WorldWideScience

Sample records for waiotapu geothermal area

  1. Sub-aqueous sulfur volcanos at Waiotapu, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, S.; Rickard, D. [University of Wales, Cardiff (United Kingdom). Dept. of Earth Sciences; Browne, P.; Simmons, S. [University of Auckland (New Zealand). Geothermal Institute and Geology Dept.; Jull, T. [University of Arizona, Tucson (United States). AMS Facility

    1999-12-01

    Exhumed, sub-aqueous sulfur mounds occur in the Waiotapu geothermal area, New Zealand. The extinct mounds are < 2 m high and composed of small (< 0.5 cm) hollow spheres, and occasional teardrop-shaped globules. They are located within a drained valley that until recently was connected to Lake Whangioterangi. They were formed a maximum of 820 {+-} 80 years BP as a result of the rapid sub-aqueous deposition of sulfur globules, formed when fumarolic gases discharged through molten sulfur pools. Similar globules are now being formed by the discharge of fumarolic gases through a sub-aqueous molten sulfur pool in Lake Whangioterangi. (author)

  2. The evolution of the Waiotapu geothermal system, New Zealand, based on the chemical and isotopic composition of its fluids, minerals and rocks

    Science.gov (United States)

    Hedenquist, Jeffrey W.; Browne, Patrick R. L.

    1989-09-01

    The Waiotapu geothermal system is hosted by silicic rocks of the Taupo Volcanic Zone, New Zealand. Exploration drilling in the late 1950s down to 1100 m provided physical information on the system. Measured temperatures show a boiling profile to 295 °C, with shallow inversions, particularly in the north. Total discharge fluid samples were collected; the geothermometry and measured temperatures show that fluids derive mainly from a shallow (~400 m deep) reservoir at about 225°C. Petrologic study of drillcore samples recovered from seven wells reveals an alteration assemblage of quartz and albite + adularia, with a variable distribution of chlorite, pyrite, calcite, zeolites, epidote, pyrrhotite, sphene, leucoxene, apatite and minor base metal sulfides; white mica is a late overprint, particularly well developed at shallow depths. Surficial alteration of kaolin, cristobalite, alunite and smectite clays reflect alteration by acid sulfate, steam-heated waters. The activities of components in minerals (determined from microprobe analyses and composition-activity relations) and fluids (speciated to reservoir conditions) indicate equilibrium now exists between the fluids and white mica; the Na/K ratio of the fluid is being controlled by dissolution of albite and adularia, while its H 2/H 2S ratio is buffered by pyrite replacing pyrrhotite. The fluids are now slightly undersaturated with respect to calcite. The present deep fluids boil adiabatically from at least 300°C to 230°C; at depths of ≤500 m, this ascending chloride fluid is variably diluted by a steam-heated water (of zero chloride) that lies over, and occurs on the margin of, the system like a discontinuous umbrella; the steam-heated water is relatively CO 2-rich (≤0.1 m). The cooling at shallow levels by this mixing has shifted the alteration from albite-adularia stability to white mica stability; this shift is enhanced by the CO 2-rich nature of the diluent. Dilution of ascending chloride fluids by

  3. High Resolution Aircraft Scanner Mapping of Geothermal and Volcanic Areas

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, M.A.; Cochrane, G.R.; Wood, C.P.; Shibata, Y.

    1995-01-01

    High spectral resolution GEOSCAN Mkll multispectral aircraft scanner imagery has been acquired, at 3-6 m spatial resolutions, over much of the Taupo Volcanic Zone as part of continuing investigations aimed at developing remote sensing techniques for exploring and mapping geothermal and volcanic areas. This study examined the 24-band: visible, near-IR (NIR), mid-IR (MIR) and thermal-IR (TIR) imagery acquired over Waiotapu geothermal area (3 m spatial resolution) and White Island volcano (6 m resolution). Results show that color composite images composed of visible and NIR wavelengths that correspond to color infrared (CIR) photographic wavelengths can be useful for distinguishing among bare ground, water and vegetation features and, in certain cases, for mapping various vegetation types. However, combinations which include an MIR band ({approx} 2.2 {micro}m) with either visible and NIR bands, or two NIR bands, are the most powerful for mapping vegetation types, water bodies, and bare and hydrothermally altered ground. Combinations incorporating a daytime TIR band with NIR and MIR bands are also valuable for locating anomalously hot features and distinguishing among different types of surface hydrothermal alteration.

  4. Geothermal resource evaluation of the Yuma area

    Energy Technology Data Exchange (ETDEWEB)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  5. Trampling impacts on thermotolerant vegetation of geothermal areas in New Zealand.

    Science.gov (United States)

    Burns, Bruce R; Ward, Jonet; Downs, Theresa M

    2013-12-01

    Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.

  6. Trampling Impacts on Thermotolerant Vegetation of Geothermal Areas in New Zealand

    Science.gov (United States)

    Burns, Bruce R.; Ward, Jonet; Downs, Theresa M.

    2013-12-01

    Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.

  7. CO2 flux geothermometer for geothermal exploration

    Science.gov (United States)

    Harvey, M. C.; Rowland, J. V.; Chiodini, G.; Rissmann, C. F.; Bloomberg, S.; Fridriksson, T.; Oladottir, A. A.

    2017-09-01

    A new geothermometer (TCO2 Flux) is proposed based on soil diffuse CO2 flux and shallow temperature measurements made on areas of steam heated, thermally altered ground above active geothermal systems. This CO2 flux geothermometer is based on a previously reported CO2 geothermometer that was designed for use with fumarole analysis. The new geothermometer provides a valuable additional exploration tool for estimating subsurface temperatures in high-temperature geothermal systems. Mean TCO2 Flux estimates fall within the range of deep drill hole temperatures at Wairakei (New Zealand), Tauhara (New Zealand), Rotokawa (New Zealand), Ohaaki (New Zealand), Reykjanes (Iceland) and Copahue (Argentina). The spatial distribution of geothermometry estimates is consistent with the location of major upflow zones previously reported at the Wairakei and Rotokawa geothermal systems. TCO2 Flux was also evaluated at White Island (New Zealand) and Reporoa (New Zealand), where limited sub-surface data exists. Mode TCO2 Flux at White Island is high (320 °C), the highest of the systems considered in this study. However, the geothermometer relies on mineral-water equilibrium in neutral pH reservoir fluids, and would not be reliable in such an active and acidic environment. Mean TCO2 Flux at Reporoa (310 °C) is high, which indicates Reporoa has a separate upflow from the nearby Waiotapu geothermal system; an outflow from Waiotapu would not be expected to have such high temperature.

  8. Geothermal resource area 9: Nye County. Area development plan

    Energy Technology Data Exchange (ETDEWEB)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  9. Monitoring of Acoustic Emissions Within Geothermal Areas in Iceland: A new Tool for Geothermal Exploration.

    Science.gov (United States)

    Brandsdóttir, B.; Gudmundsson, O.

    2007-12-01

    With increased emphasis on geothermal development new exploration methods are needed in order to improve general understanding of geothermal reservoirs, characterize their extent and assess the potential for sustainable power production. Monitoring of acoustic emissions within geothermal areas may provide a new tool to evaluate the spatial extent of geothermal fields and model rock-fluid interactions. Three-dimensional seismic data have been used to assess the spatial and temporal distribution of noise within several high-temperature geothermal fields in Iceland. Seismic noise in the 4-6 Hz range within the Svartsengi field can be attributed to steam hydraulics and pressure oscillations within the geothermal reservoirs. Seismic noise surveys compliment electrical resistivity soundings and TEM-surveys by providing information pertinent to the current geothermal activity and extent of steam fields within the uppermost crust of the geothermal reservoir. Information related to acoustic emissions can thus help define targets for future wells.

  10. Indoor radon concentration in geothermal areas of central Italy.

    Science.gov (United States)

    Ciolini, R; Mazed, D

    2010-09-01

    The indoor radon ((222)Rn) activity concentration was measured between January and June in the schools of two geothermal areas in Tuscany, central Italy. One of these areas (the Larderello area) is characterized by a large number of geothermal power plants, covering about 9% of the world's geothermal power production. In contrast, the other area, Monte Pisano, has not any such facilities. About 250 measurements were made using track etch detectors. Only a slight difference in the concentrations between the two major sampling areas (98 Bq m(-3) for Larderello area and 43 Bq m(-3) for Monte Pisano area) was found, and this was related to different geological characteristics of the ground and not the presence of the geothermal plants. The measured radon concentrations were always well below the intervention levels in both areas, and health risks for students and personnel in the examined schools were excluded. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina)

    Science.gov (United States)

    Giordano, Guido

    2016-04-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  12. Geothermal resource area 3: Elko County. Area development plan

    Energy Technology Data Exchange (ETDEWEB)

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 3 includes all of the land in Elko County, Nevada. There are in excess of 50 known thermal anomalies in this area. Several of the more major resources have been selected for detailed description and evaluation in this Area Development Plan. The other resources are considered too small, too low in temperature, or too remote to be considered for development in the near future. Various potential uses of the energy found at each of the studied resource sites in Elko County were determined after evaluating the area's physical characteristics; the land ownership and land use patterns; existing population and projected growth rates; transportation facilities and energy requirements. These factors were then compared with resource site specific data to determine the most likely uses of the resource. The uses considered in this evaluation were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories several subdivisions were considered separately. It was determined that several of the geothermal resources evaluated in the Area Development Plan could be commercially developed. The potential for development for the seven sites considered in this study is summarized.

  13. Investigation of Seferihisar-Balcova geothermal area by environmental isotopes

    OpenAIRE

    Akar, T.; U. Gemici; Pekdeger, A; M. Somay; Fabien Magri;  

    2010-01-01

    The Seferihisar-Balçova Geothermal area (SBG) is located in western Turkey, along a N-S trending fault system and is defined by two major geothermal systems topographically separated by the Seferihisar Horst: the Seferihisar (SG) in the south and Balçova (BG) in the north. The temperatures of cold, hot springs and shallow wells vary between 16 and 70°C and reach 138°C in drilled wells. In these areas, the geothermal waters are used for balneological purposes and district heating. Previous hydr...

  14. The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring

    Science.gov (United States)

    Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.

    2004-01-01

    The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.

  15. The detection of geothermal areas from Skylab thermal data

    Science.gov (United States)

    Siegal, B. S.; Kahle, A. B.; Goetz, A. F. H.; Gillespie, A. R.; Abrams, M. J.; Pohn, H. A.

    1975-01-01

    Skylab-4 X-5 thermal data of the geysers area was analyzed to determine the feasibility of using midday Skylab images to detect geothermal areas. The hottest ground areas indicated on the Skylab image corresponded to south-facing barren or sparsely vegetated slopes. A geothermal area approximately 15 by 30 m coincided with one of the hottest areas indicated by Skylab. This area could not be unambiguously distinguished from the other areas which are believed to be hotter than their surroundings as a result of their topography, and micrometeorological conditions. A simple modification of a previous thermal model was performed and the predicted temperatures for the hottest slopes using representative values was in general agreement with the observed data. It is concluded that data from a single midday Skylab pass cannot be used to locate geothermal areas.

  16. European Geothermal Drilling Experience-Problem Areas and Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Baron, G.; Ungemach, P.

    1981-01-01

    Geothermal drilling has long been restricted in Western Europe to the sole dry steam field of Larderello in Italy. In the last few years, a wider experience is building up as a consequence of intensified exploration and development programs carried out for evaluation and production of both low- and high-enthalpy geothermal resources. A sample of some 40 boreholes indicates the problem areas which are given.

  17. Detectability of geothermal areas using Skylab X-5 data

    Science.gov (United States)

    Siegal, B. S.; Kahle, A. B.; Goetz, A. F. H.; Gillespie, A. R.; Abrams, M. J.

    1975-01-01

    The results are presented of a study which was undertaken to determine if data from a single near-noon pass of Skylab could be used to detect geothermal areas. The size and temperature requirements for a geothermally heated area to be seen by Skylab S-192 MSS X-5 thermal sensor were calculated. This sensor obtained thermal data with the highest spatial resolution of any nonmilitary satellite system. Only very large hot areas could be expected to be unambiguously recognized with a single data set from this instrument. The study area chosen was The Geysers geothermal field in Sonoma County, California, the only geothermal area of significant size scanned by Skylab. Unfortunately, 95% of the Skylab thermal channel data was acquired within 3 hours of local noon. For The Geysers area only daytime X-5 data were available. An analysis of the thermal channel data (10.2 to 12.5 um) revealed that ground temperatures determined by Skylab were normally distributed. No anomalous hot spots were apparent. Computer enhancement techniques were used to delineate the hottest 100 and 300 ground areas (pixel, 75 m by 75 m) within the study region. It was found that the Skylab MSS with the X-5 thermal detector does not have sufficient spatial resolution to locate unambiguously from daytime data any but the largest and hottest convectively created geothermal features, which in general are prominent enough to have been previously recognized.

  18. Beowawe Geothermal Area evaluation program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Iovenitti, J. L

    1981-03-01

    Several exploration programs were conducted at the Beowawe Geothermal Prospect, Lander and Eureka County, Nevada. Part I, consisting of a shallow temperature hole program, a mercury soil sampling survey, and a self-potential survey were conducted in order to select the optimum site for an exploratory well. Part II consisted of drilling a 5927-foot exploratory well, running geophysical logs, conducting a drill stem test (2937-3208 feet), and a short-term (3-day) flow test (1655-2188 feet). All basic data collected is summarized.

  19. Bruneau Known Geothermal Resource Area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Bruneau Known Geothermal Resource Area (KGRA) is part of the Bruneau-Grandview thermal anomaly, the largest geothermal area in the western US. This part of Owyhee County is the driest part of Idaho. The KGRA is associated with the southern boundary fault zone of the Snake River Plain. Thermal water, produced from numerous artesian wells in the region, is supplied from two major aquifers. Ecological concerns include the threatened Astragalus mulfordiae and the numerous birds of prey nesting in the Snake River canyon northwest of the KGRA. Extensive geothermal development may strain the limited health care facilities in the county. Ethnographic information suggests that there is a high probability of prehistoric cultural materials being remnant in the Hot Spring locality.

  20. Castle Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in the county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.

  1. Geothermal investment and policy analysis with evaluation of California and Utah resource areas

    Energy Technology Data Exchange (ETDEWEB)

    Cassel, T.A.V.; Edelstein, R.H.; Blair, P.D.; Amundsen, C.B.

    1979-10-01

    A geothermal investment decision model was developed which, when coupled to a site-specific stochastic cash flow model, estimates the conditional probability of a positive decision to invest in the development of geothermal resource areas. The geothermal cash flow model, the investment decision model and their applications for assessing the likely development potential of nine geothermal resource areas in California and Utah are described. The sensitivity of this investment behavior to several policy incentives is also analyzed and discussed.

  2. CSAMT investigations of the Caferbeyli (Manisa/Turkey) geothermal area

    Indian Academy of Sciences (India)

    Sinem Aykaç; Emre Timur; Coşkun Sari; Çagri Çaylak

    2015-02-01

    Western Turkey is one of the most remarkable regions of very active continental extension in the world. The most significant structures of this region are Alaşehir, Gediz, and Büyük Menderes Grabens. Geothermal activity around city of Manisa in Gediz Graben has been investigated by many researchers and many geothermal boreholes were drilled in order to produce electricity and for heating purposes. The Caferbeyli geothermal area is on the southern side of the Gediz Graben just west of Salihli, Manisa, Turkey. According to rising demand on thermal water around Salihli, geophysical studies were performed using the Controlled Source Audio Magnetotellurics (CSAMT) measurements near the area of Cafer-beyli, and they were interpreted by the two-dimensional modelling. Vertical and horizontal resistivity sections were mapped, and it was determined that a low-resistivity layer exists in the SW part of the survey area. As a result of the studies in the area, the boundaries of the low-resistivity layer were mapped and a test drilling was recommended.

  3. Vulcan Hot Springs known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

  4. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina)

    Science.gov (United States)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca

    2013-01-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circulation.

  5. Crane Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Crane Creek known geothermal resource area (KGRA) is located in Washington County, in southwestern Idaho. Estimated hydrothermal resource temperatures for the region are 166/sup 0/C (Na-K-Ca) and 176/sup 0/C (quartz). The KGRA is situated along the west side of the north-south trending western Idaho Fault Zone. Historic seismicity data for the region identify earthquake activity within 50 km. The hot springs surface along the margin of a siliceous sinter terrace or in adjacent sediments. Approximately 75% of the KGRA is underlain by shallow, stony soils on steep slopes indicating topographic and drainage limitations to geothermal development. Species of concern include sage grouse, antelope, and mule deer. There is a high probability of finding significant prehistoric cultural resources within the proposed area of development.

  6. In-situ grown silica sinters in Icelandic geothermal areas.

    Science.gov (United States)

    Tobler, Dominique J; Stefánsson, Andri; Benning, Liane G

    2008-12-01

    Field in-situ sinter growth studies have been carried out in five geochemically very different Icelandic geothermal areas with the aim to quantify the effects of water chemistry, (e.g. silica content (250 to 695 p.p.m. SiO(2)), salinity (meteoric to seawater), pH (7.5 to 10)), temperature (42-96 degrees C) and microbial abundance (prevalence, density) on the growth rates, textures and structures of sinters forming within and around geothermal waters. At each location, sinter growth was monitored over time periods between 30 min and 25 months using glass slides that acted as precipitation substrates from which sinter growth rates were derived. In geothermal areas like Svartsengi and Reykjanes, subaqueous sinters developed rapidly with growth rates of 10 and 304 kg year(-1 )m(-2), respectively, and this was attributed primarily to the near neutral pH, high salinity and medium to high silica content within these geothermal waters. The porous and homogeneous precipitates that formed at these sites were dominated by aggregates of amorphous silica and they contained few if any microorganisms. At Hveragerdi and Geysir, the geothermal waters were characterized by slightly alkaline pH, low salinity and moderate silica contents, resulting in substantially lower rates of sinter growth (0.2-1.4 kg year(-1 )m(-2)). At these sites sinter formation was restricted to the vicinity of the air-water interface (AWI) where evaporation and condensation processes predominated, with sinter textures being governed by the formation of dense and heterogeneous crusts with well-defined spicules and silica terraces. In contrast, the subaqueous sinters at these sites were characterized by extensive biofilms, which, with time, became fully silicified and thus well preserved within the sinter edifices. Finally, at Krafla, the geothermal waters exhibited high sinter growth rates (19.5 kg year(-1 )m(-2)) despite being considerably undersaturated with respect to amorphous silica. However, the bulk of

  7. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas R. [Univ. of Idaho, Idaho Falls, ID (United States); Worthing, Wade [Univ. of Idaho, Idaho Falls, ID (United States); Cannon, Cody [Univ. of Idaho, Idaho Falls, ID (United States); Palmer, Carl [Univ. of Idaho, Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis L [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Mattson, Earl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Dobson, Patric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need

  8. Lichen biomonitoring of trace elements in the Mt. Amiata geothermal area (central Italy)

    OpenAIRE

    LOPPI, Stefano

    1998-01-01

    The possible contribution of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sb, Sr, Ti, V and Zn from geothermal exploitation to the environmental contamination of Mt. Amiata was evaluated by assaying the epiphytic lichen Parmelia sulcata from two sampling areas: Piancastagnaio, where there are geothermal power plants, and a remote site distant from geothermal power plants. The results showed that the geothermal power plants at Piancastagnaio do not represent a macroscopic source of atmospheric cont...

  9. Mountain home known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Mountain Home KGRA encompasses an area of 3853 hectares (ha) at the foot of the Mount Bennett Hills in Elmore County, Idaho. The site is associated with an arid climate and high winds that generate an acute dust problem. The KGRA lies adjacent to the northwest-southeast trending fault zone that reflects the northern boundary of the western Snake River Plain graben. Data indicate that a careful analysis of the subsidence potential is needed prior to extensive geothermal development. Surface water resources are confined to several small creeks. Lands are utilized for irrigated farmlands and rangeland for livestock. There are no apparent soil limitations to geothermal development. Sage grouse and mule deer are the major species of concern. The potential of locating significant heritage resources other than the Oregon Trail or the bathhouse debris appears to be relatively slight.

  10. Geothermal resource area 6: Lander and Eureka Counties. Area development plan

    Energy Technology Data Exchange (ETDEWEB)

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two country area. Eleven of these resources are considered major and have been selected for evaluation in this Area Development Plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 11 geothermal sites considered are summarized.

  11. Geothermal Resource Area 6: Lander and Eureka Counties. Area development plan

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.; Pugsley, M.

    1981-01-01

    Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two county area. Eleven of these resources are considered major and have been selected for evaluation in this area development plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the geothermal sites considered are summarized.

  12. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    Energy Technology Data Exchange (ETDEWEB)

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  13. Material sources of escaped gases from Tianchi volcanic geothermal area, Changbai Mountains

    Institute of Scientific and Technical Information of China (English)

    上官志冠; 郑雅琴; 董继川

    1997-01-01

    On the basis of the chemical components and stable isotopic compositions of escaped gases from the Tianchi volcanic geothermal area, the material sources of these gases are discussed, presenting that they are mainly derived from the residual mantle-derived magma in the crust; Changbai geothermal area may be directly interlinked with the eruption canal in history; there is a stable reservoir of the geothermal water and the deep-seated gases under the Changbai geothermal area, with water temperature of the reservoir being about (166±9)℃.

  14. Cooperative geochemical investigation of geothermal resources in the Imperial Valley and Yuma areas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coplen, T.B.

    1973-10-01

    Preliminary studies indicate that the Imperial Valley has a large geothermal potential. In order to delineate additional geothermal systems a chemical and isotopic investigation of samples from water wells, springs, and geothermal wells in the Imperial Valley and Yuma areas was conducted. Na, K, and Ca concentrations of nearly 200 well water, spring water, hot spring, and geothermal fluid samples from the Imperial Valley area were measured by atomic absorption spectrophotometry. Fournier and Truesdell's function was determined for each water sample. Suspected geothermal areas are identified. Hydrogen and oxygen isotope abundances were determined in order to determine and to identify the source of the water in the Mesa geothermal system. (JGB)

  15. Modeling of Strong Ground Motion in "The Geysers" Geothermal Area

    Science.gov (United States)

    Sharma, N.; Convertito, V.; Maercklin, N.; Zollo, A.

    2012-04-01

    The Geysers is a vapor-dominated geothermal field located about 120 km north of San Francisco, California. The field is actively exploited since the 1960s, and it is now perhaps the most important and most productive geothermal field in the USA. The continuous injection of fluids and the stress perturbations of this area has resulted in induced seismicity which is clearly felt in the surrounding villages. Thus, based on these considerations, in the present work Ground Motion Prediction Equations (GMPEs) are derived, as they play key role in seismic hazard analysis control and for monitoring the effects of the seismicity rate levels. The GMPEs are derived through the mixed non-linear regression technique for both Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA). This technique includes both fixed effects and random effects and allows to account for both inter-event and intra-event dependencies in the data. In order to account for site/station effects, a two steps approach has been used. In the first step, regression analysis is performed without station corrections and thus providing a reference model. In the second step, based on the residual distribution at each station and the results of a Z-test, station correction coefficients are introduced to get final correct model. The data from earthquakes recorded at 29 stations for the period September 2007 through November 2010 have been used. The magnitude range is (1.0 geothermal fields with respect to those obtained from natural seismic events. The residual analysis is performed at individual stations to check the reliability of the station corrections and for evaluating the fitting reliability of the retrieved model. The best model has been chosen on the basis of inter-event standard error and R-square test. After the introduction of the site/station correction factor, an improvement in the fit is observed, which resulted in total standard error reduction and increased R-square values.

  16. Research in the Geysers-Clear Lake geothermal area, Northern California

    Science.gov (United States)

    McLaughlin, Robert J.; Donnelly-Nolan, Julie M.

    1981-01-01

    The Geysers-Clear Lake area is one of two places in the world where major vapor-dominated hydrothermal reservoirs are commercially exploited for electric power production. Because energy can be extracted more efficiently from steam than from hot water, vapor-dominated systems are preferable for electric power generation, although most geothermal electric power facilities tap water-dominated systems. The Geysers- Clear Lake geothermal system has therefore been of great interest to the geothermal industry.

  17. Seismic refraction investigation of the Salton Sea geothermal area, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Frith, R.B.

    1978-12-01

    Seven seismic refraction profiles and four long-distance refraction shots have been used to investigate the Salton Sea geothermal area. From these data, two models of the geothermal and adjacent area are proposed. Model 1 proposes a basement high within the geothermal area trending parallel to the axis of the Imperial Valley. Model 2 assumes a horizontal basement in the E-W direction, and proposes a seismic velocity gradient that increases the apparent basement velocity from east to west approximately 15% within the geothermal area. Both models propose basement dip of 3 degrees to the south, yielding a thickness of sediments of 6.6 km near Brawley, California, in the center of the Imperial Valley. Based on offsets inferred in the sedimentary seismic layers of the geothermal area, two NW-SE trending fault zones are proposed.

  18. Geothermal exploration techniques: a case study. Final report. [Coso geothermal area

    Energy Technology Data Exchange (ETDEWEB)

    Combs, J.

    1978-02-01

    The objective of this project was to review and perform a critical evaluation of geothermal exploration methods and techniques. The original intent was to publish the work as a handbook; however, the information is not specific enough for that purpose. A broad general survey of geothermal exploration techniques is reported in combination with one specific case study.

  19. Geothermal exploration techniques: a case study. Final report. [Coso geothermal area

    Energy Technology Data Exchange (ETDEWEB)

    Combs, J.

    1978-02-01

    The objective of this project was to review and perform a critical evaluation of geothermal exploration methods and techniques. The original intent was to publish the work as a handbook; however, the information is not specific enough for that purpose. A broad general survey of geothermal exploration techniques is reported in combination with one specific case study.

  20. Identification of geothermal system using 2D audio magnetotelluric method in Telomoyo volcanic area

    Science.gov (United States)

    Romadlon, Arriqo'Fauqi; Niasari, Sintia Windhi

    2017-07-01

    Geothermal area of Candi Umbul Telomoyo is one of geothermal fields in Indonesia. This geothermal field is located in the Grabag district, Magelang, Central Java. This geothermal field was formed in a volcanic quarter. The main aim in this study is to identify geothermal system at Telomoyo volcanic area through synthetic model analysis. There are surface manifestations such as warm springs and altered rocks. Results of geochemistry study showed reservoir's temperature was 230°C. The Warm spring in Candi Umbul was the outflow zone of the Telomoyo geothermal system. The Telomoyo geothermal system was indicated chloride-bicarbonate type of warm spring. In addition, the results of geological mapping indicate that the dominant fault structure has southwest-northeast orientation. The fault was caused by the volcanic activity of mount Telomoyo. In this research conducted data analysis from synthetics model. It aims to estimate the response of magnetotelluric methods in various models of geothermal systems. In this study, we assumed three models of geothermal system in Candi Umbul-Telomoyo area. From the data analysis it was known that the model 1 and model 2 can be distinguished if the measurements were conducted in a frequency range of 0.01 Hz to 1000 Hz. In response of tipper (Hz) had a small value on all models at all measurement points, so the tipper cannot distinguish between model 1, model 2 and model 3. From this analysis was known that TM mode is more sensitive than TE mode at the resistivity and phase responses.

  1. Rare Arsenic-Antimony-Sulphide Bio-immobilization and Bacterial S-layer Preservation in Siliceous Sediments from Champagne Pool Hot-Spring, Waiotapu, New Zealand

    Science.gov (United States)

    Phoenix, V. R.; Renaut, R. W.; Jones, B.; Ferris, F. G.

    2003-12-01

    Champagne Pool is a large (65 m diameter, 150 m deep) hot spring in the Waiotapu geothermal area of North Island, New Zealand. The spring discharges water of a mildly acid chloride type, with a pH of 5.2, a constant temperature of 75 oC and a silica concentration of 460 ppm. Siliceous sinter, loose sediments, and flocs suspended in the spring water are composed of opaline silica and metal-rich sulfides that contain many well-preserved, mineralized microbes. Detailed analysis by transmission electron microscopy and energy dispersive spectrometry has shown that bacterial cell wall and capsular material is preserved by the immobilization of high levels of As (up to 33 wt%), Sb (up to 60 wt%), and S (up to 20 wt%) in the organic matrix. Significant precipitate formation is absent (and when present only small microcrysts form), suggesting much of the As-Sb-S has accumulated through adsorption processes. When extensive biomineral precipitates are present upon the cell wall, they are composed of Al rich amorphous silicates. This suggests a 2-step biomineralization process whereby As and Sb sulfur complexes are adsorbed onto the cell surface polymers first, followed by inorganically driven precipitation of the supersaturated amorphous silica phase. Despite the lack of detailed preservation, biomineralization commonly preserves S-layers, an ordered mosaic of proteins on the outer surface of the cell wall. These are the finest ultrastructural details thus far found preserved by hot-spring biomineralization. Preserved S-layers exhibited either a hexagonal (p6) or square (p4) lattice structure with unit-unit spacing of 9.7 +/- 1.6 nm. Because S-layer morphology varies considerably between species it can be used as a fingerprint to aid identification of microfossils. By considering both S-layer morphology and the hot-spring habitat (pH, Eh, temp etc) it is suggested the S-layers preserved here belong to Clostridium thermohydrosulfuricum or Desulfotomaculum nigrifacans. To

  2. Geology and geothermal potential of the tecuamburro volcano area, Guatemala

    Science.gov (United States)

    Duffield, W.A.; Heiken, G.H.; Wohletz, K.H.; Maassen, L.W.; Dengo, G.; McKee, E.H.; Castaneda, O.

    1992-01-01

    Tecuamburro, an andesitic stratovolcano in southeastern Guatemala, is within the chain of active volcanoes of Central America. Though Tecuamburro has no record of historic eruptions, radiocarbon ages indicate that eruption of this and three other adjacent volcanoes occurred within the past 38,300 years. The youngest eruption produced a dacite dome. Moreover, powerful steam explosions formed a 250 m wide crater about 2900 years ago near the base of this dome. The phreatic crater contains a pH-3 thermal lake. Fumaroles are common along the lake shore, and several other fumaroles are located nearby. Neutral-chloride hot springs are at lower elevations a few kilometers away. All thermal manifestations are within an area of about 400 km2 roughly centered on Tecuamburro Volcano. Thermal implications of the volume, age, and composition of the post-38.3 ka volcanic rocks suggest that magma, or recently solidified hot plutons, or both are in the crust beneath these lavas. Chemical geothermometry carried out by other workers suggests that a hydrothermal-convection system is centered over this crustal heat source. Maximum temperatures of about 300??C are calculated for samples collected in the area of youngest volcanism, whereas samples from outlying thermal manifestations yield calculated temperatures <- 165??C. An 808 m deep drill hole completed in 1990 to partly test the geothermal model developed from surface studies attained a maximum temperature of almost 240??C. Thus, the possibility of a commercial-grade hydrothermal resource in the area seems high. ?? 1992.

  3. Curie Point Depth, Geothermal Gradient and Heat-Flow Estimation and Geothermal Anomaly Exploration from Integrated Analysis of Aeromagnetic and Gravity Data on the Sabalan Area, NW Iran

    Science.gov (United States)

    Afshar, A.; Norouzi, G. H.; Moradzadeh, A.; Riahi, M. A.; Porkhial, S.

    2017-03-01

    Prospecting the geothermal resources in northwest of Iran, conducted in 1975, revealed several promising areas and introduced the Sabalan geothermal field as a priority for further studies. The Sabalan Mt., representing the Sabalan geothermal field, is a large stratovolcano which consists of an extensive central edifice built on a probable tectonic horst of underlying intrusive and effusive volcanic rocks. In this study, Curie point depth (CPD), geothermal gradient and heat-flow map were constituted from spectral analysis of the aeromagnetic data for the NW of Iran. The top of the geothermal resource (i.e., the thickness of the overburden) was evaluated by applying the Euler deconvolution method on the residual gravity data. The thickness of the geothermal resource was calculated by subtracting the Euler depths obtained from the CPDs in the geothermal anomalous region. The geothermal anomalous region was defined by the heat-flow value greater than 150 mW/m2. CPDs in the investigated area are found between 8.8 km in the Sabalan geothermal field and 14.1 in the northeast. The results showed that the geothermal gradient is higher than 62 °C/km and the heat-flow is higher than 152 mW/m2 for the geothermal manifestation region; the thickness of the geothermal resource was also estimated to vary between 5.4 and 9.1 km. These results are consistent with the drilling and other geological information. Findings indicate that the CDPs agree with earthquake distribution and the type of thermal spring is related to the depth of the top of the geothermal resource.

  4. Curie Point Depth, Geothermal Gradient and Heat-Flow Estimation and Geothermal Anomaly Exploration from Integrated Analysis of Aeromagnetic and Gravity Data on the Sabalan Area, NW Iran

    Science.gov (United States)

    Afshar, A.; Norouzi, G. H.; Moradzadeh, A.; Riahi, M. A.; Porkhial, S.

    2016-12-01

    Prospecting the geothermal resources in northwest of Iran, conducted in 1975, revealed several promising areas and introduced the Sabalan geothermal field as a priority for further studies. The Sabalan Mt., representing the Sabalan geothermal field, is a large stratovolcano which consists of an extensive central edifice built on a probable tectonic horst of underlying intrusive and effusive volcanic rocks. In this study, Curie point depth (CPD), geothermal gradient and heat-flow map were constituted from spectral analysis of the aeromagnetic data for the NW of Iran. The top of the geothermal resource (i.e., the thickness of the overburden) was evaluated by applying the Euler deconvolution method on the residual gravity data. The thickness of the geothermal resource was calculated by subtracting the Euler depths obtained from the CPDs in the geothermal anomalous region. The geothermal anomalous region was defined by the heat-flow value greater than 150 mW/m2. CPDs in the investigated area are found between 8.8 km in the Sabalan geothermal field and 14.1 in the northeast. The results showed that the geothermal gradient is higher than 62 °C/km and the heat-flow is higher than 152 mW/m2 for the geothermal manifestation region; the thickness of the geothermal resource was also estimated to vary between 5.4 and 9.1 km. These results are consistent with the drilling and other geological information. Findings indicate that the CDPs agree with earthquake distribution and the type of thermal spring is related to the depth of the top of the geothermal resource.

  5. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  6. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    Science.gov (United States)

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  7. Geothermal Resource Area 5, Churchill, Douglas, Lyon and Storey Counties area development plan

    Energy Technology Data Exchange (ETDEWEB)

    Pugsley, M.

    1981-01-01

    Within this four county area there are many known geothermal resources ranging in temperature from 70 to over 350{sup 0}F. Thirteen of these resources are considered major and have been selected for evaluation. Various potential uses of the energy found were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These factors were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation; space heating; recreation; industrial process heat; and agriculture.

  8. Modeling of subsurface structures in Telomoyo Volcano geothermal area, Magelang using 1-D magnetotelluric method

    Science.gov (United States)

    Sarjan, Achmad Fajar Narotama; Niasari, Sintia Windhi

    2017-07-01

    There are some of geothermal prospects around Java Island. One of them are located in Telomoyo Volcano area, Magelang, Central Java. The existence of hot spring manifestations in Telomoyo Volcano area shows the presence of geothermal system. The upflow zone of this geothermal system was formed in the caldera of Telomoyo Volcano area, while the outflow zone was formed around Candi Umbul. In addition, from the geological map shows a geological structure assumed as a normal fault with southwest-northeast orientation that was caused by the volcanic activity. The aim of this research is to give a brief introduction about subsurface resistivity beneath Telomoyo Volcano area using 1-D magnetotelluric forward model. Thus, we can determine the possibility of data that will obtained during the acquisition process based on the geological model that was made. The apparent resistivity, phase, and period values were obtained from the forward modeling process. The result from this study is a 1-D resistivity section with synthetics curves of each geothermal model. In each model the presence of clay cap characterized by a low resistivity layer. A layer below the clay cap with a medium resistivity value interpreted as the reservoir of this geothermal system. The heat source of this geothermal area is characterized by a low resistivity that is located at depth 4000-5500m. This study is still in progress to acquire the exact values of resistivity from each layer from the field data acquisition in Telomoyo Volcano area, Magelang.

  9. A brief description of geological and geophysical exploration of the Marysville geothermal area

    Science.gov (United States)

    Blackwell, D. D.; Brott, C. A.; Goforth, T. T.; Holdaway, M. J.; Morgan, P.; Petefish, D.; Rape, T.; Steele, J. L.; Spafford, R. E.; Waibel, A. F.

    1974-01-01

    Extensive geological and geophysical surveys were carried out at the Marysville geothermal area during 1973 and 1974. The area has high heat flow (up to microcalories per square centimeter-second, a negative gravity anomaly, high electrical resistivity, low seismic ground noise, and nearby microseismic activity. Significant magnetic and infrared anomalies are not associated with the geothermal area. The geothermal anomaly occupies the axial portion of a dome in Precambrian sedimentary rocks intruded by Cretaceous and Cenozoic granitic rocks. The results from a 2.4-km-deep test well indicate that the cause of the geothermal anomaly is hydrothermal convection in a Cenozoic intrusive. A maximum temperature of 95 C was measured at a depth of 500 m in the test well.

  10. Geothermal resource areas database for monitoring the progress of development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

    1981-01-01

    The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

  11. Comparison of 1-Dimensional and 2- Dimensional Vertical Electrical Sounding (VES) Results in Geothermal Area

    Science.gov (United States)

    Çakmak, Olcay; Uyanık, Osman

    2016-04-01

    This study was performed in a geothermal area in Denizli-Turkey. All measures were taken in 2013 along to three months. VES measurements were taken throughout 3 profiles of parallel to each other in geothermal area. Distance of between profiles was selected as 500m. Each of the VES point lengths were taken as between 3-4km in a total of taken 90 number VES measurements. Also distance between the VES points was selected as 250m. Extensional direction of VES point of inside the same profile was designed to be suitable for two-dimensional. Measurements were evaluated as one-dimensional (1D) and after this two-dimensional (2D) then evaluation results were discussed. The geothermal reservoir depth was investigated and was tried to identify potential mechanical borehole locations depending on 1D and 2D evaluation results. Keywords: Geothermal Area, Vertical Electrical Sounding, 1D-2D resistivity results

  12. Broadband seismological observations at The Geysers geothermal area, California, USA

    Science.gov (United States)

    Jousset, Philippe; Gritto, Roland; Haberland, Christian; Hartline, Craig

    2013-04-01

    The understanding of structure and dynamics of geothermal reservoirs for geothermal exploration and sustainable use of the resource requires an assessment using a multidisciplinary approach. The Geysers geothermal reservoir in northern California is the largest producing geothermal field in the world and has been exploited for over 50 years. Among other geophysical surveys, numerous seismic studies have been conducted based on data acquired by the LBNL seismic monitoring network over the past 20 years. However, thus far, no continuous seismic data have been recorded at the Geysers, which prevents detailed continuous monitoring in relation to reservoir operation. In February 2012, we deployed a temporary network of 33 broadband seismic stations, including Guralp and Trillium sensors (0.008 - 100 Hz). At present the network is still in operation. Twenty-six stations are located within the perimeter of the geothermal reservoir, while 7 are located on a perimeter around the reservoir at greater distances. While the recordings of larger magnitude events (M>3.5) may be saturated on the local stations, the outer stations are intended to record these events without interruption. We present analyses of a larger magnitude event (M~3.5) as well as correlations of continuous observations to geothermal operations. Thanks to the high density of instrumentation and the high dynamic range of the broadband sensors, smaller events (microseismicity) can be detected more easily, allowing for better precision in locations and more accuracy in the determination of magnitudes. The increased dynamic range offers an important improvement in the analysis of seismicity as the majority of events at The Geysers have magnitudes of M<2.0.

  13. Design A Prototype of Temperature Logging Tools for Geothermal Prospecting Areas

    Directory of Open Access Journals (Sweden)

    Supriyanto

    2013-08-01

    Full Text Available The costs of geothermal exploration are very high because technology is still imported from other countries. The local business players in the geothermal sector do not have the ability to compete with global companies. To reduce costs, we need to develop our own equipment with competitive prices. Here in Indonesia, we have started to design a prototype of temperature logging tools for geothermal prospecting areas. This equipment can be used to detect temperature versus depth variations. To measure the thermal gradient, the platinum resistor temperature sensor is moved slowly down along the borehole. The displacement along the borehole is measured by a rotary encoder. This system is controlled by a 16-bit H8/3069F microcontroller. The acquired temperature data is displayed on a PC monitor using a Python Graphical User Interface. The system has been already tested in the Gunung Pancar geothermal prospect area in Bogor.

  14. Natural resource economic implications of geothermal area use

    Energy Technology Data Exchange (ETDEWEB)

    Darby, d' E Charles

    1993-01-28

    Large-scale use of geothermal energy is likely to result in depletion of natural resources that support both biodiversity and other human uses. Most of the problems could be averted with competent planning and adherence to agreed conditions, but they commonly develop because they are not perceived to be directly geothermal in origin and hence are not taken into account adequately. Some of the implications of such issues are discussed below, with particular reference to countries where all or most resources are held under traditional principals of custom ownership.

  15. Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples

    Science.gov (United States)

    Ranalli, G.; Rybach, L.

    2005-10-01

    Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m - 2 , in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal areas show various signs of subsurface fluid movement, depending on position in the active system. The heat transfer regime is dominated by heat advection (mainly free convection). The onset of free convection depends on various factors, such as permeability, temperature gradient and fluid properties. The features of heat transfer are different for single or two-phase flow. Characteristic heat flow and heat transfer features in active geothermal systems are demonstrated by examples from Iceland, Italy, New Zealand and the USA. Two main factors affect the rheology of the lithosphere in active geothermal areas: steep temperature gradients and high pore fluid pressures. Combined with lithology and structure, these factors result in a rheological zonation with important consequences both for geodynamic processes and for the exploitation of geothermal energy. As a consequence of anomalously high temperature, the mechanical lithosphere is thin and its total strength can be reduced by almost one order of magnitude with respect to the average strength of continental lithosphere of comparable age and thickness. The top of the brittle/ductile transition is located within the upper crust at depths less than 10 km, acts as the root zone of listric normal faults in extensional environments and, at least in some cases, is visible on seismic reflection lines. These structural and rheological features are well illustrated in the Larderello geothermal field in Tuscany.

  16. Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

    1983-01-01

    The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid &apos

  17. Research on sustainable exploration of the geothermal water in Xiaoquan area

    Institute of Scientific and Technical Information of China (English)

    LUO Yun-ju; LIU Xin-rong; LIU Dong-yan; WANG Gui-lin

    2004-01-01

    On the basis of discussion about hydro-geologic condition of geothermal water in Xiaoquan area, Chongqing, a three-dimensional mathematical model was established.The Modflow(a modular three-dimensional finite-difference groundwater model) software was adopted to simulate the geothermal water, and quantificational study on sustainable exploration of the geothermal water in Xiaoquan area was carried out. Firstly, a mathematical model was set up. Then, the geothermal water was simulated by Modflow software,and the mathematical model was identified. The simulative water level was compared with the actual water level and the mathematical model was calibrated. The feasibility of application of this mathematical model to studying underground geothermal water was proved that the simulative water level is approximated to actual one, and a right mathematical model was obtained. This mathematical model was used to simulate geothermal water under different exploitation conditions, at last the yields of sustainable exploitation including the maximum yield and the optimal yield were determined.

  18. Western Sicily (Italy), a key area for understanding geothermal system within carbonate reservoirs

    Science.gov (United States)

    Montanari, D.; Bertini, G.; Botteghi, S.; Catalano, R.; Contino, A.; Doveri, M.; Gennaro, C.; Gianelli, G.; Gola, G.; Manzella, A.; Minissale, A.; Montegrossi, G.; Monteleone, S.; Trumpy, E.

    2012-12-01

    Oil exploration in western Sicily started in the late 1950s when several exploration wells were drilled, and continued with the acquisition of many seismic reflection profiles and the drilling of new wells in the1980s. The geological interpretation of these data mainly provided new insights for the definition of geometric relationships between tectonic units and structural reconstruction at depth. Although it has not produced completely satisfactory results for oil industry, this hydrocarbon exploration provided a great amount of data, resulting very suitable for geothermal resource assessment. From a geothermal point of view western Sicily is, indeed, a very promising area, with the manifestation at surface of several thermal springs, localized areas of high heat flux and thick carbonates units uninterruptedly developing from surface up top great depths. These available data were often collected with the modalities and purposes typical of oil exploration, not always the finest for geothermal exploration as in the case of temperature measurements. The multidisciplinary and integrated review of these data, specifically corrected for geothermal purposes, and the integration with new data acquired in particular key areas such as the Mazara Del Vallo site in the southern part of western Sicily, allowed us to better understand this medium-enthalpy geothermal system, to reconstruct the modalities and peculiarities of fluids circulation, and to evaluate the geothermal potentialities of western Sicily. We suggest that western Sicily can be taken as a reference for the understanding of geothermal systems developed at a regional scale within carbonate rocks. This study was performed within the framework of the VIGOR project (http://www.vigor-geotermia.it).

  19. Investigation of geothermal potential in the Waianae Caldera Area, Western Oahu, Hawaii. Assessment of Geothermal Resources in Hawaii: Number 2

    Energy Technology Data Exchange (ETDEWEB)

    Cox, M.E.; Sinton, J.M.; Thomas, D.M.; Mattice, M.D.; Kauahikaua, J.P.; Helstern, D.M.; Fan, P.

    1979-09-01

    Studies of Lualualei Valley, Oahu have been conducted to determine whether a thermal anomaly exists in the area and, if so, to identify sites at which subsurface techniques should be utilized to characterize the resource. Geologic mapping identifies several caldera and rift zone structures in the Valley and provides a tentative outline of their boundaries. Clay mineralogy studies indicate that minor geothermal alteration of near-surface rocks has occurred at some period in the history of the area. Schlumberger resistivity soundings indicate the presence of a low resistivity layer beneath the valley floor, which has been tentatively attributed to warm water-saturated basalt. Soil and groundwater chemistry studies outline several geochemical anomalies around the perimeter and within the inferred caldera boundaries. The observed anomalies strongly suggest a subsurface heat source. Recommendations for further exploratory work to confirm the presence of a geothermal reservoir include more intensive surveys in a few selected areas of the valley as well as the drilling of at least three shallow (1000-m) holes for subsurface geochemical, geological and geophysical studies.

  20. Predicting Ground Motion from Induced Earthquakes in Geothermal Areas

    Science.gov (United States)

    Douglas, J.; Edwards, B.; Convertito, V.; Sharma, N.; Tramelli, A.; Kraaijpoel, D.; Cabrera, B. M.; Maercklin, N.; Troise, C.

    2013-06-01

    Induced seismicity from anthropogenic sources can be a significant nuisance to a local population and in extreme cases lead to damage to vulnerable structures. One type of induced seismicity of particular recent concern, which, in some cases, can limit development of a potentially important clean energy source, is that associated with geothermal power production. A key requirement for the accurate assessment of seismic hazard (and risk) is a ground-motion prediction equation (GMPE) that predicts the level of earthquake shaking (in terms of, for example, peak ground acceleration) of an earthquake of a certain magnitude at a particular distance. Few such models currently exist in regard to geothermal-related seismicity, and consequently the evaluation of seismic hazard in the vicinity of geothermal power plants is associated with high uncertainty. Various ground-motion datasets of induced and natural seismicity (from Basel, Geysers, Hengill, Roswinkel, Soultz, and Voerendaal) were compiled and processed, and moment magnitudes for all events were recomputed homogeneously. These data are used to show that ground motions from induced and natural earthquakes cannot be statistically distinguished. Empirical GMPEs are derived from these data; and, although they have similar characteristics to recent GMPEs for natural and mining-related seismicity, the standard deviations are higher. To account for epistemic uncertainties, stochastic models subsequently are developed based on a single corner frequency and with parameters constrained by the available data. Predicted ground motions from these models are fitted with functional forms to obtain easy-to-use GMPEs. These are associated with standard deviations derived from the empirical data to characterize aleatory variability. As an example, we demonstrate the potential use of these models using data from Campi Flegrei.

  1. Geothermal Heat Flux Assessment Using Remote Sensing Land Surface Temperature and Simulated Data. Case Studies at the Kenyan Rift and Yellowstone Geothermal Areas

    Science.gov (United States)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C.; van der Meer, F. D.

    2015-12-01

    In this work we propose an innovative approach to assess the geothermal heat flux anomalies in the regions of the Kenyan Rift and the Yellowstone geothermal areas. The method is based on the land surface temperature (LST) differences obtained between remote sensing data and land surface model simulations. The hypothesis is that the model simulations do not account for the subsurface geothermal heat source in the formulation. Remote sensing of surface emitted radiances is able to detect at least the radiative portion of the geothermal signal that is not in the models. Two methods were proposed to assess the geothermal component of LST (LSTgt) based on the aforementioned hypothesis: a physical model and a data mining approach. The LST datasets were taken from the Land Surface Analysis Satellite Application Facilities products over Africa and the Copernicus Programme for North America, at a spatial resolution of 3-5 km. These correspond to Meteosat Second Generation and Geostationary Operational Environmental Satellite system satellites data respectively. The Weather Research and Forecasting model was used to simulate LST based on atmospheric and surface characteristics using the Noah land surface model. The analysis was carried out for a period of two months by using nighttime acquisitions. Higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer data were also used on the Kenyan area to produce similar outputs employing existing methods. The comparison of the results from both methods and areas illustrated the potential of the data and methodologies for geothermal applications.

  2. Anthropogenic and natural ground deformation in the Hengill geothermal area, Iceland

    Science.gov (United States)

    Juncu, D.; Árnadóttir, Th.; Hooper, A.; Gunnarsson, G.

    2017-01-01

    We investigate crustal deformation due to the extraction of water and steam from a high-enthalpy geothermal reservoir; a common occurrence, yet not well understood. The cause of this deformation can be a change in pressure or in temperature in the reservoir, both of which can be caused by extraction or injection of geothermal fluids. Our study area, the Hengill mountains in SW Iceland, is an active volcanic center and a plate triple junction that hosts two power plants producing geothermal energy. This combination of natural and anthropogenic processes causes a complex displacement field at the surface. We analyze geodetic data—Global Navigation Satellite System and Interferometric Synthetic Aperture Radar—to obtain the surface velocity field, which we then simulate using an inverse modeling approach. We focus on the deformation around the geothermal power plants but need to model the regional tectonic and volcanic deformation as well, because the signals are overlapping. We find that plate motion and a deep contracting body can explain the broad scale signal in the area. Local deformation near the two power plants, Hellisheidi and Nesjavellir, can be explained by extraction of geothermal fluids. We estimate reservoirs extending from 0.6 to 3.0 km depth at Hellisheidi, and 1.0 to 3.0 km depth at Nesjavellir for observed pressure decrease rates of 0.25 MPa/yr and 0.1 MPa/yr, respectively. We find that the main cause for the subsidence in the geothermal area is the observed pressure drawdown.

  3. Attenuation and source properties at the Coso Geothermal area, California

    Science.gov (United States)

    Hough, S.E.; Lees, J.M.; Monastero, F.

    1999-01-01

    We use a multiple-empirical Green's function method to determine source properties of small (M -0.4 to 1.3) earthquakes and P- and S-wave attenuation at the Coso Geothermal Field, California. Source properties of a previously identified set of clustered events from the Coso geothermal region are first analyzed using an empirical Green's function (EGF) method. Stress-drop values of at least 0.5-1 MPa are inferred for all of the events; in many cases, the corner frequency is outside the usable bandwidth, and the stress drop can only be constrained as being higher than 3 MPa. P- and S-wave stress-drop estimates are identical to the resolution limits of the data. These results are indistinguishable from numerous EGF studies of M 2-5 earthquakes, suggesting a similarity in rupture processes that extends to events that are both tiny and induced, providing further support for Byerlee's Law. Whole-path Q estimates for P and S waves are determined using the multiple-empirical Green's function (MEGF) method of Hough (1997), whereby spectra from clusters of colocated events at a given station are inverted for a single attenuation parameter, ??, with source parameters constrained from EGF analysis. The ?? estimates, which we infer to be resolved to within 0.01 sec or better, exhibit almost as much scatter as a function of hypocentral distance as do values from previous single-spectrum studies for which much higher uncertainties in individual ?? estimates are expected. The variability in ?? estimates determined here therefore suggests real lateral variability in Q structure. Although the ray-path coverage is too sparse to yield a complete three-dimensional attenuation tomographic image, we invert the inferred ?? value for three-dimensional structure using a damped least-squares method, and the results do reveal significant lateral variability in Q structure. The inferred attenuation variability corresponds to the heat-flow variations within the geothermal region. A central low

  4. Time-dependent seismic tomography of the Coso geothermal area, 1996-2004

    Science.gov (United States)

    Julian, B.R.; Foulger, G.R.

    2005-01-01

    The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides high-quality microearthquake (MEQ) data that are well suited to investigating temporal variations in structure related to processes within the geothermal reservoir. A preliminary study [Julian, et al., 2003; Julian, et al., 2004] comparing data from 1996 and 2003 found significant variations in the ratio of the seismic wave-speeds, Vp/Vs, at shallow depths over this time interval. This report describes results of a more detailed study of each year from 1996 through 2004.

  5. Thermal Modeling of an Area N-W of the Larderello Geothermal Field, Italy.

    Science.gov (United States)

    Bellani, S.; Gherardi, F.

    2008-12-01

    A wide area enclosed between the ancient Etruscan town of Volterra and the northern rim of the Larderello high enthalpy geothermal field (Tuscany, Italy) shows thermal features which suggest further investigations aimed at mid-low enthalpy geothermal energy exploitation. Thermal gradients are in the range 75 - 100 C°/km, while surface heat flow spans between 100 - 150 mW/m2. Numerical simulations were performed to predict the spatial distribution of temperature and fluid circulation paths, constrained by field data. Temperature control based on real data is allowed by a few deep exploratory geothermal wells along with several shallower gradient wells, down to a maximum of about 3 km. The model domain extends over an area 20 by 10 km; thickness is 6 km. Local geology is simplified in four different terrains, according to the generalized stratigraphy of the area. Several sets of simulations were carried out running SHEMAT and TOUGH2 numerical codes, considering various boundary conditions, inner geometries and hydraulic permeabilities. The model was realized by means of unsteady forward simulations, under the assumptions of impervious and isothermal top and bottom boundaries, lateral adiabatic faces and variable internal physical properties. The results indicate that the present temperature and pressure distribution of hot fluids with depth in the northern border area of the Larderello field allows to hypothesize a fruitful exploitation of the medium- enthalpy geothermal resources, possibly with low-boiling point fluids binary plants for electricity generation.

  6. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Klauk, R.H.; Budding, K.E.

    1984-07-01

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  7. Regional and local networks of horizontal control, Cerro Prieto geothermal area

    Science.gov (United States)

    Massey, B.L.

    1979-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley 30 km southeast of Mexicali, Baja California, is probably deforming due to (1) the extraction of large volumes of steam and hot water, and (2) active tectonism. Two networks of precise horizontal control were established in Mexicali Valley by the U.S. Geological Survey in 1977 - 1978 to measure both types of movement as they occur. These networks consisted of (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from survey stations on an existing U.S. Geological Survey crustal-strain network north of the international border, and (2) a local net tied to stations in the regional net and encompassing the area of present and planned geothermal production. Survey lines in this net were selected to span areas of probable ground-surface movements in and around the geothermal area. Electronic distance measuring (EDM) instruments, operating with a modulated laser beam, were used to measure the distances between stations in both networks. The regional net was run using a highly precise long-range EDM instrument, helicopters for transportation of men and equipment to inaccessible stations on mountain peaks, and a fixed wing airplane flying along the line of sight. Precision of measurements with this complex long-range system approached 0-2 ppm of line length. The local net was measured with a medium-range EDM instrument requiring minimal ancillary equipment. Precision of measurements with this less complex system approached 3 ppm for the shorter line lengths. The detection and analysis of ground-surface movements resulting from tectonic strains or induced by geothermal fluid withdrawal is dependent on subsequent resurveys of these networks. ?? 1979.

  8. Mortality of populations residing in geothermal areas of Tuscany during the period 2003-2012.

    Science.gov (United States)

    Bustaffa, Elisa; Minichilli, Fabrizio; Nuvolone, Daniela; Voller, Fabio; Cipriani, Francesco; Bianchi, Fabrizio

    2017-01-01

    The limited scientific knowledge on the relationship between exposure and health effects in relation to geothermal activity motivated an epidemiologic investigation of Tuscan geothermal area. This study aims at describing mortality of populations living in Tuscan municipalities in the period 2003-2012. Sixteen municipalities were included in the study area: eight in the northern and eight in the southern area. Mortality data come from the Regional Mortality Registry of Tuscany. Fifty-four causes of death, considered of interest for population health status or consistent with "Project SENTIERI" criteria, are analyzed. Results show a worse mortality profile in the southern area, especially in males, for whom excesses of all cancers and some causes of cancer emerge, while in the northern area an excess of cerebrovascular diseases among females merits attention. Further and more appropriate studies are needed to clarify the etiology of some diseases and to better assess a potential cause-effect relationship.

  9. INTERPRETATION OF BOUGUER ANOMALY TO DETERMINE FAULT AND SUBSURFACE STRUCTURE AT BLAWAN-IJEN GEOTHERMAL AREA

    Directory of Open Access Journals (Sweden)

    Anjar Pranggawan Azhari

    2016-10-01

    Full Text Available Gravity survey has been acquired by Gravimeter Lacoste & Romberg G-1035 at Blawan-Ijen geothermal area. It was a focusing study from previous research. The residual Bouguer anomaly data was obtain after applying gravity data reduction, reduction to horizontal plane, and upward continuation. Result of Bouguer anomaly interpretation shows occurrence of new faults and their relative movement. Blawan fault (F1, F2, F3, and F6 are normal fault. Blawan fault is main fault controlling hot springs at Blawan-Ijen geothermal area. F4 and F5 are oblique fault and forming a graben at Banyupahit River. F7 is reverse fault. Subsurface model shows that Blawan-Ijen geothermal area was dominated by the Ijen caldera forming ignimbrite (ρ1=2.670 g/cm3, embedded shale and sand (ρ2=2.644 g/cm3 as Blawan lake sediments, magma intrusion (ρ3=2.814 g/cm3 & ρ7=2.821 g/cm3, andesite rock (ρ4=2.448 g/cm3 as geothermal reservoir, pyroclastic air fall deposits (ρ5=2.613 g/cm3 from Mt. Blau, and lava flow (ρ6=2.890 g/cm3.

  10. Engineering geology of the Geysers Geothermal Resource Area, Lake, Mendocino, and Sonoma Counties, California. Special report 122

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, C.F.; Amimoto, P.Y.; Sherburne, R.W.; Slosson, J.E.

    1976-01-01

    Guidelines for the engineering geology assessment of The Geysers Geothermal Resource Area (GRA) are presented. Approximately 50 percent of the geothermal wells and some of the power plants are presently located on landslide areas. Several geothermal wells have failed, causing additional land instability, loss of energy resource, and unnecessary expense. Hazardous geologic conditions in the area are identified, and measures for mitigating those hazardous conditions are recommended. Such measures or other equally adequate measures should be considered for any proposed development activity in The Geysers area.

  11. GRAVIMETRIC STUDY OF THE IXTLAN DE LOS HERVORES, GEOTHERMAL AREA, MIDWESTERN MEXICAN VOLCANIC BELT (MVB)

    Science.gov (United States)

    Gonzalez, T.; Ortiz, I.

    2009-12-01

    Analysis and interpretation of gravimetric anomalies over the Occidental-Central Mexican Volcanic Belt, sheds new light on the subsurface structure of the Ixtlan de los Hervores, geothermal area. In Mexico, there are several geothermal areas that have been exploited commercially (Cerro Prieto, Los Azufres, Los Humeros, Tres Virgenes fields). However, there are many other known fields that have not been exploited. This is the case in the area of "Ixtlan de los Hervores" in the state of Michoacan. The analyzed region covers a rectangular area, aproximality from 20o N to 20.5° N and 102° W to 102.2°W. In the region there are thick basalt flows. The area is characterized by low and elongated hills formed by volcanic flows and on a smaller scale lacustrian sediments and major normal faults with a NW-SE direction particularly, the Ixtlan-Encinal fault which controls the trace of the Duero River and the Pajacuarán fault. The anomaly map was compared with the surface geology and the anomalies were correlated with major volcanic features, since our main interest was in mapping the subsurface faults and volcanic bodies. Two profiles were selected that cross major anomalies and the geothermal zone of Ixtlan. The Talwani algorithm for 2-D polygonal bodies has been used for calculating the theoretical anomalies. The proposed models adequately explain the main observed geological features. The models are made up of two lithostratigraphic units of volcanic rocks, represented by the Tertiary basalts, which adequately reflect the area's volcanic environment. These basaltic units, corresponding to different volcanic events were cut by the Ixtlan well. Both models reflect the existence of the Ixtlan-Encinal fault, the most important feature in the area which is also responsible for the existence of the geothermal area.

  12. Electrical Resistivity Investigations of the Kurşunlu (Manisa/Turkey) Geothermal Area

    Science.gov (United States)

    Sarı, Coşkun; Timur, Emre

    2016-04-01

    It is of considerable importance to explore the geological structure around active faults, especially near-surface unconsolidated layers, to estimate the faults' activity. There are numerous case studies to investigate geothermal reservoirs and surrounding active faults using geophysical exploration methods; however, only a few cases have been verified in detail by comparison with other geological information. Electrical resistivity data provide a substantial contribution to the geophysical mapping and monitoring of geothermal reservoirs. We applied electrical methods, which can be effective for exploring to several hundred meters depth, to reveal geological structures covered by thick Quaternary alluvium formations. Geothermal activity around city of Manisa in Gediz Graben (Western Turkey) has been investigated by many researchers and many geothermal boreholes were drilled in order to produce electricity and for heating purposes. The Kurşunlu geothermal area is with the southern side of the Gediz Graben in 2 km west of Salihli, Manisa, Turkey. According to rising demand on thermal water around Salihli, geophysical studies were performed using the Vertical Electrical Sounding (VES) measurements at 16 stations around the area of Kurşunlu hot springs, and they were interpreted using both one and two-dimensional modelling. Vertical and horizontal resistivity sections were mapped, and it was determined that two low-resistivity layers exist both in the North (stations 1,2 and 4) and the South (stations 6 and 10) part of the survey area. As a result of the studies, the boundaries of the low-resistivity layer were mapped and test drilling locations were recommended.

  13. Anthropogenic and natural ground deformation in the Hengill geothermal area, Iceland

    Science.gov (United States)

    Juncu, Daniel; Árnadóttir, Thóra; Hooper, Andy; Gunnarsson, Gunnar

    2017-04-01

    We investigate crustal deformation due to the extraction of water and steam from a high-enthalpy geothermal reservoir; a common occurrence, yet not well understood. The cause of this deformation can be a change in pressure or in temperature in the reservoir, both of which can be caused by extraction or injection of geothermal fluids. Our study area, the Hengill mountains in SW Iceland, is an active volcanic center and a plate triple junction that hosts two power plants producing geothermal energy. This combination of natural and anthropogenic processes causes a complex displacement field at the surface. We analyze geodetic data—Global Navigation Satellite System and Interferometric Synthetic Aperture Radar—to obtain the surface velocity field, which we then simulate using an inverse modeling approach. This way we are able to untangle the deformation signal and find that plate motion and a deep contracting body can explain the broad scale signal in the area. Local deformation near the two power plants, Hellisheidi and Nesjavellir, can be explained by extraction of geothermal fluids. We estimate reservoirs extending from 0.6 to 3.0 km depth at Hellisheidi, and 1.0 to 3.0 km depth at Nesjavellir for observed pressure decrease rates of 0.25 MPa/yr and 0.1 MPa/yr, respectively. We find that the main cause for the subsidence in the geothermal area is the observed pressure drawdown. This means that surface deformation could be used to constrain reservoir pressure models and improve their performance, which could make surface deformation measurements a valuable tool in reservoir monitoring.

  14. Seismological study on the crustal structure of Tengchong volcanic-geothermal area

    Institute of Scientific and Technical Information of China (English)

    王椿镛; 楼海; 吴建平; 白志明; 皇甫岗; 秦嘉政

    2002-01-01

    Based upon the deep seismic sounding profile conducted in the Tengchong volcanic-geothermal area, a two-dimensional crustal P velocity structure is obtained by use of the finite-difference inversion and the forward travel-time fitting method. The crustal model shows that there is a low velocity zone in upper crust in the Tengchong area, which may be related to the volcanic-geothermal activities, and two intracrustal faults (the Longling-Ruili fault and Tengchong fault) exist on the profile, where the Tengchong fault may extend to the Moho discontinuity. Meanwhile, based on teleseismic data recorded by a temporary seismic network, we obtained the S-wave velocity structures beneath the Rehai-Retian region in the Tengchong area, which show the low S-wave velocity anomaly in upper crust. The authors discuss the causes of Tengchong volcanic eruption based on the deep crustal structure. The crustal structure in the Tengchong volcanic-geothermal area is characterized by low P-wave and S-wave velocity, low resistivity, high heat-flow value and low Q value. The P-wave velocity in the upper mantle is also low. For this information, it can be induced that the magma in the crust is derived from the upper mantle, and the low velocity anomaly in upper crust in the Tengchong area may be related to the differentiation of magma. The Tengchong volcanoes are close to an active plate boundary and belong to "plate boundary" volcanoes.

  15. Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho

    Science.gov (United States)

    Crosthwaite, E. G.

    1976-01-01

    Studies of the geothermal aspect-of the Bridge area of the Raft River basin in south-central Idaho (fig. 1) by the U.S. Geological Survey began in 1972 when Young and Mitchell (1973) made a geochemical and geologic reconnaissance of selected thermal waters in Idaho. The Bridge area had been designated the Frazier known geothermal resource area (Frazier KGRA) by the U.S. Geological Survey (Godwin and others-, 1971) . Since 1972, several units of the Geological Survey have studied the area to provide data for the U.S. Energy Research and Development Administration, which proposes to ascertain whether the geothermal resource can be developed for power generation and other uses. The studies include geologic mapping, geophysical surveys, water sampling, test drilling, and studies of all available drill- hole data. A list of reports already prepared on the area is included with this report. Core drilling of five holes began in August 1974 and was completed in March 1975. These holes are referred to as intermediate-depth core holes, principally because in the spring of 1974, 35 auger holes 25 to 98 feet (7.6 to 30

  16. Fluid geochemistry of the Acqui Terme-Visone geothermal area (Piemonte, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Marini, L.; Bonaria, V.; Ottonello, G.; Zuccolini, M.V. [University of Genova (Italy). Dip. per lo Studio del Territorio e delle sur Risorse; Guidi, M. [Istituto di Geocronologia e Geochimica Isotopica, CNR, Pisa (Italy); Hunziker, J.C. [Universite de Lausanne (Switzerland). Inst. de Mineralogie et Petrographie

    2000-08-01

    The main geothermal reservoir of Acqui Terme-Visone hosts Na-Cl waters, which are in chemical equilibrium at 120-130{sup o}C with typical hydrothermal minerals including quartz, albite, K-feldspar, illite. chlorite (or smectite), anhydrite, calcite and an unspecified Ca-Al-silicate. In the Acqui Terme-Visone area, these geothermal waters ascend along zones of high vertical permeability and discharge at the surface almost undiluted or mixed with cold, shallow waters. To the SW of Acqui Terme, other ascending geothermal waters, either undiluted or mixed with low-salinity waters, enter relatively shallow secondary reservoirs, where they reequilibrate at 65-70{sup o}C. Both chemical and isotopic data indicate that bacterial SO{sub 4} reduction affects all these waters, especially those discharged by the secondary reservoirs. Therefore, geothermal waters must get in contact with oil, acquiring the relatively oxidized organic substances needed by SO{sub 4} -reducing bacteria. This oil-water interaction process deserves further investigations, for potential economic implications. (Author)

  17. Hot dry rock geothermal potential of Roosevelt Hot Springs area: review of data and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1981-05-01

    The Roosevelt Hot Springs area in west-central Utah possesses several features indicating potential for hot dry rock (HDR) geothermal development. The area is characterized by extensional tectonics and a high regional heat flow of greater than 105 mW/m/sup 2/. The presence of silicic volcanic rocks as young as 0.5 to 0.8 Myr and totaling 14 km/sup 3/ in volume indicates underlying magma reservoirs may be the heat source for the thermal anomaly. Several hot dry wells have been drilled on the periphery of the geothermal field. Information obtained on three of these deep wells shows that they have thermal gradients of 55 to 60/sup 0/C/km and bottom in impermeable Tertiary granitic and Precambrian gneissic units. The Tertiary granite is the preferred HDR reservoir rock because Precambrian gneissic rocks possess a well-developed banded foliation, making fracture control over the reservoir more difficult. Based on a fairly conservative estimate of 160 km/sup 2/ for the thermal anomaly present at Roosevelt Hot Springs, the area designated favorable for HDR geothermal exploration may be on the order of seven times or more than the hydrogeothermal area currently under development.

  18. Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area.

    Science.gov (United States)

    Nishar, Abdul; Bader, Martin K-F; O'Gorman, Eoin J; Deng, Jieyu; Breen, Barbara; Leuzinger, Sebastian

    2017-01-01

    Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments

  19. Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area

    Science.gov (United States)

    Nishar, Abdul; Bader, Martin K.-F.; O’Gorman, Eoin J.; Deng, Jieyu; Breen, Barbara; Leuzinger, Sebastian

    2017-01-01

    Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments

  20. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  1. Reconnaissance of geothermal resources near US naval facilities in the San Diego area, California

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, L.G.

    1984-01-01

    A reconnaissance study has found little evidence of potential geothermal resources useful at naval facilities in the greater San Diego metropolitan area. However, there is a zone of modest elevated water well temperatures and slightly elevated thermal gradients that may include the eastern portion of the Imperial Beach Naval Air Station south of San Diego Bay. An increase of 0.3/sup 0/ to 0.4/sup 0/F/100 ft over the regional thermal gradient of 1.56/sup 0/F/100 ft was conservatively calculated for this zone. The thermal gradient can be used to predict 150/sup 0/F temperatures at a depth of approximately 4000 ft. This zone of greatest potential for a viable geothermal resource lies within a negative gravity anomaly thought to be caused by a tensionally developed graben, approximately centered over the San Diego Bay. Water well production in this zone is good to high, with 300 gpm often quoted as common for wells in this area. The concentration of total dissolved solids (TDS) in the deeper wells in this zone is relatively high due to intrusion of sea water. Productive geothermal wells may have to be drilled to depths economically infeasible for development of the resource in the area of discussion.

  2. Geology of the platanares geothermal area, Departamento de Copan, Honduras

    Science.gov (United States)

    Heiken, G.; Ramos, N.; Duffield, W.; Musgrave, J.; Wohletz, K.; Priest, S.; Aldrich, J.; Flores, W.; Ritchie, A.; Goff, F.; Eppler, D.; Escobar, C.

    1991-01-01

    Platanares is located 16 km west of Santa Rosa de Copan, Honduras, along the Quebrada del Agua Caliente. The thermal manifestations are along faults in tuffs, tuffaceous sedimentary rocks, and lavas of the Padre Miguel Group. These tuffs are silicified near the faults, are fractured, and may provide the fracture permeability necessary for the hydrothermal system. Tuffs are overlain by a wedge of terrace gravels up to 60 m thick. Quaternary conglomerates of the Quebrada del Agua Caliente are cemented by silica sinter. The Platanares area contains numerous faults, all of which appear to be extensional. There are four groups of faults (N80/sup 0/E to N70/sup 0/W, N30/sup 0/ to 60/sup 0/W, N40/sup 0/ to 65/sup 0/E, and N00/sup 0/ to 05/sup 0/W). All hot springs at this site are located along faults that trend mostly northwest and north. Twenty-eight spring groups were described over an area of 0.2 km/sup 2/; half were boiling. Based on surface temperatures and flow rates, between 0.7 and 1.0 MW thermal energy is estimated for the area. The increased temperature of the stream flowing through the thermal area indicates that several megawatts of thermal energy are being added to the stream. We recommend that a dipole-dipole resistivity line be run along the Quebrada del Agua Caliente to identify zones of fracture permeability associated with buried faults and hot water reservoirs within those fault zones. A thermal gradient corehole should be drilled at Platanares to test temperatures, lithologies, and permeability of the hydrothermal system.

  3. Final Scientific / Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    Layman Energy Associates, Inc.

    2006-08-15

    With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and interpretation of remote sensing imagery such as aerial and satellite photographs; acquisition, quality control and interpretation of gravity data; and acquisition, quality control and interpretation of resistivity data using state of the art magnetotelluric (MT) methods. The results of this exploratory program have allowed LEA to develop a structural and hydrologic interpretation of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8 kilometer-long, WNW-trending zone of low resistivity associated with geothermal activity in nearby wells. The long axis of this low resistivity zone is inferred to mark a zone of faulting which likely provides the primary control on the distribution of geothermal resources in the Truckhaven area. Abundant cross-faults cutting the main WNW-trending zone in its western half may indicate elevated fracture permeability in this region, possibly associated with thermal upwelling and higher resource temperatures. Regional groundwater flow is inferred to push thermal fluids from west to east along the trend of the main low resistivity zone, with resource temperatures likely declining from west to east away from the inferred upwelling zone. Resistivity mapping and well data have also shown that within the WNW-trending low resistivity zone, the thickness of the Plio-Pleistocene sedimentary section above granite basement ranges from 1,900–2,600 meters. Well data indicates the lower part of this

  4. Alaska geothermal bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  5. Description and assessment of the Raft River Lotic system in the vicinity of the Raft River Geothermal Area. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Raft River is the only perennial lotic system within this area and one concern has been the impact a spill of geothermal water would have on the biota of the stream. Identification of the structure of these communities is the baseline information which was the objective of this study. The results of the inventory in terms of potential recovery of downstream communities from the impact of geothermal water induced perturbations are discussed.

  6. Impacts of geothermal energy developments on hydrological environment in hot spring areas

    Science.gov (United States)

    Taniguchi, M.

    2015-12-01

    Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count

  7. Modelling geothermal conditions in part of the Szczecin Trough – the Chociwel area

    Directory of Open Access Journals (Sweden)

    Miecznik Maciej

    2015-09-01

    Full Text Available The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method. An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years’ time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.

  8. [State of health of populations residing in geothermal areas of Tuscany].

    Science.gov (United States)

    Minichilli, Fabrizio; Nuvolone, Daniela; Bustaffa, Elisa; Cipriani, Francesco; Vigotti, Maria Angela; Bianchi, Fabrizio

    2012-01-01

    The limited scientific knowledge on relationship between exposure and health effects in relation to geothermal activity motivated an epidemiologic investigation in Tuscan geothermal area. The study aims to describe the health status of populations living in Tuscany municipalities where concessions for exploitation of geothermal resources were granted. This is an ecological study, so it is not useful to produce evidence to sustain a judgment on the cause-effect link. The major limits of this type of study are the use of the residence at municipal level as a proxy of exposure to both environmental and socioeconomic factors and the use of aggregated data of health outcomes that can lead to the well-known ecological fallacy. Sixteen municipalities were included in the study area: eight are part of the so-called "traditional" geothermal area, defined as Northern Geothermal Area (NGA) and eight located in the Amiata Mountain defined as Southern Geothermal Area (SGA). In 2000-2006, the average resident population in the overall area was approximately 43,000 inhabitants. Thirty-one geothermal power plants were active, with a production capacity of 811 MW, 5 of them with 88 MW located in the SGA. Statistical analyses on the entire geothermal area, NGA and SGA subareas, and the sixteen municipalities were performed. Mortality data were obtained from Tuscany Regional Mortality Registry for the 1971-2006 period, analysing 60 causes of death, of interest for population health status or consistent with "Project SENTIERI" criteria. Hospital discharge records of residents in Tuscany Region in 2004-2006, anywhere admitted to hospital, were analyzed considering only the main diagnosis, excluding repeated admissions for the same cause. The causes taken into account are the same analysed for mortality were considered. Age-standardized mortality rates (TSDM) and the temporal trends of TSDM for four periods (1971-1979, 1980-1989, 1990-1999, 2000-2006) were computed. Age

  9. Geothermal Conceptual Model in Earthquake Swarm Area: Constrains from Physical Properties of Supercritical Fluids and Dissipative Theory

    Science.gov (United States)

    Wang, S. C.; Lee, C. S.

    2016-12-01

    In recent five years, geothermal energy became one of the most prosperous renewable energy in the world, but produces only 0.5% of the global electricity. Why this great potential of green energy cannot replace the fuel and nuclear energy? The necessity of complicated exploration procedures and precious experts in geothermal field is similar to that of the oil and gas industry. The Yilan Plain (NE Taiwan) is one of the hot area for geothermal development and research in the second phase of National Energy Program (NEP-II). The geological and geophysical studies of the area indicate that the Yilan Plain is an extension of the Okinawa Trough back arc rifting which provide the geothermal resource. Based on the new constrains from properties of supercritical fluids and dissipative structure theory, the geophysical evidence give confident clues on how the geothermal system evolved at depth. The geothermal conceptual model in NEP-II indicates that the volcanic intrusion under the complicate fault system is possibly beneath the Yilan Plain. However, the bottom temperature of first deep drilling and geochemical evidence in NEP-II imply no volcanic intrusion. In contrast, our results show that seismic activities in geothermal field observed self-organization, and are consistent with the brittle-ductile / brittle-plastic transition, which indicates that supercritical fluids triggered earthquake swarms. The geothermal gradient and geochemical anomalies in Yilan Plain indicate an open system far from equilibrium. Mantle and crust exchange energy and materials through supercritical fluids to generate a dissipative structure in geothermal fields and promote water-rock interactions and fractures. Our initial studies have suggested a dissipative structure of geothermal system that could be identified by geochemical and geophysical data. The key factor is the tectonic setting that triggered supercritical fluids upwelling from deep (possibly from the mantle or the upper crust). Our

  10. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  11. Preliminary assessment of the geothermal resource potential of the Yuma area, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.

    1981-01-01

    The Yuma area has had a long and complex tectonic history. The most southwesterly corner of the area presently comprises a small segment of the Salton Trough, a deep sediment-filled structural depression. Known geothermal anomalies in the Salton Trough make the Yuma area a favorable exploration target even though spreading-center heat sources are not expected to occur there. Geological and geophysical investigations reveal that the area is made up of low, rugged northwest-trending mountains separated by deep sediment-filled basins. Relief is a result of both erosional and structural activity. Northwest-trending en-echelon faults bound the range fronts and the basins, and have created several horst blocks (basement highs) that crop out at or near the surface. The Algodonnes fault is inferred to represent the northeast margin of the Salton Trough and apparently an inactive extension of the San Andreas fault system. Extensive well-pumping and applications of irrigation waters in recent years have created an unnatural state of flux in the hydrologic regime in the Yuma area. Gravity and aeromagnetic anomalies trend strongly northwest through the region as do lineaments derived from Landsat and Skylab photos. Electrical resistivity values in the Bouse Formation are exceptionally low, about 3 ohn-m. Heat flow appears to be normal for the Basin and Range province. Ground-water temperatures indicate zones of rising warm water, with one such warm anomaly confirmed by sparse geothermal-gradient data.

  12. Low temperature geothermal resource evaluation of the Moses Lake-Ritzville-Connell area, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Widness, S.

    1983-11-01

    The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given. A technique developed by Biggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG).

  13. [Hydrogen and oxygen isotopes of lake water and geothermal spring water in arid area of south Tibet].

    Science.gov (United States)

    Xiao, Ke; Shen, Li-Cheng; Wang, Peng

    2014-08-01

    The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.

  14. Geothermal characteristics of deep wells using geophysical logs in Pohang area, Korea

    Science.gov (United States)

    LIM, W.; Hamm, S. Y.; Lee, C.; Song, Y.; Kim, H.

    2016-12-01

    Pohang area displays a larger potential of geothermal energy with the highest heat flow of 83 mWm-2 in South Korea. A geothermal binary power plant with a generation capacity of 1.5MW using enhanced geothermal system (EGS) is under construction in Pohang area and will be completed until 2017. This study aims to reveal geothermal characteristics of four wells (BH-1 to BH-4 wells) of 2,383 m in depth in Pohang area, using geophysical logs. The geology of the study area is composed of tertiary mudstone of 200 - 359.1 m, tuff of 73 - 240 m, sandstone/mudstone of 46 - 907 m, rhyolite of 259 - 375 m, and andesitic volcanic breccia of 834 m in thicknesses from the surface, with granodiorite at bottom. By the result of the study, temperature and maximum electrical conductivity (EC) are 69.5°C at 1,502.6 m and 1,162 μS/cm at BH-2 well, 44.4°C at 912.3 m and 1,105 μS/cm at BH-3 well, and 82.5°C at 1,981.3 m and 3,412 μS/cm at BH-4 well. Thermal conductivity values at saturated state are 2.14 - 3.95 W/m-K (average 3.47 W/m-K) at BH-1 well and 2.36 - 3.61 W/m-K (average 2.85 W/m-K) at BH-4 well. ß (determining heat flow rate and up/down direction) values were estimated by using 1-D steady-state heat transfer equation and were determined as -0.77 - 0.99 with the geothermal gradients (Ks) of 42.5 - 46.3°C/km at BH-1 well, -3.15 - 3.05 with the Ks of 25.0 - 29.1°C/km at BH-2, -1.80 - 2.09 with the Ks of 20.0 - 23.0°C/km at BH-3 well, and -4.10 - 5.18 with the Ks of 30.2 - 39.0°C/km at BH-4 well. Most depths of all the wells showed upward heat transfer. Based on the geophysical logs, the main aquifer is located between 200 and 300 meters. KEY WORDS: Geothermal gradient, thermal conductivity, geophysical logs, ß value, heat transfer equation, Pohang area Acknowledgement This work was supported by grants from the Principal Research Fund of Korea Institute of the Geoscience and Mineral Resources (KIGAM 16-3411).

  15. Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report

    Energy Technology Data Exchange (ETDEWEB)

    Eppler, D.B.; Heiken, G.; Wohletz, K.; Flores, W.; Paredes, J.R.; Duffield, W.A.

    1987-09-01

    The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normal faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.

  16. Design of a geothermal monitoring network in a coastal area and the evaluation system

    Science.gov (United States)

    Ohan Shim, Byoung; Lee, Chulwoo; Park, Chanhee

    2016-04-01

    In Seockmodo Island (area of 48.2 km2) located at the northwest of South Korea, a renewable energy development project to install photovoltaic 136 kW and geothermal 516.3 kW is initiated. Since the 1990s, more than 20 deep geothermal wells for hot springs, greenhouse and aquaculture have been developed along coastal areas. The outflow water of each site has the pumping capacity between 300 and 4,800 m3/day with the salinity higher than 20,000 mg/l, and the maximum temperature shows 70 ?C. Because of the required additional well drillings, the increased discharge rate can cause serious seawater intrusion into freshwater aquifers, which supply groundwater for drinking and living purposes from 210 wells. In order to manage the situation, advanced management skills are required to maintain the balance between geothermal energy development and water resources protection. We designed real-time monitoring networks with monitoring stations for the sustainable monitoring of the temperature and salinity. Construction of borehole temperature monitoring for deep and shallow aquifer consists with the installation of automated temperature logging system and cellular telemetry for real-time data acquisition. The DTS (distributed temperature sensing) system and fiber optic cables will be installed for the logging system, which has enough temperature resolution and accuracy. The spatial distribution and the monitoring points can be determined by geological and hydrological situations associated with the locations of current use and planned facilities. The evaluation of the temperature and salinity variation will be conducted by the web-based monitoring system. The evaluation system will be helpful to manage the balance between the hot water development and the fresh water resources conservation.

  17. Association of Cancer Incidence and Duration of Residence in Geothermal Heating Area in Iceland: An Extended Follow-Up.

    Directory of Open Access Journals (Sweden)

    Adalbjorg Kristbjornsdottir

    Full Text Available Residents of geothermal areas have higher incidence of non-Hodgkin's lymphoma, breast cancer, prostate cancer, and kidney cancers than others. These populations are exposed to chronic low-level ground gas emissions and various pollutants from geothermal water. The aim was to assess whether habitation in geothermal areas and utilisation of geothermal water is associated with risk of cancer according to duration of residence.The cohort obtained from the census 1981 was followed to the end of 2013. Personal identifier was used in record linkage with nation-wide emigration, death, and cancer registries. The exposed population, defined by community codes, was located on young bedrock and had utilised geothermal water supply systems since 1972. Two reference populations were located by community codes on older bedrock or had not utilised geothermal water supply systems for as long a period as had the exposed population. Adjusted hazard ratio (HR, 95% confidence intervals (CI non-stratified and stratified on cumulative years of residence were estimated in Cox-model.The HR for all cancer was 1.21 (95% CI 1.12-1.30 as compared with the first reference area. The HR for pancreatic cancer was 1.93 (1.22-3.06, breast cancer, 1.48 (1.23-1.80, prostate cancer 1.47 (1.22-1.77, kidney cancer 1.46 (1.03-2.05, lymphoid and haematopoietic tissue 1.54 (1.21-1.97, non-Hodgkin´s lymphoma 2.08 (1.38-3.15 and basal cell carcinoma of the skin 1.62 (1.35-1.94. Positive dose-response relationship was observed between incidence of cancers and duration of residence, and between incidence of cancer and degree of geothermal/volcanic activity in the comparison areas.The higher cancer incidence in geothermal areas than in reference areas is consistent with previous findings. As the dose-response relationships were positive between incidence of cancers and duration of residence, it is now more urgent than before to investigate the chemical and physical content of the geothermal

  18. Stillwater Wildlife Management Area : Suitability of geothermal waste water for use in waterfowl marsh maintenance

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report analyzes the suitability of geothermal waste waters for use in waterfowl management. An extensive review of available data on water quality of geothermal...

  19. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112453 Li Qing (First Design and Research Institute,Ministry of Mechanical Industry, Bengbu 233000, China); Li Yixiang Application of Shallow Geothermal Energy Resources in the Hefei Area(Geology

  20. Relationship of geological and geothermal field properties: Midcontinent area, USA, an example

    Science.gov (United States)

    Forster, A.; Merriam, D.F.; Brower, J.C.

    1993-01-01

    negative or slightly positive. These results are clearly shown by the cluster analysis and the principal components. Considering a close relationship between temperature and thermal conductivity of the sediments as observed for most of the Midcontinent area and relatively homogeneous heat-flow density conditions for the study area these results support the following assumptions: (1) undifferentiated geothermal gradients, computed from temperatures of different depth intervals and differing sediment properties, cannot contribute to an improved understanding of the temperature structure and its controls within the sedimentary cover, and (2) the quantitative approach of revealing such relations needs refined datasets of temperature information valid for the different depth levels or stratigraphic units. ?? 1993 International Association for Mathematical Geology.

  1. Induced seismicity caused by hydraulic fracturing in deep geothermal wells in Germany and adjacent areas

    Science.gov (United States)

    Plenefisch, Thomas; Brückner, Lisa; Ceranna, Lars; Gestermann, Nicolai; Houben, Georg; Tischner, Torsten; Wegler, Ulrich; Wellbrink, Matthias; Bönnemann, Christian; Bertram, Andreas; Kirschbaum, Bernd

    2016-04-01

    Recently, the BGR has worked out a study on the potential environmental impact caused by hydraulic fracturing or chemical stimulations in deep geothermal reservoirs in Germany and adjacent areas. The investigations and analyses are based on existing studies and information provided by operators. The two environmental impacts being essentially considered in the report are induced seismicity and possible contamination of the groundwater reservoirs which serve for drinking water supply. Altogether, in this study, information on 30 hydraulic frac operations and 26 chemical stimulations including information from neighboring countries were compiled and analyzed. Out of the hydraulic stimulations two thirds were carried out as waterfracs and one third as fracturing with proppants. Parameters used in the study to characterize the induced seismicity are maximum magnitude, number of seismic events, size of the seismically active volume, and the relation of this volume to fault zones and the cap rock, as well as, finally, the impacts at the Earth's surface. The response of the subsurface to hydraulic fracturing is variable: There are some activities, which cause perceptible seismic events, others, where no perceptible but instrumentally detected events occurred, and moreover activities without even any instrumentally detected events. A classification of seismic hazard with respect to tectonic region, geology, or depth of the layer is still difficult, since the number of hydraulic fracturing measures in deep geothermal wells is small making a statistically sound analysis impossible. However, there are some indications, that hydraulic fracturing in granite in tectonically active regions like the Upper Rhine Graben results in comparatively stronger, perceptible seismicity compared to hydraulic fracturing in the sedimentary rocks of the North German basin. The maximum magnitudes of induced earthquakes caused by hydraulic fracturing of deep geothermal wells in Germany are

  2. Selected cost considerations for geothermal district heating in existing single-family residential areas

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K.

    1996-06-01

    In the past, district heating (geothermal or conventionally fueled) has not been widely applied to the single-family residential sector. Low-heat load density is the commonly cited reason for this. Although it`s true that load density in these areas is much lower than for downtown business districts, other frequently overlooked factors may compensate for load density. In particular, costs for distribution system installation can be substantially lower in some residential areas due to a variety of factors. This reduced development cost may partially compensate for the reduced revenue resulting from low-load density. This report examines cost associated with the overall design of the system (direct or indirect system design), distribution piping installation, and customer branch lines. It concludes with a comparison of the costs for system development and the revenue from an example residential area.

  3. Evaluation of the geothermal resource in the area of Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jiracek, G.R.; Swanberg, C.A.; Morgan, P.; Parker, M.D.

    1983-07-01

    Factors indicating a potential geothermal resource near Albuquerque are: (1) nearby volcanoes active as recently as 120,000 years ago, (2) gravity interpretation indicating a potential reservoir averaging 1.5 km thickness, (3) high heat flow near the city, (4) warm waters (>30/sup 0/C) in municipal wells, (5) recent seismicity indicating active faulting, thereby, allowing the possibility of deep hydrothermal circulation, (6) high shallow (<30 m) temperature gradients (>100/sup 0/C/km) discovered in our drillholes, (7) deeper (<500 m) gradients from water wells exceeding 80/sup 0/C/km, and (8) chemical analyses of 88 groundwater samples yielding estimated base reservoir temperatures as high as 190/sup 0/C. An area of elevated shallow temperature gradients (less than or equal to 140/sup 0/C/km) was discovered a few kilometers west of Albuquerque by our 69 hole drilling program. Resistivity, magnetic, and gravity measurements combined with computer modeling suggests that heated ground water is forced closer to the surface here by flow over a buried ridge. A well drilled nearby yielded the highest recorded temperature in the Albuquerque area at its maximum depth (32.8/sup 0/C at 364 m). The deep gradient is 35/sup 0/C/km. An oil test well close by reported large volumes of water at 1 km; therefore, the possibility of a low temperature (>50/sup 0/C) geothermal resource exists west of Albuquerque at less than 1 km depth.

  4. Analysis of heterogeneous characteristics in a geothermal area with low permeability and high temperature

    Directory of Open Access Journals (Sweden)

    Alfonso Aragón-Aguilar

    2017-09-01

    Full Text Available An analytical methodology for reservoir characterization was applied in the central and southwestern zones of Los Humeros geothermal field (LHGF. This study involves analysis of temperature, pressure, enthalpy and permeability in wells and their distribution along the area. The wells located in the central western side of the geothermal field are productive, whereas those located at the central-eastern side are non-productive. Through temperature profiles, determined at steady state in the analyzed wells, it was observed that at bottom conditions (approximately 2300 m depth, temperatures vary between 280 and 360 °C. The temperatures are higher at the eastern side of central zone of LHGF. A review of transient pressure tests, laboratory measurements of core samples, and correlation of circulation losses during drilling suggest that permeability of the formation is low. The enthalpy behavior in productive wells shows a tendency of increase in the steam fraction. It was found that productivity behavior has inverse relation with permeability of rock formation. Further, it is observed that an imbalance exists between exploitation and recharge. It is concluded from the results that the wells located at central-eastern area have low permeability and high temperature, which indicates possibility of heat storage.

  5. Hydrothermal models of the Perth metropolitan area, Western Australia: implications for geothermal energy

    Science.gov (United States)

    Schilling, Oliver; Sheldon, Heather A.; Reid, Lynn B.; Corbel, Soazig

    2013-05-01

    Hydrothermal simulations are used to provide insight into the subsurface thermal regime of the Perth metropolitan area (PMA) in Western Australia. High average permeabilities and estimated fluid flow rates in shallow aquifers of the PMA suggest that advection and convection may occur in these aquifers. These processes are simulated, using a new geological model of the PMA to constrain the geometry of aquifers, aquitards and faults. The results show that advection has a strong influence on subsurface temperature, especially in the north of the PMA, where aquifer recharge creates an area of anomalously low temperature. Convection may be important, depending on the permeability of the Yarragadee Aquifer. If convection occurs, it creates thermal highs and lows with a spacing of approximately 5 km. Some of these thermal anomalies migrate over geological time due to coupling between advection and convection, but they are stationary on human timescales. Fault permeability influences the pattern of convection. Advection and convection cause variations in the geothermal gradient which cannot be predicted by conductive models; therefore, these processes should be considered in any model that is used for assessment of geothermal resources in the PMA.

  6. A multidisciplinary approach for the characterisation of fault zones in geothermal areas in central Mexico

    Science.gov (United States)

    Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Vinciguerra, Sergio

    2017-04-01

    There are more than 500 geothermal areas in the Trans-Mexican Volcanic Belt of central Mexico. Of these, two are presently object of a transnational project between EU and Mexico (GEMex): Acoculco, where there is already a commercial exploitation, and Los Humeros, at present not developed yet. The GEMex project aims to improve the resource assessment and the reservoir characterization using novel geophysical and geological methods and interpretations. One of the main issues controlling the geothermal system is the presence of pervasive fracture systems affecting the carbonatic basements underlying the volcanic complex (basalts and andesites). We propose the characterization of rock masses (rock and fractures) using a multiscale analysis, from the field to the outcrop up to the micro scale integrating a number of techniques. In detail, the University of Torino unit will take care of: 1) Technical field studies aimed to the characterization of the mechanical transitions throughout brittle deformation zones, from the intact rock, to the damage zone to the shear/slip zone; moreover, key geophysical parameters (seismic and electrical properties) will be measured; 2) Petrophysical and minero-petrographic detailed studies on representative samples will be performed at room temperature; verification of the mechanical properties of the samples subjected to cycles of heating up to the temperatures of the reservoir (> 400 °C) will be done; measurements of the geophysical properties of the samples will be done in comparison with the measures in place. 3) Numerical modeling to estimate the petrophysical, geophysical and geomechanical properties of the rock mass under the P and T conditions of the reservoir (i.e., using Comsol, VGeST, UDEC, 3DEC, ...). Detailed geological field studies and photogrammetry/laser scanner imaging of studied outcrops are supposed to be available soon: multiscale analysis will benefis from these new data. Results will be shared between EU and Mexican

  7. Magnetic data analysis to determine the subsurface structures in CandiUmbul geothermal prospect area, Central Java

    Science.gov (United States)

    Maghfira, Puspita Dian; Niasari, Sintia Windhi

    2017-07-01

    CandiUmbul is one of the manifestation locations in Telomoyo geothermal prospect area. This manifestation is warm spring which assumed as outflow. A magnetic study had been conducted in a geothermal prospect area in CandiUmbul, Telomoyo, Central Java. Magnetic method is one of the geophysical methods used to geothermal exploration. Magnetic method measures in the Earth's magnetic field. The purpose of this research has to map the susceptibility distribution in the subsurface due to the geothermal system. Proton Precession Magnetometer (PPM) was used to measure the magnetic field. Data processing started from correcting magnetic data with diurnal and IGRF correction, to achieve the total anomaly magnetic field. Then, the total anomaly magnetic field was reduced to pole. For the quantitative interpretation, we used 2D forward modeling. The 2D forward modeling was conducted to produce the magnetic anomaly modeling with using mag2DC for windows. The result of the quantitative interpretation is the horizontal position of the body due to the anomaly which is located close to the CandiUmbul warm spring. This warm spring was controlled by fault which is the weak zone in this area, so the hot water can easily passed from Telomoyo geothermal reservoir. The research is still ongoing to support the conclusion of qualitative interpretation.

  8. Geological features of Larderello-Travale and Mt.Amiata geothermal areas (southern Tuscany, Italy)

    Institute of Scientific and Technical Information of China (English)

    FaustoBatini; AndreaBrogi; AntonioLazzarotto; DomenicoLiotta; EnricoPandeli

    2003-01-01

    This paper summarises the geological features of the Larderello-Travale and Monte Amiata areas, where the world's most ancient exploited geothermal fields are located. In both geothermal areas, three regional tectonostratigraphic elements are distinguished, from the top: (a) Late Miocene-Pliocene and Quaternary,continental to marine sediments; (b) the Ligurian and Sub-Ligurian complexes, which include remnants of the Jurassic oceanic realm and of the transitional area to the Adriatic margin, respectively; (c) the Tuscan Unit(Tuscan Nappe), composed of sedimentary rocks rang-ing in age from Late Triassic to Early Miocene. The sub-stratum of the Larderello and Monte Amiata areas isreferred to as the Tuscan Metamorphic Complex. This ismainly known through drilling of geothermal wells. This complex is composed of two metamorohic units: the upper Monticiano-Roccastrada Unit and the lower Gneiss Complex. The Monticiano-Roccastrada Unit consists of(from top to bottom): the Verrucano Group,the Phyllite-Quartzite Group and the Micaschist Group.The Gneiss Complex consists only of pre-Alpine poly-metamorphic gneiss. The Tuscan Metamorphic Complexis affected by contact metamorphism by Plio-Quater-nary granitoids and their dy ke swarms. Hydrothermal phenomena still occur in both geothermal fields. The Larderello-Travale and Mt. Amiata geothermal fields are located in the inner Northern Apennines, in an area that has been subject to extension since the ?Early-Mid-dle Miocene. Two main extensional events are well expressed in the structures of the geothermal areas. The first extensional event (?Early-Middle Miocene) deter-mined the tectonic delamination of the Ligurian Units and Tuscan Nappe. The second extensional event (LateMiocene-Present) is characterized by high-angle nor-mal faults bounding the Neogene tectonic depressions of southern Tuscany.

  9. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  10. Incidence of human dental fluorosis in the Raft River geothermal area in southern Idaho. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shupe, J.L.; Olson, A.E.; Peterson, H.B.

    1978-09-01

    A total of 270 school aged individuals representing 151 families living in the vicinity of the Raft River Geothermal area of Idaho were examined for evidence of dental fluorosis. Of these 132 had some dental anomaly. Fifty-two individuals from 45 families had lesions classified as typical dental fluorosis. Eleven of these, some of which had severe dental fluorosis recently moved into the area from other locations. Samples of the drinking waters that were likely consumed by the individuals with dental fluorosis were collected for analyses. In most instances the fluoride content of the waters were low and would not account for the tooth lesions. Possible reasons for lack of correlation are changing of the composition of the water, other sources of fluoride in the diet, and possibly analytical errors.

  11. Geothermal Field Development in the European Community Objectives, Achievements and Problem Areas

    Energy Technology Data Exchange (ETDEWEB)

    Ungemach, Pierre

    1983-12-15

    Achievements and problem areas are reviewed with respect to various engineering implications of geothermal field development in the European Community (EC). Current and furture development goals address three resource settings. (a) low enthalpy sources (30-150{degrees}C), an outlook common to all Member states as a result of hot water aquifers flowing in large sedimentary units with normal heat flow, widespread thoughout the EC; (b) high enthalpy sources (<150{degrees}C) in areas of high heat flow which, as a consequence of the geodynamics of the Eurasian plate, are limited to Central and South-West Italy and to Eastern Greece; (c) hot dry rocks (HDR), whose potential for Europe, and also the difficulties in implementing the heat mining concept, are enormous. A large scale experiment conducted at medium depth in Cornwall (UK) proves encouraging though. It has provided the right sort of scientific inputs to the understanding of the mechanics of anisotropic brittle basement rocks.

  12. An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Duffield, W. (eds.)

    1990-09-01

    Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

  13. Improved Detection of Microearthquakes in Geothermal Areas - Applying Empirical Matched Field Processing to Traditional and EGS sites

    Science.gov (United States)

    Templeton, D. C.; Wang, J.; Harris, D. B.

    2012-12-01

    The aim of this project is to increase the amount of information that can be extracted from seismic data collected in EGS or traditional geothermal areas. To accomplish our objective, we develop a seismic imaging technique that can map seismicity from discrete microearthquake sources using the Matched Field Processing (MFP) method. We use data from the Salton Sea geothermal field available from the Southern California Earthquake Data Center. Data between November 2009 and December 2010 was downloaded off the web and 231 high-quality master events were identified from the online catalog. This time period included two robust earthquake swarms. We created matched field steering vector calibrations for 7 three-component stations within the Salton Sea Geothermal Field. The official earthquake catalog identified 1536 events. When we applied the empirical MFP technique to the same data, we identified 5357 events. We then compare the results from this traditional geothermal area with results obtained from an Engineered Geothermal System (EGS) site. Finally, we compare the number of events in the improved earthquake catalogs with available fluid injection data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Geothermal concept for energy efficient improvement of space heating and cooling in highly urbanized area

    Directory of Open Access Journals (Sweden)

    Vranjes Ana

    2015-01-01

    Full Text Available New Belgrade is a highly urbanized commercial and residential district of Belgrade lying on the alluvial plane of the Sava and the Danube rivers. The groundwater of the area is a geothermal resource that is usable through geothermal heat pumps (GHP. The research has shown that the “heat island effect” affects part of the alluvial groundwater with the average groundwater temperature of about 15.5°C, i.e. 2°C higher than the one in less urbanized surroundings. Based on the measured groundwater temperatures as well as the appraisal of the sustainable aquifer yield, the available thermal power of the resource is estimated to about 29MWt. The increasing urbanization trend of the New Belgrade district implies the growing energy demands that may partly be met by the available groundwater thermal power. Taking into consideration the average apartment consumption of 80 Wm-2, it is possible to heat about 360,000 m2 and with the consumption efficiency of 50 Wm-2, it would be possible to heat over 570,000 m2. Environmental and financial aspects were considered through the substitution of conventional fuels and the reduction of greenhouse gas emission as well as through the optimization of the resource use.

  15. Low Temperature Geothermal Resource Evaluation of the Moses Lake-Ritzville-Connell Area, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Widness, Scott

    1983-11-01

    The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. The regional piezometric surface and stratigraphic units dip towards the southwest. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given in table 2. Some of the BHT data in table 2 may vary from those previously reported by WSU. These discrepancies are the result of changes in the calibration method of the FT tool. A technique developed by Giggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG). Well data groups were selected on the premises of geographic proximity, position within the regional groundwater flow system, land slope azimuth, and land slope dip. Some data points have been excluded from the linear regression analysis on the basis of factors such as duplicate logging of the same hole, down-hole flow, holes not logged to total depth, and questionable FT tool responses.

  16. Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy)

    Science.gov (United States)

    Morteani, Giulio; Ruggieri, Giovanni; Möller, Peter; Preinfalk, Christine

    2011-02-01

    The CO2-rich geothermal fluids produced in the Piancastagnaio geothermal field (Mt. Amiata geothermal area, Southern Tuscany, Italy) show temperatures up to 360°C and pressures of about 200 bar at depths of around 3,500 m (Giolito, Ph.D. thesis, Università degli Studi di Firenze, Italy, pp 1-147, 2005). CaCO3- and/or SiO2-dominated scales are deposited in the pipes leading to the pressure and atmospheric separators of the geothermal wells. High content of metastibnite and/or stibnite in both calcite and silica scales and Sb contents of up to 50 mg/L in the fluids indicate their mineralising potential. The red or black colours of the scales depend on the predominance of red metastibnite or black stibnite, respectively. In our condensation experiments, as well as during deposition of the scales, metastibnite is the first Sb2S3 mineral to form. In a second stage, metastibnite is transformed to stibnite. During depressurization the Hg content of geothermal fluids partitions preferentially into the gas phase, whereas Sb and As remain in the liquid phase. This separation explains the often observed areal separation of Hg and Sb mineralization. The multistage deposition of Sb in the mining district of Tuscany is due to a periodic restoration of the permeability of the ore-bearing faults by microseismic events and subsequent host rock brecciation. The still ongoing microseismic events are induced by the accumulation of high-pressure CO2-rich fluids along faults followed by mechanical failure of the faults.

  17. Data integration and conceptual modelling of the Larderello geothermal area, Italy

    Science.gov (United States)

    Manzella, Adele; Gola, Gianluca; Bertini, Giovanni; Bonini, Marco; Botteghi, Serena; Brogi, Andrea; De Franco, Roberto; Dini, Andrea; Donato, Assunta; Gianelli, Giovanni; Liotta, Domenico; Montanari, Domenico; Montegrossi, Giordano; Petracchini, Lorenzo; Ruggieri, Giovanni; Santilano, Alessandro; Scrocca, Davide; Trumpy, Eugenio

    2017-04-01

    The Larderello geothermal field, located in southern Tuscany (Italy), is one of the most important long-living hydrothermal system in the world. The inner zone of the Northern Apennines is characterized by high heat flow, well constrained by several hundred measurements deriving from both shallow boreholes and deep exploration wells. It is widely accepted that the interplay among extensional tectonics, thinning of the previously overthickened crust and lithosphere, and magmatism related to crustal melting and hybridism, controlled the NW-SE trending geothermal anomaly occurring in southern Tuscany. At Larderello, the geothermal exploitation started at the beginning of the last century from the shallow evaporite-carbonate reservoir (about 700 - 1000 m b.g.l. on average) hosting a super-heated steam with temperature ranging from 150°C to 260°C. A deep exploration program was carried out in the early 1980s. Deep boreholes found a super-heated steam-dominated system hosted in the metamorphic basement (about 2500 - 4000 m b.g.l), characterized by temperatures ranging from 300°C to 350°C. In the SW part of the Larderello area (Lago locality), a temperature exceeding 400°C was measured down to 3000 m b.s.l. The 2D and 3D seismic exploration activities provided evidences of a seismic marker, locally showing bright spot features, defining the top of a deeper reflective crustal interval, named as "K-horizon". The K-horizon has not yet been drilled, but some boreholes approached it. This seismic reflector exhibits interesting positive correlation with the maximum peak of the hypocentre distribution of low-magnitude earthquakes and, at the same time, its shape coincides with the thermal anomaly distribution, in plain view. The review and updating of the velocity and resistivity models suggest the existence of over-pressurized fluids, likely of magmatic and/or thermo-metamorphic origin, which originate the seismic velocity anomalies. The upward migration and storage of the

  18. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey)

    Science.gov (United States)

    Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou

    2016-06-01

    Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the

  19. Interpretation of dipole-dipole electrical resistivity survey, Colado geothermal area, Pershing County, Nevada

    Science.gov (United States)

    Mackelprang, C. E.

    1980-09-01

    An electrical resistivity survey in the Colado geothermal area, Pershing County, Nevada has defined areas of low resistivity on each of five lines surveyed. Some of these areas appear to be fault controlled. Thermal fluids encountered in several drill holes support the assumption that the hot fluids may be associated with areas of low resistivity. The evidence of faulting as interpreted from modeling of the observed resistivity data is therefore particularly significant since these structures may be the conduits for the thermal fluids. Sub-alluvial fault zones are interpreted to occur between stations 0-5 NW on Line D and on Line A between stations 4 NW and 4 SE. Fault zones are also interpreted on Line C near stations 1 NW, 1 SE, and 3 SE, and on Line E between stations 2-4 NW and near 1 SE. No faulting is evident under the alluvial cover on the southwest end of Line B. A deep conductive zone is noted within the mountain range on two resistivity lines. There is no definite indication that thermal fluids are associated with this resistivity feature.

  20. Low-temperature geothermal potential of the Ojo Caliente warm springs area, northern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Vuataz, F.D.; Stix, J.; Goff, F.; Pearson, C.F.

    1984-05-01

    A detailed geochemical investigation of 17 waters (thermal and cold, mineralized and dilute) was performed in the Ojo Caliente-La Madera area. Two types of thermomineral waters have separate and distinctive geologic, geochemical, and geothermal characteristics. The water from Ojo Caliente Resort emerges with temperatures less than or equal to 54/sup 0/C from a Precambrian metarhyolite. Its chemistry, typically Na-HCO/sub 3/, has a total mineralization of 3600 mg/l. Isotopic studies have shown that the thermal water emerges from the springs and a hot well without significant mixing with the cold shallow aquifer of the valley alluvium. However, the cold aquifer adjacent to the resort does contain varying amounts of thermal water that originates from the warm spring system. Geothermometry calculations indicate that the thermal water may be as hot as 85/sup 0/C at depth before its ascent toward surface. Thermodynamic computations on the reaction states of numerous mineral phases suggest that the thermal water will not cause major scaling problems if the hot water is utilized for direct-use geothermal applications. By means of a network of very shallow holes, temperature and electrical conductivity anomalies have been found elsewhere in the valley around Ojo Caliente, and resistivity soundings have confirmed the presence of a plume of thermal water entering the shallow aquifer. The group of lukewarm springs around La Madera, with temperatures less than or equal to 29/sup 0/C, chemical type of NaCaMg-HCO/sub 3/Cl and with a total mineralization less than or equal to 1500 mg/l behaves as a different system without any apparent relation to the Ojo Caliente system. Its temperature at depth is not believed to exceed 35 to 40/sup 0/C.

  1. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    Energy Technology Data Exchange (ETDEWEB)

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in

  2. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    Science.gov (United States)

    Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.

    1999-01-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.

  3. Incidence of cancer among residents of high temperature geothermal areas in Iceland: a census based study 1981 to 2010

    Directory of Open Access Journals (Sweden)

    Kristbjornsdottir Adalbjorg

    2012-10-01

    Full Text Available Abstract Background Residents of geothermal areas are exposed to geothermal emissions and water containing hydrogen sulphide and radon. We aim to study the association of the residence in high temperature geothermal area with the risk of cancer. Methods This is an observational cohort study where the population of a high-temperature geothermal area (35,707 person years was compared with the population of a cold, non-geothermal area (571,509 person years. The cohort originates from the 1981 National Census. The follow up from 1981 to 2010 was based on record linkage by personal identifier with nation-wide death and cancer registries. Through the registries it was possible to ascertain emigration and vital status and to identify the cancer cases, 95% of which had histological verification. The hazard ratio (HR and 95% confidence intervals (CI were estimated in Cox-model, adjusted for age, gender, education and housing. Results Adjusted HR in the high-temperature geothermal area for all cancers was 1.22 (95% CI 1.05 to 1.42 as compared with the cold area. The HR for pancreatic cancer was 2.85 (95% CI 1.39 to 5.86, breast cancer 1.59 (95% CI 1.10 to 2.31, lymphoid and hematopoietic cancer 1.64 (95% CI 1.00 to 2.66, and non-Hodgkins lymphoma 3.25 (95% CI 1.73 to 6.07. The HR for basal cell carcinoma of the skin was 1.61 (95% CI 1.10 to 2.35. The HRs were increased for cancers of the nasal cavities, larynx, lung, prostate, thyroid gland and for soft tissue sarcoma; however the 95% CIs included unity. Conclusions More precise information on chemical and physical exposures are needed to draw firm conclusions from the findings. The significant excess risk of breast cancer, and basal cell carcinoma of the skin, and the suggested excess risk of other radiation-sensitive cancers, calls for measurement of the content of the gas emissions and the hot water, which have been of concern in previous studies in volcanic areas. There are indications of an exposure

  4. Mixing effects on geothermometric calculations of the Newdale geothermal area in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Travis L. McLing; Cody J. Cannon; Thomas R. Wood; Trevor A. Atkinson; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Newdale geothermal area in Madison and Fremont Counties in Idaho is a known geothermal resource area whose thermal anomaly is expressed by high thermal gradients and numerous wells producing warm water (up to 51 °C). Geologically, the Newdale geothermal area is located within the Eastern Snake River Plain (ESRP) that has a time-transgressive history of sustained volcanic activities associated with the passage of Yellowstone Hotspot from the southwestern part of Idaho to its current position underneath Yellowstone National Park in Wyoming. Locally, the Newdale geothermal area is located within an area that was subjected to several overlapping and nested caldera complexes. The Tertiary caldera forming volcanic activities and associated rocks have been buried underneath Quaternary flood basalts and felsic volcanic rocks. Two southeast dipping young faults (Teton dam fault and an unnamed fault) in the area provide the structural control for this localized thermal anomaly zone. Geochemically, water samples from numerous wells in the area can be divided into two broad groups – Na-HCO3 and Ca-(Mg)-HCO3 type waters and are considered to be the product of water-rhyolite and water-basalt interactions, respectively. Each type of water can further be subdivided into two groups depending on their degree of mixing with other water types or interaction with other rocks. For example, some bivariate plots indicate that some Ca-(Mg)-HCO3 water samples have interacted only with basalts whereas some samples of this water type also show limited interaction with rhyolite or mixing with Na-HCO3 type water. Traditional geothermometers [e.g., silica variants, Na-K-Ca (Mg-corrected)] indicate lower temperatures for this area; however, a traditional silica-enthalpy mixing model results in higher reservoir temperatures. We applied a new multicomponent equilibrium geothermometry tool (e.g., Reservoir Temperature Estimator, RTEst) that is based on inverse geochemical modeling which

  5. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  6. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111059 Gao Jinghong(Engineering Group Co.Ltd.of the Second Institute of China Railway,Chengdu 610031,China);Tong Tiegang A Magnetotelluric Study of Geothermal Resources in Kaifeng Depression,Henan Province(Geophysical and Geochemical Exploration,ISSN1000-8918,CN11-1906/P,34(4),2010,p.440-443,6 illus.,12 refs.)Key words:geothermal resources,telluric electromagnetic sounding,Henan Province Kaifeng Depression,located in the southeast corner of the Jiyuan-Kaifeng Depression,is enriched with deep-seated groundwater sources.The rich geothermal water rock(thermal reservoir)commonly has lower resistivity than the in-situ rock,and the reduction degree of its resistivity is related to the extent of water content,water temperature and mineralization.Based on geo-electrical anomaly,the authors inferred the distribution of the thermal reservoirs.A study of the magnetotelluric sounding method(MT)shows that the resistivity values of the basement are lowest in most surveying points north of F1 fault,implying the existence of the relationship with the geothermal water in the strata.According to the distribution of geo-electrical anomalies in the survey area,the authors locate the relatively enriched area of geothermal water in the basement of this area,thus providing an important basis

  7. Curie point depth from spectral analysis of aeromagnetic data from Cerro Prieto geothermal area, Baja California, México

    Science.gov (United States)

    Espinosa-Cardeña, J. M.; Campos-Enriquez, J. O.

    2008-10-01

    Using aeromagnetic data acquired in the area from the Cerro Prieto geothermal field, we estimated the depth to the Curie point isotherm, interpreted as the base of the magnetic sources, following statistical spectral-based techniques. According to our results the Curie point isotherm is located at a depths ranging from 14 to 17 km. Our result is somewhat deeper than that obtained previously based only in 2-D and 3-D forward modeling of previous low-quality data. However, our results are supported by independent information comprising geothermal gradients, seismicity distribution in the crust, and gravity determined crustal thickness. Our results imply a high thermal gradient (ranging between 33 and 38 °C/km) and high heat flow (of about 100 mW/m 2) for the study area. The thermal regime for the area is inferred to be similar to that from the Salton trough.

  8. Geophysical studies of the Crump Geyser known geothermal resource area, Oregon, in 1975

    Science.gov (United States)

    Plouff, Donald

    2006-01-01

    The U.S. Geological Survey (USGS) conducted geophysical studies in support of the resource appraisal of the Crump Geyser Known Geothermal Resource Area (KGRA). This area was designated as a KGRA by the USGS, and this designation became effective on December 24, 1970. The land classification standards for a KGRA were established by the Geothermal Steam Act of 1970 (Public Law 91-581). Federal lands so classified required competitive leasing for the development of geothermal resources. The author presented an administrative report of USGS geophysical studies entitled 'Geophysical background of the Crump Geyser area, Oregon, KGRA' to a USGS resource committee on June 17, 1975. This report, which essentially was a description of geophysical data and a preliminary interpretation without discussion of resource appraisal, is in Appendix 1. Reduction of sheets or plates in the original administrative report to page-size figures, which are listed and appended to the back of the text in Appendix 1, did not seem to significantly degrade legibility. Bold print in the text indicates where minor changes were made. A colored page-size index and tectonic map, which also show regional geology not shown in figure 2, was substituted for original figure 1. Detailed descriptions for the geologic units referenced in the text and shown on figures 1 and 2 were separately defined by Walker and Repenning (1965) and presumably were discussed in other reports to the committee. Heavy dashed lines on figures 1 and 2 indicate the approximate KGRA boundary. One of the principal results of the geophysical studies was to obtain a gravity map (Appendix 1, fig. 10; Plouff, and Conradi, 1975, pl. 9), which reflects the fault-bounded steepness of the west edge of sediments and locates the maximum thickness of valley sediments at about 10 kilometers south of Crump Geyser. Based on the indicated regional-gravity profile and density-contrast assumptions for the two-dimensional profile, the maximum

  9. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand

    Science.gov (United States)

    Harvey, M. C.; Rowland, J. V.; Luketina, K. M.

    2016-10-01

    Drones are now routinely used for collecting aerial imagery and creating digital elevation models (DEM). Lightweight thermal sensors provide another payload option for generation of very high-resolution aerial thermal orthophotos. This technology allows for the rapid and safe survey of thermal areas, often present in inaccessible or dangerous terrain. Here we present a 2.2 km2 georeferenced, temperature-calibrated thermal orthophoto of the Waikite geothermal area, New Zealand. The image represents a mosaic of nearly 6000 thermal images captured by drone over a period of about 2 weeks. This is thought by the authors to be the first such image published of a significant geothermal area produced by a drone equipped with a thermal camera. Temperature calibration of the image allowed calculation of heat loss (43 ± 12 MW) from thermal lakes and streams in the survey area (loss from evaporation, conduction and radiation). An RGB (visible spectrum) orthomosaic photo and digital elevation model was also produced for this area, with ground resolution and horizontal position error comparable to commercially produced LiDAR and aerial imagery obtained from crewed aircraft. Our results show that thermal imagery collected by drones has the potential to become a key tool in geothermal science, including geological, geochemical and geophysical surveys, environmental baseline and monitoring studies, geotechnical studies and civil works.

  10. Comparison of the ELF-MT resistivity structure and the thermal structure in Takenoyu geothermal area

    Energy Technology Data Exchange (ETDEWEB)

    Mogi, Toru; Ehara, Sachio; Yuhara, Kozo; Asoshina, Keishi; Fujimitsu, Yasuhiro

    1987-07-01

    Takenoyu goethermal area locates in the north-eastern part of Kumamoto Prefecture, extending at the western foot of Mt. Togai-san. Compression of specific resistance structure and thermal structure by means of ELF-MT method was made for the exploration of the geothermal areas. The results are as follows. (1) Distribution of apparent specific resistance well corresponds with the temperature distribution of the shallow zones and the distribution of the altered zone, but does not so much correspond to the temperature distribution of the deep zones. (2) ELF-MT method has only 300 m detectable depth for the low specific resistance zone with 5 ohm-cm. Its breadth into the deep zones is not known. (3) For the high specific resistance zone with 500 ohm-m, the detectable depth is as deep as 3 km. Low specific resistance layer does not exist where such a layer as above continues to the deep zone. (4) In the case when underground structure contains a low specific resistance layer in a high specific resistance layer, MT method excels in its detecting ability. It can often detect the low specific resistance layer even when the measuring frequency is wide. (10 figs, 4 refs)

  11. Environmental analysis of geopressured-geothermal prospect areas, Brazoria and Kenedy Counties, Texas

    Energy Technology Data Exchange (ETDEWEB)

    White, W.A.; McGraw, M.; Gustavson, T.C.

    1978-01-01

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land: (1) near Chocolate Bayou, Brazoria County, Texas, where a geopressured-geothermal test well was drilled in 1978, and (2) near the rural community of Armstrong, Kenedy County, Texas, where future geopressured-geothermal test well development may occur. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for geopressured-geothermal wells.

  12. Seismic and Gravity Investigations of the Caja del Rio Geothermal Area, New Mexico

    Science.gov (United States)

    Braile, L. W.; Burke, B.; Butler, E.; Harper, C.; Livermore, J.; McGlannan, A.; Wasik, A.; Baldridge, W. S.; Biehler, S.; Ferguson, J. F.; McPhee, D. K.; Snelson, C. M.; Sussman, A. J.

    2012-12-01

    The SAGE (Summer of Applied Geophysical Experience) program collected new seismic and gravity data in 2012 in the Caja del Rio area of northern New Mexico. The area, about 25 km NW of Santa Fe, has been identified as a potential geothermal resources area based on relatively high temperature gradients in drill holes. The SAGE 2012 data collection was part of an integrated geophysical study of the area initiated in 2011. Seismic data consisted of a 6.4 km SE to NW profile (80 three-component stations, 20 m station spacing, using a Vibroseis source - 20 m spacing for reflection VPs; 800 m spacing for refraction VPs) with both refraction and CMP reflection coverage. The surface conditions (dry unconsolidated cover over a thin volcanic layer) increased surface wave energy and limited the signal-to-noise level of the refraction and reflection arrivals. The refraction data were modeled with first arrival travel time methods. The reflection data were processed to produce a CMP stacked record section. Strong, NW-dipping reflectors, interpreted as from the Espinaso formation, are visible at about 1.4 seconds two-way time. One hundred and sixty-four new gravity measurements (detailed data at 500 m spacing along the seismic profile and regional stations) were collected and combined with existing regional data for modeling. Interpretation of the seismic and gravity data was aided by refraction velocities, the existence of a nearby regional seismic reflection profile from industry, and lithologies and well-logs from a deep well. The sedimentary basin interpreted from the seismic and gravity data, along with existing geological and geophysical information, consists of a thick section of Tertiary rift fill (capped by a thin layer of volcanic rocks), over Mesozoic and Paleozoic rocks, with a total basin thickness of about 3 km.

  13. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan

    Science.gov (United States)

    Jang, C. S.; Liu, C. W.

    2014-12-01

    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  14. Investigation of geothermal structures by magnetotellurics (MT): an example from the Mt. Amiata area, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Volpi, G. [CNR - Inst. of Geosciences and Earth Resources, Pisa (Italy); ENEL Greenpower, Pisa (Italy); Manzella, A. [CNR - Inst. of Geosciences and Earth Resources, Pisa (Italy); Fiordelisi, A. [ENEL Greenpower, Pisa (Italy)

    2003-04-01

    During 1999 a magnetotelluric (MT) survey was carried out on the southern margin of the Mt. Amiata geothermal region (Tuscany, Italy), with the aim of defining the shallow and deep electric structures related to the local geothermal reservoirs and system heat recharge. Local and remote data were collected along a SW-NE profile and processed with two different robust algorithms. After a detailed study of the EM strike, the data were inverted and two-dimensional (2D) models of electrical resistivity and impedance phase were computed. The interpretation revealed a good correlation between the features of the geothermal field and resistivity distribution at depth. In particular, a shallow conductor (0.5-4 km) detected by the MT survey shows a good correlation with the areal extension of the geothermal reservoirs. (Author)

  15. Low temperature geothermal energy applications in the Albuquerque area. Final report, July 1, 1978-August 18, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, D.; Houghton, A.V.

    1979-01-01

    A study was made of the engineering and economic feasibility of hot water geothermal energy applications in the Albuquerque area. A generalized system design was developed and used as the basis for a series of economic case studies. Reservoir and user siting considerations were studied in light of the economic findings. Several specific potential applications were identified, including university campuses, industrial and commercial facilities, and residential buildings. Specific key technical problems relating to Albuquerque area applications were studied. These included environmental impacts, corrosion, scaling, heat losses in wells and transmission lines, heat exchangers, control systems, and system utilization and reliability. It is concluded that geothermal energy could be competitive with other energy sources for space heating and limited industrial use for moderate to large (10 million Btu/hr or more) energy using systems.

  16. Geothermal investigation in Idaho. Part 14. Geochemical and isotopic investigations of thermal water occurrences of the Boise Front Area, Ada County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, A.L.; Muller, A.B.; Mitchell, J.C.

    1984-12-01

    A limited chemical and isotopic investigation was undertaken and geological, geophysical, and hydrological data in the literature were reviewed to evaluate the geothermal potential of the Boise area. 68 refs., 12 figs., 4 tabs. (ACR)

  17. Magnetotelluric (MT) surveying in the Kakkonda geothermal area; Kakkonda chinetsu chiiki deno MT ho tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y.; Takakura, S. [Geological Survey of Japan, Tsukuba (Japan); Uchida, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-05-27

    This paper describes the MT surveying conducted at the vicinity of a deep well (WD-1) in the Kakkonda geothermal area. For the MT surveying, the interval between measuring points was 300 m. Electric field dipole with a length of 300 m was given in the direction of traverse line, and that with a length of 50 m was given in the direction perpendicular to the line. Three components of magnetic field were measured using induction coil. Frequency band of the data was between 0.0005 Hz and 300 Hz. Characteristics of specific resistance model obtained from the MT surveying were illustrated. Low specific resistance zone less than 30 ohm-m was observed in the shallow zone below the altitude 0 m. This zone was comparable to the distribution of montmorillonite. High specific resistance anomaly was analyzed at the western half of the traverse line in the altitude between 0 m and -2000 m, which corresponded to the collective part of focuses. The bottom surface of the anomaly agreed well with the upper surface of neo-granite, i.e., the lower limits of earthquakes. Low specific resistance was observed in the altitude below -2000 m. 17 refs., 5 figs.

  18. Resource investigation of low- and moderate-temperature geothermal areas in Paso Robles, California

    Energy Technology Data Exchange (ETDEWEB)

    Campion, L.F.; Chapman, R.H.; Chase, G.W.; Youngs, L.G.

    1983-01-01

    Ninety-eight geothermal wells and springs were identified and plotted, and a geologic map and cross sections were compiled. Detailed geophysical, geochemical, and geological surveys were conducted. The geological and geophysical work delineated the basement highs and trough-like depressions that can exercise control on the occurrence of the thermal waters. The Rinconada fault was also evident. Cross sections drawn from oil well logs show the sediments conforming against these basement highs and filling the depressions. It is along the locations where the sediments meet the basement highs that three natural warm springs in the area occur. Deep circulation of meteoric waters along faults seems to be a reasonable source for the warm water. The Santa Margarita, Pancho Rico, and Paso Robles Formations would be the first permeable zones that abut the faults through which water would enter. Temperatures and interpretation of well logs indicate the warmest aquifer at the base of the Paso Robles Formation. Warm water may be entering higher up in the section, but mixing with water from cooler zones seems to be evident. Geothermometry indicates reservoir temperatures could be as high as 91/sup 0/C (196/sup 0/F).

  19. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  20. Carbon and Noble Gas Isotopes in the Tengchong Volcanic Geothermal Area, Yunnan, Southwestern China

    Institute of Scientific and Technical Information of China (English)

    XU Sheng; Shun'ich NAKAI; Hiroshi WAKITA; WANG Xianbin

    2004-01-01

    Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He.Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic area than do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4 ‰ to 1.6 ‰ and from -52.8 ‰ to -2.8 ‰,respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and nearsurface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantlederived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material.However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1%-2%) to the MORB reservoir around 1.3 Ga ago,which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.

  1. Source processes of industrially-induced earthquakes at the Geysers geothermal area, California

    Science.gov (United States)

    Ross, A.; Foulger, G.R.; Julian, B.R.

    1999-01-01

    Microearthquake activity at The Geysers geothermal area, California, mirrors the steam production rate, suggesting that the earthquakes are industrially induced. A 15-station network of digital, three-component seismic stations was operated for one month in 1991, and 3,900 earthquakes were recorded. Highly-accurate moment tensors were derived for 30 of the best recorded earthquakes by tracing rays through tomographically derived 3-D VP and VP / VS structures, and inverting P-and S-wave polarities and amplitude ratios. The orientations of the P-and T-axes are very scattered, suggesting that there is no strong, systematic deviatoric stress field in the reservoir, which could explain why the earthquakes are not large. Most of the events had significant non-double-couple (non-DC) components in their source mechanisms with volumetric components up to ???30% of the total moment. Explosive and implosive sources were observed in approximately equal numbers, and must be caused by cavity creation (or expansion) and collapse. It is likely that there is a causal relationship between these processes and fluid reinjection and steam withdrawal. Compensated linear vector dipole (CLVD) components were up to 100% of the deviatoric component. Combinations of opening cracks and shear faults cannot explain all the observations, and rapid fluid flow may also be involved. The pattern of non-DC failure at The Geysers contrasts with that of the Hengill-Grensdalur area in Iceland, a largely unexploited water-dominated field in an extensional stress regime. These differences are poorly understood but may be linked to the contrasting regional stress regimes and the industrial exploitation at The Geysers.

  2. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    Energy Technology Data Exchange (ETDEWEB)

    Di Filippo, Michele; Lombardi, Salvatore; Toro, Beniamino [Universita di Roma ' La Sapienza' , Dip. di Scienze della Terra, Roma (Italy); Nappi, Giovanni; Renzulli, Alberto [Universita di Urbino, Ist. di Mineralogia e Petrologia, Urbino (Italy); Reimer, G. Michael [U.S. Geological Survey, Federal Center, Denver, CO (United States)

    1999-06-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of 100degC/km, and by widespread hydrothermal mineralisation, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth. (Author)

  3. Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California. Part of the third year report, 1980-81, of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, L.G.; Bezore, S.P.; Chapman, R.H.; Chase, G.W.

    1981-08-01

    Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs; South San Bernardino; and Harlem Hot Springs - in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the south San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142/sup 0/C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the south San Bernardino geothermal area was 56/sup 0/C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal area was 49.5/sup 0/C at 174 meters (570 feet) in an abandoned water well. The geophysical and geological surveys delineated fault traces in association with all three of the designated geothermal areas.

  4. Potential interest areas for the development of geothermal energy in La Reunion Island

    OpenAIRE

    Dezayes, Chrystel; BALTASSAT, Jean-Michel; Famin, Vincent; Bès de Berc, Séverine

    2016-01-01

    International audience; La Réunion Island was always considered as a high interest for the geothermal exploitation and several exploration surveys were performed since the 70's. However, at the present day, no geothermal exploitation has been built. Nevertheless, the French environmental law, Grenelle de l'Environnement, has set ambitious goals for the French overseas territories and La Réunion must be self-powered by 2030. In this framework, BRGM and the Geoscience Laboratory of La Réunion U...

  5. Pedagogical development and technical research in the area of geothermal power production

    OpenAIRE

    Denbow, Christopher

    2011-01-01

    This work describes the types of power plants used for geothermal power generation in the world; the dry steam power plant, the flash steam power plant and the binary cycle power plant. The objective of the MSc work was the development of learning content on the subject of geothermal power generation for the CompEdu platform in the energy department at KTH. The power plants are described from a system perspective followed by an explanation of the operation of major components. Examples and ca...

  6. Pedagogical development and technical research in the area of geothermal power production

    OpenAIRE

    Denbow, Christopher

    2011-01-01

    This work describes the types of power plants used for geothermal power generation in the world; the dry steam power plant, the flash steam power plant and the binary cycle power plant. The objective of the MSc work was the development of learning content on the subject of geothermal power generation for the CompEdu platform in the energy department at KTH. The power plants are described from a system perspective followed by an explanation of the operation of major components. Examples and ca...

  7. Geothermal Field Developments in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Seiichi

    1983-12-15

    The present situation of the geothermal field developments in Japan is such that eight geothermal power stations are being operated, while there are sill many geothermal areas to be explored. Up to this day, the target of geothermal exploration has mainly been the areas by surface geological survey and the existing geothermal reservoirs are located not deeper than 1,500m depth. Recent geothermal energy development shows a trend from the study on vapor dominated of liquid dominated hydrothermal resources in shallow zones to that on hydrothermal resources in deeper zones. Exploration wells of 3,000m depth class have been drilled in Japan.

  8. Geothermal energy abstract sets. Special report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  9. Water information bulletin No. 30, part 13: geothermal investigations in Idaho. Preliminary geologic reconnaissance of the geothermal occurrences of the Wood River Drainage Area

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.E.; Bideganeta, K.; Mitchell, J.C.

    1985-04-01

    Pre-tertiary sediments of the Milligen and Wood River Formations consisting primarily of argillite, quartzite, shale and dolomite are, for the most part, exposed throughout the area and are cut locally by outliers of the Idaho Batholith. At some locations, Tertiary-age Challis Volcanics overlay these formations. Structurally the area is complex with major folding and faulting visible in many exposures. Many of the stream drainages appear to be fault controlled. Hydrologic studies indicate hot spring occurrences are related to major structural trends, as rock permeabilities are generally low. Geochemical studies using stable isotopes of hydrogen and oxygen indicate the thermal water in the Wood River region to be depleted by about 10 0/00 in D and by 1 to 2 0/00 in /sup 18/0 relative to cold water. This suggests the water could be meteoric water that fell during the late Pleistocene. The geological data, as well as the chemical data, indicate the geothermal waters are heated at depth, and subsequently migrate along permeable structural zones. In almost all cases the chemical data suggest slightly different thermal histories and recharge areas for the water issuing from the hot springs. Sustained use of the thermal water at any of the identified springs is probably limited to flow rates approximating the existing spring discharge. 28 refs., 16 figs., 3 tabs.

  10. Interpretation of Magnetic Anomalies in Salihli (Turkey) Geothermal Area Using 3-D Inversion and Edge Detection Techniques

    Science.gov (United States)

    Timur, Emre

    2016-04-01

    There are numerous geophysical methods used to investigate geothermal areas. The major purpose of this magnetic survey is to locate the boudaries of active hydrothermal system in the South of Gediz Graben in Salihli (Manisa/Turkey). The presence of the hydrothermal system had already been inferred from surface evidence of hydrothermal activity and drillings. Firstly, 3-D prismatic models were theoretically investigated and edge detection methods were utilized with an iterative inversion method to define the boundaries and the parameters of the structure. In the first step of the application, it was necessary to convert the total field anomaly into a pseudo-gravity anomaly map. Then the geometric boudaries of the structures were determined by applying a MATLAB based software with 3 different edge detection algorithms. The exact location of the structures were obtained by using these boundary coordinates as initial geometric parameters in the inversion process. In addition to these methods, reduction to pole and horizontal gradient methods were applied to the data to achieve more information about the location and shape of the possible reservoir. As a result, the edge detection methods were found to be successful, both in the field and as theoretical data sets for delineating the boundaries of the possible geothermal reservoir structure. The depth of the geothermal reservoir was determined as 2,4 km from 3-D inversion and 2,1 km from power spectrum methods.

  11. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Hill, B.E. (ed.)

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  12. Report on the geothermal development promotion survey. No.34. Kaminoyu/Santai area; Chinetsu kaihatsu sokushin chosa hokokusho. No. 34 Kaminoyu Santai chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The paper summed up the results of the geothermal development promotion survey 'Kaminoyu/Santai area' which was carried out at Yakumo town, Yamakoshi county, and Mori town, Kayabe county, Hokkaido, from FY 1990 to FY 1992. In the survey, the following were conducted for the comprehensive analysis: surface survey such as geology/alteration zone survey, geochemical survey and gravity exploration, test to induce jetting of geothermal fluids by drilling 7 boreholes, temperature/pressure log, etc. The geological structure of this area is featured by the uplift structure/caldera structure and the anticline structure. In the wide-area geothermal system, it is thought that the low-temperature seawater permeates underground by mixture with meteoric water, is heated, and forms the deep geothermal water. It is thought that the hot spring water in this area is stored in the hot spring reservoir by mixture with the surface water, and it is gushing. In the area, the region which is regarded as favorable as passage/storage place of geothermal fluid is a region of 1.5km width extending linearly in the E-W direction from the Nigorikawa basin to Kaminoyu. Further, it is thought that fractures were unfavorably developed in the Santai/Kaminoyu area. (NEDO)

  13. Geothermal assessment of the MX deployment area in Nevada. Final report, April 1, 1981-April 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, D.T.; Bruce, J.L.; Cates, D.; Dolan, H.H.; Covington, C.H.

    1982-06-01

    A preliminary geothermal resource assessment of the MX deployment area in Nevada focused on Coyote Spring Valley in southeastern Nevada. Initially, an extensive literature search was conducted and a bibliography consisting of 750 entries was compiled covering all aspects of geology pertaining to the study area. A structural study indicates that Coyote Spring Valley lies in a tectonically active area which is favorable for the discovery of geothermal resources. Hot water may be funneled to the near-surface along an extensive fracture and fault system which appears to underlie the valley, according to information gathered during the literature search and aerial photo survey. A total of 101 shallow temperature probes were emplanted in Coyote Spring Valley. Three anomalous temperature points all lying within the same vicinity were identified in the north-central portion of the valley near a fault. A soil-mercury study also identified one zone of anomalous mercury concentrations around the north end of the Arrow Canyon Range. A literature search covering regional fluid geochemistry indicated that the three fluid samples taken from Coyote Spring Valley have a higher concentration of Na + K. During field work, seven fluid samples were collected in Coyote Spring Valley which also appear to be derived from volcanic units due to the presence of Ca-Mg or Na-K carbonate-bicarbonate. A temperature gradient study of six test water wells indicates that only one geothermal well with a temperature of 35.5/sup 0/C (96/sup 0/F) exists in the central portion of the valley at the north end of Arrow Canyon Range near the zone of anomalous soil-mercury points. A cultural assessment of Coyote Spring Valley was performed prior to field work.

  14. Changes in physical-thermal properties of soil related to very shallow geothermal systems in urban areas

    Science.gov (United States)

    Di Sipio, Eloisa; Psyk, Mario; Popp, Thomas; Bertermann, David

    2016-04-01

    In the near future the population living in urban areas is expected to increase. This worldwide trend will lead to a high concentrations of infrastructures in confined areas, whose impact on land use and shallow subsurface must be well evaluated. Since shallow geothermal energy resource is becoming increasingly important as renewable energy resource, due to its huge potential in providing thermal energy for residential and tertiary buildings and in contributing to reduce greenhouse gas emission, the number of installed geothermal systems is expected to continue to rise in the near future. However, a leading question concerns the short and long-term effect of an intensive thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage. From an environmental and technical point of view, changes on ground temperatures can influence the physical-thermal properties of soil and groundwater as well as their chemical and biological features. In this study the preliminary results of ITER Project are presented. This project, funded by European Union, focuses on improving heat transfer efficiency of very shallow geothermal systems, as horizontal collector systems or special forms (i.e. helix system), interesting the first 2 m of depth from ground level. Given the heterogeneity of sedimentary deposits in alluvial plain and the uncertainties related to the estimation of thermal parameters for unconsolidated material affected by thermal use, physical-thermal parameters (i.e. moisture content, bulk density, thermal conductivity...) where determined in laboratory for sand, clay and loamy sand samples. In addition, preliminary results from a field test site located within an urban area will be also shown. The main aim is to improve our knowledge of heat transfer process in the soil body in order (i) to create a reference database to compare subsequently the impact of temperature variations on the same properties and (ii) to provide reliable data for

  15. On the magma chamber characteristics as inferred from surface geology and geochemistry: examples from Mexican geothermal areas

    Science.gov (United States)

    Verma, Surendra P.

    1985-12-01

    A procedure is described which enables us to obtain estimates of some physical and chemical characteristics of sub-surface magma chambers. This is applied to three geothermal areas of the Mexican Volcanic Belt (MVB) in central Mexico. The approximate volumes estimated for the underlying chemically and thermally zoned magma chambers are: 1500 km 3 for Los Humeros, 600 km 3 for La Primavera, and 400 km 3 for Los Azufres. These estimates will have to be modified as more geological-geochemical data become available.

  16. Geothermal Energy Potential in Low Enthalpy Areas as a Future Energy Resource: Identifying Feasible Targets, Quebec, Canada, Study Case

    OpenAIRE

    Jacek Majorowicz; Vasile Minea

    2015-01-01

    Heat flow of the sedimentary succession of the Eastern Canada Sedimentary Basins varies from 40 mW/m2 close to the exposed shield in the north to high 60–70 mW/m2 in the southwest–northeast St. Lawrence corridor. As high fluid flow rates are required for a successful geothermal application, the most important targets are deep existing permeable aquifers rather than hard rock, which would need to be fracked. Unfortunately, the ten most populated Québec urban centers are in the areas where the ...

  17. Geological determination of the limits, area and volume of the geothermal reservoir of the Los Humeros geothermal field, Puebla, Mexico; Determinacion geologica de los limites, area y volumen del yacimiento geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Hernandez, Daniel [Gerencia de Proyectos Geotermoelectricos, Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    1999-08-01

    A geologic analysis to determine the limits, area and volume of the exploitable reservoir of the Los Humeros Geothermal Field, in Puebla, Mexico was carried out. We defined the structural boundaries, both at surface and at deep that seem to control the distribution of the fluids of high enthalpy and favor or limit the production of steam. With 40 wells drilled to date, an average thickness of the lithological producer Unit of 1 163 m has been estimated. A surface of 12.54 km{sup 2} was calculated, that with the estimated thickness, gives a volume of the reservoir of 14.6 km{sup 3}. We consider that there are two main production sectors in the Geothermal Field: The Central Collapse and The Mastaloya Corridor. [Spanish] Se realizo un analisis geologico para determinar los limites, area y volumen del yacimiento explotable del campo geotermico de Los Humeros en Puebla, Mexico. Se definen las barreras estructurales, tanto superficiales como del subsuelo, que controlan la distribucon de los fluidos de alta entalpia que favorecen o limitan la produccion de vapor. Con los 40 pozos perforados hasta la fecha, se estima un espesor promedio de la unidad productora de 1 163 m. Se calculo una superficie de 12.54 km{sup 2}, la que con el espesor mencionado, da un volumen del yacimiento de 14.6 km{sup 3}. Se plantea que dentro del campo existen dos sectores principales de produccion. El Colapso Central y el Corredor de Mastaloya.

  18. Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico

    Science.gov (United States)

    Gomez, Valle R.; Friedman, J.D.; Gawarecki, S.J.; Banwell, C.J.

    1970-01-01

    hydrothermal alteration and deposition at the surface is identifiable on the infrared imagery of this area, closey related spatially to a resistivity low at depth. Extinct geothermal areas near El Salitre, Ixtlan, and farther west at San Gregorio are clearly delineated on both infrared images and infrared ektachrome photographs. Predawn infrared images also show high-angle fault zones suggesting the dominance of block tectonics in much of the area. Special image enhancement techniques applied to the original magnetic tape records will be required for more precise identification of warm ground zones and for a qualitative or semiquantitative estimate of ground radiance associated with anomalously high convective heat flow. ?? 1971.

  19. Geochemistry of thermal fluids in NW Honduras: New perspectives for exploitation of geothermal areas in the southern Sula graben

    Science.gov (United States)

    Capaccioni, Bruno; Franco, Tassi; Alberto, Renzulli; Orlando, Vaselli; Marco, Menichetti; Salvatore, Inguaggiato

    2014-06-01

    The results of a geochemical survey on thermal waters and, for the first time for this site, gas discharges in five geothermal sites (Azacualpa "La Cueva", Río Ulua, Río Gualcarque, El Olivar and Laguna de Agua Caliente) in NW Honduras are here presented and discussed. El Olivar and Laguna de Agua Caliente, in the southern part of the Sula graben are very close to a Quaternary basaltic field, whereas Azacualpa "La Cueva", Río Ulua and Río Gualcarque, located to the southwest of the Yojoa Lake, direcly emerge from the Cretaceous limestone deposits. The measured temperatures range between 37.5 and 104.8 °C. "Mature", alkaline, Na-SO4 thermal waters discharge from Azacualpa "La Cueva", while those from El Olivar and Laguna de Agua Caliente are "immature" and show a Na-HCO3 composition. Chemical equilibria of waters and gases from the Azacualpa "La Cueva" thermal springs indicate temperatures ranging from 150 to 200 °C. Conversely, gas discharges from El Olivar and Laguna de Agua Caliente have attained a partial chemical equilibrium in the liquid phase at slightly higher temperatures (200-250 °C), although gas-gas faster reactions involving CO seem to be adjusted in an isothermally separated vapor phase. Unlike Azacualpa, SiO2 geothermometer at El Olivar and Laguna de Agua Caliente indicates equilibrium temperatures for the liquid phase much lower than those calculated for the gas phase (≤ 120 °C). We conclude that thermal waters from the Azacualpa area likely represent the direct emergence of a water dominated reservoir having temperatures ≤ 150-200 °C. By contrast, at El Olivar and Laguna de Agua Caliente hot springs are supplied by a boiling shallow aquifer fed by a vapor phase rising from a steam-dominated zone. The above geochemical model is consistent with a geothermal reservoir hosted within the Cretaceous carbonate sequences of the Yojoa Group in the whole investigated sites. The reservoir extensively crops out in the Azacualpa area whereas the

  20. Isotopic zoning and origin of the aquifers in the discharge area of the geothermal fields of Ahuachapan and Chipilapa, El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Vicente Torres; Birkle, Peter; Partida, Eduardo Gonzalez; Nieva, David; Verma, Mahendra Pal; Marin, Enrique Portugal [Instituto de Investigaciones Electricas, Dept. de Geotermia, Cuernavaca, Morelos (Mexico); Castellanos, Federico [Comision Ejecutiva Hidroelectrica del Rio Lempa, GEOCEL, Santa Tecla (El Salvador)

    1997-12-01

    The northern discharge areas of the Ahuachapan and Chipilapa geothermal fields can be subdivided into four different zones based on their structural position, and the isotopic and chemical composition of their waters. In general, the contribution of geothermal waters from these two fields was estimated to be less than 10%. Elevation effects are of little importance, whereas a slight trend towards higher isotopic values with increasing water temperatures may exist. The NNW-SSE-trending Escalante and Agua Caliente faults represents lateral groundwater barriers, and provide vertical conduits for the ascending geothermal waters. The western discharge areas seem to be more influenced by the Ahuachapan geothermal field, whereas those to the east are more influenced by the Chipilapa field. Groundwaters in the Northern Plain are mainly from shallow northward-flowing aquifers. These waters show temperature effects, mixing with geothermal waters and are affected by the geology of the area. However, non of these factors alone can explain the isotopic variations in the waters of the northern discharge areas. (Author)

  1. Revision, calibration, and application of the volume method to evaluate the geothermal potential of some recent volcanic areas of Latium, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Doveri, Marco; Lelli, Matteo; Raco, Brunella [Institute of Geosciences and Georesources, CNR, Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa (Italy); Marini, Luigi [Laboratory of Geochemistry, Dip.Te.Ris., University of Genova, Corso Europa 26, I-16132 Genova (Italy); Institute of Geosciences and Georesources, CNR, Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa (Italy)

    2010-09-15

    The volume method is used to evaluate the productive potential of unexploited and minimally exploited geothermal fields. The distribution of P{sub CO2} in shallow groundwaters delimits the geothermal fields. This approach is substantiated by the good correspondence between zones of high CO{sub 2} flux, and the areal extension of explored geothermal systems of high enthalpy (Monte Amiata and Latera), medium enthalpy (Torre Alfina) and low enthalpy (Viterbo). Based on the data available for geothermal fields either under exploitation or investigated by long-term production tests, a specific productivity of 40 t h{sup -1} km{sup -3} is assumed. The total potential productivity for the recent volcanic areas of Latium is about 28 x 10{sup 3} t h{sup -1}, with 75% from low-enthalpy geothermal fields, 17% from medium-enthalpy systems, and 8% from high-enthalpy reservoirs. The total extractable thermal power is estimated to be 2220-2920 MW, 49-53% from low-enthalpy geothermal fields, 28-32% from medium-enthalpy systems, and 19-20% from high-enthalpy reservoirs. (author)

  2. Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part I. Gravity survey

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.A.; Cook, K.L.

    1983-04-01

    During 1980 and 1981 a total of 569 new gravity stations were taken in Utah and Goshen Valleys and adjacent areas, Utah. The new stations were combined with 530 other gravity stations taken in previous surveys which resulted in a compilation of 1099 stations which were used in this study. The additional surveys were undertaken to assist in the evaluation of the area for the possible development of geothermal resources by providing an interpreted structural framework by delineating faults, structural trends, intrusions, thickness of valley fill, and increased density of host rock. The gravity data are presented as (1) a complete Bouguer gravity anomaly map with a 2 mgal contour interval on a scale of 1:100,000 and (2) five generally east-trending gravity profiles. A geologic interpretation of the study area was made from the gravity map and from the interpretive geologic cross sections which were modeled along the gravity profiles.

  3. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China.

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Wu, Geng; Dong, Hailiang; Wang, Yanhong; Li, Bing; Wang, Yanxin; Guo, Qinghai

    2014-01-01

    A total of 12 samples were collected from the Tengchong geothermal areas of Yunnan, China, with the goal to assess the arsenite (AsIII) oxidation potential of the extant microbial communities as inferred by the abundance and diversity of the AsIII oxidase large subunit gene aioA relative to geochemical context. Arsenic concentrations were higher (on average 251.68 μg/L) in neutral or alkaline springs than in acidic springs (on average 30.88 μg/L). aioA abundance ranged from 1.63 × 10(1) to 7.08 × 10(3) per ng of DNA and positively correlated with sulfide and the ratios of arsenate (AsV):total dissolved arsenic (AsTot). Based on qPCR estimates of bacterial and archaeal 16S rRNA gene abundance, aioA-harboring organisms comprised as much as ~15% of the total community. Phylogenetically, the major aioA sequences (270 total) in the acidic hot springs (pH 3.3-4.4) were affiliated with Aquificales and Rhizobiales, while those in neutral or alkaline springs (pH 6.6-9.1) were inferred to be primarily bacteria related to Thermales and Burkholderiales. Interestingly, aioA abundance at one site greatly exceeded bacterial 16S rRNA gene abundance, suggesting these aioA genes were archaeal even though phylogenetically these aioA sequences were most similar to the Aquificales. In summary, this study described novel aioA sequences in geothermal features geographically far removed from those in the heavily studied Yellowstone geothermal complex.

  4. Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

    1980-02-01

    Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, current land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)

  5. Preliminary environmental assessment of selected geopressured - geothermal prospect areas: Louisiana Gulf coast region. Volume I. Comparison of prospect areas on the basis of potential environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Newchurch, E.J.; Bachman, A.L.; Bryan, C.F.; Harrison, D.P.; Muller, R.A.; Newman, J.P. Jr.; Smith, C.G. Jr.; Bailey, J.I. Jr.; Kelly, G.G.; Reibert, K.C.

    1978-10-15

    The results of a preliminary environmental assessment of the following geopressured-geothermal prospect areas in the Louisiana Gulf coast region are presented: South Johnson's Bayou, Sweet Lake, Rockefeller Refuge, Southeast Pecan Island, Atchafalaya Bay, and Lafourche Crossing. These prospect areas have been compared to determine their relative environmental acceptability for the test program. Trade-offs among the prospects in terms of potential impacts are highlighted. This assessment was made on the basis of the nature and extent of the proposed testing activities in view of the environmental characteristics of each prospect area: land use, geology and geohydrology, air quality, water resources and quality, ecological systems, and natural hazards. The comparison of prospect areas includes consideration of worst case situations. However, we believe that the test program activities, because they are so small in scale, will not result in major adverse impacts.

  6. Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

    1982-06-01

    A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

  7. Areas to explore surrounding the Cerro Prieto geothermal field, BC; Areas para exploracion en los alrededores del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Dumas, Alvaro [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail: alvaro.aguilar@cfe.gob.mx

    2009-07-15

    Exploration plays an important role in tapping underground natural resources-whether water, oil, natural gas or minerals. Exploratory data allow us to learn reservoir conditions, increasing probable reserves and reservoir life span. Around the Cerro Prieto geothermal field, BC, and in the Mexicali Valley in general, exploration had almost stopped but recently was resumed by the Studies Division of Comision Federal de ELectricidad (CFE)'s Gerencia de Proyectos Geotermoelectricos. The division sent technical personnel to structurally map the northern and eastern portions of Laguna Salada. The paper offers a general outline of the main zones undergoing exploratory studies-studies perhaps culminating in siting exploratory wells to locate more geothermal resources (and ultimately producing them using binary power plants). CFE also wants to site injection wells west of the current production zone, and this is covered, as well. All activities are meant to increase the productive lifespan of the geothermal reservoir. [Spanish] Cuando se trata de la explotacion de recursos naturales del subsuelo, sea agua, gas, petroleo o minerales, la exploracion juega un papel muy importante, ya que permite conocer las condiciones del yacimiento que pudieran llevar a incrementar las reservas de los recursos explotados y extender su vida util. En las zonas aledanas al campo geotermico de Cerro Prieto, BC, y en general en el Valle de Mexicali, la exploracion estaba practicamente detenida habiendose reactivado a raiz de que la Subgerencia de Estudios de la Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad (CFE) envio personal para realizar mapeos estructurales en las porciones norte y oriente de la Laguna Salada. Este trabajo presenta un panorama general de las areas prioritarias para realizar estudios exploratorios y poder programar, con mas bases, pozos exploratorios enfocados a localizar mas recursos geotermicos, inclusive para generar energia por medio

  8. Study On Deep Geothermal Resources of Pingdingshan Mining Area%平顶山矿区深部地热资源

    Institute of Scientific and Technical Information of China (English)

    董宪伟; 张九零; 侯欣然

    2014-01-01

    There are geothermal anomalies in Pingdingshan mining area ,the average geothermal gradient of up to 4. 6℃/100m,which forms geothermal mine disasters .The formation of geothermal anomalies is more closely related to geological structure and groundwater .Using groundwater heat pump technology and air heat exchange system ,exploi-ting the geothermal resources of these mines , which helps to reduce heat damage of mine , to improve the under-ground working environment ,conducive to improving the mine ’ s energy consumption structure ,decreasing environ-mental pollution and increasing the economic efficiency of enterprise .%河南省平顶山矿区存在地热异常现象,平均地温梯度最高可达4.6℃/100m,形成矿井地热灾害。这些地热异常区的形成多与地质构造和地下水密切相关。利用地热水热泵技术和地热空气换热系统,开发利用这些矿区的地热资源,有助于减轻矿井热害,改善井下工作环境,有利于改善矿区的能源消费结构,减轻环境污染和增加企业经济效益。

  9. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bell, E.J.; Ghusn, G. Jr.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, and temperature gradient drilling.

  10. Subsurface Structure and Fluid Flow Analysis Using Geophysical Methods in the Geothermal Manifestation Area of Paguyangan, Brebes, Central Java

    Directory of Open Access Journals (Sweden)

    Agus Seyawan

    2016-11-01

    Full Text Available The indication of an active geothermal system is shown by the presence of surface manifestations such as the hot spring in Kedungoleng, Paguyangan, Brebes, Central Java. The temperature of the largest hot spring reaches 74o C and there is an assumption that this is an outflow of Mount Slamet geothermal system. DC-resistivity, Spontaneous Potential (SP and Shallow Surface Temperature surveys were conducted to determine the subsurface structure as well as its correlation with the distribution of thermal fluid flow and shallow surface temperature. The subsurface resistivity has been investigated using 5 points of the Schlumberger configuration with 400 m separation for each point. For the fluid and temperature pattern, a measurement using 15 m interval in 3 lines of conducting fixed electrode configuration has been carried out, along with a 75 cm of depth of temperature measurement around the manifestation area. The thermal fluid is assumed by the low resistivity of 0.756 to 6.91Ωm and this indicates sandstone that has permeable characteristic. The fluid flows in two layers of Sandstone at more than 10 meter from surface of the first layer. Accordingly, the SP values have a range between -11- 11 mV and a depth interval of 13.42- 28.75 m and the distribution of temperature is between 24o-70oC at a tilting range of 46.06o-12.60o. Hence it can be inferred that the thermal fluid moves in the Northwest direction and is controlled by a fault structure stretching from Northwest to Southeast. Article History: Received Feb 3, 2016; Received in revised form July 11, 2016; Accepted August 13, 2016; Available online How to Cite This Article: Setyawan, A., Triahadini, A., Yuliananto, Y., Aribowo, Y., and Widiarso, D.A. (2016 Subsurface Structure and Fluid Flow Analyses Using Geophysical Methods in Geothermal Manifestation Area of Paguyangan, Brebes, Central Java. Int. Journal of Renewable Energy Development, 5(3, 171-177. http://dx.doi.org/10.14710/ijred.5.3.171-177

  11. Geothermal direct-heat utilization assistance

    Science.gov (United States)

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  12. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    Science.gov (United States)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to ~ 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH ~ 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  13. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091762 Guo Wancheng(Xining Jiulong Engineering Investigation Ltd.,Xining 810700,China);Shi Xingmei Development and Utilization of Guide Basin’s Geothermal Resources of Qinghai Province(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(3),2008,p.79-80,92,2 illus.,2 tables,2 refs.)Key words:geothermal resources,QinghaiThis paper introduced the background of geothermal conditions and the many years of geothermal exploration data in Guide Basin.Then,the authors discussed the geothermal resources feature of Guide basin and raised some opinions on the reasonable development and utilization of geothermal resources.

  14. An Estimation of Potentials for the Hatchobaru Geothermal Area, Northern Kyushu, Japan and Geo-Electrical Indications at the Otake Geothermal Field in the Western Part of the Kujyu Volcano Group, Kyushu, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, S.

    1974-01-01

    In the estimation of the output in kW/h produced by the geothermal power generation, it is required to know the well characteristics, the heat cycle in the power plant, the output characteristics and the efficiency. Of these three in the latter are seemed to be constant in the present power plant, while only the well characteristics varies in the wide range. One of great importance in the measurement of well characteristics is the determination of the steam flow rate from a well at a given well head pressure. it is, at present, well-known that the corresponding output in kW based on the steam flow rate is defined as the potential for the geothermal area involved. Specifically, in the case of hydrothermal systems the separate system must be equipped in order to know the steam flow rate.

  15. Convection of geothermal fluids in the Timanfaya volcanic area, Lanzarote, Canary Islands

    Energy Technology Data Exchange (ETDEWEB)

    Arana, V.; Diez, J.L.; Ortiz, R.; Yuguero, J.

    1984-01-01

    A mathematical model has been derived to study the superficial thermal anomalies to be found in Lanzarote (605 C at 13 m depth) in association with the convection of geothermal fluids. The model is valid for a wide range of conditions, in particular for those found beneath the Timanfaya volcano (active between 1730 and 1736). Geological and geophysical data suggest that the heat source is related to a cylindrical magma body with a radius of 200 +/- 100 m and a top temperature of 850 +/- 100 C at a depth of 4 +/- 1 km. Energy is transported through fractures by magmatic volatiles and/or by water vapor coming from a deeply located water table: in such a convection system, a fluid flow of 10 1/m/sup 2/ day, which corresponds to a thermal flux of 130 W/m/sup 2/, is sufficient to explain the temperature anomalies observed at the surface. The relationships between gas flow and the surface temperatures, as well as the thermal gradients in the conducting fracture are also discussed. 27 references.

  16. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  17. Geothermal potential and origin of natural thermal fluids in the northern Lake Abaya area, Main Ethiopian Rift, East Africa

    Science.gov (United States)

    Minissale, A.; Corti, G.; Tassi, F.; Darrah, T. H.; Vaselli, O.; Montanari, D.; Montegrossi, G.; Yirgu, G.; Selmo, E.; Teclu, A.

    2017-04-01

    In this study, the occurrence, chemical composition, origin and geothermal significance of thermal springs and fumaroles naturally discharging in the area located north of the Lake Abaya (western margin of the Main Ethiopian Rift, East Africa) are reviewed in relation with recent tectonics. All thermal springs showed a dominantly Na-HCO3 composition, consistent with observations dating from at least 1972, and most of them displayed a narrow range of δD and δ18O isotopic compositions for water similar to regional meteoric origins. These observations suggest that water-rock interaction processes occur in all aquifers and dominate the contributions of water that actively circulate within thermal fluids, and also suggest a similar elevation of groundwater recharge throughout the study area. Most of the thermal springs are dominated by a CO2-rich gas phase and discharge along the active faults bordering the western edge of the Main Ethiopian Rift valley. The δ13C values of CO2 and the 3He/4He isotopic ratios are consistent with the presence of mantle-derived fluids similar to what is observed in many other areas along the kinematically active African Rift, especially within Ethiopia. The application of geothermometric techniques in the liquid and the gas phases suggests the presence of a deep reservoir in which the fluids equilibrated at a maximum temperature of approximately 180 °C. Additionally, the presence of fumaroles at boiling temperatures and water/mud boiling pools in several places suggests that the geothermal reservoir is positioned at a relatively shallow depth and likely located in the western side of the study area. The analysis of data collected throughout time reveals that the waters of Lake Abaya have experienced an increase in salinity of 20% paralleled contemporaneously with a decrease in pH and δ18O and δD of water in the last 40 years; these changes do not appear to be related to climate change-induced increases in temperature or evaporation

  18. Geothermal Energy Potential in Low Enthalpy Areas as a Future Energy Resource: Identifying Feasible Targets, Quebec, Canada, Study Case

    Directory of Open Access Journals (Sweden)

    Jacek Majorowicz

    2015-07-01

    Full Text Available Heat flow of the sedimentary succession of the Eastern Canada Sedimentary Basins varies from 40 mW/m2 close to the exposed shield in the north to high 60–70 mW/m2 in the southwest–northeast St. Lawrence corridor. As high fluid flow rates are required for a successful geothermal application, the most important targets are deep existing permeable aquifers rather than hard rock, which would need to be fracked. Unfortunately, the ten most populated Québec urban centers are in the areas where the Grenville (Canadian Shield is exposed or at shallow depths with sedimentary cover where temperatures are 30 °C or less. The city of Drummondville will be the exception, as the basement deepens sharply southwest, and higher temperatures reaching >120 °C are expected in the deep Cambrian sedimentary aquifers near a 4–5-km depth. Deep under the area where such sediments could be occurring under Appalachian nappes, temperatures significantly higher than 140 °C are predicted. In parts of the deep basin, temperatures as high as 80 °C–120 °C exist at depths of 3–4 km, mainly southeast of the major geological boundary: the Logan line. There is a large amount of heat resource at such depths to be considered in this area for district heating.

  19. Geothermal energy

    OpenAIRE

    Manzella A.

    2015-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with p...

  20. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  1. Geothermal Energy.

    Science.gov (United States)

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  2. Lens Opacity and Hydrogen Sulfide in a New Zealand Geothermal Area.

    Science.gov (United States)

    Bates, Michael N; Bailey, Ian L; DiMartino, Robert B; Pope, Karl; Crane, Julian; Garrett, Nick

    2017-04-01

    Hydrogen sulfide (H2S) is a highly toxic gas with well-established, acute irritation effects on the eye. The population of Rotorua, New Zealand, sited on an active geothermal field, has some of the highest ambient H2S exposures in the world. Evidence from ecological studies in Rotorua has suggested that H2S is associated with cataract. The purpose of the present study was, using more detailed exposure characterization, clinical examinations, and anterior eye photography, to more directly investigate this previously reported association. Enrolled were 1637 adults, ages 18 to 65, from a comprehensive Rotorua primary care medical register. Patients underwent a comprehensive ophthalmic examination, including pupillary dilation and lens photography to capture evidence of any nuclear opacity, nuclear color, and cortical and posterior subcapsular opacity. Photographs were scored for all four outcomes on the LOCS III scale with decimalized interpolation between the exemplars. H2S exposure for up to the last 30 years was estimated based on networks of passive samplers set out across Rotorua and knowledge of residential, workplace, and school locations over the 30 years. Data analysis using linear and logistic regression examined associations between the degree of opacification and nuclear color or cataract (defined as a LOCS III score ≥2.0) in relation to H2S exposure. No associations were found between estimated H2S exposures and any of the four ophthalmic outcome measures. Overall, results were generally reassuring. They provided no evidence that H2S exposure at the levels found in Rotorua is associated with cataract. The previously found association between cataract and H2S exposure in the Rotorua population seems likely to be attributable to the limitations of the ecological study design. These results cannot rule out the possibility of an association with cataract at higher levels of H2S exposure.

  3. Sandstone consolidation analysis to delineate areas of high-quality reservoirs suitable for production of geopressured geothermal energy along the Texas Gulf Coast

    Energy Technology Data Exchange (ETDEWEB)

    Loucks, R.G.; Dodge, M.M.; Galloway, W.E.

    1979-01-01

    Analysis of reservoir quality of lower Tertiary sandstones along the Texas Gulf Coast delineates areas most favorable for geopressured geothermal exploration. Reservoir quality is determined by whole core, acoustic log, and petrographic analyses. The Wilcox Group has good reservoir potential for geopressured geothermal energy in the Middle Texas Gulf Coast and possibly in adjacent areas, but other Wilcox areas are marginal. The Vicksburg Formation in the Lower Texas Gulf Coast is not prospective. Reservoir quality in the Frio Formation increases from very poor in lowermost Texas, to marginal into the Middle Texas Gulf Coast and to good through the Upper Texas Gulf Coast. The Frio Formation in the Upper Texas Gulf Coast has the best deep-reservoir quality of any unit along the Texas Gulf Coast. (MHR)

  4. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  5. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  6. Deep electrical resistivity tomography and geothermal analysis of Bradano foredeep deposits in Venosa area (Southern Italy: preliminary results

    Directory of Open Access Journals (Sweden)

    V. Lapenna

    2008-06-01

    Full Text Available Geophysical surveys have been carried out to characterize the stratigraphical and structural setting and to better understand the deep water circulation system in the Venosa area (Southern Italy located in the frontal portion of the southern Appenninic Subduction. In this area there are some deep water wells from which a water conductivity of about 3 mS/cm and a temperature of about 35°C was measured. A deep geoelectrical tomography with dipole-dipole array has been carried out along a profile of 10000 m and an investigation depth of about 900 m. Furthermore a broad band magnetotelluric profile consisting of six stations was performed to infer the resistivity distribution up to some kilometres of depth. The MT profile was almost coincident with the geoelectrical outline. The applied methods allow us to obtain a mutual control and integrated interpretation of the data. The high resolution of the data was the key to reconstruct the structural asset of buried carbonatic horst whose top is located at about 600 m depth. The final results coming from data wells, geothermal analysis and geophysical data, highlighted a horst saturated with salted water and an anomalous local gradient of 60°C/km. The proposed mechanism is that of a mixing of fossil and fresh water circulation system.

  7. Geothermal Energy Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  8. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas.

    Science.gov (United States)

    Koskinen, Perttu E P; Beck, Steinar R; Orlygsson, Jóhann; Puhakka, Jaakko A

    2008-11-01

    Microbial fermentations are potential producers of sustainable energy carriers. In this study, ethanol and hydrogen production was studied by two thermophilic bacteria (strain AK15 and AK17) isolated from geothermal springs in Iceland. Strain AK15 was affiliated with Clostridium uzonii (98.8%), while AK17 was affiliated with Thermoanaerobacterium aciditolerans (99.2%) based on the 16S rRNA gene sequence analysis. Both strains fermented a wide variety of sugar residues typically found in lignocellulosic materials, and some polysaccharides. In the batch cultivations, strain AK17 produced ethanol from glucose and xylose fermentations of up to 1.6 mol-EtOH/mol-glucose (80% of the theoretical maximum) and 1.1 mol-EtOH/mol-xylose (66%), respectively. The hydrogen yields by AK17 were up to 1.2 mol-H2/ mol-glucose (30% of the theoretical maximum) and 1.0 mol-H2/mol-xylose (30%). The strain AK15 produced hydrogen as the main fermentation product from glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose (1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated exogenously added ethanol up to 4% (v/v). The ethanol and hydrogen production performance from glucose by a co-culture of the strains AK15 and AK17 was studied in a continuous-flow bioreactor at 60 degrees C. Stable and continuous ethanol and hydrogen co-production was achieved with ethanol yield of 1.35 mol-EtOH/mol-glucose, and with the hydrogen production rate of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed that the AK17 became the dominant bacterium in the bioreactor. In conclusion, strain AK17 is a promising strain for the co-production of ethanol and hydrogen with a wide substrate utilization spectrum, relatively high ethanol tolerance, and ethanol yields among the highest reported for thermoanaerobes.

  9. Fluid inclusions and preliminary studies of hydrothermal alteration in core hole PLTG-1, Platanares geothermal area, Honduras

    Science.gov (United States)

    Bargar, K.E.

    1991-01-01

    The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core. Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole. Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20??C less than the present measured temperature curve at 590.1-m depth to as much as 90??C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114?? and 265??C) plot above the

  10. Evaluation of Seismicity Using Density Analysis of 2000-2015 Earthquakes in The West Coastal Zone of Anatolia (Turkey) And Its Correlation with Geothermal Areas

    Science.gov (United States)

    Bakak, Özde

    2016-10-01

    The purpose of the study is to evaluate the seismic activity using the density analysis methods (point density and Kernel density analysis) for 2000-2015 earthquake catalogue belonging to the study area surrounded by Qanakkale to the north, Fethiye to the south and Denizli (Buharkent) to the east, and also to apply its correlation with geothermal regions. The earthquake data, in total 6.675 earthquakes with M>3 magnitudes were obtained from DDA Catalogue of Prime Ministry Disaster & Emergency Management Authority (AFAD) official website. In this survey, data analysis and maps were prepared using ArcGIS (version_10.1) program. The analysis maps present (1) the intensity clustered earthquakes dominant in Sigacik and Gokova Gulfs, (2) regions which have high seismic risk were determined according to Buffer analysis for 2 km distance, (3) geothermal areas (21.4-153°C) in the west coastal zone of Anatolia were mapped, (4) regions the most affected by seismic activity for the last 15 years were detected from 2015 population data, and as latest (5) Seferihisar, Urla, Gulbahge, Demircili, Bodrum, and Datga provinces are identified as areas having high seismic activity for the last 15 years. Consequently, all analysis results were compared with the geothermal areas, and the review made that earthquake catalogue has not the relationship with hot regions and also these shocks triggered by active faults in this region using ArcGIS program. the author recommends that these regions should be investigated the earthquake sensitivity analysis in the near future.

  11. Evaluation of the shallow geothermal energy in the Xuchang area%许昌市浅层地热能评价

    Institute of Scientific and Technical Information of China (English)

    洪念明; 涂良权; 王鑫; 胡继华; 陈瑾; 涂金飞

    2011-01-01

    以线热源理论为基础,通过对许昌市城区不同区域岩土体进行垂直埋管试验,测试获取各岩土层热物性参数,计算浅层地热能可利用量和地热能储存量,为许昌市推广和发展土壤源热泵这一极具节能与环保潜力的浅层地热能应用提供理论基础和技术支撑.同时,通过刘许昌市浅层地热能评价方法的介绍,为同类城市浅层地热能评价提供可借鉴的方法.%Shallow geothermal energy, which exists widely in shallow underground soil and ground water, is a kind of low grade and renewable energy. In this paper, on the basis of line heat source theory, the vertical pipe-burying method of soil heat exchanger is used to obtain different thermo-physical parameters of the rock and soil layers. The shallow geothermal energy storage and available quantity are calculated. The results can also provide theoretical base and technical support for the popularization and development of shallow geothermal energy application in the GSHP system, which is of potential significance in energy saving and environmental protection. Furthermore, according to the introduction of the evaluation methods of shallow geothermal energy in the Xuchang area, the results can also provide referential method for shallow geothermal energy evaluation of similar cities.

  12. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  13. Evaluation of Shallow Geothermal Resources in Lubei Area of Shandong Province%山东省鲁北地区浅层地热能资源评价

    Institute of Scientific and Technical Information of China (English)

    刘刚; 杨亚宾; 马淑杰

    2014-01-01

    Heat pump technology has been applied in developing shallow geothermal energy in Lubei region since 2001 ,but shallow geothermal energy resources assessment work in this region is seriously lagging behind ,w hich has restricted development and reasonable utilization of shallow geothermal energy re‐sources in this area .In order to promote the development and utilization of shallow geothermal energy in Lubei region ,the provincial government come up with special funds to carry out shallow geothermal re‐source evaluation .In the early period ,on the basis of surveying present condition of development and utili‐zation and geological conditions ,by using AHP method ,groundwater heat exchanger and heat exchanger by the development and utilization of appropriate zoning have been carried out .Shallow geothermal capaci‐ty in the area and available heat have been calculated as well .By using volume method ,thermal storage ca‐pacity of the shallow geothermal areas have been calculated ,shallow geothermal capacity in Lubei area is 29 .386 × 1015 kJ/ ℃ .According to the result of appropriate zoning ,respectively ,available heat transfer of suitable areas and more suitable areas of groundwater type and underground pipe type source heat pump have been calculated respectively .The ground source heat pump can be used to change a heat of 0 .8489 × 1010 kW · h below 200m ,w hile underground pipe type source heat pump can exchanger a heat of 6 .5261 × 1012 kW · hbelow 200m .%鲁北地区于2001年已陆续开始应用热泵技术开发浅层地热能,但区内的浅层地热能资源评价工作却严重滞后,制约了区内浅层地热能资源的开发和合理利用。为促进鲁北地区浅层地热能的开发利用,省政府拿出专项资金,开展了鲁北地区浅层地热能的资源评价工作,前期在调查区域内开发利用现状和摸清地质条件的基础上,采用层次分析法,分别对地下水换热方

  14. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  15. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  16. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)

    Energy Technology Data Exchange (ETDEWEB)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks

  17. Investigation of geothermal resources in Korea (Geothermal Resources Maps)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jeong Ung; Lee, Seung Gu; Yum, Byoung Woo; Kim, Hyoung Chan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The Korean Peninsula forms a part of the stable foreland of Far East Asia and is a part of Sino-Korean Craton, where, hence, is not associated with high potential geothermal resources. Nevertheless, there are several geothermal springs, of which water temperature ranges from 23 to 76 deg. C. This study was aimed to draw various geothermal base maps in the Korean Peninsula, such as thermal conductivity map, heat flow map, geothermal gradient map, depth contour map of 25 deg. C and various geochemical figures of geothermal waters. In this study, the thermal springs was surveyed for well inventory, the determination of thermal conductivities of rocks, and chemical analyses of geothermal waters. Hydrogen and oxygen isotope values ({delta}D and {delta}{sup 18}O) of geothermal waters were also calculated, which would be useful to evaluate the origin of water. Map of geothermal gradient distribution illustrates geothermally anomalous areas - such as Deoksan, Dogo, Onyang and Yusong areas in ChungNam district, Jungwon area in Chungbuk district, Pocheon area in Gyeonggi district, Gosung area in Gwangwon district, Deokgu, Baekam, and Pohang areas in Gyeongbuk district and Busan, Mageumsan and Bugok area in Gyeongnam district. Heat flow map also shows similar features to geothermal anomalies. Most of thermal waters form the Korean Peninsula are alkaline and belongs to Na-HCO{sub 3} type. Their contents are characterized of low total dissolved solids and high contents of fluoride and sodium, of which results are same as those of the researches which was conducted before. (author). 21 refs., tabs., figs.

  18. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122531 Hu Lingzhi ( Institute of Geological Engineering Design & Research of Beijing,Miyun 101500,China );Wang Jiankang Discussion on the Feasibility of Geothermal Resources Development and Utilization in Miyun District,Beijing ( City Geology,ISSN1007-1903,CN11-5519 / P,6 ( 3 ), 2011,p.34-35,59 ,) Key words:geothermal resources,Beijing Geothermal,as a new type of clean energy with the integrated trinity of " heat energy-mineral resource-water resource ",

  19. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141588 Guo Shiyan(Green Energy Geothermai Development Co.,SINOPEC,Xianyang 712000,China);Li Xiaojun Reservoir Stratum Characteristics and Geothermal Resources Potential of Rongcheng Uplift Geothermal Field in Baoding,Hebei Province(Chinese Journal of Geology,ISSN0563-5020,CN11-1937/P,48(3),2013,p.922-931,2 illus.,4 tables,10 refs.)Key words:geothermal fields,Hebei Province

  20. Geothermal Energy Development annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  1. Geothermal Reservoir Assessment Case Study: Northern Basin and Range Province, Leach Hot Springs Area, Pershing County, Nevada. Final report, April 1979-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Beard, G.A.

    1981-01-01

    A Geothermal Reservoir Assessment Case Study was conducted in the Leach Hot Springs Known Geothermal Resource Area of Pershing County, Nevada. The case study included the drilling of twenty-three temperature gradient wells, a magnetotelluric survey, seismic data acquisition and processing, and the drilling of one exploratory well. Existing data from prior investigations, which included water geochemistry, gravity, photogeologic reports and a hydrothermal alteration study, was also provided. The exploratory well was drilled to total depth of 8565' with no significant mud losses or other drilling problems. A maximum temperature of 260/sup 0/F was recorded at total depth. The relatively low temperature and the lack of permeability (as shown by absence of mud loss) indicated that a current, economic geothermal resource had not been located, and the well was subsequently plugged and abandoned. However, the type and extent of rock alteration found implied that an extensive hot water system had existed in this area at an earlier time. This report is a synopsis of the case study activities and the data obtained from these activities.

  2. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Teplow, William J. [US Geothermal, Inc., Boise, ID (United States); Warren, Ian [US Geothermal, Inc., Boise, ID (United States)

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  3. Evaluation of the hot-dry-rock geothermal potential of an area near Mountain Home, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Arney, B.H.; Goff, F.

    1982-05-01

    Evaluation of an area near Mountain Home, Idaho, was performed to assess the hot dry rock (HDR) potential of the prospect. The techniques reported include telluric and gravity profiling, passive seismic, hydrology and water chemistry surveys, and lineament analysis. Gravity and telluric surveys were unsuccessful in locating fractures buried beneath recent volcanics and sediments of the plain because density and conductivity contrasts were insufficient. Gravity modeling indicated areas where granite was not likely to be within drilling depth, and telluric profiling revealed an area in the northwest part of the prospect where higher conductivity suggested the presence of fractures or water or both, thereby making it unsuitable for HDR. Water geochemistry indicated that (hot water) reservoir temperatures do not exceed 100/sup 0/C. An area in the east central part of the prospect was delineated as most favorable for HDR development. Temperature is expected to be 200/sup 0/C at 3-km depth, and granitic rock of the Idaho Batholith should be intersected at 2- to 3-km depth.

  4. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150342Guan Yu(Geo-Environment Monitoring Station of Anhui Province,Hefei230001,China);Chen Xun On Shallow Geothermal Energy Investigation in Urban Planning Zone of Bengbu in Anhui Province(Journal of Geology,ISSN1674-3636,CN32-1796/P,38(1),2014,p.88-93,2illus.,4tables,6refs.)Key words:geothermal energy,Anhui Province The authors conducted studies on shallow geothermal energy in urban planning zone in Bengbu of Anhui Province,depicted the geological settings of shallow geothermal energy,analyzed the natural features,heat exchange

  5. Geothermal Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Leffel, C.S., Jr.; Eisenberg, R.A.

    1977-06-01

    This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

  6. Geothermal investigations in Idaho. Part 3. An evaluation of thermal water in the Weiser area, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Young, H.W.; Whitehead, R.L.

    1974-01-01

    The Weiser area encompasses about 200 square miles in southwest Idaho and contains two thermal water areas: (1) the Crane Creek subarea, which is 12 miles east of Weiser, Idaho, and (2) the Weiser Hot Springs subarea, which is 5 miles northwest of Weiser. Volcanic and sedimentary rocks of Miocene to Pleistocene age have been faulted and folded to form the northwest-trending anticlines present in much of the area. Basalt of the Columbia River Group or underlying rocks are believed to constitute the reservoir for the hot water. Gravity and magnetic anomalies are present in both subareas. A preliminary audio-magnetotelluric survey indicates that a shallow conductive zone is associated with each thermal site. Above-normal ground temperatures measured at a depth of 1 metre below the land surface in the Weiser Hot Springs subarea correlate with relatively high concentrations of boron in underlying ground waters, which, in turn, are usually associated with thermal waters in the study area. Sampled thermal waters are of a sodium chloride sulfate or sodium sulfate type, having dissolved-solids concentrations that range from 225 to 1,140 milligrams per litre. Temperatures of sampled waters ranged from 13/sup 0/ to 92.0/sup 0/C. Minimum aquifer temperatures calculated from chemical analysis of water, using geochemical thermometers, were 170/sup 0/ and 150/sup 0/C in the Crane Creek and Weiser Hot Springs subareas, respectively. Estimated maximum temperatures ranged from 212/sup 0/ to 270/sup 0/C and 200/sup 0/ to 242/sup 0/C, respectively, in these subareas. The probable heat sources for both subareas are (1) young magmatic intrusive rocks underlying the basalt or (2) above-normal temperatures resulting from thinning of the earth's crust. Maps are included.

  7. Depositional setting, structural style, and sandstone distribution in three geopressured geothermal areas, Texas Gulf Coast

    Energy Technology Data Exchange (ETDEWEB)

    Winker, C.D.; Morton, R.A.; Ewing, T.E.; Garcia, D.D.

    1981-10-01

    Three areas in the Texas Gulf Coast region with different depositional settings, structural styles, and sandstone distribution were studied with well log and seismic data to evaluate some of the controls on subsurface conditions in geopressured aquifers. Structural and stratigraphic interpretations were made primarily on the basis of well log correlations. Seismic data confirm the log interpretations but also are useful in structure mapping at depths below well control.

  8. Compilation of geothermal information: exploration

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

  9. Technology transfer report: feasibility study for the use of geothermal brine in the Ashdod area, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.M.

    1984-08-01

    The hydrothermal potential of the Ashdod area, Israel, was evaluated to determine its suitability as the low grade energy source required to operate the Ashdod desalination plant. An estimated 1250 cubic meters per hour of 120/sup 0/C brine would be adequate to supply the hot water necessary for operating the desalination plant. Considerable interest in oil exploration in the Ashdod area resulted in the drilling of six wells into the Jurassic formations by Oil Exploration (Investments) Ltd. (OEL) in 1976-1980. A small amount of oil was found in two wells, Ashdod 2 and 5. The remaining wells were abandoned as ''dry holes''. Evaluation of the drill cuttings, cores, and the electric logs defined two lithologic units of potential interest for hydrothermal exploitation, the Zohar and Shderot Dolomites. Investigation of the hydrothermal potential of the Jurassic formations underlying the Ashdod area has revealed that the aquifer temperatures range between 85 and 92/sup 0/C. The hydrologic parameters are not well defined; however the matrix permeability of the dolomites and limestones is probably between 1 and 10 md. This is insufficient permeability for a large scale pumping operation such as the one required to operate the desalination plant. Therefore, successful utilization of the resource requires the presence of significant fractures and/or connected vugs in the formation. The very low well productivity and formation plugging may indicate that permeability of the fracture zones may easily be impaired, suggesting that the fracture zones are not suitable production intervals. Until a test is conducted on a properly completed well, it is not possible to evaluate the deliverability of wells tapping these aquifers. 14 refs., 8 figs.

  10. Rapid heat-flowing surveying of geothermal areas, utilizing individual snowfalls as calorimeters

    Science.gov (United States)

    White, Donald E.

    1969-01-01

    Local differences in rate of heat transfer in vapor and by conduction through the ground in hot spring areas are difficult and time-consuming to measure quantitatively. Individual heavy snowfalls provide a rapid low-cost means of measuring total heat flow from such ground. After a favorable snowfall (heavy, brief duration, little wind, air temperature near 0°C), contacts between snow-covered and snow-free ground are mapped on a suitable base. Each mapped contact, as time elapses after a specific snowfall, is a heat-flow contour representing a decreasing rate of flow. Calibration of each mapped contact or snow line is made possible by the fact that snow remains on insulated surfaces (such as the boardwalks of Yellowstone's thermal areas) long after it has melted on adjacent warm ground. Heat-flow contours mapped to date range from 450 to 5500 μcal/cm2 sec, or 300 to 3700 times the world average of conductive heat flow. The very high rates of heat flow (2000 to > 10,000 μcal/cm2 sec) are probably too high, and the lower heat flows determinable by the method (2 sec) may be too low. Values indicated by the method are, however, probably within a factor of 2 of the total conductive and convective heat flow. Thermal anomalies from infrared imagery are similar in shape to heat-flow contours of a test area near Old Faithful geyser. Snowfall calorimetry provides a rapid means for evaluating the imagery and computer-derived products of the infrared data in terms of heat flow.

  11. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  12. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Directory of Open Access Journals (Sweden)

    Zhou Jiang

    Full Text Available Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86. Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation, Sulfolobus (sulfur and iron oxidation, Metallosphaera and Acidicaldus (iron oxidation. Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  13. Life cycle of a geyser discharge apron: Evidence from Waikite Geyser, Whakarewarewa geothermal area, North Island, New Zealand

    Science.gov (United States)

    Jones, Brian; Renaut, Robin W.; Owen, R. Bernhart

    2011-05-01

    Waikite, a geyser located in the Whakarewarewa geothermal area on the North Island, New Zealand, has a history of eruptive-dormancy cycles that have been attributed to natural and anthropogenic causes. The last cycle involved an active period from ~ 1932 to 1968/69 that was followed by a period of dormancy that continues today. Such cycles are important because they control the temporal development of the discharge apron. When the geyser is active, growth of the discharge apron is dictated by the precipitation of opal-A, which is controlled by factors such as discharge patterns, water chemistry, pH, temperature, rate of cooling, and the resident microbiota. With dormancy, conditions change radically because water no longer flows down the discharge apron. Instead, the discharge apron lapses into a phase of degradation that, on Waikite, is evident from (1) deflation of the apron surface, (2) blocks splaying off the apron margins along margin-parallel fractures, (3) tension fractures, (4) saucer-shaped collapse zones, (5) increasingly unstable surfaces resulting from subsurface opal-A dissolution, (6) fractures, from which steam and other gases emanate, and (7) incursion of native vegetation around the edge of the apron and on the distal parts of the discharge apron. When the geyser becomes active again, silica precipitation will resume and the discharge apron will once again accrete vertically and expand laterally. Analysis of the Waikite system shows that successions that develop on geyser discharge aprons are formed of unconformity-bounded packages of sinter that reflect the eruptive-dormancy history of the parent geyser.

  14. Three dimensional gravity modeling techniques with application to the Ennis Geothermal Area: Final report: Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Semmens, D.

    1987-12-01

    3-D gravity modeling was done in the area of the Ennis hot spring in an attempt to determine controlling structure of the Ennis hot spring. The modeling was done in a two-step process where: 1) The topography was modeled by modeling the valley fill from the highest elevation in the modeling area to some elevation below the lowest station elevation using Talwani and Ewing's (1960) method of modeling with vertically-stacked, horizontal, n-sided polygons. Once the gravity contributions of the valley fill included in this ''topographic model'' are calculated, they were removed from the original gravity data; 2) The remaining valley fill was modeled using blocks where the 3-D algorithm for modeling with blocks results from integrating the gravity formula in the X and Z directions and approximating the integration in the Y-direction using a quadrature formula. Finally, an inverse 3-D gravity modeling program was written to automatically adjust the bedrock topography output from this two-step modeling process. The gravity data calculated from the adjusted bedrock topography, output from the inverse modeling program, should match the observed gravity data within the error of the survey. 43 refs., 40 figs., 9 tabs.

  15. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131088 Fan Difu (Geological Survey of Jiangsu Province , Nanjing 210018 , China ); Xu Xueqiu Origin Study of Geothermal Field in Xiaoyangkou of Rudong County in Jiangsu (Journal of Geology , ISSN1674-3636 , CN32-1796/P , 36 (2), 2012 , p.192-197 , 3illus. , 9refs.) Key words : geothermal fields , Jiangsu Province

  16. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  17. Report on dc soundings over a geothermal prospect in the Bruneau-Grand View area, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.B.

    1974-01-01

    The d-c sounding survey confirms the presence of a large conductive section of sedimentary and volcanic rocks underlying the low-resistivity AMT anomaly defined by Hoover. Within the conductive section, resistivity boundaries between sedimentary rocks of the Idaho Group, the Banbury Basalt, and Idavada Volcanics appear to be entirely obscured, at least where well data are available. True resistivities near these contacts range from about 3 to 5.5 ohm-m, about 3 to 10 times less than would be expected for similar volcanic rock types saturated with fresh water. Because water samples from wells in the Bruneau-Grand View area are relatively fresh, the greatly decreased resistivities are probably related to a combination of thermal waters and alteration within the volcanic rocks and perhaps also within part of the sedimentary section. The d-c soundings trace the low resistivity zone beyond the limits of the AMT survey to the east as far as the town of Hammett, where a zone of 4.4 ohm-m material 640 m thick is present. To the west the conductive section terminates about 5 km east of Oreana, where truncation of the conductive section appears to be related to decreasing lateral porosity. The 1 to 7 ohm-m conductive section can still be recognized beneath the Snake River Plain between Bruneau and Mountain Home, although the top of the conductor is deeper and the thickness is less than at any other sounding location. The presence of a high-resistivity basement suggests that thermal fluids probably emanate from greater depths than this survey can resolve, rise along fault zones, of which there appear to be many, and then spread laterally through lithologic units that have sufficient porosity. Stratigraphic maps are included.

  18. The geothermal potential of the Campania volcanic district and new heat exchanger technologies for exploitation of highly urbanised areas.

    Science.gov (United States)

    Carlino, S.; Somma, R.; Troiano, A.; Di Giuseppe, M. G.; Troise, C.; De Natale, G.

    2012-04-01

    The geothermal research in Campania region (Italy), started since the 1930, and continued until the '80 by the SAFEN, ENEL and AGIP companies. Such exploration activity highlighted that most of the volcanic districts of the Campania Region have a very high geothermal gradient and heat flow. In particular, inside the Campi Flegrei caldera and at Ischia island the geothermal gradient measured inside the deep wells reaches temperatures above 100° C between few tens and few hundreds of metres of depth, while the heat flow varies between 120-160 mWm-2 at Agnano and Mofete (Campi Flegrei main drill sites) to more than 500 mWm-2 at Ischia island (south-western sector). A general review of the available literature data (temperature at depth, stratigraphic sections, logs etc.) of the deep wells (down to 3 km b.s.l.) allowed us to quantify the geothermal potential (thermal and electric) of such district. The geothermal potential is about 6 GWy for the Campi Flegrei (Mofete and S. Vito sectors) and 11 GWy for the Ischia island (south-western sector) showing a geothermal reservoir with water and vapour dominant respectively. This results in strong potential interest for economic exploitation of the geothermal resource, both in the range of low-medium enthalpy at few hundreds of meters depth and of high enthalpy at depths of 1-2 km. In this study we try to model the effectiveness of new technologies of boreholes heat exchangers, which would allow to avoid fluid withdrawal, then strongly decreasing the environmental impact. The proposed technology consists of a double-pipe placed in a borehole heat exchange that can work coupled with an ORC. The two pipes, one inside the other, are located in the well in order to transfer the thermal energy to the working fluid during the descent in the external pipe and then go back through the internal pipe properly isolated. We propose a complete design of the borehole heat exchangers. The design activity is performed on a theoretical basis

  19. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, B.E. [ed.

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  20. Development of concepts for the management of shallow geothermal resources in urban areas - Experience gained from the Basel and Zaragoza case studies

    Science.gov (United States)

    García-Gil, Alejandro; Epting, Jannis; Mueller, Matthias H.; Huggenberger, Peter; Vázquez-Suñé, Enric

    2015-04-01

    In urban areas the shallow subsurface often is used as a heat resource (shallow geothermal energy), i.e. for the installation and operation of a broad variety of geothermal systems. Increasingly, groundwater is used as a low-cost heat sink, e.g. for building acclimatization. Together with other shallow geothermal exploitation systems significantly increased groundwater temperatures have been observed in many urban areas (urban heat island effect). The experience obtained from two selected case study cities in Basel (CH) and Zaragoza (ES) has allowed developing concepts and methods for the management of thermal resources in urban areas. Both case study cities already have a comprehensive monitoring network operating (hydraulics and temperature) as well as calibrated high-resolution numerical groundwater flow and heat-transport models. The existing datasets and models have allowed to compile and compare the different hydraulic and thermal boundary conditions for both groundwater bodies, including: (1) River boundaries (River Rhine and Ebro), (2) Regional hydraulic and thermal settings, (3) Interaction with the atmosphere under consideration of urbanization and (4) Anthropogenic quantitative and thermal groundwater use. The potential natural states of the considered groundwater bodies also have been investigated for different urban settings and varying processes concerning groundwater flow and thermal regimes. Moreover, concepts for the management of thermal resources in urban areas and the transferability of the applied methods to other urban areas are discussed. The methods used provide an appropriate selection of parameters (spatiotemporal resolution) that have to be measured for representative interpretations of groundwater flow and thermal regimes of specific groundwater bodies. From the experience acquired from the case studies it is shown that understanding the variable influences of the specific geological and hydrogeological as well as hydraulic and thermal

  1. Research status of geothermal resources in China

    Science.gov (United States)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  2. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  3. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    Science.gov (United States)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network

  4. Geothermal Program Review IV: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  5. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101802 Fang Bin (China University of Geosciences,Beijing 100083,China);Yang Yunjun Characteristics and Resource Evaluation of the Jiwa Geothermal Field in Central Qiangtang,Northern Tibet,China (Geological Bulletin of China,ISSN1671-

  6. Geothermal Websites

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya

    2005-03-01

    The Internet has become such an important part of our every day life. It can be used to correspond with people across the world, a lot faster than to send a letter in the mail. The Internet has a wealth of information that is available to anybody just by searching for it. Sometimes you get more information than you ever wanted to know and sometimes you can’t find any information. This paper will only cover a small portion of the websites and their links that have geothermal information concerning reservoir engineering, enhanced geothermal systems, hot dry rock and other aspects of geothermal. Some of the websites below are located in the US others international, such as, geothermal associations, and websites where you can access publications. Most of the websites listed below also have links to other websites for even more information.

  7. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151782 Ding Zhaoqin(Institute of Geophysical Exploration of Jilin Province,Changchun130012,China);Xu Zhihe The Possibility of Structure and Occurrence Geothermal Resources in Dunhua-Mishan Fault Zone(Huinan Section)(Jilin Geology,ISSN1001-2427,CN22-1099/P,33(2),2014,p.98-102,5illus.,1table,4refs.)Key words:geothermal resources,fracture

  8. Geothermal resources of California sedimentary basins

    Science.gov (United States)

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  9. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  10. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  11. World Geothermal Congress WGC-2015

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  12. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    Energy Technology Data Exchange (ETDEWEB)

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs.

  13. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    Energy Technology Data Exchange (ETDEWEB)

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs.

  14. Remote sensing application on geothermal exploration

    Science.gov (United States)

    Gaffar, Eddy Z.

    2013-09-01

    Geothermal energy is produced when water coming down from the surface of the earth and met with magma or hot rocks, which the heat comes from the very high levels of magma rises from the earth. This process produced a heated fluid supplied to a power generator system to finally use as energy. Geothermal field usually associated with volcanic area with a component from igneous rocks and a complex geological structures. The fracture and fault structure are important geological structures associated with geothermal. Furthermore, their geothermal manifestations also need to be evaluated associated their geological structures. The appearance of a geothermal surface manifestation is close to the structure of the fracture and the caldera volcanic areas. The relationship between the fault and geothermal manifestations can be seen in the form of a pattern of alignment between the manifestations of geothermal locations with other locations on the fault system. The use of remote sensing using electromagnetic radiation sensors to record images of the Earth's environment that can be interpreted to be a useful information. In this study, remote sensing was applied to determine the geological structure and mapping of the distribution of rocks and alteration rocks. It was found that remote sensing obtained a better localize areas of geothermal prospects, which in turn could cut the chain of geothermal exploration to reduce a cost of geothermal exploration.

  15. Gas Geochemistry of Volcanic and Geothermal Areas in the Kenya Rift: Implications for the Role of Fluids in Continental Rifting

    Science.gov (United States)

    Lee, H.; Fischer, T. P.; Ranka, L. S.; Onguso, B.; Kanda, I.; Opiyo-Akech, N.; Sharp, Z. D.; Hilton, D. R.; Kattenhorn, S. A.; Muirhead, J.

    2013-12-01

    The East African Rift (EAR) is an active continental rift and ideal to investigate the processes of rift initiation and the breaking apart of continental lithosphere. Mantle and crust-derived fluids may play a pivotal role in both magmatism and faulting in the EAR. For instance, large quantities of mantle-derived volatiles are emitted at Oldoinyo Lengai volcano [1, 2]. Throughout the EAR, CO2-dominated volatile fluxes are prevalent [3, 4] and often associated with faults (i.e. Rungwe area, Tanzania, [5, 6]). The purpose of this study is to examine the relationship between volcanism, faulting and the volatile compositions, focusing on the central and southern Kenyan and northern Tanzanian section of the EAR. We report our analysis results for samples obtained during a 2013 field season in Kenya. Gases were sampled at fumaroles and geothermal plants in caldera volcanoes (T=83.1-120.2°C) and springs (T=40-79.6°C and pH 8.5-10) located near volcanoes, intra-rift faults, and a transverse fault (the Kordjya fault, a key fluid source in the Magadi rift) by 4N-NaOH solution-filled and empty Giggenbach bottles. Headspace gases were analyzed by a Gas Chromatograph and a Quadrupole Mass Spectrometer at the University of New Mexico. Both N2/Ar and N2/He ratios of all gases (35.38-205.31 and 142.92-564,272, respectively) range between air saturated water (ASW, 40 and ≥150,000) and MORB (100-200 and 40-50). In addition, an N2-Ar-He ternary diagram supports that the gases are produced by two component (mantle and air) mixing. Gases in the empty bottles from volcanoes and springs have N2 (90.88-895.99 mmom/mol), CO2 (2.47-681.21 mmom/mol), CH4 (0-214.78 mmom/mol), O2 (4.47-131.12 mmom/mol), H2 (0-35.78 mmom/mol), Ar (0.15-10.65 mmom/mol), He (0-2.21 mmom/mol), and CO (0-0.08 mmom/mol). Although some of the samples show an atmospheric component, CO2 is a major component in most samples, indicating both volcanoes and springs are emitting CO2. Gases from volcanoes are enriched in

  16. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  17. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  18. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  19. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  20. The influence of variability of calculation grids on the results of numerical modeling of geothermal doublets - an example from the Choszczno area, north-western Poland

    Science.gov (United States)

    Wachowicz-Pyzik, A.; Sowiżdżał, A.; Pająk, L.

    2016-09-01

    The numerical modeling enables us to reduce the risk related to the selection of best localization of wells. Moreover, at the stage of production, modeling is a suitable tool for optimization of well operational parameters, which guarantees the long life of doublets. The thorough selection of software together with relevant methodology applied to generation of numerical models significantly improve the quality of obtained results. In the following paper, we discuss the impact of density of calculation grid on the results of geothermal doublet simulation with the TOUGH2 code, which applies the finite-difference method. The study area is located between the Szczecin Trough and the Fore-sudetic Monocline, where the Choszczno IG-1 well has been completed. Our research was divided into the two stages. At the first stage, we examined the changes of density of polygon calculation grids used in computations of operational parameters of geothermal doublets. At the second stage, we analyzed the influence of distance between the production and the injection wells on variability in time of operational parameters. The results demonstrated that in both studied cases, the largest differences occurred in pressures measured in production and injection wells whereas the differences in temperatures were less pronounced.

  1. Overview of Resources for Geothermal Absorption Cooling for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  2. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111836 Gao Jian(Sichuan Institute of Geological Survey for Nuclear Industry,Chengdu 610061,China);Shi Yuzhen Feasibility Study of Exploitation of Geothermal Resource in the Lugu Lake Region,Yanyuan,Sichuan Province(Acta Geologica Sichuan,ISSN1006-0995,CN51-1273/P,30(3),2010,p.291-294,1 illus.,1 table,1 ref.,with English abstract)Key words:geothermal water,Sichuan Province20111837 He Jianhua(Geological Brigade 102,Bureau of Geolog

  3. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140332 Jiang Lin(School of Earth and Space Sciences,Peking University,Beijing100871,China);Ji Jianqing Geologic Analysis on the Prospects of the Enhanced Geothermal System(EGS)in the Bohaiwan Basin(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,49(1),2013,p.167-178,5illus.,4tables,41refs.)Key words:geothermal systems,Bohaiwan Basin Great amounts of thermal energy is stored ubiquitously in rocks with high tempera-

  4. Overall analysis report on the fiscal 1994 geothermal development promotion survey. No.C-2. Wasabizawa area (secondary); 1994 nendo chinetsu kaihatsu sokushin chosa sogo kaiseki hokokusho. No.C-2. Wasabizawa chiiki (dainiji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The Wasabizawa area is located near the boundary between Yuzawa city south of Akita pref. and Ogachi-machi, Ogachi-gun, Akita pref, having a range of 3.0km northeast-southwest and 2.5km northwest-southeast of Wasabizawa almost as a center. The area for survey and its circumference are national forests, and the east and a part of the south of the area are designated as the Kurikoma quasi-national park third type special region. From the geochemical temperature distribution, it can be assumed that geothermal fluids of around 300{degree}C exist in the deep underground of the Kaminotai-Wasabizawa-Akinomiya area. From the distribution of density basements, the block structure of the basement can be estimated. Around the boundary of the ridge/sedimentation region of this density basement, fractures develop and the formation of reservoir structure is expected from the comparison with the result of the well survey. In the blowout test, obtained were 284.3{degree}C and 83.05 kgf/cm{sup 2} at a depth of 1,300m. In the geothermal system, it is assumed that reservoir structures of geothermal fluids develop in the deep underground of the central part of the area. The heat source to the geothermal system is supposed to be the magma reservoir remaining in Takamatsudake volcanic rocks. 110 refs., 177 figs., 105 tabs.

  5. Geothermal development plan: Maricopa County

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

  6. Numerical modelling of crustal deformation due to fluid extraction and re-injection in the Hengill geothermal area in South Iceland

    Science.gov (United States)

    Juncu, Daniel; Árnadóttir, Thóra; Ali, Tabrez; Hooper, Andrew

    2015-04-01

    Several high temperature geothermal energy production fields are currently harnessed in Iceland. One of these is located at the Hengill triple junction, where the oblique plate motion along the Reykjanes peninsula is partitioned between the E-W oriented transform along the South Iceland Seismic Zone (SISZ) and spreading across the Western Volcanic Zone in SW Iceland. The Hengill volcano is a high temperature geothermal area that is utilized by the Hellisheiði and Nesjavellir power plants. The regions around the power plants are subject to surface deformation due to several processes. These include the motion of the Earth's crust due to plate spreading, co- and post seismic deformation due to earthquakes in the South Iceland Seismic Zone and deformation due to water and steam extraction and wastewater re-injection near geothermal power plants. We measure surface displacement in the Hengill area using both GPS and InSAR data. The former are obtained from four continuous and more than 15 campaign GPS stations in the area, with time-series starting after two M6 earthquakes on 29 May 2008 in Ölfus - the westernmost part of the SISZ. The InSAR data consist of 10 images taken by the TerraSar-X mission, starting October 2009. The InSAR time-series has a temporal resolution of 1 to 3 images per year, taken at an incidence angle of approximately 30° from the vertical. In the InSAR data we can see a clear subsidence signal in the proximity of the power plants with a maximum of ~24 mm/yr in Line-of-Sight direction (LOS) at Hellisheiði, after correcting for plate motion. The subsidence is elongated in NNE-SSW direction and possibly related to the orientation of the Hengill fissure swarm. In addition to subsidence, we observe an uplift signal of ca. 10 mm/yr in LOS west of the Hellisheiði site, potentially due to wastewater re-injection in the area. The area of maximum uplift is located close to the epicenters of two M4 earthquakes that occurred in October 2011. We run

  7. Geothermal power development in Hawaii. Volume I. Review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  8. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151090 Bian Huiying(School of Environmental Sciences and Engineering,Chang’an University,Xi’an 10054,China);Wang Shuangming Hydrodynamic Conditions of Geothermal Water in Gushi Depression of Guanzhong Basin(Coal Geology&Exploration;,ISSN1001-1986,CN61-1155/P,42(3),2014,p.50-54,60,9illus.,11refs.,

  9. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140958 Mei Huicheng(No.915GeologicalBrigade,Jiangxi Bureau of Geology and Mineral Resources,Nanchang 330002,China);Li Zhongshe Geological Features and Causes of the Huihuang Geotherm in Xiushui,Jiangxi Province(Journal of Geological Hazards and

  10. Geothermal Energy

    Science.gov (United States)

    1975-11-15

    kaolinization . Deposition of silica can easily be observed in the Geysers field, where fractures of one-inch width, completely filled and sealed...by silica and calcite, are common features. Kaolinization , associated with other more complicated hydrothermal rock alteration, is also...techniques. Surface corrosion may be extremely severe in geothermal fluids containing free hydrochloric, sulphuric or hydrofluoric acid

  11. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070403 Deng Xiaoying (Zhengzhou Geo-Engineering Exploration Institute, Zhengzhou 450053, China); Yang Guoping Features and Origin of Geothermal Fluid in the New District of Hebi, Henan Provionce (Hydrogeology & Engineering Geology, ISSN1000-3665, CN11-2202/P, 32(2), 2005, p.111-114, 4 illus., 1 table, 7 refs.) Key words: thermal waters, Henan Province

  12. Detailed microearthquake survey of Long Valley, California, known geothermal resource area, July-September 1981. Final technical report, 30 September 1980-31 June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, C.H.; Stierman, D.J.; Lee, T.C.

    1983-07-01

    This report presents the results of a detailed microearthquake survey of the geothermal area at Long Valley, California. High quality digital data from a dense 3-component array covering a three-month period during the summer of 1981 have been processed for locations, velocity structure, magnitudes, focal mechanisms, and source parameters. Hypocenter locations determined from this array have estimated errors of 0.5 km in epicenter and 1.0 km in depth relative to one another. Detailed hypocentral locations show two complex zones of seismicity beneath the south moat of the caldera which seems associated with the major hot spring activity within the caldera and could be part of the conduit system feeding hydrothermal waters to these hot springs. Seismic activity at Long Valley appears to be influenced by both regional tectonic stresses and local volcanotectonic activity.

  13. Geothermal Well Drilling Efficiency Analysis in Shanghe Area, Shandong%山东商河地区地热井钻效分析

    Institute of Scientific and Technical Information of China (English)

    范存章; 赵岩

    2013-01-01

    The Shanghe area has abundant geothermal resources;heat reservoir aquifers are mainly in the Neogene Guantao Formation and Paleogene Dongying Formation. Through drilling efficiency analysis of 4 geothermal wells in the area, considered that:①drilling period of No.4 geothermal well using electromotor is obviously shorter than other three using diesel engine;②geological structure is simple in the area with rare faults, using PDC bit stepped cutover can greatly shorten drilling period;③mud pump volume arrives to or near drilling annular space minimum return velocity, can effectively carry chips, suggested mud chip return velocity not less than 0.5m/s; ④ using Φ127mm rod instead of Φ89mm can improve rod torsion strength to ensure drilling safety; ⑤ using surface mud tank equipped with desilter to intermittently desilting, ensuring mud level higher than pump valve chamber, mud can flow into the chamber by gravity, thus lowering down mud pump power consumption for pumping from mud settling sump and saving suction valve abrasion. The compared result can be reference for geothermal well construction in the area.%商河县地热井资源丰富,蕴藏量巨大,其热储含水层主要为新近系馆陶组以及古近系的东营组。通过区内施工的4个地热井的钻效分析,认为:①采用电动机作为动力的4#地热井施工工期明显优于其他3口采用柴油机作动力的;②本区构造较简单,断层稀少,,分阶段使用PDC钻头可以将施工工期大大缩短;③泥浆泵的泵量达到或接近钻孔的环空最低上返速度时,可有效携带岩屑,建议泥浆岩屑上返速度不低于0.5m/s;④使用Ф127mm钻杆代替Ф89mm钻杆,可使钻杆的抗扭强度增加,保证施工的安全;⑤地面使用泥浆罐配备除泥器间断性除泥,保证泥浆液面高于泥浆泵阀室,泥浆靠自重流入泥浆泵阀室内,降低了泥浆泵从循环沉淀池抽吸功耗与节省吸入阀磨损

  14. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  15. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  16. 临沂市柳航头地区地热资源特征研究%Study on Characteristics of Geothermal Resources in Liuhangtou Area in Linyi City

    Institute of Scientific and Technical Information of China (English)

    苏宝杰; 张诚; 王威; 刘连; 刘安同

    2015-01-01

    As showed by regional geological survey and geothermal exploration information, regional structures are widely distributed Liuhangtou area in Linyi city. Precipitation always infiltrates into deep underground along tecton-ic fracture zone. The thickness of Cambrian Ordovician limestone karst strata is more than 1500m. Regional groundwater runs in deep karst formation with good permeability. During the period of moving to Liuhangtou region, underground water continuously suffered from the geothermal heat of deep earth heat source, Cambrian Ordovician karst stratum become geothermal reservoir, while the overlying strata is good cap rock with low thermal conductivi-ty. Combining with the research of deep geothermal well temperature and chemical characteristics of geothermal wa-ter, geothermal conceptual model of Liuhangtou area has been established.%区域地质调查和地热地质勘探资料显示,临沂市柳航头地区区域构造发育较强烈,大气降水通过构造破碎带向地下深部运动,深部寒武奥陶纪灰岩岩溶地层厚度可达1500余米。区域地下水在深部渗透性较好的岩溶地层内径流,向柳航头地区运动过程中,不断受到地球深部热源的地温加热而形成地热水,寒武奥陶纪岩溶地层成为热储层,其上覆地层导热率较低,是较好的盖层。结合研究区内的地热井深部测温数据和地热水化学特征数据,建立柳航头地区地热概念模型。

  17. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  18. 黔西补作勘查区现代地温场及煤层受热温度分析%Modern Geothermal Field and Coal Seam Heating Temperature in Buzuo Exploration Area, Western Guizhou

    Institute of Scientific and Technical Information of China (English)

    卢玲玲; 秦勇; 郭晨

    2013-01-01

    Based on 32 boreholes facility temperature measured data in the Buzuo exploration area, western Guizhou, analyzed explora-tion area shallow part geothermal field basic features. The study has found that the geothermal gradient in the area is within 0.98~3.25oC/100m, average 2.07 oC/100m, as a whole in normal geothermal field scope. Rather large variation on plane, locally low tempera-ture anomaly is existed;vertically, along with bottom depth deepening, borehole geothermal gradient generally increasing, but relation-ship between them and buried depths is relatively discrete, borehole temperature curves appear as two basic forms. The study has con-sidered that the faulted structures have controlled geothermal field distribution, geothermal anomalous zone spreading direction can re-flect basic outline of regional structures;groundwater dynamic field is weak, its impact on geothermal field is inconspicuous;strata li-thology and buried depth have impacted vertical distribution of geothermal field.%基于黔西补作勘查区32口钻孔的简易测温资料,分析了勘查区浅部地温场的基本特征。研究发现,区内地温梯度在0.98~3.25℃/100m,平均2.07℃/100m,总体上属于正常地温场范畴;平面上变化较大,局部存在低温异常,在垂向上随着孔底深度增大,各钻孔地温梯度总体上趋于增高,但与埋深之间关系相对离散,钻孔温度曲线表现为两种基本形式。研究认为,断层构造控制了地温场的分布,地温异常带的展布方向反映区域构造的基本轮廓;地下水动力场微弱,对地温场影响不甚明显;地层岩性及埋深影响地温场的垂向分布。

  19. Identifying sources of B and As contamination in surface water and groundwater downstream of the Larderello geothermal - industrial area (Tuscany-Central Italy)

    Science.gov (United States)

    Grassi, Sergio; Amadori, Michele; Pennisi, Maddalena; Cortecci, Gianni

    2014-02-01

    A study on the upper reaches of the Cecina River (Tuscany-Central Italy) and the associated unconfined aquifer was carried out from September 2007 to August 2008. The study aimed to identify the sources of B and As contamination in stream water and groundwater, and record contamination levels. The study area, which comprises a northern sector of the Larderello geothermal field, has in time been contaminated by both surface geothermal manifestations (now thought to have ceased) and anthropogenic activity. The latter refers to the disposal of spent geothermal fluids and borogypsum sludge, by-product of colemanite treatment with sulphuric acid, which until the late '70s were discharged in the Larderello area into the Possera Creek, a southern tributary of the Cecina River. A network of 22 stream sections and 9 observation wells was defined. Stream discharge (16 sites), well water levels and chemical concentrations (mainly B, As and anions) in water were measured monthly. Together, discharge and chemical concentrations were used to define the source of contamination by calculating the contaminant load in successive sections of the river network. Due to the stream's intermittent flow, only 50% of the performed monthly surveys could be used in comparing the contaminant load at different sections. Both contaminant loads (referring to median to high flow conditions) and chemical concentrations suggest that B mainly derives from the leakage of a concentrated Na-SO4 water rich in B, SO4, NO3 likely from a small aquitard located in the Larderello area. The B load from this area is about 2 kg/h and increases to approximately 2.7 kg/h in the final section of the study area, likely due to contribution of groundwater. As mainly derives from dissolution and adsorption-desorption processes involving water and As-rich stream bed sediments. Of the total 15 g/h As load measured at the end section, only about 3 g/h derive from the Larderello area. Further to stream bed, As

  20. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  1. Geothermal demonstration: Zunil food dehydration facility

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, O. (Consultecnia, Guatemala City (Guatemala)); Altseimer, J.; Thayer, G.R. (Los Alamos National Lab., NM (United States)); Cooper, L. (Energy Associates International, Albuquerque, NM (United States)); Caicedo, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion)

    1991-08-01

    A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrial applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.

  2. Geothermal demonstration: Zunil food dehydration facility

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, O. (Consultecnia, Guatemala City (Guatemala)); Altseimer, J.; Thayer, G.R. (Los Alamos National Lab., NM (United States)); Cooper, L. (Energy Associates International, Albuquerque, NM (United States)); Caicedo, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion)

    1991-08-01

    A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrial applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.

  3. Proceedings and findings of the geothermal commercialization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.; Dhillon, H.

    1979-04-01

    The proceedings are presented of a Geothermal Commercialization Workshop conducted by the Division of Geothermal Resource Management, Department of Energy. The workshop was held in January-February 1979 at The MITRE Corporation facility in McLean, Virginia. The workshop addressed geothermal hydrothermal commercialization achievements and needs in the areas of Marketing and Outreach, Economics, Scenarios, and Progress Monitoring.

  4. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes

    Science.gov (United States)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego

    2017-07-01

    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process

  5. 汤市地热流体化学成因分析%Analysis of geothermal fluid chemical causes in Tangshi area

    Institute of Scientific and Technical Information of China (English)

    武飞; 肖江; 皮建高; 孙锡良; 姚腾飞; 刘浩

    2016-01-01

    汤市地热资源丰富,具有流量大、温度高、无色的特点,3个自溢泉是当地居民主要的生活用水来源,也是当地主要的旅游开发资源。在分析 ZK01,ZK02,QK02,QK03和 QK04的基础上对汤市地热流体化学成因和循环条件进行研究分析,确定地热成因、热储条件等主要是由于断层 F 和 F1的相互作用形成,水化学主要是纳、钙、重碳酸根离子为主,偏弱酸性的低矿化度水。%Tangshi area has enriched geothermal resources,characterized by large quantity of flow,high temperature,and colorless.There have three fountains,which are a major source of domestic water as well as tourism development.Based on the analysis of borehole ZK01,ZK02,QK02,QK03,and QK04,this paper analyzes the chemical causes and the circulation conditions.It shows that the cause of geothermal and the thermal storage conditions are mainly affected by the mutual interaction between fault F and F1. The hydrochemistry is mainly Na,Ca,and bicarbonate ions,so the water is week -acid and low -salinity.

  6. Geothermal program overview: Fiscal years 1993--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

  7. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110367 Cheng Jian(College of Energy Resources,Chengdu University of Technology,Chengdu 610059,China);Wang Duoyi Research on the Wenchuan Earthquake "Endpoint Effect":On the Geothermal Anomaly in Longquanyi,Chengdu,Sichuan Province,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,37(2),2010,p.155-159,4 illus.,15 refs.)Key words:seismic effects,thermal

  8. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102475 Chen Shiliang(No.4 Geological Party of Fujian Province,Ningde 352100,China)A Brief Analysis on Geothermy in the Nantai Isle of Fuzhou Municipality,Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,28(4),2009,p.310-314,1 illus.,1 table,3 refs.)Key words:geothermal exploration,Fujian ProvinceBased on the geochemistry and geophysical

  9. Seismic characterisation for geothermal energy prospecting

    NARCIS (Netherlands)

    Huck, A.; Groot, P. de; Simmelink, E.; Vandeweijer, V.P.; Willemsen, A.

    2009-01-01

    The city of The Hague intends to use geothermal energy to heat approx. 4000 houses in a planned urban development area called The Hague South-West. This paper describes the application of advanced seismic interpretation workflows to help positioning a geothermal doublet consisting of one injector -

  10. Seismic characterisation for geothermal energy prospecting

    NARCIS (Netherlands)

    Huck, A.; Groot, P. de; Simmelink, E.; Vandeweijer, V.P.; Willemsen, A.

    2009-01-01

    The city of The Hague intends to use geothermal energy to heat approx. 4000 houses in a planned urban development area called The Hague South-West. This paper describes the application of advanced seismic interpretation workflows to help positioning a geothermal doublet consisting of one injector -

  11. Remote sensing in the study of the perspective of enlargement of the geothermal area of Los Azufres field, Michoacan, Mexico; Utilizacion de la teledeteccion para estudiar las perspectivas de ampliacion de la zona geotermica de Los azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Antaramian H, Eduardo; Garduno M, Victor Hugo [UMSNH, (Mexico)

    1999-12-01

    The results are presented of a remote sensing study in Los Azufres Geothermal field. Data of a volcanological study have been used. Standing out is the importance of a resurgence phenomenon in the volcanic evolution of the caldera of Los Azufres and its observed relationships with thermal anomalies outsides the area of well known geothermal resources in the field. On the basis of these data, we suggest additional remote sensing studies in different geothermal areas to identify blind resources or large thermal anomaly outsides the well know ones in developed geothermal fields. [Spanish] En este trabajo se presentan los resultados de un estudio de teledeteccion en la zona geotermica de Los Azufres, Michoacan, Mexico. En el se han utilizado los datos obtenidos de un estudio volcanologico que resalta la importancia de un fenomeno de resurgencia en la evolucion volcanologica de la Caldera de los Azufres y su relacion con anomalias termicas fuera de la zona de explotacion del campo geotermico. Con base en estos resultados se propone que sean retomados los datos de diferentes campos geotermicos con la finalidad de hacer estudios de exploracion mediante teledeteccion en campos ciegos o bien en aquellos ya desarrollados que presentan anomalias termicas mayores fuera de las ya conocidas.

  12. Numerical modeling and strontium isotopic signal to assess the arsenic distribution in a low-enthalpy hydrothermal system: the case study of Viterbo geothermal area (Italy)

    Science.gov (United States)

    Battistel, M.; Barbieri, M.

    2013-12-01

    Several studies on the groundwater geochemistry of the hydrothermal area west of Viterbo, highlight the presence of arsenic and other trace elements. The groundwater of Viterbo area was used as source of drinking water by about 150,000 local inhabitants, until 2010, when it was prohibited the use by EU due to the high level of arsenic. The hydrogeological setting highlights the presence of a shallow volcanic aquifer (composed by alkaline-potassic volcanics), characterized by fresh waters, limited at its base by the semiconfining marly-calcareous-arenaceous complex and low-permeability clays. To the west of Viterbo, vertical upflows of hot waters (with a temperature between 50 and 64°C), are due to the locally uplifted of evaporitic reservoir, the reduced thickness of the semiconfining layer and the high local geothermal gradient. Current study is focused on news geochemical approaches to defining the conditions which control arsenic mobility in groundwater in the low- enthalpy thermal area of Viterbo, related to the interaction between the volcanic aquifer and the geothermal reservoir. In addition to determinate chemical components and chemical-physical properties (T, pH, electrical conductivity) the study provided the isotopic values of 87Sr/86Sr of Viterbo geothermal area. Geochemical modelling is conducted using Phreeqc. The program monitors the significant species and calculates equilibrium concentrations and the pCO2 at desired temperatures. Investigations were undertaken in the area exhibiting thermal manifestations and in the immediate surroundings. On the basis of major ions and temperature, it is possible to subdivide the waters sampled into three main groups: the thermal waters with a sulphate -alkaline-earth facies, the fresh waters with a biocarbonate-alkaline facies, and a group of mixing waters with a undefined facies. The values of strontium isotopic ratio 87Sr/86Sr marks out the different circuits of groundwater. Values lower than 0.70800 are

  13. Deformation study of Kamojang geothermal field

    Science.gov (United States)

    Ramdhani, B. D.; Meilano, I.; Sarsito, D. A.

    2017-07-01

    GPS has proven to be an indispensable tool in the effort to understand crust deformation before, during, and after the big earthquake events through data analysis and numerical simulation. The development of GPS technology has been able to prove as a method for the detection of geothermal activity that related to deformation. Furthermore, the correlation of deformation and geothermal activity are related to the analysis of potential hazards in the geothermal field itself. But unfortunately, only few GPS observations established to see the relationship of tectonic and geothermal activity around geothermal energy area in Indonesia. This research will observe the interaction between deformation and geothermal sources around the geothermal field Kamojang using geodetic GPS. There are 4 campaign observed points displacement direction to north-east, and 2 others heading to south-east. The displacement of the observed points may have not able proven cause by deformation of geothermal activity due to duration of observation. Since our research considered as pioneer for such investigation in Indonesia, we expect our methodology and our findings could become a starter for other geothermal field cases in Indonesia.

  14. Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    McLarty, Lynn; Entingh, Daniel

    2000-09-29

    This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

  15. Seismic source parameters of the induced seismicity at The Geysers geothermal area, California, by a generalized inversion approach

    Science.gov (United States)

    Picozzi, Matteo; Oth, Adrien; Parolai, Stefano; Bindi, Dino; De Landro, Grazia; Amoroso, Ortensia

    2017-04-01

    The accurate determination of stress drop, seismic efficiency and how source parameters scale with earthquake size is an important for seismic hazard assessment of induced seismicity. We propose an improved non-parametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for the attenuation and site contributions. Then, the retrieved source spectra are inverted by a non-linear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (ML 2-4.5) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations of the Lawrence Berkeley National Laboratory Geysers/Calpine surface seismic network, more than 17.000 velocity records). We find for most of the events a non-selfsimilar behavior, empirical source spectra that requires ωγ source model with γ > 2 to be well fitted and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes, and that the proportion of high frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with the earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that, in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping fault in the fluid pressure diffusion.

  16. CO{sub 2} emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Fridriksson, Thrainn [Iceland GeoSurvey, Grensasvegi 9, 108 Reykjavik (Iceland)]. E-mail: thf@isor.is; Kristjansson, Bjarni Reyr [Iceland GeoSurvey, Grensasvegi 9, 108 Reykjavik (Iceland); Armannsson, Halldor [Iceland GeoSurvey, Grensasvegi 9, 108 Reykjavik (Iceland); Margretardottir, Eygerour [Iceland GeoSurvey, Grensasvegi 9, 108 Reykjavik (Iceland); Olafsdottir, Snjolaug [Iceland GeoSurvey, Grensasvegi 9, 108 Reykjavik (Iceland); Chiodini, Giovanni [Osservatorio Vesuviano, Instituto Nazionale di Geofisica e Vulcanologia, Via Diocleziano 328, 80124 Naples (Italy)

    2006-09-15

    Carbon dioxide emissions and heat flow through soil, steam vents and fractures, and steam heated mud pools were determined in the Reykjanes geothermal area, SW Iceland. Soil diffuse degassing of CO{sub 2} was quantified by soil flux measurements on a 600 m by 375 m rectangular grid using a portable closed chamber soil flux meter and the resulting data were analyzed by both a graphical statistical method and sequential Gaussian simulations. The soil temperature was measured in each node of the grid and used to evaluate the heat flow. The heat flow data were also analyzed by sequential Gaussian simulations. Heat flow from steam vents and fractures was determined by quantifying the amount of steam emitted from the vents by direct measurements of steam flow rate. The heat loss from the steam heated mud pools was determined by quantifying the rate of heat loss from the pools by evaporation, convection, and radiation. The steam flow rate into the pools was calculated from the observed heat loss from the pools, assuming that steam flow was the only mechanism of heat transport into the pool. The CO{sub 2} emissions from the steam vents and mud pools were determined by multiplying the steam flow rate from the respective sources by the representative CO{sub 2} concentration of steam in the Reykjanes area. The observed rates of CO{sub 2} emissions through soil, steam vents, and steam heated mud pools amounted to 13.5 {+-} 1.7, 0.23 {+-} 0.05, and 0.13 {+-} 0.03 tons per day, respectively. The heat flow through soil, steam vents, and mud pools was 16.9 {+-} 1.4, 2.2 {+-} 0.4, and 1.2 {+-} 0.1 MW, respectively. Heat loss from the geothermal reservoir, inferred from the CO{sub 2} emissions through the soil amounts to 130 {+-} 16 MW of thermal energy. The discrepancy between the observed heat loss and the heat loss inferred from the CO{sub 2} emissions is attributed to steam condensation in the subsurface due to interactions with cold ground water. These results demonstrate that

  17. UWC geothermal resource exploration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    A program was developed to explore the strength of the geothermal and hot dry rock (HDR) resource at the Montezuma Hot Springs at the United World College (UWC). The purpose of the UWC {number_sign}1 well is to obtain hydrologic, geologic, and temperature information for ongoing geothermal evaluation of the Montezuma Hot Springs area. If sufficient fluids are encountered, the hole will be cased with a 4 1/2 inch production casing and re-permitted as a geothermal low-temperature well. If no fluid is encountered, the well will be abandoned per Oil Conservation Division regulation. The objectives of the exploration are to evaluate the resource potential to provide space heating for the entire campus of the United World College, determine the effect of a well on the Hot Springs outflow, accurately measure the UWC heating loads versus time, evaluate the potential to support local thermal industry development, assess the feasibility of HDR development, and create an educational program from the collection of data derived from the research effort.

  18. Fiscal 1995 verification survey of geothermal exploration technology. Report on a deep geothermal resource survey; 1995 nendo chinetsu tansa gijutsu nado kensho chosa. Shinbu chinetsu shigen hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    For the purpose of reducing the risk of deep geothermal resource development, the paper investigated three factors for the formation of geothermal resource in the deep underground, that is, heat supply from heat source, supply of geothermal fluids, and the developmental status of fracture systems forming reservoir structures. The survey further clarified the status of existence of deep geothermal resource and the whole image of the geothermal system including shallow geothermal energy in order to research/study usability of deep geothermal resource. In the deep geothermal resource survey, drilling/examination were made of a deep geothermal exploration well (`WD-1,` target depth: approximately 3,000-4,000m) in the already developed area, with the aim of making rationalized promotion of the geothermal development. And the status of existence of deep geothermal resource and the whole image of the geothermal system were clarified to investigate/study usability of the geothermal system. In fiscal 1995, `WD-1` in the Kakkonda area reached a depth of 3,729m. By this, surveys were made to grasp the whole image of the shallow-deep geothermal system and to obtain basic data for researching usability of deep geothermal resource. 22 refs., 531 figs., 136 tabs.

  19. Investigation of geothermal development and promotion for fiscal 1997. Supplementary investigation report concerning data processing (No. B-5 Musadake area); 1997 nendo chinetsu kaihatsu sokushin chosa. Data shori ni kakawaru hosoku chosa (No.B-5 Musadake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This investigation was conducted, in the area extending over Nakashibetu-cho and Shibetu-cho, Shibetu district, Hokkaido, on the measurement of geological age of the area around Musadake, and on the measurement and analysis of alteration age. The geological nature of the investigation area consists of volcanic rocks/sedimentary rocks in the Neogene period and volcanic ejecta in the Quarternary period. The alteration zone is distributed in large numbers from the northern part of Musadake to the vicinity of Mt. Mataochi. In the subject area, geothermal symptoms indicated by the gushing out of hot springs are noticeable, as is the mineralization of copper, lead and zinc, which are the signs that alteration zones are distributed in such sites and vicinities. These alteration zones can be classified into geothermal alteration zones and mineralized alteration zones. The geothermal alteration zone, on one hand, is characterized by the altered base rock primarily in the bed of the latter Pliocene epoch onwards and by white clay formation/iron pyrite impregnation. As a result of X-ray analysis, detected were alunite, kaolinite, sericite/montmorillonite mixed bed mineral, montmorillonite, {alpha}-cristobalite, etc.. The mineralized alteration zone, on the other hand, is characterized by the altered base rock in the bed of the Miocene epoch and by the noticeable clay formation, silicification, and iron pyrite impregnation. (NEDO)

  20. Prospect Analysis of Medium Low Temperature Geothermal Resource of Xizhang Area%西张地区中低温地热资源利用前景分析

    Institute of Scientific and Technical Information of China (English)

    贾林柱; 钟仁; 张玉宝; 菅德荣

    2012-01-01

    The area is in the north subtropical coastal moist area, monsoon climate prevails,refrigeration is necessary in summer, and heating is necessary in winter. Therefore, for this area the development and utilization of shallow geothermal energy has advantageous natural conditions. In this article, through the survey methods of temperature measurement observations, we studied the distribution regularity of geothermal fields formed by various heat sources with time and space. And the geological structure of Xizhang area was further inferred, the geothermal drilling locations were determined. And then the deep strata structure, heat sources buried depth and fracture reservoir position were inferred by the controlled source earth audio electromagnetic sounding method. Finally, geothermal drilling authentication and single well geothermal resource evaluation were carried out. The results of the study indicate that the use of geothermal resources has a great future.%西张地区为北亚热带沿海湿润气候区域,季风盛行,夏季需要制冷.冬季需要供暖.因此,对于浅层地热能的开发利用具有得天独厚的自然条件.通过地温测量的调查方法,观测和研究地球内部各种热源形成的地热场随时间和空间的分布规律,进一步推断西张家地区地质构造,确定地热钻井位置,再通过可控源大地音频电磁测深方法,推断深部地层结构、热储埋深及断裂位置,确定地热钻井位置,最后进行地热钻井验证和单井地热资源评价.研究结果表明;本区地热资源具有很大的利用前景.

  1. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  2. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  3. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  4. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2008-01-01

    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  5. Reno Industrial Park geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1997-04-01

    Ten miles south of Reno, on U.S. 395 near the junction of the road to historic Virginia City, is Steamboat Hot Springs, a popular stop for travelers since the mid-1800s. Legend has it that Mark Twain named the geothermal area because it looked and sounded like a chugging Mississippi River paddle-wheeler. It is said when he first saw the steam rising from the ground he exclaimed, {open_quotes}Behold! A Steamboat in the desert.{close_quotes} Over the years, the area has been used for its relaxing and curative qualities by Indians, settlers, and geothermal experts. Since the mid-1980s five geothermal power plants have been built at Steamboat Springs and in December 1996 it was announced that the proposed largest geothermal district heating system in the U.S. would supply an industrial park in the area. The active geothermal area is located within the north-south trending graben like trough between the Carson and Virginia Ranges at the southern end of Truckee Meadows. Hot springs and other geothermal features occur over an area of about one square mile. The mid-basin location is controlled by faulting more or less parallel to the major mountain-front faults. It is believed that the heat source for the system is a cooling magmatic body at depth. The Steamboat geothermal area consists of a deep, high-temperature (215{degrees}C to 240{degrees} C) geothermal system, a shallower, moderate-temperature (160{degrees}C to 18{degrees} C) system, and a number of shallow low-temperature (30{degrees}C to 80{degrees}C) subsystems. The higher temperature systems are used for electric-power generation. It is proposed that the exit fluids from the electric power plants be used for the geothermal district heating system.

  6. Poisson's ratio analysis (Vp/Vs) on volcanoes and geothermal potential areas in Central Java using tomography travel time method of grid search relocation hypocenter

    Science.gov (United States)

    Raharjo, W.; Palupi, I. R.; Nurdian, S. W.; Giamboro, W. S.; Soesilo, J.

    2016-11-01

    Poisson's Ratio illustrates the elasticity properties of a rock. The value is affected by the ratio between the value of P and S wave velocity, where the high value ratio associated with partial melting while the low associated with gas saturated rock. Java which has many volcanoes as a result of the collision between the Australian and Eurasian plates also effects of earthquakes that result the P and S wave. By tomography techniques the distribution of the value of Poisson's ratio can be known. Western Java was dominated by high Poisson's Ratio until Mount Slamet and Dieng in Central Java, while the eastern part of Java is dominated by low Poisson's Ratio. The difference of Poisson's Ratio is located in Central Java that is also supported by the difference characteristic of hot water manifestation in geothermal potential area in the west and east of Central Java Province. Poisson's ratio value is also lower with increasing depth proving that the cold oceanic plate entrance under the continental plate.

  7. Geological synthesis of Las Tres Virgenes geothermal area, Baja California Sur, Mexico. Sintesis geologica de la zona geotermica de Las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Hernandez, Aida (Departamento de Exploracion, Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico))

    1998-01-15

    The Las Tres Virgenes geothermal area is placed in middle Baja California Peninsula, in a zone affected by deformational events since Late Miocene. As a result of tensional stress, NW-SE faults were generated. During this process the Santa Rosalia basin was formed starting the deposition of marine sediments. At the same time La Reforma and Aguajito volcanic centers were emplaced, their deposits were interfingered with sand deposits. At the end of the volcanic activity at Aguajito, the stress regimen changed, old normal faults were reactivated as lateral faults and a pull apart system was initiated. NE-SW and NNE-SSW faults resulted from this deformational stage, and Las Tres Virgenes volcanic products were erupted through this weakness zone. The hydrothermal active system is hosted in a grid constructed by NE-SW, NW-SE faults within the granodioritic basement under the El Azufre volcano. The fluid's discharged take place at Las Viboras zone where intense superficial fracturing is present, associated with El Azufre dextral fault. Drilling results from seven wells confirm the existence of high temperatures making feasible the exploitation of this resource to generate electric energy.

  8. Second workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr. (eds.)

    1976-12-03

    occurrences took place between the first workshop in December 1975 and this present workshop in December 1976. For one thing, the newly formed Energy Research and Development Administration (ERDA) has assumed the lead role in geothermal reservoir engineering research. The second workshop under the Stanford Geothermal Program was supported by a grant from ERDA. In addition, two significant meetings on geothermal energy were held in Rotarua, New Zealand and Taupo, New Zealand. These meetings concerned geothermal reservoir engineering, and the reinjection of cooled geothermal fluids back into a geothermal system. It was clear to attendees of both the New Zealand and the December workshop meetings that a great deal of new information had been developed between August and December 1976. Another exciting report made at the meeting was a successful completion of a new geothermal well on the big island of Hawaii which produces a geothermal fluid that is mainly steam at a temperature in excess of 600 degrees F. Although the total developed electrical power generating capacity due to all geothermal field developments in 1976 is on the order of 1200 megawatts, it was reported that rapid development in geothermal field expansion is taking place in many parts of the world. Approximately 400 megawatts of geothermal power were being developed in the Philippine Islands, and planning for expansion in production in Cerro Prieto, Mexico was also announced. The Geysers in the United States continued the planned expansion toward the level of more than 1000 megawatts. The Second Workshop on Geothermal Reservoir Engineering convened at Stanford December 1976 with 93 attendees from 4 nations, and resulted in the presentation of 44 technical papers, summaries of which are included in these Proceedings. The major areas included in the program consisted of reservoir physics, well testing, field development, well stimulation, and mathematical modeling of geothermal reservoirs. The planning forth is year

  9. Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    Science.gov (United States)

    Maffucci, R.; Corrado, S.; Aldega, L.; Bigi, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C.

    2016-12-01

    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: rocks acting as good insulators, deformed by NNW-SSE and E-W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases. rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones. This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.

  10. FY 1999 geothermal development promotion study. Report on results of the study on the environmental effects (hot spring) in Kuwanosawa area; 1999 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho (onsen) No.B-7 Kuwanosawa chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    In order to evaluate presence or absence and extent, if present, of the effects of drilling a geothermal well, changes in flowing-out rate of hot spring and others were surveyed at the hot spring resorts in the Kuwanosawa area and its peripheries, extending around 18 km{sup 2} area in the mountains approximately 20 km to the south of City of Yuzawa, Akita Pref. Three sites were selected; the hot spring resort of Takamatu, a hot spring resort at the foot of mountain, and another hot spring resort near the dry riverbed of the Takamatu River, where hot spring spontaneously flows out in all of these sites, from the 1,500 m deep boring at the first site, and in the area where steam is gushing out in the second site. The surveyed items were rate of flowing-out, temperature, electroconductivity, pH and various ion concentrations of the hot spring, and precipitation. The survey was conducted 19 times from August 9, 1999 to July 12, 2000. For the effects of drilling the geothermal test well and drawing-up the hot water, some surveyed items changed significantly in these 3 resorts. These changes, however, largely result from seasonal reasons as well as conditions within each hot spring well, and not from the drilling of the geothermal test well N11-KN-1 and drawing-up of the hot water. (NEDO)

  11. State policies for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1976-01-01

    The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

  12. Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire- Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China.

    Science.gov (United States)

    Kessels, W.; Han, J.; Halisch, M.; Lindner, H.; Rueter, H.; Wuttke, M. W.

    2008-12-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire zone 18 of the coal mining area of Wuda (InnerMongolia, PR China) serves as a test area for geophysical measurements. For the geothermal and geochemical mapping 25 up to 1m deep boreholes with a diameter of approx. 30 mm are distributed over the particular fire-zone with an extension of 320 × 180 m2. To avoid the highly dynamic gas flow processes in fire induced fractures caused by weather conditions, all boreholes were situated in the undisturbed rock compartments. In these boreholes, plastic tubes of 12 mm diameter provide access to the borehole ground filled with highly permeable gravel. The boreholes are otherwise sealed to the atmosphere by clay. The geothermal observations consist of measurements of temperature profiles in the boreholes and thermal conductivity measurement on rock samples in the lab. For depths greater then 0.2 m diurnal variations in the temperature gradient were neglected. The derived heat flow with maximum values of 80 W/m2 is more then three orders of magnitude higher than the natural undisturbed heat flow. The high heat flow suggests that the dominant heat transport is gas convection through the system of porous rock and fractures. Any temperature anomaly caused by the burning coal in a depth of more than 18 m would need years to reach the surface by a heat transport restricted to conduction. The geochemical soil gas probing is performed by gas extraction from the boreholes. Measured are the concentrations of O2, CO, CO2, H2S and CH4. The O2 deficit in the soil air and the concentrations of the other combustion products compared to the concentrations in the free

  13. National Geothermal Information Resource annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.L.

    1978-04-19

    The National Geothermal Information Resource (GRID) of the Lawrence Berkeley Laboratory is chartered by the U.S. Department of Energy (DOE) to provide critically evaluated data and other information for the development and utilization of geothermal energy. Included are both site dependent and site independent information related to resource evaluation, electrical and direct utilization, environmental aspects, and the basic properties of aqueous electrolytes. The GRID project is involved in cooperative agreements for the interchange of information and data with other organizations. There are currently three U.S. data centers working to implement the collection and exchange of information on geothermal energy research and production: the DOE Technical Information Center (TIC), Oak Ridge, the GEOTHERM database of the U.S. Geological Survey in Menlo Park, and the GRID project. The data systems of TIC, GEOTHERM and GRID are coordinated for data collection and dissemination, with GRID serving as a clearinghouse having access to files from all geothermal databases including both numerical and bibliographic data. GRID interfaces with DOE/TIC for bibliographic information and with GEOTHERM for certain site-dependent numerical data. The program is organized into four principal areas: (1) basic geothermal energy data; (2) site-dependent data for both electrical and direct utilization; (3) environmental aspects, and (4) data handling development. The four sections of the report are organized in this way.

  14. Geological and geothermal data use investigations for Application Explorer Mission-A (Heat Capacity Mapping Mission). [Yerington, Nevada mine area

    Science.gov (United States)

    Lyon, R. J. P.; Prelat, A. E. (Principal Investigator)

    1980-01-01

    Further digital processing of HCMM digital data was performed to extract the temperature from the day/night passes to calculate the apparent delta T in the Yerington, Nevada mine area. Further processing is needed to observe the atmospheric effect.

  15. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  16. Geological Conditions of Geothermal and Suitability Evaluation on Development and Utilization of Shallow Geothermal Energy in Luxi Area%鲁西地区浅层地温能地热地质条件与开发利用适宜性评价

    Institute of Scientific and Technical Information of China (English)

    周亚醒

    2015-01-01

    On the basis of identifing geological conditions of regional geothermal energy,by using analytic hierarchy process (AHP)method,suitability evaluation of two modes of development and utilization of ground heat in Luxi area has been carried out,such as buried pipe pump and ground source heat pump.Ac-cording to different categories,development of shallow geothermal energy in Luxi area can be divided into suitable area,relative suitable area and not suitable area.This proj ect will formulate a long term energy planning,guide the development and utilization of shallow geothermal resources,and promote replacing energy development and utilization in Luxi area.%在查明区域地热地质条件的基础上,采用层次分析法,对鲁西地区地埋管地源热泵和地下水地源热泵两种方式的开发利用进行了适宜性评价,并按不同类别,将鲁西地区浅层地温能开发划分为适宜区、较适宜区和不适宜区等3个区。该项目对制定长远能源区划,指导浅层地热资源开发利用工作,促进鲁西地区新兴接替能源开发利用具有非常重要的意义。

  17. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  18. Annotated geothermal bibliography of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Budding, K.E.; Bugden, M.H. (comps.)

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  19. Geothermal investigations in Idaho. Part 5. Geochemistry and geologic setting of the thermal waters of the northern Cache Valley area, Franklin County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.C.

    1976-07-01

    The thermal waters of the north-south trending graben structure known as northern Cache Valley in southeastern Idaho were sampled during the summer and fall of 1973. Geologic and gravity data for the area indicate fault control for nearly all thermal water occurrences. Thermal-water discharges are generally restricted to the course of the Bear River with few known in areas away from the river. Spring deposits in the form of travertine may not be indications of low temperature thermal waters because abundant limestone and dolomite make up the geologic framework. Much gas, believed to consist mostly of carbon dioxide, is being evolved from many of the springs. The hottest water is found near Battle Creek and Squaw hot springs approximately 4 kilometers northwest of the town of Preston. Metoric waters descend along fault planes, fractures, and fissures to depths at which they are heated by increasing rock temperatures (geothermal gradient of 5/sup 0/C per 100 meters). Due to decreased density, the heated waters rise along the same or adjacent fault planes to the surface. The quartz equilibrium geochemical thermometer applied to the thermal water discharges indicates temperatures approaching 150/sup 0/C may be encountered by deep drilling. Mixing models, based on quartz solubility, indicate higher aquifer temperatures than the quartz equilibrium thermometer, but chloride concentration vs. temperature plots are not linear. The sodium-potassium-calcium geochemical thermometer indicates higher temperatures than quartz equilibrium and mixing models. The thermal waters are higher in total dissolved solids (12,000 to 13,000 milligrams per liter) than are known elsewhere in Idaho and represent potential pollution hazards should large scale withdrawal be attempted.

  20. Fiscal 1999 geothermal energy development promotion survey. Report on survey of structural boring (No. B-7 Kuwanosawa area); 1999 nendo chinetsu kaihatsu sokushin chosa. Kozo shisui chosa koji oyobi kaiseki hokokusho (No.B-7 Kuwanosawa chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    Borehole N11-KN-1 was digged and investigated for clarifying the geothermal structure of the Kuwanosawa area, with attention fully paid to the existing survey results. The hole is inclined, 1,802.30m deep in total, with a casing pipe installed down to the 1,101.76m level. Temperature was measured and electrical logging was performed at levels 410m, 1,110m, and 1,802.23m while the hole walls were still exposed bear. The maximum temperature of 161 degrees C was observed at the hole bottom, and the product of permeability - layer thickness transmission coefficient was described by 3.72 to 4.75 times 10{sup -1} darcy.m. The geothermal structures in presence in the south-western part of the survey area and along the Wasabizawa fault were made clear, and it was found that there exists no high-temperature water system in the vicinity of borehole N11-NK-1. As tasks for the future, it was proposed that a geothermal survey of the south-eastern part which includes borehole N57-YO-2 and a geochemical survey of fluids including hot spring water and surface be conducted. (NEDO)

  1. Preliminary environmental assessment of selected geopressured - geothermal prospect areas: Louisiana Gulf Coast Region. Volume II. Environmental baseline data

    Energy Technology Data Exchange (ETDEWEB)

    Newchurch, E.J.; Bachman, A.L.; Bryan, C.F.; Harrison, D.P.; Muller, R.A.; Newman, J.P. Jr.; Smith, C.G. Jr.; Bailey, J.I. Jr.; Kelly, G.G.; Reibert, K.C.

    1978-10-15

    A separate section is presented for each of the six prospect areas studied. Each section includes a compilation and discussion of environmental baseline data derived from existing sources. The data are arranged as follows: geology and geohydrology, air quality, water resources and flood hazards, ecological systems, and land use. When data specific to the prospect were not available, regional data are reported. (MHR)

  2. Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

  3. Geothermal investigations in Idaho. Part 2. An evaluation of thermal water in the Bruneau-Grand View area, southwest Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Young, H.W.; Whitehead, R.L.; Hoover, D.B.; Tippens, C.L.

    1975-07-01

    The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho and is on the southern flank of the large depression in which lies the western Snake River Plain. The igneous and sedimentary rocks in the area range in age from Late Cretaceous to Holocene. The aquifers in the area have been separated into two broad units: (1) the volcanic-rock aquifers, and (2) the overlying sedimentary-rock aquifers. The Idavada Volcanics or underlying rock units probably constitute the reservoir that contains thermal water. An audio-magnetotelluric survey indicates that a large conductive zone having apparent resistivities approaching 2 ohm-meters underlies a part of the area at a relatively shallow depth. Chemical analysis of 94 water samples collected in 1973 show that the thermal waters in the area are of a sodium bicarbonate type. Although dissolved-solids concentrations of water ranged from 181 to 1,100 milligrams per litre (mg/1) in the volcanic-rock aquifers, they were generally less than 500 mg/1. Measured chloride concentrations of water in the volcanic-rock aquifers were less than 20 mg/1. Temperatures of water from wells and springs ranged from 9.5/sup 0/ to 83.0/sup 0/C. Temperatures of water from the volcanic-rock aquifers ranged from 40.0/sup 0/ to 83.0/sup 0/C, whereas temperatures of water from the sedimentary-rock aquifers seldom exceeded 35/sup 0/C. Aquifer temperatures at depth, as estimated by silica and sodium-potassium-calcium geochemical thermometers, probably do not exceed 150/sup 0/C. The gas in water from the volcanic-rock aquifers is composed chiefly of atmospheric oxygen and nitrogen. Methane gas (probably derived from organic material) was also found in some water from the sedimentary-rock aquifers.

  4. The Socorro Geothermal System: A Low Temperature Geothermal Resource

    Science.gov (United States)

    Person, M. A.; Owens, L. B.

    2009-12-01

    The State of New Mexico is endowed with relatively high background heat flow and permeable, fractured crystalline and sedimentary rocks. This combination has given rise to numerous low temperature geothermal systems throughout the state. In many instances, hot springs associated with these systems are located within gaps in regional confining units (a.k.a. hydrologic windows) caused either by fault block rotation or the emplacement of volcanic dikes. The Socorro Geothermal Area (SGA) is a prime example of this type of a forced convection geothermal system. The Socorro geothermal area (SGA) lies 2 miles to the west of the NM Tech Campus near the base of the Socorro Mountain Block and will be assessed for production by drilling a 1500ft test well in September 2009. Published shallow temperature gradient measurements in fractured, permeable (3000 Darcy) granites indicate peak heat flow values as high as 490 mW/m^2 but decreases to 25 mW/m^2 about 10 km to the west within the La Jencia Basin near the foothills of the Magdalena Mountains. Silica and Cation based geothermometers suggest that deep geothermal reservoir reaches temperatures of 80 to 112 deg. C. Carbon14 age dating of shallow groundwater within the discharge area are about 20,000 years old. Hydrothermal models we constructed indicates that Mountain front recharge penetrates to depths of 4.5 km below the La Jencia Basin sedimentary pile into fractured, crystalline rocks. Discharge occurs through a hydrologic window to the east within a breached playa deposit at the western edge of the Socorro Basin. The hydrologic window was caused by fault block rotation. Warm springs which produce several hundred gpm of 32 deg. C water at the surface several miles to the south of the proposed drilling area also attest to the presence of a significant hydrothermal system. This low temperature resource could potentially heat the Campus of NM Tech.

  5. Radon studies for extending Los Azufres geothermal energy field in Mexico

    CERN Document Server

    Tavera, L; Camacho, M E; Chavez, A; Pérez, H; Gómez, J

    1999-01-01

    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m sup - sup 3 were considered anomalous and indicative of geothermal anomalies.

  6. Multidisciplinary exploratory study of a geothermal resource in the active volcanic arc of Basse-Terre (Guadeloupe, Lesser Antilles)

    Science.gov (United States)

    Navelot, Vivien; Favier, Alexiane; Géraud, Yves; Diraison, Marc; Corsini, Michel; Verati, Chrystèle; Lardeaux, Jean-Marc; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    The GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program, "Investissements d'avenir" develops a sustainable geothermal resource in the Vieux Habitants area, 8-km south of the currently exploited Bouillante geothermal field. The Basse Terre Island is a recent volcanic arc (geothermal gradient of 70 ˚ C/km.

  7. 1992--1993 low-temperature geothermal assessment program, Colorada

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, J.A.; Hemborg, H.T.

    1995-01-01

    Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

  8. Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Sass, J.H.; Ziagos, J.P.; Wollenberg, H.A.; Munroe, R.J.; di Somma, D.E.; Lachenbruch, A.H.

    1977-01-01

    A total of 82 holes ranging in depth from 18 to 400 meters were drilled for thermal and hydrologic studies in a 200 km/sup 2/ area of Grass Valley, Nevada, near Leach Hot Springs. Outside the immediate area of Leach Hot Springs, heat flow ranges from 1 to 6.5 hfu with a mean of 2.4 hfu (1 hfu = 10/sup -6/ cal cm/sup 2/ s/sup -1/ = 41.8 mWm/sup -2/). Within 2 km of the springs, conductive heat flow ranges between 1.6 and more than 70 hfu averaging 13.6 hfu. Besides the conspicuous thermal anomaly associated with the hot springs, two additional anomalies were identified. One is associated with faults bounding the western margin of the Tobin Range near Panther Canyon, and the other is near the middle of Grass Valley about 5 km SSW of Leach Hot Springs. The mid-valley anomaly appears to be caused by hydrothermal circulation in a bedrock horst beneath about 375 meters of impermeable valley sediments. If the convective and conductive heat discharge within 2 km of the Leach Hot Springs is averaged over the entire hydrologic system (including areas of recharge), the combined heat flux from this part of Grass Valley is about 3 hfu, consistent with the average regional conductive heat flow in the Battle Mountain High. The hydrothermal system can be interpreted as being in a stationary stable phase sustained by high regional heat flow, and no localized crustal heat sources (other than hydrothermal convection to depths of a few kilometers) need be invoked to explain the existence of Leach Hot Springs.

  9. δD values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Here we give the δD values of escaped H2 from hot springs at the Tengchong Rehai and adjacent regions,and deal with a genetic correlation between the increment H2in escaped gases from middle-shallow reservoirs and the H2S,CH4 derived from deep sources. Isotopic compositions of H2indicate that the generation of increment H2 may be related to recent strong activity of N-W trending fault at the Rehai area. Trace monitoring the H2 release could be significant in order to keep watch on present activity of that fault.``

  10. Geothermal energy in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  11. 孙疃-赵集勘探区现今地温场特征及其高温热害预测%Characteristics of present geothermal field and prediction of its thermal damage in Suntuan-Zhaoji exploration area

    Institute of Scientific and Technical Information of China (English)

    雒毅; 琚宜文; 谭静强

    2011-01-01

    淮北煤田是中国东部主要的煤炭生产基地之一.通过分析淮北煤田孙疃-赵集2个新勘探矿区中测温数据资料,绘制出了研究区主采煤层在后期开采中可能产生高温热害的分布图.研究表明:孙疃-赵集勘探区现今地温梯度分布范围介于1.7 ~3.6℃/hm,平均现今地温梯度约为2.68℃/hm,3个主采煤层的高温热害区表现出了东高西低的特点.%Huaibei coalfield is an important base of energy sources in East China. On the basis of analyses of temperature data in Suntuan-Zhaoji exploration area of Huaibei coalfield, thermal damage zones are mapped out in the main mining coal beds in that area. The results indicate that the geothermal gradient values range from 1. 7t/hm to 3. 6t/hm in Suntuan-Zhaoji geothermal exploration area. The average present geothermal gradient value is about 2. 68t/hm in the area. Thermal damage zones in the three main mining coal beds are high in the east part of the area and low in the west part.

  12. Geothermal resource development: laws and regulations

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, J.C.

    1977-08-25

    The development of geothermal resources in California is becoming of increasing interest because of the large amounts of these resources in the state. In response to this interest in development, the legislature and regulatory bodies have taken actions to increase geothermal power production. The important federal and California laws on the subject are presented and discussed. Pertinent federal and state provisions are compared, and inconsistencies are discussed. An important concept that needs clarification is the manner of designating an area as a ''known geothermal resource area.'' The question of designating geothermal resource as a mineral is not completely resolved, although there is authority tending toward the finding that it is a mineral.

  13. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    Energy Technology Data Exchange (ETDEWEB)

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  14. Colorado geothermal commercialization planning. Semi-annual progress report, January 1, 1979-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.

    1979-01-01

    The potential for developing the geothermal resources of Colorado is detailed. Constraints that are limiting geothermal energy development are described. Area development plans, an institutional analysis, and the outreach program are presented. (MHR)

  15. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: GEO (Geothermal Activity Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of geothermally active areas as compiled by Motyka et al., 1993. Because of the variety of geothermal activity present at any...

  16. Geothermal Regime, Thermal History and Hydrocarbon Generation Types of Sedimentary Basins in the Continental Area of China

    Institute of Scientific and Technical Information of China (English)

    QiuNansheng; JamesPuckette; JinZhijun; WangJiyang

    2005-01-01

    The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins.

  17. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  18. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

  19. Volume changes of Vatnajökull ice cap, Iceland, due to surface mass balance, ice flow, and subglacial melting at geothermal areas

    DEFF Research Database (Denmark)

    Magnússon, Eyjólfur; Björnson, Helgi; Dall, Jørgen

    2005-01-01

    We present observed changes in the geometry of western Vatnajökull over a period of about ten years which are caused by the surface mass balance, ice flow (both during surges and quiescent periods), and basal melting due to geothermal and volcanic activity. Comparison of two digital elevation...

  20. INEL geothermal environmental program. 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, L.S.; Thurow, T.L.; Martinez, J.A.

    1981-04-01

    An overview of continuing environmental research and monitoring programs conducted at the Raft River Geothermal Site is provided. The monitoring programs are designed to collect data on the physical, biological and human environments of the development area. Primary research during 1980 emphasized completing baseline studies on terrestrial fauna, establishing an air quality monitoring network, investigating potential sources of fluoride in the Raft River Valley, and studying water level changes in the shallow monitor wells in response to development of the geothermal resource.

  1. Feasibility of using geothermal effluents for waterfowl wetlands

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

  2. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, July 1-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-01-01

    Progress is reviewed on the following: area development plans, evaluation of geothermal applications, continued evaluation of geothermal resources, engineering and economic analyses, technical assistance in the state of Arizona, the impact of various growth patterns upon geothermal energy development, and the outreach program. (MHR)

  3. Geothermal development of the Salton Trough, California and Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.D.; Howard, J.H.; Lande, D.P. (eds.)

    1975-04-01

    A geological description is given of the Salton Trought followed by a chronological history of attempts to exploit the area's geothermal resources. In addition, detailed descriptions are given of all ongoing geothermal projects in the area and the organizations conducting them.

  4. Geothermal energy potential in the San Luis Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.

    1980-01-01

    The background of the area itself is investigated considering the geography, population, economy, attitudes of residents, and energy demands of the area. The requirements for geothermal energy development are considered, including socio-economic, institutional, and environmental conditions as well as some technical aspects. The current, proposed, and potential geothermal energy developments are described. The summary, conclusions, and methodology are included. (MHR)

  5. Geothermics of Nile delta and southeast Mediterranean: Investigation and geothermal energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Zein El-Din, M.Y.; Zaghloul, Z.M.; Khidr, I.H. (Al Azhar Univ., Cairo (Egypt))

    1988-08-01

    The authors collected 289 temperature readings from 66 exploratory wells randomly distributed in an area about 57,000 km{sup 2} from different rock units of Tertiary and Quaternary ages. The bottom-hole temperature (BHT) readings were corrected using an empirical equation based on actual static formation temperatures collected from the study area. The authors modified the Fertl and Wichmann method to apply to the study area. If the Fertl and Wichmann curve is applied, readings can be corrected using a deduced relation. The geothermal gradient for each well calculated used the best-fit method utilizing all recorded BHTs in that well. A new geothermal gradient map was constructed using the corrected BHT values. A genetic relationship between the geothermal gradient and lithology, tectonic setup, gas saturation, and water saturation of the subsurface formations in the Nile delta and southeast Mediterranean area was sought. Isothermal maps at different depths in the study area were constructed. Areas of relatively high subsurface temperature were delineated. The Abu Madi gas field as a case study for geothermal behavior was emphasized. The geothermal reservoirs in the study area as possible new and renewable energy resources were defined and classified as low-temperature reservoirs. Two geothermal reservoirs have been recorded: a shallow one associated with Mit Ghamr-El Wastani rock units and a deep one associated with abu Madi-Qawassim Formations.

  6. Evaluation of geothermal cooling systems for Arizona

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    Arizona consumes nearly 50 percent more electricity during the peak summer season of May through part of October, due to the high cooling load met by electrical-driven air conditioning units. This study evaluates two geothermal-driven cooling systems that consume less electricity, namely, absorption cooling and heat pumps. Adsorption cooling requires a geothermal resource above 105{sup 0}C (220{sup 0}F) in order to operate at a reasonable efficiency and capacity. Geothermal resources at these temperatures or above are believed existing in the Phoenix and Tucson areas, but at such depths that geothermal-driven absorption systems have high capital investments. Such capital investments are uneconomical when paid out over only five months of operation each year, but become economical when cascaded with other geothermal uses. There may be other regions of the state, where geothermal resources exist at 105{sup 0}C (220{sup 0}F) or higher at much less depth, such as the Casa Grande/Coolidge or Hyder areas, which might be attractive locations for future plants of the high-technology industries. Geothermal assisted heat pumps have been shown in this study to be economical for nearly all areas of Arizona. They are more economical and reliable than air-to-air heat pumps. Such systems in Arizona depend upon a low-temperature geothermal resource in the narrow range of 15.5 to 26.6{sup 0}C (60 to 80{sup 0}F), and are widely available in Arizona. The state has over 3000 known (existing) thermal wells, out of a total of about 30,000 irrigation wells.

  7. Geothermal direct-heat utilization assistance. Quarterly report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-97. It describes 174 contracts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  8. Application of the 'fingerprint' geochemical method in a geothermal exploration survey of the Sumikawa area. Fingerprint ho no chinetsu tansaho to shite no yukosei ni tsuite (Akitaken sumikawa chiku deno chosarei)

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T.; Takahashi, M.; Shigeno, H. (Geological Survey of Japan, Tsukuba (Japan))

    1992-06-15

    This paper presents an affirmative conclusion on the effectiveness of a Fingerprint method as a method to explore geothermal sources based on results of the survey conducted in the Sumikawa Area in Akita Prefecture. The soil gas samples from the area are classified into clusters of three kinds according to patterns in the mass spectra, and four types according to characteristics of the highly divergent components. It is shown that a distribution chart of the samples belonging to each type classified in the survey area presents a distribution that expresses well significantly the degree of activeness in geothermal activities Also shown is that the areas in which the samples of each type exist can be distinguished without a duplication a chart plotting the relationship between a total gas divergent amount'' and an average gas mass number'' by samples (a gas characteristics identifying chart). It is further indicated that the type classification according to highly divergent components and the cluster classification based on the mass spectra patterns result in a conclusion that the classifications have similarity in their descriptions. 17 refs., 11 figs., 4 tabs.

  9. Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    LeFebre, V.; Miller, A.

    1980-01-01

    An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

  10. Reference book on geothermal direct use

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  11. CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is concentrated on Cenozoic volcanism and geothermal resources in Northeast China. There are a lot of Cenozoic volcanoes, a large area of volcanic rocks, a large number of active faults and rich geothermal resources in Northeast China. The time and space characteristics of Cenozoic volcanism and the space distribution characters of hot springs and high geothermal flux regions in Northeast China are described and discussed on the basis of geological, geothermal, drilling and volcanological data. It is revealed that the hot springs and high geothermal flux regions are re lated to the Cenozoic volcanism, rifting and faulting in Northeast China. It is especially emphasized that the hot springs and high geothermal anomaly areas are controlled by active deep faults. It is proposed that the Cenozoic volcanism re gions, rift basins, active fault belts, activated plate suture zones and large earthquake occurrence points are the best areas for prospecting geothermal resources. The geothermal resources in younger volcanic zones are richer than those in older volcanic belts. The hot springs and active or activated faults might be a very good clue for looking for geothermal resources.

  12. 文登地区浅部干热岩地热资源的赋存条件分析%Analysis on Occurrence Conditions of Geothermal Resources in Shallow Hot Dry Rock in Wendeng Area

    Institute of Scientific and Technical Information of China (English)

    田立强; 范士彦

    2016-01-01

    Five natural hot springs in Wendeng area distributed on the edge of the Hetao with enough water, high water quality and high water temperature. It is considered that there are multiple abnormal geothermal gradient in the region. The geothermal gradient anomaly has close relation with the subduction of the Pacific plate edge belt, Sulu UHP metamorphic belt heat of radioactive elements of abnormal and deep fracture zone thermal interaction. According to the analysis on thermal conductivity of various lithology, it is regarded that quartzite granite, granitic gneiss and gneiss are favorable optimal objective layers for development and utilization of hot dry rock resources. It is suggesed that in five natural hot springs in the area, by using geophysical prospecting, drilling and other explora⁃tion means, the deep fracture zone has been found out, geothermal gradient anomaly area has been surveyed, and shallow geothermal resources of hot dry rock storage area has been looked for.%文登地区的5处天然温泉,多分布于河套边沿,水源足,水质优,水温高,证明该地区存在多处地温梯度异常。分析认为该地温梯度异常与太平洋板块边沿俯冲带、苏鲁超高压变质带放射性元素生热异常、深大断裂带的导热作用有关。根据各种岩性的导热性分析,认为含石英岩脉的花岗岩、花岗片麻岩或片麻岩为有利于干热岩资源开发利用的最优目的层。建议在5处天然温泉区域内,利用物探、钻探等勘查手段相结合,查明深大断裂带,调查地温梯度异常区,寻找浅部干热岩地热资源赋存区。

  13. Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  14. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  15. FY 1998 geothermal development promotion survey. Report on the environmental effect survey (animals/plants, No. B-7 Kuwanosawa area); 1998 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho (doshokubutsu, No.B-7 Kuwanosawa chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey was conducted to estimate effects of drilling of geothermal exploration well on the environment, aiming at grasping the present state of environmental elements before the survey/development. As a result of the literature survey, the following distribution were confirmed in the fauna: 5 orders 10 families 19 species in the mammalia, 10 orders 25 families 73 species in the aves, 1 order 3 families 6 species in the reptilia, 2 orders 6 families 9 species in the amphibia, and 17 orders 179 families 719 species in the insecta. In the flora, a distribution of 132 families 670 species was confirmed. The results of studying the above indicated that in the fauna, there were 10 species such as antelope as valuable animal in the area surveyed and that it is necessary to pay much attention to the environmental preservation of the habitat for those animals in the well drilling associated with geothermal survey. In the flora, the 13 valuable animals selected as animal having a fear of extinction in the 'plant-version red list' were confirmed in the area surveyed and the periphery. Further, as to the plant colony, there are no important colonies in terms of preservation. In well drilling, important things are efforts exerted to restore to the original state of the area altered, prevention of the washed-away of mud water, etc., and efforts exerted to preserve the environment of vegetation. (NEDO)

  16. FY 1996 geothermal development/promotion survey. Report of hot water survey results (No. B-3 Kumaishi area); 1996 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.B-3 Kumaishi chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Reported herein are the survey results of hot water in the Kumaishi area, Hokkaido, as part of the FY 1996 geothermal development/promotion survey project. A total of 277 spouting guidance tests were conducted by the swabbing method for 10 days at the N7-KI-1 well, which, however, failed to achieve continuous spouting of geothermal fluid. A total of 144 swabbing tests were conducted for 8 days at the N7-KI-2 well. The geothermal fluid is spontaneously spouted out, although intermittently, after the main valve was opened, because it had a pressure of 4.1 kg/cm{sup 2} G at the mouth of the well from the first. However, the final self-spouting quantity remained unchanged in spite of the guidance works. The hot water had a pH 6.4, and contained Na as a cation at 8,940 mg/L and Cl as an anion at 14,500 mg/L as the major impurities. The associated gas was mainly composed of carbon dioxide, containing little hydrogen sulfide. The hot water spouted out through the wells contained Na and a high concentration of Cl as the major impurities, suggesting possibility of mixing hot water containing a high concentration of salt with surface water. It is considered that neither hot water nor its impurity concentrations are evenly distributed in the deep underground of the Kumaishi area. It is therefore considered that the deep underground hot water sources for hot spring slightly vary in composition and impurity concentrations. (NEDO)

  17. Volume changes of Vatnajökull ice cap, Iceland, due to surface mass balance, ice flow, and subglacial melting at geothermal areas

    DEFF Research Database (Denmark)

    Magnússon, Eyjólfur; Björnson, Helgi; Dall, Jørgen

    2005-01-01

    We present observed changes in the geometry of western Vatnajökull over a period of about ten years which are caused by the surface mass balance, ice flow (both during surges and quiescent periods), and basal melting due to geothermal and volcanic activity. Comparison of two digital elevation...... models shows that from 1985 to 1998 the outlet glaciers have lost 14 ± 5 km3, on the average 1 m/yr...

  18. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  19. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  20. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Science.gov (United States)

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

  1. Seismic activity at the Cerro Prieto Geothermal Area (Mexico) from August 1994 to December 1995, and its relationship with tectonics and fluid exploitation

    Science.gov (United States)

    Fabriol, H.; Munguía, L.

    A continuous monitoring of the Cerro Prieto geothermal field was carried out from August 1994 to December 1995 to investigate the seismicity of tectonic origin and the seismicity triggered by exploitation activities. Hypocenters for 148 events were located mainly around the northern end of the Cerro Prieto fault and within the geothermal zone. The estimated focal depths range mostly from 1 to 6 km, for earthquakes with magnitudes from 0.5 to 4.6. It was difficult to distinguish between natural and triggered seismicity. We observed a single case of an earthquake for which a correlation in time and space seems plausible with a sharp increase of fluid injection in a well located at less than 1 km from the epicenter. Fault plane solutions of 26 events with magnitudes between 2.8 and 4.6 indicate right-lateral strike-slip motion for earthquakes that occur near the Cerro Prieto and Imperial faults. Inside the geothermal zone, events with normal components of motion were recorded, as expected from the extensional stress regime of the pull-apart basin laying between both faults.

  2. Geothermal innovative technologies catalog

    Energy Technology Data Exchange (ETDEWEB)

    Kenkeremath, D. (ed.)

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  3. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  4. Geothermal Today - 2001

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  5. Quantitative impact of hydrothermal alteration on electrical resistivity in geothermal systems from a joint analysis of laboratory measurements and borehole data in Krafla area, N-E Iceland

    Science.gov (United States)

    Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre

    2016-04-01

    Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215

  6. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  7. Geothermal energy program overview

    Science.gov (United States)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  8. 藏南干旱区湖泊及地热水体氢氧同位素研究%Hydrogen and Oxygen Isotopes of Lake Water and Geothermal Spring Water in Arid Area of South Tibet

    Institute of Scientific and Technical Information of China (English)

    肖可; 沈立成; 王鹏

    2014-01-01

    青藏高原水循环过程情况复杂,水体氢氧同位素包含了其重要信息.选取西藏南部干旱区淡水湖、咸水湖及地热水水体为研究对象,分析研究区内不同水体氢氧同位素组成、变化特征、影响因素及水循环过程.结果表明,3种水体均表现出了高海拔地区氢氧同位素组成偏负的特点,淡水湖打加芒错δ18O平均值为-17.0‰,δD 平均值为-138.6‰,咸水湖朗错δ18O平均值为-6.4‰,δD 平均值为-87.4‰,搭格架地热区热水δ18O平均值为-19.2‰,δD 平均值为-158.2‰;受内陆干旱区强烈的蒸发作用影响,湖泊及地热水蒸发线斜率均小于8,氘过量 d 值均为负值;搭格架地热区热储温度较高,氢氧同位素关系存在氧漂移现象.%The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of δ18O and δD in Daggyaima lake water ( - 17. 0‰ for δ18O and - 138. 6‰ for δD), Langcuo lake water ( - 6. 4‰ for δ18O and - 87. 4‰ for δD) and Dagejia geothermal water ( - 19. 2‰ forδ18O and - 158. 2‰ for δD) all showed negative δ18O and δD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.

  9. Geothermal Exploration Case Studies on OpenEI (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  10. FIJI geothermal resource assessment and development programme

    Energy Technology Data Exchange (ETDEWEB)

    Autar, Rohit K.

    1996-01-24

    The Fiji Department of Energy (DOE) has a comprehensive resource assessment programme which assesses and promotes the use of local renewable energy resources where they are economically viable. DOE is currently involved in the investigation of the extent of geothermal resources for future energy planning and supply purposes. The aim is to determine (a) whether exploitable geothermal fields exist in the Savusavu or Labasa areas. the two geothermal fields with the greatest potential, (b) the cost of exploiting these fields for electricity generation/process heat on Vanua Levu. (c) the comparative cost per mega-watt-hour (MWh) of geothermal electricity generation with other generating options on Vanua Levu, and. (d) to promote the development of the geothermal resource by inviting BOO/BOOT schemes. Results to date have indicated that prospects for using geothermal resource for generating electricity lies in Savusavu only - whereas the Labasa resource can only provide process heat. All geophysical surveys have been completed and the next stage is deep drilling to verify the theoretical findings and subsequent development.

  11. Main aspects of geothermal energy in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hiriart, G.; Gutierrez-Negrin, L.C.A. [Comision Federal de Electridad, Morelia (Mexico)

    2003-12-01

    With an installed geothermal electric capacity of 853 MW{sub e}, Mexico is currently the third largest producer of geothermal power worldwide, after the USA and the Philippines. There are four geothermal fields now under exploitation: Cerro Prieto, Los Azufres, Los Humeros and Las Tres Virgenes. Cerro Prieto is the second largest field in the world, with 720 MW{sub e} and 138 production wells in operation; sedimentary (sandstone) rocks host its geothermal fluids. Los Azufres (88 MW{sub e}), Los Humeros (35 MW{sub e}) and Las Tres Virgenes (10 MW{sub e}) are volcanic fields, with fluids hosted by volcanic (andesites) and intrusive (granodiorite) rocks. Four additional units, 25 MW{sub e} each, are under construction in Los Azufres and due to go into operation in April 2003. One small (300 kW) binary-cycle unit is operating in Maguarichi, a small village in an isolated area with no link to the national grid. The geothermal power installed in Mexico represents 2% of the total installed electric capacity, but the electricity generated from geothermal accounts for almost 3% of the national total. (author)

  12. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons

    Science.gov (United States)

    Des Marais, D. J.; Donchin, J. H.; Nehring, N. L.; Truesdell, A. H.

    1981-01-01

    Isotopic measurements of individual geothermal hydrocarbons that are, as a group, of higher molecular weight than methane are reported. It is believed in light of this data that the principal source of hydrocarbons in four geothermal areas in western North America is the thermal decomposition of sedimentary or groundwater organic matter.

  13. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  14. Rock and Soil Thermal Physical Properties in a Shallow Geothermal Energy Project Located in Zhengzhou Area%郑州市某浅层地热能勘查项目岩土热物性测试分析

    Institute of Scientific and Technical Information of China (English)

    孙君超; 黄峙; 胡平放; 雷飞; 朱娜; 邬田华

    2014-01-01

    The use of shallow geothermal energy is based on shallow geothermal energy exploration. The paper presents the application of thermal response test in the shallow geothermal energy project located in Zhengzhou area. The project is tested by a thermal response test rig with two different heat injection rates in two separated boreholes. The two-dimensional model inside borehole and the linear heat source model outside borehole are used as the heat transfer models. The thermal conductivity and heat capacity of soil is calculated by the two-variable parameter estimation (λs andρs cs ). The test results are analyzed.%浅层地热能勘察评价是浅层地热能开发利用的基础。介绍了岩土热物性测试仪的组成及工作原理,并将其应用于郑州市浅层地热能调查评价项目中进行岩土热物性测试现场热响应实验。本项目对郑州地区的两个测试孔分别进行不同加热功率条件下的现场热响应试验。传热模型采用钻孔内的二维模型及钻孔外的线热源模型,数据处理采用和双参数估计法,并利用Matlab软件最优化技术编程得到了岩土的综合导热系数和容积比热容,并对结果进行了分析和讨论。

  15. The Silting-Up Prevention in the Geothermal Absorbent Openings of Geothermal Energy Plant Pyrzyce

    Directory of Open Access Journals (Sweden)

    Noga Bogdan

    2014-06-01

    Full Text Available The paper presents precipitation results from cold thermal water deposits that are the main cause of clogging in absorbent geothermal wells and borehole areas. As a result of physical and chemical analysis, laboratory tests and observation of the operation of a geothermal installation, a new method was developed to prevent the precipitation of sludge from cooled thermal water. The method being a modification of soft acidising was tentatively named as a super soft acidising method

  16. Study with liquid and steam tracers at the Tejamaniles area, Los Azufres, Mich., geothermal field; Estudio con trazadores de liquido y vapor en el area Tejamaniles del campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Eduardo R. [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)]. E-mail: iglesias@iie.org.mx; Flores Armenta, Magaly [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Torres, Rodolfo J. [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico); Ramirez Montes, Miguel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Reyes Picasso, Neftali [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico); Reyes Delgado, Lisette [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)

    2011-01-15

    The Mexican Federal Commission for Electricity injects brines produced by nearby geothermal wells into well Az-08, located in the Tejamaniles area, in the southwestern portion of Los Azufres, Mich., geothermal field. The main goals of this study are to determine whether or not the injected fluid recharges nine producing wells in the area, and if so, to estimate the fraction of the injected fluid recharging each producing well. Five of the selected wells produce mixes of liquid and steam and the rest produce only steam. For this reason, we designed this study with simultaneous injections of liquid- and steam-tracers. The nine selected producing wells detected the steam-tracer, and the five wells producing mixes detected the liquid-phase tracer. The residence curves of both tracers present a series of peaks reflecting the known fractured nature of the reservoir. The results show the feeding areas of the nine selected wells are recharged by the fluid injected into well Az-08. When this paper was written, the arrival of steam-tracers in all wells was completed, but the wells producing mixes of liquid and steam continued to record the arrival of the liquid-tracer. Until 407 days after injecting the tracer, the total percentage recovery of liquid phase tracer in the five wells producing mixes of liquid and steam was 3.5032%. The arrival of the steam tracer ended in all nine wells 205 days after the tracer was injected, with an overall recovery rate of 2.1553 x 10-2%. The recovery rates imply the recharge rates of the monitored wells by the injector Az-08 are modest, but it appears the amounts of the recovered liquid-phase tracer will increase significantly. The modest recovery rates suggest most of the fluid injected into the well Az-08 disperses in the reservoir, contributing to recharge and maintaining the pressure. Results reveal that: (i) the injected fluid is heated at depths from 700 to over 1000 m, where it boils and rises to reach the feeding areas of the

  17. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  18. Hot dry rock geothermal energy

    Science.gov (United States)

    Heiken, G.; Murphy, H.; Nunz, G.; Potter, R.

    1981-08-01

    Man-made geothermal systems are discussed which make it possible to extract heat from hot rocks in areas where natural fluids are insufficient for the development of hydrothermal energy. The location and magnitude of high- and low-temperature geothermal resources in the USA for such hot dry rock (HDR) systems are examined. An HDR concept is described in which water is injected into one of two nearly parallel wells connected at depth by man-made fractures; the injected water circulates through the fracture system, where it is heated by conduction from the hot rock, and hot fluid, which can be used for heating or for electric power generation, rises through the second well. Some heat-extraction experiments using the described concept are reviewed which are being conducted in a complex volcanic field in New Mexico. The economics of HDR energy is evaluated.

  19. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna; Martino, Louis

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly depending on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management

  20. 天津市华苑产业园区地热流体化学特征及质量评述%Chemical Characteristics and Quality Evaluation of the Geothermal Fluids in the Huayuan Economical Area, Tianjin

    Institute of Scientific and Technical Information of China (English)

    李嫄嫄; 唐永香; 李俊峰; 陈瑞军; 靳宝珍

    2013-01-01

    华苑产业园区的热储层主要为新近系明化镇组、馆陶组和奥陶系,通过地球化学分析,推断其地热流体均属于大气降水成因,化学组分均表现出自东向西或自北东向南西、由山前到盆地中心的水平分带特征。本区各热储层地热流体及浅层第四系地下水在垂向上有较大变化,经分析,明化镇组有接受上覆第四系地下水的越流补给可能,而馆陶组热流体则在凸起区接受了下伏基岩热流体的顶托补给。经推断,地热流体补给源位于华苑产业园东侧或东北侧,补给缓慢。本区地热流体具有轻微-强腐蚀性,有硫酸钙结垢趋势,不宜直接作为饮用水源和渔业用水,也不适宜农业灌溉用水;但明化镇组适合大多数工业用水。可喜的是,各层热流体中偏硅酸和氟的含量都较高,经过一定的处理,可具医疗价值,如在此开发温泉旅游,将带来良好的经济效益。%The reservoirs in the Huayuan Economical Area are mainly in the Minghuazhen, Guantao and Or-dovician Formations. Based on the geochemical analysis, we deduced the geothermal fluids here is original from precipitation. All the chemical compositions obey the horizontal strip characteristics from east to west, north-east to south-west and mountain front to basin center. The geothermal fluids of each reservoirs and groundwater of Quaternary System all change a lot in vertical. By analysis, it is possible for the Minghua-zhen reservoir to accept the leakage recharge from Quaternary groundwater. And the geothermal fluids in the Guantao reservoir may accept the top alimentation from bed-rock in hump area. In deduction, the recharge area is location in the east or north-east of the Huayuan Economical Area and the speed of recharge is very slow. In addition, the geothermal fluids here have light-strong corrosivity and scaling tendency of calcium sulfate, it is not suitable for drinking water and fish

  1. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  2. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  3. Geothermal Power Potential in the Tatun Volcano Group, Taiwan

    Science.gov (United States)

    Tseng, H. H.; Song, S.

    2013-12-01

    Recent energy issues have concentrated the attention on finding alternative ones. National demands for renewable and sustainable energy increase rapidly, especially the geothermal power production, which is viewed as the most potential opportunity. This study attempts to estimate the geothermal powers in the Tatung Volcano Group (TVG), Taiwan and evaluate the possibility to develop the Enhanced Geothermal System. Tatung Volcano Group is located at the northwest part of Taiwan. It has violent volcanism during 0.8-0.20Ma, and is still active with many thermal manifestations. The young volcanic activity provides the TVG with high geothermal gradient and is well suitable for exploiting geothermal resources. Many explorations on geothermal energy have been accomplished in this area during1966-1973. They included resistivity survey, magnetic prospecting, gravity method, seismic prospecting and etc. In this study, we base on previous data and apply the probabilistic volumetric method proposed by Geotherm EX Inc., modified from the approach introduced by the USGS to evaluate the geothermal power potential in TVG. Meanwhile, use a Monte Carlo simulation technique to calculate the probability distribution of potentially recoverable energy reserves. The results show that the mean value is 270Mw, and P50 is 254Mw for 30 years, separately. Furthermore, the power potential of enhanced geothermal system in TVG is also estimated by the quantitative model proposed by Massachusetts Institute of Technology (MIT 2006). The results suggest that the mean value is 3,000 MW and P50 is 2,780 MW for 30 years, separately.

  4. Fiscal 1994 geothermal development promotion survey. Report on structural exploratory drilling works in the Sarukuradake area (N6-SR-2); 1994 nendo chinetsu kaihatsu sokushin chosa. Sarukuradake chiiki kozo shisui kussaku koji (N6-SR-2) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The paper reported the result of exploratory drilling works done in the Sarugadake area as a part of the survey of the fiscal 1994 NEDO geothermal development promotion. The area is a mountainous area located approximately 10km southwest of the Aizu basin and is consisted of ridges 700-900m above sea level (the highest is 907m at Sarukuradake) and sharp slopes which are the lower part of the ridges. The area adjacent to the north has a flat topography 400-500m above sea level with the Nishiyama hot spa as a center, and the Yanaizu Nishiyama geothermal power plant is there. Around 295-345m below sea level, there is a clayey zone which is seemingly a fault. There are sections where there are lots of cracks around between 1200m and 1600m below sea level. However, lost circulation was seen only at 419m below the sea. The distribution of earth temperature is a typical thermal conducting type in which the temperature linearly increases toward the deep area, and the highest temperature was 194{degree}C at a depth of 1800m. The average temperature gradient was 1.03{degree}C/10m, and there are generally seen few changes. Abnormality of the self potential corresponded to boundaries of fracture zones or geological layers/rock facies, and resistivity changes. The distribution of resistivity was also shown. As a result of the water injection test, water permeability of this mine was unfavorable. 4 refs., 26 figs., 38 tabs.

  5. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  6. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  7. Petrology and stable isotope geochemistry of three wells in the Buttes area of the Salton Sea Geothermal Field, Imperial Valley, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, C.

    1976-12-01

    A detailed investigation is reported of cuttings recovered from three wells in the Salton Sea geothermal field located at the southeast end of the Salton Sea, California. The wells, Magmamax No. 2, Magmamax No. 3, and Woolsey No. 1 penetrate 1340 m, 1200 m, and 730 m, respectively, of altered sandstones, siltstones, and shales of the Colorado River delta. The wells are located at the crest of a thermal anomaly, reach a maximum of 320/sup 0/C at 1070 m, and produce a brine containing approximately 250,000 mg/1 of dissolved solids.

  8. 中国大陆干热岩地热资源潜力评估%Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China

    Institute of Scientific and Technical Information of China (English)

    汪集旸; 罗璐; 李卫卫; 胡圣标; 庞忠和; 何丽娟; 赵平; 朱传庆; 饶松; 唐晓音; 孔彦龙

    2012-01-01

    As one of the clean renewable energy, geothermal energy is very competitive. According to its genesis and exploration conditions, geothermal resources could be divided into two kinds, that is, one is hydrothermal resources and the other one is Hot Dry Rock (HDR) geothermal resources. Because of its universality and high temperature, HDR geothermal resources have great potential for projecting future development. The assessment of HDR geothermal resources potential is the base of HDR resources exploration. Here the heat flow map in the continental area of China is updated on the basis of more new heal flow data. Then the HDR geothermal resources are estimated using volume methods with a thermal physical access in the continental area of China (3 km -10 km). Results show that the total HDR geothermal energy is 20.9×10EJ, which is equivalent to standard coal of 714.9×l012t. If the recoverable energy is 2% by computing, then it is 168 times of conventional hydrothermal energy, and it is equivalent to 4,400 times of total annual energy consumption during the year of 2010 in China. Nevertheless, due to the limitation of economics and technology, the HDR geothermal resources exploration within the depth of 4-7km accompanied with an expected temperature of 150-250℃. should be conducted in the near future. Several target regions for HDR geolliermal resources exploration are proposed, including South Tibet, West Yunnan (Tengchong), the southeast coast of China (Zhejiang, Fujian and Guangdong), North China (BBB basin), the southeast regions of Ordos Basin (Fenwei Graben), and Northeast China (Songliao Basin). Finally, the future tasks involving geothermal resources research are listed.%地热资源是一种极具竞争力的清洁可再生能源,按其成因和产出条件可分为水热型和干热岩型,其中,干热岩型地热资源以其分布的普遍性和高热储温度而更具开发潜力与前景.干热岩地热资源潜力评估是干热岩开发的基础工

  9. Idaho Geothermal Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

    1979-07-01

    Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

  10. Geothermal Loan Guaranty Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-17

    Presently the US imports a large proportion of its petroleum requirements. This dependence on foreign petroleum has had a major impact on our economy. As a result, the Federal government is sponsoring programs to offset this foreign reliance by conservation of oil and gas, conversion of petroleum using facilities to coal and nuclear energy and the development of alternate sources of energy. One of the most acceptable alternate resources is geothermal. It offers an environmentally sound energy resource, can be developed at reasonable cost in comparison to other forms of energy and has a long term production capacity. On September 3, 1974, the Geothermal Energy Research Development and Demonstration Act was enacted to further the research, development and demonstration of geothermal energy technologies. This Act also established the Geothermal Loan Guaranty Program to assist in the financing of geothermal resource development, both electrical and non-electrical. The highlights of that Guaranty Program are detailed in this report.

  11. Geothermal Loan Guaranty Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-17

    Presently the US imports a large proportion of its petroleum requirements. This dependence on foreign petroleum has had a major impact on our economy. As a result, the Federal government is sponsoring programs to offset this foreign reliance by conservation of oil and gas, conversion of petroleum using facilities to coal and nuclear energy and the development of alternate sources of energy. One of the most acceptable alternate resources is geothermal. It offers an environmentally sound energy resource, can be developed at reasonable cost in comparison to other forms of energy and has a long term production capacity. On September 3, 1974, the Geothermal Energy Research Development and Demonstration Act was enacted to further the research, development and demonstration of geothermal energy technologies. This Act also established the Geothermal Loan Guaranty Program to assist in the financing of geothermal resource development, both electrical and non-electrical. The highlights of that Guaranty Program are detailed in this report.

  12. 物探方法在江苏赤山湖地热井勘探中的应用%The application of geophysical prospecting methods to geothermal well exploration of Chishanhu area, Jurong City, Jiangsu Province

    Institute of Scientific and Technical Information of China (English)

    陈进宝; 苏金宝; 陈娟; 张作宏; 杨春光; 曹勇

    2014-01-01

    Chishanhu area is located in Jurong City of Jiangsu Province. Jurong belongs to the southern Jiangsu region of Yangtze block and has poor hydrogeological conditions. In combination with gravity, electrical sounding and MT, geological and drilling data, the au⁃thors chose resistivity inversion profile of CSAMT and microtremor measurement to explore lithology and depth of the thermal reservoir and location of the fault. Based on geothermal and hydrogeological conditions, the authors confirmed the geothermal well site and then successfully revealed a hot spring with water output of 500 m3/day and temperature 55℃ through actual drilling.%在水文地质条件较差的江苏赤山湖地区,采用CSAMT、微动勘探方法寻找地热构造,结合已有的重力、电测深资料及地质、钻孔资料,综合分析、研究2500 m深度内地层岩性结构、热储埋深、断裂位置等地热地质和水文地质条件,最终选定了最佳地热井位,钻探结果:出水量500 m3/d,水温55℃°。

  13. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  14. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  15. Hawaii Geothermal Project. Summary report for Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1975-05-01

    The research program was divided into three areas: geophysical--exploratory surveys to define the most favorable areas for geothermal investigations; engineering--analytical models to assist in interpretation of geophysical results, and studies on energy recovery from hot brine; and, environmental-socioeconomic--legal and regulatory aspects of ownership and administration of geothermal resources, and economic planning studies on the impact of geothermal power. Summaries of results obtained to date in each of the research areas are presented; a list of reference publications where these results are reviewed in greater detail is included. (JGB)

  16. Geothermal Fields on the Volcanic Axis of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, S.; Gonzalez, A.

    1980-12-16

    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  17. Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, Emmanuel John M.; Barritt, Sally D. [Department of Earth Systems Analysis, International Institute for Geo-information Science and Earth Observation (ITC), Enschede (Netherlands); Wibowo, Hendro; Sumintadireja, Prihadi [Laboratory of Volcanology and Geothermal, Geology Department, Institute of Technology Bandung (ITB), Bandung (Indonesia)

    2008-06-15

    Conceptual modeling and predictive mapping of potential for geothermal resources at the regional-scale in West Java are supported by analysis of the spatial distribution of geothermal prospects and thermal springs, and their spatial associations with geologic features derived from publicly available regional-scale spatial data sets. Fry analysis shows that geothermal occurrences have regional-scale spatial distributions that are related to Quaternary volcanic centers and shallow earthquake epicenters. Spatial frequency distribution analysis shows that geothermal occurrences have strong positive spatial associations with Quaternary volcanic centers, Quaternary volcanic rocks, quasi-gravity lows, and NE-, NNW-, WNW-trending faults. These geological features, with their strong positive spatial associations with geothermal occurrences, constitute spatial recognition criteria of regional-scale geothermal potential in a study area. Application of data-driven evidential belief functions in GIS-based predictive mapping of regional-scale geothermal potential resulted in delineation of high potential zones occupying 25% of West Java, which is a substantial reduction of the search area for further exploration of geothermal resources. The predicted high potential zones delineate about 53-58% of the training geothermal areas and 94% of the validated geothermal occurrences. The results of this study demonstrate the value of regional-scale geothermal potential mapping in: (a) data-poor situations, such as West Java, and (b) regions with geotectonic environments similar to the study area. (author)

  18. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  19. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    Energy Technology Data Exchange (ETDEWEB)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  20. Geothermal direct heat applications program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

  1. Review of geothermal energy resources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Alam Zaigham, Nayyer [Department of Geology, University of Karachi, Karachi 75270 (Pakistan); Alam Nayyar, Zeeshan [Department of Applied Physics, University of Karachi, Karachi 75270 (Pakistan); Hisamuddin, Noushaba [422 Wycliffe, Irvine, CA 92602 (United States)

    2009-01-15

    Pakistan, despite the enormous potential of its energy resources, remains energy deficient and has to rely heavily on imports of hydrocarbon products to satisfy hardly its needs. Moreover, a very large part of the rural areas does not have the electrification facilities because they are either too remote and/or too expensive to connect to the national grid. Pakistan has wide spectrum of high potential renewable energy sources, conventional and as well non-conventional. Many of them have not been adequately explored, exploited and developed. Geothermal energy is one of them. Pakistan can be benefited by harnessing the geothermal option of energy generation as substitute energy in areas where sources exist. Most of the high enthalpy geothermal resources of the world are within the seismic belts associated with zones of crustal weakness like the seismo-tectonic belt that passes through Pakistan having inherited a long geological history of geotectonic events. The present study of the geotectonic framework suggests that Pakistan should not be lacking in commercially exploitable sources of geothermal energy. This view is further strengthened by (a) the fairly extensive development of alteration zones and fumeroles in many regions of Pakistan, (b) the presence of a fairly large number of hot springs in different parts of the country, and (c) the indications of Quaternary volcanism associated with the Chagai arc extending into Iran and Afghanistan border areas. These manifestations of geothermal energy are found within three geotectonic or geothermal environments, i.e., (1) geo-pressurized systems related to basin subsidence, (2) seismo-tectonic or suture-related systems, and (3) systems related to Neogene-Quaternary volcanism. A few localities, scattered sporadically all over the country, have been studied to evaluate only some of the basic characteristic parameters of the geothermal prospects. The present review study the geothermal activities of varying intensity and

  2. Second workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.; Ramey, H.J. Jr. (eds.)

    1976-12-03

    occurrences took place between the first workshop in December 1975 and this present workshop in December 1976. For one thing, the newly formed Energy Research and Development Administration (ERDA) has assumed the lead role in geothermal reservoir engineering research. The second workshop under the Stanford Geothermal Program was supported by a grant from ERDA. In addition, two significant meetings on geothermal energy were held in Rotarua, New Zealand and Taupo, New Zealand. These meetings concerned geothermal reservoir engineering, and the reinjection of cooled geothermal fluids back into a geothermal system. It was clear to attendees of both the New Zealand and the December workshop meetings that a great deal of new information had been developed between August and December 1976. Another exciting report made at the meeting was a successful completion of a new geothermal well on the big island of Hawaii which produces a geothermal fluid that is mainly steam at a temperature in excess of 600 degrees F. Although the total developed electrical power generating capacity due to all geothermal field developments in 1976 is on the order of 1200 megawatts, it was reported that rapid development in geothermal field expansion is taking place in many parts of the world. Approximately 400 megawatts of geothermal power were being developed in the Philippine Islands, and planning for expansion in production in Cerro Prieto, Mexico was also announced. The Geysers in the United States continued the planned expansion toward the level of more than 1000 megawatts. The Second Workshop on Geothermal Reservoir Engineering convened at Stanford December 1976 with 93 attendees from 4 nations, and resulted in the presentation of 44 technical papers, summaries of which are included in these Proceedings. The major areas included in the program consisted of reservoir physics, well testing, field development, well stimulation, and mathematical modeling of geothermal reservoirs. The planning forth is year

  3. Regional geothermal 3D modelling in Denmark

    Science.gov (United States)

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  4. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  5. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  6. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Science.gov (United States)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  7. 郑州市地下水源热泵适宜区浅层地热能资源量评价%The Shallow Geothermal Energy Resource Evaluation on the Suitable Area of Groundwater Source Heat Pump in Zhengzhou City

    Institute of Scientific and Technical Information of China (English)

    田良河; 闫震鹏; 刘新号

    2011-01-01

    By numerical simulation, we determine the best distance between wells of the groundwater source heat pump in Zhengzhou City, and evaluate the shallow geothermal energy resource in the suitable areas. It can provide important basis for urban development and utilization of shallow geothermal energy in Zhengzhou City.%采用数值模拟法确定了郑州市地下水源热泵适宜区最佳井间距,评价了郑州市地下水源热泵适宜区浅层地热能资源。

  8. Sulfate-water isotope geothermometry and lead isotope data for the regional geothermal system in the Twin Falls area, south-central Idaho

    Science.gov (United States)

    Mariner, R.H.; Young, H.W.; Bullen, T.D.; Janik, C.J.; ,

    1997-01-01

    Sulfate-water isotope geothermometry for the geothermal system at Twin Falls, Idaho indicates aquifer-temperatures of 90?? to 106 ??C; most sites are between 90?? and 93 ??C. 206Pb/204pb and 280Pb/204Pb of individual thermal waters are principally a function of how much lead has been dissolved from the carbonate and silicate fractions of the Paleozoic limestone collected west of Grand View Peak. Although most thermal waters are recovered from Tertiary rhyolite, very little of the dissolved lead is from the rhyolite. Recharge to this system occurs in northern Nevada and the fluid moves northward in the Paleozoic limestones. The occurrence of thermal fluid in the Idavada Volcanics near and south of Twin Falls, Idaho is the result of upward movement of this fluid from the Paleozoic limestone.

  9. Tuscarora area, Nevada: geothermal reservoir assessment case history, northern basin and range. Final report, 1 October 1978-9 September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pilkington, H.D.

    1981-08-01

    The Tuscarora prospect is located at the north end of Independence Valley approximately 90 km north-northwest of Elko, Nevada. Geothermal exploration on the prospect consisted of an integrated program of geologic, hydrogeochemical and soil geochemistry studies. Geophysical exploration included heatflow studies, aeromagnetic, self-potential, gravity, dipole-dipole resistivity and magnetotelluric surveys. Exploration drilling includes thirty-two shallow thermal gradient holes, six intermediate depth temperature gradient wells and one 5454 foot test for discovery well. Shallow low-temperature reservoirs were encountered in the Tertiary rocks and in the Paleozoic rocks immediately beneath the Tertiary. Drilling problems forced the deep well to be stopped before the high-temperature reservoir was reached.

  10. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  11. Geothermal energy - Overview of research in 2002; Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Gohran, H. L.

    2003-07-01

    This overview for the Swiss Federal Office for Energy reviews activities in the area of geothermal energy usage in Switzerland in 2002. Several main points of interest are discussed, including Deep Heat Mining, the thermal use of drainage water from alpine railway tunnels, the quality assurance aspects of geothermal installations and pilot and demonstration (P+D) activities designed to promote the use of geothermal energy. Also, the use of constructional elements such as energy piles and novel applications such as geothermally heated greenhouses and fish farms are discussed. Examples of various P+D projects that utilise bore-hole heat exchangers and piles are given. Also, examples of the thermal use of deep aquifers are quoted and projects involving the mapping of geothermal resources and the creation of quality labels are described. Prospects for future work are discussed. The report is rounded off with lists of research and development projects and P+D projects.

  12. Federal Geothermal Research Program Update Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  13. Prospects for geothermal commercialization in the greenhouse industry

    Energy Technology Data Exchange (ETDEWEB)

    Bressler, S.E.; Hanemann, W.M.

    1980-03-01

    A number of areas considered directly relevant to a particular greenhouse firm's decision to use or not to use geothermal energy for its commercial needs are emphasized. These areas include: current fuel uses and problems, and future fuel concerns; firm decision-making processes, including managerial and financing conventions; perceived commercial potential for geothermal energy in the industry; the potential institutional framework for user involvement in geothermal development; and the role that government might most effectively play in stimulating user development. The results are based upon extensive personal interviews with decision-makers in the industry. (MHR)

  14. Prospects for geothermal commercialization in the lumber industry

    Energy Technology Data Exchange (ETDEWEB)

    Bressler, S.E.; Hanemann, W.M.

    1980-03-01

    A number of areas considered directly relevant to a particular lumber firm's decision to use or not to use geothermal energy for its commercial needs are emphasized. These areas include: current fuel uses and problems, and future fuel concerns; firm decision-making processes, including managerial and financing conventions; perceived commercial potential for geothermal energy in the industry; the potential institutional framework for user involvement in geothermal development; and the role that government might most effectively play in stimulating user development. The results are based upon extensive personal interviews with decision-makers in the industry. (MHR)

  15. Prospects for geothermal commercialization in the potato and onion industry

    Energy Technology Data Exchange (ETDEWEB)

    Bressler, S.E.; Hanemann, W.M.

    1980-03-01

    A number of areas considered directly relevant to a particular potato or onion processor's decision to use or not to use geothermal energy for its commercial needs are emphasized. These areas include: current fuel uses and problems, and future fuel concerns; firm decision-making processes, including managerial and financing conventions; perceived commercial potential for geothermal energy in the industry; the potential institutional framework for user involvement in geothermal development; and the role that government might most effectively play in stimulating user development. The results are based upon extensive personal interviews with decision-makers in the industry. (MHR)

  16. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  17. Geothermal reservoir at Tatapani Geothermal field, Surguja district, Madhya Pradesh, IN

    Energy Technology Data Exchange (ETDEWEB)

    Pitale, U.L.; Sarolkar, P.B.; Rawat, H.S.; Shukia, S.N.

    1996-01-24

    The Tatapani Geothermal field, located on the Son-Narmada mega lineament is one of the most intense geothermal manifestation, with hot spring temperature of 98°c. in Central India. 21 Exploratory and thermal gradient boreholes followed by 5 production wells for proposed 300 KWe binary cycle power plant, have revealed specific reservoir parameters of shallow geothermal reservoir of 110°c in upper 350 m of geothermal system and their possible continuation to deeper reservoir of anticipated temperature of 160 ± 10°c. Testing of five production wells done by Oil and Natural Gas Corporation concurrently with drilling at different depths and also on completion of drilling, have established feeder zones of thermal water at depth of 175-200 m, 280-300 m, maximum temperature of 112.5°c and bottom hole pressure of 42 kg/cm². Further interpretation of temperature and pressure profiles, injection test, well head discharges and chemical analysis data has revealed thermal characteristics of individual production wells and overall configuration of .thermal production zones with their permeability, temperature, and discharge characteristics in the shallow thermal reservoir area. Well testing data and interpretation of reservoir parameters therefrom, for upper 350 m part of geothermal system and possible model of deeper geothermal reservoir at Tatapani have been presented in the paper.

  18. Deep drilling for geothermal energy in Finland

    Science.gov (United States)

    Kukkonen, Ilmo

    2016-04-01

    There is a societal request to find renewable CO2-free energy resources. One of the biggest such resources is provided by geothermal energy. In addition to shallow ground heat already extensively used in Finland, deep geothermal energy provides an alternative so far not exploited. Temperatures are high at depth, but the challenge is, how to mine the heat? In this presentation, the geological and geophysical conditions for deep geothermal energy production in Finland are discussed as well as challenges for drilling and conditions at depth for geothermal energy production. Finland is located on ancient bedrock with much lower temperatures than geologically younger volcanically and tectonically active areas. In order to reach sufficiently high temperatures drilling to depths of several kilometres are needed. Further, mining of the heat with, e.g., the principle of Enhanced Geothermal System (EGS) requires high hydraulic conductivity for efficient circulation of fluid in natural or artificial fractures of the rock. There are many issues that must be solved and/or improved: Drilling technology, the EGS concept, rock stress and hydraulic fracturing, scale formation, induced seismicity and ground movements, possible microbial activity, etc. An industry-funded pilot project currently in progress in southern Finland is shortly introduced.

  19. Industrial utilization of geopressured geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Underhill, Gary K; Carlson, Ronald A.; Clendinning, William A.; Erdos, Jozsef; Gault, John; Hall, James W.; Jones, Robert L.; Michael, Herbert K.; Powell, Paul H.; Riemann, Carl F.; Rios-Castellon, Lorenzo; Shepherd, Burchard P.; Wilson, John S.

    1976-01-01

    Discussion of the industrial utilization of geopressured geothermal energy is currently limited by the limited knowledge of the resource's distribution. However, the resource assessment activity in the Bureau of Economic Geology, The University of Texas at Austin, has identified a number of fairway or potential resource zones. These zones are located in Kenedy County; in and about Corpus Christi and Nueces Bays in Nueces, San Patricio, and Aransas Counties; in the coastal zones of Matagorda County; and in a crescent-shaped zone parallel to the coastline in Brazoria and Galveston Counties. The Kenedy and Matagorda County zones are situated in rural areas with little or no industrial activity. The Corpus Christi and Brazoria-Galveston zones are in and adjacent to highly industrialized and urbanized districts. The rural zones will require the establishment of new industries for geothermal fluid utilization while the industrial-urban zones will require either new industry, expansion to existing industry, or modification to existing plant and process. Proposed industries for geothermal fluid utilization can be considered with respect to fitting the industry to the available fluids; this has been the usual approach. An alternate approach is to fit the abailable fluids to the proposed industry. In order to follow the alternate approach requires consideration of ways to upgrade the quality of existing geothermal fluids or geothermal-derived or -energized fluids.

  20. Geobotanical Remote Sensing for Geothermal Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, W L; Kasameyer, P W; Martini, B A; Potts, D C; Silver, E A

    2001-05-22

    This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and Mammoth Mountain in California.

  1. Geothermal Orientation Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-07-01

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  2. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2016-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low...

  3. NGDC Geothermal Data Bases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geothermics is the study of heat generated in Earth's interior and its manifestation at the surface. The National Geophysical Data Center (NGDC) has a variety of...

  4. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  5. The Geothermal Potential, Current and Opportunity in Taiwan

    Science.gov (United States)

    Song, Sheng-Rong

    2016-04-01

    Located in the west Pacific Rim of Fire, Taiwan possesses rich geothermal resources due to volcanic activities and rapid uplifting of plate collision. Based on available data prior to 1980, Taiwan may have about 1 GWe of potential shallow geothermal energy, which is less than 3% of the national gross power generation. A 3-Mw pilot power plant, therefore, was constructed in 1981 and terminated in 1993 in the Chingshui geothermal field of Ilan, northeastern Taiwan. Recently, one of the National Science & Technology Program (NSTP) projects has been conducting research and reevaluating the island-wide deep geothermal energy. Four hot potential sites have been recognized. They are: (1) Tatun Volcano Group of northern Taiwan; (2) I-Lan Plain of NE Taiwan; (3) Lu-Shan area of Central Taiwan; and (4) Hua-Tung area of eastern Taiwan. We found that the geothermal resource in Taiwan may be as high as 160 GWe, with 33.6 GWe of exploitable geothermal energy. There are no any commercial geothermal power plants until now in Taiwan, although the potential is great. However, geothermal energy has been listed as one of major tasks of National Energy Program, Phase II (NEP-II) in Taiwan. We will conduct more detailed geothermal energy surveys on some proposed hot sites and to construct an EGS pilot geothermal plant with 1 MWe capability in a few years. Currently, there are three nuclear power plants, named No. 1, 2 & 3, in operations, which produce 16.5% gross generation of electricity and one (No. 4) is under construction, but is stopped and sealed now in Taiwan. Furthermore, the life-span of 40-year operation for those three power plants will be close-at hand and retire in 2018-2019, 2021-2023 and 2024-2025, respectively. Therefore, to find alternative energy sources, especially on the clean, renewable and sustainable ones for generating electricity are emergent and important for Taiwan's government in next few years. Among various energy sources, geothermal energy can be as base

  6. Geothermal Loop Experimental Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  7. Geothermal resources assessment in Hawaii. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.M.

    1984-02-21

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program.

  8. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  9. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  10. 2016 Geothermal Technologies Office Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-01

    This report highlights project successes and continued efforts in all of our program areas – EGS, Hydrothermal, Low-Temperature, and Systems Analysis – which are flanked by useful tools and resources and links to more information. Such highlights include FORGE and EGS successes, projects reducing geothermal costs and risks, and advancements in technology research and development.

  11. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  12. Geothermal Power Engineering

    OpenAIRE

    Перемитин, Д. В.; Воробьёва, Виктория Владимировна

    2015-01-01

    Our world is changing and it becomes more and more real to replace traditional sources of energy by new ones. Alternative sources of energy have a lot of pluses and minuses. Alternative energy seems to be really ef183 fective and geothermal energy as a type of alternative energy looks effective too. This paper deals with geothermal energy, its advantages and disadvantages, prospects of using this kind of energy.

  13. Renewable Energy Essentials: Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Geothermal energy is energy available as heat contained in or discharged from the earth's crust that can be used for generating electricity and providing direct heat for numerous applications such as: space and district heating; water heating; aquaculture; horticulture; and industrial processes. In addition, the use of energy extracted from the constant temperatures of the earth at shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as geothermal energy.

  14. Geothermal activity near Clearlake, California

    Science.gov (United States)

    Burns, K. L.; Potter, R. M.

    Geothermal activity in the region of high heat flow near the city of Clearlake includes hot springs, fumeroles, vents, and areas of hydrothermal alteration. Onshore, the location is controlled by Quaternary longitudinal NNW-trending faults of the San Andreas systems, and the transverse Burns Valley fault. Offshore, an additional control is arcuate graben-forming faults. The city is bracketed by three hydrothermal 'hot spots,' which are Sulphur Bank hot spring, resurgences in Burns Valley, and the Oak Cove hot spot. All three are associated with sharp 'spikes' in the isotherms and locally enhanced heat flow.

  15. Overview of geothermal technology

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.

    1978-05-01

    The technology of geothermal resource development includes the technologies associated with finding the resource, defining it well enough to invest in its development, plumbing it to move the heat from the earth to where it will be used, using it, and finally disposing of it. The base of earth sciences experience needed to adequately project limited data so as to discover and define a geothermal resource is growing rapidly as new resources are developed and elucidated. Technologies for moving the fluid are improving as new challenges are faced, e.g., the development of downhole pumps in order to increase flow rates from costly wells. Although a wide variety of applications of geothermal resources exist, still to be evaluated commercially are the use of binary cycles in electric power production and the possibility of using geothermal energy in the production of heavy water and in sugar milling and refining. Disposal of spent geothermal fluid underground (in contrast to surface disposal) is receiving increasing favor, both because of its greater acceptability from an environmental point of view and because of its beneficial effects on minimizing subsidence and recovering additional heat stored in rock framework of a geothermal reservoir.

  16. The National Geothermal Collaborative, EERE-Geothermal Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jody Erikson

    2006-05-26

    Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

  17. 天津地区深层地下热水井水动力特征%Dynamic Features in Deep Geothermal Wells in Tianjin Area

    Institute of Scientific and Technical Information of China (English)

    赵敬波; 周训; 方斌; 刘东林

    2011-01-01

    The wellhead temperature of part of deep geothermal wells in Tianjin in the pumping process is higher than the water temperature before pumping and the density of thermal water decreases, which result in the dynamic water level higher than the static water level prior to pumping. In this paper, the conversion formula of well bottom pressure is adopted to analyze the measured data and a laboratory test is established to simulate the regular pattern of water level of a thermal well. The dynamic water level and static water level can approximately be calculated according to the average well bottom pressure during pumping and the stopping pumping conditions last year. The results show that in pumping condition the well bottom pressure is smaller than that prior to pumping and the water level is mainly affected by the number of geothermal wells, the calculating formula of the well bottom pressure, geological structure, geothermal injection and other factors. In the first stage the experiment shows that in the well bottom water temperature and wellhead temperature change linearly. Well bottom pressure and the average density are negatively correlated. In the third stage well bottom pressure and the average density are also negatively correlated. In the second stage bottom hole temperature changes very little, the bottom hole pressure remains almost unchanged. Therefore, according to the pressure the dynamic water level of different wellhead temperature can be predicted.%天津地区部分深层地下热水钻井在开采过程中井口水温明显高于开采前的井口水温,井内水的密度随之降低,可导致动水位高于开采前的静水位.采取井底压力的折算公式和室内实验的方式分别对实测数据和该现象进行分析、模拟.结果表明,开采条件下的井底压力明显小于停采条件下的井底压力,水位拟合主要受地热井的密度、井底压力的计算公式和计算方法、地质结构以及地热井回灌等

  18. Geothermal handbook. Geothermal project, 1976. [Ecological effects of geothermal resources development

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    The geothermal program of Fish and Wildlife Service, U.S. Dept. of Interior, aims to develop ecologically sound practices for the exploration, development, and management of geothermal resources and the identification of the biological consequences of such development so as to minimize adverse effects on fish and wildlife resources. This handbook provides information about the ecological effects of geothermal resource development. Chapters are included on US geothermal resources; geothermal land leasing; procedures for assessing the effects on fish and game; environmental impact of exploratory and field development operations; and wildlife habitat improvement methods for geothermal development.

  19. The geochemistry and isotope hydrology of the Southern Mexicali Valley in the area of the Cerro Prieto, Baja California (Mexico) geothermal field

    Science.gov (United States)

    Portugal, Enrique; Izquierdo, Georgina; Truesdell, Alfred; Álvarez, Julio

    2005-11-01

    Groundwaters from the phreatic aquifer within and surrounding of the Cerro Prieto geothermal field were analyzed geochemically and isotopically in order to establish a hydrodynamic model of the study zone, which is located in the Mexicali Valley between 655,000-685,000 m E-W and 3,605,000-3,576,000 m N-S relative to UTM coordinates. Based on their chemical composition three types of water were recognized: chloride, sulfate and bicarbonate. However four groups of water were identified on a statistical multi-variable method of cluster analysis (A-D). The average temperature is 25 °C; with a few exceptions in the south where temperature can be as high as 47 °C. Stable isotope ratios for some waters plot close to the world meteoric line, corresponding to the original unaltered waters of the zone. The hydrogeochemistry varies in relation to three principal processes: evaporation, infiltration of water used in agriculture and rock interaction by reaction with evaporitic deposits. Major quartz, calcite and plagioclase and minor smectite, kaolinite, halite, sylvite and gypsum were identified by X-ray diffraction in lacustrine sediments of the central part of the zone. Chemical modeling indicates saturation with respect to calcite and undersaturation with respect to gypsum. By incorporating chemical and isotope data into geological and isopotential well information, a hydrodynamic model has been postulated. In this hydrodynamic model the water (A) enters the study zone from the east and it is originally of the old Colorado River water. The water samples on which the model is based were draw from agricultural wells that intersected two aquifers, a shallow and a deep one, representing the recharge to the zone. The salinity of the deep aquifer water (B) is lower than that of the shallow aquifer water (C) and so is the stable isotope ratio. The difference is though to be due to dissolution of evaporates, evaporation and possible infiltration of spent agriculture water. Both

  20. Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

  1. Geothermal energy: Geology, exploration, and developments. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Grose, Dr. L.T.

    1971-11-01

    Geology, exploration, and initial developments of significant geothermal areas of the world are summarized in this report which is divided into two parts. Part 1 is a review of the geological and explorational aspects of geothermal energy development; areas of potential development in the Western United States are also discussed. The most favorable geological environment for exploration and development of geothermal steam is characterized by recent normal faulting, volcanism, and high heat flow. Successful exploration for steam consists of coordinated multidisciplinary application of geological, geophysical, and geochemical knowledge and techniques. These are reviewed. California leads in known geothermal reserves and is followed by Nevada, Oregon, and New Mexico. Specific prospective areas in these 11 Western States are described.

  2. Geothermal project summaries. Geothermal energy research, development, and demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

  3. Hawaii Geothermal Project summary report for Phase I

    Energy Technology Data Exchange (ETDEWEB)

    1975-05-01

    Results of Phase I of the Hawaii Geothermal Project (HGP) are reported. It was a multidisciplinary research effort in the following program areas: (1) geophysical--exploratory surveys to define the most favorable areas for geothermal investigations; (2) engineering-- analytical models to assist in interpretation of geophysical results, and studies on energy recovery from hot brine; and (3) socioeconomic--legal and regulatory aspects of ownership and administration of geothermal resources, and economic planning studies on the impact of geothermal resources, and economic planning studies on the impact of geothermal power. The major emphasis of Phase I was on the Geophysical Program, since the issue of if and where geothermal resources exist is crucial to the project. However, parallel studies were initiated in all supporting programs, so that progress was made in identifying and clarifying the technological, environmental, legal, regulatory, social and economic problems that could impede the development of geothermal power in Hawaii. Although the analysis and interpretation of field data are still incomplete, the consensus developed early--both on the basis of preliminary geophysical results and from complementary studies conducted on the Big Island over the past several decades--that an exploratory drilling program would be essential to check out the subsurface conditions predicted by the surveys.

  4. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  5. Geothermal heat pump system assisted by geothermal hot spring

    Science.gov (United States)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  6. ECONOMIC GEOLOGY (5)GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082442 Han Zaisheng(China Geological Servey,Beijing 100011,China);Ran Weiyan Exploration and Evaluation of Shal- low Geothermal Energy(Geology in China, ISSN1000—3657,CN11—1167/P,34(6), 2007,p.1115—1121,6 refs.,with English abstract) Key words:geothermal exploration, geothermal resources

  7. FY 1998 geothermal development promotion survey. Report on the environmental effect survey (No. A-4 Kunbetsu-dake area); 1998 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho (No.A-4 Kunbetsudake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-30

    Of the FY 1998 geothermal development promotion survey, the primary environmental effect survey in the Kunbetsu-dake area was conducted, and the results were arranged. In the well drilling survey, etc., the survey was made aiming at extracting areas to be preserved from an environmental aspect. The results of the survey were summarized as follows: As to the mammalia, 12 families 46 species were confirmed in the area surveyed and the periphery by literature survey. Out of them, the noticeable species which are considered important from an academic viewpoint are 10 families 19 species. As to the aves, 55 families 340 species were confirmed, of which 29 families 79 species are noticeable species. About the amphibia/reptilia, 3 families 3 species in the amphibia and 4 families 6 species in the reptilia were confirmed by literature and hearing survey. The noticeable species is 1 family 1 species in the amphilia. Concerning the terrestrial insecta, 135 families 873 species were confirmed, and the noticeable species is 11 families 20 species. As to the flora, 115 families 1055 species were confirmed, and the noticeable species is 46 families 126 species. Relating to the living vegetation, the one higher than 9 in nature reserves shows a substantial rate, and the periphery of Kaibetsu-dake is designated as the specified flora colony. (NEDO)

  8. RiverHeath: Neighborhood Loop Geothermal Exchange System

    Energy Technology Data Exchange (ETDEWEB)

    Geall, Mark [RiverHeath LLC, Appleton, WI (United States)

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  9. Proceedings of conference on geothermal energy and the law

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.D.

    1975-01-01

    Work group reports are presented for the following problem areas: legal and other institutional barriers complicating efforts at the earliest stages of geothermal development; the perspective of potential investors and the connection with specific uncertainties in the legal environment; preserving the interests of the government, the public generally, and the private geothermal lessors; the various water law conflicts, including potential conflicts between users of water in geothermal production and users of water for other purposes; jurisdictional conflict and overlapping administration; and problems of utilities and dependent users. (MHR)

  10. Geothermal district heating in Turkey: The Gonen case study

    Energy Technology Data Exchange (ETDEWEB)

    Oktay, Zuhal [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Balikesir University, 10100 Cagis-Campus, Balikesir (Turkey); Aslan, Asiye [Gonen Vocational College, Balikesir University, Gonen-Balikesir (Turkey)

    2007-04-15

    The status of geothermal district heating in Turkey and its future prospects are reviewed. A description is given of the Gonen project in Balikesir province, the first system to begin citywide operation in the country. The geology and geothermal resources of the area, the history of the project's development, the problems encountered, its economic aspects and environmental contributions are all discussed. The results of this and other such systems installed in Turkey have confirmed that, in this country, heating an entire city based on geothermal energy is a significantly cleaner, cheaper option than using fossil fuels or other renewable energy resources. (author)

  11. Economic assessment of nine geothermal direct use applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, L.C.; Breton, T.R.

    1983-12-01

    This report provides an economic analysis of nine federally-supported geothermal direct heat applications which were part of DOE's Program Opportunity Notice (PON) program. Three of the projects analyzed were user-owned systems, and six were district heating systems. Five of the nine projects are successful from an economic standpoint and the majority of these projects are in areas where geothermal energy has long been used for heating. The results of this analysis indicate that geothermal energy projects can be economic under certain conditions, but these conditions may not be very widespread.

  12. Canadian geothermal code for public reporting: reporting of exploration results, geothermal resources and geothermal reserves

    Energy Technology Data Exchange (ETDEWEB)

    Deibert, Lee [Meridian Environmental Consulting Ltd. (Canada); Hjartarson, Arnar [Mannvit Engineering (Canada); McDonald, Ian; Toohey, Brian [Nexen Inc. (Canada); McIlveen, John [Jacob Securities, (Canada); Thompson, Alison [Magma Energy Corp. (Canada); Yang, Daniel [Borealis Geopower Inc. (Canada)

    2010-07-01

    In December 2008, the Canadian geothermal code committee sponsored by the Canadian Geothermal Energy Association (CanGEA) was created with the intention of developing a code for public reporting of geothermal resources and reserves. The code was based on key elements of the Australian code which was developed in 2008 by the Australian Geothermal Energy Association in collaboration with the Australian Geothermal Energy Group. The Canadian Code was developed with the purpose of being applicable to both Canadian and international geothermal plays and to offer a reporting basis which satisfies investors, shareholders and capital markets. The Canadian Geothermal Reporting Code for Public Reporting is provided herein, it is intended for all Canadian companies and their competitors. Since reporting of geothermal results is a recent activity, this Code will require further input during its implementation.

  13. Geothermal resources in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Saibi, Hakim [Laboratory of Geothermics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-12-15

    The geothermal resources in Algeria are of low-enthalpy type. Most of these geothermal resources are located in the northeastern of the country. There are more than 240 thermal springs in Algeria. Three geothermal zones have been delineated according to some geological and thermal considerations: (1) The Tlemcenian dolomites in the northwestern part of Algeria, (2) carbonate formations in the northeastern part of Algeria and (3) the sandstone Albian reservoir in the Sahara (south of Algeria). The northeastern part of Algeria is geothermally very interesting. Two conceptual geothermal models are presented, concerning the northern and southern part of Algeria. Application of gas geothermometry to northeastern Algerian gases suggests that the reservoir temperature is around 198 C. The quartz geothermometer when applied to thermal springs gave reservoir temperature estimates of about 120 C. The thermal waters are currently used in balneology and in a few experimental direct uses (greenhouses and space heating). The total heat discharge from the main springs and existing wells is approximately 642 MW. The total installed capacity from producing wells and thermal springs is around 900 MW. (author)

  14. NANA Geothermal Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in the Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.

  15. Geothermal resources of southern Idaho

    Science.gov (United States)

    Mabey, Don R.

    1983-01-01

    The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150?C. Water from many of these systems is valuable for direct heat applications, but is lower than the temperature of interest for commercial generation of electricity at the present time. Most of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. By far the largest hydrothermal system in Idaho is in the Bruneau-Grand View area of the western Snake River Plain with a calculated reservoir temperature of 107?C and an energy of 4.5? 10 20 joules. No evidence of higher temperature water associated with this system has been found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures has not been found. Large volumes of water at temperatures between 90? and 150?C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain. Areas that appear particularly promising for the occurrence of large high-temperature hydrothermal systems are: the area north of the Snake River Plain and west of the Idaho batholith, the Island Park area, segments of the margins of the eastern Snake River Plain, and the Blackfoot lava field.

  16. Accurate estimation of seismic source parameters of induced seismicity by a combined approach of generalized inversion and genetic algorithm: Application to The Geysers geothermal area, California

    Science.gov (United States)

    Picozzi, M.; Oth, A.; Parolai, S.; Bindi, D.; De Landro, G.; Amoroso, O.

    2017-05-01

    The accurate determination of stress drop, seismic efficiency, and how source parameters scale with earthquake size is an important issue for seismic hazard assessment of induced seismicity. We propose an improved nonparametric, data-driven strategy suitable for monitoring induced seismicity, which combines the generalized inversion technique together with genetic algorithms. In the first step of the analysis the generalized inversion technique allows for an effective correction of waveforms for attenuation and site contributions. Then, the retrieved source spectra are inverted by a nonlinear sensitivity-driven inversion scheme that allows accurate estimation of source parameters. We therefore investigate the earthquake source characteristics of 633 induced earthquakes (Mw 2-3.8) recorded at The Geysers geothermal field (California) by a dense seismic network (i.e., 32 stations, more than 17.000 velocity records). We find a nonself-similar behavior, empirical source spectra that require an ωγ source model with γ > 2 to be well fit and small radiation efficiency ηSW. All these findings suggest different dynamic rupture processes for smaller and larger earthquakes and that the proportion of high-frequency energy radiation and the amount of energy required to overcome the friction or for the creation of new fractures surface changes with earthquake size. Furthermore, we observe also two distinct families of events with peculiar source parameters that in one case suggests the reactivation of deep structures linked to the regional tectonics, while in the other supports the idea of an important role of steeply dipping faults in the fluid pressure diffusion.

  17. Geothermal energy: opportunities for California commerce. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories were found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.

  18. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.W.

    1979-07-01

    Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are presented. To assess the potential for geothermal resource development in Idaho, several kinds of data were obtained. These include information regarding institutional procedures for geothermal development, logistical procedures for utilization, energy needs and forecasted demands, and resource data. Area reports, data sheets, and scenarios were prepared that described possible geothermal development at individual sites. In preparing development projections, the objective was to base them on actual market potential, forecasted growth, and known or inferred resource conditions. To the extent possible, power-on-line dates and energy utilization estimates are realistic projections of the first events. Commercialization projections were based on the assumption that an aggressive development program will prove sufficient known and inferred resources to accomplish the projected event. This report is an estimate of probable energy developable under an aggressive exploration program and is considered extremely conservative. (MHR)

  19. State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Icerman, L.; Starkey, A.; Trentman, N. (eds.)

    1981-08-01

    Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, and Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.

  20. Geothermal reservoir engineering research

    Science.gov (United States)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  1. Geothermal Plant Capacity Factors

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  2. Parabolic troughs to increase the geothermal wells flow enthalpy

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael [Engineering Institute, National Autonomous University of Mexico, Building 12, Cuidad Universitaria, Mexico D.F., A.P. 70-472, C.P. 04510 (Mexico)

    2006-10-15

    This work investigates the feasibility of using parabolic trough solar field to increase the enthalpy from geothermal wells' flow in order to increase the steam tons; in addition, it is possible to prevent silica deposition in the geothermal process. The high levels of irradiance in Northwestern Mexico make it possible to integrate a solar-geothermal hybrid system that uses two energy resources to provide steam for the geothermal cycle, like the Cerro Prieto geothermal field. The plant consists of a geothermal well, a parabolic trough solar field in series, flash separator, steam turbine and condenser. Well '408' of Cerro Prieto IV has enthalpy of 1566kJ/kg and its quality must be increased by 10 points, which requires a {delta}h of 194.4kJ/kg. Under these considerations the parabolic troughs area required will be 9250m{sup 2}, with a flow of 92.4tons per hour (25.67kg/s). The solar field orientation is a N-S parabolic trough concentrator. The silica content in the Cerro Prieto geothermal brine causes problems for scaling at the power facility, so scale controls must be considered. (author)

  3. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  4. Geothermal energy in Idaho: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.V.

    1979-07-01

    A summary of known information about the nature of the resource, its potential for development, and the infrastructure of government which will guide future development is presented. Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are included. Leasing and development status, institutional parameters, and a legal overview of geothermal resources in Idaho are given. (MHR)

  5. Geothermal Energy; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Raridon, M.H.; Hicks, S.C. (eds.)

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  6. The evaluating of the cost of electric power generation from the first geothermal power plant in Iran (Case Study: Meshkin-Shahr Geothermal Field

    Directory of Open Access Journals (Sweden)

    Mousazadeh , B

    2016-12-01

    Full Text Available Iran has fourteen vast areas with good potential for geothermal utilization. One such area is the Meshkin-Shahr geothermal field. Ten exploration wells and one injection well have been drilled to determine the parameters of the reservoir. In this paper, we considered the possibility of installing 55 MW geothermal power plant in Meshkin-Shahr near Sabalan Mt in the north-west of Iran. The Renewable Energies Organization of Iran (SUNA are trying to develop Meshkinshahr geothermal field to startup the first double flash geothermal power plant. In this pape, the technical and economical parameters due to installing 55 MW geothermal power plant was considered for meshkin- shahr geothermal field. Three scenarios; minimum, mean, maximum have been explored respectively to estimate the cost of power generation in Meshkin-Shahr geothermal power plant. The results of these calculations have been classified in some tables and shows that it will be economical to generate 55 MWe from Meshkin-Shahr geothermal power plant

  7. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  8. Multidisciplinary research of geothermal modeling

    Science.gov (United States)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of

  9. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  10. Geophysical contribution to evaluate the subsurface structural setting using magnetic and geothermal data in El-Bahariya Oasis, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Esmat Abd El All

    2015-12-01

    The geothermal studies in EL Bahariya-Oasis comprise subsurface temperature contour map which illustrates that the study area has geothermal groundwater reservoirs. The measurements of the geothermal properties for measured rock samples show that the rocks of the study area have moderate values of geothermal properties. This may be due to the seasonal variation in soil temperatures. These soil thermal properties depend on soil porosity and moisture content.

  11. 上海第四纪地层温度场分布特征与影响因素分析%Characteristics of and Causes of Variation in Shallow Geothermal Field Temperature in the Shanghai Area

    Institute of Scientific and Technical Information of China (English)

    瞿成松; 陈海洋; 曹袁; 徐丹

    2013-01-01

    Ground source heat pumps (GSHPs) represent the major mode of utilization of shal ow geothermal energy in Shanghai. Using temperature data measured at various sites and at different depths for Quaternary strata in the Shanghai area, this paper analyses the characteristics of the shal ow-rock and soil temperature ifeld distribution and compares it with historical data. Over a period of 40 years, the average ground temperature in the ifrst conifned aquifer has risen slightly but that of the second conifned aquifer has fal en slightly. The main factors affecting the shallow geothermal ifeld temperature distribution include periodic changes in solar radiation, the urban heat island effect, the type and distribution of vegetation, groundwater runoff, and artiifcial recharge. The research results will provide a basis for the prospective design of GSHP systems with buried pipes in the Shanghai area.%地源热泵是上海开发利用浅层地温能的主要形式。通过对上海地区不同地点、不同埋深范围内第四纪地层地温实测数据,分析了本地区浅层岩土温度场分布的一般规律,并与历史数据比较。40余年来,上海地区第一承压含水层的平均地温有小幅升高,而第二承压含水层则有小幅下降。影响浅层地温场分布的主要因素有太阳辐射的周期变化、城市热岛效应、地表植被、地下水径流、人工回灌等。本文可为本地区地埋管地源热泵系统的勘察设计提供参考。

  12. Study and thermodynamic characterization of the central area of the geothermal field Los Humeros, Puebla, Mexico; Estudio y caracterizacion termodinamica del sector centro del campo geotermico Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Pizano Herrera, Arturo; Machorro Jimenez, Manuel [Comision Federal de Electricidad, Perote, Veracruz (Mexico)

    1999-12-01

    Wells H-1, H-7, H-8, H-13 and H-40 are in the Central Sector of Los Humeros geothermal field. On the basis of production data analysis, two productive intervals were observed: the first between 1000 and 1500 masl, in the Augite Andesites with an average temperature of 250 Celsius degree; and the second between 650 and 1000 masl, observed in wells H-7, H-8 and H-40, with average temperatures of 280 Celsius degrees. The production mechanics are related to the presence of the Humeros-Maztaloya and Antigua faults. Wells H-13 and H-40 do not sustain production probably because although the drilling objectives were to penetrate geologic faults, this did not occur, resulting in a poor supply of geothermal fluids. In this zone, a calculation was made of the energy potential using volumetric analysis. This resulted in an estimated of 21 megawatts for the zone over a 20-years period, indicating that is possible to continuum exploiting the area. In the future, development wells must be drilled towards structural objectives and completed at depth of 2500 m. [Spanish] En el Sector Centro del Campo Geotermico de Los humeros se encuentran los pozos H-1, H-7, H-8, H-13 y H-40. La informacion analizada permite observar dos intervalos productores: el primero entre 1000 y 1500 msnm en las Andesitas de Augita, con una temperatura promedio de 250 grados Celsius y el segundo entre 650 y 1000 msnm, observado en los pozos H-7, H-8 y H-40, con 280 grados Celsius. La produccion de fluidos esta relacionada con las fallas Humeros-Maztaloya y Antigua. Los pozos H-13 y H-40 no sostienen su produccion, probablemente debido a que, pese a que su objetivo durante la perforacion fue intersectar fallas geologicas, al parecer estas quedaron alejadas de los mismos, ocasionando un aporte pobre de fluidos geotermicos. En esta zona se realizo un calculo del potencial energetico por medio de un analisis volumetrico; como resultado se estimo un potencial de generacion electrica de 21 MW durante un periodo

  13. Investigation of hydrogen sulfide exposure and lung function, asthma and chronic obstructive pulmonary disease in a geothermal area of New Zealand.

    Directory of Open Access Journals (Sweden)

    Michael N Bates

    Full Text Available Results have been conflicting whether long-term ambient hydrogen sulfide (H2S affects lung function or is a risk factor for asthma or chronic obstructive pulmonary disease (COPD. Rotorua city, New Zealand, has the world's largest population exposed to ambient H2S-from geothermal sources.We investigated associations of H2S with lung function, COPD and asthma in this population.1,204 of 1,639 study participants, aged 18-65 years during 2008-2010, provided satisfactory spirometry results. Residences, workplaces and schools over the last 30 years were geocoded. Exposures were estimated from data collected by summer and winter H2S monitoring networks across Rotorua. Four metrics for H2S exposure, representing both current and long-term (last 30 years exposure, and also time-weighted average and peak exposures, were calculated. Departures from expected values for pre-bronchodilator lung function, calculated from prediction equations, were outcomes for linear regression models using quartiles of the H2S exposure metrics. Separate models examined participants with and without evidence of asthma or COPD, and never- and ever-smokers. Logistic regression was used to investigate associations of COPD (a post-bronchodilator FEV1/FVC < 70% of expected and asthma (doctor-diagnosed or by FEV1 response to bronchodilator with H2S exposure quartiles.None of the exposure metrics produced evidence of lung function decrement. The logistic regression analysis showed no evidence that long-term H2S exposure at Rotorua levels was associated with either increased COPD or asthma risk. Some results suggested that recent ambient H2S exposures were beneficially associated with lung function parameters.The study found no evidence of reductions in lung function, or increased risk of COPD or asthma, from recent or long-term H2S exposure at the relatively high ambient concentrations found in Rotorua. Suggestions of improved lung function associated with recent ambient H2S

  14. Geothermal Field Development in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Hector Alonso

    1983-12-15

    Mexico is a Country characterized by its diversified means of Power Gerneration. Actual installed capacity is almost 19000 MW, of which 205 MW corresponds to Geothermal Plants, that is, 180 MW in Cerro Prieto and 25 MW of Portable Plants in Los Azufres. To date, 346 area with exploitation possibilites, are known. They are mainly distributed along the Volcanic Belt where the most prominent are, Los Azufres, La Primavera, Los Humeros, Ixtlan De Los Hervores and Los Negritos, among others. Proved reserves are 920 MW, and the accessible resource base are 4600 MW identified and 6000 MW undiscovered. The long range construction studies intends to achieve a total installed capacity of 100000 MW, by the end of this century, including 2000 MW Geothermal, through conventional and Portable Plants. It is not a definite program but a development strategy. The carrying out of a definite program, will depend upon the confirmation of Hypothesis made in previous studies, and the economic decisions related to the financial sources availability, and techologies to be used in the future as well.

  15. THE FUTURE OF GEOTHERMAL ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  16. Geothermal progress monitor: Report No. 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    DOE is particularly concerned with reducing the costs of geothermal power generation, especially with the abundant moderate to low-temperature resources in the US. This concern is reflected in DOE`s support of a number of energy conversion projects. Projects which focus on the costs and performance of binary cycle technology include a commercial demonstration of supersaturated turbine expansions, which earlier studies have indicated could increase the power produced per pound of fluid. Other binary cycle projects include evaluations of the performance of various working fluid mixtures and the development and testing of advanced heat rejection systems which are desperately needed in water-short geothermal areas. DOE is also investigating the applicability of flash steam technology to low-temperature resources, as an economic alternative to binary cycle systems. A low-cost, low-pressure steam turbine, selected for a grant, will be constructed to utilize fluid discharged from a flash steam plant in Nevada. Another project addresses the efficiency of high-temperature flash plants with a demonstration of the performance of the Biphase turbine which may increase the power output of such installations with no increase in fluid flow. Perhaps the most noteworthy feature of this issue of the GPM, the 17th since its inception in 1980, is the high degree of industry participation in federally-sponsored geothermal research and development. This report describes geothermal development activities.

  17. Epidemiological monitoring plan for geothermal developments.

    Science.gov (United States)

    Deane, M

    1984-01-27

    In order to assure that geothermal developments in the Imperial Valley of California proceeded on an environmentally sound basis, The U.S. Energy Research and Development Administration contracted with the Lawrence Livermore Laboratory to conduct a comprehensive study of six aspects of the region and its potential problems: Air Quality Water Quality, Ecosystem Quality (Soil, Plants, Animals, etc.) Subsidence and Induced Seismicity, Health Effects, and Socio-Economic Effects which may result from the proposed development. This report of the possible health effects is designed to be repeated as geothermal developments progress. It includes both general health attributes and attributes which may be likely to be adversely affected by such developments and is focussed on two different populations, one likely to be affected and a second which is less likely to be affected. Such a design permits the easier identification of possible effects against a background of time-dependent processes in later phases of the study. This baseline study documents that before such developments, there were differences in health status of the two areas, which were chosen to maximize demographic comparability. It further identifies that odor, a possible problem associated with geothermal development, is currently present, and at times intense. Without such baseline monitoring, the likelihood is great that such effects in the future might be falsely ascribed to the geothermal development.

  18. Modern geothermal power: GeoPP with geothermal steam turbines

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-03-01

    The first part of the review presents information on the scale and specific features of geothermal energy development in various countries. The classification of geothermal power plant (GeoPP) process flow diagrams by a phase state of the primary heat source (a geothermal fluid), thermodynamic cycle, and applicable turbines is proposed. Features of geothermal plants using methods of flashing and steam separation in the process loop and a flowsheet and thermodynamic process of a geothermal fluid heat-to-power conversion in a GeoPP of the most widespread type using a double-flash separation are considered. It is shown that, for combined cycle power units, the specific power-to-consumption geothermal fluid ratio is 20-25% higher than that for traditional single-loop GeoPP. Information about basic chemical components and their concentration range for geothermal fluids of various formations around the world is presented. Three historic stages of improving geothermal energy technologies are determined, such as development of high-temperature geothermal resources (dry, superheated steam) and application of a two-phase wet-steam geothermal fluid in GeoPP power units with one or two expansion pressures and development of binary cycle GeoPPs. A current trend of more active use of binary power plants in GeoPP technological processes is noted. Design features of GeoPP's steam turbines and steam separating devices, determined by the use of low-potential geothermal saturated steam as a working medium, which is characterized by corrosion aggressiveness and a tendency to form deposits, are considered. Most promising Russian geothermal energy projects are determined. A list of today's most advanced geothermal turbine performance technologies is presented. By an example of a 25 MW steam turbine design, made by JSC Kaluga Turbine Works, advantages of the internal moisture separation with a special turbine-separator stage are shown.

  19. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

  20. Geothermal energy. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

  1. Geothermal Grows Up

    Science.gov (United States)

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  2. Geothermal Systems for School.

    Science.gov (United States)

    Dinse, David H.

    1998-01-01

    Describes an award-winning school heating and cooling system in which two energy-efficient technologies, variable-flow pumping and geothermal heat pumps, were combined. The basic system schematic and annual energy use and cost savings statistics are provided. (GR)

  3. Geothermal industry assessment

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  4. Geothermal Greenhouse Information Package

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K. [P.E.; Boyd, T. [ed.

    1997-01-01

    This package of information is intended to provide a foundation of background information for developers of geothermal greenhouses. The material is divided into seven sections covering such issues as crop culture and prices, operating costs for greenhouses, heating system design, vendors and a list of other sources of information.

  5. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  6. Geothermal Potential of Marine Corps Air Station, Yuma, Arizona, and the Western Portion of Luke-Williams Gunnery Range

    Science.gov (United States)

    1988-01-01

    Domes in the Northern Part of the Gulf of California," in Symposia on the Cerro Prieto Geothermal Field, Baja California, Mexico, Comision Federal de...3) consider the proximity of the Yuma area to the many known geothermal anomalies in the Salton Trough area, as well as the similarities in structure...report), Stone and Witcher note A the zones of anomalously warm ground water in the area and a geothermal -gradient anomaly along the northwest-trending

  7. The Geothermal Field Camp: Capacity building for geothermal energy systems in Indonesia

    Science.gov (United States)

    Moeck, I.; Sule, R.; Saptadji, N. M.; Deon, F.; Herdianita, N. R.; Jolie, E.; Suryantini, N.; Erbas, K.

    2012-04-01

    of the collected data with statistical techniques allowed a reliable interpretation and application of the related software. The course starts with a lecture day reviewing on geothermal exploration, introduction into structural geology, geochemistry and applied volcanology (1st day) and continues with practical work in the Tangkuban Perahu volcano field and surrounding area (2nd - 5th days, from morning until late afternoon). The collected field data are processed and analyzed daily after field work. On the last day, each group of participants gives a presentation related to their field and laboratory investigations and to evidence the lessons learned. In particular, the participants learn practical work in field and laboratory, and theoretical data analysis. Sampling and analysis of self-collected data are fundamental for any interpretation and assessment of reservoir potential. The success of the first Geothermal Field Camp 2011 speaks for a continuation and extension of the training program in 2012 and the following years. Future activity will integrate more collaboration partners and will cover a larger diversity of educational topics and geological-geothermal setting.

  8. Geothermal Resource Exploration by Stream pH Mapping in Mutsu Hiuchi Dake Volcano, Japan

    Directory of Open Access Journals (Sweden)

    Yota Suzuki

    2017-07-01

    Full Text Available Although pH measurements of hot spring water are taken in conventional geothermal resource research, previous studies have seldom created pH distribution maps of stream and spring waters for an entire geothermal field as a technique for geothermal exploration. In this study, a pH distribution map was created by measuring stream and spring water pH at 75 sites in the Mutsu Hiuchi Dake geothermal field, Japan. Areas of abnormally high pH were detected in midstream sections of the Ohaka and Koaka rivers; these matched the location of the Mutsu Hiuchi Dake East Slope Fault, which is believed to have formed a geothermal reservoir. The abnormally high pH zone is attributed to the trapping of rising volcanic gases in a mature geothermal reservoir with neutral geothermal water. This causes the gas to dissolve and prevents it from reaching the surface. Thus, the mapping of stream water pH distribution in a geothermal field could provide a new and effective method for estimating the locations of geothermal reservoirs. As the proposed method does not require laboratory analysis, and is more temporally and economically efficient than conventional methods, it might help to promote geothermal development in inaccessible and remote regions.

  9. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L [Nevada Bureau of Mines and Geology, University of Nevada, Reno; Faulds, James E [Nevada Bureau of Mines and Geology, University of Nevada, Reno

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  10. Geothermal energy in Washington: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.

    1979-04-01

    This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number of serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)

  11. Methods for geothermal reservoir detection emphasizing submerged environments

    Energy Technology Data Exchange (ETDEWEB)

    Case, C.W.; Wilde, P.

    1976-05-21

    This report has been prepared for the California State Lands Commission to aid them in evaluating exploration programs for geothermal reservoirs, particularly in submerged land environments. Three charts show: (1) a logical progression of specific geologic, geochemical, and geophysical exploration techniques for detecting geothermal reservoirs in various geologic environments with emphasis on submerged lands, (2) various exploration techniques which can be used to develop specific information in geothermal areas, and (3) if various techniques will apply to geothermal exploration according to a detailed geologic classification. A narrative in semi-outline form supplements these charts, providing for each technique; a brief description, advantages, disadvantages, special geologic considerations, and specific references. The specific geologic situation will control the exploration criterion to be used for reservoir detection. General guidelines are established which may be of use in evaluating such a program, but the optimum approach will vary with each situation.

  12. Geothermal energy, an environmental and safety mini-overview survey

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    A survey is presented in order to determine the technology status, gaps, and needs for research and development programs in the environment and safety areas of this resource. The information gathered from a survey of geothermal energy development undertaken to provide background for an environment and safety overview program is summarized. A technology assessment for resource development is presented. The three specific environmental problems identified as most potentially limiting to geothermal development; hydrogen sulfide control, brine disposal, and subsidence, are discussed. Current laws, regulations, and standards applying to geothermal systems are summarized. The elements of the environment, health, and safety program considered to be intrinsically related to the development of geothermal energy systems are discussed. Interagency interfaces are touched on briefly. (MHR)

  13. Prospects of the complex development of highly parameter geothermal brines

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2015-06-01

    The high efficiency of complex processing of high-temperature hydrothermal brines with utilization of heat energy in a binary geothermal power plant and subsequent extraction of solved chemical compounds is shown. Promising technological schemes are given, where electric power, which is generated in the binary geothermal power plant, is used in a block to recover chemistry components. The technology for integrated processing of geothermal brines of the chloride-sodium-calcium type is developed, which provides the manufacture not only of marketable products but also of practically overall reagents of processed water that are necessary to realize the technology. Priority areas for development are indicated, and the preliminary estimates for a Berikey geothermal deposit are given. It is shown that only established resources of thermal brines of the Berikey deposit make it possible to produce more than 2000 t of lithium carbonate and, thereby, to completely provide Russian industry requirements for it.

  14. Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures: A case study from Mt. Aso, southwestern Japan

    Science.gov (United States)

    Koike, Katsuaki; Yoshinaga, Tohru; Asaue, Hisafumi

    2014-04-01

    The purpose of this study is to characterize in detail the temporal changes in Rn (radon-222) concentration in soil gases near fumaroles and clarify its correlation with volcanic earthquakes and temperatures in two geothermal reservoirs. Mt. Aso crater in southwest Japan, which has two reservoirs on its western side estimated by magnetotelluric survey to be at about 2 km in depth, was selected for this study. For the long-term survey, the α scintillation counter method was used weekly for 12.5 years at the three hot springs within a 2-km range. Rn concentrations were calculated using the CRAS method, a calculation method that considers radioactive equilibrium or nonequilibrium state of the soil gas. Rn concentrations generally showed similar fluctuation patterns among the sites. CRAS was used as a new indicator for evaluating the age of the soil gas. This age corresponds to the elapsed time determined from the generation of Rn based on the measurement of the numbers of atoms of Rn and its daughter 218Po at the start of measurement. In comparing the Rn data with the history of earthquakes in the Aso caldera, volcanic seismicity was identified as a major controlling factor in the sudden increase and decrease in Rn concentration as a function of age. For more precise detections of change, Rn concentrations were measured continuously at one site by pumping soil gas from a borehole and using an ionization chamber over 2.5 years. Five chemical components (He, H2, N2, CH4, and CO2) were then measured by gas chromatography at 1-week intervals. Because Rn concentrations are affected strongly by atmospheric temperatures, the residual components were obtained by subtracting the trend of the components from the original data. Chemical component data were used to estimate the temperature and pressure in the reservoir at the site; temperatures ranged from 229 to 280 °C, (average 265 °C, average pressure 80 MPa). Residual Rn concentrations showed a clear correlation with

  15. Tracing Injection Fluids in Engineered Geothermal Systems

    Science.gov (United States)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical

  16. Geothermal energy in Nevada: development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

  17. New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras)

    Science.gov (United States)

    Barberi, Franco; Carapezza, Maria Luisa; Cioni, Roberto; Lelli, Matteo; Menichini, Matia; Ranaldi, Massimo; Ricci, Tullio; Tarchini, Luca

    2013-05-01

    Platanares and Azacualpa geothermal sites of Honduras are located in an inner part of the Caribbean Plate far from the active volcanic front of Central America. Here geology indicates that there are not the conditions for the occurrence of shallow magmatic heat sources for high-enthalpy geothermal resources. Geothermal perspectives are related to the possibility of a deep circulation of meteoric water along faults and the storage of the heated fluid in fractured permeable reservoirs. Geochemical geothermometers indicate a temperature for the deeper part of the geothermal reservoir close to 200 °C for Platanares and of 150-170 °C for Azacualpa. Calcite scaling, with subordinate silica deposition has to be expected in both sites. CO2 soil flux investigations have been carried out in both areas and reveal the presence of positive anomalies likely corresponding to the presence at depth of fractured degassing geothermal reservoirs. Compared with the geothermal areas of Central Italy whose reservoirs are hosted in carbonate rocks, e.g. Latera (Chiodini et al., 2007), the CO2 soil flux measured in Honduras is significantly lower (mean of 17 g/m2day at Platanares and of 163 g/m2day at Azacualpa) probably because of the dominant silicate nature of the deep reservoirs.

  18. Environmental impact of trace element emissions from geothermal power plants.

    Science.gov (United States)

    Bargagli, R; Cateni, D; Nelli, L; Olmastroni, S; Zagarese, B

    1997-08-01

    Concentrations of several trace elements were determined in mosses, higher plants and organs of small mammals from a geothermal area in Tuscany (central Italy). Increased deposition of Hg, As, B, and Sb was detected in biological samples collected within a few hundred meters of geothermal power plants. Among the species considered, the moss Hypnum cupressiforme was the most efficient accumulator of trace elements. Contamination levels in a fodder-plant (Hedysarum coronarium) and vegetables grown in the geothermal field did not seem to pose health risks for consumers. However, a statistically significant increase in Hg, B, and As concentrations was found in the kidney and muscle of small mammals living close to geothermal installations. Biological effects of B pollution were detected in two sensitive plant species. In view of plans to increase the exploitation of geothermal resources in the area, adequate measures to monitor the environment should be taken. Mosses are the most suitable accumulative biomonitors for a surveillance network, and studies on small mammal populations should be intensified. Available technologies should be used to diminish atmospheric emissions from geothermal power plants.

  19. Susanville Geothermal Investigations, California, Special Report

    Energy Technology Data Exchange (ETDEWEB)

    none

    1976-06-01

    This report documents the investigations by the Bureau of Reclamation and others of the geothermal resource potential of the Susanville-Honey Lake Valley area, California, made during 1975 and the early part of 1976. Included are discussions on the nature of the resource and the analyses of the data gathered. Susanville is located in northeastern California about 210 miles (330 kilometers) northeast of San Francisco. The purpose of the study was to appraise the geothermal resources in the Susanville-Honey Lake area within the constraints of limited funds and available personnel. The main thrust of the studies consisted of: gathering and analyzing existing data; conducting and evaluating an electrical resistivity survey and an aerial thermal infrared survey; and drilling and logging of temperature gradient holes. The heat flow or energy potential of the resource was not determined.

  20. Low-to-moderate temperature geothermal resource assessment for Nevada: Area specific studies, final report for the period June 1, 1980-August 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, Dennis T.; Koeing, Brian A.; Flynn, Thomas; Bruce, James L.; Ghusn, George Jr.

    1981-08-30

    The Hawthorne study area is located in Mineral County, Nevada and surrounds the municipality of the same name. It encompasses an area of approximately 310 sq. km (120 sq. mi), and most of the land belongs to the US Army Ammunition Plant. The energy needs of the military combined with those of the area population (over 5,000 residents) are substantial. The area is classified as having a high potential for direct applications using the evaluation scheme described in Trexler and others (1979). A variety of scientific techniques was employed during area-wide resource assessment. General geologic studies demonstrate the lithologic diversity in the area; these studies also indicate possible sources for dissolved fluid constituents. Geophysical investigations include aeromagnetic and gravity surveys which aid in defining the nature of regional, and to a lesser extent, local variations in subsurface configurations. Surface and near-surface structural features are determined using various types of photo imagery including low sun-angle photography. An extensive shallow depth temperature probe survey indicates two zones of elevated temperature on opposite sides of the Walker Lake basin. Temperature-depth profiles from several wells in the study area indicate significant thermal fluid-bearing aquifers. Fluid chemical studies suggest a wide spatial distribution for the resource, and also suggest a meteoric recharge source in the Wassuk Range. Finally, a soil-mercury survey was not a useful technique in this study area. Two test holes were drilled to conclude the area resource assessment, and thermal fluids were encountered in both wells. The western well has measured temperatures as high as 90 C (194 F) within 150 meters (500 ft) of the surface. Temperature profiles in this well indicate a negative temperature gradient below 180 meters (590 ft). The eastern hole had a bottom hole temperature of 61 C (142 F) at a depth of only 120 meters (395 ft). A positive gradient is observed

  1. European Geothermal Drilling Experience. Problem Areas and Case Studies L'expérience du forage géothermique en Europe. Nature des problèmes et études de cas

    Directory of Open Access Journals (Sweden)

    Baron G.

    2006-11-01

    Full Text Available Geothermal drilling has long been restricted in Western Europe solely to the dry steam field of Larderello in Italy. In the last few years wider experience has been gained as the consequence of intensified exploration and development programs carried out for evaluation and production of both low- and high-enthalpy geothermal resources. A sample of some 40 boreholes indicates the following problem areas. 1 Low-enthalpy drilling Due to similar settings -hot water system f lowing in sedi-mentary units at temperatures and depths ranging from 40° to 140°C (104° to 284°F and from 1,000 to 3,500 metres (3,281 to 11,484 feet, respectively - the technology here is strongly dependent on oil and gas drilling practice. Still, specific problems remain in the areas of multiple-reservoir reconnaissance and well completion at production and reinjection levels, particularly in poorly consolidated fluvio-deltaic sequences leading to sand control and clay swelling problems. Expertise needs to be developed to minimize costs, secure high production capacities, long lifetimes, and minimum maintenance compatible with the economics and the lack of suitable workover facilities. 2 High-enthalpy drilling Exploratory drilling is currently combining wildcatting and deeper investigations of known fields. Lost circulation, drill string corrosion, tubulars, mud, cementing, and deviation control are the most frequently encountered difficulties while drilling in hostile water-dominated environments. Formation temperatures in excess of 300°C (572°F are often the rule, and recent drilling conducted in voleanic areas have hit fluids approaching the supercritical state. Whenever these problems do not remain under control, they result in rig standby and extra costs which severely penalize an industry which needs sharp improve-ments to be fully reliable and cost effective. Geothermal well stimulation is therefore a field of growing interest, but it lacks adequate procedures

  2. Geothermal Gases--Community Experiences, Perceptions, and Exposures in Northern California.

    Science.gov (United States)

    Chiu, Cindy H; Lozier, Matthew J; Bayleyegn, Tesfaye; Tait, Karen; Barreau, Tracy; Copan, Lori; Roisman, Rachel; Jackson, Rebecca; Smorodinsky, Svetlana; Kreutzer, Richard A; Yip, Fuyuen; Wolkin, Amy

    2015-12-01

    Lake County, California, is in a high geothermal-activity area. Over the past 30 years, the city of Clearlake has reported health effects and building evacuations related to geothermal venting. Previous investigations in Clearlake revealed hydrogen sulfide at levels known to cause health effects and methane at levels that can cause explosion risks. The authors conducted an investigation in multiple cities and towns in Lake County to understand better the risk of geothermal venting to the community. They conducted household surveys and outdoor air sampling of hydrogen sulfide and methane and found community members were aware of geothermal venting and some expressed concerns. The authors did not, however, find hydrogen sulfide above the California Environmental Protection Agency air quality standard of 30 parts per billion over one hour or methane above explosive thresholds. The authors recommend improving risk communication, continuing to monitor geothermal gas effects on the community, and using community reports and complaints to monitor and document geothermal venting incidents.

  3. Review of international geothermal activities and assessment of US industry opportunities: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This study was initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  4. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  5. Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1997-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  6. Review of international geothermal activities and assessment of US industry opportunities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report summarizes a study initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  7. Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhiyao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jan-Mou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproduced water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.

  8. Geothermal development. Semi-annual report, October 1, 1980-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    Three areas are reported: geothermal administration, geothermal planning, and other geothermal activities. Administration covers the status of the Imperial Valley Environmental Project transfer, update of the Geothermal Resource Center, and findings of the geothermal field inspections. Planning addresses Board of Supervisor actions, Planning Commission actions, notice of exemptions, and the master Environmental Impact Report for Salton Sea. The other activity includes the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmoreland KGRA, and revising the southern border of the Salton Sea KGRA. (MHR)

  9. Summary of geothermal exploration activity in the state of Washington from 1978 to 1983

    Energy Technology Data Exchange (ETDEWEB)

    Korosec, M.A.

    1984-01-01

    During the course of conducting the statewide reconnaissance study of Washington's potential geothermal resources, several specific areas and broader regions have been identified as targets which warrant a more concentrated effort. Over the past three years, the program has continued to identify new sites, but has concentrated on better defining the resource potential of the best areas. The locations of these geothermal areas are shown, and the level of progress for each area is shown, expressed as a percentage of completion for the various exploration tasks. Descriptions of the geothermal target areas are presented.

  10. Conductive thermal modeling of Wyoming geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, H.P.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01

    A summary of techniques used by the Wyoming Geothermal Resource Assessment Group in defining low-temperature hydrothermal resource areas is presented. Emphasis is placed on thermal modeling techniques appropriate to Wyoming's geologic setting. Thermal parameters discussed include oil-well bottom hole temperatures, heat flow, thermal conductivity, and measured temperature-depth profiles. Examples of the use of these techniques are from the regional study of the Bighorn Basin and two site specific studies within the Basin.

  11. Low-to-moderate temperature geothermal resource assessment for Nevada, area specific studies. Final report, June 1, 1980-August 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.; Ghusn, G. Jr.

    1981-01-01

    The Hawthorne study area is located in Mineral County, Nevada and surrounds the municipality of the same name. It encompasses an area of approximately 310 sq. km (120 sq. mi), and most of the land belongs to the US Army Ammunition Plant. The energy needs of the military combined with those of the area population (over 5,000 residents) are substantial. The area is classified as having a high potential for direct applications using the evaluation scheme described in Texler and others (1979). A variety of scientific techniques was employed during area-wide resource assessment. General geologic studies demonstrate the lithologic diversity in the area; these studies also indicate possible sources for dissolved fluid constituents. Geophysical investigations include aero-magnetic and gravity surveys which aid in defining the nature of regional, and to a lesser extent, local variations in subsurface configurations. Surface and near-surface structural features are determined using various types of photo imagery including low sun-angle photography. An extensive shallow depth temperature probe survey indicates two zones of elevated temperature on opposite sides of the Walker Lake basin. Temperature-depth profiles from several wells in the study area indicate significant thermal fluid-bearing aquifers. Fluid chemical studies suggest a wide spatial distribution for the resource, and also suggest a meteoric recharge source in the Wassuk Range. Finally, a soil-mercury survey was not a useful technique in this study area. Two test holes were drilled to conclude the area resource assessment, and thermal fluids were encountered in both wells. The western well has measured temperatures as high as 90 C (194 F) within 150 meters (500 ft) of the surface. Temperature profiles in this well indicate a negative temperature gradient below 180 meters (590 ft). The eastern hole had a bottom hole temperature of 61 C (142 F) at a depth of only 120 meters (395 ft). A positive gradient is observed

  12. Water information bulletin No. 30: geothermal investigations in Idaho. Part 11. Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.C. (ed.)

    1981-12-01

    The area under study included approximately 925 sq km (357 sq mi) of the Nampa-Caldwell portion of Canyon County, an area within the central portion of the western Snake River Plain immediately west of Boise, Idaho. Geologic mapping, hydrologic, geochemical, geophysical, including detailed gravity and aeromagnetic surveys, were run to acquire needed data. In addition, existing magnetotelluric and reflection seismic data were purchased and reinterpreted in light of newly acquired data.

  13. Southwest regional geothermal operations research program. Summary report. First project year, June 1977--August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R.T.; Davidson, R.

    1978-12-01

    A summary report is given of the information, data, and results presented by New Mexico Energy Institute and the five State Teams in their separate draft reports. The objective is to develop scenarios for the development of each identified geothermal resource area in Arizona, Colorado, Nevada, New Mexico and Utah. Included are an overview; an economic analysis; institutitional procedures, contraints, and incentives; location of geothermal resources in the southwest; geothermal development postulations, state by state; and recommended actions for promoting and accelerating geothermal development. (MHR)

  14. Review of International Geothermal Activities and Assessment of US Industry Opportunites: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-08-01

    This report contains detailed summaries, with bibliographies, of past, present, and planned geothermal development in 71 selected countries and areas. The report gives a pretty good description of types of work that had been done in each country by the mid 1980s, but does not tell much about which geothermal-provider country did the work. There are maps for most of the countries. There are numbers for market factors, but not for estimated geothermal potential. The information in this document has been superceded by the country summaries in the World Geothermal Congress Transactions of 1995, 2000, and 2005. This report was prepared by Meridian Corporation, Alexandria, VA. (DJE 2005)

  15. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE

    Energy Technology Data Exchange (ETDEWEB)

    Revil, Andre [Univ. of Savoy, Chambery (France)

    2015-12-31

    The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.

  16. Background of the feasibility study of geothermal district heating in Tianjin

    Energy Technology Data Exchange (ETDEWEB)

    Yao, S.K.

    1983-01-01

    Tianjin is the largest user of low-temperature geothermal energy in China. It has been selected by the state as the model for the development and direct utilization of geothermal energy. There are 259 geothermal wells in the city, 75 of these are run by Tianjin Utility to supply water to residents and industrial users. The domestic, industrial, and agricultural uses of geothermal water are discussed. A drop in the level of the hot water has led to the building of a central district heating system and a plan for future exploitation of wells that are of higher temperature in areas outside the city.

  17. Utilization of geothermal energy in the mining and processing of tungsten ore. 2nd quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.V.; Willens, C.A.; Walter, K.M.; Carrico, R.L.; Lowe, G.D.; Lacy, S.B.

    1980-06-01

    The completed geochemical analysis of groundwater in the Pine Creek area for evaluation of the geothermal potential of this location is presented. Also included is an environmental constraints analysis of Pine Creek noting any potential environmental problems if a geothermal system was developed onsite. Design of a geothermal system is discussed for site-specific applications and is discussed in detail with equipment recommendations and material specifications. A preliminary financial, economic, and institutional assessment of geothermal system located totally on Union Carbide property at Pine Creek is included. (MHR)

  18. Agriculture, greenhouse, wetland and other beneficial uses of geothermal fluids and heat

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.C.

    1981-04-05

    The status for related beneficial uses including agriculture, greenhousing, and geothermal wetlands is presented. Data published for the geothermal fluids found in areas of China have been examined and compared with the geothermal fluids used in the agriculture evaluations in the United States. This comparison indicates that the geothermal fluids found in parts of China are similar to those used in the US agriculture experiments. Greenhousing is addressed largely from the standpoint of hardware systems and technology being employed or being proposed in the United States.

  19. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  20. Water Desalination Using Geothermal Energy

    OpenAIRE

    Noreddine Ghaffour; , Hacene Mahmoudi; Mattheus Goosen

    2010-01-01

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only...