time variability, normalised gait speed (corrected for leg length and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints.Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis in clinical practice

  4. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.

    Science.gov (United States)

    Tsukahara, Atsushi; Hasegawa, Yasuhisa; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2015-03-01

    This paper proposes a novel gait intention estimator for an exoskeleton-wearer who needs gait support owing to walking impairment. The gait intention estimator not only detects the intention related to the start of the swing leg based on the behavior of the center of ground reaction force (CoGRF), but also infers the swing speed depending on the walking velocity. The preliminary experiments categorized into two stages were performed on a mannequin equipped with the exoskeleton robot [Hybrid Assistive Limb: (HAL)] including the proposed estimator. The first experiment verified that the gait support system allowed the mannequin to walk properly and safely. In the second experiment, we confirmed the differences in gait characteristics attributed to the presence or absence of the proposed swing speed profile. As a feasibility study, we evaluated the walking capability of a severe spinal cord injury patient supported by the system during a 10-m walk test. The results showed that the system enabled the patient to accomplish a symmetrical walk from both spatial and temporal standpoints while adjusting the speed of the swing leg. Furthermore, the critical differences of gait between our system and a knee-ankle-foot orthosis were obtained from the CoGRF distribution and the walking time. Through the tests, we demonstrated the effectiveness and practical feasibility of the gait support algorithms.

  5. The Effect of Backpack Load Carriage on the Kinetics and Kinematics of Ankle and Knee Joints During Uphill Walking.

    Science.gov (United States)

    Lee, Jinkyu; Yoon, Yong-Jin; Shin, Choongsoo S

    2017-12-01

    The purpose of this study was to investigate the effect of load carriage on the kinematics and kinetics of the ankle and knee joints during uphill walking, including joint work, range of motion (ROM), and stance time. Fourteen males walked at a self-selected speed on an uphill (15°) slope wearing military boots and carrying a rifle in hand without a backpack (control condition) and with a backpack. The results showed that the stance time significantly decreased with backpack carriage (p < .05). The mediolateral impulse significantly increased with backpack carriage (p < .05). In the ankle joints, the inversion-eversion, and dorsi-plantar flexion ROM in the ankle joints increased with backpack carriage (p < .05). The greater dorsi-plantar flexion ROM with backpack carriage suggested 1 strategy for obtaining high plantar flexor power during uphill walking. The result of the increased mediolateral impulse and inversion-eversion ROM in the ankle joints indicated an increase in body instability caused by an elevated center of mass with backpack carriage during uphill walking. The decreased stance time indicated that an increase in walking speed could be a compensatory mechanism for reducing the instability of the body during uphill walking while carrying a heavy backpack.

  6. Walking-Beam Solar-Cell Conveyor

    Science.gov (United States)

    Feder, H.; Frasch, W.

    1982-01-01

    Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station; then beam retracks to be in position for next step. Microprocessor sets beam stroke, speed, and position.

  7. Mind your step: metabolic energy cost while walking an enforced gait pattern.

    Science.gov (United States)

    Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H

    2011-04-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Comparison of walking overground and in a Computer Assisted Rehabilitation Environment (CAREN in individuals with and without transtibial amputation

    Directory of Open Access Journals (Sweden)

    Gates Deanna H

    2012-11-01

    Full Text Available Abstract Background Due to increased interest in treadmill gait training, recent research has focused on the similarities and differences between treadmill and overground walking. Most of these studies have tested healthy, young subjects rather than impaired populations that might benefit from such training. These studies also do not include optic flow, which may change how the individuals integrate sensory information when walking on a treadmill. This study compared overground walking to treadmill walking in a computer assisted virtual reality environment (CAREN in individuals with and without transtibial amputations (TTA. Methods Seven individuals with traumatic TTA and 27 unimpaired controls participated. Subjects walked overground and on a treadmill in a CAREN at a normalized speed. The CAREN applied optic flow at the same speed that the subject walked. Temporal-spatial parameters, full body kinematics, and kinematic variability were collected during all trials. Results Both subject groups decreased step time and control subjects decreased step length when walking in the CAREN. Differences in lower extremity kinematics were small (○ and did not exceed the minimal detectable change values for these measures. Control subjects exhibited decreased transverse and frontal plane range of motion of the pelvis and trunk when walking in the CAREN, while patients with TTA did not. Both groups exhibited increased step width variability during treadmill walking in the CAREN, but only minor changes in kinematic variability. Conclusions The results of this study suggest that treadmill training in a virtual environment should be similar enough to overground that changes should carry over. Caution should be made when comparing step width variability and step time results from studies utilizing a treadmill to those overground.

  9. Walk-Startup of a Two-Legged Walking Mechanism

    Science.gov (United States)

    Babković, Kalman; Nagy, László; Krklješ, Damir; Borovac, Branislav

    There is a growing interest towards humanoid robots. One of their most important characteristic is the two-legged motion - walk. Starting and stopping of humanoid robots introduce substantial delays. In this paper, the goal is to explore the possibility of using a short unbalanced state of the biped robot to quickly gain speed and achieve the steady state velocity during a period shorter than half of the single support phase. The proposed method is verified by simulation. Maintainig a steady state, balanced gait is not considered in this paper.

  10. Spatial search by quantum walk

    International Nuclear Information System (INIS)

    Childs, Andrew M.; Goldstone, Jeffrey

    2004-01-01

    Grover's quantum search algorithm provides a way to speed up combinatorial search, but is not directly applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a database of N items laid out in d spatial dimensions can be searched in time of order √(N) for d>2, and in time of order √(N) poly(log N) for d=2. We consider an alternative search algorithm based on a continuous-time quantum walk on a graph. The case of the complete graph gives the continuous-time search algorithm of Farhi and Gutmann, and other previously known results can be used to show that √(N) speedup can also be achieved on the hypercube. We show that full √(N) speedup can be achieved on a d-dimensional periodic lattice for d>4. In d=4, the quantum walk search algorithm takes time of order √(N) poly(log N), and in d<4, the algorithm does not provide substantial speedup

  11. Displacement of the pelvis during human walking : experimental data and model predictions

    NARCIS (Netherlands)

    Zijlstra, W; Hof, AL

    1997-01-01

    Displacements of the pelvis during treadmill walking were studied in dependence of walking speed, stride frequency and stride length. Displacement curves per stride cycle were described by means of harmonic analysis. Simple mechanical, or geometrical models of the body's center of mass (COM)

  12. A Monotonicity Result for the Range of a Perturbed Random Walk

    OpenAIRE

    Chen, Lung-Chi; Sun, Rongfeng

    2012-01-01

    We consider a discrete time simple symmetric random walk on Z^d, d>=1, where the path of the walk is perturbed by inserting deterministic jumps. We show that for any time n and any deterministic jumps that we insert, the expected number of sites visited by the perturbed random walk up to time n is always larger than or equal to that for the unperturbed walk. This intriguing problem arises from the study of a particle among a Poisson system of moving traps with sub-diffusive trap motion. In pa...

  13. Hearing acuity as a predictor of walking difficulties in older women.

    Science.gov (United States)

    Viljanen, Anne; Kaprio, Jaakko; Pyykkö, Ilmari; Sorri, Martti; Koskenvuo, Markku; Rantanen, Taina

    2009-12-01

    To examine whether hearing acuity correlates with walking ability and whether impaired hearing at baseline predicts new self-reported walking difficulties after 3 years. Prospective follow-up. Research laboratory and community. Four hundred thirty-four women aged 63 to 76. Hearing was measured using clinical audiometry. A person was defined as having a hearing impairment if a pure-tone average of thresholds at 0.5 to 4 kHz in the better ear was 21 dB or greater. Maximal walking speed was measured over 10 m (m/s), walking endurance as the distance (m), covered in 6 minutes and difficulties in walking 2 km according to self-report. At baseline, women with hearing impairment (n=179) had slower maximal walking speed (1.7 +/- 0.3 m/s vs 1.8 +/- 0.3 m/s, P=.007), lower walking endurance (520 +/- 75 m vs 536 +/- 75 m, P=.08), and more selfreported major difficulties in walking 2 km (12.8% vs 5.5%, P=.02) than those without hearing impairment. During follow-up, major walking difficulties developed for 33 participants. Women with hearing impairment at baseline had a twice the age-adjusted risk for new walking difficulties as those without hearing impairment (odds ratio=2.04, 95% confidence interval=0.96-4.33). Hearing acuity correlated with mobility, which may be explained by the association between impaired hearing and poor balance and greater risk for falls, both of which underlie decline in mobility. Prevention of hearing loss is not only important for the ability to communicate, but may also have more wide-ranging influences on functional ability.

  14. Energy expenditure and physiological responses during walking on a treadmill and moving on the Torqway vehicle.

    Science.gov (United States)

    Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew

    2016-01-01

    One of the new products which can be used to increase physical activity and energy expenditure is the Torqway vehicle, powered by the upper limbs. The aim of this study was to (1) assess the usefulness and repeatability of the Torqway vehicle for physical exercise, (2) compare energy expenditure and physiological responses during walking on a treadmill and during physical effort while moving on the Torqway at a constant speed. The participants (11 men, aged 20.2 ± 1.3) performed the incremental test and submaximal exercises (walking on the treadmill and moving on the Torqway vehicle at the same speed). Energy expenditure during the exercise on the Torqway was significantly higher (p = 0.001) than during the walking performed at the same speed. The intensity of the exercise performed on the Torqway expressed as %VO2max and %HRmax was significantly ( p walking (respectively: 35.0 ± 6.0 vs. 29.4 ± 7.4 %VO2max and 65.1 ± 7.3 vs. 47.2 ± 7.4 %HRmax). Exercise on the Torqway vehicle allows for the intensification of the exercise at a low movement speed, comparable to walking. Moving on the Torqway vehicle could be an effective alternative activity for physical fitness and exercise rehabilitation programs.

  15. Relationship between quantum walks and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Chandrashekar, C. M.; Banerjee, Subhashish; Srikanth, R.

    2010-01-01

    Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.

  16. Effect of carbon-composite knee-ankle-foot orthoses on walking efficiency and gait in former polio patients.

    Science.gov (United States)

    Brehm, Merel-Anne; Beelen, Anita; Doorenbosch, Caroline A M; Harlaar, Jaap; Nollet, Frans

    2007-10-01

    To investigate the effects of total-contact fitted carbon-composite knee-ankle-foot orthoses (KAFOs) on energy cost of walking in patients with former polio who normally wear a conventional leather/metal KAFO or plastic/metal KAFO. A prospective uncontrolled study with a multiple baseline and follow-up design. Follow-up measurements continued until 26 weeks after intervention. Twenty adults with polio residuals (mean age 55 years). Each participant received a new carbon-composite KAFO, fitted according to a total-contact principle, which resulted in a rigid, lightweight and well-fitting KAFO. Energy cost of walking, walking speed, biomechanics of gait, physical functioning and patient satisfaction. The energy cost decreased significantly, by 8%, compared with the original KAFO. Furthermore, the incremention energy cost during walking with the carbon-composite KAFO was reduced by 18% towards normative values. An improvement in knee flexion, forward excursion of the centre of pressure, peak ankle moment, and timing of peak ankle power were significantly associated with the decrease in energy cost. Walking speed and physical functioning remained unchanged. In patients with former polio, carbon-composite KAFOs are superior to conventional leather/metal and plastic/metal KAFOs with respect to improving walking efficiency and gait, and are therefore important in reducing overuse and maintaining functional abilities in polio survivors.

  17. Lower limb joint moment during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2003-11-04

    Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.

  18. The influence of water depth on kinematic and spatiotemporal gait parameters during aquatic treadmill walking.

    Science.gov (United States)

    Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos

    2018-01-16

    The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.

  19. Joint forces and torques when walking in shallow water.

    Science.gov (United States)

    Orselli, Maria Isabel Veras; Duarte, Marcos

    2011-04-07

    This study reports for the first time an estimation of the internal net joint forces and torques on adults' lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects' apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water's depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Mechanical and neural stretch responses of the human soleus muscle at different walking speeds

    DEFF Research Database (Denmark)

    Cronin, Neil J; Ishikawa, Masaki; Grey, Michael J

    2009-01-01

    responses. Twelve healthy subjects walked on a treadmill with the left leg attached to an actuator capable of rapidly dorsiflexing the ankle joint. Ultrasound was used to measure fascicle lengths in SOL during walking, and surface electromyography (EMG) was used to record muscle activation. Dorsiflexion...

  1. Cardiovascular Responses Associated with Daily Walking in Subacute Stroke

    Directory of Open Access Journals (Sweden)

    Sanjay K. Prajapati

    2013-01-01

    Full Text Available Despite the importance of regaining independent ambulation after stroke, the amount of daily walking completed during in-patient rehabilitation is low. The purpose of this study is to determine if (1 walking-related heart rate responses reached the minimum intensity necessary for therapeutic aerobic exercise (40%–60% heart rate reserve or (2 heart rate responses during bouts of walking revealed excessive workload that may limit walking (>80% heart rate reserve. Eight individuals with subacute stroke attending in-patient rehabilitation were recruited. Participants wore heart rate monitors and accelerometers during a typical rehabilitation day. Walking-related changes in heart rate and walking bout duration were determined. Patients did not meet the minimum cumulative requirements of walking intensity (>40% heart rate reserve and duration (>10 minutes continuously necessary for cardiorespiratory benefit. Only one patient exceeded 80% heart rate reserve. The absence of significant increases in heart rate associated with walking reveals that patients chose to walk at speeds well below a level that has meaningful cardiorespiratory health benefits. Additionally, cardiorespiratory workload is unlikely to limit participation in walking. Measurement of heart rate and walking during in-patient rehabilitation may be a useful approach to encourage patients to increase the overall physical activity and to help facilitate recovery.

  2. Sympathetic nervous system activity measured by skin conductance quantifies the challenge of walking adaptability tasks after stroke.

    Science.gov (United States)

    Clark, David J; Chatterjee, Sudeshna A; McGuirk, Theresa E; Porges, Eric C; Fox, Emily J; Balasubramanian, Chitralakshmi K

    2018-02-01

    Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist scoring of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities-specific Balance Confidence Scale, respectively. There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. Published by Elsevier B.V.

  3. Insights into gait disorders: walking variability using phase plot analysis, Parkinson's disease.

    Science.gov (United States)

    Esser, Patrick; Dawes, Helen; Collett, Johnny; Howells, Ken

    2013-09-01

    Gait variability may have greater utility than spatio-temporal parameters and can, be an indication for risk of falling in people with Parkinson's disease (PD). Current methods rely on prolonged data collection in order to obtain large datasets which may be demanding to obtain. We set out to explore a phase plot variability analysis to differentiate typically developed adults (TDAs) from PD obtained from two 10 m walks. Fourteen people with PD and good mobility (Rivermead Mobility Index≥8) and ten aged matched TDA were recruited and walked over 10-m at self-selected walking speed. An inertial measurement unit was placed over the projected centre of mass (CoM) sampling at 100 Hz. Vertical CoM excursion was derived to determine modelled spatiotemporal data after which the phase plot analysis was applied producing a cloud of datapoints. SDA described the spread and SDB the width of the cloud with β the angular vector of the data points. The ratio (∀) was defined as SDA: SDB. Cadence (p=.342) and stride length (p=.615) did not show a significance between TDA and PD. A difference was found for walking speed (p=.041). Furthermore a significant difference was found for β (p=.010), SDA (p=.004) other than SDB (p=.385) or ratio ∀ (p=.830). Two sequential 10-m walks showed no difference in PD for cadence (p=.193), stride length (p=.683), walking speed (p=.684) and β (p=.194), SDA (p=.051), SDB (p=.145) or ∀ (p=.226). The proposed phase plot analysis, performed on CoM motion could be used to reliably differentiate PD from TDA over a 10-m walk. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Comparison of Electromyographic Activity Pattern of Knee Two-Joint Muscles between Youngs and Olders in Gait Different Speeds

    Directory of Open Access Journals (Sweden)

    Hamideh Khodaveisi

    2016-01-01

    Full Text Available Objective: In recent years, it has been focused much attention on gait analysis. Factors such as speed, age and gender affect gait parameters. The purpose of the present study was to compare the electromyographic activity pattern of knee two-joint muscles between younger and older subjects in different gait speeds. Matterials & Methods: The method of current study was analytical cross-sectional method in which 15 healthy young men and 15 old men, were selected conveniently. Electromyographic activity of rectus femoris, biceps femoris, semitendinus and gastrocenemius were recorded during walking with preferred (100%, slow (80% and fast (120% speeds in a 10 meter walkway. Normalized RMSs of muscles were compared using RM-ANOVA and Tokey’s tests by SPSS 18 software. Results: According to results, RMSs of rectus femoris in midstance (P<0.01 and gastrocenemius in loading response (P=0.02 phases in all walking speeds were higher in older subjects than in younger ones, and it increased with speed in both age groups (P<0.01. Biceps femoris RMS in terminal stance at 80% speed, was lower in older subjects than in younger ones (P=0.01 and it increased with walking speed (P=0.01. Semitendinus activity in loading and midstance phases at 120% speed was higher in older subjects than in younger ones (P<0.01, and it increased with speed in both age groups in swing phase (P<0.05. Conclusion: According to the results, older subjects have more muscle co-contraction around knee at high speed in midstance phase than younger subjects. These age-related changes in muscle activity, leads to increase in joint stiffness and stability during single support, and probably play a role in reducing push off power at faster speeds.

  5. Numerical analysis of a pedestrian to car collision: Effect of variations in walk

    Directory of Open Access Journals (Sweden)

    Špička J.

    2016-12-01

    Full Text Available This work is focused on the modelling of car to pedestrian crash scenario. Virtual hybrid human body model VIRTHUMAN as well as a simplified model of car chassis is modelled under Virtual Performance Solution software. The main idea of the work is the investigation and sensitivity analysis of various initial conditions of the pedestrian during frontal car crash scenario, such as position of the extremities due to different step phases or turning of the pedestrian around his own axis. The experimental data of human gait measurement are used so that one human step is divided into 9 phases to capture the effect of walk when the pedestrian crosses a road. Consequently, the influence of different initial conditions on the kinematics, dynamics of the collision together with injury prediction of pedestrian is discussed. Moreover, the effect of walk is taken into account within translational velocities of the full human body and rotational velocities of the extremities. The trend of the injury prediction for varying initial conditions is monitored. The configurations with zero and non-zero initial velocities are compared with each other, in order to study the effect of walking speed of the pedestrian. Note that only the average walking speed is considered. On the basis of the achieved results, the importance or redundancy of modelling the walking motion and the consideration of different step phases in the car-pedestrian accident can be examined.

  6. A non-Lévy random walk in chacma baboons: what does it mean?

    Directory of Open Access Journals (Sweden)

    Cédric Sueur

    Full Text Available The Lévy walk is found from amoebas to humans and has been described as the optimal strategy for food research. Recent results, however, have generated controversy about this conclusion since animals also display alternatives to the Lévy walk such as the Brownian walk or mental maps and because movement patterns found in some species only seem to depend on food patches distribution. Here I show that movement patterns of chacma baboons do not follow a Lévy walk but a Brownian process. Moreover this Brownian walk is not the main process responsible for movement patterns of baboons. Findings about their speed and trajectories show that baboons use metal maps and memory to find resources. Thus the Brownian process found in this species appears to be more dependent on the environment or might be an alternative when known food patches are depleted and when animals have to find new resources.

  7. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket.

    Science.gov (United States)

    Silsupadol, Patima; Teja, Kunlanan; Lugade, Vipul

    2017-10-01

    The assessment of spatiotemporal gait parameters is a useful clinical indicator of health status. Unfortunately, most assessment tools require controlled laboratory environments which can be expensive and time consuming. As smartphones with embedded sensors are becoming ubiquitous, this technology can provide a cost-effective, easily deployable method for assessing gait. Therefore, the purpose of this study was to assess the reliability and validity of a smartphone-based accelerometer in quantifying spatiotemporal gait parameters when attached to the body or in a bag, belt, hand, and pocket. Thirty-four healthy adults were asked to walk at self-selected comfortable, slow, and fast speeds over a 10-m walkway while carrying a smartphone. Step length, step time, gait velocity, and cadence were computed from smartphone-based accelerometers and validated with GAITRite. Across all walking speeds, smartphone data had excellent reliability (ICC 2,1 ≥0.90) for the body and belt locations, with bag, hand, and pocket locations having good to excellent reliability (ICC 2,1 ≥0.69). Correlations between the smartphone-based and GAITRite-based systems were very high for the body (r=0.89, 0.98, 0.96, and 0.87 for step length, step time, gait velocity, and cadence, respectively). Similarly, Bland-Altman analysis demonstrated that the bias approached zero, particularly in the body, bag, and belt conditions under comfortable and fast speeds. Thus, smartphone-based assessments of gait are most valid when placed on the body, in a bag, or on a belt. The use of a smartphone to assess gait can provide relevant data to clinicians without encumbering the user and allow for data collection in the free-living environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Randomized random walk on a random walk

    International Nuclear Information System (INIS)

    Lee, P.A.

    1983-06-01

    This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)

  9. Treadmill training improves overground walking economy in Parkinson’s disease: A randomized, controlled pilot study

    Directory of Open Access Journals (Sweden)

    Miguel eFERNANDEZ-DEL-OLMO

    2014-09-01

    Full Text Available Gait disturbances are one of the principal and most incapacitating symptoms of Parkinson’s disease (PD. In addition, walking economy is impaired in PD patients and could contribute to excess fatigue in this population. An important number of studies have shown that treadmill training can improve kinematic parameters in PD patients. However, the effects of treadmill and overground walking on the walking economy remain unknown. The goal of this study was to explore the walking economy changes in response to a treadmill and an overground training program, as well as the differences in the walking economy during treadmill and overground walking. 22 mild PD patients were randomly assigned to a treadmill or overground training group. The training program consisted of 5 weeks (3 sessions/week. We evaluated the energy expenditure of overground walking, before and after each of the training programs. The energy expenditure of treadmill walking (before the program was also evaluated. The treadmill, but not the overground training program, lead to an improvement in the walking economy (the rate of oxygen consumed per distance, during overground walking at a preferred speed in PD patients. In addition, walking on a treadmill required more energy expenditure compared with overground walking at the same speed. This study provides evidence that in mild PD patients, treadmill training is more beneficial compared with that of walking overground, leading to a greater improvement in the walking economy. This finding is of clinical importance for the therapeutic administration of exercise in Parkinson’s disease.

  10. Effects of a visuotemporal cue on walking ability of independent ambulatory subjects with spinal cord injury as compared with healthy subjects.

    Science.gov (United States)

    Pramodhyakul, N; Amatachaya, P; Sooknuan, T; Arayawichanon, P; Amatachaya, S

    2014-03-01

    An experimental, cross-sectional study. To investigate effects of using a visuotemporal cue on the walking ability of independent ambulatory subjects with spinal cord injury (SCI) as compared with healthy subjects. A tertiary rehabilitation center, Thailand. Forty independent ambulatory subjects with SCI and healthy subjects participated in the study (20 subjects per group). All of them were assessed for their walking speed, stride length, cadence and percents of step symmetry under two conditions, including walking at their fastest speed with and without a visuotemporal cue along a 10 m walkway. When walking with a visuotemporal cue, walking speed, stride length and cadence of the subjects were significantly increased from the uncued condition (Pwalking speed and cadence, whereas, subjects with SCI demonstrated significantly higher improvement in stride length as compared with the other group (Pbenefits of using a visuotemporal cue to improve variables relating to walking ability in subjects with intact integrative capability of the brain but with different levels of sensorimotor deterioration. The findings suggest the use of a visuotemporal cue to improve the effectiveness of programs in sport and exercise sciences, and rehabilitation treatments.

  11. [Gait speed and the appearance of neurocognitive disorders in older adults: Results of a Peruvian cohort].

    Science.gov (United States)

    Parodi, José F; Nieto-Gutierrez, Wendy; Tellez, Walter A; Ventocilla-Gonzales, Iris; Runzer-Colmenares, Fernando M; Taype-Rondan, Alvaro

    The prevention and management of neurocognitive disorders (NCD) among older adults can be improved by early identification of risk factors such as walking speed. The objective of the study is to assess the association between gait speed and NCD onset in a population of Peruvian older adults. Cohort conducted in older adults who attended the geriatrics service of Naval Medical Center (Callao, Peru). During the baseline assessment, participants' gait speed was recorded. Subsequently, participants were followed-up annually for 5 years, with a mean of 21 months. NCD onset was defined as the occurrence of a score ≤24 points on the Mini Mental State Examination (screening test) during follow-up. The hazard ratios (HR) and their 95% confidence intervals (95% CI) were calculated using Cox regression. The study included 657 participants, with a mean age of 73.4±9.2 (SD) years, of whom 47.0% were male, 47.8% had a gait speed <0.8 m/s, and 20.1% developed NCD during the follow up. It was found that older adults who had gait speed <0.8 m/s at baseline were more likely to develop NCD than those who had a gait speed ≥0.8 m/s (adjusted HR=1.41, 95% CI=1.34-1.47). A longitudinal association was found between decreased gait speed and NCD onset, suggesting that gait speed could be useful to identify patients at risk of NCD onset. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    Science.gov (United States)

    Sims, David T.; Onambélé-Pearson, Gladys L.; Burden, Adrian; Payton, Carl; Morse, Christopher I.

    2018-01-01

    The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1), set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1) and a self-selected walking speed (SSW). V͘O2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude’s number (Fr). Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P 0.05), but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05) in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05). Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups. PMID:29720948

  13. Step-to-step variability in treadmill walking: influence of rhythmic auditory cueing.

    Directory of Open Access Journals (Sweden)

    Philippe Terrier

    Full Text Available While walking, human beings continuously adjust step length (SpL, step time (SpT, step speed (SpS = SpL/SpT and step width (SpW by integrating both feedforward and feedback mechanisms. These motor control processes result in correlations of gait parameters between consecutive strides (statistical persistence. Constraining gait with a speed cue (treadmill and/or a rhythmic auditory cue (metronome, modifies the statistical persistence to anti-persistence. The objective was to analyze whether the combined effect of treadmill and rhythmic auditory cueing (RAC modified not only statistical persistence, but also fluctuation magnitude (standard deviation, SD, and stationarity of SpL, SpT, SpS and SpW. Twenty healthy subjects performed 6 × 5 min. walking tests at various imposed speeds on a treadmill instrumented with foot-pressure sensors. Freely-chosen walking cadences were assessed during the first three trials, and then imposed accordingly in the last trials with a metronome. Fluctuation magnitude (SD of SpT, SpL, SpS and SpW was assessed, as well as NonStationarity Index (NSI, which estimates the dispersion of local means in the times series (SD of 20 local means over 10 steps. No effect of RAC on fluctuation magnitude (SD was observed. SpW was not modified by RAC, what is likely the evidence that lateral foot placement is separately regulated. Stationarity (NSI was modified by RAC in the same manner as persistent pattern: Treadmill induced low NSI in the time series of SpS, and high NSI in SpT and SpL. On the contrary, SpT, SpL and SpS exhibited low NSI under RAC condition. We used relatively short sample of consecutive strides (100 as compared to the usual number of strides required to analyze fluctuation dynamics (200 to 1000 strides. Therefore, the responsiveness of stationarity measure (NSI to cued walking opens the perspective to perform short walking tests that would be adapted to patients with a reduced gait perimeter.

  14. Residual attentional capacity amongst young and elderly during dual and triple task walking

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Hoeck, Hans C.; Simonsen, Ole

    2008-01-01

    to the cognitive task the elderly increased their temporal stride-to-stride variability by 39% in the walking task and by 57% in the combined motor task. These increases were significantly larger than observed for the young. Equivalent decreases in trunk acceleration autocorrelation coefficients and gait speed...... in the study. The participants walked along a figure-of-eight track at a self-selected speed. The effect of introducing a concurrent cognitive task and a concurrent functional motor task was evaluated. Stride-to-stride variability was measured by heel contacts and by trunk accelerometry. In response...... were found. A combination of sufficiently challenging motor tasks and concurrent cognitive tasks can reveal signs of limited residual attentional capacity during walking amongst the elderly....

  15. Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics

    Directory of Open Access Journals (Sweden)

    Ming-I Brandon Lin

    2016-05-01

    Full Text Available BackgroundIncreasing evidence suggests that walking while performing a concurrent task negatively influences gait performance. However, it remains unclear how higher-level cognitive processes and coordination of limb movements are altered in challenging walking environments. This study investigated the influence of cognitive task complexity and walking road condition on the neutral correlates of executive function and postural control in dual-task walking. MethodsTwenty-four healthy young adults completed a series of overground walks with three walking road conditions (wide, narrow, with obstacles with and without the concurrent n-back working memory tasks of two complexity levels (1-back and 3-back. Prefrontal brain activation was assessed by functional near-infrared spectroscopy. A three-dimensional motion analysis system was used simultaneously to measure gait performance and lower-extremity kinematics. Repeated measures analysis of variance were performed to examine the differences between the conditions. ResultsIn comparison with standing still, participants showed lower n-back task accuracy while walking, with the worst performance from the road with obstacles. Spatiotemporal gait parameters, lower-extremity joint movements, and the relative changes in oxygenated hemoglobin (HbO concentration levels were all significantly different across the task complexity and walking path conditions. While dual-tasking participants were found to flex their hips and knees less, leading to a slower gait speed, longer stride time, shorter step length, and greater gait variability than during normal walking. For narrow-road walking, smaller ankle dorsiflexion and larger hip flexion were observed, along with a reduced gait speed. Obstacle negotiation was mainly characterized by increased gait variability than other conditions. HbO levels appeared to be lower during dual-task walking than normal walking. Compared to wide and obstacle conditions, walking on

  16. Minimum toe clearance events in divided attention treadmill walking in older and young adults: a cross-sectional study.

    Science.gov (United States)

    Santhiranayagam, Braveena K; Lai, Daniel T H; Sparrow, W A; Begg, Rezaul K

    2015-07-12

    Falls in older adults during walking frequently occur while performing a concurrent task; that is, dividing attention to respond to other demands in the environment. A particularly hazardous fall-related event is tripping due to toe-ground contact during the swing phase of the gait cycle. The aim of this experiment was to determine the effects of divided attention on tripping risk by investigating the gait cycle event Minimum Toe Clearance (MTC). Fifteen older adults (mean 73.1 years) and 15 young controls (mean 26.1 years) performed three walking tasks on motorized treadmill: (i) at preferred walking speed (preferred walking), (ii) while carrying a glass of water at a comfortable walking speed (dual task walking), and (iii) speed-matched control walking without the glass of water (control walking). Position-time coordinates of the toe were acquired using a 3 dimensional motion capture system (Optotrak NDI, Canada). When MTC was present, toe height at MTC (MTC_Height) and MTC timing (MTC_Time) were calculated. The proportion of non-MTC gait cycles was computed and for non-MTC gait cycles, toe-height was extracted at the mean MTC_Time. Both groups maintained mean MTC_Height across all three conditions. Despite greater MTC_Height SD in preferred gait, the older group reduced their variability to match the young group in dual task walking. Compared to preferred speed walking, both groups attained MTC earlier in dual task and control conditions. The older group's MTC_Time SD was greater across all conditions; in dual task walking, however, they approximated the young group's SD. Non-MTC gait cycles were more frequent in the older group across walking conditions (for example, in preferred walking: young - 2.9 %; older - 18.7 %). In response to increased attention demands older adults preserve MTC_Height but exercise greater control of the critical MTC event by reducing variability in both MTC_Height and MTC_Time. A further adaptive locomotor control strategy to reduce

  17. How important is the land use mix measure in understanding walking behaviour? Results from the RESIDE study

    Directory of Open Access Journals (Sweden)

    Hooper Paula

    2011-06-01

    Full Text Available Abstract Background Understanding the relationship between urban design and physical activity is a high priority. Different representations of land use diversity may impact the association between neighbourhood design and specific walking behaviours. This study examined different entropy based computations of land use mix (LUM used in the development of walkability indices (WIs and their association with walking behaviour. Methods Participants in the RESIDential Environments project (RESIDE self-reported mins/week of recreational, transport and total walking using the Neighbourhood Physical Activity Questionnaire (n = 1798. Land use categories were incrementally added to test five different LUM models to identify the strongest associations with recreational, transport and total walking. Logistic regression was used to analyse associations between WIs and walking behaviour using three cut points: any (> 0 mins, ≥ 60 mins and ≥ 150 mins walking/week. Results Participants in high (vs. low walkable neighbourhoods reported up to almost twice the amount of walking, irrespective of the LUM measure used. However, different computations of LUM were found to be relevant for different types and amounts of walking (i.e., > 0, ≥ 60 or ≥ 150 mins/week. Transport walking (≥ 60 mins/week had the strongest and most significant association (OR = 2.24; 95% CI:1.58-3.18 with the WI when the LUM included 'residential', 'retail', 'office', 'health, welfare and community', and 'entertainment, culture and recreation'. However, any (> 0 mins/week recreational walking was more strongly associated with the WI (OR = 1.36; 95% CI:1.04-1.78 when land use categories included 'public open space', 'sporting infrastructure' and 'primary and rural' land uses. The observed associations were generally stronger for ≥ 60 mins/week compared with > 0 mins/week of transport walking and total walking but this relationship was not seen for recreational walking. Conclusions

  18. Timescale Halo: Average-Speed Targets Elicit More Positive and Less Negative Attributions than Slow or Fast Targets

    Science.gov (United States)

    Hernandez, Ivan; Preston, Jesse Lee; Hepler, Justin

    2014-01-01

    Research on the timescale bias has found that observers perceive more capacity for mind in targets moving at an average speed, relative to slow or fast moving targets. The present research revisited the timescale bias as a type of halo effect, where normal-speed people elicit positive evaluations and abnormal-speed (slow and fast) people elicit negative evaluations. In two studies, participants viewed videos of people walking at a slow, average, or fast speed. We find evidence for a timescale halo effect: people walking at an average-speed were attributed more positive mental traits, but fewer negative mental traits, relative to slow or fast moving people. These effects held across both cognitive and emotional dimensions of mind and were mediated by overall positive/negative ratings of the person. These results suggest that, rather than eliciting greater perceptions of general mind, the timescale bias may reflect a generalized positivity toward average speed people relative to slow or fast moving people. PMID:24421882

  19. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations

    NARCIS (Netherlands)

    Hak, L.; Houdijk, J.H.P.; Steenbrink, F.; van der Wurff, P.; Beek, P.J.; van Dieen, J.H.

    2012-01-01

    It has frequently been proposed that lowering walking speed is a strategy to enhance gait stability and to decrease the probability of falling. However, previous studies have not been able to establish a clear relation between walking speed and gait stability. We investigated whether people do

  20. Navigational strategies during fast walking: a comparison between trained athletes and non-athletes.

    Science.gov (United States)

    Gérin-Lajoie, Martin; Ronsky, Janet L; Loitz-Ramage, Barbara; Robu, Ion; Richards, Carol L; McFadyen, Bradford J

    2007-10-01

    Many common activities such as walking in a shopping mall, moving in a busy subway station, or even avoiding opponents during sports, all require different levels of navigational skills. Obstacle circumvention is beginning to be understood across age groups, but studying trained athletes with greater levels of motor ability will further our understanding of skillful adaptive locomotor behavior. The objective of this work was to compare navigational skills during fast walking between elite athletes (e.g. soccer, field hockey, basketball) and aged-matched non-athletes under different levels of environmental complexity in relation to obstacle configuration and visibility. The movements of eight women athletes and eight women non-athletes were measured as they walked as fast as possible through different obstacle courses in both normal and low lighting conditions. Results showed that athletes, despite similar unobstructed maximal speeds to non-athletes, had faster walking times during the navigation of all obstructed environments. It appears that athletes can process visuo-spatial information faster since both groups can make appropriate navigational decisions, but athletes can navigate through complex, novel, environments at greater speeds. Athletes' walking times were also more affected by the low lighting conditions suggesting that they normally scan the obstructed course farther ahead. This study also uses new objective measures to assess functional locomotor capacity in order to discriminate individuals according to their level of navigational ability. The evaluation paradigm and outcome measures developed may be applicable to the evaluation of skill level in athletic training and selection, as well as in gait rehabilitation following impairment.

  1. Locomotor sequence learning in visually guided walking

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 years, N = 20) could learn a specific sequence...... of step lengths over 300 training steps. Younger children (age 6-10 years, N = 8) have lower baseline performance, but their magnitude and rate of sequence learning was the same compared to older children (11-16 years, N = 10) and healthy adults. In addition, learning capacity may be more limited...... to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence non-specific learning during...

  2. Does walking strategy in older people change as a function of walking distance?

    Science.gov (United States)

    Najafi, Bijan; Helbostad, Jorunn L; Moe-Nilssen, Rolf; Zijlstra, Wiebren; Aminian, Kamiar

    2009-02-01

    This study investigates whether the spatio-temporal parameters of gait in the elderly vary as a function of walking distance. The gait pattern of older subjects (n=27) over both short (SWDLWD>20 m) walking was evaluated using an ambulatory device consisting of body-worn sensors (Physilog). The stride velocity (SV), gait cycle time (GCT), and inter-cycle variability of each parameter (CV) were evaluated for each subject. Analysis was undertaken after evaluating the errors and the test-retest reliability of the Physilog device compared with an electronic walkway system (GaitRite) over the SWD with different walking speeds. While both systems were highly reliable with respect to the SV and GCT parameters (ICC>0.82), agreement for the gait variability was poor. Interestingly, our data revealed that the measured gait parameters over SWD and LWD were significantly different. LWD trials had a mean increase of 5.2% (pLWD trials decreased by an average of 1% relative to the SWD case, the drop was not significant. Moreover, reliability for gait variability measures was poor, irrespective of the instrument and despite a moderate improvement for LWD trials. Taken together, our findings indicate that for valid and reliable comparisons, test and retest should be performed under identical distance conditions. Furthermore, our findings suggest that the older subjects may choose different walking strategies for SWD and LWD conditions.

  3. Test-retest reliability and sensitivity of the 20-meter walk test among patients with knee osteoarthritis.

    Science.gov (United States)

    Motyl, Jillian M; Driban, Jeffrey B; McAdams, Erica; Price, Lori Lyn; McAlindon, Timothy E

    2013-05-10

    The 20-meter walk test is a physical function measure commonly used in clinical research studies and rehabilitation clinics to measure gait speed and monitor changes in patients' physical function over time. Unfortunately, the reliability and sensitivity of this walk test are not well defined and, therefore, limit our ability to evaluate real changes in gait speed not attributable to normal variability. The aim of this study was to assess the test-restest reliability and sensitivity of the 20-meter walk test, at a self-selected pace, among patients with mild to moderate knee osteoarthritis (OA) and to suggest a standardized protocol for future test administration. This was a measurement reliability study. Fifteen consecutive people enrolled in a randomized-controlled trial of intra-articular corticosteroid injections for knee OA participated in this study. All participants completed 4 trials on 2 separate days, 7 to 21 days apart (8 trials total). Each day was divided into 2 sessions, which each involved 2 walking trials. We compared walk times between trials with Wilcoxon signed-rank tests. Similar analyses compared average walk times between sessions. To confirm these analyses, we also calculated Spearman correlation coefficients to assess the relationship between sessions. Finally, smallest detectable differences (SDD) were calculated to estimate the sensitivity of the 20-meter walk test. Wilcoxon signed-rank tests between trials within the same session demonstrated that trials in session 1 were significantly different and in the subsequent 3 sessions, the median differences between trials were not significantly different. Therefore, the first session of each day was considered a practice session, and the SDD between the second session of each day were calculated. SDD was -1.59 seconds (walking slower) and 0.15 seconds (walking faster). Practice trials and a standardized protocol should be used in administration of the 20-meter walk test. Changes in walk time

  4. Effect of speed on local dynamic stability of locomotion under different task constraints in running.

    Science.gov (United States)

    Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith

    2014-01-01

    A number of studies have investigated effects of speed on local dynamic stability of walking, although this relationship has been rarely investigated under changing task constraints, such as during forward and backward running. To rectify this gap in the literature, the aim of this study was to investigate the effect of running speed on local dynamic stability of forward and backward running on a treadmill. Fifteen healthy male participants took part in this study. Participants ran in forward and backward directions at speeds of 80%, 100% and 120% of their preferred running speed. The three-dimensional motion of a C7 marker was recorded using a motion capture system. Local dynamic stability of the marker was quantified using short- and long-term largest finite-time Lyapunov exponents (LyE). Results showed that short-term largest finite-time LyE values increased with participant speed meaning that local dynamic stability decreased with increasing speed. Long-term largest finite-time LyEs, however, remained unaffected as speed increased. Results of this study indicated that, as in walking, slow running is more stable than fast running. These findings improve understanding of how stability is regulated when constraints on the speed of movements is altered. Implications for the design of rehabilitation or sport practice programmes suggest how task constraints could be manipulated to facilitate adaptations in locomotion stability during athletic training.

  5. Differential associations between dual-task walking abilities and usual gait patterns in healthy older adults-Results from the Baltimore Longitudinal Study of Aging.

    Science.gov (United States)

    Ko, Seung-Uk; Jerome, Gerald J; Simonsick, Eleanor M; Studenski, Stephanie; Hausdorff, Jeffrey M; Ferrucci, Luigi

    2018-04-27

    It is well established that facing a cognitive challenge while carrying out a motor task interferes with the motor task performance, and in general the ability of handling a dual-task declines progressively with aging. However, the reasons for this decline have not been fully elucidated. Understanding the association between usual-walking gait patterns and dual-task walking performance may provide new insights into the mechanisms that lead to gait deterioration in normal aging and its link to motor and cognitive function. Our aim was to assess usual gait parameters in kinematics and kinetics to understand how these parameters are related with a specific task in dual-task walking. We hypothesized that difficulty in dual-task walking would be associated with gait deteriorations as reflected in range of motion and mechanical work expenditure. We tested this hypothesis by quantifying the gait of 383 participants in the Baltimore Longitudinal Study of Aging (68% of whom successfully completed the dual-task walk, 21% failed the motor task, and 11% failed the cognitive task). Compared to successful performers, participants who failed the single motor task had slower gait speed, shorter stride length, higher cadence, and lower range of motion in the knee and ankle joints (p task while walking had longer double support time (p = 0.003), and greater knee absorptive mechanical work (p = 0. 001) and lower ankle generative mechanical work (p task walking may be useful for monitoring subtle and diverse gait deteriorations in aging and possibly for designing interventions for maintaining and regaining proper gait patterns in older adults. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Body Acceleration as Indicator for Walking Economy in an Ageing Population.

    Science.gov (United States)

    Valenti, Giulio; Bonomi, Alberto G; Westerterp, Klaas R

    2015-01-01

    In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, peconomy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane.

  7. Relativistically speaking: Let's walk or run through the rain?

    OpenAIRE

    Assis, Armando V. D. B.

    2010-01-01

    We analyse under a simple approach the problem one must decide the best strategy to minimize the contact with rain when moving between two points through the rain. The available strategies: walk (low speed boost $

  8. Effects of treadmill grade and speed on medial gastrocnemius muscle activity in chronic stroke patients

    Directory of Open Access Journals (Sweden)

    Roghayeh Mohammadi

    2017-01-01

    Full Text Available Introduction: Plantarflexor muscles produce propulsive force in the second half of stance phase; deficient motor output from these muscles would lead to inadequate propulsion at push off phase of gait following stroke. It is important to develop strategies to improve plantarflexor output. This study examined the effects of walking on a treadmill at varying gradients and speeds on medial gastrocnemius (MG muscle activation in stroke survivors. Materials and Methods: Nineteen stroke survivors (13M/6F: average age 55.37±7.54 years; body mass index 29.10±4.52kg/m2 participated in the study. Participants walked  on  a  standard  treadmill  at  three  different positive inclines (0°, 3°, and 6°  and speeds (self-selected, self-selected+20%, self-selected+40%. The electromyographic activity of MG recorded at push off phase of the gait. Results: A linear mixed model regression analysis was used to analysis. The paretic MG muscle activity increased at faster speeds irrespective of incline (p0.05. Conclusion: It would appear that stroke survivors employ distinct muscle activation strategies on the paretic and non-paretic sides in response to different walking speeds and inclines

  9. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis.

    Science.gov (United States)

    Allen, Jessica L; Kautz, Steven A; Neptune, Richard R

    2014-08-01

    A common measure of rehabilitation effectiveness post-stroke is self-selected walking speed, yet individuals may achieve the same speed using different coordination strategies. Asymmetry in the propulsion generated by each leg can provide insight into paretic leg coordination due to its relatively strong correlation with hemiparetic severity. Subjects walking at the same speed can exhibit different propulsion asymmetries, with some subjects relying more on the paretic leg and others on the nonparetic leg. The goal of this study was to assess whether analyzing propulsion asymmetry can help distinguish between improved paretic leg coordination versus nonparetic leg compensation. Three-dimensional forward dynamics simulations were developed for two post-stroke hemiparetic subjects walking at identical speeds before/after rehabilitation with opposite changes in propulsion asymmetry. Changes in the individual muscle contributions to forward propulsion were examined. The major source of increased forward propulsion in both subjects was from the ankle plantarflexors. How they were utilized differed and appears related to changes in propulsion asymmetry. Subject A increased propulsion generated from the paretic plantarflexors, while Subject B increased propulsion generated from the nonparetic plantarflexors. Each subject's strategy to increase speed also included differences in other muscle groups (e.g., hamstrings) that did not appear to be related to propulsion asymmetry. The results of this study highlight how speed cannot be used to elucidate underlying muscle coordination changes following rehabilitation. In contrast, propulsion asymmetry appears to provide insight into changes in plantarflexor output affecting propulsion generation and may be useful in monitoring rehabilitation outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Inverse association between insulin resistance and gait speed in nondiabetic older men: results from the U.S. National Health and Nutrition Examination Survey (NHANES 1999-2002

    Directory of Open Access Journals (Sweden)

    Yu Yau-Hua

    2009-11-01

    Full Text Available Abstract Background Recent studies have revealed the associations between insulin resistance (IR and geriatric conditions such as frailty and cognitive impairment. However, little is known about the relation of IR to physical impairment and limitation in the aging process, eg. slow gait speed and poor muscle strength. The aim of this study is to determine the effect of IR in performance-based physical function, specifically gait speed and leg strength, among nondiabetic older adults. Methods Cross-sectional data were from the population-based National Health and Nutrition Examination Survey (1999-2002. A total of 1168 nondiabetic adults (≥ 50 years with nonmissing values in fasting measures of insulin and glucose, habitual gait speed (HGS, and leg strength were analyzed. IR was assessed by homeostasis model assessment (HOMA-IR, whereas HGS and peak leg strength by the 20-foot timed walk test and an isokinetic dynamometer, respectively. We used multiple linear regression to examine the association between IR and performance-based physical function. Results IR was inversely associated with gait speed among the men. After adjusting demographics, body mass index, alcohol consumption, smoking status, chronic co-morbidities, and markers of nutrition and cardiovascular risk, each increment of 1 standard deviation in the HOMA-IR level was associated with a 0.04 m/sec decrease (p = 0.003 in the HGS in men. We did not find such association among the women. The IR-HGS association was not changed after further adjustment of leg strength. Last, HOMA-IR was not demonstrated in association with peak leg strength. Conclusion IR is inversely associated with HGS among older men without diabetes. The results suggest that IR, an important indicator of gait function among men, could be further investigated as an intervenable target to prevent walking limitation.

  11. Acute Effects of Walking Exercise on Stair Negotiation in Sedentary and Physically Active Older Adults.

    Science.gov (United States)

    Kunzler, Marcos R; da Rocha, Emmanuel S; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P

    2017-07-01

    In negotiating stairs, low foot clearance increases the risk of tripping and a fall. Foot clearance may be related to physical fitness, which differs between active and sedentary participants, and be acutely affected by exercise. Impaired stair negotiation could be an acute response to exercise. Here we determined acute changes in foot clearances during stair walking in sedentary (n = 15) and physically active older adults (n = 15) after prolonged exercise. Kinematic data were acquired during negotiation with a 3-steps staircase while participants walked at preferred speed, before and after 30 min walking at preferred speed and using a treadmill. Foot clearances were compared before and after exercise and between the groups. Sedentary older adults presented larger (0.5 cm for lead and 2 cm for trail leg) toe clearances in ascent, smaller (0.7 cm) heel clearance in the leading foot in descent, and larger (1 cm) heel clearance in the trailing foot in descent than physically active. Sedentary older adults negotiate stairs in a slightly different way than active older adults, and 30 min walking at preferred speed does not affect clearance in stair negotiation.

  12. Targeting paretic propulsion to improve poststroke walking function: a preliminary study.

    Science.gov (United States)

    Awad, Louis N; Reisman, Darcy S; Kesar, Trisha M; Binder-Macleod, Stuart A

    2014-05-01

    To determine the feasibility and safety of implementing a 12-week locomotor intervention targeting paretic propulsion deficits during walking through the joining of 2 independent interventions, walking at maximal speed on a treadmill and functional electrical stimulation of the paretic ankle musculature (FastFES); to determine the effects of FastFES training on individual subjects; and to determine the influence of baseline impairment severity on treatment outcomes. Single group pre-post preliminary study investigating a novel locomotor intervention. Research laboratory. Individuals (N=13) with locomotor deficits after stroke. FastFES training was provided for 12 weeks at a frequency of 3 sessions per week and 30 minutes per session. Measures of gait mechanics, functional balance, short- and long-distance walking function, and self-perceived participation were collected at baseline, posttraining, and 3-month follow-up evaluations. Changes after treatment were assessed using pairwise comparisons and compared with known minimal clinically important differences or minimal detectable changes. Correlation analyses were run to determine the correlation between baseline clinical and biomechanical performance versus improvements in walking speed. Twelve of the 13 subjects that were recruited completed the training. Improvements in paretic propulsion were accompanied by improvements in functional balance, walking function, and self-perceived participation (each Pstudy of this promising locomotor intervention for persons poststroke. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. The Effect of 12 Weeks Individualized Combined Exercise Rehabilitation Training on Physiological Cost Index (PCI and Walking Speed in Patients with Multiple Sclerosis at all Levels of Physical Disability

    Directory of Open Access Journals (Sweden)

    M Narimani

    2016-11-01

    Full Text Available Background & aim: Most research on the effects of exercise on people with MS rehabilitation exercises sclerosis (MS  have been carried out on patients with low to moderate disability, but research on patients with different severity of disability (physical disability scale of zero to 10 still has to be carefully considered. The aim of this study was to investigate the effects of twelve weeks of rehabilitation exercises personalized compound exercise on physiological cost index (PCI and average speed walking in patients with MS at various levels of disability. Methods: The present research was a semi-experimental practical study. Thus among female patients admitted to the MS Association of Shahrekord city, 96 people were chosen on the basis of physical disability scores and divided into three groups. The first group consisted of less than 5/4 a total of 44 people, the second group between 5/65 and 5/6 up third of each 26 patients were then randomly assigned to an experimental group and a control group. Afterwards each group was divided randomly into an experimental group and a control group. The first group (the scale of disability less than 4.5, N= 44. The second group (the scale of disability 5 - 6.5, N=26. Also 26 patients were in the third group (the scale of disability 6.5 and above. In addition, they were divided into 6 experimental and control groups. Training programs for experimental groups were 12 weeks, three sessions per week and one hour for each session. Factors such as physiological cost index and walking speed were measured with the appropriate tools before and after training. The experimental groups of 1, 2 and 3 each did their own intervention, while the control groups received only stretching exercises. Analysis of data obtained from 96 patients studied was done using descriptive statistics and the analysis of covariance and paired comparing of the adjusted means (P<0.05. ‌‌‌ Results: A significant difference in walking

  14. Interaction of obstructive sleep apnoea and cognitive impairment with slow gait speed in middle-aged and older adults.

    Science.gov (United States)

    Lee, Sunghee; Shin, Chol

    2017-07-01

    to investigate whether slow gait speed is associated with cognitive impairment and further whether the association is modified by obstructive sleep apnoea (OSA). in total, 2,222 adults aged 49-80 years, free from dementia, stroke and head injury were asked to walk a 4-m course at fast and usual gait speeds. The time taken to walk was measured. All participants completed the Korean Mini-Mental State Examination, which was validated in the Korean language, to assess cognitive function. Additionally, the participants completed a polysomnography test to ascertain OSA (defined as an apnoea-hypopnoea index ≥15). Multivariable linear regression models were utilised to test the associations. time taken to walk 4 m showed significant inverse associations with cognitive scores (P value = 0.001 at fast gait speed and P = 0.002 at usual gait speed). Furthermore, a significant interaction according to OSA on the association between time to walk and cognitive impairment was found (P value for interaction = 0.003 at fast gait speed and P value for interaction = 0.007 at usual gait speed). we found that the inverse association between the time taken to walk 4 m and a cognitive score became significantly stronger, if an individual had OSA. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Modelling vertical human walking forces using self-sustained oscillator

    Science.gov (United States)

    Kumar, Prakash; Kumar, Anil; Racic, Vitomir; Erlicher, Silvano

    2018-01-01

    This paper proposes a model of a self-sustained oscillator which can generate reliably the vertical contact force between the feet of a healthy pedestrian and the supporting flat rigid surface. The model is motivated by the self-sustained nature of the walking process, i.e. a pedestrian generates the required inner energy to sustain its repetitive body motion. The derived model is a fusion of the well-known Rayleigh, Van der Pol and Duffing oscillators. Some additional nonlinear terms are added to produce both the odd and even harmonics observed in the experimentally measured force data. The model parameters were derived from force records due to twelve pedestrians walking on an instrumented treadmill at ten speeds using a linear least square technique. The stability analysis was performed using the energy balance method and perturbation method. The results obtained from the model show a good agreement with the experimental results.

  16. Evaluation of the gait performance of above-knee amputees while walking with 3R20 and 3R15 knee joints

    Directory of Open Access Journals (Sweden)

    AliReza Taheri

    2012-01-01

    Full Text Available Background: The performance of the subjects with above-knee amputation is noticeably poorer than normal subjects. Various types of components have been designed to compensate their performance. Among various prosthetic components, the knee joint has great influence on the function. Two types of knee joints (3R15, 3R20 have been used broadly for above-knee prostheses. However, there is not enough research to highlight the influence of these joints on the gait performance of the subjects. Therefore, an aim of this research was to investigate the performance of the above-knee amputees while walking with 3R15 and 3R20 knee joints. Materials and Methods: 7 above-knee amputees were recruited in this research study. They were asked to walk with a comfortable speed to investigate the gait function of the subjects with 3 cameras 3D motion analysis system (Kinematrix system. The difference between the performances of the subjects with these joints was compared by use of paired t-test. Results: The results of this study showed that, the performances of the subjects with 3R20 were better than that with 3R15. The walking speed of the subjects with 3R20 was 66.7 m/min compared to 30.4 m/min (P-value = 0.045. Moreover; the symmetry of walking with 3R20 was more than that with 3R15, based on the spatio- temporal gait parameters values (P-value <0.05. Conclusion: The difference between the performances of the subjects with 3R20 and 3R15 knee joints was related to the walking speed, which improved while walking with 3R20 joint.

  17. Which walking capacity tests to use in multiple sclerosis? A multicentre study providing the basis for a core set

    NARCIS (Netherlands)

    Gijbels, D.; Dalgas, U.; Romberg, A.; de Groot, V.; Bethoux, F.; Vaney, C.; Gebara, B.; Santoyo, C.; Maamagi, H.; Rasova, K.; de Maertens, N.B.; Knuts, K.; Feys, P.

    2012-01-01

    Background: Many different walking capacity test formats are being used. It is unclear whether walking speed, obtained from short tests, and walking distance, obtained from long tests, provide different clinical information. Objectives: To determine the differential effect of various short and long

  18. Real-time Multiresolution Crosswalk Detection with Walk Light Recognition for the Blind

    Directory of Open Access Journals (Sweden)

    ROMIC, K.

    2018-02-01

    Full Text Available Real-time image processing and object detection techniques have a great potential to be applied in digital assistive tools for the blind and visually impaired persons. In this paper, algorithm for crosswalk detection and walk light recognition is proposed with the main aim to help blind person when crossing the road. The proposed algorithm is optimized to work in real-time on portable devices using standard cameras. Images captured by camera are processed while person is moving and decision about detected crosswalk is provided as an output along with the information about walk light if one is present. Crosswalk detection method is based on multiresolution morphological image processing, while the walk light recognition is performed by proposed 6-stage algorithm. The main contributions of this paper are accurate crosswalk detection with small processing time due to multiresolution processing and the recognition of the walk lights covering only small amount of pixels in image. The experiment is conducted using images from video sequences captured in realistic situations on crossings. The results show 98.3% correct crosswalk detections and 89.5% correct walk lights recognition with average processing speed of about 16 frames per second.

  19. Deep white matter hyperintensities, microstructural integrity and dual task walking in older people.

    Science.gov (United States)

    Ghanavati, Tabassom; Smitt, Myriam Sillevis; Lord, Stephen R; Sachdev, Perminder; Wen, Wei; Kochan, Nicole A; Brodaty, Henry; Delbaere, Kim

    2018-01-03

    To examine neural, physiological and cognitive influences on gait speed under single and dual-task conditions. Sixty-two community-dwelling older people (aged 80.0 ± 4.2 years) participated in our study. Gait speed was assessed with a timed 20-meter walk under single and dual-task (reciting alternate letters of the alphabet) conditions. Participants also underwent tests to estimate physiological fall risk based on five measures of sensorimotor function, cognitive function across five domains, brain white matter (WM) hyperintensities and WM microstructural integrity by measuring fractional anisotropy (FA). Univariate linear regression analyses showed that global physiological and cognitive measures were associated with single (β = 0.594 and β=-0.297, respectively) and dual-task gait speed (β = 0.306 and β=-0.362, respectively). Deep WMHs were associated with dual-task gait speed only (β = 0.257). Multivariate mediational analyses showed that global and executive cognition reduced the strength of the association between deep WMHs and dual-task gait speed by 27% (β = 0.188) and 44% (β = 0.145) respectively. There was a significant linear association between single-task gait speed and mean FA values of the genu (β=-0.295) and splenium (β=-0.326) of the corpus callosum, and between dual-task gait speed and mean FA values of Superior Cerebellar Peduncle (β=-0.284), splenium of the Corpus Callosum (β=-0.286) and Cingulum (β=-0.351). Greater deep WMH volumes are associated with slower walking speed under dual-task conditions, and this relationship is mediated in part by global cognition and executive abilities specifically. Furthermore, both cerebellum and cingulum are related to dual-task walking due to their role in motor skill performance and attention, respectively.

  20. Can overestimation of walking ability increase the risk of falls in people in the subacute stage after stroke on their return home?

    Science.gov (United States)

    Morone, G; Iosa, M; Pratesi, L; Paolucci, S

    2014-03-01

    Falls are common in patients who have had a stroke who return home after neurorehabilitation. Some studies have found that walking speed inversely correlates with the risk of falls. This study examined whether comparison between comfortable self-selected walking speed and maximum maintainable speed is informative with regard to the risk of falls in patients with stroke. A prospective cohort study was performed with 75 ambulant stroke patients. At discharge, the Barthel Index score and performance at the 10-m and 6-min walking tests were assessed. Number of falls was recorded by telephone interview every two months for one year. Regression analysis was performed to identify factors that were related to the risk of falls. Using forward multiple linear regression, only the ratio between walking speeds on the 6-min and 10-m tests was linked to the number of falls in the year after discharge (R=-0.451, prisk of suffering a fall. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Using dynamic walking models to identify factors that contribute to increased risk of falling in older adults.

    Science.gov (United States)

    Roos, Paulien E; Dingwell, Jonathan B

    2013-10-01

    Falls are common in older adults. The most common cause of falls is tripping while walking. Simulation studies demonstrated that older adults may be restricted by lower limb strength and movement speed to regain balance after a trip. This review examines how modeling approaches can be used to determine how different measures predict actual fall risk and what some of the causal mechanisms of fall risk are. Although increased gait variability predicts increased fall risk experimentally, it is not clear which variability measures could best be used, or what magnitude of change corresponded with increased fall risk. With a simulation study we showed that the increase in fall risk with a certain increase in gait variability was greatly influenced by the initial level of variability. Gait variability can therefore not easily be used to predict fall risk. We therefore explored other measures that may be related to fall risk and investigated the relationship between stability measures such as Floquet multipliers and local divergence exponents and actual fall risk in a dynamic walking model. We demonstrated that short-term local divergence exponents were a good early predictor for fall risk. Neuronal noise increases with age. It has however not been fully understood if increased neuronal noise would cause an increased fall risk. With our dynamic walking model we showed that increased neuronal noise caused increased fall risk. Although people who are at increased risk of falling reduce their walking speed it had been questioned whether this slower speed would actually cause a reduced fall risk. With our model we demonstrated that a reduced walking speed caused a reduction in fall risk. This may be due to the decreased kinematic variability as a result of the reduced signal-dependent noise of the smaller muscle forces that are required for slower. These insights may be used in the development of fall prevention programs in order to better identify those at increased risk of

  2. Using Dynamic Walking Models to Identify Factors that Contribute to Increased Risk of Falling in Older Adults

    Science.gov (United States)

    Roos, Paulien E.; Dingwell, Jonathan B.

    2013-01-01

    Falls are common in older adults. The most common cause of falls is tripping while walking. Simulation studies demonstrated that older adults may be restricted by lower limb strength and movement speed to regain balance after a trip. This review examines how modeling approaches can be used to determine how different measures predict actual fall risk and what some of the causal mechanisms of fall risk are. Although increased gait variability predicts increased fall risk experimentally, it is not clear which variability measures could best be used, or what magnitude of change corresponded with increased fall risk. With a simulation study we showed that the increase in fall risk with a certain increase in gait variability was greatly influenced by the initial level of variability. Gait variability can therefore not easily be used to predict fall risk. We therefore explored other measures that may be related to fall risk and investigated the relationship between stability measures such as Floquet multipliers and local divergence exponents and actual fall risk in a dynamic walking model. We demonstrated that short-term local divergence exponents were a good early predictor for fall risk. Neuronal noise increases with age. It has however not been fully understood if increased neuronal noise would cause an increased fall risk. With our dynamic walking model we showed that increased neuronal noise caused increased fall risk. Although people who are at increased risk of falling reduce their walking speed it had been questioned whether this slower speed would actually cause a reduced fall risk. With our model we demonstrated that a reduced walking speed caused a reduction in fall risk. This may be due to the decreased kinematic variability as a result of the reduced signal-dependent noise of the smaller muscle forces that are required for slower. These insights may be used in the development of fall prevention programs in order to better identify those at increased risk of

  3. A Three Month Home Exercise Programme Augmented with Nordic Poles for Patients with Intermittent Claudication Enhances Quality of Life and Continues to Improve Walking Distance and Compliance After One Year.

    Science.gov (United States)

    Oakley, C; Spafford, C; Beard, J D

    2017-05-01

    The objective of this study was to collect 1 year follow-up information on walking distance, speed, compliance, and cost in patients with intermittent claudication who took part in a previously reported 12 week randomised clinical trial of a home exercise programme augmented with Nordic pole walking versus controls who walked normally. A second objective was to look at quality of life and ankle brachial pressure indices (ABPIs) after a 12 week augmented home exercise programme. Thirty-two of the 38 patients who completed the original trial were followed-up after 6 and 12 months. Frequency, duration, speed, and distance of walking were recorded using diaries and pedometers. A new observational cohort of 29 patients was recruited to the same augmented home exercise programme. ABPIs, walking improvement, and quality of life questionnaire were recorded at baseline and 12 weeks (end of the programme). Both groups in the follow-up study continued to improve their walking distance and speed over the following year. Compliance was excellent: 98% of the augmented group were still walking with poles at both 6 and 12 months, while 74% of the control group were still walking at the same point. The augmented group increased their mean walking distance to 17.5 km by 12 months, with a mean speed of 4.2 km/hour. The control group only increased their mean walking distance from 4.2 km to 5.6 km, and speed to 3.3 km/hour. Repeated ANOVA showed the results to be highly significant (p = .002). The 21/29 patients who completed the observational study showed a statistically significant increase in resting ABPIs from baseline (mean ± SD 0.75 ± 0.12) to week 12 (mean ± SD 0.85 ± 0.12) (t = (20) -8.89, p = .000 [two-tailed]). All their walking improvement and quality of life parameters improved significantly (p = .002 or less in the six categories) over the same period and their mean health scores improved by 79%. Following a 12 week augmented home exercise

  4. Locomotor Training and Strength and Balance Exercises for Walking Recovery After Stroke: Response to Number of Training Sessions.

    Science.gov (United States)

    Rose, Dorian K; Nadeau, Stephen E; Wu, Samuel S; Tilson, Julie K; Dobkin, Bruce H; Pei, Qinglin; Duncan, Pamela W

    2017-11-01

    Evidence-based guidelines are needed to inform rehabilitation practice, including the effect of number of exercise training sessions on recovery of walking ability after stroke. The objective of this study was to determine the response to increasing number of training sessions of 2 interventions-locomotor training and strength and balance exercises-on poststroke walking recovery. This is a secondary analysis of the Locomotor Experience Applied Post-Stroke (LEAPS) randomized controlled trial. Six rehabilitation sites in California and Florida and participants' homes were used. Participants were adults who dwelled in the community (N=347), had had a stroke, were able to walk at least 3 m (10 ft) with assistance, and had completed the required number of intervention sessions. Participants received 36 sessions (3 times per week for 12 weeks), 90 minutes in duration, of locomotor training (gait training on a treadmill with body-weight support and overground training) or strength and balance training. Talking speed, as measured by the 10-Meter Walk Test, and 6-minute walking distance were assessed before training and following 12, 24, and 36 intervention sessions. Participants at 2 and 6 months after stroke gained in gait speed and walking endurance after up to 36 sessions of treatment, but the rate of gain diminished steadily and, on average, was very low during the 25- to 36-session epoch, regardless of treatment type or severity of impairment. Results may not generalize to people who are unable to initiate a step at 2 months after stroke or people with severe cardiac disease. In general, people who dwelled in the community showed improvements in gait speed and walking distance with up to 36 sessions of locomotor training or strength and balance exercises at both 2 and 6 months after stroke. However, gains beyond 24 sessions tended to be very modest. The tracking of individual response trajectories is imperative in planning treatment. Published by Oxford University

  5. A flexed posture in elderly patients is associated with impairments in postural control during walking.

    Science.gov (United States)

    de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Beijnen, Jos H; Lamoth, Claudine J C

    2014-02-01

    A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current study was therefore to examine postural control during walking in elderly patients with FP, and to investigate the relationship with geriatric phenomena that may cause FP, such as increased TK, VFs, frailty, polypharmacy and cognitive impairments. Fifty-six elderly patients (aged 80 ± 5.2 years; 70% female) walked 160 m at self-selected speed while trunk accelerations were recorded. Walking speed, mean stride time and coefficient of variation (CV) of stride time were recorded. In addition, postural control during walking was quantified by time-dependent variability measures derived from the theory of stochastic dynamics, indicating smoothness, degree of predictability, and local stability of trunk acceleration patterns. Twenty-five patients (45%) had FP and demonstrated a more variable and less structured gait pattern, and a more irregular trunk acceleration pattern than patients with normal posture. FP was significantly associated with an increased TK, but not with other geriatric phenomena. An increased TK may bring the body's centre of mass forward, which requires correcting responses, and reduces the ability to respond on perturbation, which was reflected by higher variation in the gait pattern in FP-patients. Impairments in postural control during walking are a major risk factor for falling: the results indicate that patients with FP have impaired postural control during walking and might therefore be at increased risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Within-day variability on short and long walking tests in persons with multiple sclerosis

    NARCIS (Netherlands)

    Feys, P.; Bibby, B.; Romberg, A.; Santoyo, C.; Gebara, B.; de Noordhout, B.M.; Knuts, K.; Bethoux, F.; Skjerbaek, A.; Jensen, E.; Baert, I.; Vaney, C.; de Groot, V.; Dalgas, U.

    2014-01-01

    Objective To compare within-day variability of short (10 m walking test at usual and fastest speed; 10MWT) and long (2 and 6-minute walking test; 2MWT/6MWT) tests in persons with multiple sclerosis. Design Observational study. Setting MS rehabilitation and research centers in Europe and US within

  7. Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.

    Science.gov (United States)

    Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon

    2015-09-01

    [Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.

  8. Validity of the MarkWiiR for kinematic analysis during walking and running gaits

    Directory of Open Access Journals (Sweden)

    Johnny Padulo

    2014-11-01

    Full Text Available The aim of this study was to validate the MarkWiiR (MW captured by the Nintendo Wii-Remote (100-Hz to assess active marker displacement by comparison with 2D video analysis. Ten participants were tested on a treadmill at different walking (1<6 km · h-1 and running (10<13 km · h-1 speeds. During the test, the active marker for MW and a passive marker for video analysis were recorded simultaneously with the two devices. The displacement of the marker on the two axes (x-y was computed using two different programs, Kinovea 0.8.15 and CoreMeter, for the camera and MW, respectively. Pearson correlation was acceptable (x-axis r≥0.734 and y-axis r≥0.684, and Bland–Altman plots of the walking speeds showed an average error of 0.24±0.52% and 1.5±0.91% for the x- and y-axis, respectively. The difference of running speeds showed average errors of 0.67±0.33% and 1.26±0.33% for the x- and y-axes, respectively. These results demonstrate that the two measures are similar from both the x- and the y-axis perspective. In conclusion, these findings suggest that the MarkWiiR is a valid and reliable tool to assess the kinematics of an active marker during walking and running gaits.

  9. Biomechanical implications of walking with indigenous footwear.

    Science.gov (United States)

    Willems, Catherine; Stassijns, Gaetane; Cornelis, Wim; D'Août, Kristiaan

    2017-04-01

    This study investigates biomechanical implications of walking with indigenous "Kolhapuri" footwear compared to barefoot walking among a population of South Indians. Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate. Data were collected from (1) a heel-mounted 3D-accelerometer recording peak impact at heel contact, (2) an ankle-mounted 3D-goniometer (plantar/dorsiflexion and inversion/eversion), and (3) sEMG electrodes at the m. tibialis anterior and the m. gastrocnemius medialis. Data show that the effect of indigenous footwear on the measured variables, compared to barefoot walking, is relatively small and consistent between substrates (even though subjects walked faster on the natural substrate). Walking barefoot, compared to shod walking yields higher impact accelerations, but the differences are small and only significant for the artificial substrate. The main rotations of the ankle joint are mostly similar between conditions. Only the shod condition shows a faster ankle rotation over the rapid eversion motion on the natural substrate. Maximal dorsiflexion in late stance differs between the footwear conditions on an artificial substrate, with the shod condition involving a less dorsiflexed ankle, and the plantar flexion at toe-off is more extreme when shod. Overall the activity pattern of the external foot muscles is similar. The indigenous footwear studied (Kolhapuri) seems to alter foot biomechanics only in a subtle way. While offering some degree of protection, walking in this type of footwear resembles barefoot gait and this type of indigenous footwear might be considered "minimal". © 2017 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  10. The Crossing Speed of Elderly Pedestrians

    Directory of Open Access Journals (Sweden)

    Ana Trpković

    2017-04-01

    Full Text Available The population of elderly people is rapidly growing and in terms of safety, senior pedestrians represent one of the most vulnerable group. The pedestrian crossing speed is a significant input parameter in traffic engineering, which can have effect on pedestrians’ safety, especially of older population. The objective of this study was to determine the value of the crossing speed of elderly pedestrians (65+ for different types of urban crossings. The research was conducted at ten intersections in the city of Belgrade, Serbia, using the method of direct observation and a questionnaire for collecting data. The data were analysed in the statistical software package IBM SPSS Statistics. The results showed that elderly pedestrians walk slower and the crossing type significantly influenced the speed of older population. The order of crossing types in relation to the measured speed is ranked as follows, from the lowest to the highest speed value: unsignalized, signalized, signalized with pedestrian countdown display, signalized with pedestrian island and pedestrian countdown display and finally signalized crossing with pedestrian island. According to the questionnaire results, the elderly recognize the importance of implementing pedestrian counters. This indicates the necessity to provide safe street crossing for the elderly using the corresponding engineering measures.

  11. Walking Training with Foot Drop Stimulator Controlled by a Tilt Sensor to Improve Walking Outcomes: A Randomized Controlled Pilot Study in Patients with Stroke in Subacute Phase

    Directory of Open Access Journals (Sweden)

    G. Morone

    2012-01-01

    Full Text Available Foot drop is a quite common problem in nervous system disorders. Neuromuscular electrical stimulation (NMES has showed to be an alternative approach to correct foot drop improving walking ability in patients with stroke. In this study, twenty patients with stroke in subacute phase were enrolled and randomly divided in two groups: one group performing the NMES (i.e. Walkaide Group, WG and the Control Group (CG performing conventional neuromotor rehabilitation. Both groups underwent the same amount of treatment time. Significant improvements of walking speed were recorded for WG (% than for CG (%, as well as in terms of locomotion (Functional Ambulation Classification score: . In terms of mobility and force, ameliorations were recorded, even if not significant (Rivermead Mobility Index: ; Manual Muscle Test: . Similar changes between groups were observed for independence in activities of daily living, neurological assessments, and spasticity reduction. These results highlight the potential efficacy for patients affected by a droop foot of a walking training performed with a neurostimulator in subacute phase.

  12. FDG-PET imaging of lower extremity muscular activity during level walking

    International Nuclear Information System (INIS)

    Oi, Naoyuki; Iwaya, Tsutomu; Tobimatsu, Yoshiko; Fujimoto, Toshihiko; Itoh, Masatoshi; Yamaguchi, Keiichiro

    2003-01-01

    We analyzed muscular activity of the lower extremities during level walking using positron emission tomography (PET) with 18 F-fluorodeoxyglucose ( 18 F-FDG). We examined 17 healthy male subjects; 11 were assigned to a walking group and 6 to a resting group. After 18 F-FDG injection, the walking group subjects walked at a free speed for 15 min. A whole-body image was then obtained by a PET camera, and the standardized uptake ratio (SUR) was computed for each muscle. The SUR for each muscle of the walking group was compared with that for the corresponding muscles in the resting group. The level of muscular activity of all the muscles we examined were higher during level walking than when resting. The activity of the lower leg muscles was higher than that of the thigh muscles during level walking. The muscular activity of the soleus was highest among all the muscles examined. Among the gluteal muscles, the muscular activity of the gluteus minimus was higher than that of the gluteus maximus and gluteus medius. The concurrent validity of measuring muscular activity of the lower extremity during level walking by the PET method using 18 F-FDG was demonstrated. (author)

  13. Metabolic cost and mechanics of walking in women with fibromyalgia syndrome

    OpenAIRE

    MacPhee, Ren?e S; McFall, Kristen; Perry, Stephen D; Tiidus, Peter M

    2013-01-01

    Background Fibromyalgia syndrome (FS) is characterized by the presence of widespread pain, fatigue, muscle weakness and reduced work capacity. Previous research has demonstrated that women with fibromyalgia have altered walking (gait) patterns, which may be a consequence of muscular pain. This altered gait is characterized by greater reliance on hip flexors rather than ankle plantar flexors and resembles gait patterns seen in normal individuals walking at higher speeds, suggesting that gait o...

  14. A pilot clinical trial on a Variable Automated Speed and Sensing Treadmill (VASST) for hemiparetic gait rehabilitation in stroke patients.

    Science.gov (United States)

    Chua, Karen S G; Chee, Johnny; Wong, Chin J; Lim, Pang H; Lim, Wei S; Hoo, Chuan M; Ong, Wai S; Shen, Mira L; Yu, Wei S

    2015-01-01

    Impairments in walking speed and capacity are common problems after stroke which may benefit from treadmill training. However, standard treadmills, are unable to adapt to the slower walking speeds of stroke survivors and are unable to automate training progression. This study tests a Variable Automated Speed and Sensing Treadmill (VASST) using a standard clinical protocol. VASST is a semi-automated treadmill with multiple sensors and micro controllers, including wireless control to reposition a fall-prevention harness, variable pre-programmed exercise parameters and laser beam foot sensors positioned on the belt to detect subject's foot positions. An open-label study with assessor blinding was conducted in 10 community-dwelling chronic hemiplegic patients who could ambulate at least 0.1 m/s. Interventions included physiotherapist-supervised training on VASST for 60 min three times per week for 4 weeks (total 12 h). Outcome measures of gait speed, quantity, balance, and adverse events were assessed at baseline, 2, 4, and 8 weeks. Ten subjects (8 males, mean age 55.5 years, 2.1 years post stroke) completed VASST training. Mean 10-m walk test speed was 0.69 m/s (SD = 0.29) and mean 6-min walk test distance was 178.3 m (84.0). After 4 weeks of training, 70% had significant positive gains in gait speed (0.06 m/s, SD = 0.08 m/s, P = 0.037); and 90% improved in walking distance. (54.3 m, SD = 30.9 m, P = 0.005). There were no adverse events. This preliminary study demonstrates the initial feasibility and short-term efficacy of VASST for walking speed and distance for people with chronic post-stroke hemiplegia.

  15. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: a meta-analysis.

    Science.gov (United States)

    Pearson, Melissa; Dieberg, Gudrun; Smart, Neil

    2015-07-01

    To quantify improvements in walking performance commonly observed in patients with multiple sclerosis (pwMS), a systematic literature search and meta-analysis were conducted quantifying the expected benefits of exercise on walking ability in pwMS. Potential studies were identified by systematic search using PubMed (1966 to March 31, 2014), EMBASE (1974 to March 31, 2014), CINAHL (1998 to March 31, 2014), SPORTDiscus (1991 to March 31, 2014), and the Cochrane Central Register of Controlled Trials (1966 to March 31, 2014). The search used key concepts of "multiple sclerosis" AND "exercise." Randomized controlled trials of exercise training in adult pwMS. Data on patient and study characteristics, walking ability, 10-m walk test (10mWT), timed 25-foot walk test (T25FW), 2-minute walk test (2MWT), 6-minute walk test (6MWT), and timed Up and Go (TUG) were extracted and archived. Data from 13 studies were included. In pwMS who exercised, significant improvements were found in walking speed, measured by the 10mWT (mean difference [MD] reduction in walking time of -1.76s; 95% confidence interval [CI], -2.47 to -1.06; Pwalking endurance as measured by the 6MWT and 2MWT, with an increased walking distance of MD=36.46m (95% CI, 15.14-57.79; Pwalking speed and endurance in pwMS. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Correlates of walking for transportation and use of public transportation among adults in St Louis, Missouri, 2012.

    Science.gov (United States)

    Zwald, Marissa L; Hipp, James A; Corseuil, Marui W; Dodson, Elizabeth A

    2014-07-03

    Attributes of the built environment can influence active transportation, including use of public transportation. However, the relationship between perceptions of the built environment and use of public transportation deserves further attention. The objectives of this study were 1) to assess the relationship between personal characteristics and public transportation use with meeting national recommendations for moderate physical activity through walking for transportation and 2) to examine associations between personal and perceived environmental factors and frequency of public transportation use. In 2012, we administered a mail-based survey to 772 adults in St Louis, Missouri, to assess perceptions of the built environment, physical activity, and transportation behaviors. The abbreviated International Physical Activity Questionnaire was used to assess walking for transportation and use of public transportation. The Neighborhood Environment Walkability Scale was used to examine perceptions of the built environment. Associations were assessed by using multinomial logistic regression. People who used public transportation at least once in the previous week were more likely to meet moderate physical activity recommendations by walking for transportation. Age and employment were significantly associated with public transportation use. Perceptions of high traffic speed and high crime were negatively associated with public transportation use. Our results were consistent with previous research suggesting that public transportation use is related to walking for transportation. More importantly, our study suggests that perceptions of traffic speed and crime are related to frequency of public transportation use. Future interventions to encourage public transportation use should consider policy and planning decisions that reduce traffic speed and improve safety.

  17. [Calf circumference and its association with gait speed in elderly participants at Peruvian Naval Medical Center].

    Science.gov (United States)

    Díaz Villegas, Gregory Mishell; Runzer Colmenares, Fernando

    2015-01-01

    To evaluate the association between calf circumference and gait speed in elderly patients 65 years or older at Geriatric day clinic at Peruvian Centro Médico Naval. Cross-sectional, retrospective study. We assessed 139 participants, 65 years or older at Peruvian Centro Médico Naval including calf circumference, gait speed and Short Physical Performance Battery. With bivariate analyses and logistic regression model we search for association between variables. The age mean was 79.37 years old (SD: 8.71). 59.71% were male, the 30.97% had a slow walking speed and the mean calf circumference was 33.42cm (SD: 5.61). After a bivariate analysis, we found a calf circumference mean of 30.35cm (SD: 3.74) in the slow speed group and, in normal gait group, a mean of 33.51cm (SD: 3.26) with significantly differences. We used logistic regression to analyze association with slow gait speed, founding statistically significant results adjusting model by disability and age. Low calf circumference is associated with slow speed walk in population over 65 years old. Copyright © 2014. Published by Elsevier Espana.

  18. Limb swinging in elephants and giraffes and implications for the reconstruction of limb movements and speed estimates in large dinosaurs

    Directory of Open Access Journals (Sweden)

    A. Christian

    1999-01-01

    Full Text Available Speeds of walking dinosaurs that left fossil trackways have been estimated using the stride length times natural pendulum frequency of the limbs. In a detailed analysis of limb movements in walking Asian elephants and giraffes, however, distinct differences between actual limb movements and the predicted limb movements using only gravity as driving force were observed. Additionally, stride frequency was highly variable. Swing time was fairly constant, but especially at high walking speeds, much shorter than half the natural pendulum period. An analysis of hip and shoulder movements during walking showed that limb swinging was influenced by accelerations of hip and shoulder joints especially at high walking speeds. These results suggest an economical fast walking mechanism that could have been utilised by large dinosaurs to increase maximum speeds of locomotion. These findings throw new light on the dynamics of large vertebrates and can be used to improve speed estimates in large dinosaurs. Geschwindigkeiten gehender Dinosaurier, die fossile Fährten hinterlassen haben, wurden als Produkt aus Schrittlänge und natürlicher Pendelfrequenz der Beine abgeschätzt. Eine detaillierte Analyse der Beinbewegungen von gehenden Asiatischen Elefanten und Giraffen offenbarte allerdings klare Unterschiede zwischen den tatsächlichen Extremitätenbewegungen und den Bewegungen, die zu erwarten wären, wenn die Gravitation die einzige treibende Kraft darstellte. Zudem erwies sich die Schrittfrequenz als hochgradig variabel. Die Schwingzeit der Gliedmaßen war recht konstant, aber besonders bei hohen Gehgeschwindigkeiten viel kürzer als die halbe natürliche Pendelperiode der Extremitäten. Eine Analyse der Bewegungen der Hüft- und Schultergelenke während des Gehens zeigte, daß das Schwingen der Gliedmaßen durch Beschleunigungen dieser Gelenke beeinflußt wurde, insbesondere bei hohen Gehgeschwindigkeiten. Die Resultate legen einen ökonomischen Mechanismus

  19. Muscles Activity in the elderly with Balance Impairments in walking under Dual tasks

    Directory of Open Access Journals (Sweden)

    Elaheh Azadian

    2016-09-01

    Full Text Available Objectives: Each step during gait requires different attention demands that will affect muscles activity. The study of changes in the timing and intensity of the muscles activity in walking with dual task has received less attention from researchers. The purpose of this study was to evaluate changes in electromyography patterns of gait with cognitive dual tasks in balance impaired elderly. Methods: Thirty older adults were recruited for this study. People were selected through berg balance test. Subjects walked 12-meters in two conditions, normal walking and walking with a cognitive dual task. Spatial-temporal kinematic parameters were recorded through the motion analysis and muscles activities were recorded through electromyography system. The data obtained was analyzed using repeated measures ANOVA at a significant level of p< 0.05.  Results: The results showed that walking under dual tasks would decrease gait speed and increase stride time and stance time. Also muscle activity in Tibialis anterior and Vastus lateralis in stance-phase would decrease significantly in dual tasks as compared with single task (p< 0.05, but timing of muscle activity would not change in dual task conditions.  Conclusions: Based on the results, it can be argued that walking under a dual task can change spatial-temporal parameters and muscle activity in gait pattern in the elderly with balance impairment. One explanation could be that the decreased control of the central nervous system on muscle activity in stance phase due to the performing of a dual task.

  20. An online gait generator for quadruped walking using motor primitives

    Directory of Open Access Journals (Sweden)

    Chunlin Zhou

    2016-11-01

    Full Text Available This article presents implementation of an online gait generator on a quadruped robot. Firstly, the design of a quadruped robot is presented. The robot contains four leg modules each of which is constructed by a 2 degrees of freedom (2-DOF five-bar parallel linkage mechanism. Together with other two rotational DOF, the leg module is able to perform 4-DOF movement. The parallel mechanism of the robot allows all the servos attached on the body frame, so that the leg mass is decreased and motor load can be balanced. Secondly, an online gait generator based on dynamic movement primitives for the walking control is presented. Dynamic movement primitives provide an approach to generate periodic trajectories and they can be modulated in real time, which makes the online adjustment of walking gaits possible. This gait controller is tested by the quadruped robot in regulating walking speed, switching between forward\\backward movements and steering. The controller is easy to apply, expand and is quite effective on phase coordination and online trajectory modulation. Results of simulated experiments are presented.

  1. Quantum walk computation

    International Nuclear Information System (INIS)

    Kendon, Viv

    2014-01-01

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer

  2. Walking Beliefs in Women With Fibromyalgia: Clinical Profile and Impact on Walking Behavior.

    Science.gov (United States)

    Peñacoba, Cecilia; Pastor, María-Ángeles; López-Roig, Sofía; Velasco, Lilian; Lledo, Ana

    2017-10-01

    Although exercise is essential for the treatment of fibromyalgia, adherence is low. Walking, as a form of physical exercise, has significant advantages. The aim of this article is to describe, in 920 women with fibromyalgia, the prevalence of certain walking beliefs and analyze their effects both on the walking behavior itself and on the associated symptoms when patients walk according to a clinically recommended way. The results highlight the high prevalence of beliefs related to pain and fatigue as walking-inhibitors. In the whole sample, beliefs are associated with an increased perception that comorbidity prevents walking, and with higher levels of pain and fatigue. In patients who walk regularly, beliefs are only associated with the perception that comorbidity prevents them from walking. It is necessary to promote walking according to the established way (including breaks to prevent fatigue) and to implement interventions on the most prevalent beliefs that inhibit walking.

  3. Obesity May Not Induce Dynamic Stability Disadvantage during Overground Walking among Young Adults.

    Science.gov (United States)

    Liu, Zhong-Qi; Yang, Feng

    2017-01-01

    Obesity has been related to postural instability during static standing. It remains unknown how obesity influences stability during dynamic movements like gait. The primary aim of this study was to investigate the effects of obesity on dynamic gait stability control in young adults during gait. Forty-four young adults (21 normal-weight and 23 obese) participated in this study. Participants walked five times at their self-selected gait speeds on a linear walkway. Their full-body kinematics were gathered by a motion capture system. Compared with normal-weight group, individuals with obesity walked more slowly with a shorter but wider step. People with obesity also spent an elongated double stance phase than those with normal weight. A reduced gait speed decreases the body center of mass's velocity relative to the base of support, leading to a reduction in dynamic stability. On the other hand, a shortened step in accompanying with a less backward-leaning trunk has the potential to bring the center of mass closer to the base of support, resulting in an increase in dynamic stability. As the result of these adaptive changes to the gait pattern, dynamic gait stability among people with obesity did not significantly differ from the one among people with normal weight. Obesity seems to not be inducing dynamic stability disadvantage in young adults during level overground walking. These findings could provide insight into the mechanisms of stability control among people affected by obesity during dynamic locomotion.

  4. Walking execution is not affected by divided attention in patients with multiple sclerosis with no disability, but there is a motor planning impairment.

    Science.gov (United States)

    Nogueira, Leandro Alberto Calazans; Santos, Luciano Teixeira Dos; Sabino, Pollyane Galinari; Alvarenga, Regina Maria Papais; Thuler, Luiz Claudio Santos

    2013-08-01

    We analysed the cognitive influence on walking in multiple sclerosis (MS) patients, in the absence of clinical disability. A case-control study was conducted with 12 MS patients with no disability and 12 matched healthy controls. Subjects were referred for completion a timed walk test of 10 m and a 3D-kinematic analysis. Participants were instructed to walk at a comfortable speed in a dual-task (arithmetic task) condition, and motor planning was measured by mental chronometry. Scores of walking speed and cadence showed no statistically significant differences between the groups in the three conditions. The dual-task condition showed an increase in the double support duration in both groups. Motor imagery analysis showed statistically significant differences between real and imagined walking in patients. MS patients with no disability did not show any influence of divided attention on walking execution. However, motor planning was overestimated as compared with real walking.

  5. Task difficulty has no effect on haptic anchoring during tandem walking in young and older adults.

    Science.gov (United States)

    Costa, Andréia Abud da Silva; Santos, Luciana Oliveira Dos; Mauerberg-deCastro, Eliane; Moraes, Renato

    2018-02-14

    This study assessed the contribution of the "anchor system's" haptic information to balance control during walking at two levels of difficulty. Seventeen young adults and seventeen older adults performed 20 randomized trials of tandem walking in a straight line, on level ground and on a slightly-raised balance beam, both with and without the use of the anchors. The anchor consists of two flexible cables, whose ends participants hold in each hand, to which weights (125 g) are attached at the opposing ends, and which rest on the ground. As the participants walk, they pull on the cables, dragging the anchors. Spatiotemporal gait variables (step speed and single- and double-support duration) were processed using retro-reflective markers on anatomical sites. An accelerometer positioned in the cervical region registered trunk acceleration. Walking on the balance beam increased single- and double-support duration and reduced step speed in older adults, which suggests that this condition was more difficult than walking on the level ground. The anchors reduced trunk acceleration in the frontal plane, but the level of difficulty of the walking task showed no effect. Thus, varying the difficulty of the task had no influence on the way in which participants used the anchor system while tandem walking. The older adults exhibited more difficulty in walking on the balance beam as compared to the younger adults; however, the effect of the anchor system was similar in both groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparison of inverse dynamics calculated by two- and three-dimensional models during walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Simonsen, E B; Dyhre-Poulsen, P

    2001-01-01

    recorded the subjects as they walked across two force plates. The subjects were invited to approach a walking speed of 4.5 km/h. The ankle, knee and hip joint moments in the sagittal plane were calculated by 2D and 3D inverse dynamics analysis and compared. Despite the uniform walking speed (4.53 km....../h) and similar footwear, relatively large inter-individual variations were found in the joint moment patterns during the stance phase. The differences between individuals were present in both the 2D and 3D analysis. For the entire sample of subjects the overall time course pattern of the ankle, knee and hip...... the magnitude of the joint moments calculated by 2D and 3D inverse dynamics but the inter-individual variation was not affected by the different models. The simpler 2D model seems therefore appropriate for human gait analysis. However, comparisons of gait data from different studies are problematic...

  7. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent.

    Science.gov (United States)

    Peng, Joshua; Fey, Nicholas P; Kuiken, Todd A; Hargrove, Levi J

    2016-02-29

    The majority of fall-related accidents are during stair ambulation-occurring commonly at the top and bottom stairs of each flight, locations in which individuals are transitioning to stairs. Little is known about how individuals adjust their biomechanics in anticipation of walking-stair transitions. We identified the anticipatory stride mechanics of nine able-bodied individuals as they approached transitions from level ground walking to stair ascent and descent. Unlike prior investigations of stair ambulation, we analyzed two consecutive "anticipation" strides preceding the transitions strides to stairs, and tested a comprehensive set of kinematic and electromyographic (EMG) data from both the leading and trailing legs. Subjects completed ten trials of baseline overground walking and ten trials of walking to stair ascent and descent. Deviations relative to baseline were assessed. Significant changes in mechanics and EMG occurred in the earliest anticipation strides analyzed for both ascent and descent transitions. For stair descent, these changes were consistent with observed reductions in walking speed, which occurred in all anticipation strides tested. For stair ascent, subjects maintained their speed until the swing phase of the latest anticipation stride, and changes were found that would normally be observed for decreasing speed. Given the timing and nature of the observed changes, this study has implications for enhancing intent recognition systems and evaluating fall-prone or disabled individuals, by testing their abilities to sense upcoming transitions and decelerate during locomotion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysing the Hydraulic Actuator-based Knee Unit Kinematics and Correlating the Numerical Results and Walking Human Knee Joint Behavior

    Directory of Open Access Journals (Sweden)

    K. A. Trukhanov

    2014-01-01

    Full Text Available State-of-the-art machinery development enables people with lost lower limb to continue their previous life despite a loss. International companies dealing with this area pursue a minimization of human behaviour problems because of amputation. Researches to create an optimal design of the artificial knee joint are under way.The work task was to define analytical relationships of changing kinematic parameters of the human walking on the flat surface such as an angle of the knee joint, knee point (moment, definition of reduced knee actuator (A load, as well as to compare obtained results with experimental data.As an A in created design, the article proposes to use a controlled shock absorber based on the hydraulic cylinder.A knee unit is a kinematic two-tier mechanism. One of the mechanism links performs rotational motion, and the other is rotation-translational to provide a rotation of the first one.When studying the hydraulic actuator device dynamics, as a generalized coordinate a coordinate of the piston x (or ρ position is chosen while in the study of link movements an angle β is preferable.Experimental data are obtained for a human with the body weight of 57.6 kg walking on the flat surface to estimate a value of the knee joint angle, speed, acceleration, torque, and capacity in the knee joint and are taken from the published works of foreign authors.A trigonometric approximation was used for fitting the experimental data. The resulting dependence of the reduced load on the stock of A is necessary to perform the synthesis of A. The criterion for linear mechanisms mentioned in the D.N. Popov’s work is advisable to use as a possible criterion for optimization of A.The results obtained are as follows:1. Kinematics linkage mechanism is described using relationships for dependencies of its geometrical parameters, namely a cylinder piston stroke x (or ρ and a links angle β.2. Obtained polynomials of kinematic relationships allow a synthesis of

  9. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    Directory of Open Access Journals (Sweden)

    David T. Sims

    2018-04-01

    Full Text Available The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2 and metabolic cost (C when walking at running compared to those of average stature (controls. The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1, set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1 and a self-selected walking speed (SSW. V͘O2 and C was scaled to total body mass (TBM and fat free mass (FFM while gait speed was scaled to leg length using Froude’s number (Fr. Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P < 0.05 and 12 and 18% higher during SRS (P < 0.05 than controls, respectively. Achondroplasic CTBM and CFFM were 29 and 33% greater during SWS (P < 0.05 and 12 and 18% greater during SRS (P < 0.05 than controls, respectively. There was no difference in SSW V͘O2TBM or V͘O2FFM between groups (P > 0.05, but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05 in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05. Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls.New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups.

  10. Using GPS-derived speed patterns for recognition of transport modes in adults.

    Science.gov (United States)

    Huss, Anke; Beekhuizen, Johan; Kromhout, Hans; Vermeulen, Roel

    2014-10-11

    Identification of active or sedentary modes of transport is of relevance for studies assessing physical activity or addressing exposure assessment. We assessed in a proof-of-principle study if speed as logged by GPSs could be used to identify modes of transport (walking, bicycling, and motorized transport: car, bus or train). 12 persons commuting to work walking, bicycling or with motorized transport carried GPSs for two commutes and recorded their mode of transport. We evaluated seven speed metrics: mean, 95th percentile of speed, standard deviation of the mean, rate-of-change, standardized-rate-of-change, acceleration and deceleration. We assessed which speed metric would best identify the transport mode using discriminant analyses. We applied cross validation and calculated agreement (Cohen's Kappa) between actual and derived modes of transport. Mode of transport was reliably classified whenever a person used a mode of transport for longer than one minute. Best results were observed when using the 95th percentile of speed, acceleration and deceleration (kappa 0.73). When we combined all motorized traffic into one category, kappa increased to 0.95. GPS-measured speed enable the identification of modes of transport. Given the current low costs of GPS devices and the built-in capacity of GPS tracking in most smartphones, the use of such devices in large epidemiological studies may facilitate the assessment of physical activity related to transport modes, or improve exposure assessment using automated travel mode detection.

  11. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model

    Science.gov (United States)

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-01-01

    Abstract Background: The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Methods: Twenty-one healthy subjects (aged 20–65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20–24 years) were compared with a group of 8 older adults (aged 53–65 years). Also, the interaction between age and speed was analyzed. Results: Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Conclusion: Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects. PMID:28858109

  12. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    Science.gov (United States)

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  13. Ankle Plantarflexor Spasticity Does Not Restrict the Recovery of Ankle Plantarflexor Strength or Ankle Power Generation for Push-Off During Walking Following Traumatic Brain Injury.

    Science.gov (United States)

    Williams, Gavin; Banky, Megan; Olver, John

    2016-01-01

    The main aim of this project was to determine the impact of plantarflexor spasticity on muscle performance for ambulant people with traumatic brain injury (TBI). A large metropolitan rehabilitation hospital. Seventy-two ambulant people with TBI who were attending physiotherapy for mobility limitations. Twenty-four participants returned for a 6-month follow-up reassessment. Cross-sectional cohort study. Self-selected walking speed, Tardieu scale, ankle plantarflexor strength, and ankle power generation (APG). Participants with ankle plantarflexor spasticity had significantly lower self-selected walking speed; however, there was no significant difference in ankle plantarflexor strength or APG. Participants with ankle plantarflexor spasticity were not restricted in the recovery of self-selected walking speed, ankle plantarflexor strength, or APG, indicating equivalent ability to improve their mobility over time despite the presence of spasticity. Following TBI, people with ankle plantarflexor spasticity have significantly greater mobility limitations than those without spasticity, yet retain the capacity for recovery of self-selected walking speed, ankle plantarflexor strength, and APG.

  14. Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking.

    Science.gov (United States)

    Huang, Yangjian; Xu, Junkai; Yu, Bo; Shull, Peter B

    2016-07-01

    Increased physical activity can provide numerous health benefits. The relationship between physical activity and health assumes reliable activity measurements including step count and distance traveled. This study assessed step count and distance accuracy for Nike+ FuelBand, Jawbone UP 24, Fitbit One, Fitbit Flex, Fitbit Zip, Garmin Vivofit, Yamax CW-701, and Omron HJ-321 during level, upstairs, and downstairs walking in healthy adults. Forty subjects walked on flat ground (400m), upstairs (176 steps), and downstairs (176 steps), and a subset of 10 subjects performed treadmill walking trials to assess the influence of walking speed on accuracy. Activity monitor measured step count and distance values were compared with actual step count (determined from video recordings) and distance to determine accuracy. For level walking, step count errors in Yamax CW-701, Fitbit Zip, Fitbit One, Omron HJ-321, and Jawbone UP 24 were within 1% and distance errors in Fitbit Zip and Yamax CW-701 were within 5%. Garmin Vivofit and Omron HJ-321 were the most accurate in estimating step count for stairs with errors less than 4%. An important finding is that all activity monitors overestimated distance for stair walking by at least 45%. In general, there were not accuracy differences among activity monitors for stair walking. Accuracy did not change between moderate and fast walking speeds, though slow walking increased errors for some activity monitors. Nike+ FuelBand was the least accurate step count estimator during all walking tasks. Caution should be taken when interpreting step count and distance estimates for activities involving stairs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Patient Satisfaction of Using the ActiGait® Drop Foot Stimulator System and Effect of Treatment on Walking

    DEFF Research Database (Denmark)

    Severinsen, Kåre Eg; Grey, Kurt; Juhl, Anne

    2014-01-01

    In this case-control study of ten chronic stroke patients with drop foot we report preliminary data on patient satisfaction, self- assessed changes in walking performance, effect on walking speed as well as adverse effects after surgical implantation of the ActiGait® drop foot stimulator in a cli...... with great care due to the small population size, the case control design and the limitations of the ten meter walk test in describing walking quality and safety....

  16. Comparison of energy expenditure between aquatic and overground treadmill walking in people post-stroke.

    Science.gov (United States)

    Jung, Taeyou; Ozaki, Yoshi; Lai, Byron; Vrongistinos, Konstantinos

    2014-03-01

    This study aimed to compare the cardiorespiratory responses between aquatic treadmill walking (ATW) and overground treadmill walking (OTW) in people with hemiparesis post-stroke. Eight participants post-stroke aged 58.5 ± 11.4 years and eight healthy adult controls aged 56.1 ± 8.6 years participated in a cross-sectional comparative study. Participants completed three 8-minute walking sessions separated by at least 72-hour rest. On the first visit, participants identified their comfortable walking speed on an aquatic and overground treadmill. The second and third visit consisted of either ATW or OTW at a matched speed. Oxygen consumption (VO2), carbon dioxide production (VCO2 ), minute ventilation (VE) and energy expenditure (EE) were measured at rest and during walking in both exercise modes. Mean steady-state cardiorespiratory responses during ATW showed a significant decrease compared with OTW at a matched speed. During ATW, mean VO2 values decreased by 39% in the stroke group and 21% in the control group, mean VCO2 values decreased by 42% in the stroke group and 30% in the control group, and mean EE decreased by 40% in the stroke group and 25% in the control group. Mean steady-state VE values and resting cardiorespiratory response values showed no significant change between the two conditions. This study demonstrated a decreased metabolic cost when ATW at matched speeds to that of OTW. Reduced metabolic cost during ATW may allow for longer durations of treadmill-induced gait training compared with OTW for improved outcomes. This knowledge may aid clinicians when prescribing aquatic treadmill exercise for people post-stroke with goals of improving gait and functional mobility. However, decreased metabolic cost during ATW suggests that to improve cardiovascular fitness, ATW may not be a time-efficient method of cardiovascular exercise for healthy adults and people post-stroke. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Lévy walks

    Science.gov (United States)

    Zaburdaev, V.; Denisov, S.; Klafter, J.

    2015-04-01

    Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.

  18. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.

    Science.gov (United States)

    Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J

    2009-10-01

    Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.

  19. Random walk on random walks

    NARCIS (Netherlands)

    Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.

    2014-01-01

    In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to

  20. Stair evacuation simulation based on cellular automata considering evacuees’ walk preferences

    International Nuclear Information System (INIS)

    Ding Ning; Luh, Peter B.; Zhang Hui; Chen Tao

    2015-01-01

    As a physical model, the cellular automata (CA) model is widely used in many areas, such as stair evacuation. However, existing CA models do not consider evacuees’ walk preferences nor psychological status, and the structure of the basic model is unapplicable for the stair structure. This paper is to improve the stair evacuation simulation by addressing these issues, and a new cellular automata model is established. Several evacuees’ walk preference and how evacuee’s psychology influences their behaviors are introduced into this model. Evacuees’ speeds will be influenced by these features. To validate this simulation, two fire drills held in two high-rise buildings are video-recorded. It is found that the simulation results are similar to the fire drill results. The structure of this model is simple, and it is easy to further develop and utilize in different buildings with various kinds of occupants. (paper)

  1. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    Science.gov (United States)

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  2. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...

  3. Factors associated with the 6-minute walk test in nursing home residents and community-dwelling older adults

    Science.gov (United States)

    Caballer, Vicent-Benavent; Lisón, Juan Francisco; Rosado-Calatayud, Pedro; Amer-Cuenca, Juan José; Segura-Orti, Eva

    2015-01-01

    [Purpose] The main objective of this study was to determine the contributions and extent to which certain physical measurements explain performance in the 6-minute walk test in healthy older adults living in a geriatric nursing home and for older adults dwelling in the community. [Subjects] The subjects were 122 adults aged 65 and older with no cognitive impairment who were independent in their daily activities. [Methods] The 6-minute walk test, age, body mass index, walking speed, chair stand test, Berg Balance Scale, Timed Up-and-Go test, rectus femoris cross-sectional area, Short Physical Performance Battery, and hand-grip strength were examined. [Results] Strong significant associations were found between mobility, lower-limb function, balance, and the 6-minute walk test. A stepwise multiple regression on the entire sample showed that lower-limb function was a significant and independent predictor for the 6-minute walk test. Additionally, lower-limb function was a strong predictor for the 6-minute walk test in our nursing home group, whereas mobility was found to be the best predictor in our community-dwelling group. [Conclusion] Better lower-limb function, balance, and mobility result in a higher distance covered by healthy older adults. Lower-limb function and mobility appeared to best determine walking performance in the nursing home and community-dwelling groups, respectively. PMID:26696740

  4. Control of body's center of mass motion relative to center of pressure during uphill walking in the elderly.

    Science.gov (United States)

    Hong, Shih-Wun; Leu, Tsai-Hsueh; Wang, Ting-Ming; Li, Jia-Da; Ho, Wei-Pin; Lu, Tung-Wu

    2015-10-01

    Uphill walking places more challenges on the locomotor system than level walking does when the two limbs work together to ensure the stability and continuous progression of the body over the base of support. With age-related degeneration older people may have more difficulty in maintaining balance during uphill walking, and may thus experience an increased risk of falling. The current study aimed to investigate using gait analysis techniques to determine the effects of age and slope angles on the control of the COM relative to the COP in terms of their inclination angles (IA) and the rate of change of IA (RCIA) during uphill walking. The elderly were found to show IAs similar to those of the young, but with reduced self-selected walking speed and RCIAs (PIA in the sagittal plane (PIA and RCIA during walking provide a sensitive measure to differentiate individuals with different balance control abilities. The current results and findings may serve as baseline data for future clinical and ergonomic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Using wireless technology in clinical practice: does feedback of daily walking activity improve walking outcomes of individuals receiving rehabilitation post-stroke? Study protocol for a randomized controlled trial

    Science.gov (United States)

    2013-01-01

    Background Regaining independent ambulation is the top priority for individuals recovering from stroke. Thus, physical rehabilitation post-stroke should focus on improving walking function and endurance. However, the amount of walking completed by individuals with stroke attending rehabilitation is far below that required for independent community ambulation. There has been increased interest in accelerometer-based monitoring of walking post-stroke. Walking monitoring could be integrated within the goal-setting process for those with ambulation goals in rehabilitation. The feedback from these devices can be downloaded to a computer to produce reports. The purpose of this study is to determine the effect of accelerometer-based feedback of daily walking activity during rehabilitation on the frequency and duration of walking post-stroke. Methods Participants will be randomly assigned to one of two groups: feedback or no feedback. Participants will wear accelerometers daily during in- and out-patient rehabilitation and, for participants in the feedback group, the participants’ treating physiotherapist will receive regular reports of walking activity. The primary outcome measures are the amount of daily walking completed, as measured using the accelerometers, and spatio-temporal characteristics of walking (e.g. walking speed). We will also examine goal attainment, satisfaction with progress towards goals, stroke self-efficacy, and community-integration. Discussion Increased walking activity during rehabilitation is expected to improve walking function and community re-integration following discharge. In addition, a focus on altering walking behaviour within the rehabilitation setting may lead to altered behaviour and increased activity patterns after discharge. Trial registration ClinicalTrials.gov NCT01521234 PMID:23865593

  6. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks

    DEFF Research Database (Denmark)

    Bellardita, Carmelo; Kiehn, Ole

    2015-01-01

    behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three...... distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter......-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides...

  7. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency.

    Science.gov (United States)

    Kapadia, Naaz; Masani, Kei; Catharine Craven, B; Giangregorio, Lora M; Hitzig, Sander L; Richards, Kieva; Popovic, Milos R

    2014-09-01

    Multi-channel surface functional electrical stimulation (FES) for walking has been used to improve voluntary walking and balance in individuals with spinal cord injury (SCI). To investigate short- and long-term benefits of 16 weeks of thrice-weekly FES-assisted walking program, while ambulating on a body weight support treadmill and harness system, versus a non-FES exercise program, on improvements in gait and balance in individuals with chronic incomplete traumatic SCI, in a randomized controlled trial design. Individuals with traumatic and chronic (≥18 months) motor incomplete SCI (level C2 to T12, American Spinal Cord Injury Association Impairment Scale C or D) were recruited from an outpatient SCI rehabilitation hospital, and randomized to FES-assisted walking therapy (intervention group) or aerobic and resistance training program (control group). Outcomes were assessed at baseline, and after 4, 6, and 12 months. Gait, balance, spasticity, and functional measures were collected. Spinal cord independence measure (SCIM) mobility sub-score improved over time in the intervention group compared with the control group (baseline/12 months: 17.27/21.33 vs. 19.09/17.36, respectively). On all other outcome measures the intervention and control groups had similar improvements. Irrespective of group allocation walking speed, endurance, and balance during ambulation all improved upon completion of therapy, and majority of participants retained these gains at long-term follow-ups. Task-oriented training improves walking ability in individuals with incomplete SCI, even in the chronic stage. Further randomized controlled trials, involving a large number of participants are needed, to verify if FES-assisted treadmill training is superior to aerobic and strength training.

  8. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.

    Science.gov (United States)

    Burnfield, Judith M; Buster, Thad W; Goldman, Amy J; Corbridge, Laura M; Harper-Hanigan, Kellee

    2016-06-01

    Intensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (training parameters and physiologic demands during this early recovery phase. To examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure. A prospective, repeated measures design was used. Ten inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial. Stride length, cadence, and paretic single limb support increased with faster walking speeds (p⩽0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p⩽0.001). RPE also was greatest at the fastest compared to two slowest speeds (ptraining at the slowest speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Human Walking Pattern Recognition Based on KPCA and SVM with Ground Reflex Pressure Signal

    Directory of Open Access Journals (Sweden)

    Zhaoqin Peng

    2013-01-01

    Full Text Available Algorithms based on the ground reflex pressure (GRF signal obtained from a pair of sensing shoes for human walking pattern recognition were investigated. The dimensionality reduction algorithms based on principal component analysis (PCA and kernel principal component analysis (KPCA for walking pattern data compression were studied in order to obtain higher recognition speed. Classifiers based on support vector machine (SVM, SVM-PCA, and SVM-KPCA were designed, and the classification performances of these three kinds of algorithms were compared using data collected from a person who was wearing the sensing shoes. Experimental results showed that the algorithm fusing SVM and KPCA had better recognition performance than the other two methods. Experimental outcomes also confirmed that the sensing shoes developed in this paper can be employed for automatically recognizing human walking pattern in unlimited environments which demonstrated the potential application in the control of exoskeleton robots.

  10. Performance of a visuomotor walking task in an augmented reality training setting.

    Science.gov (United States)

    Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper

    2017-12-01

    Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rollover footwear affects lower limb biomechanics during walking.

    Science.gov (United States)

    Forghany, Saeed; Nester, Christopher J; Richards, Barry; Hatton, Anna Lucy; Liu, Anmin

    2014-01-01

    To investigate the effect of rollover footwear on walking speed, metabolic cost of gait, lower limb kinematics, kinetics, EMG muscle activity and plantar pressure. Twenty subjects (mean age-33.1 years, height-1.71 m, body mass-68.9 kg, BMI 23.6, 12 male) walked in: a flat control footwear; a flat control footwear weighted to match the mass of a rollover shoe; a rollover shoe; MBT footwear. Data relating to metabolic energy and temporal aspects of gait were collected during 6 min of continuous walking, all other data in a gait laboratory. The rollover footwear moved the contact point under the shoe anteriorly during early stance, increasing midfoot pressures. This changed internal ankle dorsiflexion moments to plantarflexion moments earlier, reducing ankle plantarflexion and tibialis anterior activity after initial contact, and increasing calf EMG activity. In mid stance the rollover footwear resulted in a more dorsiflexed ankle position but less ankle movement. During propulsion, the rollover footwear reduced peak ankle dorsiflexion, peak internal plantarflexor ankle moments and the range of ankle plantarflexion. Vertical ground reaction loading rates were increased by the rollover footwear. There were no effects on temporal or energy cost of gait and no effect of elevated shoe weight. Investigating all proposed effects of this footwear concurrently has enabled a more valid investigation of how the footwear effects are interrelated. There were concurrent changes in several aspects of lower limb function, with greatest effects at the foot and ankle, but no change in the metabolic cost of walking. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Walking modality, but not task difficulty, influences the control of dual-task walking.

    Science.gov (United States)

    Wrightson, J G; Smeeton, N J

    2017-10-01

    During dual-task gait, changes in the stride-to-stride variability of stride time (STV) are suggested to represent the allocation of cognitive control to walking [1]. However, contrasting effects have been reported for overground and treadmill walking, which may be due to differences in the relative difficulty of the dual task. Here we compared the effect of overground and treadmill dual-task walking on STV in 18 healthy adults. Participants walked overground and on a treadmill for 120s during single-task (walking only) and dual-task (walking whilst performing serial subtractions in sevens) conditions. Dual-task effects on STV, cognitive task (serial subtraction) performance and perceived task difficulty were compared between walking modalities. STV was increased during overground dual-task walking, but was unchanged during treadmill dual-task walking. There were no differences in cognitive task performance or perceived task difficulty. These results show that gait is controlled differently during overground and treadmill dual-task walking. However, these differences are not solely due to differences in task difficulty, and may instead represent modality dependent control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. System overview and walking dynamics of a passive dynamic walking robot with flat feet

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    2015-12-01

    Full Text Available The concept of “passive dynamic walking robot” refers to the robot that can walk down a shallow slope stably without any actuation and control which shows a limit cycle during walking. By adding actuation at some joints, the passive dynamic walking robot can walk stably on level ground and exhibit more versatile gaits than fully passive robot, namely, the “limit cycle walker.” In this article, we present the mechanical structures and control system design for a passive dynamic walking robot with series elastic actuators at hip joint and ankle joints. We built a walking model that consisted of an upper body, knee joints, and flat feet and derived its walking dynamics that involve double stance phases in a walking cycle based on virtual power principle. The instant just before impact was chosen as the start of one step to reduce the number of independent state variables. A numerical simulation was implemented by using MATLAB, in which the proposed passive dynamic walking model could walk stably down a shallow slope, which proves that the derived walking dynamics are correct. A physical passive robot prototype was built finally, and the experiment results show that by only simple control scheme the passive dynamic robot could walk stably on level ground.

  14. A lattice-model representation of continuous-time random walks

    International Nuclear Information System (INIS)

    Campos, Daniel; Mendez, Vicenc

    2008-01-01

    We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied

  15. A lattice-model representation of continuous-time random walks

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [School of Mathematics, Department of Applied Mathematics, University of Manchester, Manchester M60 1QD (United Kingdom); Mendez, Vicenc [Grup de Fisica Estadistica, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)], E-mail: daniel.campos@uab.es, E-mail: vicenc.mendez@uab.es

    2008-02-29

    We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied.

  16. Power, speed & automation with Adobe Photoshop

    CERN Document Server

    Scott, Geoff

    2012-01-01

    This is a must for the serious Photoshop user! Power, Speed & Automation explores how to customize and automate Photoshop to increase your speed and productivity.  With numerous step-by-step instructions, the authors-two of Adobe's own software developers!- walk you through the steps to best tailor Photoshop's interface to your personal workflow; write and apply Actions; and use batching and scripts to process large numbers of images quickly and automatically.  You will learn how to build your own dialogs and panels to improve your production workflows in Photoshop, the secrets of changing

  17. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  18. Walking habits and health-related factors in 75-year-old Iranian women and men.

    Science.gov (United States)

    Mosallanezhad, Zahra; Salavati, Mahyar; Sotoudeh, Gholam Reza; Nilsson Wikmar, Lena; Frändin, Kerstin

    2014-01-01

    An active life style can postpone the aging process, prevent many aspects of functional decline and improve health and quality of life. The aim of this study was to compare elderly people who walked at least 30 min a day with others who walked less, from a gender perspective, regarding perceived health and fitness, physiological capacity and functional performance. A representative sample of 75-year-olds born 1932-33 and living in Tehran, in 2007-2008 was included by randomly selecting 1100 subjects from the latest Iranian census records (1996) by the Statistical Centre of Iran using computerized methods. Participants answered questions regarding health status and physical activity and performed functional tests. Better results for Walkers were observed in most subjective and objective outcome measures. Walkers were less likely to feel generally tired, more likely to have better physical fitness and to have the maximum score on the Falls Efficacy Scale, less likely to feel unstable during walking outdoors and less likely to be dependent or unsafe in ADL. Walkers of both genders performed better in the following tests: chair stand, one leg stance, maximal walking speed and six min walking. The difference between Walkers and Non-Walkers was greater in men. In general, older women and men who walked at least 30 min daily/almost daily showed better results in most health-related outcomes, ADL and functional performance than people who walked less. This study showed gender differences in the level of physical activity and functioning that must be taken into account when planning intervention programs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A

    2016-08-01

    A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.

  20. Gait performance is not influenced by working memory when walking at a self-selected pace.

    Science.gov (United States)

    Grubaugh, Jordan; Rhea, Christopher K

    2014-02-01

    Gait performance exhibits patterns within the stride-to-stride variability that can be indexed using detrended fluctuation analysis (DFA). Previous work employing DFA has shown that gait patterns can be influenced by constraints, such as natural aging or disease, and they are informative regarding a person's functional ability. Many activities of daily living require concurrent performance in the cognitive and gait domains; specifically working memory is commonly engaged while walking, which is considered dual-tasking. It is unknown if taxing working memory while walking influences gait performance as assessed by DFA. This study used a dual-tasking paradigm to determine if performance decrements are observed in gait or working memory when performed concurrently. Healthy young participants (N = 16) performed a working memory task (automated operation span task) and a gait task (walking at a self-selected speed on a treadmill) in single- and dual-task conditions. A second dual-task condition (reading while walking) was included to control for visual attention, but also introduced a task that taxed working memory over the long term. All trials involving gait lasted at least 10 min. Performance in the working memory task was indexed using five dependent variables (absolute score, partial score, speed error, accuracy error, and math error), while gait performance was indexed by quantifying the mean, standard deviation, and DFA α of the stride interval time series. Two multivariate analyses of variance (one for gait and one for working memory) were used to examine performance in the single- and dual-task conditions. No differences were observed in any of the gait or working memory dependent variables as a function of task condition. The results suggest the locomotor system is adaptive enough to complete a working memory task without compromising gait performance when walking at a self-selected pace.

  1. Combining Gait Speed and Recall Memory to Predict Survival in Late Life: Population-Based Study.

    Science.gov (United States)

    Marengoni, Alessandra; Bandinelli, Stefania; Maietti, Elisa; Guralnik, Jack; Zuliani, Giovanni; Ferrucci, Luigi; Volpato, Stefano

    2017-03-01

    To evaluate the relationship between gait speed, recall memory, and mortality. A cohort study (last follow-up December 2009). Tuscany, Italy. Individual data from 1,014 community-dwelling older adults aged 60 years or older with baseline gait speed and recall memory measurements and follow-up for a median time of 9.10 (IQR 7.1;9.3) years. Participants were a mean (SD) age of 73.9 (7.3) years, and 55.8% women. Participants walking faster than 0.8 m/s were defined as fast walkers; good recall memory was defined as a score of 2 or 3 in the 3-word delayed recall section of the Mini-Mental State Examination. All-cause mortality. There were 302 deaths and the overall 100 person-year death rate was 3.77 (95% CI: 3.37-4.22). Both low gait speed and poor recall memory were associated with mortality when analysed separately (HR = 2.47; 95% CI: 1.87-3.27 and HR = 1.47; 95% CI: 1.16-1.87, respectively). When we grouped participants according to both recall and gait speed, death rates (100 person-years) progressively increased from those with both good gait speed and memory (2.0; 95% CI: 1.6-2.5), to those with fast walk but poor memory (3.4; 95% CI: 2.8-4.2), to those with slow walk and good memory (8.8; 95% CI: 6.4-12.1), to those with both slow walk and poor memory (13.0; 95% CI: 10.6-16.1). In multivariate analysis, poor memory significantly increases mortality risk among persons with fast gait speed (HR = 1.40; 95% CI: 1.04-1.89). In older persons, gait speed and recall memory are independent predictors of expected survival. Information on memory function might better stratify mortality risk among persons with fast gait speed. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  2. Accelerometry-enabled measurement of walking performance with a robotic exoskeleton: a pilot study.

    Science.gov (United States)

    Lonini, Luca; Shawen, Nicholas; Scanlan, Kathleen; Rymer, William Z; Kording, Konrad P; Jayaraman, Arun

    2016-03-31

    Clinical scores for evaluating walking skills with lower limb exoskeletons are often based on a single variable, such as distance walked or speed, even in cases where a host of features are measured. We investigated how to combine multiple features such that the resulting score has high discriminatory power, in particular with few patients. A new score is introduced that allows quantifying the walking ability of patients with spinal cord injury when using a powered exoskeleton. Four spinal cord injury patients were trained to walk over ground with the ReWalk™ exoskeleton. Body accelerations during use of the device were recorded by a wearable accelerometer and 4 features to evaluate walking skills were computed. The new score is the Gaussian naïve Bayes surprise, which evaluates patients relative to the features' distribution measured in 7 expert users of the ReWalk™. We compared our score based on all the features with a standard outcome measure, which is based on number of steps only. All 4 patients improved over the course of training, as their scores trended towards the expert users' scores. The combined score (Gaussian naïve surprise) was considerably more discriminative than the one using only walked distance (steps). At the end of training, 3 out of 4 patients were significantly different from the experts, according to the combined score (p exoskeleton. Testing this approach with other features and more subjects remains as future work.

  3. Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chorong Song

    2015-03-01

    Full Text Available There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0 ± 10.6 years were instructed to walk predetermined courses in forest and urban environments (as control. Course length (17-min walk, walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased “comfortable”, “relaxed”, “natural” and “vigorous” feelings and decreased “tension-anxiety,” “depression,” “anxiety-hostility,” “fatigue” and “confusion”. A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.

  4. Adults' Daily Walking for Travel and Leisure: Interaction Between Attitude Toward Walking and the Neighborhood Environment.

    Science.gov (United States)

    Yang, Yong; Diez-Roux, Ana V

    2017-09-01

    Studies on how the interaction of psychological and environmental characteristics influences walking are limited, and the results are inconsistent. Our aim is to examine how the attitude toward walking and neighborhood environments interacts to influence walking. Cross-sectional phone and mail survey. Participants randomly sampled from 6 study sites including Los Angeles, Chicago, Baltimore, Minneapolis, Manhattan, and Bronx Counties in New York City, and Forsyth and Davidson Counties in North Carolina. The final sample consisted of 2621 persons from 2011 to 2012. Total minutes of walking for travel or leisure, attitude toward walking, and perceptions of the neighborhood environments were self-reported. Street Smart (SS) Walk Score (a measure of walkability derived from a variety of geographic data) was obtained for each residential location. Linear regression models adjusting for age, gender, race/ethnicity, education, and income. Attitude toward walking was positively associated with walking for both purposes. Walking for travel was significantly associated with SS Walk Score, whereas walking for leisure was not. The SS Walk Score and selected perceived environment characteristics were associated with walking in people with a very positive attitude toward walking but were not associated with walking in people with a less positive attitude. Attitudes toward walking and neighborhood environments interact to affect walking behavior.

  5. The relationship of walking intensity to total and cause-specific mortality. Results from the National Walkers' Health Study.

    Directory of Open Access Journals (Sweden)

    Paul T Williams

    Full Text Available PURPOSE: Test whether: 1 walking intensity predicts mortality when adjusted for walking energy expenditure, and 2 slow walking pace (≥24-minute mile identifies subjects at substantially elevated risk for mortality. METHODS: Hazard ratios from Cox proportional survival analyses of all-cause and cause-specific mortality vs. usual walking pace (min/mile in 7,374 male and 31,607 female recreational walkers. Survival times were left censored for age at entry into the study. Other causes of death were treated as a competing risk for the analyses of cause-specific mortality. All analyses were adjusted for sex, education, baseline smoking, prior heart attack, aspirin use, diet, BMI, and walking energy expenditure. Deaths within one year of baseline were excluded. RESULTS: The National Death Index identified 1968 deaths during the average 9.4-year mortality surveillance. Each additional minute per mile in walking pace was associated with an increased risk of mortality due to all causes (1.8% increase, P=10(-5, cardiovascular diseases (2.4% increase, P=0.001, 637 deaths, ischemic heart disease (2.8% increase, P=0.003, 336 deaths, heart failure (6.5% increase, P=0.001, 36 deaths, hypertensive heart disease (6.2% increase, P=0.01, 31 deaths, diabetes (6.3% increase, P=0.004, 32 deaths, and dementia (6.6% increase, P=0.0004, 44 deaths. Those reporting a pace slower than a 24-minute mile were at increased risk for mortality due to all-causes (44.3% increased risk, P=0.0001, cardiovascular diseases (43.9% increased risk, P=0.03, and dementia (5.0-fold increased risk, P=0.0002 even though they satisfied the current exercise recommendations by walking ≥7.5 metabolic equivalent (MET-hours per week. CONCLUSIONS: The risk for mortality: 1 decreases in association with walking intensity, and 2 increases substantially in association for walking pace ≥24 minute mile (equivalent to <400 m during a six-minute walk test even among subjects who exercise regularly.

  6. Effects of walking and strength training on walking capacity in individuals with claudication: meta-analysis

    Directory of Open Access Journals (Sweden)

    Alessandra de Souza Miranda

    2013-06-01

    Full Text Available CONTEXT: Over the past few years, several clinical trials have been performed to analyze the effects of exercise training on walking ability in patients with intermittent claudication (IC. However, it remains unclear which type of physical exercise provides the maximum benefits in terms of walking ability. OBJECTIVE: To analyze, by means of a meta-analysis, the effects of walking and strength training on the walking capacity in patients with IC. METHODS: Papers analyzing the effects of walking and strength training programs in patients with IC were browsed on the Medline, Lilacs, and Cochrane databases. Randomized clinical trials scoring >4 on the Physiotherapy Evidence Database (PEDro scale and assessing claudication distance (CD and total walking distance (TWD were included in the review. RESULTS: Walking and strength training yielded increases in CD and TWD (P < 0.05. However, walking training yielded greater increases than strength training (P = 0.02. CONCLUSION: Walking and strength training improve walking capacity in patients with IC. However, greater improvements in TWD are obtained with walking training.

  7. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    Science.gov (United States)

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, Ppush-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Built environment affecting visitors' walking choice in commercial areas? - A study with GPS experiments

    Science.gov (United States)

    Hahm, Y.; Yoon, H.

    2016-12-01

    Retail location is one of the most critical factors explaining the success of store operations. Store owners prefer to choose locations with high visibility and convenient transportation, which might be likely reasons for higher pedestrian volume, hence larger chance to capture impulse shoppers, resulting in more profits. While researches have focused on discerning relationship between pedestrian route choice and physical environments via indirect measures such as survey questionnaire and interviews, recent technologies such as Global Positioning System (GPS) enables collecting direct and precise waking route data. In this study, we investigate the physical environments in which pedestrians prefer to be in commercial district, and further analyze if such locations encompass stores with higher store revenues. The primary method is GPS experiment and travel diary for over hundred visitors of the study site, Hongik University commercial areas in Seoul, South Korea, and statistical analysis, Structural Equation Model (SEM). With SEM, we could assess endogenous latent variables indicating built environments, such as Density, Diversity, Destination Accessibility, Design, and Retail Attraction, and exogenous latent variable, the pedestrian walking choice, based on the observation of pedestrian volume and walking speed. Observed variables include the number of stores, building uses, kind of retail, and pedestrian volume, and walking speed. This research will shed light on planning commercial districts, emphasizing the role of pedestrian walking in the success of retail business, and providing a clue on how to encourage pedestrian visitation by improving physical environment. This work is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2015R1C1A2A01055615)

  9. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  10. Fire-Walking

    Science.gov (United States)

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  11. Carotid flow pulsatility is higher in women with greater decrement in gait speed during multi-tasking.

    Science.gov (United States)

    Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael

    2017-05-01

    Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluating the effects of delivering integrated kinesthetic and tactile cues to individuals with unilateral hemiparetic stroke during overground walking.

    Science.gov (United States)

    Afzal, Muhammad Raheel; Pyo, Sanghun; Oh, Min-Kyun; Park, Young Sook; Yoon, Jungwon

    2018-04-16

    Integration of kinesthetic and tactile cues for application to post-stroke gait rehabilitation is a novel concept which needs to be explored. The combined provision of haptic cues may result in collective improvement of gait parameters such as symmetry, balance and muscle activation patterns. Our proposed integrated cue system can offer a cost-effective and voluntary gait training experience for rehabilitation of subjects with unilateral hemiparetic stroke. Ten post-stroke ambulatory subjects participated in a 10 m walking trial while utilizing the haptic cues (either alone or integrated application), at their preferred and increased gait speeds. In the system a haptic cane device (HCD) provided kinesthetic perception and a vibrotactile feedback device (VFD) provided tactile cue on the paretic leg for gait modification. Balance, gait symmetry and muscle activity were analyzed to identify the benefits of utilizing the proposed system. When using kinesthetic cues, either alone or integrated with a tactile cue, an increase in the percentage of non-paretic peak activity in the paretic muscles was observed at the preferred gait speed (vastus medialis obliquus: p kinesthetic cue, at their preferred gait speed (p <  0.001, partial η 2  = 0.702). When combining haptic cues, the subjects walked at their preferred gait speed with increased temporal stance symmetry and paretic muscle activity affecting their balance. Similar improvements were observed at higher gait speeds. The efficacy of the proposed system is influenced by gait speed. Improvements were observed at a 20% increased gait speed, whereas, a plateau effect was observed at a 40% increased gait speed. These results imply that integration of haptic cues may benefit post-stroke gait rehabilitation by inducing simultaneous improvements in gait symmetry and muscle activity.

  13. Effect of exoskeletal joint constraint and passive resistance on metabolic energy expenditure: Implications for walking in paraplegia.

    Directory of Open Access Journals (Sweden)

    Sarah R Chang

    Full Text Available An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm and knee (6 Nm joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7° were within normal range, while average peak knee joint angles (40 ± 8° were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia.

  14. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.

    Science.gov (United States)

    van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth

    2017-09-01

    The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Twenty-one healthy subjects (aged 20-65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20-24 years) were compared with a group of 8 older adults (aged 53-65 years). Also, the interaction between age and speed was analyzed. Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects.

  15. Resting State Default Mode Network Connectivity, Dual Task Performance, Gait Speed, and Postural Sway in Older Adults with Mild Cognitive Impairment.

    Science.gov (United States)

    Crockett, Rachel A; Hsu, Chun Liang; Best, John R; Liu-Ambrose, Teresa

    2017-01-01

    Aging is associated with an increased risk of falling. In particular, older adults with mild cognitive impairment (MCI) are more vulnerable to falling compared with their healthy counterparts. Major contributors to this increased falls risk include a decline in dual task performance, gait speed, and postural sway. Recent evidence highlights the potential influence of the default mode network (DMN), the frontoparietal network (FPN), and the supplementary motor area (SMA) on dual task performance, gait speed, and postural sway. The DMN is active during rest and deactivates during task-oriented processes, to maintain attention and stay on task. The FPN and SMA are involved in top-down attentional control, motor planning, and motor execution. The DMN shows less deactivation during task in older adults with MCI. This lack of deactivation is theorized to increase competition for resources between the DMN and task-related brain regions (e.g., the FPN and SMA), increasing distraction from the task and reducing task performance. However, no study has yet investigated the relationship between the between-network connectivity of the DMN with these regions and dual task walking, gait speed or postural sway. We hypothesized that greater functional connectivity both within the DMN and between DMN-FPN and DMN-SMA, will be associated with poorer performance during dual task walking, slower gait speed, and greater postural sway in older adults with MCI. Forty older adults with MCI were measured on a dual task-walking paradigm, gait speed over a 4-m walk, and postural sway using a sway-meter. Greater within-DMN connectivity was significantly correlated with poorer dual task performance. Furthermore, greater inter-network connectivity between the DMN and SMA was significantly correlated with slower gait speed and greater postural sway on the eyes open floor sway task. Thus, greater resting state DMN functional connectivity may be an underlying neural mechanism for reduced dual task

  16. Nine Walks

    DEFF Research Database (Denmark)

    2013-01-01

    Based on studies of, among others, the Situationists and their theories regarding walks as an artistic method and expression nine master students from “Studio Constructing an Archive”, Aarhus School of Architecture, Denmark performed nine walks as part of the exhibition. These walks relate...... to the students’ individual mappings of Behind the Green Door, its structure and content. They highlight a number of motifs found in the exhibition which are of particular interest to the students. The walks represented reflections on the walk as an artistic method and expression. Each walk is an individual...

  17. Invariant hip moment pattern while walking with a robotic hip exoskeleton.

    Science.gov (United States)

    Lewis, Cara L; Ferris, Daniel P

    2011-03-15

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Experiencing Nature through Immersive Virtual Environments: Environmental Perceptions, Physical Engagement, and Affective Responses during a Simulated Nature Walk

    Directory of Open Access Journals (Sweden)

    Giovanna Calogiuri

    2018-01-01

    Full Text Available By combining physical activity and exposure to nature, green exercise can provide additional health benefits compared to physical activity alone. Immersive Virtual Environments (IVE have emerged as a potentially valuable supplement to environmental and behavioral research, and might also provide new approaches to green exercise promotion. However, it is unknown to what extent green exercise in IVE can provide psychophysiological responses similar to those experienced in real natural environments. In this study, 26 healthy adults underwent three experimental conditions: nature walk, sitting-IVE, and treadmill-IVE. The nature walk took place on a paved trail along a large river. In the IVE conditions, the participants wore a head-mounted display with headphones reproducing a 360° video and audio of the nature walk, either sitting on a chair or walking on a manually driven treadmill. Measurements included environmental perceptions (presence and perceived environmental restorativeness – PER, physical engagement (walking speed, heart rate, and perceived exertion, and affective responses (enjoyment and affect. Additionally, qualitative information was collected through open-ended questions. The participants rated the IVEs with satisfactory levels of ‘being there’ and ‘sense of reality,’ but also reported discomforts such as ‘flatness,’ ‘movement lag’ and ‘cyber sickness.’ With equivalent heart rate and walking speed, participants reported higher perceived exertion in the IVEs than in the nature walk. The nature walk was associated with high enjoyment and enhanced affect. However, despite equivalent ratings of PER in the nature walk and in the IVEs, the latter were perceived as less enjoyable and gave rise to a poorer affect. Presence and PER did not differ between the two IVEs, although in the treadmill-IVE the negative affective responses had slightly smaller magnitude than in the sitting-IVE. In both the IVEs, the negative

  19. The effect of three different types of walking aids on spatio-temporal gait parameters in community-dwelling older adults.

    Science.gov (United States)

    Härdi, Irene; Bridenbaugh, Stephanie A; Gschwind, Yves J; Kressig, Reto W

    2014-04-01

    Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.

  20. A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals

    Directory of Open Access Journals (Sweden)

    Claudiane A. Fukuchi

    2018-04-01

    Full Text Available In a typical clinical gait analysis, the gait patterns of pathological individuals are commonly compared with the typically faster, comfortable pace of healthy subjects. However, due to potential bias related to gait speed, this comparison may not be valid. Publicly available gait datasets have failed to address this issue. Therefore, the goal of this study was to present a publicly available dataset of 42 healthy volunteers (24 young adults and 18 older adults who walked both overground and on a treadmill at a range of gait speeds. Their lower-extremity and pelvis kinematics were measured using a three-dimensional (3D motion-capture system. The external forces during both overground and treadmill walking were collected using force plates and an instrumented treadmill, respectively. The results include both raw and processed kinematic and kinetic data in different file formats: c3d and ASCII files. In addition, a metadata file is provided that contain demographic and anthropometric data and data related to each file in the dataset. All data are available at Figshare (DOI: 10.6084/m9.figshare.5722711. We foresee several applications of this public dataset, including to examine the influences of speed, age, and environment (overground vs. treadmill on gait biomechanics, to meet educational needs, and, with the inclusion of additional participants, to use as a normative dataset.

  1. Walking and child pedestrian injury: a systematic review of built environment correlates of safe walking.

    Science.gov (United States)

    Rothman, Linda; Buliung, Ron; Macarthur, Colin; To, Teresa; Howard, Andrew

    2014-02-01

    The child active transportation literature has focused on walking, with little attention to risk associated with increased traffic exposure. This paper reviews the literature related to built environment correlates of walking and pedestrian injury in children together, to broaden the current conceptualization of walkability to include injury prevention. Two independent searches were conducted focused on walking in children and child pedestrian injury within nine electronic databases until March, 2012. Studies were included which: 1) were quantitative 2) set in motorized countries 3) were either urban or suburban 4) investigated specific built environment risk factors 5) had outcomes of either walking in children and/or child pedestrian roadway collisions (ages 0-12). Built environment features were categorized according to those related to density, land use diversity or roadway design. Results were cross-tabulated to identify how built environment features associate with walking and injury. Fifty walking and 35 child pedestrian injury studies were identified. Only traffic calming and presence of playgrounds/recreation areas were consistently associated with more walking and less pedestrian injury. Several built environment features were associated with more walking, but with increased injury. Many features had inconsistent results or had not been investigated for either outcome. The findings emphasise the importance of incorporating safety into the conversation about creating more walkable cities.

  2. Walk Score® and Transit Score® and Walking in the Multi-Ethnic Study of Atherosclerosis

    Science.gov (United States)

    Hirsch, Jana A.; Moore, Kari A.; Evenson, Kelly R.; Rodriguez, Daniel A; Diez Roux, Ana V.

    2013-01-01

    Background Walk Score® and Transit Score® are open-source measures of the neighborhood built environment to support walking (“walkability”) and access to transportation. Purpose To investigate associations of Street Smart Walk Score and Transit Score with self-reported transport and leisure walking using data from a large multi-city and diverse population-based sample of adults. Methods Data from a sample of 4552 residents of Baltimore MD; Chicago IL; Forsyth County NC; Los Angeles CA; New York NY; and St. Paul MN from the Multi-Ethnic Study of Atherosclerosis (2010–2012) were linked to Walk Score and Transit Score (collected in 2012). Logistic and linear regression models estimated ORs of not walking and mean differences in minutes walked, respectively, associated with continuous and categoric Walk Score and Transit Score. All analyses were conducted in 2012. Results After adjustment for site, key sociodemographic, and health variables, a higher Walk Score was associated with lower odds of not walking for transport and more minutes/week of transport walking. Compared to those in a “walker’s paradise,” lower categories of Walk Score were associated with a linear increase in odds of not transport walking and a decline in minutes of leisure walking. An increase in Transit Score was associated with lower odds of not transport walking or leisure walking, and additional minutes/week of leisure walking. Conclusions Walk Score and Transit Score appear to be useful as measures of walkability in analyses of neighborhood effects. PMID:23867022

  3. Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.

    Science.gov (United States)

    Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix

    2018-05-29

    Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.

  4. Walk Score(TM), Perceived Neighborhood Walkability, and walking in the US.

    Science.gov (United States)

    Tuckel, Peter; Milczarski, William

    2015-03-01

    To investigate both the Walk Score(TM) and a self-reported measure of neighborhood walkability ("Perceived Neighborhood Walkability") as estimators of transport and recreational walking among Americans. The study is based upon a survey of a nationally-representative sample of 1224 American adults. The survey gauged walking for both transport and recreation and included a self-reported measure of neighborhood walkability and each respondent's Walk Score(TM). Binary logistic and linear regression analyses were performed on the data. The Walk Score(TM) is associated with walking for transport, but not recreational walking nor total walking. Perceived Neighborhood Walkability is associated with transport, recreational and total walking. Perceived Neighborhood Walkability captures the experiential nature of walking more than the Walk Score(TM).

  5. Adaptive sound speed correction for abdominal ultrasonography: preliminary results

    Science.gov (United States)

    Jin, Sungmin; Kang, Jeeun; Song, Tai-Kyung; Yoo, Yangmo

    2013-03-01

    Ultrasonography has been conducting a critical role in assessing abdominal disorders due to its noninvasive, real-time, low cost, and deep penetrating capabilities. However, for imaging obese patients with a thick fat layer, it is challenging to achieve appropriate image quality with a conventional beamforming (CON) method due to phase aberration caused by the difference between sound speeds (e.g., 1580 and 1450m/s for liver and fat, respectively). For this, various sound speed correction (SSC) methods that estimate the accumulated sound speed for a region-of interest (ROI) have been previously proposed. However, with the SSC methods, the improvement in image quality was limited only for a specific depth of ROI. In this paper, we present the adaptive sound speed correction (ASSC) method, which can enhance the image quality for whole depths by using estimated sound speeds from two different depths in the lower layer. Since these accumulated sound speeds contain the respective contributions of layers, an optimal sound speed for each depth can be estimated by solving contribution equations. To evaluate the proposed method, the phantom study was conducted with pre-beamformed radio-frequency (RF) data acquired with a SonixTouch research package (Ultrasonix Corp., Canada) with linear and convex probes from the gel pad-stacked tissue mimicking phantom (Parker Lab. Inc., USA and Model539, ATS, USA) whose sound speeds are 1610 and 1450m/s, respectively. From the study, compared to the CON and SSC methods, the ASSC method showed the improved spatial resolution and information entropy contrast (IEC) for convex and linear array transducers, respectively. These results indicate that the ASSC method can be applied for enhancing image quality when imaging obese patients in abdominal ultrasonography.

  6. [Objective evaluation of arterial intermittent claudication by the walking tolerance test. Comparative study of physiological walking and walking on a conveyor belt (author's transl)].

    Science.gov (United States)

    Bouchet, J Y; Franco, A; Morzol, B; Beani, J C

    1980-01-01

    Two methods are used to evaluate the walking distance: physiological walking along a standard path (0% - 6 mk/h) and walking on a tread mill (10% - 3 km/h). In both tests, four data are checked: -- initial trouble distance, -- cramp or walking-distance, -- localisation of pain, -- recovery time. These tests are dependable for the diagnosis of arterial claudication, reproducible and well tolerated. Their results have been compared: there is no correlation between the initial trouble distance and the cramp distance. However there is a correlation between the cramp distance by physiological walking and on treadmill. Recovery time, if long, is a criteria of gravity. Interests of both methods are discussed.

  7. Kinematic and muscle demand similarities between motor-assisted elliptical training and walking: Implications for pediatric gait rehabilitation.

    Science.gov (United States)

    Burnfield, Judith M; Cesar, Guilherme M; Buster, Thad W; Irons, Sonya L; Nelson, Carl A

    2017-01-01

    Many children with physical disabilities and special health care needs experience barriers to accessing effective therapeutic technologies to improve walking and fitness in healthcare and community environments. The expense of many robotic and exoskeleton technologies hinders widespread use in most clinics, school settings, and fitness facilities. A motor-assisted elliptical trainer that is being used to address walking and fitness deficits in adults was modified to enable children as young as three years of age to access the technology (Pedi-ICARE). We compared children's kinematic and muscle activation patterns during walking and training on the Pedi-ICARE. Eighteen children walked (self-selected comfortable speed), Pedi-ICARE trained with motor-assistance at self-selected comfortable speed (AAC), and trained while over-riding motor-assistance (AAC+). Coefficient of multiple correlations (CMCs) compared lower extremity kinematic profiles during AAC and AAC+ to gait. Repeated measures ANOVAs identified muscle demand differences across conditions. CMCs revealed strong similarities at the hip and knee between each motor-assisted elliptical condition and gait. Ankle CMCs were only moderate. Muscle demands were generally lowest during AAC. Over-riding the motor increased hip and knee muscle demands. The similarity of motion patterns between Pedi-ICARE conditions and walking suggest the device could be used to promote task-specific training to improve walking. The capacity to manipulate muscle demands using different motor-assistance conditions highlights Pedi-ICARE's versatility in addressing a wide range of children's abilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Walking pattern classification and walking distance estimation algorithms using gait phase information.

    Science.gov (United States)

    Wang, Jeen-Shing; Lin, Che-Wei; Yang, Ya-Ting C; Ho, Yu-Jen

    2012-10-01

    This paper presents a walking pattern classification and a walking distance estimation algorithm using gait phase information. A gait phase information retrieval algorithm was developed to analyze the duration of the phases in a gait cycle (i.e., stance, push-off, swing, and heel-strike phases). Based on the gait phase information, a decision tree based on the relations between gait phases was constructed for classifying three different walking patterns (level walking, walking upstairs, and walking downstairs). Gait phase information was also used for developing a walking distance estimation algorithm. The walking distance estimation algorithm consists of the processes of step count and step length estimation. The proposed walking pattern classification and walking distance estimation algorithm have been validated by a series of experiments. The accuracy of the proposed walking pattern classification was 98.87%, 95.45%, and 95.00% for level walking, walking upstairs, and walking downstairs, respectively. The accuracy of the proposed walking distance estimation algorithm was 96.42% over a walking distance.

  9. Neighborhood Walking and Social Capital: The Correlation between Walking Experience and Individual Perception of Social Capital

    Directory of Open Access Journals (Sweden)

    Heechul Kim

    2017-04-01

    Full Text Available The purpose of this study was to analyze the relationship between people’s actual walking experience and their social capital levels in order to examine the possibility of restoring weakened social functions of streets and public spaces in a walking-friendly urban environment. Based on the survey data of 591 residents of Seoul, we empirically analyzed the relationship between walking experience for various purposes and individual perceptions of social capital using one-way ANOVA and OLS regression models. As a result of the analysis, we found that the levels of neighborly trust and networking of people who experienced leisure walking were higher than those of people who did not, while there was no difference in the level of social capital according to walking experiences for other purposes. This result is significant in that it shows the basis for the restoration of the social function of neighborhoods through social capital formation of people as an effect of walking. Hence, it is important to create a walking environment that supports leisure activities.

  10. Talk the Walk: Does Socio-Cognitive Resource Reallocation Facilitate the Development of Walking?

    Science.gov (United States)

    Geva, Ronny; Orr, Edna

    2016-01-01

    Walking is of interest to psychology, robotics, zoology, neuroscience and medicine. Human's ability to walk on two feet is considered to be one of the defining characteristics of hominoid evolution. Evolutionary science propses that it emerged in response to limited environmental resources; yet the processes supporting its emergence are not fully understood. Developmental psychology research suggests that walking elicits cognitive advancements. We postulate that the relationship between cognitive development and walking is a bi-directional one; and further suggest that the initiation of novel capacities, such as walking, is related to internal socio-cognitive resource reallocation. We shed light on these notions by exploring infants' cognitive and socio-communicative outputs prospectively from 6-18 months of age. Structured bi/tri weekly evaluations of symbolic and verbal development were employed in an urban cohort (N = 9) for 12 months, during the transition from crawling to walking. Results show links between preemptive cognitive changes in socio-communicative output, symbolic-cognitive tool-use processes, and the age of emergence of walking. Plots of use rates of lower symbolic play levels before and after emergence of new skills illustrate reductions in use of previously attained key behaviors prior to emergence of higher symbolic play, language and walking. Further, individual differences in age of walking initiation were strongly related to the degree of reductions in complexity of object-use (r = .832, p developments, form an integrated adaptable composite, which possibly enables proactive internal resource reallocation, designed to support the emergence of new developmental milestones, such as walking.

  11. Effects of task-specific and impairment-based training compared with usual care on functional walking ability after inpatient stroke rehabilitation: LEAPS Trial.

    Science.gov (United States)

    Nadeau, Stephen E; Wu, Samuel S; Dobkin, Bruce H; Azen, Stanley P; Rose, Dorian K; Tilson, Julie K; Cen, Steven Y; Duncan, Pamela W

    2013-05-01

    After inpatient stroke rehabilitation, many people still cannot participate in community activities because of limited walking ability. To compare the effectiveness of 2 conceptually different, early physical therapy (PT) interventions to usual care (UC) in improving walking 6 months after stroke. The locomotor experience applied post-stroke (LEAPS) study was a single-blind, randomized controlled trial conducted in 408 adults with disabling hemiparetic stroke. Participants were stratified at baseline (2 months) by impairment in walking speed: severe (exercise at home (home exercise program [HEP], n = 126). LTP participants were 18% more likely to transition to a higher functional walking level: severe to >0.4 m/s and moderate to >0.8 m/s than UC participants (95% confidence interval [CI] = 7%-29%), and HEP participants were 17% more likely to transition (95% CI = 5%-29%). Mean gain in walking speed in LTP participants was 0.13 m/s greater (95% CI = 0.09-0.18) and in HEP participants, 0.10 m/s greater (95% CI = 0.05-0.14) than in UC participants. Progressive PT, using either walking training on a treadmill and overground, conducted in a clinic, or strength and balance exercises conducted at home, was superior to UC in improving walking, regardless of severity of initial impairment.

  12. Musical motor feedback (MMF) in walking hemiparetic stroke patients: randomized trials of gait improvement.

    Science.gov (United States)

    Schauer, Michael; Mauritz, Karl-Heinz

    2003-11-01

    To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.

  13. Aging well: Processing speed inhibition and working memory related to balance and aerobic endurance.

    Science.gov (United States)

    Zettel-Watson, Laura; Suen, Meagan; Wehbe, Lara; Rutledge, Dana N; Cherry, Barbara J

    2017-01-01

    The present study explored whether certain physical performance measures could be linked to specific cognitive domains in healthy older adults. A total of 50 adults (mean age 69.5 years, SD 8.1) were evaluated on physical performance using measures of balance (Fullerton Advanced Balance Scale), functional mobility (8-ft up-and-go), lower body strength (30-s chair stand), gait (30-ft walk velocity) and aerobic endurance (6-min walk). Cognitive measures included Stroop Color-Word Test, Digit Span Backward, Trail Making Tests, Everyday Problems Test, Digit Symbol Substitution and a Brown-Peterson test. Principal component analyses reduced cognition to domains of processing speed, inhibition and working memory. Hierarchical regression analyses were carried out with age and each physical measure as potential predictors of the three cognitive domains. The balance scale and 6-min walk were specifically associated with processing speed, inhibition and working memory. Better dynamic balance and aerobic endurance predicted enhanced processing speed, inhibition and working memory in older adults, with these last two domains considered components of executive function. Geriatr Gerontol Int 2017; 17: 108-115. © 2015 Japan Geriatrics Society.

  14. Who walks? Factors associated with walking behavior in disabled older women with and without self-reported walking difficulty.

    Science.gov (United States)

    Simonsick, E M; Guralnik, J M; Fried, L P

    1999-06-01

    To determine how severity of walking difficulty and sociodemographic, psychosocial, and health-related factors influence walking behavior in disabled older women. Cross-sectional analyses of baseline data from the Women's Health and Aging Study (WHAS). An urban community encompassing 12 contiguous zip code areas in the eastern portion of Baltimore City and part of Baltimore County, Maryland. A total of 920 moderately to severely disabled community-resident women, aged 65 years and older, identified from an age-stratified random sample of Medicare beneficiaries. Walking behavior was defined as minutes walked for exercise and total blocks walked per week. Independent variables included self-reported walking difficulty, sociodemographic factors, psychological status (depression, mastery, anxiety, and cognition), and health-related factors (falls and fear of falling, fatigue, vision and balance problems, weight, smoking, and cane use). Walking at least 8 blocks per week was strongly negatively related to severity of walking difficulty. Independent of difficulty level, older age, black race, fatigue, obesity, and cane use were also negatively associated with walking; living alone and high mastery had a positive association with walking. Even among functionally limited women, sociocultural, psychological, and health-related factors were independently associated with walking behavior. Thus, programs aimed at improving walking ability need to address these factors in addition to walking difficulties to maximize participation and compliance.

  15. Minimum Performance on Clinical Tests of Physical Function to Predict Walking 6,000 Steps/Day in Knee Osteoarthritis: An Observational Study.

    Science.gov (United States)

    Master, Hiral; Thoma, Louise M; Christiansen, Meredith B; Polakowski, Emily; Schmitt, Laura A; White, Daniel K

    2018-07-01

    Evidence of physical function difficulties, such as difficulty rising from a chair, may limit daily walking for people with knee osteoarthritis (OA). The purpose of this study was to identify minimum performance thresholds on clinical tests of physical function predictive to walking ≥6,000 steps/day. This benchmark is known to discriminate people with knee OA who develop functional limitation over time from those who do not. Using data from the Osteoarthritis Initiative, we quantified daily walking as average steps/day from an accelerometer (Actigraph GT1M) worn for ≥10 hours/day over 1 week. Physical function was quantified using 3 performance-based clinical tests: 5 times sit-to-stand test, walking speed (tested over 20 meters), and 400-meter walk test. To identify minimum performance thresholds for daily walking, we calculated physical function values corresponding to high specificity (80-95%) to predict walking ≥6,000 steps/day. Among 1,925 participants (mean ± SD age 65.1 ± 9.1 years, mean ± SD body mass index 28.4 ± 4.8 kg/m 2 , and 55% female) with valid accelerometer data, 54.9% walked ≥6,000 steps/day. High specificity thresholds of physical function for walking ≥6,000 steps/day ranged 11.4-14.0 seconds on the 5 times sit-to-stand test, 1.13-1.26 meters/second for walking speed, or 315-349 seconds on the 400-meter walk test. Not meeting these minimum performance thresholds on clinical tests of physical function may indicate inadequate physical ability to walk ≥6,000 steps/day for people with knee OA. Rehabilitation may be indicated to address underlying impairments limiting physical function. © 2017, American College of Rheumatology.

  16. Shoe-Insole Technology for Injury Prevention in Walking

    Directory of Open Access Journals (Sweden)

    Hanatsu Nagano

    2018-05-01

    Full Text Available Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i ankle joint support for falls prevention; (ii shock absorption by utilising lower-resilience materials at the heel; (iii improving reaction speed by stimulating cutaneous receptors; and (iv preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics.

  17. Understanding the Demographic Differences in Neighborhood Walking Supports.

    Science.gov (United States)

    Carlson, Susan A; Watson, Kathleen B; Paul, Prabasaj; Schmid, Thomas L; Fulton, Janet E

    2017-04-01

    Information about how presence and usefulness of neighborhood supports for walking differs by demographic characteristics can help guide community strategies to promote walking. Reported presence and usefulness of neighborhood supports (shops, transit stops, sidewalks, parks, interesting things to look at, well-lit at night, low crime rate, and cars following speed limit) were examined in 3973 U.S. adults who completed the 2014 SummerStyles survey. Percentage reporting neighborhood supports as present ranged from 25.3% (SE = 0.8) for interesting things to 55.8% (SE = 1.0) for low crime rate. Percentage who reported a support as useful ranged from 24.6% (SE = 1.4) for transit stops to 79.0% (SE = 1.1) for sidewalks among those with the support. This percentage ranged from 13.4% (SE = 0.8) for transit stops to 52.8% (SE = 1.1) for shops among those without the support. One or more demographic differences were observed for the presence of each support, and the presence of all supports differed by education and metro status. Demographic patterns were less clear when examining usefulness and patterns often differed by support type and presence. Presence and usefulness of neighborhood supports for walking can differ by type and demographic characteristics. Recognizing these difference can help communities plan and implement strategies to promote walking.

  18. Treadmill walking with load carriage increases aortic pressure wave reflection.

    Science.gov (United States)

    Ribeiro, Fernando; Oliveira, Nórton L; Pires, Joana; Alves, Alberto J; Oliveira, José

    2014-01-01

    The study examined the effects of treadmill walking with load carriage on derived measures of central pressure and augmentation index in young healthy subjects. Fourteen male subjects (age 31.0 ± 1.0 years) volunteered in this study. Subjects walked 10 minutes on a treadmill at a speed of 5 km/h carrying no load during one session and a load of 10% of their body weight on both upper limbs in two water carboys with handle during the other session. Pulse wave analysis was performed at rest and immediately after exercise in the radial artery of the right upper limb by applanation tonometry. The main result indicates that walking with load carriage sharply increased augmentation index at 75 bpm (-5.5 ± 2.2 to -1.4 ± 2.2% vs. -5.2 ± 2.8 to -5.5 ± 2.1%, p<0.05), and also induced twice as high increments in central pulse pressure (7.4 ± 1.5 vs. 3.1 ± 1.4 mmHg, p<0.05) and peripheral (20.5 ± 2.7 vs. 10.3 ± 2.5 mmHg, p<0.05) and central systolic pressure (14.7 ± 2.1 vs. 7.4 ± 2.0 mmHg, p<0.05). Walking with additional load of 10% of their body weight (aerobic exercise accompanied by upper limb isometric contraction) increases derived measures of central pressure and augmentation index, an index of wave reflection and arterial stiffness. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  19. Gait speed as a measure of functional status in COPD patients

    Directory of Open Access Journals (Sweden)

    Karpman C

    2014-11-01

    Full Text Available Craig Karpman, Roberto Benzo Mindful Breathing Laboratory, Mayo Clinic, Division of Pulmonary and Critical Care Medicine, Rochester, MN, USA Abstract: Chronic obstructive pulmonary disease (COPD is a disease associated with dyspnea, fatigue, and exercise intolerance. The degree of functional debility and level of exercise capacity greatly influences quality of life and mortality in patients with COPD, and the measures of exercise capacity are to be an integral part of patient assessment but often not feasible in routine daily practice, resulting in likely suboptimal care. There is a need for simple ways to identify functional decline in the clinical setting in order to guide resources to preventive interventions or proper care, including palliative care. Gait speed, or measuring how long it takes for a patient to walk a short distance, takes very little time and space, and can serve as a candidate measure of physical function in COPD. Gait speed has been shown to be an indicator of disability, health care utilization, and survival in older adults. It is a simple, reliable, and feasible measure to perform in the clinic and has been promoted as the next vital sign, providing insight into patients' functional capacity. Gait speed is mainly determined by exercise capacity but reflects global well-being as it captures many of the multisystemic effects of disease severity in COPD rather than pulmonary impairment alone. It is an excellent screening measure for exercise capacity and frailty; in COPD, the usual gait speed (4-m course with rolling start has been very accurate in identifying clinically relevant benchmarks of the 6-minute walk test, poor (<350 m and very poor (<200 m 6-minute walk test distances. A specific cut-off point of 0.8 m⋅s-1 had a positive predictive value of 69% and negative predictive value of 98% in predicting very poor exercise capacity. The increasing evidence on gait speed is promising as a simple test that can inform the

  20. Walking for art's sake

    CERN Multimedia

    2005-01-01

    The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  1. Walking for art's sake

    CERN Multimedia

    2005-01-01

      The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  2. Talk the Walk: Does Socio-Cognitive Resource Reallocation Facilitate the Development of Walking?

    Directory of Open Access Journals (Sweden)

    Ronny Geva

    Full Text Available Walking is of interest to psychology, robotics, zoology, neuroscience and medicine. Human's ability to walk on two feet is considered to be one of the defining characteristics of hominoid evolution. Evolutionary science propses that it emerged in response to limited environmental resources; yet the processes supporting its emergence are not fully understood. Developmental psychology research suggests that walking elicits cognitive advancements. We postulate that the relationship between cognitive development and walking is a bi-directional one; and further suggest that the initiation of novel capacities, such as walking, is related to internal socio-cognitive resource reallocation. We shed light on these notions by exploring infants' cognitive and socio-communicative outputs prospectively from 6-18 months of age. Structured bi/tri weekly evaluations of symbolic and verbal development were employed in an urban cohort (N = 9 for 12 months, during the transition from crawling to walking. Results show links between preemptive cognitive changes in socio-communicative output, symbolic-cognitive tool-use processes, and the age of emergence of walking. Plots of use rates of lower symbolic play levels before and after emergence of new skills illustrate reductions in use of previously attained key behaviors prior to emergence of higher symbolic play, language and walking. Further, individual differences in age of walking initiation were strongly related to the degree of reductions in complexity of object-use (r = .832, p < .005, along with increases, counter to the general reduction trend, in skills that serve recruitment of external resources [socio-communication bids before speech (r = -.696, p < .01, and speech bids before walking; r = .729, p < .01]. Integration of these proactive changes using a computational approach yielded an even stronger link, underscoring internal resource reallocation as a facilitator of walking initiation (r = .901, p<0

  3. Pilates exercise training vs. physical therapy for improving walking and balance in people with multiple sclerosis: a randomized controlled trial.

    Science.gov (United States)

    Kalron, Alon; Rosenblum, Uri; Frid, Lior; Achiron, Anat

    2017-03-01

    Evaluate the effects of a Pilates exercise programme on walking and balance in people with multiple sclerosis and compare this exercise approach to conventional physical therapy sessions. Randomized controlled trial. Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel. Forty-five people with multiple sclerosis, 29 females, mean age (SD) was 43.2 (11.6) years; mean Expanded Disability Status Scale (S.D) was 4.3 (1.3). Participants received 12 weekly training sessions of either Pilates ( n=22) or standardized physical therapy ( n=23) in an outpatient basis. Spatio-temporal parameters of walking and posturography parameters during static stance. Functional tests included the Time Up and Go Test, 2 and 6-minute walk test, Functional Reach Test, Berg Balance Scale and the Four Square Step Test. In addition, the following self-report forms included the Multiple Sclerosis Walking Scale and Modified Fatigue Impact Scale. At the termination, both groups had significantly increased their walking speed ( P=0.021) and mean step length ( P=0.023). According to the 2-minute and 6-minute walking tests, both groups at the end of the intervention program had increased their walking speed. Mean (SD) increase in the Pilates and physical therapy groups were 39.1 (78.3) and 25.3 (67.2) meters, respectively. There was no effect of group X time in all instrumented and clinical balance and gait measures. Pilates is a possible treatment option for people with multiple sclerosis in order to improve their walking and balance capabilities. However, this approach does not have any significant advantage over standardized physical therapy.

  4. Do kinematic metrics of walking balance adapt to perturbed optical flow?

    Science.gov (United States)

    Thompson, Jessica D; Franz, Jason R

    2017-08-01

    Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4±3.8years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8min of prolonged exposure followed by 1min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Energy cost and mechanical work of walking during load carriage in soldiers.

    Science.gov (United States)

    Grenier, Jordane G; Peyrot, Nicolas; Castells, Josiane; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoit

    2012-06-01

    In the military context, soldiers carry equipments of total mass often exceeding 30%-40% of their body mass (BM) and complexly distributed around their body (backpack, weapons, electronics, protections, etc.), which represents severe load carrying conditions. This study aimed to better understand the effects of load carriage on walking energetics and mechanics during military-type walking. Ten male infantrymen recently retired from the French Foreign Legion performed 3-min walking trials at a constant speed of 4 km·h(-1) on an instrumented treadmill, during which walking pattern spatiotemporal parameters, energy cost (C(W)), external mechanical work (W(ext)), and the work done by one leg against the other during the double-contact period (W(int,dc)) were specifically assessed. Three conditions were tested: (i) light sportswear (SP, reference condition considered as unloaded), (ii) battle equipment (BT, ∼22 kg, ∼27% of subjects' BM, corresponding to a military intermediate load), and (iii) road march equipment (RM, ∼38 kg, ∼46% of subjects' BM, corresponding to a military high load). Repeated-measures ANOVA showed that military equipment carriage significantly (i) altered the spatiotemporal pattern of walking (all P < 0.01), (ii) increased absolute gross and net CW (P < 0.0001), and (iii) increased both absolute and mass-relative W(ext) (P < 0.01) and W(int,dc) (P < 0.0001) but did not alter the inverted pendulum recovery or locomotor efficiency. Military equipments carriage induced significant changes in walking mechanics and energetics, but these effects appeared not greater than those reported with loads carried around the waist and close to the center of mass. This result was not expected because the latter has been hypothesized to be the optimal method of load carriage from a metabolic standpoint.

  6. Is the impact of fatigue related to walking capacity and perceived ability in persons with multiple sclerosis? A multicenter study.

    Science.gov (United States)

    Dalgas, U; Langeskov-Christensen, M; Skjerbæk, A; Jensen, E; Baert, I; Romberg, A; Santoyo Medina, C; Gebara, B; Maertens de Noordhout, B; Knuts, K; Béthoux, F; Rasova, K; Severijns, D; Bibby, B M; Kalron, A; Norman, B; Van Geel, F; Wens, I; Feys, P

    2018-04-15

    The relationship between fatigue impact and walking capacity and perceived ability in patients with multiple sclerosis (MS) is inconclusive in the existing literature. A better understanding might guide new treatment avenues for fatigue and/or walking capacity in patients with MS. To investigate the relationship between the subjective impact of fatigue and objective walking capacity as well as subjective walking ability in MS patients. A cross-sectional multicenter study design was applied. Ambulatory MS patients (n = 189, age: 47.6 ± 10.5 years; gender: 115/74 women/men; Expanded Disability Status Scale (EDSS): 4.1 ± 1.8 [range: 0-6.5]) were tested at 11 sites. Objective tests of walking capacity included short walking tests (Timed 25-Foot Walk (T25FW), 10-Metre Walk Test (10mWT) at usual and fastest speed and the timed up and go (TUG)), and long walking tests (2- and 6-Minute Walk Tests (MWT). Subjective walking ability was tested applying the Multiple Sclerosis Walking Scale-12 (MSWS-12). Fatigue impact was measured by the self-reported modified fatigue impact scale (MFIS) consisting of a total score (MFIS total ) and three subscales (MFIS physical , MFIS cognitive and MFIS psychosocial ). Uni- and multivariate regression analysis were performed to evaluate the relation between walking and fatigue impact. MFIS total was negatively related with long (6MWT, r = -0.14, p = 0.05) and short composite (TUG, r = -0.22, p = 0.003) walking measures. MFIS physical showed a significant albeit weak relationship to walking speed in all walking capacity tests (r = -0.22 to -0.33, p < .0001), which persisted in the multivariate linear regression analysis. Subjective walking ability (MSWS-12) was related to MFIS total (r = 0.49, p < 0.0001), as well as to all other subscales of MFIS (r = 0.24-0.63, p < 0.001), showing stronger relationships than objective measures of walking. The physical impact of fatigue is weakly

  7. Inverse relationship between changes of maximal aerobic capacity and changes in walking economy after weight loss.

    Science.gov (United States)

    Borges, Juliano H; Carter, Stephen J; Singh, Harshvardhan; Hunter, Gary R

    2018-05-16

    The aims of this study were to: (1) determine the relationships between maximum oxygen uptake ([Formula: see text]O 2max ) and walking economy during non-graded and graded walking among overweight women and (2) examine potential differences in [Formula: see text]O 2max and walking economy before and after weight loss. One-hundred and twenty-four premenopausal women with a body mass index (BMI) between 27 and 30 kg/m 2 were randomly assigned to one of three groups: (a) diet only; (b) diet and aerobic exercise training; and (c) diet and resistance exercise training. All were furnished with standard, very-low calorie diet to reduce BMI to < 25 kg/m 2 . [Formula: see text]O 2max was measured using a modified-Bruce protocol while walking economy (1-net [Formula: see text]O 2 ) was obtained during fixed-speed (4.8 k·h -1 ), steady-state treadmill walking at 0% grade and 2.5% grade. Assessments were conducted before and after achieving target BMI. Prior to weight loss, [Formula: see text]O 2max was inversely related (P < 0.05) with non-graded and graded walking economy (r = - 0.28 to - 0.35). Similar results were also observed following weight loss (r = - 0.22 to - 0.28). Additionally, we also detected a significant inverse relationship (P < 0.05) between the changes (∆, after weight loss) in ∆[Formula: see text]O 2max , adjusted for fat-free mass, with non-graded and graded ∆walking economy (r = - 0.37 to - 0.41). Our results demonstrate [Formula: see text]O 2max and walking economy are inversely related (cross-sectional) before and after weight loss. Importantly though, ∆[Formula: see text]O 2max and ∆walking economy were also found to be inversely related, suggesting a strong synchrony between maximal aerobic capacity and metabolic cost of exercise.

  8. Analysis of absorbing times of quantum walks

    International Nuclear Information System (INIS)

    Yamasaki, Tomohiro; Kobayashi, Hirotada; Imai, Hiroshi

    2003-01-01

    Quantum walks are expected to provide useful algorithmic tools for quantum computation. This paper introduces absorbing probability and time of quantum walks and gives both numerical simulation results and theoretical analyses on Hadamard walks on the line and symmetric walks on the hypercube from the viewpoint of absorbing probability and time

  9. Pedestrian Walking Behavior Revealed through a Random Walk Model

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2012-01-01

    Full Text Available This paper applies method of continuous-time random walks for pedestrian flow simulation. In the model, pedestrians can walk forward or backward and turn left or right if there is no block. Velocities of pedestrian flow moving forward or diffusing are dominated by coefficients. The waiting time preceding each jump is assumed to follow an exponential distribution. To solve the model, a second-order two-dimensional partial differential equation, a high-order compact scheme with the alternating direction implicit method, is employed. In the numerical experiments, the walking domain of the first one is two-dimensional with two entrances and one exit, and that of the second one is two-dimensional with one entrance and one exit. The flows in both scenarios are one way. Numerical results show that the model can be used for pedestrian flow simulation.

  10. EFFECTS OF BALLATES, STEP AEROBICS, AND WALKING ON BALANCE IN WOMEN AGED 50-75 YEARS

    Directory of Open Access Journals (Sweden)

    Sarah Clary

    2006-09-01

    Full Text Available This study examined the effectiveness of Ballates training (strengthening of the central core musculature by the inception of balance techniques compared to more traditional exercise programs, such as step aerobics and walking, on balance in women aged 50- 75 years. Participants were randomly assigned to one of three supervised training groups (1 hour/day, 3 days/week, 13 weeks, Ballates (n = 12, step aerobics (n = 17, or walking (n =15. Balance was measured by four different methods (modified Clinical Test for the Sensory Interaction on Balance - mCTSIB; Unilateral Stance with Eyes Open - US-EO or Eyes Closed - US-EC; Tandem Walk - TW; Step Quick Turn - SQT using the NeuroCom Balance Master. A 2-way (Group and Trial repeated measures ANOVA and post-hoc Bonferroni Pair-wise Comparisons were used to evaluate changes in the dependent variables used to describe stability and balance (sway velocity, turn sway, speed, and turn time. Measures of static postural stability and dynamic balance were similar for the three groups prior to training. Following the different exercise interventions, sway velocity on firm and foam surfaces (mCTSIB with eyes closed (p < 0.05 increased for the Ballates group while the other two exercise groups either maintained or decreased their sway velocity following the training, therefore suggesting that these two groups either maintained or improved their balance. There were significant improvements in speed during the TW test (p < 0.01, and turn time (p < 0.01 and sway (p < 0.05 during the SQT test for each of the three groups. In general, all three training programs improved dynamic balance, however, step aerobics and walking programs resulted in be better improvements in postural stability or static balance when compared to the Ballates program

  11. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Fukuoka

    Full Text Available Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency, breath-by-breath ventilation (V̇E and gas exchange (CO2 output (V̇CO2 and O2 uptake (V̇O2 responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min. The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW was significantly greater than that during sinusoidal cycling (SC, and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward and muscle afferent feedback.

  12. Effect of biofeedback cycling training on functional recovery and walking ability of lower extremity in patients with stroke

    Directory of Open Access Journals (Sweden)

    Huei-Ching Yang

    2014-01-01

    Full Text Available This study aimed to investigate the effectiveness of biofeedback cycling training on lower limb functional recovery, walking endurance, and walking speed for patients with chronic stroke. Thirty-one patients with stroke (stroke onset >3 months were randomly assigned into two groups using a crossover design. One group (N = 16; mean: 53.6 ± 10.3 years underwent conventional rehabilitation and cycling training (30 minutes/time, 5 times per week for 4 weeks, followed by only conventional rehabilitation for another 4 weeks. The other group (N = 15; mean: 54.5 ± 8.0 years underwent the same training in reverse order. The bike used in this biofeedback cycling training was the MOTOmed viva2 Movement Trainer. Outcome measures included the lower extremity subscale of Fugl-Meyer assessment (LE-FMA, the 6-minute walk test (6MWT, the 10-meter walk test (10MWT, and the modified Ashworth scale (MAS. All participants were assessed at the beginning of the study, at the end of the 4th week, and at the end of the 8th week. Thirty participants completed the study, including the cycling training interventions and all assessments. The results showed that improvements in the period with cycling training were significantly better than the noncycling period in the LE-FMA (p < 0.05, 6MWT (p < 0.001, 10MWT (p < 0.001, and MAS (p < 0.001 scores. No significant carryover effects were observed. The improvements on outcome measures were significantly different between the cycling period and the noncycling period after adjusting for potential confounding factors in the multivariate analysis of variance (p < 0.001. The study result indicates that the additional 4-week biofeedback cycling training could lead to improved LE functional recovery, walking endurance, and speed for patients with chronic stroke.

  13. Effects of an attention demanding task on dynamic stability during treadmill walking

    Directory of Open Access Journals (Sweden)

    Troy Karen L

    2008-04-01

    Full Text Available Abstract Background People exhibit increased difficulty balancing when they perform secondary attention-distracting tasks while walking. However, a previous study by Grabiner and Troy (J. Neuroengineering Rehabil., 2005 found that young healthy subjects performing a concurrent Stroop task while walking on a motorized treadmill exhibited decreased step width variability. However, measures of variability do not directly quantify how a system responds to perturbations. This study re-analyzed data from Grabiner and Troy 2005 to determine if performing the concurrent Stroop task directly affected the dynamic stability of walking in these same subjects. Methods Thirteen healthy volunteers walked on a motorized treadmill at their self-selected constant speed for 10 minutes both while performing the Stroop test and during undisturbed walking. This Stroop test consisted of projecting images of the name of one color, printed in text of a different color, onto a wall and asking subjects to verbally identify the color of the text. Three-dimensional motions of a marker attached to the base of the neck (C5/T1 were recorded. Marker velocities were calculated over 3 equal intervals of 200 sec each in each direction. Mean variability was calculated for each time series as the average standard deviation across all strides. Both "local" and "orbital" dynamic stability were quantified for each time series using previously established methods. These measures directly quantify how quickly small perturbations grow or decay, either continuously in real time (local or discretely from one cycle to the next (orbital. Differences between Stroop and Control trials were evaluated using a 2-factor repeated measures ANOVA. Results Mean variability of trunk movements was significantly reduced during the Stroop tests compared to normal walking. Conversely, local and orbital stability results were mixed: some measures showed slight increases, while others showed slight decreases

  14. The Walking Renaissance: A Longitudinal Analysis of Walking Travel in the Greater Los Angeles Area, USA

    Directory of Open Access Journals (Sweden)

    Kenneth Joh

    2015-07-01

    Full Text Available Promoting walking travel is considered important for reducing automobile use and improving public health. Recent U.S. transportation policy has incentivized investments in alternative, more sustainable transportation modes such as walking, bicycling and transit in auto-oriented cities such as Los Angeles. Although many past studies have analyzed changes in walking travel across the U.S., there is little clarity on the drivers of change. We address this gap by conducting a longitudinal analysis of walking travel in the greater Los Angeles area from 2001 to 2009. We use travel diary and household data from regional and national surveys to analyze changes in walking trip shares and rates across our study area. Results show that walking has significantly increased across most of Los Angeles, and that increases in walking trips generally correspond with increases in population, employment, and transit service densities. Estimates from fixed-effects regression analysis generally suggest a positive association between population density and walking, and that higher increases in transit stop density are correlated with increased walking trips to and from transit stops. These findings illustrate how regional planning efforts to pursue a coordinated land use-transit planning strategy can help promote walking in auto-oriented or vehicle adopting cities.

  15. Shared and task-specific muscle synergies of Nordic walking and conventional walking.

    Science.gov (United States)

    Boccia, G; Zoppirolli, C; Bortolan, L; Schena, F; Pellegrini, B

    2018-03-01

    Nordic walking is a form of walking that includes a poling action, and therefore an additional subtask, with respect to conventional walking. The aim of this study was to assess whether Nordic walking required a task-specific muscle coordination with respect to conventional walking. We compared the electromyographic (EMG) activity of 15 upper- and lower-limb muscles of 9 Nordic walking instructors, while executing Nordic walking and conventional walking at 1.3 ms -1 on a treadmill. Non-negative matrix factorization method was applied to identify muscle synergies, representing the spatial and temporal organization of muscle coordination. The number of muscle synergies was not different between Nordic walking (5.2 ± 0.4) and conventional walking (5.0 ± 0.7, P = .423). Five muscle synergies accounted for 91.2 ± 1.1% and 92.9 ± 1.2% of total EMG variance in Nordic walking and conventional walking, respectively. Similarity and cross-reconstruction analyses showed that 4 muscle synergies, mainly involving lower-limb and trunk muscles, are shared between Nordic walking and conventional walking. One synergy acting during upper limb propulsion is specific to Nordic walking, modifying the spatial organization and the magnitude of activation of upper limb muscles compared to conventional walking. The inclusion of the poling action in Nordic walking does not increase the complexity of movement control and does not change the coordination of lower limb muscles. This makes Nordic walking a physical activity suitable also for people with low motor skill. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. People With Chronic Neck Pain Walk With a Stiffer Spine.

    Science.gov (United States)

    Falla, Deborah; Gizzi, Leonardo; Parsa, Hesam; Dieterich, Angela; Petzke, Frank

    2017-04-01

    Study Design Controlled laboratory study, case-control design. Objective To evaluate spine kinematics and gait characteristics in people with nonspecific chronic neck pain. Background People with chronic neck pain present with a number of sensorimotor and biomechanical alterations, yet little is known about the influence of neck pain on gait and motions of the spine during gait. Methods People with chronic nonspecific neck pain and age- and sex-matched asymptomatic controls walked on a treadmill at 3 different speeds (self-selected, 3 km/h, and 5 km/h), either with their head in a neutral position or rotated 30°. Tridimensional motion capture was employed to quantify body kinematics. Neck and trunk rotations were derived from the difference between the transverse plane component of the head and thorax and thorax and pelvis angles to provide an indication of neck and trunk rotation during gait. Results Overall, the patient group showed shorter stride length compared to the control group (Pneck pain showed smaller trunk rotations (Pneck pain walk with reduced trunk rotation, especially when challenged by walking with their head positioned in rotation. Reduced rotation of the trunk during gait may have long-term consequences on spinal health. J Orthop Sports Phys Ther 2017;47(4):268-277. Epub 3 Feb 2017. doi:10.2519/jospt.2017.6768.

  17. Lower limb joint kinetics in walking: the role of industry recommended footwear.

    Science.gov (United States)

    Keenan, Geoffrey S; Franz, Jason R; Dicharry, Jay; Della Croce, Ugo; Kerrigan, D Casey

    2011-03-01

    The effects of current athletic footwear on lower extremity biomechanics are unknown. The aim of this study was to examine the changes, if any, that occur in peak lower extremity net joint moments while walking in industry recommended athletic footwear. Sixty-eight healthy young adults underwent kinetic evaluation of lower extremity extrinsic joint moments while walking barefoot and while walking in current standard athletic footwear matched to the foot mechanics of each subject while controlling for speed. A secondary analysis was performed comparing peak knee joint extrinsic moments during barefoot walking to those while walking in three different standard footwear types: stability, motion control, and cushion. 3-D motion capture data were collected in synchrony with ground reaction force data collected from an instrumented treadmill. The shod condition was associated with a 9.7% increase in the first peak knee varus moment, and increases in the hip flexion and extension moments. These increases may be largely related to a 6.5% increase in stride length with shoes associated with increases in the ground reaction forces in all three axes. The changes from barefoot walking observed in the peak knee joint moments were similar when subjects walked in all three footwear types. It is unclear to what extent these increased joint moments may be clinically relevant, or potentially adverse. Nonetheless, these differences should be considered in the recommendation as well as the design of footwear in the future. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Rhythmic walking interactions with auditory feedback

    DEFF Research Database (Denmark)

    Jylhä, Antti; Serafin, Stefania; Erkut, Cumhur

    2012-01-01

    of interactions based on varying the temporal characteristics of the output, using the sound of human walking as the input. The system either provides a direct synthesis of a walking sound based on the detected amplitude envelope of the user's footstep sounds, or provides a continuous synthetic walking sound...... as a stimulus for the walking human, either with a fixed tempo or a tempo adapting to the human gait. In a pilot experiment, the different interaction modes are studied with respect to their effect on the walking tempo and the experience of the subjects. The results tentatively outline different user profiles......Walking is a natural rhythmic activity that has become of interest as a means of interacting with software systems such as computer games. Therefore, designing multimodal walking interactions calls for further examination. This exploratory study presents a system capable of different kinds...

  19. Locomotor Training Restores Walking in a Nonambulatory Child With Chronic, Severe, Incomplete Cervical Spinal Cord Injury

    Science.gov (United States)

    Behrman, Andrea L; Nair, Preeti M; Bowden, Mark G; Dauser, Robert C; Herget, Benjamin R; Martin, Jennifer B; Phadke, Chetan P; Reier, Paul J; Senesac, Claudia R; Thompson, Floyd J; Howland, Dena R

    2008-01-01

    Background and Purpose: Locomotor training (LT) enhances walking in adult experimental animals and humans with mild-to-moderate spinal cord injuries (SCIs). The animal literature suggests that the effects of LT may be greater on an immature nervous system than on a mature nervous system. The purpose of this study was to evaluate the effects of LT in a child with chronic, incomplete SCI. Subject: The subject was a nonambulatory 4½-year-old boy with an American Spinal Injury Association Impairment Scale (AIS) C Lower Extremity Motor Score (LEMS) of 4/50 who was deemed permanently wheelchair-dependent and was enrolled in an LT program 16 months after a severe cervical SCI. Methods: A pretest-posttest design was used in the study. Over 16 weeks, the child received 76 LT sessions using both treadmill and over-ground settings in which graded sensory cues were provided. The outcome measures were ASIA Impairment Scale score, gait speed, walking independence, and number of steps. Result: One month into LT, voluntary stepping began, and the child progressed from having no ability to use his legs to community ambulation with a rolling walker. By the end of LT, his walking independence score had increased from 0 to 13/20, despite no change in LEMS. The child's final self-selected gait speed was 0.29 m/s, with an average of 2,488 community-based steps per day and a maximum speed of 0.48 m/s. He then attended kindergarten using a walker full-time. Discussion and Conclusion: A simple, context-dependent stepping pattern sufficient for community ambulation was recovered in the absence of substantial voluntary isolated lower-extremity movement in a child with chronic, severe SCI. These novel data suggest that some children with severe, incomplete SCI may recover community ambulation after undergoing LT and that the LEMS cannot identify this subpopulation. PMID:18326054

  20. Exoskeleton Motion Control for Children Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    Cristina Ploscaru

    2016-06-01

    Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.

  1. Frontal joint dynamics when initiating stair ascent from a walk versus a stand.

    Science.gov (United States)

    Vallabhajosula, Srikant; Yentes, Jennifer M; Stergiou, Nicholas

    2012-02-02

    Ascending stairs is a challenging activity of daily living for many populations. Frontal plane joint dynamics are critical to understand the mechanisms involved in stair ascension as they contribute to both propulsion and medio-lateral stability. However, previous research is limited to understanding these dynamics while initiating stair ascent from a stand. We investigated if initiating stair ascent from a walk with a comfortable self-selected speed could affect the frontal plane lower-extremity joint moments and powers as compared to initiating stair ascent from a stand and if this difference would exist at consecutive ipsilateral steps on the stairs. Kinematics data using a 3-D motion capture system and kinetics data using two force platforms on the first and third stair treads were recorded simultaneously as ten healthy young adults ascended a custom-built staircase. Data were collected from two starting conditions of stair ascent, from a walk (speed: 1.42 ± 0.21 m/s) and from a stand. Results showed that subjects generated greater peak knee abductor moment and greater peak hip abductor moment when initiating stair ascent from a walk. Greater peak joint moments and powers at all joints were also seen while ascending the second ipsilateral step. Particularly, greater peak hip abductor moment was needed to avoid contact of the contralateral limb with the intermediate step by counteracting the pelvic drop on the contralateral side. This could be important for therapists using stair climbing as a testing/training tool to evaluate hip strength in individuals with documented frontal plane abnormalities (i.e. knee and hip osteoarthritis, ACL injury). Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Walking in water and on land after an incomplete spinal cord injury.

    Science.gov (United States)

    Tamburella, Federica; Scivoletto, Giorgio; Cosentino, Elena; Molinari, Marco

    2013-10-01

    Although no data are available on the effects of water environment on the gait of subjects with spinal cord injury (SCI), hydrotherapy is used in the rehabilitation protocols of SCI patients. The aim of this study was to characterize gait features of subjects with incomplete SCI walking in water and on land in comparison with healthy controls (CTRLs) to identify the specificity of water environment on influencing gait in SCI subjects. This is a matched case-control study. Kinematic gait parameters and range of motion of joint angles of 15 SCI subjects and 15 CTRLs were analyzed. Compared with gait on land, gait in water of the SCI patients was characterized by speed and stance phase reduction, gait cycle time increment, and invariance of stride length and range of motion values. Comparison with CTRL data remarked that walking in water reduces gait differences between the groups. Furthermore, in water, the SCI subjects presented a reduction in variability of the hip and knee joint angles, whereas in the CTRLs, a larger variability was observed. Gait in water of the SCI subjects is associated with kinematic parameters more similar to those of the CTRLs, particularly regarding speed, stride length, and stance phase, supporting the idea that walking in a water environment may be of rehabilitative significance for SCI subjects.

  3. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  4. Nine walks (photo series / web page)

    OpenAIRE

    Robinson, Andrew

    2015-01-01

    'Nine Walks' is a body of work resulting from my engagement with the Media Arts Research Walking Group at Sheffield Hallam University who are exploring the role of walking in as a social, developmental and production space for the creative arts. / My participation in the walking group is an extension of my investigation of the journey as a creative, conceptual and contemplative space for photography which in turn reflects an interest in the role of the accident, instinct and intuition and the...

  5. Varied overground walking training versus body-weight-supported treadmill training in adults within 1 year of stroke: a randomized controlled trial.

    Science.gov (United States)

    DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Thabane, Lehana; Ma, Jinhui; Lee, Timothy D

    2015-05-01

    Although task-related walking training has been recommended after stroke, the theoretical basis, content, and impact of interventions vary across the literature. There is a need for a comparison of different approaches to task-related walking training after stroke. To compare the impact of a motor-learning-science-based overground walking training program with body-weight-supported treadmill training (BWSTT) in ambulatory, community-dwelling adults within 1 year of stroke onset. In this rater-blinded, 1:1 parallel, randomized controlled trial, participants were stratified by baseline gait speed. Participants assigned to the Motor Learning Walking Program (MLWP) practiced various overground walking tasks under the supervision of 1 physiotherapist. Cognitive effort was encouraged through random practice and limited provision of feedback and guidance. The BWSTT program emphasized repetition of the normal gait cycle while supported on a treadmill and assisted by 1 to 3 therapy staff. The primary outcome was comfortable gait speed at postintervention assessment (T2). In total, 71 individuals (mean age = 67.3; standard deviation = 11.6 years) with stroke (mean onset = 20.9 [14.1] weeks) were randomized (MLWP, n = 35; BWSTT, n = 36). There was no significant between-group difference in gait speed at T2 (0.002 m/s; 95% confidence interval [CI] = -0.11, 0.12; P > .05). The MLWP group improved by 0.14 m/s (95% CI = 0.09, 0.19), and the BWSTT group improved by 0.14 m/s (95% CI = 0.08, 0.20). In this sample of community-dwelling adults within 1 year of stroke, a 15-session program of varied overground walking-focused training was not superior to a BWSTT program of equal frequency, duration, and in-session step activity. © The Author(s) 2014.

  6. Impact of left ventricular assist device speed adjustment on exercise tolerance and markers of wall stress.

    Science.gov (United States)

    Hayward, Christopher S; Salamonsen, Robert; Keogh, Anne M; Woodard, John; Ayre, Peter; Prichard, Roslyn; Kotlyar, Eugene; Macdonald, Peter S; Jansz, Paul; Spratt, Phillip

    2015-09-01

    Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown. 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest. Patients were then randomized to these speed settings and underwent three 6-minute walk tests (6MWT) and symptom-limited cardiopulmonary stress tests (CPX) on separate days. Pump speed settings (low, normal and high) resulted in significantly different resting pump flows of 4.43±0.6, 5.03±0.94, and 5.72±1.2 l/min (Pexercise (Pexercise time (p=.27). Maximum workload achieved and peak oxygen consumption were significantly different comparing low to high pump speed settings only (Prelease was significantly reduced at higher pump speed with exercise (Prelease consistent with lower myocardial wall stress. This did not, however, improve exercise tolerance.

  7. WALKING CAPACITY AND FALLS-EFFICACY CORRELATES WITH PARTICIPATION RESTRICTION IN INDIVIDUALS WITH CHRONIC STROKE: A CROSS SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Neelam Nayak

    2015-02-01

    Full Text Available Background: Mobility impairments seen after Stroke impact walking speed, endurance and balance. Almost all the individuals with Stroke have fear of fall. The physical impairments in balance and gait along with individual’s perception about his/her own abilities to maintain balance might have an impact on level of activity and participation in the community. The association of these variables with recovery of Stroke has been well studied. However, it is currently unknown which of these variables are most associated with activity and participation in the community. This study aimed to identify the correlation of walking capacity and perception of fall with activity & participation. Methods: 30 Subjects were assessed for - walking capacity (6 minute walk test & Self-efficacy for falls (Modified Falls Efficacy scale. Level of Activity Limitation (AL & Participation Restriction (PR was graded on validated ICF Measure of Participation and Activities. (IMPACT-S Results: Data was analyzed using Pearson's correlation coefficient & regression model. Walking distance and Falls-efficacy is significantly correlated (r=-0.751 and -0.683, respectively with Participation restriction. Walking distance correlated with Activity Limitation (r=-0.714 significantly. Falls efficacy has a correlation coefficient of -0.642 with Activity Limitation. When put into Regression models, Walking Capacity & Gait Velocity was found to be independently associated with AL &PR. Conclusion: There is significant relationship between falls self-efficacy, walking capacity and Post-stroke activity & participation. Participation can be impacted by factors such as self-motivation and confidence about one's balance abilities. This is reflected by the correlation between falls efficacy and participation. Physical parameters such as the distance walked can contribute to participating in the community, and can predict variation in AL-PR

  8. Impulsive ankle push-off powers leg swing in human walking.

    Science.gov (United States)

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Seyfarth, Andre

    2014-04-15

    Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is suggested to power a catapult-like action in late stance of human walking. However, there is a lack of knowledge about the biomechanical process leading to this widely observed high power output of the ankle extensors. In our study, we use kinematic and dynamic data of human walking collected at speeds between 0.5 and 2.5 m s(-1) for a comprehensive analysis of push-off mechanics. We identify two distinct phases, which divide the push-off: first, starting with positive ankle power output, an alleviation phase, where the trailing leg is alleviated from supporting the body mass, and second, a launching phase, where stored energy in the ankle joint is released. Our results show a release of just a small part of the energy stored in the ankle joint during the alleviation phase. A larger impulse for the trailing leg than for the remaining body is observed during the launching phase. Here, the buckling knee joint inhibits transfer of power from the ankle to the remaining body. It appears that swing initiation profits from an impulsive ankle push-off resulting from a catapult without escapement.

  9. Asymptotic results for the semi-Markovian random walk with delay

    International Nuclear Information System (INIS)

    Khaniyev, T.A.; Aliyev, R.T.

    2006-12-01

    In this study, the semi-Markovian random walk with a discrete interference of chance (X(t) ) is considered and under some weak assumptions the ergodicity of this process is discussed. Characteristic function of the ergodic distribution of X(t) is expressed by means of the probability characteristics of the boundary functionals (N,S N ). Some exact formulas for first and second moments of ergodic distribution of the process X(t) are obtained when the random variable ζ 1 - s, which is describing a discrete interference of chance, has Gamma distribution on the interval [0, ∞) with parameter (α,λ) . Based on these results, the asymptotic expansions with three terms for the first two moments of the ergodic distribution of the process X(t) are obtained, as λ → 0. (author)

  10. Walkway Length Determination for Steady State Walking in Young and Older Adults

    Science.gov (United States)

    Macfarlane, Pamela A.; Looney, Marilyn A.

    2008-01-01

    The primary purpose of this study was to determine acceleration (AC) and deceleration (DC) distances that would accommodate young and older adults walking at their preferred and fast speeds. A secondary purpose was to determine the minimal walkway length needed to record six steady state (SS) steps (three full gait cycles) for younger and older…

  11. Changes in gait and posture as factors of dynamic stability during walking in pregnancy.

    Science.gov (United States)

    Krkeljas, Zarko

    2018-04-01

    Changes in gait and postural control during pregnancy may lead to increased fall rates during walking relative to non-pregnant women. Due to lack of empirical evidence on balance and postural control in dynamic conditions, the primary aim of this study was investigate the changes in gait and postural control as factors of stability during walking. Gait and posture of thirty-five (35) pregnant women (27 ± 6.1 years) were analysed at self-selected walking speed, and at different stage of pregnancy. The results indicate that although the gait kinematics did not differ between the trimesters, significant associations were noted between the step width, the lateral trunk lean, and the medio-lateral deviations in centre of gravity and centre of pressure. In contrast to the static conditions, anterior-posterior postural sway is not present during walking, whereas the lateral trunk lean is the primary factor women use in pregnancy to keep the centre of gravity closer to the base of support. Postural changes and those in gait kinematics were largely affected by the relative mass gain, rather than the absolute mass. Considering the importance of relative mass gain, more attention during healthy pregnancy should be given to monitoring the timing of onset of musculoskeletal changes, and design of antenatal exercise programs targeting core strength and pelvic stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Lunchtime Walk in Nature Enhances Restoration of Autonomic Control during Night-Time Sleep: Results from a Preliminary Study.

    Science.gov (United States)

    Gladwell, Valerie F; Kuoppa, Pekka; Tarvainen, Mika P; Rogerson, Mike

    2016-03-03

    Walking within nature (Green Exercise) has been shown to immediately enhance mental well-being but less is known about the impact on physiology and longer lasting effects. Heart rate variability (HRV) gives an indication of autonomic control of the heart, in particular vagal activity, with reduced HRV identified as a risk factor for cardiovascular disease. Night-time HRV allows vagal activity to be assessed whilst minimizing confounding influences of physical and mental activity. The aim of this study was to investigate whether a lunchtime walk in nature increases night-time HRV. Participants (n = 13) attended on two occasions to walk a 1.8 km route through a built or a natural environment. Pace was similar between the two walks. HRV was measured during sleep using a RR interval sensor (eMotion sensor) and was assessed at 1-2 h after participants noted that they had fallen asleep. Markers for vagal activity were significantly greater after the walk in nature compared to the built walk. Lunchtime walks in nature-based environments may provide a greater restorative effect as shown by vagal activity than equivalent built walks. Nature walks may improve essential recovery during night-time sleep, potentially enhancing physiological health.

  13. Feasibility and Preliminary Efficacy of Visual Cue Training to Improve Adaptability of Walking after Stroke: Multi-Centre, Single-Blind Randomised Control Pilot Trial

    Science.gov (United States)

    Hollands, Kristen L.; Pelton, Trudy A.; Wimperis, Andrew; Whitham, Diane; Tan, Wei; Jowett, Sue; Sackley, Catherine M.; Wing, Alan M.; Tyson, Sarah F.; Mathias, Jonathan; Hensman, Marianne; van Vliet, Paulette M.

    2015-01-01

    Objectives Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. Design This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services Participants Community dwelling stroke survivors with walking speed adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. Trial Registration Clinicaltrials.gov NCT01600391 PMID:26445137

  14. A Passive Dynamic Walking Model Based on Knee-Bend Behaviour: Stability and Adaptability for Walking down Steep Slopes

    Directory of Open Access Journals (Sweden)

    Kang An

    2013-10-01

    Full Text Available This paper presents a passive dynamic walking model based on knee-bend behaviour, which is inspired by the way human beings walk. The length and mass parameters of human beings are used in the walking model. The knee-bend mechanism of the stance leg is designed in the phase between knee-strike and heel-strike. q* which is the angular difference of the stance leg between the two events, knee-strike and knee-bend, is adjusted in order to find a stable walking motion. The results show that the stable periodic walking motion on a slope of r <0.4 can be found by adjusting q*. Furthermore, with a particular q* in the range of 0.12walk down more steps before falling down on an arbitrary slope. The walking motion is more stable and adaptable than the conventional walking motion, especially for steep slopes.

  15. Effects of the Integration of Dynamic Weight Shifting Training Into Treadmill Training on Walking Function of Children with Cerebral Palsy: A Randomized Controlled Study.

    Science.gov (United States)

    Wu, Ming; Kim, Janis; Arora, Pooja; Gaebler-Spira, Deborah J; Zhang, Yunhui

    2017-11-01

    The aim of the study was to determine whether applying an assistance force to the pelvis and legs during treadmill training can improve walking function in children with cerebral palsy. Twenty-three children with cerebral palsy were randomly assigned to the robotic or treadmill only group. For participants who were assigned to the robotic group, a controlled force was applied to the pelvis and legs during treadmill walking. For participants who were assigned to the treadmill only group, manual assistance was provided as needed. Each participant trained 3 times/wk for 6 wks. Outcome measures included walking speed, 6-min walking distance, and clinical assessment of motor function, which were evaluated before, after training, and 8 wks after the end of training, and were compared between two groups. Significant increases in walking speed and 6-min walking distance were observed after robotic training (P = 0.03), but no significant change was observed after treadmill training only. A greater increase in 6-min walking distance was observed after robotic training than that after treadmill only training (P = 0.01). Applying a controlled force to the pelvis and legs, for facilitating weight-shift and leg swing, respectively, during treadmill training may improve walking speed and endurance in children with cerebral palsy. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss the importance of physical activity at the participation level (sports programs) for children with cerebral palsy; (2) contrast the changes in walking ability and endurance for children in GMFCS level I, II and III following sports programs; and (3) identify the impact of higher frequency of sports program attendance over time on walking ability. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing

  16. Correlates of time spent walking and cycling to and from work: baseline results from the commuting and health in Cambridge study

    Directory of Open Access Journals (Sweden)

    Panter Jenna

    2011-11-01

    Full Text Available Abstract Purpose Environmental perceptions and psychological measures appear to be associated with walking and cycling behaviour; however, their influence is still unclear. We assessed these associations using baseline data from a quasi-experimental cohort study of the effects of major transport infrastructural developments in Cambridge, UK. Methods Postal surveys were sent to adults who travel to work in Cambridge (n = 1582. Questions asked about travel modes and time spent travelling to and from work in the last week, perceptions of the route, psychological measures regarding car use and socio-demographic characteristics. Participants were classified into one of two categories according to time spent walking for commuting ('no walking' or 'some walking' and one of three categories for cycling ('no cycling', '1-149 min/wk' and ' ≥ 150 min/wk'. Results Of the 1164 respondents (68% female, mean (SD age: 42.3 (11.4 years 30% reported any walking and 53% reported any cycling to or from work. In multiple regression models, short distance to work and not having access to a car showed strong positive associations with both walking and cycling. Furthermore, those who reported that it was pleasant to walk were more likely to walk to or from work (OR = 4.18, 95% CI 3.02 to 5.78 and those who reported that it was convenient to cycle on the route between home and work were more likely to do so (1-149 min/wk: OR = 4.60, 95% CI 2.88 to 7.34; ≥ 150 min/wk: OR = 3.14, 95% CI 2.11 to 4.66. Positive attitudes in favour of car use were positively associated with time spent walking to or from work but negatively associated with cycling to or from work. Strong perceived behavioural control for car use was negatively associated with walking. Conclusions In this relatively affluent sample of commuters, a range of individual and household characteristics, perceptions of the route environment and psychological measures relating to car use were associated with

  17. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  18. Osteosarcopenic obesity is associated with reduced handgrip strength, walking abilities, and balance in postmenopausal women.

    Science.gov (United States)

    Ilich, J Z; Inglis, J E; Kelly, O J; McGee, D L

    2015-11-01

    We determined the prevalence of osteosarcopenic obesity (loss of bone and muscle coexistent with increased adiposity) in overweight/obese postmenopausal women and compared their functionality to obese-only women. Results showed that osteosarcopenic obese women were outperformed by obese-only women in handgrip strength and walking/balance abilities indicating their higher risk for mobility impairments. Osteosarcopenic obesity (OSO) is a recently defined triad of osteopenia/osteoporosis, sarcopenia, and adiposity. We identified women with OSO in overweight/obese postmenopausal women and evaluated their functionality comparing them with obese-only (OB) women. Additionally, women with osteopenic/osteoporotic obesity (OO), but no sarcopenia, and those with sarcopenic obesity (SO), but no osteopenia/osteoporosis, were identified and compared. We hypothesized that OSO women will have the lowest scores for each of the functionality measures. Participants (n = 258; % body fat ≥35) were assessed using a Lunar iDXA instrument for bone and body composition. Sarcopenia was determined from negative residuals of linear regression modeled on appendicular lean mass, height, and body fat, using 20th percentile as a cutoff. Participants with T-scores of L1-L4 vertebrae and/or total femur OSO (n = 32) included women with both osteopenia/osteoporosis and sarcopenia, while those with normal bone and no sarcopenia were classified as OB (n = 99). Functionality measures such as handgrip strength, normal/brisk walking speed, and right/left leg stance were evaluated and compared among groups. Women with OSO presented with the lowest handgrip scores, slowest normal and brisk walking speed, and shortest time for each leg stance, but these results were statistically significantly different only from the OB group. These findings indicate a poorer functionality in women presenting with OSO, particularly compared to OB women, increasing the risk for bone fractures and immobility from

  19. Gaze shifts and fixations dominate gaze behavior of walking cats

    Science.gov (United States)

    Rivers, Trevor J.; Sirota, Mikhail G.; Guttentag, Andrew I.; Ogorodnikov, Dmitri A.; Shah, Neet A.; Beloozerova, Irina N.

    2014-01-01

    Vision is important for locomotion in complex environments. How it is used to guide stepping is not well understood. We used an eye search coil technique combined with an active marker-based head recording system to characterize the gaze patterns of cats walking over terrains of different complexity: (1) on a flat surface in the dark when no visual information was available, (2) on the flat surface in light when visual information was available but not required, (3) along the highly structured but regular and familiar surface of a horizontal ladder, a task for which visual guidance of stepping was required, and (4) along a pathway cluttered with many small stones, an irregularly structured surface that was new each day. Three cats walked in a 2.5 m corridor, and 958 passages were analyzed. Gaze activity during the time when the gaze was directed at the walking surface was subdivided into four behaviors based on speed of gaze movement along the surface: gaze shift (fast movement), gaze fixation (no movement), constant gaze (movement at the body’s speed), and slow gaze (the remainder). We found that gaze shifts and fixations dominated the cats’ gaze behavior during all locomotor tasks, jointly occupying 62–84% of the time when the gaze was directed at the surface. As visual complexity of the surface and demand on visual guidance of stepping increased, cats spent more time looking at the surface, looked closer to them, and switched between gaze behaviors more often. During both visually guided locomotor tasks, gaze behaviors predominantly followed a repeated cycle of forward gaze shift followed by fixation. We call this behavior “gaze stepping”. Each gaze shift took gaze to a site approximately 75–80 cm in front of the cat, which the cat reached in 0.7–1.2 s and 1.1–1.6 strides. Constant gaze occupied only 5–21% of the time cats spent looking at the walking surface. PMID:24973656

  20. Retrospective radiographic evaluation of treatment results of developmental dysplasia of the hip in walking-age children

    NARCIS (Netherlands)

    Heesakkers, Nicole A. M.; Witbreuk, Melinda M. E. H.; Besselaar, Philip P.; van der Sluijs, Johannes A.

    2013-01-01

    We evaluated treatment results of 22 children (32 hips) with idiopathic hip dislocation after walking age in two Dutch academic hospitals. The Tonnis classification was used preoperatively. Outcome was measured using the Severin and Kalamchi classification. The mean age at treatment was 24 months

  1. KidsWalk-to-School: A Guide To Promote Walking to School.

    Science.gov (United States)

    Center for Chronic Disease Prevention and Health Promotion (DHHS/CDC), Atlanta, GA.

    This guide encourages people to create safe walking and biking routes to school, promoting four issues: physically active travel, safe and walkable routes to school, crime prevention, and health environments. The chapters include: "KidsWalk-to-School: A Guide to Promote Walking to School" (Is there a solution? Why is walking to school important?…

  2. Random Walk Model for the Growth of Monolayer in Dip Pen Nanolithography

    International Nuclear Information System (INIS)

    Kim, H; Ha, S; Jang, J

    2013-01-01

    By using a simple random-walk model, we simulate the growth of a self-assembled monolayer (SAM) pattern generated in dip pen nanolithography (DPN). In this model, the SAM pattern grows mainly via the serial pushing of molecules deposited from the tip. We examine various SAM patterns, such as lines, crosses, and letters by changing the tip scan speed.

  3. Varied overground walking-task practice versus body-weight-supported treadmill training in ambulatory adults within one year of stroke: a randomized controlled trial protocol

    Directory of Open Access Journals (Sweden)

    DePaul Vincent G

    2011-10-01

    Full Text Available Abstract Background Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP, a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT in community-dwelling, ambulatory, adults within 1 year of stroke. Methods/Design A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1 using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. Discussion In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that

  4. Varied overground walking-task practice versus body-weight-supported treadmill training in ambulatory adults within one year of stroke: a randomized controlled trial protocol.

    Science.gov (United States)

    DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Lee, Timothy D; Thabane, Lehana

    2011-10-21

    Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP), a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT) in community-dwelling, ambulatory, adults within 1 year of stroke. A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1) using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that outcomes will be optimized through the application of a task

  5. Complementarity and quantum walks

    International Nuclear Information System (INIS)

    Kendon, Viv; Sanders, Barry C.

    2005-01-01

    We show that quantum walks interpolate between a coherent 'wave walk' and a random walk depending on how strongly the walker's coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker takes vs the sharpness of the interference pattern. A physical implementation of a quantum walk (the quantum quincunx) should thus have an identifiable walker and the capacity to demonstrate the interpolation between wave walk and random walk depending on the strength of measurement

  6. Human treadmill walking needs attention

    Directory of Open Access Journals (Sweden)

    Daniel Olivier

    2006-08-01

    Full Text Available Abstract Background The aim of the study was to assess the attentional requirements of steady state treadmill walking in human subjects using a dual task paradigm. The extent of decrement of a secondary (cognitive RT task provides a measure of the attentional resources required to maintain performance of the primary (locomotor task. Varying the level of difficulty of the reaction time (RT task is used to verify the priority of allocation of attentional resources. Methods 11 healthy adult subjects were required to walk while simultaneously performing a RT task. Participants were instructed to bite a pressure transducer placed in the mouth as quickly as possible in response to an unpredictable electrical stimulation applied on the back of the neck. Each subject was tested under five different experimental conditions: simple RT task alone and while walking, recognition RT task alone and while walking, walking alone. A foot switch system composed of a pressure sensitive sensor was placed under the heel and forefoot of each foot to determine the gait cycle duration. Results Gait cycle duration was unchanged (p > 0.05 by the addition of the RT task. Regardless of the level of difficulty of the RT task, the RTs were longer during treadmill walking than in sitting conditions (p 0.05 was found between the attentional demand of the walking task and the decrement of performance found in the RT task under varying levels of difficulty. This finding suggests that the healthy subjects prioritized the control of walking at the expense of cognitive performance. Conclusion We conclude that treadmill walking in young adults is not a purely automatic task. The methodology and outcome measures used in this study provide an assessment of the attentional resources required by walking on the treadmill at a steady state.

  7. Physiological aspect walking and Nordic walking as adequate kinetic activities.

    OpenAIRE

    BENEŠ, Václav

    2010-01-01

    This bachelor thesis on the topic of The Physiological Aspect of Walking and Nordic Walking as an adequate physical activity focuses on chosen physiological changes of an organism during a five-month training cycle. In the theoretical part I describe the physiological changes of organism during a regularly repeated strain, and also the technique of walking, Nordic walking and health benefits of these activities are defined here. The research part of the thesis describes the measurement method...

  8. Interventions for coordination of walking following stroke: systematic review.

    Science.gov (United States)

    Hollands, Kristen L; Pelton, Trudy A; Tyson, Sarah F; Hollands, Mark A; van Vliet, Paulette M

    2012-03-01

    Impairments in gait coordination may be a factor in falls and mobility limitations after stroke. Therefore, rehabilitation targeting gait coordination may be an effective way to improve walking post-stroke. This review sought to examine current treatments that target impairments of gait coordination, the theoretical basis on which they are derived and the effects of such interventions. Few high quality RCTs with a low risk of bias specifically targeting and measuring restoration of coordinated gait were found. Consequently, we took a pragmatic approach to describing and quantifying the available evidence and included non-randomised study designs and limited the influence of heterogeneity in experimental design and control comparators by restricting meta-analyses to pre- and post-test comparisons of experimental interventions only. Results show that physiotherapy interventions significantly improved gait function and coordination. Interventions involving repetitive task-specific practice and/or auditory cueing appeared to be the most promising approaches to restore gait coordination. The fact that overall improvements in gait coordination coincided with increased walking speed lends support to the hypothesis that targeting gait coordination gait may be a way of improving overall walking ability post-stroke. However, establishing the mechanism for improved locomotor control requires a better understanding of the nature of both neuroplasticity and coordination deficits in functional tasks after stroke. Future research requires the measurement of impairment, activity and cortical activation in an effort to establish the mechanism by which functional gains are achieved. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Walking on four limbs: A systematic review of Nordic Walking in Parkinson disease.

    Science.gov (United States)

    Bombieri, Federica; Schena, Federico; Pellegrini, Barbara; Barone, Paolo; Tinazzi, Michele; Erro, Roberto

    2017-05-01

    Nordic Walking is a relatively high intensity activity that is becoming increasingly popular. It involves marching using poles adapted from cross-country skiing poles in order to activate upper body muscles that would not be used during normal walking. Several studies have been performed using this technique in Parkinson disease patients with contradictory results. Thus, we reviewed here all studies using this technique in Parkinson disease patients and further performed a meta-analysis of RCTs where Nordic Walking was evaluated against standard medical care or other types of physical exercise. Nine studies including four RCTs were reviewed for a total of 127 patients who were assigned to the Nordic Walking program. The majority of studies reported beneficial effects of Nordic Walking on either motor or non-motor variables, but many limitations were observed that hamper drawing definitive conclusions and it is largely unclear whether the benefits persist over time. It would appear that little baseline disability is the strongest predictor of response. The meta-analysis of the 4 RCTs yielded a statistically significant reduction of the UPDRS-3 score, but its value of less than 1 point does not appear to be clinically meaningful. Well-designed, large RCTs should be performed both against standard medical care and other types of physical exercise to definitively address whether Nordic Walking can be beneficial in PD. Copyright © 2017. Published by Elsevier Ltd.

  10. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking.

    Science.gov (United States)

    Kozlowski, Allan J; Bryce, Thomas N; Dijkers, Marcel P

    2015-01-01

    Powered exoskeletons have been demonstrated as being safe for persons with spinal cord injury (SCI), but little is known about how users learn to manage these devices. To quantify the time and effort required by persons with SCI to learn to use an exoskeleton for assisted walking. A convenience sample was enrolled to learn to use the first-generation Ekso powered exoskeleton to walk. Participants were given up to 24 weekly sessions of instruction. Data were collected on assistance level, walking distance and speed, heart rate, perceived exertion, and adverse events. Time and effort was quantified by the number of sessions required for participants to stand up, walk for 30 minutes, and sit down, initially with minimal and subsequently with contact guard assistance. Of 22 enrolled participants, 9 screen-failed, and 7 had complete data. All of these 7 were men; 2 had tetraplegia and 5 had motor-complete injuries. Of these, 5 participants could stand, walk, and sit with contact guard or close supervision assistance, and 2 required minimal to moderate assistance. Walk times ranged from 28 to 94 minutes with average speeds ranging from 0.11 to 0.21 m/s. For all participants, heart rate changes and reported perceived exertion were consistent with light to moderate exercise. This study provides preliminary evidence that persons with neurological weakness due to SCI can learn to walk with little or no assistance and light to somewhat hard perceived exertion using a powered exoskeleton. Persons with different severities of injury, including those with motor complete C7 tetraplegia and motor incomplete C4 tetraplegia, may be able to learn to use this device.

  11. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology

    Science.gov (United States)

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G.; Kim, Ho-Young

    2016-12-01

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  12. Walking drawings and walking ability in children with cerebral palsy.

    Science.gov (United States)

    Chong, Jimmy; Mackey, Anna H; Stott, N Susan; Broadbent, Elizabeth

    2013-06-01

    To investigate whether drawings of the self walking by children with cerebral palsy (CP) were associated with walking ability and illness perceptions. This was an exploratory study in 52 children with CP (M:F = 28:24), mean age 11.1 years (range 5-18), who were attending tertiary level outpatient clinics. Children were asked to draw a picture of themselves walking. Drawing size and content was used to investigate associations with clinical walk tests and children's own perceptions of their CP assessed using a CP version of the Brief Illness Perception Questionnaire. Larger drawings of the self were associated with less distance traveled, higher emotional responses to CP, and lower perceptions of pain or discomfort, independent of age. A larger self-to-overall drawing height ratio was related to walking less distance. Drawings of the self confined within buildings and the absence of other figures were also associated with reduced walking ability. Drawing size and content can reflect walking ability, as well as symptom perceptions and distress. Drawings may be useful for clinicians to use with children with cerebral palsy to aid discussion about their condition. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Turning is an important marker of balance confidence and walking limitation in persons with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Gautam Adusumilli

    Full Text Available The standard functional tool for gait assessment in multiple sclerosis (MS clinical trials has been the 25-Foot Timed Walk Test, a measure of gait speed. Straight-line gait assessment may not reflect adequately upon balance and coordination. Walking tests with turns may add additional information towards understanding gait and balance status, and be more reflective of ambulation in the community. Understanding the impact of turn parameters on patient-reported outcomes of balance and walking would help MS clinicians better formulate treatment plans for persons with gait limitations. In this study, ninety-one persons with MS (Expanded Disability Status Score; EDSS, range: 0-6.5 were enrolled in an initial cross-sectional study. Twenty-four subjects (EDSS, range:1.0-6.0 completed a follow-up visit an average of 12 months later. Spatiotemporal gait analysis was collected at both visits using APDM Opal wireless body-worn sensors while performing the Timed-Up-and-Go (TUG and 6-Minute Walk Test (6MWT. For both cross-sectional and longitudinal data, regression analyses determined the impact on the addition of turning parameters to stride velocity (SV, in the prediction of self-reported balance confidence (Activities-Specific Balance Confidence Scale (ABC and walking limitation (12-item Multiple Sclerosis Walking Scale (MSWS-12. The addition of 6MWT peak turn velocity (PTV to 6MWT SV increased the predictive power of the 6MWT for the ABC from 20% to 33%, and increased the predictive power from 28% to 41% for the MSWS-12. TUG PTV added to TUG SV also strengthened the relationship of the TUG for the ABC from 19% to 28%, and 27% to 36% for the MSWS-12. For those with 1 year follow-up, percent change in turn number of steps (TNS%Δ during the 6MWT added to 6MWT SV%Δ improved the modeling of ABC%Δ from 24% to 33%. 6MWT PTV%Δ added to 6MWT SV%Δ increased the predictive power of MSWS-12%Δ from 8% to 27%. Conclusively, turn parameters improved modeling of

  14. Walking performance: correlation between energy cost of walking and walking participation. new statistical approach concerning outcome measurement.

    Directory of Open Access Journals (Sweden)

    Marco Franceschini

    Full Text Available Walking ability, though important for quality of life and participation in social and economic activities, can be adversely affected by neurological disorders, such as Spinal Cord Injury, Stroke, Multiple Sclerosis or Traumatic Brain Injury. The aim of this study is to evaluate if the energy cost of walking (CW, in a mixed group of chronic patients with neurological diseases almost 6 months after discharge from rehabilitation wards, can predict the walking performance and any walking restriction on community activities, as indicated by Walking Handicap Scale categories (WHS. One hundred and seven subjects were included in the study, 31 suffering from Stroke, 26 from Spinal Cord Injury and 50 from Multiple Sclerosis. The multivariable binary logistical regression analysis has produced a statistical model with good characteristics of fit and good predictability. This model generated a cut-off value of.40, which enabled us to classify correctly the cases with a percentage of 85.0%. Our research reveal that, in our subjects, CW is the only predictor of the walking performance of in the community, to be compared with the score of WHS. We have been also identifying a cut-off value of CW cost, which makes a distinction between those who can walk in the community and those who cannot do it. In particular, these values could be used to predict the ability to walk in the community when discharged from the rehabilitation units, and to adjust the rehabilitative treatment to improve the performance.

  15. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    Science.gov (United States)

    Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.

    2016-07-01

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage.

  16. Full revivals in 2D quantum walks

    International Nuclear Information System (INIS)

    Stefanak, M; Jex, I; Kollar, B; Kiss, T

    2010-01-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.

  17. Nordic Walking May Safely Increase the Intensity of Exercise Training in Healthy Subjects and in Patients with Chronic Heart Failure.

    Science.gov (United States)

    Lejczak, Andrzej; Josiak, Krystian; Węgrzynowska-Teodorczyk, Kinga; Rudzińska, Eliza; Jankowska, Ewa A; Banasiak, Waldemar; Piepoli, Massimo F; Woźniewski, Marek; Ponikowski, Piotr

    2016-01-01

    Physical activity in patients with chronic heart failure (HF) improves the exercise capacity and quality of life, and may also reduce mortality and hospitalizations. The greatest benefits are achieved through high-intensity aerobic exercises resulting in a stronger cardiorespiratory response. Nordic walking (NW), a walking technique using two poles and mimicking the movements performed while cross-country skiing, is associated with the involvement of more muscle groups than in the case of classic walking, and should therefore make it possible to increase exercise intensity, resulting in more effective training for patients with HF. The aim of the study was to assess the feasibility and safety of the NW technique, and to compare the effort intensity while walking with and without the NW technique in both healthy subjects and in patients with chronic HF. The study involved 12 healthy individuals (aged 30 ± 10 years, 5 men) and 12 men with stable chronic systolic HF (aged 63 ± 11 years, all categorized in New York Heart Association class II, median LVEF 30%, median peak VO(2) 18.25 mL/kg/min). All the participants completed two randomly assigned submaximal walking tests (one with NW poles and one without) conducted on a level treadmill for 6 min at a constant speed of 5 km/h. Walking with the NW technique was feasible, safe and well tolerated in all subjects. In both the control group and the chronic HF group, walking with the NW technique increased peak VO(2), RER, VE, PET CO(2), HR and SBP over walking without the poles; and the fatigue grade according to the abridged Borg scale was higher. Dyspnea did not increase significantly with the NW technique. The NW technique can increase the intensity of aerobic training in a safe and well-tolerated way in both healthy individuals and in patients with chronic HF.

  18. Effects of Three Types of Exercise Interventions on Healthy Old Adults' Gait Speed : A Systematic Review and Meta-Analysis

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Lesinski, Melanie; Gäbler, Martijn; VanSwearingen, Jessie M.; Malatesta, Davide; Granacher, Urs

    2015-01-01

    Background Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose Our objective was to determine the effects of strength, power, coordination,

  19. Nordic walking versus walking without poles for rehabilitation with cardiovascular disease: Randomized controlled trial.

    Science.gov (United States)

    Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline

    2017-07-01

    With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (PNordic walking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Consumer preference in ranking walking function utilizing the walking index for spinal cord injury II.

    Science.gov (United States)

    Patrick, M; Ditunno, P; Ditunno, J F; Marino, R J; Scivoletto, G; Lam, T; Loffree, J; Tamburella, F; Leiby, B

    2011-12-01

    Blinded rank ordering. To determine consumer preference in walking function utilizing the walking Index for spinal cord injury II (WISCI II) in individuals with spinal cord injury (SCI)from the Canada, the Italy and the United States of America. In all, 42 consumers with incomplete SCI (25 cervical, 12 thoracic, 5 lumbar) from Canada (12/42), Italy (14/42) and the United States of America (16/42) ranked the 20 levels of the WISCI II scale by their individual preference for walking. Subjects were blinded to the original ranking of the WISCI II scale by clinical scientists. Photographs of each WISCI II level used in a previous pilot study were randomly shuffled and rank ordered. Percentile, conjoint/cluster and graphic analyses were performed. All three analyses illustrated consumer ranking followed a bimodal distribution. Ranking for two levels with physical assistance and two levels with a walker were bimodal with a difference of five to six ranks between consumer subgroups (quartile analysis). The larger cluster (N=20) showed preference for walking with assistance over the smaller cluster (N=12), whose preference was walking without assistance and more devices. In all, 64% (27/42) of consumers ranked WISCI II level with no devices or braces and 1 person assistance higher than multiple levels of the WISCI II requiring no assistance. These results were unexpected, as the hypothesis was that consumers would rank independent walking higher than walking with assistance. Consumer preference for walking function should be considered in addition to objective measures in designing SCI trials that use significant improvement in walking function as an outcome measure.

  1. Alzheimer random walk

    Science.gov (United States)

    Odagaki, Takashi; Kasuya, Keisuke

    2017-09-01

    Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  2. Glucose uptake heterogeneity of the leg muscles is similar between patients with multiple sclerosis and healthy controls during walking.

    Science.gov (United States)

    Kindred, John H; Ketelhut, Nathaniel B; Rudroff, Thorsten

    2015-02-01

    Difficulties in ambulation are one of the main problems reported by patients with multiple sclerosis. A previous study by our research group showed increased recruitment of muscle groups during walking, but the influence of skeletal muscle properties, such as muscle fiber activity, has not been fully elucidated. The purpose of this investigation was to use the novel method of calculating glucose uptake heterogeneity in the leg muscles of patients with multiple sclerosis and compare these results to healthy controls. Eight patients with multiple sclerosis (4 men) and 8 healthy controls (4 men) performed 15 min of treadmill walking at a comfortable self-selected speed following muscle strength tests. Participants were injected with ≈ 8 mCi of [(18)F]-fluorodeoxyglucose during walking after which positron emission tomography/computed tomography imaging was performed. No differences in muscle strength were detected between multiple sclerosis and control groups (P>0.27). Within the multiple sclerosis, group differences in muscle volume existed between the stronger and weaker legs in the vastus lateralis, semitendinosus, and semimembranosus (Pmuscle group or individual muscle of the legs (P>0.16, P≥0.05). Patients with multiple sclerosis and healthy controls showed similar muscle fiber activity during walking. Interpretations of these results, with respect to our previous study, suggest that walking difficulties in patients with multiple sclerosis may be more associated with altered central nervous system motor patterns rather than alterations in skeletal muscle properties. Published by Elsevier Ltd.

  3. 3D laser measurements of bare and shod feet during walking.

    Science.gov (United States)

    Novak, Boštjan; Možina, Janez; Jezeršek, Matija

    2014-01-01

    This article presents a new system for 3D foot-shape measurements during walking. It is based on the laser-triangulation, multiple-line-illumination and color-modulation techniques. It consists of a walking stage and four measuring modules that simultaneously acquire the foot shape from the top, bottom and side views. The measuring speed is 30 fps. Custom-developed software makes it possible to analyze the foot's dimensions at an arbitrary cross-section by means of the width, height, girth and section orientation. Six subjects were measured during bare and shod walking, and the bare foot and the outside dimensions of the footwear during the entire stance phase are presented. The relative measurement repeatability of a single subject is 0.5% for bare foot and 1% for shod foot. This means that it is possible to study the differences between various influences on the foot-shape dynamics, such as a bare/shod foot, different loading conditions and the shoe's stiffness condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Motivation and ability to walk for a food reward in fast- and slow-growing broilers to 12 weeks of age.

    Science.gov (United States)

    Bokkers, Eddie A M; Koene, Paul

    2004-09-30

    Poor physical abilities of broilers may prevent them from performing behaviours for which they are motivated. The aim of this study was to measure the influence of physical ability and motivation on the performance of broilers in short physical tasks. We tested birds from a fast- and a slow-growing broiler strain in a runway to 12 weeks of age. To manipulate motivation, half of the birds of each strain was feed deprived for 3h and the other half for 24h before testing. Each bird was tested in a control and a slalom runway test once a week. With a similar motivation, slow growers had a shorter latency to start walking and walked faster through the runway than fast growers in both tests. In fast growers walking speed decreased faster with age than in slow growers. Slow growers vocalised more in both tests. In the slalom test, 24h deprived birds vocalised more than 3h deprived birds. Although the fast and slow growers have a different genetic background, the results indicated that motivation is the dominant determinative factor for walking in birds with a low body weight, while physical ability is the dominant determinative factor for walking in birds with a high body weight.

  5. Cell phones change the way we walk.

    Science.gov (United States)

    Lamberg, Eric M; Muratori, Lisa M

    2012-04-01

    Cell phone use among pedestrians leads to increased cognitive distraction, reduced situation awareness and increases in unsafe behavior. Performing a dual-task, such as talking or texting with a cell phone while walking, may interfere with working memory and result in walking errors. At baseline, thirty-three participants visually located a target 8m ahead; then vision was occluded and they were instructed to walk to the remembered target. One week later participants were assigned to either walk, walk while talking on a cell phone, or walk while texting on a cell phone toward the target with vision occluded. Duration and final location of the heel were noted. Linear distance traveled, lateral angular deviation from the start line, and gait velocity were derived. Changes from baseline to testing were analyzed with paired t-tests. Participants engaged in cell phone use presented with significant reductions in gait velocity (texting: 33% reduction, p=0.01; talking: 16% reduction, p=0.02). Moreover, participants who were texting while walking demonstrated a 61% increase in lateral deviation (p=0.04) and 13% increase in linear distance traveled (p=0.03). These results suggest that the dual-task of walking while using a cell phone impacts executive function and working memory and influences gait to such a degree that it may compromise safety. Importantly, comparison of the two cell phone conditions demonstrates texting creates a significantly greater interference effect on walking than talking on a cell phone. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Effect of training in minimalist footwear on oxygen consumption during walking and running.

    Science.gov (United States)

    Bellar, D; Judge, L W

    2015-06-01

    The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg(-1)·min(-1)) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr(-1)), light running (7.2 km·hr(-1)), and moderate running (9.6 km·hr(-1)). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, [Formula: see text]=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr(-1) (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr(-1). At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar.

  7. Quadriceps strength, quadriceps power, and gait speed in older U.S. adults with diabetes mellitus: results from the National Health and Nutrition Examination Survey, 1999-2002.

    Science.gov (United States)

    Kalyani, Rita Rastogi; Tra, Yolande; Yeh, Hsin-Chieh; Egan, Josephine M; Ferrucci, Luigi; Brancati, Frederick L

    2013-05-01

    To examine the independent association between diabetes mellitus (and its duration and severity) and quadriceps strength, quadriceps power, and gait speed in a national population of older adults. Cross-sectional nationally representative survey. United States. Two thousand five hundred seventy-three adults aged 50 and older in the National Health and Nutrition Examination Survey 1999-2002 who had assessment of quadriceps strength. Diabetes mellitus was ascertained according to questionnaire. Measurement of isokinetic knee extensor (quadriceps) strength was performed at 60º/s. Gait speed was assessed using a 20-foot walk test. Multiple linear regression analyses were used to assess the association between diabetes mellitus status and outcomes, adjusting for potential confounders or mediators. Older U.S. adults with diabetes mellitus had significantly slower gait speed (0.96 ± 0.02 m/s) than those without (1.08 ± 0.01 m/s; P diabetes mellitus was also associated with significantly lower quadriceps strength (-4.6 ± 1.9 Nm; P = .02) and power (-4.9 ± 2.0 W; P = .02) and slower gait speed (-0.05 ± 0.02 m/s; P = .002). Associations remained significant after adjusting for physical activity and C-reactive protein. After accounting for comorbidities (cardiovascular disease, peripheral neuropathy, amputation, cancer, arthritis, fracture, chronic obstructive pulmonary disease), diabetes mellitus was independently associated only with gait speed (-0.04 ± 0.02 m/s; P = .02). Diabetes mellitus duration in men and women was negatively associated with age-adjusted quadriceps strength (-5.7 and -3.5 Nm/decade of diabetes mellitus, respectively) and power (-6.1 and -3.8 W/decade of diabetes mellitus, respectively) (all P ≤ .001, no significant interactions according to sex). Glycosylated hemoglobin was not associated with outcomes after accounting for body weight. Older U.S. adults with diabetes mellitus have lower quadriceps strength and quadriceps power that is related

  8. Are modular activations altered in lower limb muscles of persons with Multiple Sclerosis during walking? Evidence from muscle synergies and biomechanical analysis

    Directory of Open Access Journals (Sweden)

    Tiziana Lencioni

    2016-12-01

    Full Text Available BackgroundPersons with Multiple Sclerosis frequently have gait deficits that lead to diminished activities of daily living. Identification of motoneuron activity patterns may elucidate new insight into impaired locomotor coordination and underlying neural systems. The aim of the present study was to investigate muscle synergies, identified by motor modules and their activation profiles, in persons with Multiple Sclerosis (PwMS during walking compared to those of healthy subjects (HS, as well as, exploring relationship of muscle synergies with walking ability of PwMS.MethodsSeventeen PwMS walked at their natural speed while 12 HS walked at slower than their natural speeds in order to provide normative gait values at matched speeds (spatio-temporal, kinematic and kinetic parameters and electromyography signals. Non-negative matrix factorization was used to identify muscle synergies from eight muscles. Pearson's correlation coefficient was used to evaluate the similarity of motor modules between PwMS and HS. To assess differences in module activations, each module's activation timing was integrated over 100% of gait cycle and the activation percentage was computed in six phases.ResultsFifty-nine% of PwMS and 58% of HS had 4 modules while the remaining of both populations had 3 modules. Module 2 (related to soleus, medial and lateral gastrocnemius primarily involved in mid and terminal stance and Module 3 (related to tibialis anterior and rectus femoris primarily involved in early stance, and early and late swing were comparable across all subjects regardless of synergies number. PwMS had shorter stride length, longer double support phase and push off deficit with respect to HS (p<0.05. The alterations of activation timing profiles of specific modules in PwMS were associated with their walking deficits (e.g. the reduction of Module 2 activation percentage index in terminal stance, PwMS 35.55±13.23 vs HS 50.51±9.13% p<0.05, and the push off deficit

  9. Locally Perturbed Random Walks with Unbounded Jumps

    OpenAIRE

    Paulin, Daniel; Szász, Domokos

    2010-01-01

    In \\cite{SzT}, D. Sz\\'asz and A. Telcs have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if $d \\ge 2$. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of \\cite{SzT} to unbounded random walks whose jump distribution belongs to th...

  10. Effects of shoe sole geometry on toe clearance and walking stability in older adults.

    Science.gov (United States)

    Thies, S B; Price, C; Kenney, L P J; Baker, R

    2015-07-01

    Thirty-five percent of people above age 65 fall each year, and half of their falls are associated with tripping: tripping, an apparently 'mundane' everyday problem, therefore, significantly impacts on older people's health and associated medical costs. To avoid tripping and subsequent falling, sufficient toe clearance during the swing phase is crucial. We previously found that a rocker-shaped shoe sole enhances toe clearance in young adults, thereby decreasing their trip-risk. This study investigates whether such sole design also enhances older adults' toe clearance, without inadvertently affecting their walking stability. Toe clearance and its variability are reported together with measures of walking stability for twelve older adults, walking in shoes with rocker angles of 10°, 15°, and 20°. Surface inclinations (flat, incline, decline) were chosen to reflect a potential real-world environment. Toe clearance increased substantially from the 10° to the 15° rocker angle (p=0.003) without compromising measures of walking stability (p>0.05). A further increase in rocker angle to 20° resulted in less substantial enhancement of toe clearance and came at the cost of a decrease in gait speed on the decline. The novelty of this investigation lies in the exploration of the trade-off between reduction of trip-risk through footwear design and adverse effects on walking stability on real-life relevant surfaces. Our two studies suggest that the current focus on slip-resistance in footwear design may need to be generalised to include other factors that affect trip-risk. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Random walk through fractal environments

    International Nuclear Information System (INIS)

    Isliker, H.; Vlahos, L.

    2003-01-01

    We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations

  12. Self-reported walking ability predicts functional mobility performance in frail older adults.

    Science.gov (United States)

    Alexander, N B; Guire, K E; Thelen, D G; Ashton-Miller, J A; Schultz, A B; Grunawalt, J C; Giordani, B

    2000-11-01

    related to one Katz ADL item, walking (eta-squared ranging from 0.15 to 0.33) as all of the Katz ADL items combined (eta-squared ranging from 0.21 to 0.35). Tests of problem solving and psychomotor speed, the Trails A and Trails B tests, are significantly correlated with the residuals from the self-report and performance-based ANOVA models. Compared with the rest of the EPESE self-report items, self-report items related to walking (such as Katz walking and Rosow-Breslau items) are better predictors of functional mobility performance on tasks involving walking, stance maintenance, and rising from chairs. Compared with other self-report items, self-reported walking ability may be the best predictor of overall functional mobility.

  13. Shedding light on walking in the dark: the effects of reduced lighting on the gait of older adults with a higher-level gait disorder and controls

    Directory of Open Access Journals (Sweden)

    Gruendlinger Leor

    2005-08-01

    Full Text Available Abstract Objective To study the effects of reduced lighting on the gait of older adults with a high level gait disorder (HLGD and to compare their response to that of healthy elderly controls. Methods 22 patients with a HLGD and 20 age-matched healthy controls were studied under usual lighting conditions (1000 lumens and in near darkness (5 lumens. Gait speed and gait dynamics were measured under both conditions. Cognitive function, co-morbidities, depressive symptoms, and vision were also evaluated. Results Under usual lighting conditions, patients walked more slowly, with reduced swing times, and increased stride-to-stride variability, compared to controls. When walking under near darkness conditions, both groups slowed their gait. All other measures of gait were not affected by lighting in the controls. In contrast, patients further reduced their swing times and increased their stride-to-stride variability, both stride time variability and swing time variability. The unique response of the patients was not explained by vision, mental status, co-morbidities, or the values of walking under usual lighting conditions. Conclusion Walking with reduced lighting does not affect the gait of healthy elderly subjects, except for a reduction in speed. On the other hand, the gait of older adults with a HLGD becomes more variable and unsteady when they walk in near darkness, despite adapting a slow and cautious gait. Further work is needed to identify the causes of the maladaptive response among patients with a HLGD and the potential connection between this behavior and the increased fall risk observed in these patients.

  14. Speed test results and hardware/software study of computational speed problem, appendix D

    Science.gov (United States)

    1984-01-01

    The HP9845C is a desktop computer which is tested and evaluated for processing speed. A study was made to determine the availability and approximate cost of computers and/or hardware accessories necessary to meet the 20 ms sample period speed requirements. Additional requirements were that the control algorithm could be programmed in a high language and that the machine have sufficient storage to store the data from a complete experiment.

  15. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  16. Kinetic analysis of the function of the upper body for elite race walkers during official men 20 km walking race.

    Science.gov (United States)

    Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu

    2016-10-01

    This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.

  17. Kinematic evaluation of virtual walking trajectories.

    Science.gov (United States)

    Cirio, Gabriel; Olivier, Anne-Hélène; Marchal, Maud; Pettré, Julien

    2013-04-01

    Virtual walking, a fundamental task in Virtual Reality (VR), is greatly influenced by the locomotion interface being used, by the specificities of input and output devices, and by the way the virtual environment is represented. No matter how virtual walking is controlled, the generation of realistic virtual trajectories is absolutely required for some applications, especially those dedicated to the study of walking behaviors in VR, navigation through virtual places for architecture, rehabilitation and training. Previous studies focused on evaluating the realism of locomotion trajectories have mostly considered the result of the locomotion task (efficiency, accuracy) and its subjective perception (presence, cybersickness). Few focused on the locomotion trajectory itself, but in situation of geometrically constrained task. In this paper, we study the realism of unconstrained trajectories produced during virtual walking by addressing the following question: did the user reach his destination by virtually walking along a trajectory he would have followed in similar real conditions? To this end, we propose a comprehensive evaluation framework consisting on a set of trajectographical criteria and a locomotion model to generate reference trajectories. We consider a simple locomotion task where users walk between two oriented points in space. The travel path is analyzed both geometrically and temporally in comparison to simulated reference trajectories. In addition, we demonstrate the framework over a user study which considered an initial set of common and frequent virtual walking conditions, namely different input devices, output display devices, control laws, and visualization modalities. The study provides insight into the relative contributions of each condition to the overall realism of the resulting virtual trajectories.

  18. Intelligent speed adaptation: Preliminary results of on-road study in Penang, Malaysia

    Directory of Open Access Journals (Sweden)

    S.M.R. Ghadiri

    2013-03-01

    Full Text Available The first field experiment with intelligent speed adaptation (ISA in Malaysia was held in December 2010 in the State of Penang. Eleven private cars were instrumented with an advisory system. The system used in the present study included a vocal warning message and a visual text message that is activated when the driver attempts to exceed the speed limit. When the driver decreases the speed, the warning stops; otherwise it is continuously repeated. The test drivers drove the vehicles for three months with the installed system, and the speed was continuously logged in all vehicles. The warning was however only activated in the second month of the three month period. The present study aimed to evaluate the effects of an advisory ISA on driving speed, traffic safety, and drivers' attitude, behavior, and acceptance of the system. To examine these effects, both the survey and the logged speed data were analyzed and explored. The results show a significant reduction in the mean, maximum and 85th percentile speed due to the use of the system. However, there was no long-lasting effect on the speed when the system was deactivated. In the post-trial survey, drivers declared that the system helped them well in following the speed limits and that it assisted them in driving more comfortably. Furthermore, the warning method was more accepted compared to a supportive system, such as active accelerator pedal (AAP. After the trial, most drivers were willing to keep an ISA system.

  19. Comparative analysis of speed's impact on muscle demands during partial body weight support motor-assisted elliptical training.

    Science.gov (United States)

    Burnfield, Judith M; Irons, Sonya L; Buster, Thad W; Taylor, Adam P; Hildner, Gretchen A; Shu, Yu

    2014-01-01

    Individuals with walking limitations often experience challenges engaging in functionally relevant exercise. An adapted elliptical trainer (motor to assist pedal movement, integrated body weight harness, ramps/stairs, and grab rails) has been developed to help individuals with physical disabilities and chronic conditions regain/retain walking capacity and fitness. However, limited published studies are available to guide therapeutic interventions. This repeated measures study examined the influence of motor-assisted elliptical training speed on lower extremity muscle demands at four body weight support (BWS) levels commonly used therapeutically for walking. Electromyography (EMG) and pedal trajectory data were recorded as ten individuals without known disability used the motor-assisted elliptical trainer at three speeds [20,40, 60 revolutions per minute (RPM)] during each BWS level (0%, 20%, 40%, 60%). Overall, the EMG activity (peak, mean, duration) in key stabilizer muscles (i.e., gluteus medius, gluteus maximus, vastus lateralis, medial gastrocnemius and soleus) recorded at 60 RPM exceeded those at 40 RPM, which were higher than values at 20 RPM in all but three situations (gluteus medius mean at 0% BWS, vastus lateralis mean at 20% BWS, soleus duration at 40% BWS); however, these differences did not always achieve statistical significance. Slower motor-assisted speeds can be used to accommodate weakness of gluteus medius, gluteus maximus, vastus lateralis, medial gastrocnemius and soleus. As strength improves, training at faster motor-assisted speeds may provide a means to progressively challenge key lower extremity stabilizers. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Different instructions during the ten-meter walking test determined significant increases in maximum gait speed in individuals with chronic hemiparesis Diferentes instruções durante teste de velocidade de marcha determinam aumento significativo na velocidade máxima de indivíduos com hemiparesia crônica

    Directory of Open Access Journals (Sweden)

    Lucas R. Nascimento

    2012-04-01

    Full Text Available OBJECTIVE: To evaluate the effects of different instructions for the assessment of maximum walking speed during the ten-meter walking test with chronic stroke subjects. METHODS: Participants were instructed to walk under four experimental conditions: (1 comfortable speed, (2 maximum speed (simple verbal command, (3 maximum speed (modified verbal command-"catch a bus" and (4 maximum speed (verbal command + demonstration. Participants walked three times in each condition and the mean time to cover the intermediate 10 meters of a 14-meter corridor was registered to calculate the gait speed (m/s. Repeated-measures ANOVAs, followed by planned contrasts, were employed to investigate differences between the conditions (α=5%. Means, standard deviations and 95% confidence intervals (CI were calculated. RESULTS: The mean values for the four conditions were: (1 0.74m/s; (2 0.85 m/s; (3 0.93 m/s; (4 0.92 m/s, respectively, with significant differences between the conditions (F=40.9; pOBJETIVO: Avaliar os efeitos de diferentes instruções para avaliação da velocidade de marcha máxima de indivíduos hemiparéticos durante o teste de caminhada de 10 metros. MÉTODOS: Os indivíduos deambularam em quatro condições experimentais: (1 velocidade habitual, (2 velocidade máxima (comando verbal simples, (3 velocidade máxima (comando verbal modificado: pegar ônibus, (4 velocidade máxima (comando verbal + demonstração. Solicitou-se a cada participante que deambulasse três vezes em cada condição, e a média do tempo necessário para percorrer os 10 metros intermediários de um corredor de 14 metros foi utilizada para cálculo da velocidade (m/s. A ANOVA de medidas repetidas, com contrastes pré-planejados, foi utilizada para comparação dos dados (α=5%, sendo apresentados valores de média, desvio-padrão e intervalos de confiança (IC de 95%. RESULTADOS: As médias de velocidade para as quatro condições foram: (1 0,74m/s; (2 0,85m/s; (3 0,93m/s; (4

  1. Does getting a dog increase recreational walking?

    Directory of Open Access Journals (Sweden)

    Knuiman Matthew W

    2008-03-01

    Full Text Available Abstract Background This study examines changes in socio-demographic, environmental and intrapersonal factors associated with dog acquisition in non-dog owners at baseline to 12-months follow-up and the effect of dog acquisition on minutes per week of recreational walking. Methods RESIDE study participants completed self-administered questionnaires (baseline and 12-months follow-up measuring physical activity, dog ownership, dog walking behavior as well as environmental, intrapersonal and socio-demographic factors. Analysis was restricted to 'Continuing non-owners' (i.e., non-owners at both baseline and follow-up; n = 681 and 'New dog owners' (i.e., non-owners who acquired a dog by follow-up; n = 92. Results Overall, 12% of baseline non-owners had acquired a dog at follow-up. Dog acquisition was associated with working and having children at home. Those who changed from single to couple marital status were also more likely to acquire a dog. The increase in minutes of walking for recreation within the neighborhood from baseline to follow-up was 48 minutes/week for new dog owners compared with 12 minutes/week for continuing non-owners (p p p > 0.05 after further adjustment for change in baseline to follow-up variables. Increase in intention to walk was the main factor contributing to attenuation of the effect of dog acquisition on recreational walking. Conclusion This study used a large representative sample of non-owners to examine the relationship between dog acquisition and recreational walking and provides evidence to suggest that dog acquisition leads to an increase in walking. The most likely mechanism through which dog acquisition facilitates increased physical activity is through behavioral intention via the dog's positive effect on owner's cognitive beliefs about walking, and through the provision of motivation and social support for walking. The results suggest that behavioral intention mediates the relationship between dog acquisition

  2. Using GPS-derived speed patterns for recognition of transport modes in adults

    NARCIS (Netherlands)

    Huss, Anke|info:eu-repo/dai/nl/331385880; Beekhuizen, Johan|info:eu-repo/dai/nl/34472641X; Kromhout, Hans|info:eu-repo/dai/nl/074385224; Vermeulen, Roel|info:eu-repo/dai/nl/216532620

    2014-01-01

    BACKGROUND: Identification of active or sedentary modes of transport is of relevance for studies assessing physical activity or addressing exposure assessment. We assessed in a proof-of-principle study if speed as logged by GPSs could be used to identify modes of transport (walking, bicycling, and

  3. A Longitudinal Analysis of the Influence of the Neighborhood Environment on Recreational Walking within the Neighborhood: Results from RESIDE.

    Science.gov (United States)

    Christian, Hayley; Knuiman, Matthew; Divitini, Mark; Foster, Sarah; Hooper, Paula; Boruff, Bryan; Bull, Fiona; Giles-Corti, Billie

    2017-07-12

    There is limited longitudinal evidence confirming the role of neighborhood environment attributes in encouraging people to walk more or if active people simply choose to live in activity-friendly neighborhoods. Natural experiments of policy changes to create more walkable communities provide stronger evidence for a causal effect of neighborhood environments on residents' walking. We aimed to investigate longitudinal associations between objective and perceived neighborhood environment measures and neighborhood recreational walking. We analyzed longitudinal data collected over 8 yr (four surveys) from the RESIDential Environments (RESIDE) Study (Perth, Australia, 2003-2012). At each time point, participants reported the frequency and total minutes of recreational walking/week within their neighborhood and neighborhood environment perceptions. Objective measures of the neighborhood environment were generated using a Geographic Information System (GIS). Local recreational walking was influenced by objectively measured access to a medium-/large-size park, beach access, and higher street connectivity, which was reduced when adjusted for neighborhood perceptions. In adjusted models, positive perceptions of access to a park and beach, higher street connectivity, neighborhood esthetics, and safety from crime were independent determinants of increased neighborhood recreational walking. Local recreational walking increased by 9 min/wk (12% increase in frequency) for each additional perceived neighborhood attribute present. Our findings provide urban planners and policy makers with stronger causal evidence of the positive impact of well-connected neighborhoods and access to local parks of varying sizes on local residents' recreational walking and health. https://doi.org/10.1289/EHP823.

  4. Walking, sustainability and health: findings from a study of a Walking for Health group.

    Science.gov (United States)

    Grant, Gordon; Machaczek, Kasia; Pollard, Nick; Allmark, Peter

    2017-05-01

    Not only is it tacitly understood that walking is good for health and well-being but there is also now robust evidence to support this link. There is also growing evidence that regular short walks can be a protective factor for a range of long-term health conditions. Walking in the countryside can bring additional benefits, but access to the countryside brings complexities, especially for people with poorer material resources and from different ethnic communities. Reasons for people taking up walking as a physical activity are reasonably well understood, but factors linked to sustained walking, and therefore sustained benefit, are not. Based on an ethnographic study of a Walking for Health group in Lincolnshire, UK, this paper considers the motivations and rewards of group walks for older people. Nineteen members of the walking group, almost all with long-term conditions, took part in tape-recorded interviews about the personal benefits of walking. The paper provides insights into the links between walking as a sustainable activity and health, and why a combination of personal adaptive capacities, design elements of the walks and relational achievements of the walking group are important to this understanding. The paper concludes with some observations about the need to reframe conventional thinking about adherence to physical activity programmes. © 2017 John Wiley & Sons Ltd.

  5. Quantum Walks on the Line with Phase Parameters

    Science.gov (United States)

    Villagra, Marcos; Nakanishi, Masaki; Yamashita, Shigeru; Nakashima, Yasuhiko

    In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.

  6. Cognitive Resource Demands of Redirected Walking.

    Science.gov (United States)

    Bruder, Gerd; Lubas, Paul; Steinicke, Frank

    2015-04-01

    Redirected walking allows users to walk through a large-scale immersive virtual environment (IVE) while physically remaining in a reasonably small workspace. Therefore, manipulations are applied to virtual camera motions so that the user's self-motion in the virtual world differs from movements in the real world. Previous work found that the human perceptual system tolerates a certain amount of inconsistency between proprioceptive, vestibular and visual sensation in IVEs, and even compensates for slight discrepancies with recalibrated motor commands. Experiments showed that users are not able to detect an inconsistency if their physical path is bent with a radius of at least 22 meters during virtual straightforward movements. If redirected walking is applied in a smaller workspace, manipulations become noticeable, but users are still able to move through a potentially infinitely large virtual world by walking. For this semi-natural form of locomotion, the question arises if such manipulations impose cognitive demands on the user, which may compete with other tasks in IVEs for finite cognitive resources. In this article we present an experiment in which we analyze the mutual influence between redirected walking and verbal as well as spatial working memory tasks using a dual-tasking method. The results show an influence of redirected walking on verbal as well as spatial working memory tasks, and we also found an effect of cognitive tasks on walking behavior. We discuss the implications and provide guidelines for using redirected walking in virtual reality laboratories.

  7. Walking to health.

    Science.gov (United States)

    Morris, J N; Hardman, A E

    1997-05-01

    Walking is a rhythmic, dynamic, aerobic activity of large skeletal muscles that confers the multifarious benefits of this with minimal adverse effects. Walking, faster than customary, and regularly in sufficient quantity into the 'training zone' of over 70% of maximal heart rate, develops and sustains physical fitness: the cardiovascular capacity and endurance (stamina) for bodily work and movement in everyday life that also provides reserves for meeting exceptional demands. Muscles of the legs, limb girdle and lower trunk are strengthened and the flexibility of their cardinal joints preserved; posture and carriage may improve. Any amount of walking, and at any pace, expends energy. Hence the potential, long term, of walking for weight control. Dynamic aerobic exercise, as in walking, enhances a multitude of bodily processes that are inherent in skeletal muscle activity, including the metabolism of high density lipoproteins and insulin/glucose dynamics. Walking is also the most common weight-bearing activity, and there are indications at all ages of an increase in related bone strength. The pleasurable and therapeutic, psychological and social dimensions of walking, whilst evident, have been surprisingly little studied. Nor has an economic assessment of the benefits and costs of walking been attempted. Walking is beneficial through engendering improved fitness and/or greater physiological activity and energy turnover. Two main modes of such action are distinguished as: (i) acute, short term effects of the exercise; and (ii) chronic, cumulative adaptations depending on habitual activity over weeks and months. Walking is often included in studies of exercise in relation to disease but it has seldom been specifically tested. There is, nevertheless, growing evidence of gains in the prevention of heart attack and reduction of total death rates, in the treatment of hypertension, intermittent claudication and musculoskeletal disorders, and in rehabilitation after heart

  8. Increasing Walking in the Hartsfield-Jackson Atlanta International Airport: The Walk to Fly Study.

    Science.gov (United States)

    Fulton, Janet E; Frederick, Ginny M; Paul, Prabasaj; Omura, John D; Carlson, Susan A; Dorn, Joan M

    2017-07-01

    To test the effectiveness of a point-of-decision intervention to prompt walking, versus motorized transport, in a large metropolitan airport. We installed point-of-decision prompt signage at 4 locations in the airport transportation mall at Hartsfield-Jackson Atlanta International Airport (Atlanta, GA) at the connecting corridor between airport concourses. Six ceiling-mounted infrared sensors counted travelers entering and exiting the study location. We collected traveler counts from June 2013 to May 2016 when construction was present and absent (preintervention period: June 2013-September 2014; postintervention period: September 2014-May 2016). We used a model that incorporated weekly walking variation to estimate the intervention effect on walking. There was an 11.0% to 16.7% relative increase in walking in the absence of airport construction where 580 to 810 more travelers per day chose to walk. Through May 2016, travelers completed 390 000 additional walking trips. The Walk to Fly study demonstrated a significant and sustained increase in the number of airport travelers choosing to walk. Providing signage about options to walk in busy locations where reasonable walking options are available may improve population levels of physical activity and therefore improve public health.

  9. "On" freezing in Parkinson's disease: resistance to visual cue walking devices.

    Science.gov (United States)

    Kompoliti, K; Goetz, C G; Leurgans, S; Morrissey, M; Siegel, I M

    2000-03-01

    To measure "on" freezing during unassisted walking (UW) and test if two devices, a modified inverted stick (MIS) and a visual laser beam stick (LBS) improved walking speed and number of "on" freezing episodes in patients with Parkinson's disease (PD). Multiple visual cues can overcome "off' freezing episodes and can be useful in improving gait function in parkinsonian patients. These devices have not been specifically tested in "on" freezing, which is unresponsive to pharmacologic manipulations. Patients with PD, motor fluctuations and freezing while "on," attempted walking on a 60-ft track with each of three walking conditions in a randomized order: UW, MIS, and LBS. Total time to complete a trial, number of freezes, and the ratio of walking time to the number of freezes were compared using Friedman's test. Twenty-eight patients with PD, mean age 67.81 years (standard deviation [SD] 7.54), mean disease duration 13.04 years (SD 7.49), and mean motor Unified Parkinson's Disease Rating Scale score "on" 32.59 (SD 10.93), participated in the study. There was a statistically significant correlation of time needed to complete a trial and number of freezes for all three conditions (Spearman correlations: UW 0.973, LBS 0.0.930, and MIS 0.842). The median number of freezes, median time to walk in each condition, and median walking time per freeze were not significantly different in pairwise comparisons of the three conditions (Friedman's test). Of the 28 subjects, six showed improvement with the MIS and six with the LBS in at least one outcome measure. Assisting devices, specifically based on visual cues, are not consistently beneficial in overcoming "on" freezing in most patients with PD. Because this is an otherwise untreatable clinical problem and because occasional subjects do respond, cautious trials of such devices under the supervision of a health professional should be conducted to identify those patients who might benefit from their long-term use.

  10. Dilemma Produced by Infinity of a Random Walk

    International Nuclear Information System (INIS)

    Li Jing-Hui

    2015-01-01

    We report a dilemma produced by the infinity of a random walk moving along a two-dimensional space sidestep. For this random walk, our investigation shows that using a different model can lead to a different diffusion coefficient of the random walk, which is produced by the infinity of the random walk. The result obtained by us in the present work can serve as a warning to us when we build the models to investigate the corresponding scientific problems. (paper)

  11. Learning to walk changes infants' social interactions.

    Science.gov (United States)

    Clearfield, Melissa W

    2011-02-01

    The onset of crawling marks a motor, cognitive and social milestone. The present study investigated whether independent walking marks a second milestone for social behaviors. In Experiment 1, the social and exploratory behaviors of crawling infants were observed while crawling and in a baby-walker, resulting in no differences based on posture. In Experiment 2, the social behaviors of independently walking infants were compared to age-matched crawling infants in a baby-walker. Independently walking infants spent significantly more time interacting with the toys and with their mothers, and also made more vocalizations and more directed gestures compared to infants in the walker. Experiment 3 tracked infants' social behaviors longitudinally across the transition from crawling and walking. Even when controlled for age, the transition to independent walking marked increased interaction time with mothers, as well as more sophisticated interactions, including directing mothers' attention to particular objects. The results suggest a developmental progression linking social interactions with milestones in locomotor development. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Toe Walking in Children

    Science.gov (United States)

    ... prone to damage and weaken over time. This diagnosis might be more likely if your child initially walked normally before starting to toe walk. Autism. Toe walking has been linked to autism spectrum ...

  13. Air pollution and activity during transportation by car, subway, and walking.

    Science.gov (United States)

    Morabia, Alfredo; Amstislavski, Philippe N; Mirer, Franklin E; Amstislavski, Tashia M; Eisl, Holger; Wolff, Mary S; Markowitz, Steven B

    2009-07-01

    Little evidence exists about the health risks and benefits associated with using public buses and subways rather than cars. The objective of the current study was to assess the magnitude and variance of personal exposure to particulate matter 2.5 microns or smaller (PM(2.5)) and concomitant physical activity energy expenditure (PAEE) for transportation by car, subway, or walking. Twenty nonsmoking volunteers from New York City traveled on predetermined routes by car, subway, and walking, for up to 8 hours on 3 different days, between October 2007 and February 2008. Outfitted with a personal monitor with PM(2.5) aerosol inlet, and a GPS receiver, they completed a detailed physical activity diary for each route. Both metabolic equivalent (MET) and PAEE rates (Kcal/min) were computed from GPS-derived activity durations and speeds, activity-specific METs, and measured body weight. Total PM(2.5) exposures did not differ among car, subway, and walking arms (respectively, 21.4, 30.6, and 26.5 microg/m(3) x min, p=0.19); but average MET values (respectively, 1.51, 2.03, and 2.60 Kcal/kg x hr, ptransportation.

  14. Does parkland influence walking? The relationship between area of parkland and walking trips in Melbourne, Australia

    Directory of Open Access Journals (Sweden)

    King Tania L

    2012-09-01

    Full Text Available Abstract Background Using two different measures of park area, at three buffer distances, we sought to investigate the ways in which park area and proximity to parks, are related to the frequency of walking (for all purposes in Australian adults. Little previous research has been conducted in this area, and results of existing research have been mixed. Methods Residents of 50 urban areas in metropolitan Melbourne, Australia completed a physical activity survey (n = 2305. Respondents reported how often they walked for ≥10 minutes in the previous month. Walking frequency was dichotomised to ‘less than weekly’ (less than 1/week and ‘at least weekly’ (1/week or more. Using Geographic Information Systems, Euclidean buffers were created around each respondent’s home at three distances: 400metres (m, 800 m and 1200 m. Total area of parkland in each person’s buffer was calculated for the three buffers. Additionally, total area of ‘larger parks’, (park space ≥ park with Australian Rules Football oval (17,862 m2, was calculated for each set of buffers. Area of park was categorised into tertiles for area of all parks, and area of larger parks (the lowest tertile was used as the reference category. Multilevel logistic regression, with individuals nested within areas, was used to estimate the effect of area of parkland on walking frequency. Results No statistically significant associations were found between walking frequency and park area (total and large parks within 400 m of respondent’s homes. For total park area within 800 m, the odds of walking at least weekly were lower for those in the mid (OR 0.65, 95% CI 0.46-0.91 and highest (OR 0.65, 95% CI 0.44-0.95 tertile of park area compared to those living in areas with the least amount of park area. Similar results were observed for total park area in the 1200 m buffers. When only larger parks were investigated, again more frequent walking was less likely when respondents had

  15. Analysis of the 30-m running speed test results in soccer players in third soccer leagues

    Directory of Open Access Journals (Sweden)

    Miłosz Drozd

    2018-04-01

    Full Text Available The basic goal of this study was to analysis of the results of the 30-m running speed test in soccer players in third soccer leagues. The study examined the group of randomly selected seventy athletes from two soccer teams from the Ekstraklasa league, two teams from the first league and two teams from the second leagues were randomized into the study group. All the measurements were performed in indoor arenas. The temperature in the arenas ranged from 22 to 24 C. Measurements were recorded in the morning (between 10:00 am and 12:00 am. The Running Speed Test was used in the study to diagnose speed potential in the athletes. The running speed was measured by means of a set of photocells located at 0m, 5m, 20m, 30m. The results obtained demonstrated that the elite-level matches are more dynamic since the players show higher values of speed parameters. Apart from starting speed, the results obtained for the distance of 5 m provide information for coaches concerning their work on special strength. The speed is indicated by the results obtained for 20 and 30 m distances, whereas flying measurements between 5/20m and 20/30m reflect inherited speed aptitudes.

  16. Sensitivity analysis and comparison of two methods of using heart rate to represent energy expenditure during walking.

    Science.gov (United States)

    Karimi, Mohammad Taghi

    2015-01-01

    Heart rate is an accurate and easy to use method to represent the energy expenditure during walking, based on physiological cost index (PCI). However, in some conditions the heart rate during walking does not reach to a steady state. Therefore, it is not possible to determine the energy expenditure by use of the PCI index. The total heart beat index (THBI) is a new method to solve the aforementioned problem. The aim of this research project was to find the sensitivity of both the physiological cost index (PCI) and total heart beat index (THBI). Fifteen normal subjects and ten patients with flatfoot disorder and two subjects with spinal cord injury were recruited in this research project. The PCI and THBI indexes were determined by use of heart beats with respect to walking speed and total distance walked, respectively. The sensitivity of PCI was more than that of THBI index in the three groups of subjects. Although the PCI and THBI indexes are easy to use and reliable parameters to represent the energy expenditure during walking, their sensitivity is not high to detect the influence of some orthotic interventions, such as use of insoles or using shoes on energy expenditure during walking.

  17. Allegheny County Walk Scores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Walk Score measures the walkability of any address using a patented system developed by the Walk Score company. For each 2010 Census Tract centroid, Walk Score...

  18. Optimal stride frequencies in running at different speeds.

    Directory of Open Access Journals (Sweden)

    Ben T van Oeveren

    Full Text Available During running at a constant speed, the optimal stride frequency (SF can be derived from the u-shaped relationship between SF and heart rate (HR. Changing SF towards the optimum of this relationship is beneficial for energy expenditure and may positively change biomechanics of running. In the current study, the effects of speed on the optimal SF and the nature of the u-shaped relation were empirically tested using Generalized Estimating Equations. To this end, HR was recorded from twelve healthy (4 males, 8 females inexperienced runners, who completed runs at three speeds. The three speeds were 90%, 100% and 110% of self-selected speed. A self-selected SF (SFself was determined for each of the speeds prior to the speed series. The speed series started with a free-chosen SF condition, followed by five imposed SF conditions (SFself, 70, 80, 90, 100 strides·min-1 assigned in random order. The conditions lasted 3 minutes with 2.5 minutes of walking in between. SFself increased significantly (p<0.05 with speed with averages of 77, 79, 80 strides·min-1 at 2.4, 2.6, 2.9 m·s-1, respectively. As expected, the relation between SF and HR could be described by a parabolic curve for all speeds. Speed did not significantly affect the curvature, nor did it affect optimal SF. We conclude that over the speed range tested, inexperienced runners may not need to adapt their SF to running speed. However, since SFself were lower than the SFopt of 83 strides·min-1, the runners could reduce HR by increasing their SFself.

  19. Thermodynamics and entanglements of walks under stress

    International Nuclear Information System (INIS)

    Janse van Rensburg, E J; Orlandini, E; Tesi, M C; Whittington, S G

    2009-01-01

    We use rigorous arguments and Monte Carlo simulations to study the thermodynamics and the topological properties of self-avoiding walks on the cubic lattice subjected to an external force f. The walks are anchored at one or both endpoints to an impenetrable plane at Z = 0 and the force is applied in the Z-direction. If a force is applied to the free endpoint of an anchored walk, then a model of pulled walks is obtained. If the walk is confined to a slab and a force is applied to the top bounding plane, then a model of stretched walks is obtained. For both models we prove the existence of the limiting free energy for any value of the force and we show that, for compressive forces, the thermodynamic properties of the two models differ substantially. For pulled walks we prove the existence of a phase transition that, by numerical simulation, we estimate to be second order and located at f = 0. By using a pattern theorem for large positive forces we show that almost all sufficiently long stretched walks are knotted. We examine the entanglement complexity of stretched and pulled walks; our numerical results show a sharp reduction with increasing pulling and stretching forces. Finally, we also examine models of pulled and stretched loops. We prove the existence of limiting free energies in these models and consider the knot probability numerically as a function of the applied pulling or stretching force

  20. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  1. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Directory of Open Access Journals (Sweden)

    Jared Markowitz

    2016-05-01

    Full Text Available Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG, and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  2. Biomechanics of stair walking and jumping.

    Science.gov (United States)

    Loy, D J; Voloshin, A S

    1991-01-01

    Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.

  3. Random Walks with Anti-Correlated Steps

    OpenAIRE

    Wagner, Dirk; Noga, John

    2005-01-01

    We conjecture the expected value of random walks with anti-correlated steps to be exactly 1. We support this conjecture with 2 plausibility arguments and experimental data. The experimental analysis includes the computation of the expected values of random walks for steps up to 22. The result shows the expected value asymptotically converging to 1.

  4. Kineziologická charakteristika Nordic Walking

    OpenAIRE

    Pospíšilová, Petra

    2009-01-01

    Title: Functional a physiological characteristics of Nordic Walking Purposes: The aim of the thesis is to describe and summarize current knowledge about Nordic Walking Methods: Literature analysis Key words: Nordic Walking, free bipedal walk, health benefits, functional indicator changes

  5. Walking-adaptability assessments with the Interactive Walkway: Between-systems agreement and sensitivity to task and subject variations.

    Science.gov (United States)

    Geerse, Daphne J; Coolen, Bert H; Roerdink, Melvyn

    2017-05-01

    The ability to adapt walking to environmental circumstances is an important aspect of walking, yet difficult to assess. The Interactive Walkway was developed to assess walking adaptability by augmenting a multi-Kinect-v2 10-m walkway with gait-dependent visual context (stepping targets, obstacles) using real-time processed markerless full-body kinematics. In this study we determined Interactive Walkway's usability for walking-adaptability assessments in terms of between-systems agreement and sensitivity to task and subject variations. Under varying task constraints, 21 healthy subjects performed obstacle-avoidance, sudden-stops-and-starts and goal-directed-stepping tasks. Various continuous walking-adaptability outcome measures were concurrently determined with the Interactive Walkway and a gold-standard motion-registration system: available response time, obstacle-avoidance and sudden-stop margins, step length, stepping accuracy and walking speed. The same holds for dichotomous classifications of success and failure for obstacle-avoidance and sudden-stops tasks and performed short-stride versus long-stride obstacle-avoidance strategies. Continuous walking-adaptability outcome measures generally agreed well between systems (high intraclass correlation coefficients for absolute agreement, low biases and narrow limits of agreement) and were highly sensitive to task and subject variations. Success and failure ratings varied with available response times and obstacle types and agreed between systems for 85-96% of the trials while obstacle-avoidance strategies were always classified correctly. We conclude that Interactive Walkway walking-adaptability outcome measures are reliable and sensitive to task and subject variations, even in high-functioning subjects. We therefore deem Interactive Walkway walking-adaptability assessments usable for obtaining an objective and more task-specific examination of one's ability to walk, which may be feasible for both high

  6. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy

    NARCIS (Netherlands)

    Sloot, L.H.; Harlaar, J.; van der Krogt, M.M.

    2015-01-01

    While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the

  7. Quantum walks with entangled coins

    International Nuclear Information System (INIS)

    Venegas-Andraca, S E; Ball, J L; Burnett, K; Bose, S

    2005-01-01

    We present a mathematical formalism for the description of un- restricted quantum walks with entangled coins and one walker. The numerical behaviour of such walks is examined when using a Bell state as the initial coin state, with two different coin operators, two different shift operators, and one walker. We compare and contrast the performance of these quantum walks with that of a classical random walk consisting of one walker and two maximally correlated coins as well as quantum walks with coins sharing different degrees of entanglement. We illustrate that the behaviour of our walk with entangled coins can be very different in comparison to the usual quantum walk with a single coin. We also demonstrate that simply by changing the shift operator, we can generate widely different distributions. We also compare the behaviour of quantum walks with maximally entangled coins with that of quantum walks with non-entangled coins. Finally, we show that the use of different shift operators on two and three qubit coins leads to different position probability distributions in one- and two-dimensional graphs

  8. Upper limb contributions to frontal plane balance control in rollator-assisted walking.

    Science.gov (United States)

    Tung, James Y; Gage, William H; Poupart, Pascal; McIlroy, William E

    2014-01-01

    While assisting with balance is a primary reason for rollator use, few studies have examined how the upper limbs are used for balance. This study examines upper limb contributions to balance control during rollator-assisted walking. We hypothesized that there would be an increased upper limb contribution, measured by mean vertical loading (Fz) and variation in frontal plane center-of-pressure (COPhigh), when walking balance is challenged/impaired. Experiment 1 compared straight-line and beam-walking in young adults (n = 11). As hypothesized, Fz and COPhighincreased in beam-walking compared to baseline (mean Fz: 13.7 vs. 9.1% body weight (BW), p < 0.001, RMS COPhigh: 1.35 vs. 1.07 cm, p < 0.001). Experiment 2 compared older adults who regularly use rollators (RU, n = 10) to older adult controls (CTL, n = 10). The predicted higher upper limb contribution in the RU group was not supported. However, when individuals were grouped by balance impairment, those with the lowest Berg Balance scores (< 45) demonstrated greater speed-adjusted COPhigh than those with higher scores (p = 0.013). Furthermore, greater COPhigh and Fz were correlated to greater reduction in step width, supporting the role of upper limb contributions to frontal plane balance. This work will guide studies assessing reliance on rollators by providing a basis for measurement of upper limb balance contributions.

  9. Stride time synergy in relation to walking during dual task

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Madeleine, Pascal

    2012-01-01

    point of view elemental and performance variables may represent good and bad components of variability [2]. In this study we propose that the gait pattern can be seen as an on-going movement synergy in which each stride is corrected by the next stride (elemental variables) to ensure a steady gait...... (performance variable). AIM: The aim of this study was to evaluate stride time synergy and to identify good and bad stride variability in relation to walking during dual task. METHODS: Thirteen healthy young participants walked along a 2x5 meter figure-of-eight track at a self-selected comfortable speed...... with a positive slope going through the mean of the strides, and bad variance with respect to a similar line with a negative slope. The general variance coefficient (CV%) was also computed. The effect of introducing a concurrent cognitive task (dual task: counting backwards in sequences of 7) was evaluated...

  10. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Moradi, Alireza; Samadian, Mohammad; Bahramizadeh, Mahmood; Joghtaei, Mahmoud; Ahmadi Bani, Monireh; Hutchins, Stephen W; Mardani, Mohammad A

    2016-06-01

    Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine differences of the powered knee-ankle-foot orthosis compared to a locked knee-ankle-foot orthosis in kinematic data and temporospatial parameters during ambulation. Quasi-experimental design. Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee-ankle-foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system. Walking with the powered knee-ankle-foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee-ankle-foot orthosis. Cadence was not significantly different between the two test conditions (p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis. The new powered orthosis permitted improved knee joint kinematic for knee-ankle-foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee-ankle-foot orthosis. This orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities. © The International Society for Prosthetics and Orthotics 2015.

  11. Exergame and Balance Training modulate Prefrontal Brain Activity during Walking and enhance Executive Function in Older Adults

    Directory of Open Access Journals (Sweden)

    Patrick eEggenberger

    2016-04-01

    Full Text Available Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE or balance and stretching training (BALANCE. The 8-week intervention included three sessions of 30 minutes per week and was completed by 33 participants (mean age 74.9±6.9 years. Prefrontal cortex (PFC activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < .05 or trend, r = .25 to .36, while DANCE showed a larger reduction at the end of the 30-second walking task compared to BALANCE in the left PFC (F(1, 31 = 3.54, p = .035, r = .32. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < .05 or trend, r = .31 to .50. The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults.

  12. Energetic and Peak Power Advantages of Series Elastic Actuators in an Actuated Prosthetic Leg for Walking and Running

    Directory of Open Access Journals (Sweden)

    Martin Grimmer

    2014-02-01

    Full Text Available A monoarticular series elastic actuator (SEA reduces energetic and peak power requirements compared to a direct drive (DD in active prosthetic ankle-foot design. Simulation studies have shown that similar advantages are possible for the knee joint. The aims of this paper were to investigate the advantages of a monoarticular SEA-driven hip joint and to quantify the energetic benefit of an SEA-driven leg (with monoarticular hip, knee and ankle SEAs, assuming that damping (negative power is passively achieved. The hip SEA provided minor energetic advantages in walking (up to 29% compared to the knee and the ankle SEA. Reductions in required peak power were observed only for speeds close to preferred walking speed (18% to 27%. No energetic advantages were found in running, where a DD achieved the best performance when optimizing for energy. Using an SEA at each leg joint in the sagittal plane reduced the positive work by 14% to 39% for walking and by 37% to 75% for running. When using an SEA instead of a DD, the contribution of the three leg joints to doing positive work changed: the knee contributed less and the hip more positive work. For monoarticular SEAs, the ankle joint motor did most of the positive work.

  13. Urban walking: Perspectives of locals and tourists

    Directory of Open Access Journals (Sweden)

    Farkić Jelena

    2015-01-01

    Full Text Available Urban planners and architects have done extensive research on walk ability: what it means and how it correlates with urban design and quality of life of the locals, however, it has been hitherto neglected from the aspect of tourism studies. Many cities worldwide are or tend to be walkable as this leads to more sustainable and prosperous communities. In addition, walking-friendly environments greatly cater for leisure and tourism, as in many cities, walking is an integral part of tourist experience. Therefore, tourism industry can be of tremendous help for the city authorities in understanding walkers' needs and experiences. Taking into account both the locals and tourists, this research sought to: (1 determine the most frequently utilized modes of transportation in Novi Sad in Serbia and Koper in Slovenia; (2 assess thier reasons for walking and perception of the quality of pedestrian infrastructure; and (3 evaluate the psychometric properties of the questionnaire designed for the purpose of this study. The results show that the great majority of respondents walk in these two cities. The locals walk primarily to achieve physical fitness, whereas tourists walk primarily to explore the urban spaces. This makes more space for tourism as it combines a competitive supply able to meet visitors' expectations with a positive contribution to the sustainable development of cities and well-being of their residents. Furthermore, this study contributes to emphasizing walking as a sustainable form of mobility in urban environment and can be the impetus for profiling Novi Sad and Koper as walking-friendly cities.

  14. Quantum walk with one variable absorbing boundary

    International Nuclear Information System (INIS)

    Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli

    2017-01-01

    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.

  15. Walking for Well-Being: Are Group Walks in Certain Types of Natural Environments Better for Well-Being than Group Walks in Urban Environments?

    Directory of Open Access Journals (Sweden)

    Sara L. Warber

    2013-10-01

    Full Text Available The benefits of walking in natural environments for well-being are increasingly understood. However, less well known are the impacts different types of natural environments have on psychological and emotional well-being. This cross-sectional study investigated whether group walks in specific types of natural environments were associated with greater psychological and emotional well-being compared to group walks in urban environments. Individuals who frequently attended a walking group once a week or more (n = 708 were surveyed on mental well-being (Warwick Edinburgh Mental Well-being Scale, depression (Major Depressive Inventory, perceived stress (Perceived Stress Scale and emotional well-being (Positive and Negative Affect Schedule. Compared to group walks in urban environments, group walks in farmland were significantly associated with less perceived stress and negative affect, and greater mental well-being. Group walks in green corridors were significantly associated with less perceived stress and negative affect. There were no significant differences between the effect of any environment types on depression or positive affect. Outdoor walking group programs could be endorsed through “green prescriptions” to improve psychological and emotional well-being, as well as physical activity.

  16. Antagonistic Mono- and Bi-Articular Lower-Limb Muscle Activities’ Model Characterization at Different Speeds

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available Nowadays, medical rehabilitation system has become a requirement due to increment in national rehabilitation centres and medical hospitals. An assistive rehabilitation orthosis becomes essential and was used for rehabilitation therapy, condition monitoring, and physical strengthening. This study focused on the lower limb assistive rehabilitation orthosis development using pneumatic artificial muscle. To successfully control this orthosis system which consists of antagonistic mono- and biarticular muscle actuators, it is necessary to construct a reliable control algorithm. The suitable control scheme and strategy to manoeuvre this orthosis system similar to human musculoskeletal system have yet to be fully developed and established. Based on the review study, it is said that the co-contraction controls of anterior-posterior pneumatic muscles was able to improve the joint stiffness and stability of the orthosis as well as good manoeuvrability. Therefore, a characterization model of an antagonistic mono- and bi-articular muscles activities of human's lowerlimb during walking motion will be necessary. A healthy young male subject was used as test subject to obtain the sEMG muscle activities for antagonistic mono- and bi-articular muscles (i.e., Vastus Medialis-VM, Vastus Lateralis-VL, Rectus Femoris-RF, and Bicep Femoris-BF. The tests were carried out at different speeds of 2km/h, 3km/h, and 4km/h for one minute walking motion on a treadmill. Then, the patterns of the sEMG muscle activities were modelled and characterised using fifth order polynomial equation. Based on the results, it is shown that the anterior and posterior muscles were exhibited a muscle synergy in-between multiple anterior or posterior muscles and muscle co-contraction between anteriorposterior muscles in order to control the movements at the joints during walking motion. As conclusion, it is proven that the sEMG muscle activities of the antagonistic mono- and bi

  17. Beam walking can detect differences in walking balance proficiency across a range of sensorimotor abilities.

    Science.gov (United States)

    Sawers, Andrew; Ting, Lena H

    2015-02-01

    The ability to quantify differences in walking balance proficiency is critical to curbing the rising health and financial costs of falls. Current laboratory-based approaches typically focus on successful recovery of balance while clinical instruments often pose little difficulty for all but the most impaired patients. Rarely do they test motor behaviors of sufficient difficulty to evoke failures in balance control limiting their ability to quantify balance proficiency. Our objective was to test whether a simple beam-walking task could quantify differences in walking balance proficiency across a range of sensorimotor abilities. Ten experts, ten novices, and five individuals with transtibial limb loss performed six walking trials across three different width beams. Walking balance proficiency was quantified as the ratio of distance walked to total possible distance. Balance proficiency was not significantly different between cohorts on the wide-beam, but clear differences between cohorts on the mid and narrow-beams were identified. Experts walked a greater distance than novices on the mid-beam (average of 3.63±0.04m verus 2.70±0.21m out of 3.66m; p=0.009), and novices walked further than amputees (1.52±0.20m; p=0.03). Amputees were unable to walk on the narrow-beam, while experts walked further (3.07±0.14m) than novices (1.55±0.26m; p=0.0005). A simple beam-walking task and an easily collected measure of distance traveled detected differences in walking balance proficiency across sensorimotor abilities. This approach provides a means to safely study and evaluate successes and failures in walking balance in the clinic or lab. It may prove useful in identifying mechanisms underlying falls versus fall recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Promoting walking to school: results of a quasi-experimental trial.

    Science.gov (United States)

    McKee, Rosie; Mutrie, Nanette; Crawford, Fiona; Green, Brian

    2007-09-01

    To assess the impact of a combined intervention on children's travel behaviour, stage of behavioural change and motivations for and barriers to actively commuting to school. A quasi-experimental trial involving pre- and post-intervention mapping of routes to school by active and inactive mode of travel and surveys of "stage of behaviour change" and motivations for and barriers to actively commuting to school. The intervention school participated in a school-based active travel project for one school term. Active travel was integrated into the curriculum and participants used interactive travel-planning resources at home. The control school participated in before and after measurements but did not receive the intervention. Two primary schools in Scotland with similar socioeconomic and demographic profiles. Two classes of primary 5 children and their families and teachers. Post intervention, the mean distance travelled to school by walking by intervention children increased significantly from baseline, from 198 to 772 m (389% increase). In the control group mean distance walked increased from 242 to 285 m (17% increase). The difference between the schools was significant (t (38) = -4.679, pschool by car by intervention children reduced significantly from baseline, from 2018 to 933 m (57.5% reduction). The mean distance travelled to school by car by control children increased from baseline, from 933 to 947 m (1.5% increase). The difference in the change between schools was significant (t (32) = 4.282, peffective in achieving an increase in the mean distance travelled by active mode and a reduction in the mean distance travelled by inactive mode on school journey.

  19. Does acupuncture ameliorate motor impairment after stroke? An assessment using the CatWalk gait system.

    Science.gov (United States)

    Cao, Yan; Sun, Ning; Yang, Jing-Wen; Zheng, Yang; Zhu, Wen; Zhang, Zhen-Hua; Wang, Xue-Rui; Shi, Guang-Xia; Liu, Cun-Zhi

    2017-07-01

    The effect of acupuncture on gait deficits after stroke is uncertain. This animal study was designed to determine whether acupuncture improves gait impairment following experimentally induced ischemic stroke. Ischemic stroke was induced by permanent middle cerebral artery occlusion (MCAO) in rats. After 7 days' of acupuncture treatment, assessment of gait changes using the CatWalk automated gait analysis system was performed. Comparison of the CatWalk gait parameters among the groups showed that gait function was impaired after ischemic stroke and acupuncture treatment was effective in improving a variety of gait parameters including intensity, stance and swing time, swing speed and stride length at postoperative day 8. This study demonstrates a beneficial effect of acupuncture on gait impairment in rats following ischemic stroke. Further studies aimed to investigate the effects of acupuncture at different stages during stroke using the CatWalk system are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    P J Bishop

    Full Text Available How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF, the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete 'walking' and 'running' gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79-93% of the observed variation in kinematics and 69-83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation.