WorldWideScience

Sample records for waf mdm2 p21

  1. p21(Waf1/Cip1) expression and the p53/MDM2 feedback loop in gastric carcinogenesis

    NARCIS (Netherlands)

    Craanen, M. E.; Blok, P.; Offerhaus, G. J.; Meijer, G. A.; Dekker, W.; Kuipers, E. J.; Meuwissen, S. G.

    1999-01-01

    Data are non-existent regarding coincidental alterations in the expression of p53 and its downstream target genes MDM2 and p21(Waf1/Cip1) in gastric carcinogenesis. An immunohistochemical study was therefore performed to examine the interrelationships of p53, MDM2, and p21(Waf1/Cip1) expression in a

  2. Correlation between expression of p53, p21/WAF1, and MDM2 proteins and their prognostic significance in primary hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Fu Jia

    2009-12-01

    Full Text Available Abstract Background Tumor Protein p53 (p53, cyclin-dependent kinase inhibitor 1A (p21/WAF1, and murine double minute 2 (MDM2 participate in the regulation of cell growth. Altered expression of these gene products has been found in malignant tumors and has been associated with poor prognosis. Our aim was to investigate the expression of the 3 proteins in hepatocellular carcinoma (HCC and their prognostic significance. Methods We examined p53, p21/WAF1, and MDM2 expression in 181 pairs of HCC tissues and the adjacent hepatic tissues by performing immunohistochemistry and examined the expression of the 3 proteins in 7 pairs of HCC tissues and the adjacent hepatic tissues by using western blot analysis. Results The expression of p53, p21/WAF1, and MDM2 in the HCC tissues was significantly higher than those in the adjacent hepatic tissues (P P = 0.008. A statistical correlation was observed between expression of p53 and p21/WAF1 (R = 0.380, P = 0.000, p53 and MDM2 (R = 0.299, P = 0.000, p21/WAF1 and MDM2 (R = 0.285, P = 0.000 in 181 liver tissues adjacent to the tumor. Patients with a low pathologic grade HCC (I+II had a higher tendency to express p53 on tumor cells than the patients with high pathologic grade HCC (III+IV (P = 0.007. Survival analysis showed that positive p21/WAF1 expression or/and negative MDM2 expression in HCC was a predictor of better survival of patients after tumor resection (P Conclusions The proteins p53, p21/WAF1, and MDM2 were overexpressed in all the HCC cases in this study, and p53 and p21/WAF1 overexpression were positively correlated. The expression of p21/WAF1 and MDM2 can be considered as 2 useful indicators for predicting the prognosis of HCC.

  3. [The mechanisms of p21WAF1/Cip-1 expression in MOLT-4 cell line induced by TSA].

    Science.gov (United States)

    Song, Yi; Liu, Mei-Ju; Zhao, Guo-Wei; Qian, Jun-Jie; Dong, Yan; Liu, Hua; Sun, Guo-Jing; Mei, Zhu-Zhong; Liu, Bin; Tian, Bao-Lei; Sun, Zhi-Xian

    2005-04-01

    To investigate the function and molecular mechanism of p21(WAF1/Cip-1) expression in MOLT-4 cells induced by HDAC inhibitor TSA, the expression pattern of p21(WAF1/Cip-1) and the distribution of cell cycle in TSA treated cells were analyzed. The results showed that TSA could effectively induce G(2)/M arrest and apoptosis of MOLT-4 cells. Kinetic experiments demonstrated that p21(WAF1/Cip-1) were upregulated quickly before cell arrested in G(2)/M and began decreasing at the early stage of apoptosis. Meanwhile, the proteasome inhibitor MG-132 could inhibit the decrease of p21(WAF1/Cip-1) at the early stage of apoptosis, which showed that proteasome pathway involved in p21(WAF1/Cip-1) degradation during the TSA induced G(2)/M arrest and apoptosis responses. This study also identified that the protein level of p21(WAF1/Cip-1) was highly associated with the cell cycle change induced by TSA. Compared to cells treated by TSA only, exposure MOLT-4 cells to TSA meanwhile treatment with MG-132 increased the protein level of p21(WAF1/Cip-1) and increased the numbers of cell in G(2)/M-phase, whereas the cell apoptosis were delayed. It is concluded that p21(WAF1/Cip-1) plays a significant role in G(2)/M arrest and apoptosis signaling induced by TSA in MOLT-4 cells.

  4. p21WAF1/Cip1/Sdi1 knockout mice respond to doxorubicin with reduced cardiotoxicity

    International Nuclear Information System (INIS)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho; Williams, Stuart; Chen, Qin M.

    2011-01-01

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21 WAF1/Cip1/Sdi1 (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFNγ and TNFα in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: ► Doxorubicin induces p21 elevation in the myocardium. ► Doxorubicin causes dilated cardiomyopathy in wild type mice. ► p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. ► Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  5. Association of increased radiocurability of murine carcinomas with low constitutive expression of p21{sup WAF1/CIP1} protein

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Tetsuo; Seong, Jinsil; Hunter, Nancy R; Buchmiller, Lara; Mason, Kathy; Milas, Luka

    1999-05-01

    Purpose: The study investigated whether basal, constitutive levels of p21{sup WAF1/CIP1} protein in murine carcinomas are related to in vivo tumor radioresponse. The study is based on recent observations demonstrating that in vitro cancer cell lines are resistant to cytotoxic drugs when they express high basal levels of p21{sup WAF1/CIP1} protein, and that the loss of the p21 gene in the HCT116 human colorectal cancer cell line results in increased radioresponse of xenografts derived from that cell line. Methods and Materials: Protein levels of p21{sup WAF1/CIP1}, p53, bax, and bcl-2 were determined in 8 carcinomas (3 mammary carcinomas designated MCa-4, MCa-29, and MCa-35, 2 squamous cell carcinomas designated SCC-IV and SCC-VII, ovarian adenocarcinoma OCa-I, hepatocarcinoma HCa-I, and adenosquamous carcinoma ACa-SG) syngeneic to C3Hf/Kam mice using Western blot analysis. The tumors, growing in the right hind legs of mice, were 8 mm in diameter at the time of analysis. These tumors greatly differ in their radioresponse, assessed by TCD50 assay, and in their susceptibility to radiation-induced apoptosis. Results: Protein levels of these oncogenes varied among tumors, with p21{sup WAF1/CIP1} showing the greatest variation: its mean densitometric value ranged from 1 to 19. Bcl-2 levels also showed broad variation in densitometric values, from 1 to 10. In comparison, bax and p53 (7 of 8 tumors contained wild-type p53) varied much less among different tumor types; their variation was within a 5-fold range, and the level of p53 was similar in 6 of 8 tumors. Tumor radioresponse correlated significantly (R = 0.77, p = 0.02) only with the magnitude of p21{sup WAF1/CIP1}expression: tumors with high levels of p21{sup WAF1/CIP1}were less radiocurable than those with lower levels. Tumor radiocurability showed a significant positive correlation (p = 0.02) with the extent of radiation-induced apoptosis, indicating that tumors that responded to radiation with higher percentages

  6. Arecoline-induced growth arrest and p21WAF1 expression are dependent on p53 in rat hepatocytes

    International Nuclear Information System (INIS)

    Chou, W.-W.; Guh, J.-Y.; Tsai, J.-F.; Hwang, C.-C.; Chen, H.-C.; Huang, J.-S.; Yang, Y.-L.; Hung, W.-C.; Chuang, L.-Y.

    2008-01-01

    Betel-quid use is associated with the risk of liver cirrhosis and hepatocellular carcinoma and arecoline, the major alkaloid of betel-quid, is hepatotoxic in mice. Therefore, we studied the cytotoxic and genotoxic effects of arecoline in normal rat hepatocytes (Clone-9 cells). Arecoline dose-dependently (0.1-1 mM) decreased cell cycle-dependent proliferation while inducing DNA damage at 24 h. Moreover, arecoline (1 mM)-induced apoptosis and necrosis at 24 h. Arecoline dose-dependently (0.1-0.5 mM) increased transforming growth factor-β (TGF-β) mRNA, gene transcription and bioactivity and neutralizing TGF-β antibody attenuated arecoline (0.5 mM)-inhibited cell proliferation at 24 h. Arecoline (0.5 mM) also increased p21 WAF1 protein expression and p21 WAF1 gene transcription. Moreover, arecoline (0.5 mM) time-dependently (8-24 h) increased p53 serine 15 phosphorylation. Pifithrin-α (p53 inhibitor) and the loss of the two p53-binding elements in the p21 WAF1 gene promoter attenuated arecoline-induced p21 WAF1 gene transcription at 24 h. Pifithrin-α also attenuated arecoline (0.5 mM)-inhibited cell proliferation at 24 h. We concluded that arecoline induces cytotoxicity, DNA damage, G 0 /G 1 cell cycle arrest, TGF-β1, p21 WAF1 and activates p53 in Clone-9 cells. Moreover, arecoline-induced p21 WAF1 is dependent on p53 while arecoline-inhibited growth is dependent on both TGF-β and p53

  7. Snail regulates p21WAF/CIP1 expression in cooperation with E2 A and Twist

    International Nuclear Information System (INIS)

    Takahashi, Eishi; Funato, Noriko; Higashihori, Norihisa; Hata, Yuiro; Gridley, Thomas; Nakamura, Masataka

    2004-01-01

    Snail, a zinc-finger transcriptional repressor, is essential for mesoderm and neural crest cell formation and epithelial-mesenchymal transition. The basic helix-loop-helix transcription factors E2A and Twist have been linked with Snail during embryonic development. In this study, we examined the role of Snail in cellular differentiation through regulation of p21 WAF/CIP1 expression. A reporter assay with the p21 promoter demonstrated that Snail inhibited expression of p21 induced by E2A. Co-expression of Snail with Twist showed additive inhibitory effects. Deletion mutants of the p21 promoter revealed that sequences between -270 and -264, which formed a complex with unidentified nuclear factor(s), were critical for E2A and Snail function. The E2A-dependent expression of the endogenous p21 gene was also inhibited by Snail

  8. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Williams, Stuart [Biomedical Engineering Program, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Chen, Qin M., E-mail: qchen@email.arizona.edu [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States)

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  9. Air pollution by c-PAHs and plasma levels of p53 and p21WAF1 proteins

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Binková, Blanka; Milcová, Alena; Solanský, I.; Židzik, J.; Lyubomirova, K.; Farmer, P. B.; Šrám, Radim

    2007-01-01

    Roč. 620, - (2007), s. 34-40 ISSN 0027-5107 R&D Projects: GA MŽP SI/340/2/00; GA MŽP SL/740/5/03 Grant - others:EU(GB) 2000 -00091 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK Keywords : air pollution * p53 and p21WAF1 plasma levels Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.159, year: 2007

  10. Levels of p21WAF1/CIP1 do not affect radiation-induced cell death in human breast epithelial cells

    International Nuclear Information System (INIS)

    Kim, Harold E.; Han, Sue J.; Waid, David; Lee, Yong J.; Kim, Hyeong-Reh Choi

    1997-01-01

    Purpose/Objective: Loss of the wild-type p53 activity and/or overexpression of the proto-oncogene bcl-2 are frequently detected in breast cancer and suggested to be related to resistance to chemotherapy and radiation therapy. The long-term goals of this study are to identify the downstream signaling molecules for anti-proliferative and apoptotic activities of p53 and to investigate the interaction of bcl-2 with p53 in human breast epithelial cells. We previously showed that overexpression of bcl-2 downregulates radiation-induced expression of p21 WAF1/CIP1 , a p53 downstream molecule that functions to inhibit cyclin dependent kinases, and suppresses radiation-induced apoptosis in human breast epithelial cell line (MCF10A). In this study, we investigated the role of p21 WAF1/CIP1 in radiation-induced cell death in MCF10A cells. Materials and Methods: To determine whether downregulation of p21 WAF1/CIP1 is required for anti-apoptotic activity of bcl-2, and to investigate the roles of p21 WAF1/CIP1 in cell death following irradiation, we transfected p21 WAF1/CIP1 expression vector into bcl-2 overexpressing MCF10A cells. The effects of p21 WAF1/CIP1 overexpression on cell growth, radiation-induced apoptosis and clonogenic cell survival were analyzed. Results: Overexpression of p21 WAF1/CIP1 resulted in marked growth inhibition, but no effect on dose-dependent radiation-induced cell lethality as determined by clonogenic survival assay. Radiation-induced apoptosis was not detected in bcl-2 overexpressing MCF10A cells independent of levels of p21 WAF1/CIP1 expression. Conclusion: This study suggests that bcl-2 downregulation of p21 WAF1/CIP1 is independent of anti-apoptotic activity of bcl-2 and that levels of p21 WAF1/CIP1 do not affect radiation-induced cell death in human breast epithelial cells

  11. Arecoline-induced phosphorylated p53 and p21(WAF1) protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells.

    Science.gov (United States)

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chiou, Shean-Jaw; Chuang, Lea-Yea

    2009-06-01

    Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM. (c) 2009 Wiley-Liss, Inc.

  12. Antisense imaging of epidermal growth factor-induced p21{sup WAF-1/CIP-1} gene expression in MDA-MB-468 human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Judy; Chen, Paul; Mrkobrada, Marko [Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, M5S 2S2, Toronto, Ontario (Canada); Hu, Meiduo [Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, M5S 2S2, Toronto, Ontario (Canada); Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario (Canada); Vallis, Katherine A. [Department of Radiation Oncology, Princess Margaret Hospital, University Health Network, 610 University Avenue, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Reilly, Raymond M. [Department of Medical Imaging, University of Toronto, Toronto, Ontario (Canada)

    2003-09-01

    Molecular imaging of the expression of key genes which determine the response to DNA damage following cancer treatment may predict the effectiveness of a particular treatment strategy. A prominent early response gene for DNA damage is the gene encoding p21{sup WAF-1/CIP-1}, a cyclin-dependent kinase inhibitor that regulates progression through the cell cycle. In this study, we explored the feasibility of imaging p21{sup WAF-1/CIP-1} gene expression at the mRNA level using an 18-mer phosphorothioated antisense oligodeoxynucleotide (ODN) labeled with {sup 111}In. The known induction of the p21{sup WAF-1/CIP-1} gene in MDA-MB-468 human breast cancer cells following exposure to epidermal growth factor (EGF) was used as an experimental tool. Treatment of MDA-MB-468 cells in vitro with EGF (20 nM) increased the ratio of p21{sup WAF-1/CIP-1} mRNA/{beta}-actin mRNA threefold within 2 h as measured by the reverse transcription polymerase chain reaction (RT-PCR). A concentration-dependent inhibition of EGF-induced p21{sup WAF-1/CIP-1} protein expression was achieved in MDA-MB-468 cells by treatment with antisense ODNs with up to a tenfold decrease observed at 1 {mu}M. There was a fourfold lower inhibition of p21{sup WAF-1/CIP-1} protein expression by control sense or random sequence ODNs. Intratumoral injections of EGF (15 {mu}g/day x 3 days) were employed to induce p21{sup WAF-1/CIP-1} gene expression in MDA-MB-468 xenografts implanted subcutaneously into athymic mice. RT-PCR of explanted tumors showed a threefold increased level of p21{sup WAF-1/CIP-1} mRNA compared with normal saline-treated tumors. Successful imaging of EGF-induced p21{sup WAF-1/CIP-1} gene expression in MDA-MB-468 xenografts was achieved at 48 h post injection of {sup 111}In-labeled antisense ODNs (3.7 MBq; 2 {mu}g). Tumors displaying basal levels of p21{sup WAF-1/CIP-1} gene expression in the absence of EGF treatment could not be visualized. Biodistribution studies showed a significantly higher tumor

  13. Histone deacetylase 3 represses p15INK4b and p21WAF1/cip1 transcription by interacting with Sp1

    International Nuclear Information System (INIS)

    Huang Weifeng; Tan Dapeng; Wang Xiuli; Han Songyan; Tan Jiang; Zhao Yanmei; Lu Jun; Huang Baiqu

    2006-01-01

    Histone deacetylase 3 (HDAC3) has been implicated to play roles in governing cell proliferation. Here we demonstrated that the overexpression of HDAC3 repressed transcription of p15 INK4b and p21 WAF1/cip1 genes in 293T cells, and that the recruitment of HDAC3 to the promoter regions of these genes was critical to this repression. We also showed that HDAC3 repressed GAL4-Sp1 transcriptional activity, and that Sp1 was co-immunoprecipitated with FLAG-tagged HDAC3. We conclude that HDAC3 can repress p15 INK4b and p21 WAF1/cip1 transcription by interacting with Sp1. Furthermore, knockdown of HDAC3 by RNAi up-regulated the transcriptional expression of p15 INK4b , but not that of p21 WAF1/cip1 , implicating the different roles of HDAC3 in repression of p15 INK4b and p21 WAF1/cip1 transcription. Data from this study indicate that the inhibition of p15 INK4b and p21 WAF1/cip1 may be one of the mechanisms by which HDAC3 participates in cell cycle regulation and oncogenesis

  14. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells.

    Science.gov (United States)

    Cereseto, A; Diella, F; Mulloy, J C; Cara, A; Michieli, P; Grassmann, R; Franchini, G; Klotman, M E

    1996-09-01

    Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.

  15. Effects of sodium phenylbutyrate on differentiation and induction of the P21WAF1/CIP1 anti-oncogene in human liver carcinoma cell lines.

    Science.gov (United States)

    Meng, Mei; Jiang, Jun Mei; Liu, Hui; In, Cheng Yong; Zhu, Ju Ren

    2005-01-01

    To explore the effects of sodium phenylbutyrate on the proliferation, differentiation, cell cycle arrest and induction of the P(21WAF1/CIP1) anti-oncogene in human liver carcinoma cell lines Bel-7402 and HepG2. Bel-7402 and HepG2 human liver carcinoma cells were treated with sodium phenylbutyrate at different concentrations. Light microscopy was used to observe morphological changes in the carcinoma cells. Effects on the cell cycle were detected by using flow cytometry. P(21WAF1/CIP1) expression was determined by both reverse transcription-polymerase chain reaction and western blotting. Statistical analysis was performed by using one-way anova and Student's t-test. Sodium phenylbutyrate treatment caused time- and dose-dependent growth inhibition of Bel-7402 and HepG2 cells. This treatment also caused a decline in the proportion of S-phase cells and an increase in the proportion of G(0)/G(1) cells. Sodium phenylbutyrate increased the expression of P(21WAF1/CIP1). Sodium phenylbutyrate inhibits the proliferation of human liver carcinoma cells Bel-7402 and HepG2, induces partial differentiation, and increases the expression of P(21WAF1/CIP1).

  16. Mitochondrial ribosomal protein L41 mediates serum starvation-induced cell-cycle arrest through an increase of p21WAF1/CIP1

    International Nuclear Information System (INIS)

    Kim, Mi Jin; Yoo, Young A.; Kim, Hyung Jung; Kang, Seongman; Kim, Yong Geon; Kim, Jun Suk; Yoo, Young Do

    2005-01-01

    Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27 Kip1 in the absence of p53. This study found that MRPL41 mediates the p21 WAF1/CIP1 -mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21 WAF1/CIP1 and p27 Kip1 levels under the growth inhibitory conditions

  17. A point mutation of human p53, which was not detected as a mutation by a yeast functional assay, led to apoptosis but not p21Waf1/Cip1/Sdi1 expression in response to ionizing radiation in a human osteosarcoma cell line, Saos-2

    International Nuclear Information System (INIS)

    Okaichi, Kumio; Wang Lihong; Sasaki, Ji-ichiro; Saya, Hideyuki; Tada, Mitsuhiro; Okumura, Yutaka

    1999-01-01

    Purpose: The 123A point mutation of p53 showed increased radiosensitivity, whereas other mutations (143A, 175H, and 273H) were not affected. To determine the reason for increased radiosensitivity of the 123A mutation, the response of the transformant of 123A mutation to ionizing radiation (IR) was examined and compared to those of transformants with the wild type p53 or other point mutations (143A, 175H, and 273H). Methods and Materials: Stable transformants with a mutant or wild type p53 made by introducing cDNA into the human osteosarcoma cell line, Saos-2, which lacks an endogenous p53 were used. The transcriptional activity of mutant p53 was examined using a yeast functional assay. The transformants were examined for the accumulation of p53, the induction of p21 Waf1/Cip1/Sdi1 (hereafter referred to as p21), and the other response of p53-responsive genes (MDM2, Bax, and Bcl-2) by Western blotting. Apoptosis was analyzed by detection of DNA fragmentation. Results: The 123A point mutation of p53 was detected as a wild type in the yeast functional assay. The 123A mutant accumulated p53 in response to IR. The 123A mutant did not induce p21, but normally responded to MDM2, Bax, and Bcl-2. The 123A mutant entered apoptosis earlier than the wild type p53 transformant, and induced Fas at earlier in response to IR. Conclusion: The 123A mutant led to apoptosis, but not p21 expression in response to IR. The occurrence of apoptosis, but not induction of p21, corresponded to the radiosensitivity in the transformant. The early occurrence of apoptosis in 123A transformants may depend on the early induction of Fas

  18. Cancer dormancy and cell signaling: Induction of p21waf1 initiated by membrane IgM engagement increases survival of B lymphoma cells

    Science.gov (United States)

    Marches, Radu; Hsueh, Robert; Uhr, Jonathan W.

    1999-01-01

    The p21WAF1 (p21) cyclin-dependent kinase inhibitor plays a major role in regulating cell cycle arrest. It was recently reported that the p53-independent elevation of p21 protein levels is essential in mediating the G1 arrest resulting from signal transduction events initiated by the crosslinking of membrane IgM on Daudi Burkitt lymphoma cells. Although the role of p21 in cell cycle regulation is well documented, there is little information concerning its role in antibody-mediated apoptosis. In the present study, we examined the involvement of p21 in the regulation of apoptosis by suppressing its induction in anti-IgM-treated Daudi cells through a p21 antisense expression construct approach. Reduction in induced p21 protein levels resulted in diminished G1 arrest and increased apoptosis. The increased susceptibility to anti-IgM-mediated apoptosis was associated with increased caspase-3-like activity and poly-(ADP)ribose polymerase cleavage. These data suggest that p21 may directly interfere with the caspase cascade, thus playing a dual role in regulating both cell cycle progression and apoptosis. PMID:10411940

  19. Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1 by altering chromatin of STAT response element in A375 cells

    International Nuclear Information System (INIS)

    Pal-Bhadra, Manika; Bhadra, Utpal; Ramaiah, M Janaki; Reddy, T Lakshminarayan; Krishnan, Anita; Pushpavalli, SNCVL; Babu, K Suresh; Tiwari, Ashok K; Rao, J Madhusudana; Yadav, Jhillu S

    2012-01-01

    Chrysin and its analogues, belongs to flavonoid family and possess potential anti-tumour activity. The aim of this study is to determine the molecular mechanism by which chrysin controls cell growth and induce apoptosis in A375 cells. Effect of chrysin and its analogues on cell viability and cell cycle analysis was determined by MTT assay and flowcytometry. A series of Western blots was performed to determine the effect of chrysin on important cell cycle regulatory proteins (Cdk2, cyclin D1, p53, p21, p27). The fluorimetry and calorimetry based assays was conducted for characterization of chrysin as HDAC inhibitor. The changes in histone tail modification such as acetylation and methylation was studied after chrysin treatment was estimated by immuno-fluorescence and western blot analysis. The expression of Bcl-xL, survivin and caspase-3 was estimated in chrysin treated cells. The effect of chrysin on p21 promoter activity was studied by luciferase and ChIP assays. Chrysin cause G1 cell cycle arrest and found to inhibit HDAC-2 and HDAC-8. Chrysin treated cells have shown increase in the levels of H3acK14, H4acK12, H4acK16 and decrease in H3me2K9 methylation. The p21 induction by chrysin treatment was found to be independent of p53 status. The chromatin remodelling at p21 WAF1 promoter induces p21 activity, increased STAT-1 expression and epigenetic modifications that are responsible for ultimate cell cycle arrest and apoptosis. Chrysin shows in vitro anti-cancer activity that is correlated with induction of histone hyperacetylation and possible recruitment of STAT-1, 3, 5 proteins at STAT (−692 to −684) region of p21 promoter. Our results also support an unexpected action of chrysin on the chromatin organization of p21 WAF1 promoter through histone methylation and hyper-acetylation. It proposes previously unknown sequence specific chromatin modulations in the STAT responsive elements for regulating cell cycle progression negatively via the induction of the CDK

  20. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest.

    Science.gov (United States)

    Gascoyne, Duncan M; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E; Croucher, Peter I; Banham, Alison H

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.

  1. Different domains of P21Cip1/waf1 regulate DNA replication and DNA repair-associated processes after UV

    International Nuclear Information System (INIS)

    Soria, Gaston; Speroni, Juliana; Podhajcer, Osvaldo L.; Gottifredi, Vanesa; Prives, Carol

    2007-01-01

    Full text: Many genotoxic insults result in p21 up-regulation and p21-dependent cell cycle arrest but UV irradiation triggers p21 proteolysis. The significance of the increased p21 turnover is unclear and might be associated to DNA repair. While the role of p21 in Nucleotide Excision Repair (NER) remains controversial, two recent reports explore its effect on Translesion DNA Synthesis (TLS), a process that avoids replication blockage during S phase. The first report shows that p21 degradation is required for efficient PCNA ubiquitination, a post transcriptional modification that is relevant for TLS. The second report demonstrates that p21 (-/-) cells have increased TLS-associated mutagenic rates. Herein we analyze the effect of p21 on different PCNA-driven processes including DNA replication, NER and TLS. Whereas only the CDK binding domain of p21 is required for cell cycle arrest in unstressed cells; neither the CDK- nor the PCNA-binding domains of p21 are able to block early and late steps of NER. Intriguingly, through its PCNA binding domain, p21 inhibited recruitment of the TLS-polymerase, polη to PCNA foci after UV. Moreover, this obstruction correlates with accumulation of γH2AX and increased apoptosis. Taking together, our data emphasizes the link between p21 turnover and efficient TLS. This might also suggest a potential effect of p21 on other activities of polζ, a DNA polymerase with central roles in other biological scenarios such as genetic conversion, homologous recombination and modulation of the cellular response to genotoxic agents [es

  2. Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei-Yao [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Hsieh, Tsai-Yuan [Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Liu, Shu-Ting; Chang, Yung-Lung [Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Lin, Wei-Shiang [Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Wang, Wei-Ming, E-mail: ades0431@ms38.hinet.net [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Huang, Shih-Ming, E-mail: shihming@ndmctsgh.edu.tw [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, ROC (China)

    2011-12-10

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  3. Zac1, an Sp1-like protein, regulates human p21WAF1/Cip1 gene expression in HeLa cells

    International Nuclear Information System (INIS)

    Liu, Pei-Yao; Hsieh, Tsai-Yuan; Liu, Shu-Ting; Chang, Yung-Lung; Lin, Wei-Shiang; Wang, Wei-Ming; Huang, Shih-Ming

    2011-01-01

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21 WAF1/Cip1 gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein–protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21 WAF1/Cip1 gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  4. Transcriptional activation of cyclin-dependent kinase inhibitor, p21waf1 gene by treatment with a differentiation inducing agent, vesnarinone in a human salivary gland cancer cell line.

    Science.gov (United States)

    Omotehara, F; Nakashiro, K; Uchida, D; Hino, S; Fujimori, T; Kawamata, H

    2003-03-01

    Recently, a new concept for cancer therapy termed "tumor dormancy therapy" has been proposed. The concept of this therapy is to prolong the survival time of cancer patients while maintaining their quality of life. We have been developing a differentiation-inducing therapy, which is included in the tumor dormancy therapy, for salivary gland cancer. In this study, we examined the effect of a differentiation-inducing drug, Vesnarinone on the growth of several cancer cells, and examined the molecular mechanism by which Vesnarinone induces the cyclin dependent kinase inhibitor, p21waf1 in the cancer cells. Vesnarinone significantly suppressed the growth of TYS (salivary gland cancer cells), PC3 (prostate cancer cells), and A431 (squamous cell cancer cells). Furthermore, Vesnarinone dose-dependently enhanced the expression of p21waf1 mRNA in TYS cells. Using the luciferase reporter assay it was found that the enhancement of p21waf1 mRNA expression by Vesnarinone was through direct transcriptional activation of the p21waf1 promoter. Thus, analyzing the molecular mechanisms of differentiation inducing drugs may lead to the development of a new therapeutic strategy for several human malignancies, including salivary gland cancer.

  5. Acrylonitrile exposure: the effect on p53 and p21WAF1 protein levels in the blood plasma of occupationally exposed workers and in vitro in human diploid lung fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Binková, Blanka; Chvátalová, Irena; Šrám, Radim

    č. 517 (2002), s. 239-250 ISSN 0027-5107 R&D Projects: GA MŽP SI/340/1/97 Institutional research plan: CEZ:AV0Z5039906 Keywords : Acrylonitrile * p53 protein * p21WAF1 protein Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.158, year: 2002

  6. Mdm2 Function in Tumorigenesis

    National Research Council Canada - National Science Library

    Lozano, Guillermina

    1998-01-01

    .... Analysis if the embryos indicate that they are dying by apoptosis. Analysis of mice null for p53 and the presence or absence of the mdm2 gene indicate a longer tumor latency in p53-/-mdm2+/- mice...

  7. Correlation Among Six Biologic Factors (p53, p21WAF1, MIB-1, EGFR, HER2, and Bcl-2) and Clinical Outcomes After Curative Chemoradiation Therapy in Squamous Cell Cervical Cancer

    International Nuclear Information System (INIS)

    Yamashita, Hideomi; Murakami, Naoya; Asari, Takao; Okuma, Kae; Ohtomo, Kuni; Nakagawa, Keiichi

    2009-01-01

    Purpose: The expressions of six cell-cycle-associated proteins were analyzed in cervical squamous cell carcinomas in correlation in a search for prognostic correlations in tumors treated with concurrent chemoradiation therapy (cCRT). Methods and Materials: The expressions of p53, p21/waf1/cip1, molecular immunology borstel-1 (MIB-1), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor type 2 (HER2), and Bcl-2 were studied using an immunohistochemical method in 57 cases of cervical squamous cell carcinoma treated with cCRT. Patients received cCRT between 1998 and 2005. The mean patient age was 61 years (range, 27-82 years). The number of patients with Stage II, III, and IVA disease was 18, 29, and 10, respectively. Results: The number of patients with tumors positive for p53, p21/waf1/cip1, MIB-1, EGFR, HER2, and Bcl-2 was 26, 24, 49, 26, 13, and 11, respectively; no significant correlation was noted. The 5-year overall survival rates of HER2-positive and -negative patients was 76% vs. 44%, which was of borderline significance (p = 0.0675). No significant correlation was noted between overall survival and expressions of p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2. No correlation was observed between local control and expression of any of the proteins. Conclusion: Expression of HER2 protein had a weak impact of borderline significance on overall survival in squamous cell carcinoma of the uterine cervix treated with cCRT. However, no clinical associations could be established for p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2 protein expressions.

  8. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p21/WAF1 proteins in skin of mice

    International Nuclear Information System (INIS)

    Saxena, Neha; Ansari, Kausar M.; Kumar, Rahul; Dhawan, Alok; Dwivedi, Premendra D.; Das, Mukul

    2009-01-01

    Patulin (PAT), a mycotoxin found in apples, grapes, oranges, pear and peaches, is a potent genotoxic compound. WHO has highlighted the need for the study of cutaneous toxicity of PAT as manual labour is employed during pre and post harvest stages, thereby causing direct exposure to skin. In the present study cutaneous toxicity of PAT was evaluated following topical application to Swiss Albino mice. Dermal exposure of PAT, to mice for 4 h resulted in a dose (40-160 μg/animal) and time (up to 6 h) dependent enhancement of ornithine decarboxylase (ODC), a marker enzyme of cell proliferation. The ODC activity was found to be normal after 12 and 24 h treatment of patulin. Topical application of PAT (160 μg/100 μl acetone) for 24-72 h caused (a) DNA damage in skin cells showing significant increase (34-63%) in olive tail moment, a parameter of Comet assay (b) significant G 1 and S-phase arrest along with induction of apoptosis (2.8-10 folds) as shown by annexin V and PI staining assay through flow cytometer. Moreover PAT leads to over expression of p 21/WAF1 (3.6-3.9 fold), pro apoptotic protein Bax (1.3-2.6) and tumor suppressor wild type p 53 (2.8-3.9 fold) protein. It was also shown that PAT induced apoptosis was mediated through mitochondrial intrinsic pathway as revealed through the release of cytochrome C protein in cytosol leading to enhancement of caspase-3 activity in skin cells of mice. These results suggest that PAT has a potential to induce DNA damage leading to p 53 mediated cell cycle arrest along with intrinsic pathway mediated apoptosis that may also be correlated with enhanced polyamine production as evident by induction of ODC activity, which may have dermal toxicological implications

  9. Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2 amplified and TP53 wild-type glioblastomas

    Science.gov (United States)

    Verreault, Maite; Schmitt, Charlotte; Goldwirt, Lauriane; Pelton, Kristine; Haidar, Samer; Levasseur, Camille; Guehennec, Jeremy; Knoff, David; Labussiere, Marianne; Marie, Yannick; Ligon, Azra H.; Mokhtari, Karima; Hoang-Xuan, Khe; Sanson, Marc; Alexander, Brian M; Wen, Patrick Y.; Delattre, Jean-Yves; Ligon, Keith L.; Idbaih, Ahmed

    2016-01-01

    Rationale p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However, this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. Methods We performed a preclinical evaluation of RG7112 MDM2 inhibitor, across a panel of 36 patient-derived GBM cell lines (PDCLs), each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. Results MDM2-amplified PDCLs were 44 times more sensitive than TP53 mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μM vs 21.9 μM). MDM4 amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μM), whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μM). In MDM2-amplified lines, RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly, treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth, was cytotoxic, and significantly increased survival. Conclusion These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover, significant efficacy in a subset of non-MDM2 amplified models suggests that additional markers of response to MDM2 inhibitors must be identified. PMID:26482041

  10. MDM2 Antagonists Counteract Drug-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Anna E. Vilgelm

    2017-10-01

    Full Text Available Antagonists of MDM2-p53 interaction are emerging anti-cancer drugs utilized in clinical trials for malignancies that rarely mutate p53, including melanoma. We discovered that MDM2-p53 antagonists protect DNA from drug-induced damage in melanoma cells and patient-derived xenografts. Among the tested DNA damaging drugs were various inhibitors of Aurora and Polo-like mitotic kinases, as well as traditional chemotherapy. Mitotic kinase inhibition causes mitotic slippage, DNA re-replication, and polyploidy. Here we show that re-replication of the polyploid genome generates replicative stress which leads to DNA damage. MDM2-p53 antagonists relieve replicative stress via the p53-dependent activation of p21 which inhibits DNA replication. Loss of p21 promoted drug-induced DNA damage in melanoma cells and enhanced anti-tumor activity of therapy combining MDM2 antagonist with mitotic kinase inhibitor in mice. In summary, MDM2 antagonists may reduce DNA damaging effects of anti-cancer drugs if they are administered together, while targeting p21 can improve the efficacy of such combinations.

  11. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    Science.gov (United States)

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  12. Estudo de p27, p21, p16 em epitélio escamoso normal, papiloma escamoso e carcinoma de células escamosas da cavidade oral Comparative analysis of the immunohistochemistry expression of p27, p21WAF/Cip1, and p16INK4a in oral normal epithelium, squamous papilloma and squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ana Beatriz Piazza Queiroz

    2009-12-01

    Full Text Available INTRODUÇÃO E OBJETIVO: O tipo de câncer oral mais frequente é o carcinoma de células escamosas, que corresponde a 95% dos casos(9. O papiloma escamoso oral é uma neoplasia benigna normalmente associada à infecção pelo papilomavírus humano (HPV(21. A análise da literatura mostra alterações nos genes reguladores do ciclo celular p27, p21WAF/Cip1 e p16INK4a, porém sem uma definição de seus papéis na carcinogênese oral. O objetivo foi caracterizar imuno-histoquimicamente p27, p21WAF/Cip1 e p16NK4a em epitélio escamoso normal, papilomas escamosos e carcinomas de células escamosas da cavidade oral. MÉTODOS: Imuno-histoquímica para p27, p21WAF/Cip1 e p16NK4a em 32 casos de epitélio escamoso normal, 30 casos de papiloma escamoso e 34 de carcinoma de células escamosas da cavidade oral. RESULTADOS: p27: 97,06% dos casos de carcinoma de células escamosas apresentaram imunopositividade focal. O grupo papiloma escamoso apresentou 33,33% e o grupo controle, 18,75%. p21WAF/Cip1: 100% de imunopositividade focal tanto no grupo controle como no grupo carcinoma de células escamosas, e 90% no grupo papiloma escamoso. p16INK4a: 100% de imunopositividade focal para os grupos controle e papiloma escamoso, e 94% para o grupo carcinoma de células escamosas. CONCLUSÃO: Imuno-histoquimicamente demonstrou-se diferença significativa para p27 quando feita comparação dos grupos controle e papiloma escamoso com o grupo carcinoma de células escamosas. O p21WAF/Cip1 não demonstrou poder de diferenciar os grupos analisados. O p16INK4a apresentou imunopositividade difusa em uma minoria dos casos do grupo carcinoma de células escamosas. O grupo papiloma escamoso se comportou de maneira similar ao grupo controle em relação aos três marcadores.INTRODUCTION: The most frequent type of oral cancer is the squamous cell carcinoma, which corresponds to 95% of the cases(9.The oral squamous papilloma is a benign neoplasia, commonly associated with

  13. Frequent alteration of MDM2 and p53 in the molecular progression of recurring non-Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Nielsen, O; Pedersen, Niels Tinggaard

    2002-01-01

    -Hodgkin's lymphoma. METHODS AND RESULTS: We have analysed sequential biopsies from 42 non-Hodgkin's lymphoma patients immunohistochemically for p53 alterations (based on p53 and p21Waf1 expression), as well as for expression of MDM2, p27Kip1 and cyclin D3. Relapse of follicle centre lymphoma was associated with p53...... alterations as 5/6 (83%) follicle centre lymphomas with normal p53 at diagnosis showed p53 alterations at relapse. Of these cases, three showed transformation to diffuse large B-cell lymphoma. p53 alteration was also associated with relapse of de novo diffuse large B-cell lymphoma and T-cell non......-Hodgkin's lymphoma, as 2/5 (40%) diffuse large B-cell lymphomas and 3/9 (33%) T-cell non-Hodgkin's lymphomas with normal p53 at diagnosis showed p53 alterations at relapse. No indolent non-Hodgkin's lymphoma case showed MDM2 over-expression at diagnosis, whereas 4/5 (80%) transformed diffuse large B-cell lymphomas...

  14. Expression of proteins FGFR3, PI3K, AKT, p21Waf1/Cip1 and cyclins D1 and D3 in patients with T1 bladder tumours: clinical implications and prognostic significance.

    Science.gov (United States)

    Blanca Pedregosa, A M; Sánchez-González, Á; Carrasco Valiente, J; Ruiz García, J M; Gómez Gómez, E; López Beltrán, A; Requena Tapia, M J

    2017-04-01

    To determine the differential protein expression of biomarkers FGFR3, PI3K (subunits PI3Kp110α, PI3KClassIII, PI3Kp85), AKT, p21Waf1/Cip1 and cyclins D1 and D3 in T1 bladder cancer versus healthy tissue and to study their potential role as early recurrence markers. This is a prospective study that employed a total of 67 tissue samples (55 cases of T1 bladder tumours that underwent transurethral resection and 12 cases of adjacent healthy mucosa). The protein expression levels were assessed using Western blot, and the means and percentages were compared using Student's t-test and the chi-squared test. The survival analysis was conducted using the Kaplan-Meier method and the log-rank test. Greater protein expression was detected for FGFR3, PI3Kp110α, PI3KClassIII, cyclins D1 and D3 and p21Waf1/Cip1 in the tumour tissue than in the healthy mucosa. However, these differences were not significant for PI3Kp85 and AKT. We observed statistically significant correlations between early recurrence and PI3Kp110α, PI3KClassIII, PI3Kp85 and AKT (P=.003, P=.045, P=.050 and P=.028, respectively), between the tumour type (primary vs. recurrence) and cyclin D3 (P=.001), between the tumour size and FGFR3 (P=.035) and between multifocality and cyclin D1 (P=.039). The survival analysis selected FGFR3 (P=.024), PI3Kp110α (P=.014), PI3KClassIII (P=.042) and AKT (P=.008) as markers of early-recurrence-free survival. There is an increase in protein expression levels in bladder tumour tissue. The overexpression of FGFR3, PI3Kp110α, PI3KClassIII and AKT is associated with increased early-recurrence-free survival for patients with T1 bladder tumours. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. DNA damage responsive miR-33b-3p promoted lung cancer cells survival and cisplatin resistance by targeting p21WAF1/CIP1.

    Science.gov (United States)

    Xu, Shun; Huang, Haijiao; Chen, Yu-Ning; Deng, Yun-Ting; Zhang, Bing; Xiong, Xing-Dong; Yuan, Yuan; Zhu, Yanmei; Huang, Haiyong; Xie, Luoyijun; Liu, Xinguang

    2016-11-01

    Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, the development of resistance to cisplatin is a major obstacle in clinical therapy. The principal mechanism of cisplatin is the induction of DNA damage, thus the capability of DNA damage response (DDR) is a key factor that influences the cisplatin sensitivity of cancer cells. Recent advances have demonstrated that miRNAs (microRNAs) exerted critical roles in DNA damage response; nonetheless, the association between DNA damage responsive miRNAs and cisplatin resistance and its underlying molecular mechanism still require further investigation. The present study has attempted to identify differentially expressed miRNAs in cisplatin induced DNA damage response in lung cancer cells, and probe into the effects of the misexpressed miRNAs on cisplatin sensitivity. Deep sequencing showed that miR-33b-3p was dramatically down-regulated in cisplatin-induced DNA damage response in A549 cells; and ectopic expression of miR-33b-3p endowed the lung cancer cells with enhanced survival and decreased γH2A.X expression level under cisplatin treatment. Consistently, silencing of miR-33b-3p in the cisplatin-resistant A549/DDP cells evidently sensitized the cells to cisplatin. Furthermore, we identified CDKN1A (p21) as a functional target of miR-33b-3p, a critical regulator of G1/S checkpoint, which potentially mediated the protection effects of miR-33b-3p against cisplatin. In aggregate, our results suggested that miR-33b-3p modulated the cisplatin sensitivity of cancer cells might probably through impairing the DNA damage response. And the knowledge of the drug resistance conferred by miR-33b-3p has great clinical implications for improving the efficacy of chemotherapies for treating lung cancers.

  16. Synergistic targeting of malignant pleural mesothelioma cells by MDM2 inhibitors and TRAIL agonists

    Science.gov (United States)

    Urso, Loredana; Biasini, Lorena; Zago, Giulia; Calabrese, Fiorella; Conte, Pier Franco; Ciminale, Vincenzo; Pasello, Giulia

    2017-01-01

    Malignant Pleural Mesothelioma (MPM) is a chemoresistant tumor characterized by low rate of p53 mutation and upregulation of Murine Double Minute 2 (MDM2), suggesting that it may be effectively targeted using MDM2 inhibitors. In the present study, we investigated the anticancer activity of the MDM2 inhibitors Nutlin 3a (in vitro) and RG7112 (in vivo), as single agents or in combination with rhTRAIL. In vitro studies were performed using MPM cell lines derived from epithelioid (ZL55, M14K), biphasic (MSTO211H) and sarcomatoid (ZL34) MPMs. In vivo studies were conducted on a sarcomatoid MPM mouse model. In all the cell lines tested (with the exception of ZL55, which carries a biallelic loss-of-function mutation of p53), Nutlin 3a enhanced p21, MDM2 and DR5 expression, and decreased survivin expression. These changes were associated to cell cycle arrest but not to a significant induction of apoptosis. A synergistic pro-apoptotic effect was obtained through the association of rhTRAIL in all the cell lines harboring functional p53. This synergistic interaction of MDM2 inhibitor and TRAIL agonist was confirmed using a mouse preclinical model. Our results suggest that the combined targeting of MDM2 and TRAIL might provide a novel therapeutic option for treatment of MPM patients, particularly in the case of sarcomatoid MPM with MDM2 overexpression and functional inactivation of wild-type p53. PMID:28562336

  17. The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells.

    Science.gov (United States)

    Rosato, Roberto R; Almenara, Jorge A; Cartee, Leanne; Betts, Vicki; Chellappan, Srikumar P; Grant, Steven

    2002-02-01

    Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and the histone deacetylase inhibitor sodium butyrate (SB) have been examined in human leukemia cells (U937) in relation to differentiation and apoptosis. Whereas 1 mM of SB or 100 nM of FP minimally induced apoptosis (4% and 10%, respectively) at 24 h, simultaneous exposure of U937 cells to these agents dramatically increased cell death (e.g., approximately 60%), reflected by both morphological and Annexin/propidium iodide-staining features, procaspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Similar interactions were observed in human promyelocytic (HL-60), B-lymphoblastic (Raji), and T-lymphoblastic (Jurkat) leukemia cells. Coadministration of FP opposed SB-mediated accumulation of cells in G0G1 and differentiation, reflected by reduced CD11b expression, but instead dramatically increased procaspase-3, procaspase-8, Bid, and poly(ADP-ribose) polymerase cleavage, as well as mitochondrial damage (e.g., loss of mitochondrial membrane potential and cytochrome c release). FP also blocked SB-related p21WAF1-CIP1 induction through a caspase-independent mechanism and triggered the caspase-mediated cleavage of p27KIP1 and retinoblastoma protein. The latter event was accompanied by a marked reduction in retinoblastoma protein/E2F1 complex formation. However, FP did not modify the extent of SB-associated acetylation of histones H3 and H4. Treatment of cells with FP/SB also resulted in the caspase-mediated cleavage of Bcl-2 and caspase-independent down-regulation of Mcl-1. Levels of cyclins A, D1, and E, and X-linked inhibitor of apoptosis also declined in SB/FP-treated cells. Finally, FP/SB coexposure potently induced apoptosis in two primary acute myelogenous leukemia samples. Together, these findings demonstrate that FP, when combined with SB, induces multiple perturbations in cell cycle and apoptosis regulatory proteins, which oppose leukemic cell differentiation but instead

  18. Antisense-MDM2 Sensitizes LNCaP Prostate Cancer Cells to Androgen Deprivation, Radiation, and the Combination In Vivo

    International Nuclear Information System (INIS)

    Stoyanova, Radka; Hachem, Paul; Hensley, Harvey; Khor, L.-Y.; Mu Zhaomei; Hammond, M. Elizabeth H.; Agrawal, Sudhir; Pollack, Alan

    2007-01-01

    Purpose: To test the effects of antisense (AS)-MDM2 alone and with androgen deprivation (AD), radiotherapy (RT), and AD + RT on wild-type LNCaP cells in an orthotopic in vivo model. Methods: Androgen-sensitive LNCaP cells were grown in the prostates of nude mice. Magnetic resonance imaging-based tumor volume and serum prostate-specific antigen (PSA) measurements were used to assess effects on tumor response. Tumor response was measured by biochemical and tumor volume failure definitions and doubling time estimates from fitted PSA and tumor volume growth curves. Expression of MDM2, p53, p21, and Ki-67 was quantified using immunohistochemical staining and image analysis of formalin-fixed tissue, analogous to methods used clinically. Results: Antisense-MDM2 significantly inhibited the growth of LNCaP tumors over the mismatch controls. The most significant increase in tumor growth delay and tumor doubling time was from AS-MDM2 + AD + RT, although the effect of AS-MDM2 + AD was substantial. Expression of MDM2 was significantly reduced by AS-MDM2 in the setting of RT. Conclusions: This is the first in vivo investigation of the effects of AS-MDM2 in an orthotopic model and the first to demonstrate incremental sensitization when added to AD and AD + RT. The results with AD underscore the potential to affect micrometastatic disease, which is probably responsible for treatment failure in 30-40% of men with high-risk disease

  19. The p53-MDM2 network: from oscillations to apoptosis

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Apoptosis; cancer; cell cycle; MDM2 overexpression; tumour suppressor .... model of the p53-MDM2 negative feedback loop included an .... MDM2 overexpression, when subjected to nutlin-3 treatment. Some aspects of the model are similar to those ... A family of proteases termed caspases .... Implications for therapy; Proc.

  20. 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells.

    Science.gov (United States)

    Gong, Yixuan; Sohn, Heesook; Xue, Ling; Firestone, Gary L; Bjeldanes, Leonard F

    2006-05-01

    Epidemiologic evidence suggests that high dietary intake of Brassica vegetables, such as broccoli, cabbage, and Brussels sprouts, protects against tumorigenesis in multiple organs. 3,3'-Diindolylmethane, one of the active products derived from Brassica vegetables, is a promising antitumor agent. Previous studies in our laboratory showed that 3,3'-diindolylmethane induced a G(1) cell cycle arrest in human breast cancer MCF-7 cells by a mechanism that included increased expression of p21. In the present study, the upstream events leading to p21 overexpression were further investigated. We show for the first time that 3,3'-diindolylmethane is a strong mitochondrial H(+)-ATPase inhibitor (IC(50) approximately 20 micromol/L). 3,3'-Diindolylmethane treatment induced hyperpolarization of mitochondrial inner membrane, decreased cellular ATP level, and significantly stimulated mitochondrial reactive oxygen species (ROS) production. ROS production, in turn, led to the activation of stress-activated pathways involving p38 and c-Jun NH(2)-terminal kinase. Using specific kinase inhibitors (SB203580 and SP600125), we showed the central role of p38 and c-Jun NH(2)-terminal kinase (JNK) pathways in 3,3'-diindolylmethane-induced p21 mRNA transcription. In addition, antioxidants significantly attenuated 3,3'-diindolylmethane-induced activation of p38 and JNK and induction of p21, indicating that oxidative stress is the major trigger of these events. To further support the role of ROS in 3,3'-diindolylmethane-induced p21 overexpression, we showed that 3,3'-diindolylmethane failed to induce p21 overexpression in mitochondrial respiratory chain deficient rho(0) MCF-7 cells, in which 3,3'-diindolylmethane did not stimulate ROS production. Thus, we have established the critical role of enhanced mitochondrial ROS release in 3,3'-diindolylmethane-induced p21 up-regulation in human breast cancer cells.

  1. Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India); Choudhuri, Tathagata [Institute of Life Sciences, Nalco Square, Bhubaneswar, Orissa 751023 (India); Department of Biotechnology, Visva Bharati University, Santiniketan, West Bengal (India); Kundu, Chanakya Nath, E-mail: cnkundu@gmail.com [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India)

    2014-03-15

    Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21. - Highlights: • Resveratrol (Res) caused reduction of MCF-10A-Tr cell growth by inducing apoptosis. • Res caused cell cycle arrest and DNA damage in p21 dependent manner. • Res mediated LP-BER reduction in MCF-10A-Tr cells was a p21 dependent phenomenon. • Res inhibits BER and PI

  2. Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway

    International Nuclear Information System (INIS)

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit; Choudhuri, Tathagata; Kundu, Chanakya Nath

    2014-01-01

    Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21. - Highlights: • Resveratrol (Res) caused reduction of MCF-10A-Tr cell growth by inducing apoptosis. • Res caused cell cycle arrest and DNA damage in p21 dependent manner. • Res mediated LP-BER reduction in MCF-10A-Tr cells was a p21 dependent phenomenon. • Res inhibits BER and PI

  3. MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration.

    Science.gov (United States)

    Ebrahim, Martrez; Mulay, Shrikant R; Anders, Hans-Joachim; Thomasova, Dana

    2015-11-01

    Murine double minute (MDM)-2 is an intracellular molecule with diverse biological functions. It was first described to limit p53-mediated cell cycle arrest and apoptosis, hence, gain of function mutations are associated with malignancies. This generated a rationale for MDM2 being a potential therapeutic target in cancer therapy. Meanwhile, several additional functions and pathogenic roles of MDM2 have been identified that either enforce therapeutic MDM2 blockade or raise caution about potential side effects. MDM2 is also required for organ development and tissue homeostasis because unopposed p53 activation leads to p53-overactivation-dependent cell death, referred to as podoptosis. Podoptosis is caspase-independent and, therefore, different from apoptosis. The mitogenic role of MDM2 is also needed for wound healing upon tissue injury, while MDM2 inhibition impairs re-epithelialization upon epithelial damage. In addition, MDM2 has p53-independent transcription factor-like effects in nuclear factor-kappa beta (NFκB) activation. Therefore, MDM2 promotes tissue inflammation and MDM2 inhibition has potent anti-inflammatory effects in tissue injury. Here we review the biology of MDM2 in the context of tissue development, homeostasis, and injury and discuss how the divergent roles of MDM2 could be used for certain therapeutic purposes. MDM2 blockade had mostly anti-inflammatory and anti-mitotic effects that can be of additive therapeutic efficacy in inflammatory and hyperproliferative disorders such as certain cancers or lymphoproliferative autoimmunity, such as systemic lupus erythematosus or crescentic glomerulonephritis.

  4. MDM2 binds and inhibits vitamin D receptor

    OpenAIRE

    Heyne, Kristina; Heil, Tessa-Carina; Bette, Birgit; Reichrath, Jörg; Roemer, Klaus

    2015-01-01

    The E3 ubiquitin ligase and transcriptional repressor MDM2 is a potent inhibitor of the p53 family of transcription factors and tumor suppressors. Herein, we report that vitamin D receptor (VDR), another transcriptional regulator and probably, tumor suppressor, is also bound and inhibited by MDM2. This interaction was not affected by vitamin D ligand. VDR was ubiquitylated in the cell and its steady-state level was controlled by the proteasome. Strikingly, overproduced MDM2 reduced the level ...

  5. Characterization of cancer-associated missense mutations in MDM2

    OpenAIRE

    Chauhan, Krishna M.; Ramakrishnan, Gopalakrishnan; Kollareddy, Madhusudhan; Martinez, Luis A.

    2015-01-01

    MDM2 is an E3 ubiquitin ligase that binds the N-terminus of p53 and promotes its ubiquitin-dependent degradation. Elevated levels of MDM2 due to overexpression or gene amplification can contribute to tumor development by suppressing p53 activity. Since MDM2 is an oncogene, we explored the possibility that other genetic lesions, namely missense mutations, might alter its activities. We selected mutations in MDM2 that reside in one of the 4 key regions of the protein: p53 binding domain, acidic...

  6. Chromatin-bound MDM2, a new player in metabolism.

    Science.gov (United States)

    Riscal, Romain; Le Cam, Laurent; Linares, Laetitia K

    2016-01-01

    The oncoprotein MDM2 is recognized as a major negative regulator of the p53 tumor suppressor but growing evidence indicates that its oncogenic activities extend beyond p53. We show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis.

  7. The organization and expression of the mdm2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Montes De Oca Luna, R.; Tabor, A.D.; Eberspaecher, H. [Univ. of Texas, Houston, TX (United States)] [and others

    1996-05-01

    The mdm2 gene encodes a zinc finger protein that negatively regulates p53 function by binding and masking the p53 transcriptional activation domain. Two different promoters control expression of mdm2, one of which is also transactivated by p53. We cloned and characterized the mdm2 gene from a murine 129 library. It contained at least 12 exons and spanned approximately 25 kb of DNA. Sequencing of the mdm2 gene revealed three nucleotide differences that resulted in amino acid substitutions in the previously published mdm2 sequence. Sequences of normal BalbC/J DNA and the original cosmid clone is isolated from the 3T3DM cell line revealed that they are identical, suggesting that the published sequence is in error at these three positions. In addition, we analyzed the expression pattern of mdm2 and found ubiquitous low-level expression throughout embryo development and in adult tissues. Analysis of mRNA from numerous tissues for several mdm2 spliced variants that had been identified in the transformed 3T3DM cell line revealed that these variants could not be detected in the developing embryo or in adult tissues. 25 refs., 3 figs., 2 tabs.

  8. The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chu, Jan-Show [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shu-Pin [Department of Urology, Kaohsiung Medical University Hospital, College of Medicine Kaohsiung Medical University, Kaohsiung, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Yang, Hsiu-Yuan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2011-12-15

    Our recent study demonstrated the increased risk of renal cell carcinoma (RCC) associated with high urinary total arsenic levels among people living in a low arsenic exposure area. Genomic instability is important in arsenic carcinogenesis. This study evaluated the relationship between the polymorphisms of p53, p21, and MDM2, which plays a role in gene stability, and the arsenic-related RCC risk. Here, we found that p53 Pro/Pro genotype and MDM2 SNP309 GG genotype significantly increased RCC risk compared to the p53 Arg/Arg genotype and MDM2 SNP309 TT genotype. RCC patients with the p53Arg/Arg genotype had a signicantly low percentage of inorganic arsenic, a low percentage of monomethylarsonic acid (MMA), and a high percentage of dimethylarsinic acid (DMA), which indicates efcient arsenic methylation capacity. Subjects with the p53 Arg/Pro + Pro/Pro genotype or MDM2 SNP309 TG + GG genotype, in conjunction with high urinary total arsenic ({>=} 14.02 {mu}g/L), had a signicantly higher RCC risk than those with the p53 Arg/Arg or MDM2 SNP309 TT genotypes and low urinary total arsenic. Taken together, this is the first study to show that a variant genotype of p53 Arg{sup 72}Pro or MDM2 SNP309 may modify the arsenic-related RCC risk even in a non-obvious arsenic exposure area. -- Highlights: Black-Right-Pointing-Pointer Subjects with p53 Pro/Pro or MDM2 GG genotype significantly increased RCC risk. Black-Right-Pointing-Pointer A significant multiplicative joint effect of p53 and p21 on RCC risk. Black-Right-Pointing-Pointer RCC patients with p53 Arg/Arg genotype had efficient arsenic methylation capacity. Black-Right-Pointing-Pointer Joint effect of p53 or MDM2 genotype and high urinary total arsenic on RCC risk.

  9. Nanoparticle-Mediated Rescue of p53 Through Targeted Degradation of MDM2

    National Research Council Canada - National Science Library

    Fischer, Nicholas; Rotello, Vincent M

    2004-01-01

    .... By incorporating traditional peptide inhibitors of mdm2 with mixed monolayer protected gold cluster nanoparticles, we hope to effect mdm2 denaturation on the nanoparticle surface, increase peptide...

  10. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics.

    Directory of Open Access Journals (Sweden)

    Gennady M Verkhivker

    Full Text Available Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between "closed" and "semi-closed" lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of "semi-closed" conformations. The dominant "semi-closed" lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2

  11. A dynamic P53-MDM2 model with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Mihalas, Gh.I. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: mihalas@medinfo.umft.ro; Neamtu, M. [Department of Forecasting, Economic Analysis, Mathematics and Statistics, West University of Timisoara, Str. Pestalozzi, nr. 14A, 300115 Timisoara (Romania)]. E-mail: mihaela.neamtu@fse.uvt.ro; Opris, D. [Department of Applied Mathematics, West University of Timisoara, Bd. V. Parvan, nr. 4, 300223 Timisoara (Romania)]. E-mail: opris@math.uvt.ro; Horhat, R.F. [Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy, Piata Eftimie Murgu, nr. 3, 300041 Timisoara (Romania)]. E-mail: rhorhat@yahoo.com

    2006-11-15

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results.

  12. A dynamic P53-MDM2 model with time delay

    International Nuclear Information System (INIS)

    Mihalas, Gh.I.; Neamtu, M.; Opris, D.; Horhat, R.F.

    2006-01-01

    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [Mihalas GI, Simon Z, Balea G, Popa E. Possible oscillatory behaviour in P53-MDM2 interaction computer simulation. J Biol Syst 2000;8(1):21-9] and the process described into [Kohn KW, Pommier Y. Molecular interaction map of P53 and MDM2 logic elements, which control the off-on switch of P53 in response to DNA damage. Biochem Biophys Res Commun 2005;331:816-27] we enveloped a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results

  13. Novel insights about the MDM2/MDM4 heterodimer

    OpenAIRE

    Moretti, Fabiola

    2015-01-01

    MDM2 (mouse double minute 2 homolog) and MDM4 (double minute 4 human homolog, also known as MDMX) inhibit the activity of tumor protein p53 (TP53, best known as p53) through their heterodimerization. New evidence indicates that under stress conditions the heterodimer is modified, leading to different activities of the single molecules. In particular, following lethal DNA damage, MDM2 and MDM4 dissociate and MDM4 promotes the stabilization of homeodomain-interacting protein kinase 2 (HIPK2) an...

  14. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing

    DEFF Research Database (Denmark)

    Galanos, Panagiotis; Vougas, Konstantinos; Walter, David

    2016-01-01

    The cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous ...

  15. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L; Stockwell, Brent R

    2007-01-01

    Our proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  16. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L

    2006-01-01

    This proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  17. Autoantibody to MDM2: A Potential Serological Marker of Systemic Lupus Erythematosus

    OpenAIRE

    Liu, Yuan; Dai, Liping; Liu, Weihong; Shi, Guixiu; Zhang, Jianying

    2015-01-01

    Introduction. Systemic lupus erythematosus (SLE) is one of the systemic autoimmune diseases characterized by the polyclonal autoantibody production. The human homologue of the mouse double minute 2 (MDM2) is well known as the negative regulator of p53. MDM2 has been reported to be overexpressed in SLE animal model and to promote SLE. Since abnormally expressed proteins can induce autoimmune response, anti-MDM2 autoantibody was examined in SLE patients. Methods. Anti-MDM2 antibody in sera from...

  18. Fibroid explants reveal a higher sensitivity against MDM2-inhibitor nutlin-3 than matching myometrium

    Directory of Open Access Journals (Sweden)

    Markowski Dominique N

    2012-01-01

    Full Text Available Abstract Background Spontaneous cessation of growth is a frequent finding in uterine fibroids. Increasing evidence suggests an important role of cellular senescence in this growth control. Deciphering the underlying mechanisms of growth control that can be expected not only to shed light on the biology of the tumors but also to identify novel therapeutic targets. Methods We have analyzed uterine leiomyomas and matching normal tissue for the expression of p14Arf and used explants to see if reducing the MDM2 activity using the small-molecule inhibitor nutlin-3 can induce p53 and activate genes involved in senescence and/or apoptosis. For these studies quantitative real-time RT-PCR, Western blots, and immunohistochemistry were used. Statistical analyses were performed using the student's t test. Results An in depth analysis of 52 fibroids along with matching myometrium from 31 patients revealed in almost all cases a higher expression of p14Arf in the tumors than in the matching normal tissue. In tissue explants, treatment with the MDM2 inhibitor nutlin-3 induced apoptosis as well as senescence as revealed by a dose-dependent increase of the expression of BAX as well as of p21, respectively. Simultaneously, the expression of the proliferation marker Ki-67 drastically decreased. Western-blot analysis identified an increase of the p53 level as the most likely reason for the increased activity of its downstream markers BAX and p21. Because as a rule fibroids express much higher levels of p14Arf, a major negative regulator of MDM2, than matching myometrium it was then analyzed if fibroids are more sensitive against nutlin-3 treatment than matching myometrium. We were able to show that in most fibroids analyzed a higher sensibility than that of matching myometrium was noted with a corresponding increase of the p53 immunopositivity of the fibroid samples compared to those from myometrium. Conclusions The results show that uterine fibroids represent a cell

  19. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP

    Directory of Open Access Journals (Sweden)

    Hsueh Chung-Tsen

    2011-04-01

    Full Text Available Abstract We reviewed preclinical data and clinical development of MDM2 (murine double minute 2, ALK (anaplastic lymphoma kinase and PARP (poly [ADP-ribose] polymerase inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC. Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.

  20. A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction

    NARCIS (Netherlands)

    Surmiak, Ewa; Twarda-Clapa, Aleksandra; Zak, Krzysztof M.; Musielak, Bogdan; Tomala, Marcin D.; Kubica, Katarzyna; Grudnik, Przemyslaw; Madej, Mariusz; Jablonski, Mateusz; Potempa, Jan; Kalinowska-Tluscik, Justyna; Dömling, Alexander; Dubin, Grzegorz; Holak, Tad A.

    2016-01-01

    The p53 pathway is inactivated in almost all types of cancer by mutations in the p53 encoding gene or overexpression of the p53 negative regulators, Mdm2 and/or Mdmx. Restoration of the p53 function by inhibition of the p53-Mdm2/Mdmx interaction opens up a prospect for a nongenotoxic anticancer

  1. Structural Basis of Competitive Recognition of p53 and MDM2 by HAUSP/USP7: Implications for the Regulation of the p53-MDM2 Pathway.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7, a deubiquitylating enzyme of the ubiquitin-specific processing protease family, specifically deubiquitylates both p53 and MDM2, hence playing an important yet enigmatic role in the p53-MDM2 pathway. Here we demonstrate that both p53 and MDM2 specifically recognize the N-terminal tumor necrosis factor-receptor associated factor (TRAF-like domain of HAUSP in a mutually exclusive manner. HAUSP preferentially forms a stable HAUSP-MDM2 complex even in the presence of excess p53. The HAUSP-binding elements were mapped to a peptide fragment in the carboxy-terminus of p53 and to a short-peptide region preceding the acidic domain of MDM2. The crystal structures of the HAUSP TRAF-like domain in complex with p53 and MDM2 peptides, determined at 2.3-A and 1.7-A resolutions, respectively, reveal that the MDM2 peptide recognizes the same surface groove in HAUSP as that recognized by p53 but mediates more extensive interactions. Structural comparison led to the identification of a consensus peptide-recognition sequence by HAUSP. These results, together with the structure of a combined substrate-binding-and-deubiquitylation domain of HAUSP, provide important insights into regulation of the p53-MDM2 pathway by HAUSP.

  2. Pharmacological targeting of Mdm2: Rationale and perspectives for radiosensitization; Ciblage pharmacologique de Mdm2: bases biologiques et perspectives de radiosensibilisation

    Energy Technology Data Exchange (ETDEWEB)

    Chargari, C. [Upres EA 27-10, laboratoire de radiobiologie, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); Service d' oncologie radiotherapie, hopital d' instruction des armees du Val-de-Grace, 74, boulevard de Port-Royal, 75230 Paris cedex 5 (France); Leteur, C.; Ferte, C.; Deberne, M.; Lahon, B.; Rivera, C. [Upres EA 27-10, laboratoire de radiobiologie, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); Bourhis, J.; Deutsch, E. [Upres EA 27-10, laboratoire de radiobiologie, institut de cancerologie Gustave-Roussy, 114, rue edouard-Vaillant, 94805 Villejuif (France); UMR 1030, universite Paris-Sud 11, 114, rue edouard-Vaillant, 94805 Villejuif (France)

    2011-07-15

    The central role of p53 after exposure to ionizing radiation has been widely demonstrated. Mdm2, the main cellular regulator of p53, is a promising target for radiosensitizing purposes. In this article, we review the most recent data on the pharmacological targeting of Mdm2, with focus on strategies of radiosensitization. Antitumor activity of Mdm2 inhibitors has been related with activation of p53-dependant apoptosis, action on DNA repair systems, and anti-angiogenic activity. Preliminary data suggested a synergic interaction between Mdm2 inhibitors and ionizing radiations. However, no clinical data has been published yet on the pharmacological targeting of Mdm2. Given their new mechanisms of action, these new molecules should be subject to careful clinical assessment. Although promising, these strategies expose to unexpected toxicities. (authors)

  3. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    International Nuclear Information System (INIS)

    Kasim, Vivi; Huang, Can; Zhang, Jing; Jia, Huizhen; Wang, Yunxia; Yang, Li; Miyagishi, Makoto; Wu, Shourong

    2014-01-01

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. We further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73

  4. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Kasim, Vivi, E-mail: vivikasim78@gmail.com [The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Huang, Can; Zhang, Jing; Jia, Huizhen; Wang, Yunxia [The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Yang, Li [The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Miyagishi, Makoto [Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566 (Japan); Wu, Shourong, E-mail: shourongwu@hotmail.com [The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2014-07-04

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. We further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.

  5. Oncoprotein MDM2 Overexpression is Associated with Poor Prognosis in Distinct Non-Hodgkin's Lymphoma Entities

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Nielsen, O; Pedersen, Niels Tinggaard

    1999-01-01

    MDM2 is an oncoprotein involved in the regulation of p53. MDM2 exerts its tumorigenic potential through p53-dependent and -independent mechanisms. It is frequently overexpressed in various malignancies. Little is known about the prognostic value of MDM2 expression in non-Hodgkin's lymphomas (NHL...... overexpression was present in 42 (22%) of 188 cases. The frequency was highest in aggressive/very aggressive NHL (P lymphomas, MDM2 overexpression was associated with higher-grade disease (P = .008). MDM2 overexpression was not related to a phenotype indicating...... altered p53. In univariate analysis MDM2 overexpression associated with short survival in follicle center lymphomas (P = .0256), extranodal marginal zone lymphomas (P lymphomas (P = .0047). The relation to poor prognosis was maintained in a Cox regression analysis including known...

  6. Serdemetan antagonizes the Mdm2-HIF1α axis leading to decreased levels of glycolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Jason A Lehman

    Full Text Available Serdemetan (JNJ-26854165, an antagonist to Mdm2, was anticipated to promote the activation of p53. While regulation of p53 by Mdm2 is important, Mdm2 also regulates numerous proteins involved in diverse cellular functions. We investigated if Serdemetan would alter the Mdm2-HIF1α axis and affect cell survival in human glioblastoma cells independently of p53. Treatment of cells with Serdemetan under hypoxia resulted in a decrease in HIF1α levels. HIF1α downstream targets, VEGF and the glycolytic enzymes (enolase, phosphoglycerate kinase1/2, and glucose transporter 1, were all decreased in response to Serdemetan. The involvement of Mdm2 in regulating gene expression of glycolytic enzymes raises the possibility of side effects associated with therapeutically targeting Mdm2.

  7. Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Feddersen, Søren; Francoz, S.

    2012-01-01

    The role of the E3 ubiquitin ligase murine double minute 2 (Mdm2) in regulating the stability of the p53 tumor suppressor is well documented. By contrast, relatively little is known about p53-independent activities of Mdm2 and the role of Mdm2 in cellular differentiation. Here we report a novel r...... in the myoblast cell line C2C12, it is conceivable that Mdm2 acts as a switch in cell fate determination. Cell Death and Differentiation (2012) 19, 1381-1389; doi:10.1038/cdd.2012.15; published online 2 March 2012...

  8. Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Takuya Kamio

    Full Text Available MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA and in 5q- myelodysplastic syndrome (MDS. DBA and 5q- MDS are associated with inherited (DBA or acquired (5q- MDS haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F, retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM, these mice showed a significant decrease in Ter119hi cells compared to wild type (WT littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01. This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko. Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK cells, accompanied by significant decreases in multipotent progenitor (MPP cells (p < 0.01. Competitive BM repopulation experiments

  9. Cloning of the rat Waf1/Cip1 gene

    International Nuclear Information System (INIS)

    Belinsky, S.A.; Middleton, S.K.

    1994-01-01

    The progression of eukaryotic cells through the cell cycle involves the sequential expression of specific genes. This process is regulated by both external and internal stimuli that prevent the cell from prematurely entering the next phase before all macromolecular events have been completed. The activation and subsequent inactivation of cyclin dependent kinases (Cdks) represent one internal stimuli required to regulate the transit of cells from one stage of the cell cycle to the next. Another member of this regulatory cascade is the p53 tumor suppressor gene, which controls a G 1 checkpoint at which the cell cycle can be arrested prior to the initiation of DNA synthesis. Following DNA damage, p53 protein levels rise, and entry into S phase is delayed, presumably to allow time for repair of the lesions. When p53 function is lost, cells containing damaged DNA template enter S phase leading to fixation and propagation of genetic alterations. Recently, evidence linking the growth-suppressing activity of p53 and inactivation of Cdks has been provided by the cloning of the Waf1/Cip1 gene. Waf1/Cip1 encodes a protein of M r 21,000 (p21), which inhibits Cdks in vitro. The overexpression of Waf1/Cip1 in cells inhibits cell growth, suggesting that p21 is a downstream mediator of p53 function. Loss of Waf1/Cip1 gene function could lead to deregulation of the cell cycle and contribute to the development of the neoplastic phenotype in tumors that do not contain mutations in the p53 gene. The purpose of the present investigation was to clone the rat Waf1/Cip1 gene,then determine the frequency for alteration of this gene in lung tumors induced by X-rays

  10. MDM2 promoter SNP344T>A (rs1196333) status does not affect cancer risk

    NARCIS (Netherlands)

    S. Knappskog (Stian); L.B. Gansmo (Liv); P. Romundstad (Pål); M. Bjørnslett (Merete); J. Trovik (Jone); J. Sommerfelt-Pettersen (Jan); E. Løkkevik (Erik); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); P. Devilee (Peter); H.B. Salvesen (Helga); A. Dørum (Anne); K. Hveem (Kristian); L.J. Vatten (Lars); P.E. Lønning (Per )

    2012-01-01

    textabstractThe MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms

  11. MDM2 antagonist Nutlin-3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Lothe Ragnhild A

    2011-05-01

    Full Text Available Abstract Background Frequent failure and severe side effects of current sarcoma therapy warrants new therapeutic approaches. The small-molecule MDM2 antagonist Nutlin-3a activates the p53 pathway and efficiently induces apoptosis in tumours with amplified MDM2 gene and overexpression of MDM2 protein. However, the majority of human sarcomas have normal level of MDM2 and the therapeutic potential of MDM2 antagonists in this group is still unclear. We have investigated if Nutlin-3a could be employed to augment the response to traditional therapy and/or reduce the genotoxic burden of chemotherapy. Methods A panel of sarcoma cell lines with different TP53 and MDM2 status were treated with Nutlin-3a combined with Doxorubicin, Methotrexate or Cisplatin, and their combination index determined. Results Clear synergism was observed when Doxorubicin and Nutlin-3a were combined in cell lines with wild-type TP53 and amplified MDM2, or with Methotrexate in both MDM2 normal and amplified sarcoma cell lines, allowing for up to tenfold reduction of cytotoxic drug dose. Interestingly, Nutlin-3a seemed to potentiate the effect of classical drugs as Doxorubicin and Cisplatin in cell lines with mutated TP53, but inhibited the effect of Methotrexate. Conclusion The use of Nutlin in combination with classical sarcoma chemotherapy shows promising preclinical potential, but since clear biomarkers are still lacking, clinical trials should be followed up with detailed tumour profiling.

  12. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    Science.gov (United States)

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  13. World Area Forecast System (WAFS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Area Forecast System (WAFS) is a worldwide system by which world area forecast centers provide aeronautical meteorological en-route forecasts in uniform...

  14. The relationship between MDM2 expression and tumor thickness and invasion in primary cutaneous malignant melanoma

    Directory of Open Access Journals (Sweden)

    Parvin Rajabi

    2012-01-01

    Full Text Available Background: Malignant melanoma is the most invasive cutaneous tumor which is associated with an incredibly high mortality rate. The most reliable histological factors associated with melanoma prognosis are tumor thickness- measured by the Breslow index- and invasion depth- measured by Clark level. Murine double minute 2 (MDM2 gene inhibits p53-dependent apoptosis. An increase in MDM2 expression has been found in many tumors. This study aimed to investigate MDM2 expression and its correlation with tumor thickness and invasion level in malignant melanoma. Materials and Methods: This study evaluated paraffin blocks from 43 randomly selected patients with primary cutaneous melanoma who referred to the main university pathology center in Isfahan, Iran. MDM2 expression rate was assessed via immunohistochemical techniques and hematoxylin and eosin staining to determine tumor thickness and invasion level. Correlations between MDM2 expression and tumor thickness and invasion were analyzed using Spearman′s correlation coefficient in SPSS 17 . Results: The mean age of patients was 61.2 ± 15 years. Men and women constituted 55.8% and 44.2% of the participants, respectively. The rate of MDM2 positivity was 28.9%. MDM2 expression was directly associated with tumor thickness (r = 0.425; p = 0.002 and weakly with invasion level (r = 0.343; p = 0.01. Conclusions: Despite the low MDM2 expression rate observed in this study, direct relationships between MDM2 positivity and tumor thickness and invasion level were identified. MDM2 expression can thus be suggested as a potential new predictive prognostic factor.

  15. Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53.

    Science.gov (United States)

    Riscal, Romain; Schrepfer, Emilie; Arena, Giuseppe; Cissé, Madi Y; Bellvert, Floriant; Heuillet, Maud; Rambow, Florian; Bonneil, Eric; Sabourdy, Frédérique; Vincent, Charles; Ait-Arsa, Imade; Levade, Thierry; Thibaut, Pierre; Marine, Jean-Christophe; Portais, Jean-Charles; Sarry, Jean-Emmanuel; Le Cam, Laurent; Linares, Laetitia K

    2016-06-16

    The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2.

    Directory of Open Access Journals (Sweden)

    Juan A Bueren-Calabuig

    2015-06-01

    Full Text Available Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29 peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2.

  17. Mdm2 Deficiency Suppresses MYCN-Driven Neuroblastoma Tumorigenesis In Vivo

    Directory of Open Access Journals (Sweden)

    Zaowen Chen

    2009-08-01

    Full Text Available Neuroblastoma is derived from neural crest precursor components of the peripheral sympathetic nervous system and accounts for more than 15% of all pediatric cancer deaths. A clearer understanding of the molecular basis of neuroblastoma is required for novel therapeutic approaches to improve morbidity and mortality. Neuroblastoma is uniformly p53 wild type at diagnosis and must overcome p53-mediated tumor suppression during pathogenesis. Amplification of the MYCN oncogene correlates with the most clinically aggressive form of the cancer, and MDM2, a primary inhibitor of the p53 tumor suppressor, is a direct transcriptional target of, and positively regulated by, both MYCN and MYCC. We hypothesize that MDM2 contributes to MYCN-driven tumorigenesis helping to ameliorate p53-dependent apoptotic oncogenic stress during tumor initiation and progression. To study the interaction of MYCN and MDM2, we generated an Mdm2 haploinsufficient transgenic animal model of neuroblastoma. In Mdm2+/-MYCN transgenics, tumor latency and animal survival are remarkably extended, whereas tumor incidence and growth are reduced. Analysis of the Mdm2/p53 pathway reveals remarkable p53 stabilization counterbalanced by epigenetic silencing of the p19Arf gene in the Mdm2 haploinsufficient tumors. In human neuroblastoma xenograft models, conditional small interfering RNA-mediated knockdown of MDM2 in cells expressing wild-type p53 dramatically suppresses tumor growth in a p53-dependent manner. In summary, we provided evidence for a crucial role for direct inhibition of p53 by MDM2 and suppression of the p19ARF/p53 axis in neuroblastoma tumorigenesis, supporting the development of therapies targeting these pathways.

  18. Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning.

    Science.gov (United States)

    Riaz, Muhammad; Ashfaq, Usman A; Qasim, Muhammad; Yasmeen, Erum; Ul Qamar, Muhammad T; Anwar, Farooq

    2017-10-01

    In most types of cancer, overexpression of murine double minute 2 (MDM2) often leads to inactivation of p53. The crystal structure of MDM2, with a 109-residue amino-terminal domain, reveals that MDM2 has a core hydrophobic region to which p53 binds as an amphipathic α helix. The interface depends on the steric complementarity between MDM2 and the hydrophobic region of p53. Especially, on p53's triad, amino acids Phe19, Trp23 and Leu26 bind to the MDM2 core. Results from studies suggest that the structural motif of both p53 and MDM2 can be attributed to similarities in the amphipathic α helix. Thus, in the current investigation it is hypothesized that the similarity in the structural motif might be the cause of p53 inactivation by MDM2. Hence, molecular docking and phytochemical screening approaches are appraised to inhibit the hydrophobic cleft of MDM2 and to stop p53-MDM2 interaction, resulting in reactivation of p53 activity. For this purpose, a library of 2295 phytochemicals were screened against p53-MDM2 to find potential candidates. Of these, four phytochemicals including epigallocatechin gallate, alvaradoin M, alvaradoin E and nordihydroguaiaretic acid were found to be potential inhibitors of p53-MDM2 interaction. The screened phytochemicals, derived from natural extracts, may have negligible side effects and can be explored as potent antagonists of p53-MDM2 interactions, resulting in reactivation of the normal transcription of p53.

  19. The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation

    DEFF Research Database (Denmark)

    Guerra, B; Götz, C; Wagner, P

    1997-01-01

    The oncogene product MDM2 can be phosphorylated by protein kinase CK2 in vitro 0.5-1 mol of phosphate were incorporated per mol MDM2 protein. The catalytic subunit of protein kinase CK2 (alpha-subunit) catalyzed the incorporation of twice as much phosphate into the MDM2 protein as it was obtained...

  20. MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3

    DEFF Research Database (Denmark)

    Hallenborg, P.; Siersbæk, M.; Barrio-Hernandez, I.

    2016-01-01

    on activation of the STAT family of transcription factors. Their activation was required for the cAMP-mediated induction of target genes. Interestingly, rather than influencing all cAMP-stimulated genes, inhibition of the kinases directly responsible for STAT activation, namely JAKs, or ablation of MDM2, each......The ubiquitin ligase MDM2 is best known for balancing the activity of the tumor suppressor p53. We have previously shown that MDM2 is vital for adipocyte conversion through controlling Cebpd expression in a p53-independent manner. Here, we show that the proadipogenic effect of MDM2 relies...... resulted in abolished induction of a subset of cAMP-stimulated genes, with Cebpd being among the most affected. Moreover, STATs were able to interact with the transcriptional cofactors CRTC2 and CRTC3, hitherto only reported to associate with the cAMP-responsive transcription factor CREB. Last...

  1. Overexpression of p53, MDM2 proteins in some atr radiation-induced skin ulcers

    International Nuclear Information System (INIS)

    Gu Qingyang; Gao Yabing; Wang Dewen; Cui Yufang; Zhao Po; Yang Zhixiang; Zhou Jie

    2000-01-01

    An animal model of radiation-induced skin ulcer was set up with 140 rats, which were locally irradiated with 35-55 Gy γ-rays. The pathological changes were observed for 1 year. Immunohistochemical studies were performed in 72 rat radiation skin ulcer specimens using anti-p53 and anti-MDM2 proteins polyclonal antibodies. The results showed that the positive rate for overexpression of p53 protein was 9.7%, and for that of MDM2 was 19.4%. The overexpression of p53 was mainly seen in the nuclei of activated squamous epithelial cells, and in fibroblasts, endotheliocytes in deeper part of the skin ulcers. The overexpression of MDM2 had the same localizations. It is suggested that the changes of p53 and MDM2, genes and proteins, may be related to the cancer transformation and poor healing of radiation-induced skin ulcers

  2. Polymorphism of MDM2 promoter 309 (rs 2279744) and the risk of PCOS.

    Science.gov (United States)

    Chan, Ying; Jiang, Hongguo; Yang, Xiaoling; Li, Dongya; Ma, Lan; Luo, Ying; Tang, Wenru

    2016-01-01

    This study aimed at evaluating possible association between MDM2 SNP309 polymorphism (rs 2279744) and polycystic ovary syndrome (PCOS). One hundred and twenty-five women with PCOS and two hundred and fifty women without PCOS were collected from the department of reproductive medicine of college hospital in this case-control study. Peripheral blood samples were collected from all participants and DNA was extracted, MDM2 SNP309 polymorphism (rs 2279744) was determined from the 125 cases and 250 controls. Women were grouped into PCOS (n = 125) group and control group (n = 250). Odds ratios (OR) and 95% confidence intervals (CI) were used to evaluate the association between MDM2 SNP309 polymorphism (rs 2279744) and PCOS. The distribution of T allele was significant higher in PCOS cases than controls. MDM2 SNP 309 T allele is associated with PCOS.

  3. Genetic association between polymorphism of mdm2 gene and symptoms and pathological types of NSCLC

    International Nuclear Information System (INIS)

    Liu Xiaolan; Wang Weili; Zhang Xueying; Hao Ming; Liu Linlin; Wu Zhenfeng; Jiang Hongwei

    2008-01-01

    Objective: To investigate the genetic association between polymorphism of mdm2 gene and symptoms and pathological types of non-small cell lung cancer (NSCLC). Methods: Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) was used to identify mdm2 genotypes. The Pearson Chi square test and Woolf statistic method were used to analyze the relative risk and 95% confidence interval (CI) in order to find the genetic association between polymorphism of mdm2 gene and symptoms and pathological types of NSCLC. Results: In the SNP rs1196337 (a G to A base change) AA genotype showed association with cough of NSCLC (P<0.05). Conclusion: The polymorphism of mdm2 gene may be associated with symptom as cough of NSCLC. (authors)

  4. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway

    International Nuclear Information System (INIS)

    Li Jing; Wang Yuequn; Fan Xiongwei; Mo Xiaoyang; Wang Zequn; Li Yongqing; Yin Zhaochu; Deng Yun; Luo Na; Zhu Chuanbing; Liu Mingyao; Ma Qian; Ocorr, Karen; Yuan Wuzhou; Wu Xiushan

    2007-01-01

    We have cloned a novel KRAB-related zinc finger gene, ZNF307, encoding a protein of 545 aa. ZNF307 is conserved across species in evolution and is differentially expressed in human adult and fetal tissues. The fusion protein of EGFP-ZNF307 localizes in the nucleus. Transcriptional activity assays show ZNF307 suppresses transcriptional activity of L8G5-luciferase. Overexpressing ZNF307 in different cell lines also inhibits the transcriptional activities of p53 and p21. Moreover, ZNF307 works by reducing the p53 protein level and p53 protein reduction is achieved by increasing transcription of MDM2 and EP300. ZNF307 might suppress p53-p21 pathway through activating MDM2 and EP300 expression and inducing p53 degradation

  5. MDM2 controls NRF2 antioxidant activity in prevention of diabetic kidney disease.

    Science.gov (United States)

    Guo, Weiying; Tian, Dan; Jia, Ye; Huang, Wenlin; Jiang, Mengnan; Wang, Junnan; Sun, Weixia; Wu, Hao

    2018-04-26

    Oxidative stress and P53 contribute to the pathogenesis of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system, is negatively regulated by P53 and prevents DKD. Recent findings revealed an important role of mouse double minute 2 (MDM2) in protection against DKD. However, the mechanism remained unclear. We hypothesized that MDM2 enhances NRF2 antioxidant signaling in DKD given that MDM2 is a key negative regulator of P53. The MDM2 inhibitor nutlin3a elevated renal P53, inhibited NRF2 signaling and induced oxidative stress, inflammation, fibrosis, DKD-like renal pathology and albuminuria in the wild-type (WT) non-diabetic mice. These effects exhibited more prominently in nutlin3a-treated WT diabetic mice. Interestingly, nutlin3a failed to induce greater renal injuries in the Nrf2 knockout (KO) mice under both the diabetic and non-diabetic conditions, indicating that NRF2 predominantly mediates MDM2's action. On the contrary, P53 inhibition by pifithrin-α activated renal NRF2 signaling and the expression of Mdm2, and attenuated DKD in the WT diabetic mice, but not in the Nrf2 KO diabetic mice. In high glucose-treated mouse mesangial cells, P53 gene silencing completely abolished nutlin3a's inhibitory effect on NRF2 signaling. The present study demonstrates for the first time that MDM2 controls renal NRF2 antioxidant activity in DKD via inhibition of P53, providing MDM2 activation and P53 inhibition as novel strategies in the management of DKD. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas.

    Science.gov (United States)

    Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang

    2016-11-15

    Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs.25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2.In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance.

  7. Identification of functional DNA variants in the constitutive promoter region of MDM2

    Directory of Open Access Journals (Sweden)

    Lalonde Marie-Eve

    2012-09-01

    Full Text Available Abstract Although mutations in the oncoprotein murine double minute 2 (MDM2 are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2, which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1, which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (−1494 G > A; indel 40 bp; and −182 C > G. Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309. Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40 bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.

  8. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhihong; Zhang, Yuxia [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States); Wang, Li, E-mail: l.wang@hsc.utah.edu [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  9. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    International Nuclear Information System (INIS)

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-01

    Highlights: ► Mdm2 enhances HNF4α activation of the ApoCIII promoter via interaction with HNF4α. ► p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. ► SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. ► Mdm2 alters the enrichment of HNF4α, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4α. A direct association of Mdm2 protein with the HNF4α protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4α activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4α to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  10. Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Michael I. Carr

    2016-09-01

    Full Text Available ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2S394A knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eμ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2S394A mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2S394A mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies.

  11. Low Prevalence of TP53 Mutations and MDM2 Amplifications in Pediatric Rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Simona Ognjanovic

    2012-01-01

    Full Text Available The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. The reported prevalence of mutations in rhabdomyosarcoma (RMS varies widely, with recent larger studies suggesting that TP53 mutations in pediatric RMS may be extremely rare. Overexpression of MDM2 also attenuates p53 function. We have performed TP53 mutation/MDM2 amplification analyses in the largest series analyzed thus far, including DNA isolated from 37 alveolar and 38 embryonal RMS tumor samples obtained from the Cooperative Human Tissue Network (CHTN. Available samples were frozen tumor tissues (N=48 and histopathology slides. TP53 mutations in exons 4–9 were analyzed by direct sequencing in all samples, and MDM2 amplification analysis was performed by differential PCR on a subset of 22 samples. We found only one sample (1/75, 1.3% carrying a TP53 mutation at codon 259 (p.D259Y and no MDM2 amplification. Two SNPs in the TP53 pathway, associated with accelerated tumor onset in germline TP53 mutation carriers, (TP53 SNP72 (rs no. 1042522 and MDM2 SNP309 (rs no. 2279744, were not found to confer earlier tumor onset. In conclusion, we confirm the extremely low prevalence of TP53 mutations/MDM2 amplifications in pediatric RMS (1.33% and 0%, respectively. The possible inactivation of p53 function by other mechanisms thus remains to be elucidated.

  12. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation.

  13. LRRK2 interacts with ATM and regulates Mdm2-p53 cell proliferation axis in response to genotoxic stress.

    Science.gov (United States)

    Chen, Zhongcan; Cao, Zhen; Zhang, Wei; Gu, Minxia; Zhou, Zhi Dong; Li, Baojie; Li, Jing; Tan, Eng King; Zeng, Li

    2017-11-15

    Pathogenic leucine-rich repeat kinase 2 (LRRK2) mutations are recognized as the most common cause of familial Parkinson's disease in certain populations. Recently, LRRK2 mutations were shown to be associated with a higher risk of hormone-related cancers. However, how LRRK2 itself contributes to cancer risk remains unknown. DNA damage causes cancer, and DNA damage responses are among the most important pathways in cancer biology. To understand the role of LRRK2 in DNA damage response pathway, we induced DNA damage by applying genotoxic stress to the cells with Adriamycin. We found that DNA damage enhances LRRK2 phosphorylation at Serine 910, Serine 935 and Serine 1292. We further showed that LRRK2 phosphorylation is abolished in the absence of ATM, suggesting that LRRK2 phosphorylation requires ATM. It should also be noted that LRRK2 interacts with ATM. In contrast, overexpression or knockdown of LRRK2 does not affect ATM phosphorylation, indicating that LRRK2 is the downstream target of ATM in response to DNA damage. Moreover, we demonstrated that LRRK2 increases the expression of p53 and p21 by increasing the Mdm2 phosphorylation in response to DNA damage. Loss-of-function in LRRK2 has the opposite effect to that of LRRK2. In addition, FACS analysis revealed that LRRK2 enhances cell cycle progression into S phase in response to DNA damage, a finding that was confirmed by 5-bromo-2'-deoxyuridine immunostaining. Taken together, our findings demonstrate that LRRK2 plays an important role in the ATM-Mdm2-p53 pathway that regulates cell proliferation in response to DNA damage. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Expression of p21 and p27 in gallbladder cancer

    International Nuclear Information System (INIS)

    Alsheyab, Fawzi M.; Ziadeh, Moroug T.; Bani-Hani, Kamal E.

    2007-01-01

    To investigate the expression of p21 and p27 factors in gallbladder cancer (GBC), and to correlate their expression with clinicopathological parameters: age, gender, stage, invasion and grade. Thirty-two surgically resected specimens were collected between 1994-2001 from different health centers in north Jordan. Tissues belong to 25 females and 7 males were examined immunohistochemically. The study took place in the Pathology Department, Jordan University of Science and Technology, Jordan. Levels of p21 were found in 75% and p27 in 25%. Furthermore, p21 was expressed in 50% of the specimens which belong to patients with ages 64 years have p 21WAF1/CIP1 expression (p=0.001). The expression of p21 between advanced stages (stages III and IV) was 89.5% and early stages (stages I and II) was 53.8% (p=0.031). The p27 expression was markedly decreased in GBC cases (25%) and there were no significant correlation between p27KIP1 expression and all clinicopathological parameters including gender, World health Organization grades, stages and invasion, whereas expression of p21 was 75% and there was a significant correlation between p21 and clinicopathological parameters including gender, stages and invasion. (author)

  15. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Li, Yue; Stockton, Michael E; Bhuiyan, Ismat; Eisinger, Brian E; Gao, Yu; Miller, Jessica L; Bhattacharyya, Anita; Zhao, Xinyu

    2016-04-27

    Fragile X syndrome, the most common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). However, the mechanism remains unclear, and effective treatment is lacking. We show that loss of FMRP leads to activation of adult mouse neural stem cells (NSCs) and a subsequent reduction in the production of neurons. We identified the ubiquitin ligase mouse double minute 2 homolog (MDM2) as a target of FMRP. FMRP regulates Mdm2 mRNA stability, and loss of FMRP resulted in elevated MDM2 mRNA and protein. Further, we found that increased MDM2 expression led to reduced P53 expression in adult mouse NSCs, leading to alterations in NSC proliferation and differentiation. Treatment with Nutlin-3, a small molecule undergoing clinical trials for treating cancer, specifically inhibited the interaction of MDM2 with P53, and rescued neurogenic and cognitive deficits in FMRP-deficient mice. Our data reveal a potential regulatory role for FMRP in the balance between adult NSC activation and quiescence, and identify a potential new treatment for fragile X syndrome. Copyright © 2016, American Association for the Advancement of Science.

  16. Expression of MDM2 in an acute lymphocytic leukemia mice model induced by γ-radiation

    International Nuclear Information System (INIS)

    Huang Yuecheng; Cai Jianming; Han Ling; Gao Fu; Cui Jianguo; Gao Jianguo

    2004-01-01

    Objective: To investigate the role of the MDM 2 in the process of carcinogenesis induced by γ-rays and its molecular mechanisms. Methods: Animal model of radiation-induced leukemia was established by γ-irradiation. According to the histological and morphological results, mice tissues were divided into three groups: cancerization group, incancerization group and control group. Expression of MDM 2 protein and mRNA in thymus/bone marrow was detected with Western blot and in situ hybridization (ISH), respectively. The authors also examined the protein phosphorylation level of MDM 2 protein by immunoprecipitation (IP). PCR-SSCP was performed to detect gene mutation. Results: A mice leukemia model was successfully established as verified by pathological findings and confirmed by transplantation test in nude mice. The protein expression in thymus/bone marrow in irradiation groups was significantly higher than that in controls (P 2 was found to be hyper-phosphorylated in the cancerization group as compared with other groups. No gene mutation was detected by SSCP/silver-staining assay in the tumor samples. Conclusion: MDM 2 may be involved in the development and progression of leukemia induced by γ-irradiation. The over-expression but not gene mutation may be responsible for malignant transformation induced by radiation. Phosphorylation is at least partly attributed to activation of MDM 2

  17. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin

    International Nuclear Information System (INIS)

    Yu Yan; Sun Ping; Sun Lichun; Liu Guoyi; Chen Guohua; Shang Lihua; Wu Hongbo; Hu Jing; Li Yue; Mao Yinling; Sui Guangjie; Sun Xiwen

    2006-01-01

    To investigate the biological effect of mdm2 in human colorectal adenocarcinoma LoVo cells, three mdm2siRNA constructions were recombinated and transient transfected into human colorectal adenocarcinoma LoVo cells with low differentiation character in vitro. The results showed that mdm2siRNA3 reduced mRNA level of mdm2 and protein level of mdm2, leading to proliferation inhibition on LoVo cells, and reduced tumor growth in nude mice. It was found that depletion of MDM2 in this pattern promoted apoptosis of LoVo cells and Cisplatin (DDP) treated in the mdm2siRNA3 transfected cell population would result in a substantial decrease by MTT colorimetry. Decreasing the MDM2 protein level in LoVo cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, which indicated that mdm2 gene played a definite role in the development and aggressiveness of human colon carcinoma. It also could be a therapeutic target in colorectal carcinoma. The synergistic activation of RNAi and cell toxicity agents indicated that the combination of chemotherapy and gene therapy will be a promising approach in the future

  18. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways

    OpenAIRE

    Meng, X; Carlson, NR; Dong, J; Zhang, Y

    2015-01-01

    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2–p53 and the ribosomal protein (RP)–Mdm2–p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2C305F mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly s...

  19. MDM2 promoter SNP344T>A (rs1196333 status does not affect cancer risk.

    Directory of Open Access Journals (Sweden)

    Stian Knappskog

    Full Text Available The MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms (SNP309T>G; rs2279744 facilitates Sp1 transcription factor binding to the promoter and is associated with increased cancer risk. In contrast, SNP285G>C (rs117039649, located 24 bp upstream of rs2279744, and in complete linkage disequilibrium with the SNP309G allele, reduces Sp1 recruitment and lowers cancer risk. Thus, fine tuning of MDM2 expression has proven to be of significant importance with respect to tumorigenesis. We assessed the potential functional effects of a third MDM2 promoter P2 polymorphism (SNP344T>A; rs1196333 located on the SNP309T allele. While in silico analyses indicated SNP344A to modulate TFAP2A, SPIB and AP1 transcription factor binding, we found no effect of SNP344 status on MDM2 expression levels. Assessing the frequency of SNP344A in healthy Caucasians (n = 2,954 and patients suffering from ovarian (n = 1,927, breast (n = 1,271, endometrial (n = 895 or prostatic cancer (n = 641, we detected no significant difference in the distribution of this polymorphism between any of these cancer forms and healthy controls (6.1% in healthy controls, and 4.9%, 5.0%, 5.4% and 7.2% in the cancer groups, respectively. In conclusion, our findings provide no evidence indicating that SNP344A may affect MDM2 transcription or cancer risk.

  20. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    International Nuclear Information System (INIS)

    Tsujita, Maristela; Batista, Wagner L.; Ogata, Fernando T.; Stern, Arnold; Monteiro, Hugo P.; Arai, Roberto J.

    2008-01-01

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras C118S ) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG

  1. Role of the Mdm2 SNIP 309 Polymorphism in Gastric Mucosal Morphologic Patterns of Patients with Helicobacter pylori Associated Gastritis.

    Science.gov (United States)

    Tongtawee, Taweesak; Dechsukhum, Chavaboon; Leeanansaksiri, Wilairat; Kaewpitoon, Soraya; Kaewpitoon, Natthawut; Loyd, Ryan A; Matrakool, Likit; Panpimanmas, Sukij

    2016-01-01

    The tumor suppressor p53 is as a regulator of cell proliferation, apoptosis and many other biological processes as well as external and internal stress responses. Mdm2 SNIP309 is a negative regulator of 53. Therefore, this study aimed to determine the role of the Mdm2 SNIP 309 polymorphism in the gastric mucosal morphological patterns in patients with Helicobacter pylori associated gastritis. A prospective cross-sectional study was carried out from November 2014 through November 2015. Biopsy specimens were obtained from patients and infection was proven by positive histology. Gastric mucosa specimens were sent to the Molecular Genetics Unit, Institute of Medicine, Suranaree University of Technology where they were tested by molecular methods to detect the patterns of Mdm2 SNIP 309 polymorphism using the real-time PCR hybridization probe method. The results were analyzed and correlated with gastric mucosal morphological patterns by using C-NBI endoscopy. A total of 300 infected patients were enrolled and gastric mucosa specimens were collected. In this study the percentage of Mdm2 SNIP 309 T/T homozygous and Mdm2 SNIP309 G/T heterozygous was 78% and 19 % respectively whereas Mdm2 SNIP309 G/G homozygous was 3%. Mdm2 SNIP 309 T/T homozygous and Mdm2 SNIP309 G/T heterozygosity correlated with type 1 to type 3 gastric mucosal morphological patterns (P<0.01) whereas Mdm2 SNIP309 G/G homozygous correlated with type 4 and type 5 (P<0.01). Our study finds the frequency of Mdm2 SNIP309 G/G in a Thai population is very low, and suggests that this can explain ae Thailand enigma. Types 1 to type 3 are the most common gastric mucosal morphological patterns according to the unique genetic polymorphism of MDM2 SNIP 309 in the Thai population.

  2. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells.

    Science.gov (United States)

    Duan, Yajian; Ma, Gaoen; Huang, Xionggao; D'Amore, Patricia A; Zhang, Feng; Lei, Hetian

    2016-07-29

    The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The T309G MDM2 gene polymorphism is a novel risk factor for proliferative vitreoretinopathy

    NARCIS (Netherlands)

    S. Pastor-Idoate (Salvador); I. Rodriguez-Hernández (Irene); J. Rojas (Jimena); I. Fernandez (Itziar); M.T. García-Gutierrez (María Teresa); J.M. Ruiz-Moreno (Jose María); A. Rocha-Sousa (Amandio); Y. Ramkissoon (Yashin); S. Harsum (Steven); R.E. MacLaren (Robert ); D. Charteris (David); J.C. Vanmeurs (Jan C.); R. González-Sarmiento (Rogelio); J.C. Pastor (Jose Carlos)

    2013-01-01

    textabstractProliferative vitreoretinopathy (PVR) is still the major cause of failure in retinal detachment (RD) surgery. It is believed that down-regulation in the p53 pathway could be an important key in PVR pathogenesis. The purpose was to evaluate the impact of T309G MDM2 polymorphism

  4. The MDM2-inhibitor Nutlin-3 synergizes with cisplatin to induce p53 dependent tumor cell apoptosis in non-small cell lung cancer

    Science.gov (United States)

    Deben, Christophe; Wouters, An; de Beeck, Ken Op; van Den Bossche, Jolien; Jacobs, Julie; Zwaenepoel, Karen; Peeters, Marc; Van Meerbeeck, Jan; Lardon, Filip; Rolfo, Christian; Deschoolmeester, Vanessa; Pauwels, Patrick

    2015-01-01

    The p53/MDM2 interaction has been a well-studied target for new drug design leading to the development of the small molecule inhibitor Nutlin-3. Our objectives were to combine Nutlin-3 with cisplatin (CDDP), a well-known activator of the p53 pathway, in a series of non-small cell lung cancer cell lines in order to increase the cytotoxic response to CDDP. We report that sequential treatment (CDDP followed by Nutlin-3), but not simultaneous treatment, resulted in strong synergism. Combination treatment induced p53's transcriptional activity, resulting in increased mRNA and protein levels of MDM2, p21, PUMA and BAX. In addition we report the induction of a strong p53 dependent apoptotic response and induction of G2/M cell cycle arrest. The strongest synergistic effect was observed at low doses of both CDDP and Nutlin-3, which could result in fewer (off-target) side effects while maintaining a strong cytotoxic effect. Our results indicate a promising preclinical potential, emphasizing the importance of the applied treatment scheme and the presence of wild type p53 for the combination of CDDP and Nutlin-3. PMID:26125230

  5. Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy

    Science.gov (United States)

    Liu, Shu-Xia; Geng, Yi-Zhao; Yan, Shi-Wei

    2017-06-01

    Approximately half of all human cancers show normal TP53 gene expression but aberrant overexpression of MDM2 and/or MDMX. This fact suggests a promising cancer therapeutic strategy in targeting the interactions between p53 and MDM2/MDMX. To help realize the goal of developing effective inhibitors to disrupt the p53-MDM2/MDMX interaction, we systematically investigated the structural and interaction characteristics of p53 with inhibitors of its interactions with MDM2 and MDMX from an atomistic perspective using stochastic molecular dynamics simulations. We found that some specific α helices in the structures of MDM2 and MDMX play key roles in their binding to inhibitors, and that the hydrogen bond formed by the Trp23 residue of p53 with its counterpart in MDM2 or MDMX determines the dynamic competition processes of the disruption of the MDM2-p53 interaction and replacement of p53 from the MDM2-p53 complex in vivo. The results reported in this paper are expected to provide basic information for designing functional inhibitors and realizing new strategies of cancer gene therapy.

  6. Mdm2 and MdmX inhibitors for the treatment of cancer : a patent review (2011-present)

    NARCIS (Netherlands)

    Zak, Krzysztof; Pecak, Aleksandra; Rys, Barbara; Wladyka, Benedykt; Doemling, Alexander; Weber, Lutz; Holak, Tad A.; Dubin, Grzegorz

    Introduction: One of the hallmarks of cancer cells is the inactivation of the p53 pathway either due to mutations in the p53 gene or over-expression of negative regulators, Mdm2 and/or MdmX. Pharmacological disruption of the Mdm2/X-p53 interaction to restore p53 activity is an attractive concept,

  7. Overexpression of MDM2 protein in ameloblastomas as compared to adenomatoid odontogenic tumor

    Directory of Open Access Journals (Sweden)

    A Krishna

    2012-01-01

    Full Text Available Background: Recent studies on odontogenic tumors have identified various molecular alterations responsible for their development, and determination of epithelial proliferation is a useful means of investigating the differences in biologic behavior of these tumors. One such specific marker to identify proliferative activity and tumor aggressiveness by immunohistochemistry (IHC is MDM2, 90-95kDa protein. Objective: This immunohistochemical study using MDM2 expression was undertaken to understand better the diverse biological activity of two groups of odontogenic tumors namely ameloblastoma and adenomatoid odontogenic tumor (AOT based on their cell proliferation activity. Materials and Methods: A total of 50 cases, comprising of 36 ameloblastoma samples and 14 AOT samples, were subjected to heat-induced antigen retrieval method using citrate buffer in a pressure cooker. Consequently, the sections were stained with MDM2 monoclonal antibody and visualized using an LSAB+ kit. Results: In ameloblastomas, statistically significant association was seen between plexiform ameloblastomas, follicular ameloblastomas with granular cell changes, desmoplastic and unicystic variants. The predominant nuclear staining by MDM2 revealed overexpression in ameloblastomas as compared to AOT. Conclusion: The MDM2 overexpression noticed in plexiform ameloblastoma, follicular ameloblastoma with granular cell changes and acanthomatous ameloblastoma when compared to simple unicystic and desmoplastic ameloblastoma suggest a relatively enhanced proliferative phenotype of these solid multicystic variants of ameloblastomas. On overall comparison, higher expression was noted in ameloblastomas when compared to AOT. This indicates differences in the aggressive nature between these two groups of odontogenic tumors favoring the perception of a greater aggressive nature of ameloblastomas.

  8. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor.

    Directory of Open Access Journals (Sweden)

    Barbara Costa

    Full Text Available Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM, p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2 oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.

  9. MDM2, p53 and pRb Expression Prior to Definitive Chemoradiotherapy in Esophageal Carcinoma

    International Nuclear Information System (INIS)

    Yoon, Mee Sun; Nam, Taek Keun; Lee, Jae Hyuk; Cho, Sang Hee; Song, Ju Young; Ahn, Sung Ja; Chung, Ik Joo; Chung, Woong Ki; Nah, Byung Sik

    2007-01-01

    Purpose: This study evaluated the pretreatment expression patterns of MDM2, p53, and pRb proteins to determine if the expression patterns could predict the outcome of concurrent chemoradiotherapy (CCRT) for esophageal squamous cell carcinoma and aid in the decisions for the selection of treatment modalities. Materials and Methods: Fifty-one patients that were treated with definitive hemoradiotherapy for stage I∼ IVa esohageal squamous cell carcinoma were selected for this study. Radiotherapy was administered with daily 1.8∼2 Gy fractions up to a median dose of 54 Gy for primary tumors, and with four cycles of cisplatin/5-fluorouracil chemotherapy that was administered every 4 weeks, the first two cycles of which were administered concurrently with radiotherapy. Expression of MDM2, p53, and pRb was investigated by immunohistochemical analysis using pretreatment biopsy specimens. Results: MDM2, p53, and pRb were detected with high immunoreactivity in 19.6%, 27.5%, and 66.7% of the patients, respectively. However, there was no significant correlation between expression of these factors and clinical outcome. By the use of multivariate analysis with nine covariates-age, tumor location, tumor length, stage, pathological response, clinical response, MDM2 expression, p53 expression, and pRb expression, only pathological response and stage were significant factors for cause-specific survival. Conclusion: Expression of MDM2, p53, and pRb was not found to be clinically significant for predicting outcomes after CCRT in this study. Further studies with a larger patient population and longer follow-up periods are needed to re-evaluate the expression pattern and to identify new predictors for CCRT response

  10. Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer

    International Nuclear Information System (INIS)

    Xia, Xi; Weng, Yanjie; Liao, Shujie; Han, Zhiqiang; Liu, Ronghua; Zhu, Tao; Wang, Shixuan; Xu, Gang; Meng, Li; Zhou, Jianfeng; Ma, Ding; Ma, Quanfu; Li, Xiao; Ji, Teng; Chen, Pingbo; Xu, Hongbin; Li, Kezhen; Fang, Yong; Weng, Danhui

    2011-01-01

    P21 (WAF1/Cip1) binds to cyclin-dependent kinase complexes and inhibits their activities. It was originally described as an inhibitor of cancer cell proliferation. However, many recent studies have shown that p21 promotes tumor progression when accumulated in the cell cytoplasm. So far, little is known about the correlation between cytoplasmic p21 and drug resistance. This study was aimed to investigate the role of p21 in the cisplatin resistance of ovarian cancer. RT-PCR, western blot and immunofluorescence were used to detect p21 expression and location in cisplatin-resistant ovarian cancer cell line C13* and its parental line OV2008. Regulation of cytoplasmic p21 was performed through transfection of p21 siRNA, Akt2 shRNA and Akt2 constitutively active vector in the two cell lines; their effects on cisplatin-induced apoptosis were evaluated by flow cytometry. Tumor tissue sections of clinical samples were analyzed by immunohistochemistry. p21 predominantly localizes to the cytoplasm in C13* compared to OV2008. Persistent exposure to low dose cisplatin in OV2008 leads to p21 translocation from nuclear to cytoplasm, while it had not impact on p21 localization in C13*. Knockdown of cytoplasmic p21 by p21 siRNA transfection in C13* notably increased cisplatin-induced apoptosis through activation of caspase 3. Inhibition of p21 translocation into the cytoplasm by transfection of Akt2 shRNA into C13* cells significantly increased cisplatin-induced apoptosis, while induction of p21 translocation into the cytoplasm by transfection of constitutively active Akt2 in OV2008 enhanced the resistance to cisplatin. Immunohistochemical analysis of clinical ovarian tumor tissues demonstrated that cytoplasmic p21 was negatively correlated with the response to cisplatin based treatment. Cytoplasmic p21 is a novel biomarker of cisplatin resistance and it may represent a potential therapeutic target for ovarian tumors that are refractory to conventional treatment

  11. Expression of p53, MDM2 in a mice hydradecarcinoma model induced by γ-ray irradiation

    International Nuclear Information System (INIS)

    Huang Yuecheng; Cai Jianming; Han Ling; Gao Fu; Sun Ding; Dong Zhitao; Zhe Wanli

    2004-01-01

    Objective: To investigate the role of the p53, MDM2 in carcinogenesis of mice hydradecarcinoma induced by γ-rays. Methods: A radiation-induced mice hydradecarcinoma model was established by γ-ray irradiation. Expression of MDM2 protein in hydradecarcinoma tissue, paracancerous tissue and normal control tissue was detected with Western blot. Immunoprecipitation (IP) was conducted to examine the phosphorylation level of MDM2 protein. PCR-SSCP was performed to detect p53 gene mutation. Results: Compared with the normal control tissue, the MDM2 protein expression and its phosphorylation level were significantly higher in hydradecarcinoma tissue. SSCP showed there were p53 gene mutations in hydradecarcinoma samples. Conclusion: p53/MDM2 pathway may be involved in the development and progression of hydradecarcinoma induced by γ-ray irradiation. The over-expression of MDM2 and hyperphosphorylation may be responsible for malignant transformation induced by irradiation by a possible mechanism of p53 inactivation. The gene mutation of p53 further supported the hypothesis that p53/MDM2 pathway played a central role in carcinogenesis of γray induced hydradecarcinoma. (authors)

  12. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53.

    Science.gov (United States)

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice; Kramer, Daniela; Najafova, Zeynab; Weiss, Miriam; Karpiuk, Oleksandra; Kassem, Moustapha; Zhang, Yanping; Lozano, Guillermina; Johnsen, Steven A; Moll, Ute M; Zhang, Xin; Dobbelstein, Matthias

    2016-01-07

    The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. An updated meta-analysis on the association of MDM2 SNP309 polymorphism with colorectal cancer risk.

    Directory of Open Access Journals (Sweden)

    Xue Qin

    Full Text Available The mouse double minute 2 (MDM2 gene encodes a phosphoprotein that interacts with P53 and negatively regulates its activity. The SNP309 polymorphism (T-G in the promoter of MDM2 gene has been reported to be associated with enhanced MDM2 expression and tumor development. Studies investigating the association between MDM2 SNP309 polymorphism and colorectal cancer (CRC risk reported conflicting results. We performed a meta-analysis of all available studies to explore the association of this polymorphism with CRC risk.All studies published up to July 2013 on the association between MDM2 SNP309 polymorphism and CRC risk were identified by searching electronic databases PubMed, EMBASE, and Chinese Biomedical Literature database (CBM databases. The association between the MDM2 SNP309 polymorphism and CRC risk was assessed by odds ratios (ORs together with their 95% confidence intervals (CIs.A total of 14 case-control studies including 4460 CRC cases and 4828 controls were identified. We did not find a significant association between the MDM2 SNP309 polymorphism and CRC risk in all genetic models in overall population. However, in subgroup analysis by ethnicity, significant associations were found in Asians (TG vs. TT: OR = 1.197, 95% CI = 1.055-1.358, P=0.005; GG+TG vs. TT: OR = 1.246, 95% CI = 1.106-1.404, P=0.000 and Africans. When stratified by HWE in controls, significantly increased risk was also found among the studies consistent with HWE (TG vs. TT: OR = 1.166, 95% CI = 1.037-1.311, P= 0.010. In subgroup analysis according to p53 mutation status, and gender, no any significant association was detected.The present meta-analysis suggests that the MDM2 is a candidate gene for CRC susceptibility. The MDM2 SNP309 polymorphism may be a risk factor for CRC in Asians.

  14. Mdm2 overexpression and p14(ARF) inactivation are two mutually exclusive events in primary human lung tumors.

    Science.gov (United States)

    Eymin, Béatrice; Gazzeri, Sylvie; Brambilla, Christian; Brambilla, Elisabeth

    2002-04-18

    Pathways involving p53 and pRb tumor suppressor genes are frequently deregulated during lung carcinogenesis. Through its location at the interface of these pathways, Mdm2 can modulate the function of both p53 and pRb genes. We have examined here the pattern of expression of Mdm2 in a series of 192 human lung carcinomas of all histological types using both immunohistochemical and Western blot analyses and four distinct antibodies mapping different epitopes onto the Mdm2 protein. Using Immunohistochemistry (IHC), Mdm2 was overexpressed as compared to normal lung in 31% (60 out of 192) of all tumors analysed, whatever their histological types. Western blotting was performed on 28 out of the 192 tumoral samples. Overexpression of p85/90, p74/76 and p57 Mdm2 isoforms was detected in 18% (5 out of 28), 25% (7 out of 28) and 39% (11 out of 28) of the cases respectively. Overall, overexpression of at least one isoform was observed in 14 out of 28 (50%) lung tumors and concomittant overexpression of at least two isoforms in 7 out of 28 (25%) cases. A good concordance (82%) was observed between immunohistochemical and Western blot data. Interestingly, a highly significant inverse relationship was detected between p14(ARF) loss and Mdm2 overexpression either in NSCLC (P=0.0089) or in NE lung tumors (P1 ratio was correlated with a high grade phenotype among NE tumors overexpressing Mdm2 (P=0.0021). Taken together, these data strongly suggest that p14(ARF)and Mdm2 act on common pathway(s) to regulate p53 and/or pRb-dependent or independent functions and that the Mdm2 : p14(ARF) ratio might act as a rheostat in modulating the activity of both proteins.

  15. A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2.

    Science.gov (United States)

    Nicholson, Judith; Scherl, Alex; Way, Luke; Blackburn, Elizabeth A; Walkinshaw, Malcolm D; Ball, Kathryn L; Hupp, Ted R

    2014-06-01

    Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Rare aggressive behavior of MDM2-amplified retroperitoneal dedifferentiated liposarcoma, with brain, lung and subcutaneous metastases

    Directory of Open Access Journals (Sweden)

    Imen Ben Salha

    2016-10-01

    Full Text Available Dedifferentiated liposarcoma (DDL is a histologically pleomorphic sarcoma, traditionally defined as well-differentiated liposarcoma with abrupt transition to high grade, nonlipogenic sarcoma. It can occur as part of recurrent well-differentiated liposarcoma, or may arise de novo. DDL most frequently occurs within the retroperitoneum, and while it is prone to local recurrence, it usually has a lower rate of metastasis than other pleomorphic sarcomas. We describe a case of retroperitoneal dedifferentiated liposarcoma in a 63-year-old male, who showed MDM2 amplification with fluorescence in situ hybridization, which displayed unusually aggressive behavior, with brain, lung and subcutaneous soft tissue metastases. As previous reports of metastatic liposarcoma have largely grouped DDL in with other (genetically and clinically distinct liposarcoma subtypes, we highlight and discuss the rare occurrence of brain metastasis in MDM2-amplified retroperitoneal liposarcoma.

  17. MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an updated meta-analysis

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-05-01

    Full Text Available Abstract Background The tumor suppressor gene p53 is involved in multiple cellular pathways including apoptosis, transcriptional control, and cell cycle regulation. In the last decade it has been demonstrated that the single nucleotide polymorphism (SNP at codon 72 of the p53 gene is associated with the risk for development of various neoplasms. MDM2 SNP309 is a single nucleotide T to G polymorphism located in the MDM2 gene promoter. From the time that this well-characterized functional polymorphism was identified, a variety of case-control studies have been published that investigate the possible association between MDM2 SNP309 and cancer risk. However, the results of the published studies, as well as the subsequent meta-analyses, remain contradictory. Methods To investigate whether currently published epidemiological studies can clarify the potential interaction between MDM2 SNP309 and the functional genetic variant in p53 codon72 (Arg72Pro and p53 mutation status, we performed a meta-analysis of the risk estimate on 27,813 cases with various tumor types and 30,295 controls. Results The data we reviewed indicated that variant homozygote 309GG and heterozygote 309TG were associated with a significant increased risk of all tumor types (homozygote comparison: odds ratio (OR = 1.25, 95% confidence interval (CI = 1.13-1.37; heterozygote comparison: OR = 1.10, 95% CI = 1.03-1.17. We also found that the combination of GG and Pro/Pro, TG and Pro/Pro, GG and Arg/Arg significantly increased the risk of cancer (OR = 3.38, 95% CI = 1.77-6.47; OR = 1.88, 95% CI = 1.26-2.81; OR = 1.96, 95% CI = 1.01-3.78, respectively. In a stratified analysis by tumor location, we also found a significant increased risk in brain, liver, stomach and uterus cancer (OR = 1.47, 95% CI = 1.06-2.03; OR = 2.24, 95%CI = 1.57-3.18; OR = 1.54, 95%CI = 1.04-2.29; OR = 1.34, 95%CI = 1.07-1.29, respectively. However, no association was seen between MDM2 SNP309 and tumor susceptibility

  18. MicroRNA-410 suppresses migration and invasion by targeting MDM2 in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Jianjun Shen

    Full Text Available Gastric cancer is one of the most frequent malignancies in tumors in the East Asian countries. Identifying precise prognostic markers and effective therapeutic targets is important in the treatment of gastric cancer. microRNAs (miRNAs play important roles in tumorigenesis. However, the mechanisms by which miRNAs regulate gastric cancer metastasis remain poorly understood. In this study, we found that the levels of miR-410 in gastric cancer and cell lines were much lower than that in the normal control, respectively, and the lower level of miR-410 was significantly associated with lymph-node metastasis. Transfection of miR-410 mimics could significantly inhibit the cell proliferation, migration and invasion in the HGC-27 gastric cancer cell lines. In contrast, knockdown of miR-410 had the opposite effect on the cell proliferation, migration and invasion. Moreover, we also found that MDM2 was negatively regulated by miR-410 at the post-transcriptional level, via a specific target site with the 3'UTR by luciferase reporter assay. The expression of MDM2 was inversely correlated with miR-410 expression in gastric cancer tissues, and overexpression of MDM2 in miR-410-transfected gastric cancer cells effectively rescued the inhibition of cell proliferation and invasion caused by miR-410. Thus, our findings suggested that miR-410 acted as a new tumor suppressor by targeting the MDM2 gene and inhibiting gastric cancer cells proliferation, migration and invasion. The findings of this study contributed to the current understanding of these functions of miR-410 in gastric cancer.

  19. Fine needle aspiration biopsy diagnosis of dedifferentiated liposarcoma: Cytomorphology and MDM2 amplification by FISH

    Directory of Open Access Journals (Sweden)

    Al-Maghraby Hatem

    2010-01-01

    Full Text Available Lipomatous mesenchymal tumors constitute the most common type of soft tissue tumors. Well-differentiated liposarcoma (WDLS can undergo dedifferentiation to a nonlipogenic sarcoma of variable histologic grade. In the recent literature, amplification of the murine double minute 2 (MDM2 oncogene, which has a role in cell cycle control, has been successful in distinguishing WDLS from benign lesions. We present a case of dedifferentiated liposarcoma diagnosed by fine-needle aspiration (FNA, using cytomorphology and ancillary studies (immunocytochemistry and fluorescent in-situ hybridization. An 85-year old female presented to our institution with a firm soft tissue mass of the right buttock. The FNA showed atypical spindle cells, osteoclast-like giant cells and extracellular dense matrix material. The cell block showed cellular groups of highly atypical spindle cells with osteoid and adipose tissue. Fluorescence in situ hybridization (FISH studies performed on the cell block demonstrated amplification of the MDM2 gene. In addition, the findings were morphologically compatible with the previously resected retroperitoneal dedifferentiated liposarcoma with areas of osteosarcoma. This rare case illustrates the usefulness of FNA and ancillary studies in the diagnosis and subclassification of soft tissue tumors. To the best of our knowledge, this is the first report of MDM2 FISH positivity in a liposarcoma diagnosed by FNA.

  20. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms.

    Directory of Open Access Journals (Sweden)

    Christopher J Brown

    Full Text Available The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19-26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD and an equivalent phage optimized peptide (12/1 were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design.

  1. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma.

    Science.gov (United States)

    Van Goethem, Alan; Yigit, Nurten; Moreno-Smith, Myrthala; Vasudevan, Sanjeev A; Barbieri, Eveline; Speleman, Frank; Shohet, Jason; Vandesompele, Jo; Van Maerken, Tom

    2017-08-22

    Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

  2. Genetic Polymorphism of MDM2 SNP309 in Patients with Helicobacter Pylori-Associated Gastritis.

    Science.gov (United States)

    Tongtawee, Taweesak; Dechsukhum, Chavaboon; Leeanansaksiri, Wilairat; Kaewpitoon, Soraya; Kaewpitoon, Natthawut; Loyd, Ryan A; Matrakool, Likit; Panpimanmas, Sukij

    2015-01-01

    Helicobacter pylori plays an important role in gastric cancer, which has a relatively low inciduence in Thailand. MDM2 is a major negative regulator of p53, the key tumor suppressor involved in tumorigenesis of the majority of human cancers. Whether its expression might explain the relative lack of gastric cancer in Thailand was assessed here. This single-center study was conducted in the northeast region of Thailand. Gastric mucosa from 100 patients with Helicobacter pylori associated gastritis was analyzed for MDM2 SNP309 using real-time PCR hybridization (light-cycler) probes. In the total 100 Helicobacter pylori associated gastritis cases the incidence of SNP 309 T/T homozygous was 78 % with SNP309 G/T heterozygous found in 19% and SNP309 G/G homozygous in 3%. The result show SNP 309 T/T and SNP 309 G/T to be rather common in the Thai population. Our study indicates that the MDM2 SNP309 G/G homozygous genotype might be a risk factor for gastric cancer in Thailand and the fact that it is infrequent could explain to some extent the low incidence of gastric cancer in the Thai population.

  3. MDM2 Amplification and PI3KCA Mutation in a Case of Sclerosing Rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Ken Kikuchi

    2013-01-01

    Full Text Available A rare sclerosing variant of rhabdomyosarcoma characterized by prominent hyalinization and pseudovascular pattern has recently been described as a subtype biologically distinct from embryonal, alveolar, and pleomorphic forms. We present cytogenetic and molecular findings as well as experimental studies of an unusual case of sclerosing rhabdomyosarcoma. The primary lesion arose within the plantar subcutaneous tissue of the left foot of an otherwise healthy 23-year-old male who eventually developed pulmonary nodules despite systemic chemotherapy. Two genetic abnormalities identified in surgical and/or autopsy samples of the tumor were introduced into 10T1/2 murine fibroblasts to determine whether these genetic changes cooperatively facilitated transformation and growth. Cytogenetic analysis revealed a complex abnormal hyperdiploid clone, and MDM2 gene amplification was confirmed by fluorescence in situ hybridization. Cancer gene mutation screening using a combination of multiplexed PCR and mass spectroscopy revealed a PIK3CA exon 20 H1047R mutation in the primary tumor, lung metastasis, and liver metastasis. However, this mutation was not cooperative with MDM2 overexpression in experimental assays for transformation or growth. Nevertheless, MDM2 and PIK3CA are genes worthy of further investigation in patients with sclerosing rhabdomyosarcoma and might be considered in the enrollment of these patients into clinical trials of targeted therapeutics.

  4. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  5. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice

    Science.gov (United States)

    Gannon, Hugh S.; Woda, Bruce A.; Jones, Stephen N.

    2012-01-01

    Summary DNA damage induced by ionizing radiation (IR) activates the ATM kinase, which subsequently stabilizes and activates the p53 tumor suppressor protein. Although phosphorylation of p53 by ATM was found previously to modulate p53 levels and transcriptional activities in vivo, it does not appear to be a major regulator of p53 stability. We have utilized mice bearing altered Mdm2 alleles to demonstrate that ATM phosphorylation of Mdm2 serine 394 is required for robust p53 stabilization and activation after DNA damage. In addition, we demonstrate that dephosphorylation of Mdm2 Ser394 regulates attenuation of the p53-mediated response to DNA damage. Therefore, the phosphorylation status of Mdm2 Ser394 governs p53 protein levels and functions in cells undergoing DNA damage. PMID:22624716

  6. Association of TP53 and MDM2 polymorphisms with survival in bladder cancer patients treated with chemoradiotherapy

    International Nuclear Information System (INIS)

    Shinohara, Asano; Sakano, Shigeru; Hinoda, Yuji; Nishijima, Jun; Kawai, Yoshihisa; Misumi, Taku; Nagao, Kazuhiro; Hara, Takahiko; Matsuyama, Hideyasu

    2009-01-01

    Platinum-based chemoradiotherapy (CRT) as bladder conservation therapy has shown promising results for muscle-invasive bladder cancer. However, CRT might diminish survival as a result of the delay in cystectomy for some patients with non-responding bladder tumors. Because the p53 tumor suppression pathway, including its MDM2 counterpart, is important in chemotherapy- and radiotherapy-associated effects, functional polymorphisms in the TP53 and MDM2 genes could influence the response to treatment and the prognosis following CRT. We investigated associations between two such polymorphisms, and p53 overexpression, and response or survival in bladder cancer patients treated with CRT. The study group comprised 96 patients who underwent CRT for transitional cell carcinoma of the bladder. Single nucleotide polymorphisms (SNPs) in TP53 (codon 72, arginine>proline) and MDM2 (SNP3O9, T>G) were genotyped using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP), and nuclear expression levels of p53 were examined using immunohistochemistry. None of the genotypes or p53 overexpression was significantly associated with response to CRT. However, patients with MDM2 T/G+G/G genotypes had improved cancer-specific survival rates after CRT (P=0.009). In multivariate analysis, the MDM2 T/G+G/G genotypes, and more than two of total variant alleles in TP53 and MDM2, were independently associated with improved cancer-specific survival (P=0.031 and P=0.015, respectively). In addition, MDM2 genotypes were significantly associated with cystectomy-free survival (P=0.030). These results suggest that the TP53 and MDM2 genotypes might be useful prognostic factors following CRT in bladder cancer, helping patient selection for bladder conservation therapy. (author)

  7. Insight into interaction mechanism of the inhibitor pDI5W with MDM2 based on molecular dynamics

    International Nuclear Information System (INIS)

    Chen Jianzhong; Liang Zhiqiang; Wang Wei; Liu Jinqing; Zhang Qinggang; Liu Xiaoyang

    2012-01-01

    The p53-MDM2 interaction has been an important target of drug design curing cancers. In this work, molecular dynamics (MD) simulation coupled with molecular mechanics/Poisson Boltzmann surface area method (MM-PBSA) was performed to calculate the binding free energy of peptide inhibitor pDI6W to MDM2. The results show that van der Waals energy is the dominant factor of the pDI6W— MDM2 interaction. Cross-correlation matrix calculated suggests that the main motion of the residues in MMDM2 induced by the inhibitor binding is anti-correlation motion. The calculations of residue-residue interactions between pDI6W and MDM2 not only prove that five residues Phe19', Trp22', Trp23', Leu26' and Thr27' from pDI6W can produce strong interaction with MDM2, but also show that CH-π, CH-CH and π-π interactions drive the binding of pDI6W in the hydrophobic cleft of MDM2. This study can provide theoretical helps for anti-cancer drug designs. (authors)

  8. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53

    DEFF Research Database (Denmark)

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice

    2016-01-01

    The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion...... in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically...... associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell...

  9. MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2016-01-01

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD) in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617

  10. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice.

    Science.gov (United States)

    Carr, Michael I; Roderick, Justine E; Zhang, Hong; Woda, Bruce A; Kelliher, Michelle A; Jones, Stephen N

    2016-12-27

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2 S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2 Y393F ) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2 Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2 Y393F/S394A mice and Mdm2 S394A mice display similar phenotypes.

  11. SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage.

    Science.gov (United States)

    Brun, Sonia; Abella, Neus; Berciano, Maria T; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel; Agell, Neus

    2017-01-01

    We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.

  12. MDM2 promoter del1518 polymorphism and cancer risk: evidence from 22,931 subjects

    Directory of Open Access Journals (Sweden)

    Hua WF

    2017-07-01

    Full Text Available Wenfeng Hua,1,* Anqi Zhang,2,* Ping Duan,2,* Jinhong Zhu,3 Yuan Zhao,2 Jing He,4 Zhi Zhang1 1Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 2Department of Obstetrics and Gynecology, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 3Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 4Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China *These authors contributed equally to this work Abstract: Studies have shown that single-nucleotide polymorphisms in MDM2 gene may play important roles in the development of malignant tumor. The association of del1518 polymorphism (rs3730485 in the MDM2 promoter with cancer susceptibility has been extensively studied; however, the results are contradictory. To quantify the association between this polymorphism and overall cancer risk, we conducted a meta-analysis with 12,905 cases and 10,026 controls from 16 eligible studies retrieved from PubMed, Embase, and Chinese Biomedical (CBM databases. We assessed the strength of the connection using odds ratios (ORs and 95% confidence intervals (CIs. In summary, no significant associations were discovered between the del1518 polymorphism and overall cancer risk (Del/Del vs Ins/Ins: OR =1.01, 95% CI =0.90–1.14; Ins/Del vs Ins/Ins: OR =1.03, 95% CI =0.96–1.12; recessive model: OR =0.98, 95% CI =0.90–1.07; dominant model: OR =1.03, 95% CI =0.94–1.12; and Del vs Ins: OR =1.01, 95% CI =0.94–1.07. In the stratified analysis by source of control, quality score, cancer type, and ethnicity, no significant associations were found. Despite some limitations, the current meta-analysis provides solid

  13. MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Moscetti I

    2016-08-01

    Full Text Available Ilaria Moscetti,1 Emanuela Teveroni,2,3 Fabiola Moretti,3 Anna Rita Bizzarri,1 Salvatore Cannistraro1 1Biophysics and Nanoscience Centre, Department DEB, Università della Tuscia, Viterbo, Italy; 2Department of Endocrinology and Metabolism, Università Cattolica di Roma, Roma, Italy; 3Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR, Roma, Italy Abstract: Murine double minute 2 (MDM2 and 4 (MDM4 are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. Keywords: MDM2, MDM4, atomic force spectroscopy, surface plasmon resonance

  14. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage

    Science.gov (United States)

    Maya, Ruth; Balass, Moshe; Kim, Seong-Tae; Shkedy, Dganit; Leal, Juan-Fernando Martinez; Shifman, Ohad; Moas, Miri; Buschmann, Thomas; Ronai, Ze'ev; Shiloh, Yosef; Kastan, Michael B.; Katzir, Ephraim; Oren, Moshe

    2001-01-01

    The p53 tumor suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. The rapid activation of p53 by ionizing radiation and radiomimetic agents is largely dependent on the ATM kinase. p53 is phosphorylated by ATM shortly after DNA damage, resulting in enhanced stability and activity of p53. The Mdm2 oncoprotein is a pivotal negative regulator of p53. In response to ionizing radiation and radiomimetic drugs, Mdm2 undergoes rapid ATM-dependent phosphorylation prior to p53 accumulation. This results in a decrease in its reactivity with the 2A10 monoclonal antibody. Phage display analysis identified a consensus 2A10 recognition sequence, possessing the core motif DYS. Unexpectedly, this motif appears twice within the human Mdm2 molecule, at positions corresponding to residues 258–260 and 393–395. Both putative 2A10 epitopes are highly conserved and encompass potential phosphorylation sites. Serine 395, residing within the carboxy-terminal 2A10 epitope, is the major target on Mdm2 for phosphorylation by ATM in vitro. Mutational analysis supports the conclusion that Mdm2 undergoes ATM-dependent phosphorylation on serine 395 in vivo in response to DNA damage. The data further suggests that phosphorylated Mdm2 may be less capable of promoting the nucleo-cytoplasmic shuttling of p53 and its subsequent degradation, thereby enabling p53 accumulation. Our findings imply that activation of p53 by DNA damage is achieved, in part, through attenuation of the p53-inhibitory potential of Mdm2. PMID:11331603

  15. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation.

    Science.gov (United States)

    Vendetti, Frank P; Leibowitz, Brian J; Barnes, Jennifer; Schamus, Sandy; Kiesel, Brian F; Abberbock, Shira; Conrads, Thomas; Clump, David Andy; Cadogan, Elaine; O'Connor, Mark J; Yu, Jian; Beumer, Jan H; Bakkenist, Christopher J

    2017-02-01

    We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21 CIP/WAF1 )-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21 CIP/WAF1 )-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21 CIP/WAF1 )-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21 CIP/WAF1 )-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.

  16. Stress-specific response of the p53-Mdm2 feedback loop

    Directory of Open Access Journals (Sweden)

    Jensen Mogens H

    2010-07-01

    Full Text Available Abstract Background The p53 signalling pathway has hundreds of inputs and outputs. It can trigger cellular senescence, cell-cycle arrest and apoptosis in response to diverse stress conditions, including DNA damage, hypoxia and nutrient deprivation. Signals from all these inputs are channeled through a single node, the transcription factor p53. Yet, the pathway is flexible enough to produce different downstream gene expression patterns in response to different stresses. Results We construct a mathematical model of the negative feedback loop involving p53 and its inhibitor, Mdm2, at the core of this pathway, and use it to examine the effect of different stresses that trigger p53. In response to DNA damage, hypoxia, etc., the model exhibits a wide variety of specific output behaviour - steady states with low or high levels of p53 and Mdm2, as well as spiky oscillations with low or high average p53 levels. Conclusions We show that even a simple negative feedback loop is capable of exhibiting the kind of flexible stress-specific response observed in the p53 system. Further, our model provides a framework for predicting the differences in p53 response to different stresses and single nucleotide polymorphisms.

  17. IGF-1R/MDM2 relationship confers enhanced sensitivity to RITA in Ewing sarcoma cells.

    Science.gov (United States)

    Di Conza, Giusy; Buttarelli, Marianna; Monti, Olimpia; Pellegrino, Marsha; Mancini, Francesca; Pontecorvi, Alfredo; Scotlandi, Katia; Moretti, Fabiola

    2012-06-01

    Ewing sarcoma is one of the most frequent bone cancers in adolescence. Although multidisciplinary therapy has improved the survival rate for localized tumors, a critical step is the development of new drugs to improve the long-term outcome of recurrent and metastatic disease and to reduce side effects of conventional therapy. Here, we show that the small molecule reactivation of p53 and induction of tumor cell apoptosis (RITA, NSC652287) is highly effective in reducing growth and tumorigenic potential of Ewing sarcoma cell lines. These effects occur both in the presence of wt-p53 as well as of mutant or truncated forms of p53, or in its absence, suggesting the presence of additional targets in this tumor histotype. Further experiments provided evidence that RITA modulates an important oncogenic mark of these cell lines, insulin-like growth factor receptor 1 (IGF-1R). Particularly, RITA causes downregulation of IGF-1R protein levels. MDM2 degradative activity is involved in this phenomenon. Indeed, inhibition of MDM2 function by genetic or pharmacologic approaches reduces RITA sensitivity of Ewing sarcoma cell lines. Overall, these data suggest that in the cell context of Ewing sarcoma, RITA may adopt additional mechanism of action besides targeting p53, expanding its field of application. Noteworthy, these results envisage the promising utilization of RITA or its derivative as a potential treatment for Ewing sarcomas. ©2012 AACR

  18. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Science.gov (United States)

    Chen, Peili; Li, Yan Chun; Toback, F Gary

    2015-01-01

    Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  19. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Directory of Open Access Journals (Sweden)

    Peili Chen

    Full Text Available Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD. We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  20. Butein activates p53 in hepatocellular carcinoma cells via blocking MDM2-mediated ubiquitination

    Directory of Open Access Journals (Sweden)

    Zhou Y

    2018-04-01

    Full Text Available Yuanfeng Zhou,1,2 Kuifeng Wang,2 Ni Zhou,2 Tingting Huang,2 Jiansheng Zhu,2 Jicheng Li1 1Institute of Cell Biology, Zhejiang University, Hangzhou, People’s Republic of China; 2Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, People’s Republic of China Introduction: In this study, we aimed to investigate the effect of butein on p53 in hepatocellular carcinoma (HCC cells and the related molecular mechanisms by which p53 was activated. Methods: MTS assay and clonogenic survival assay were used to examine the antitumor activity of butein in vitro. Reporter gene assay was adopted to evaluate p53 transcriptional activity. Flow cytometry and western blotting were performed to study apoptosis induction and protein expression respectively. Xenograft model was applied to determine the in vivo efficacy and the expression of p53 in tumor tissue was detected by immunohistochemistry. Results: HCC cell proliferation and clonogenic survival were significantly inhibited after butein treatment. With the activation of cleaved-PARP and capsase-3, butein induced apoptosis in HCC cells in a dose-dependent manner. The transcriptional activity of p53 was substantially promoted by butein, and the expression of p53-targeted gene was increased accordingly. Mechanism studies demonstrated that the interaction between MDM2 and p53 was blocked by butein and MDM2-mediated p53 ubiquitination was substantially decreased. Short-hairpin RNA experiment results showed that the sensitivity of HCC cells to butein was substantially impaired after p53 was knocked down and butein-induced apoptosis was dramatically decreased. In vivo experiments validated substantial antitumor efficacy of butein against HepG2 xenograft growth, and the expression of p53 in butein-treated tumor tissue was significantly increased. Conclusion: Butein demonstrated potent antitumor activities in HCC by activating p53, and butein or its analogs had

  1. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp [Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu 514-8507 (Japan); Yamada, Yoshiji [Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu 514-8507 (Japan)

    2011-03-11

    Research highlights: {yields} SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. {yields} SMT3IP1 competes with p53 for binding to the central acidic domain of Mdm2. {yields} SMT3IP1 binding to Mdm2 inhibits Mdm2-mediated p53 ubiquitination and degradation. {yields} We postulate that SMT3IP1 acts as a new regulator of the p53-Mdm2 pathway. -- Abstract: SUMO (small ubiquitin-like modifier) modification plays multiple roles in several cellular processes. Sumoylation is reversibly regulated by SUMO-specific proteases. SUMO-specific proteases have recently been implicated in cell proliferation and early embryogenesis, but the underlying mechanisms remain unknown. Here, we show that a nucleolar SUMO-specific protease, SMT3IP1/SENP3, controls the p53-Mdm2 pathway. We found that SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. Overexpression of SMT3IP1 in cells resulted in the accumulation of Mdm2 in the nucleolus and increased stability of the p53 protein. In addition, SMT3IP1 bound to the acidic domain of Mdm2, which also mediates the p53 interaction, and competed with p53 for binding. Increasing expression of SMT3IP1 suppressed Mdm2-mediated p53 ubiquitination and subsequent proteasomal degradation. Interestingly, the desumoylation activity of SMT3IP1 was not necessary for p53 stabilization. These results suggest that SMT3IP1 is a new regulator of the p53-Mdm2 pathway.

  2. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation

    International Nuclear Information System (INIS)

    Nishida, Tamotsu; Yamada, Yoshiji

    2011-01-01

    Research highlights: → SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. → SMT3IP1 competes with p53 for binding to the central acidic domain of Mdm2. → SMT3IP1 binding to Mdm2 inhibits Mdm2-mediated p53 ubiquitination and degradation. → We postulate that SMT3IP1 acts as a new regulator of the p53-Mdm2 pathway. -- Abstract: SUMO (small ubiquitin-like modifier) modification plays multiple roles in several cellular processes. Sumoylation is reversibly regulated by SUMO-specific proteases. SUMO-specific proteases have recently been implicated in cell proliferation and early embryogenesis, but the underlying mechanisms remain unknown. Here, we show that a nucleolar SUMO-specific protease, SMT3IP1/SENP3, controls the p53-Mdm2 pathway. We found that SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. Overexpression of SMT3IP1 in cells resulted in the accumulation of Mdm2 in the nucleolus and increased stability of the p53 protein. In addition, SMT3IP1 bound to the acidic domain of Mdm2, which also mediates the p53 interaction, and competed with p53 for binding. Increasing expression of SMT3IP1 suppressed Mdm2-mediated p53 ubiquitination and subsequent proteasomal degradation. Interestingly, the desumoylation activity of SMT3IP1 was not necessary for p53 stabilization. These results suggest that SMT3IP1 is a new regulator of the p53-Mdm2 pathway.

  3. Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99.

    Science.gov (United States)

    Lee, Xiong An; Verma, Chandra; Sim, Adelene Y L

    2017-08-01

    Mdm2 and MdmX share high structural similarity in their N-terminal domains, yet dual inhibitors are challenging to design due to differences in the conformations of the binding pockets, and notably of the proposed gatekeeper residue, Y100/99. Analysis of crystal structures and molecular dynamics (MD) simulations of complexes of Mdm2 and MdmX resulted in the identification of a water molecule with a long residence time that appears to be modulated by the conformation of Y100/99. These observations lead us to speculate that dual inhibitors either (i) stabilize both Mdm2 and MdmX with Y100/99 in the open conformation typically seen in complexes of Mdm2 with p53, or (ii) the dual inhibitors are agnostic to the conformation of Y100/99. The recently developed potent dual inhibitory stapled peptide Atsp7041 appears to be agnostic to the conformation of the gatekeeper residue. Proteins 2017; 85:1493-1506. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Targeting MDM2 by the small molecule RITA: towards the development of new multi-target drugs against cancer

    Directory of Open Access Journals (Sweden)

    Espinoza-Fonseca L Michel

    2005-09-01

    Full Text Available Abstract Background The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Among these compounds, RITA (reactivation of p53 and induction of tumor cell apoptosis has been shown to be effective in the selective induction of apoptosis, and this effect is due to its binding to the p53 tumor suppressor. Since biological systems are highly dynamic and MDM2 may bind to different regions of p53, new alternatives should be explored. On this basis, the computational "blind docking" approach was employed in this study to see whether RITA would bind to MDM2. Results It was observed that RITA binds to the MDM2 p53 transactivation domain-binding cleft. Thus, RITA can be used as a lead compound for designing improved "multi-target" drugs. This novel strategy could provide enormous benefits to enable effective anti-cancer strategies. Conclusion This study has demonstrated that a single molecule can target at least two different proteins related to the same disease.

  5. A Novel Interaction between TFII-I and Mdm2 with a Negative Effect on TFII-I Transcriptional Activity.

    Directory of Open Access Journals (Sweden)

    Kateřina Cetkovská

    Full Text Available Williams-Beuren syndrome-associated transcription factor TFII-I plays a critical regulatory role in bone and neural tissue development and in immunity, in part by regulating cell proliferation in response to mitogens. Mdm2, a cellular oncogene responsible for the loss of p53 tumor suppressor activity in a significant proportion of human cancers, was identified in this study as a new binding partner for TFII-I and a negative regulator of TFII-I-mediated transcription. These findings suggest a new p53-independent mechanism by which increased Mdm2 levels found in human tumors could influence cancer cells. In addition to that, we present data indicating that TFII-I is an important cellular regulator of transcription from the immediate-early promoter of human cytomegalovirus, a promoter sequence frequently used in mammalian expression vectors, including vectors for gene therapy. Our observation that Mdm2 over-expression can decrease the ability of TFII-I to activate the CMV promoter might have implications for the efficiency of experimental gene therapy based on CMV promoter-derived vectors in cancers with Mdm2 gene amplification.

  6. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption

    Directory of Open Access Journals (Sweden)

    Arundhati Banerjee

    2016-01-01

    Full Text Available Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations.

  7. Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells

    DEFF Research Database (Denmark)

    Hjerrild, M; Milne, D; Dumaz, N

    2001-01-01

    Murine double minute clone 2 oncoprotein (MDM2) is a key component in the regulation of the tumour suppressor p53. MDM2 mediates the ubiqutination of p53 in the capacity of an E3 ligase and targets p53 for rapid degradation by the proteasome. Stress signals which impinge on p53, leading to its...

  8. Structural Exploration and Conformational Transitions in MDM2 upon DHFR Interaction from Homo sapiens: A Computational Outlook for Malignancy via Epigenetic Disruption.

    Science.gov (United States)

    Banerjee, Arundhati; Ray, Sujay

    2016-01-01

    Structural basis for exploration into MDM2 and MDM2-DHFR interaction plays a vital role in analyzing the obstruction in folate metabolism, nonsynthesis of purines, and further epigenetic regulation in Homo sapiens. Therefore, it leads to suppression of normal cellular behavior and malignancy. This has been earlier documented via yeast two-hybrid assays. So, with a novel outlook, this study explores the molecular level demonstration of the best satisfactory MDM2 model selection after performing manifold modeling techniques. Z-scores and other stereochemical features were estimated for comparison. Further, protein-protein docking was executed with MDM2 and the experimentally validated X-ray crystallographic DHFR. Residual disclosure from the best suited simulated protein complex disclosed 18 side chain and 3 ionic interactions to strongly accommodate MDM2 protein into the pocket-like zone in DHFR due to the positive environment by charged residues. Lysine residues from MDM2 played a predominant role. Moreover, evaluation from varied energy calculations, folding rate, and net area for solvent accessibility implied the active participation of MDM2 with DHFR. Fascinatingly, conformational transitions from coils to helices and β-sheets after interaction with DHFR affirm the conformational strength and firmer interaction of human MDM2-DHFR. Therefore, this probe instigates near-future clinical research and interactive computational investigations with mutations.

  9. MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell lymphoma patients treated with rituximab-CHOP immunochemotherapy

    DEFF Research Database (Denmark)

    Xu-Monette, Zijun Y; Møller, Michael B; Tzankov, Alexander

    2013-01-01

    MDM2 is a key negative regulator of the tumor suppressor p53, however, the prognostic significance of MDM2 overexpression in diffuse large B-cell lymphoma (DLBCL) has not been defined convincingly. In a p53 genetically-defined large cohort of de novo DLBCL patients treated with rituximab, cycloph...

  10. Influence of the MDM2 single nucleotide polymorphism SNP309 on tumour development in BRCA1 mutation carriers

    Directory of Open Access Journals (Sweden)

    Johnson Peter W

    2006-03-01

    Full Text Available Abstract Background The MDM2 gene encodes a negative regulator of the p53 tumour suppressor protein. A single nucleotide polymorphism (SNP in the MDM2 promoter (a T to G exchange at nucleotide 309 has been reported to produce accelerated tumour formation in individuals with inherited p53 mutations. We have investigated the effect of the MDM2 SNP309 on clinical outcome in a cohort of patients with germline mutations of BRCA1. Methods Genomic DNA was obtained for 102 healthy controls and 116 patients with established pathogenic mutations of BRCA1 and Pyrosequencing technology™ was used to determine the genotype at the MDM2 SNP309 locus. Results The polymorphism was present in 52.9% of the controls (G/T in 37.3% and G/G in 15.6% and 58.6% of the BRCA1 mutation carriers (47.4% G/T and 11.2% G/G. Incidence of malignancy in female BRCA1 carriers was not significantly higher in SNP309 carriers than in wildtype (T/T individuals (72.7% vs. 75.6%, p = 1.00. Mean age of diagnosis of first breast cancer was 41.2 years in the SNP309 G/G genotype carriers, 38.6 years in those with the SNP309 G/T genotype and 39.0 years in wildtype subjects (p = 0.80. Conclusion We found no evidence that the MDM2 SNP309 accelerates tumour development in carriers of known pathogenic germline mutations of BRCA1.

  11. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death.

    Directory of Open Access Journals (Sweden)

    Ludger Hauck

    Full Text Available The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.

  12. The role of MDM2 and MDM4 in breast cancer development and prevention.

    Science.gov (United States)

    Haupt, Sue; Vijayakumaran, Reshma; Miranda, Panimaya Jeffreena; Burgess, Andrew; Lim, Elgene; Haupt, Ygal

    2017-02-01

    The major cause of death from breast cancer is not the primary tumour, but relapsing, drug-resistant, metastatic disease. Identifying factors that contribute to aggressive cancer offers important leads for therapy. Inherent defence against carcinogens depends on the individual molecular make-up of each person. Important molecular determinants of these responses are under the control of the mouse double minute (MDM) family: comprised of the proteins MDM2 and MDM4. In normal, healthy adult cells, the MDM family functions to critically regulate measured, cellular responses to stress and subsequent recovery. Proper function of the MDM family is vital for normal breast development, but also for preserving genomic fidelity. The MDM family members are best characterized for their negative regulation of the major tumour suppressor p53 to modulate stress responses. Their impact on other cellular regulators is emerging. Inappropriately elevated protein levels of the MDM family are highly associated with an increased risk of cancer incidence. Exploration of the MDM family members as cancer therapeutic targets is relevant for designing tailored anti-cancer treatments, but successful approaches must strategically consider the impact on both the target cancer and adjacent healthy cells and tissues. This review focuses on recent findings pertaining to the role of the MDM family in normal and malignant breast cells. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  13. The MDM-2 Antagonist Nutlin-3 Promotes the Maturation of Acute Myeloid Leukemic Blasts

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    2007-10-01

    Full Text Available The small-molecule inhibitor of murine double minute (MDM-2, Nutlin-3, induced variable apoptosis in primary acute myeloid leukemia (AML blasts, promoted myeloid maturation of surviving cells, as demonstrated by analysis of CD11 b, CD14 surface antigens, by morphologic examination. Although the best-characterized activity of Nutlin-3 is activation of the p53 pathway, Nutlin-3 induced maturation also in one AML sample characterized by p53 deletion, as well as in the p53-/- human myeloblastic HL-60 cell line. At the molecular level, the maturational activity of Nutlin-3 in HL-60 cells was accompanied by the induction of E2F1 transcription factor, it was significantly counteracted by specific gene knockdown with small interfering RNA for E2F1. Moreover, Nutlin-3, as well as tumor necrosis factor (TNF α, potentiated the maturational activity of recombinant TNF-related apoptosis-inducing lig, (TRAIL in HL-60 cells. However, although TNF-α significantly counteracted the proapoptotic activity of TRAIL, Nutlin-3 did not interfere with the proapoptotic activity of TRAIL. Taken together, these data disclose a novel, potentially relevant therapeutic role for Nutlin-3 in the treatment of both p53 wild-type, p53-/- AML, possibly in association with recombinant TRAIL.

  14. Regulation of p21ras activity

    DEFF Research Database (Denmark)

    Lowy, D R; Zhang, K; DeClue, J E

    1992-01-01

    The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control...... mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange....

  15. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    Science.gov (United States)

    Jaako, P; Debnath, S; Olsson, K; Zhang, Y; Flygare, J; Lindström, M S; Bryder, D; Karlsson, S

    2015-11-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of mouse double minute 2 (Mdm2), the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time.

  16. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation.

    Science.gov (United States)

    Liu, Yong; He, Yizhou; Jin, Aiwen; Tikunov, Andrey P; Zhou, Lishi; Tollini, Laura A; Leslie, Patrick; Kim, Tae-Hyung; Li, Lei O; Coleman, Rosalind A; Gu, Zhennan; Chen, Yong Q; Macdonald, Jeffrey M; Graves, Lee M; Zhang, Yanping

    2014-06-10

    The tumor suppressor p53 has recently been shown to regulate energy metabolism through multiple mechanisms. However, the in vivo signaling pathways related to p53-mediated metabolic regulation remain largely uncharacterized. By using mice bearing a single amino acid substitution at cysteine residue 305 of mouse double minute 2 (Mdm2(C305F)), which renders Mdm2 deficient in binding ribosomal proteins (RPs) RPL11 and RPL5, we show that the RP-Mdm2-p53 signaling pathway is critical for sensing nutrient deprivation and maintaining liver lipid homeostasis. Although the Mdm2(C305F) mutation does not significantly affect growth and development in mice, this mutation promotes fat accumulation under normal feeding conditions and hepatosteatosis under acute fasting conditions. We show that nutrient deprivation inhibits rRNA biosynthesis, increases RP-Mdm2 interaction, and induces p53-mediated transactivation of malonyl-CoA decarboxylase (MCD), which catalyzes the degradation of malonyl-CoA to acetyl-CoA, thus modulating lipid partitioning. Fasted Mdm2(C305F) mice demonstrate attenuated MCD induction and enhanced malonyl-CoA accumulation in addition to decreased oxidative respiration and increased fatty acid accumulation in the liver. Thus, the RP-Mdm2-p53 pathway appears to function as an endogenous sensor responsible for stimulating fatty acid oxidation in response to nutrient depletion.

  17. Expression of MDM2 mRNA, MDM2, P53 and P16 Proteins in Urothelial Lesions in the View of the WHO 4th Edition Guidelines as A Molecular Insight towards Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Olfat Hammam

    2017-08-01

    Full Text Available AIM: Here we imposed a multimarker molecular panel composed of P53, MDM2 protein & mRNA & P16 with the identification of sensitive and specific cut offs among the Egyptian urothelial carcinomas bilharzial or not emphasize the pathological and molecular classifications, pathways and prognosis as a privilege for adjuvant therapy. METHODS: Three hundred and ten urothelial lesions were pathologically evaluated and grouped as follows: 50 chronic cystitis as benign, 240 urothelial carcinomas and 20 normal bladder tissue as a control. Immunohistochemistry for MDM Protein, P16 & p53 and In Situ Hybridization for MDM2mRNA were done. RESULTS: MDM2mRNA overexpression correlated with low grade low stage non invasive tumors, while P53 > 40% & p16 40% & P16 10% from high grade, high stage invasive urothelial carcinomas (with p53 > 40, p16 40 & p16 < 10%, together with the histopathological features can distinguish in situ urothelial lesions from dysplastic and atypical lesions.

  18. Opposite regulation of MDM2 and MDMX expression in acquisition of mesenchymal phenotype in benign and cancer cells

    Czech Academy of Sciences Publication Activity Database

    Slabáková, Eva; Kharaishvili, G.; Smějová, M.; Pernicová, Zuzana; Suchánková, Tereza; Remšík, Jan; Lerch, Stanislav; Straková, Nicol; Bouchal, J.; Král, M.; Culig, Z.; Kozubík, Alois; Souček, Karel

    2015-01-01

    Roč. 6, č. 34 (2015), s. 36156-36171 ISSN 1949-2553 R&D Projects: GA MŠk(CZ) EE2.3.30.0030; GA ČR(CZ) GPP301/12/P407 Institutional support: RVO:68081707 Keywords : epithelial-mesenchymal transition * MDM2/MDMX * SNAI2/SLUG Subject RIV: BO - Biophysics Impact factor: 5.008, year: 2015

  19. A p53-independent role for the MDM2 antagonist Nutlin-3 in DNA damage response initiation

    Directory of Open Access Journals (Sweden)

    Kumar Sonia

    2011-02-01

    Full Text Available Abstract Background The mammalian DNA-damage response (DDR has evolved to protect genome stability and maximize cell survival following DNA-damage. One of the key regulators of the DDR is p53, itself tightly regulated by MDM2. Following double-strand DNA breaks (DSBs, mediators including ATM are recruited to the site of DNA-damage. Subsequent phosphorylation of p53 by ATM and ATM-induced CHK2 results in p53 stabilization, ultimately intensifying transcription of p53-responsive genes involved in DNA repair, cell-cycle checkpoint control and apoptosis. Methods In the current study, we investigated the stabilization and activation of p53 and associated DDR proteins in response to treatment of human colorectal cancer cells (HCT116p53+/+ with the MDM2 antagonist, Nutlin-3. Results Using immunoblotting, Nutlin-3 was observed to stabilize p53, and activate p53 target proteins. Unexpectedly, Nutlin-3 also mediated phosphorylation of p53 at key DNA-damage-specific serine residues (Ser15, 20 and 37. Furthermore, Nutlin-3 induced activation of CHK2 and ATM - proteins required for DNA-damage-dependent phosphorylation and activation of p53, and the phosphorylation of BRCA1 and H2AX - proteins known to be activated specifically in response to DNA damage. Indeed, using immunofluorescent labeling, Nutlin-3 was seen to induce formation of γH2AX foci, an early hallmark of the DDR. Moreover, Nutlin-3 induced phosphorylation of key DDR proteins, initiated cell cycle arrest and led to formation of γH2AX foci in cells lacking p53, whilst γH2AX foci were also noted in MDM2-deficient cells. Conclusion To our knowledge, this is the first solid evidence showing a secondary role for Nutlin-3 as a DDR triggering agent, independent of p53 status, and unrelated to its role as an MDM2 antagonist.

  20. Polymorphisms in promoter sequences of MDM2, p53, and p16INK4a genes in normal Japanese individuals

    Directory of Open Access Journals (Sweden)

    Yasuhito Ohsaka

    2010-01-01

    Full Text Available Research has been conducted to identify sequence polymorphisms of gene promoter regions in patients and control subjects, including normal individuals, and to determine the influence of these polymorphisms on transcriptional regulation in cells that express wild-type or mutant p53. In this study we isolated genomic DNA from whole blood of healthy Japanese individuals and sequenced the promoter regions of the MDM2, p53, and p16INK4a genes. We identified polymorphisms comprising 3 nucleotide substitutions at exon 1 and intron 1 regions of the MDM2 gene and 1 nucleotide insertion at a poly(C nucleotide position in the p53 gene. The Japanese individuals also exhibited p16INK4a polymorphisms at several positions, including position -191. Reporter gene analysis by using luciferase revealed that the polymorphisms of MDM2, p53, and p16INK4a differentially altered luciferase activities in several cell lines, including the Colo320DM, U251, and T98G cell lines expressing mutant p53. Our results indicate that the promoter sequences of these genes differ among normal Japanese individuals and that polymorphisms can alter gene transcription activity.

  1. The pharmacodynamics of the p53-Mdm2 targeting drug Nutlin: the role of gene-switching noise.

    Directory of Open Access Journals (Sweden)

    Krzysztof Puszynski

    2014-12-01

    Full Text Available In this work we investigate, by means of a computational stochastic model, how tumor cells with wild-type p53 gene respond to the drug Nutlin, an agent that interferes with the Mdm2-mediated p53 regulation. In particular, we show how the stochastic gene-switching controlled by p53 can explain experimental dose-response curves, i.e., the observed inter-cell variability of the cell viability under Nutlin action. The proposed model describes in some detail the regulation network of p53, including the negative feedback loop mediated by Mdm2 and the positive loop mediated by PTEN, as well as the reversible inhibition of Mdm2 caused by Nutlin binding. The fate of the individual cell is assumed to be decided by the rising of nuclear-phosphorylated p53 over a certain threshold. We also performed in silico experiments to evaluate the dose-response curve after a single drug dose delivered in mice, or after its fractionated administration. Our results suggest that dose-splitting may be ineffective at low doses and effective at high doses. This complex behavior can be due to the interplay among the existence of a threshold on the p53 level for its cell activity, the nonlinearity of the relationship between the bolus dose and the peak of active p53, and the relatively fast elimination of the drug.

  2. Effective screening strategy using ensembled pharmacophore models combined with cascade docking: application to p53-MDM2 interaction inhibitors.

    Science.gov (United States)

    Xue, Xin; Wei, Jin-Lian; Xu, Li-Li; Xi, Mei-Yang; Xu, Xiao-Li; Liu, Fang; Guo, Xiao-Ke; Wang, Lei; Zhang, Xiao-Jin; Zhang, Ming-Ye; Lu, Meng-Chen; Sun, Hao-Peng; You, Qi-Dong

    2013-10-28

    Protein-protein interactions (PPIs) play a crucial role in cellular function and form the backbone of almost all biochemical processes. In recent years, protein-protein interaction inhibitors (PPIIs) have represented a treasure trove of potential new drug targets. Unfortunately, there are few successful drugs of PPIIs on the market. Structure-based pharmacophore (SBP) combined with docking has been demonstrated as a useful Virtual Screening (VS) strategy in drug development projects. However, the combination of target complexity and poor binding affinity prediction has thwarted the application of this strategy in the discovery of PPIIs. Here we report an effective VS strategy on p53-MDM2 PPI. First, we built a SBP model based on p53-MDM2 complex cocrystal structures. The model was then simplified by using a Receptor-Ligand complex-based pharmacophore model considering the critical binding features between MDM2 and its small molecular inhibitors. Cascade docking was subsequently applied to improve the hit rate. Based on this strategy, we performed VS on NCI and SPECS databases and successfully discovered 6 novel compounds from 15 hits with the best, compound 1 (NSC 5359), K(i) = 180 ± 50 nM. These compounds can serve as lead compounds for further optimization.

  3. Ibrutinib synergizes with MDM-2 inhibitors in promoting cytotoxicity in B chronic lymphocytic leukemia.

    Science.gov (United States)

    Voltan, Rebecca; Rimondi, Erika; Melloni, Elisabetta; Rigolin, Gian Matteo; Casciano, Fabio; Arcidiacono, Maria Vittoria; Celeghini, Claudio; Cuneo, Antonio; Zauli, Giorgio; Secchiero, Paola

    2016-10-25

    The aim of this study was to investigate the anti-leukemic activity of the Bruton tyrosine kinase inhibitor Ibrutinib in combination with the small molecule MDM-2 inhibitor Nutlin-3 in preclinical models. The potential efficacy of the Ibrutinib/Nutlin-3 combination was evaluated in vitro in a panel of B leukemic cell lines (EHEB, JVM-2, JVM-3, MEC-1, MEC-2) and in primary B-chronic lymphocytic leukemia (B-CLL) patient samples, by assessing cell viability, cell cycle profile, apoptosis and intracellular pathway modulations. Validation of the combination therapy was assessed in a B leukemic xenograft mouse model. Ibrutinib exhibited variable anti-leukemic activity in vitro and the combination with Nutlin-3 synergistically enhanced the induction of apoptosis independently from the p53 status. Indeed, the Ibrutinib/Nutlin-3 combination was effective in promoting cytotoxicity also in primary B-CLL samples carrying 17p13 deletion and/or TP53 mutations, already in therapy with Ibrutinib. Molecular analyses performed on both B-leukemic cell lines as well as on primary B-CLL samples, while confirming the switch-off of the MAPK and PI3K pro-survival pathways by Ibrutinib, indicated that the synergism of action with Nutlin-3 was independent by p53 pathway and was accompanied by the activation of the DNA damage cascade signaling through the phosphorylation of the histone protein H2A.X. This observation was confirmed also in the JVM-2 B leukemic xenograft mouse model. Taken together, our data emphasize that the Ibrutinib/Nutlin-3 combination merits to be further evaluated as a therapeutic option for B-CLL.

  4. Exploiting the MDM2-CK1α Protein-Protein Interface to Develop Novel Biologics That Induce UBL-Kinase-Modification and Inhibit Cell Growth

    Science.gov (United States)

    Huart, Anne-Sophie; MacLaine, Nicola J.; Narayan, Vikram; Hupp, Ted R.

    2012-01-01

    Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α) forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2) oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i) ELISA with recombinant MDM2; (ii) cell lysate pull-down towards endogenous MDM2; (iii) MDM2-CK1α complex-based competition ELISA; and (iv) MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i) function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii) be used as a tool to study NEDDylation of CK1α, and (iii) reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross-talk between

  5. Exploiting the MDM2-CK1α protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Huart

    Full Text Available Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2 oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i ELISA with recombinant MDM2; (ii cell lysate pull-down towards endogenous MDM2; (iii MDM2-CK1α complex-based competition ELISA; and (iv MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii be used as a tool to study NEDDylation of CK1α, and (iii reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross

  6. MDM2 SNP309 and SNP285 Act as Negative Prognostic Markers for Non-small Cell Lung Cancer Adenocarcinoma Patients

    Science.gov (United States)

    Deben, Christophe; Op de Beeck, Ken; Van den Bossche, Jolien; Jacobs, Julie; Lardon, Filip; Wouters, An; Peeters, Marc; Van Camp, Guy; Rolfo, Christian; Deschoolmeester, Vanessa; Pauwels, Patrick

    2017-01-01

    Objectives: Two functional polymorphisms in the MDM2 promoter region, SNP309T>G and SNP285G>C, have been shown to impact MDM2 expression and cancer risk. Currently available data on the prognostic value of MDM2 SNP309 in non-small cell lung cancer (NSCLC) is contradictory and unavailable for SNP285. The goal of this study was to clarify the role of these MDM2 SNPs in the outcome of NSCLC patients. Materials and Methods: In this study we genotyped SNP309 and SNP285 in 98 NSCLC adenocarcinoma patients and determined MDM2 mRNA and protein levels. In addition, we assessed the prognostic value of these common SNPs on overall and progression free survival, taking into account the TP53 status of the tumor. Results and Conclusion: We found that the SNP285C allele, but not the SNP309G allele, was significantly associated with increased MDM2 mRNA expression levels (p = 0.025). However, we did not observe an association with MDM2 protein levels for SNP285. The SNP309G allele was significantly associated with the presence of wild type TP53 (p = 0.047) and showed a strong trend towards increased MDM2 protein levels (p = 0.068). In addition, patients harboring the SNP309G allele showed a worse overall survival, but only in the presence of wild type TP53. The SNP285C allele was significantly associated with an early age of diagnosis and metastasis. Additionally, the SNP285C allele acted as an independent predictor for worse progression free survival (HR = 3.97; 95% CI = 1.51 - 10.42; p = 0.005). Our data showed that both SNP309 (in the presence of wild type TP53) and SNP285 act as negative prognostic markers for NSCLC patients, implicating a prominent role for these variants in the outcome of these patients. PMID:28819417

  7. Predictive and prognostic impact of TP53 mutations and MDM2 promoter genotype in primary breast cancer patients treated with epirubicin or paclitaxel.

    Directory of Open Access Journals (Sweden)

    Ranjan Chrisanthar

    Full Text Available BACKGROUND: TP53 mutations have been associated with resistance to anthracyclines but not to taxanes in breast cancer patients. The MDM2 promoter single nucleotide polymorphism (SNP T309G increases MDM2 activity and may reduce wild-type p53 protein activity. Here, we explored the predictive and prognostic value of TP53 and CHEK2 mutation status together with MDM2 SNP309 genotype in stage III breast cancer patients receiving paclitaxel or epirubicin monotherapy. EXPERIMENTAL DESIGN: Each patient was randomly assigned to treatment with epirubicin 90 mg/m(2 (n = 109 or paclitaxel 200 mg/m(2 (n = 114 every 3rd week as monotherapy for 4-6 cycles. Patients obtaining a suboptimal response on first-line treatment requiring further chemotherapy received the opposite regimen. Time from last patient inclusion to follow-up censoring was 69 months. Each patient had snap-frozen tumor tissue specimens collected prior to commencing chemotherapy. PRINCIPAL FINDINGS: While TP53 and CHEK2 mutations predicted resistance to epirubicin, MDM2 status did not. Neither TP53/CHEK2 mutations nor MDM2 status was associated with paclitaxel response. Remarkably, TP53 mutations (p = 0.007 but also MDM2 309TG/GG genotype status (p = 0.012 were associated with a poor disease-specific survival among patients having paclitaxel but not patients having epirubicin first-line. The effect of MDM2 status was observed among individuals harbouring wild-type TP53 (p = 0.039 but not among individuals with TP53 mutated tumors (p>0.5. CONCLUSION: TP53 and CHEK2 mutations were associated with lack of response to epirubicin monotherapy. In contrast, TP53 mutations and MDM2 309G allele status conferred poor disease-specific survival among patients treated with primary paclitaxel but not epirubicin monotherapy.

  8. Induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia.

    Science.gov (United States)

    Jaako, P; Ugale, A; Wahlestedt, M; Velasco-Hernandez, T; Cammenga, J; Lindström, M S; Bryder, D

    2017-01-01

    Mutations resulting in constitutive activation of signaling pathways that regulate ribosome biogenesis are among the most common genetic events in acute myeloid leukemia (AML). However, whether ribosome biogenesis presents as a therapeutic target to treat AML remains unexplored. Perturbations in ribosome biogenesis trigger the 5S ribonucleoprotein particle (RNP)-Mdm2-p53 ribosomal stress pathway, and induction of this pathway has been shown to have therapeutic efficacy in Myc-driven lymphoma. In the current study we address the physiological and therapeutic role of the 5S RNP-Mdm2-p53 pathway in AML. By utilizing mice that have defective ribosome biogenesis due to downregulation of ribosomal protein S19 (Rps19), we demonstrate that induction of the 5S RNP-Mdm2-p53 pathway significantly delays the initiation of AML. However, even a severe Rps19 deficiency that normally results in acute bone marrow failure has no consistent efficacy on already established disease. Finally, by using mice that harbor a mutation in the Mdm2 gene disrupting its binding to 5S RNP, we show that loss of the 5S RNP-Mdm2-p53 pathway is dispensable for development of AML. Our study suggests that induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway holds limited potential as a single-agent therapy in the treatment of AML.

  9. Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation.

    Directory of Open Access Journals (Sweden)

    Qingyu Qin

    Full Text Available Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK and murine double minute (Mdm2 E3 ligase. Growth cone collapse induced by genetic (npc1-/- or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1-/- mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism.

  10. WAF Dance etendab "Väikest printsi" / Karin Klaus

    Index Scriptorium Estoniae

    Klaus, Karin

    2006-01-01

    Pärnu tantsukool WAF Dance toob 17. ja 18. juunil Endla teatris lavale Saint-Exupery "Väikese printsi". See on moodsa tantsuteatri koolitus- ja etendusprojekt. Lavastaja ja koreograaf on Kate Pringle Londonist

  11. MDM2 SNP309 promoter polymorphism and p53 mutations in urinary bladder carcinoma stage T1

    Directory of Open Access Journals (Sweden)

    Olsson Hans

    2013-01-01

    Full Text Available Abstract Background Urinary bladder carcinoma stage T1 is an unpredictable disease that in some cases has a good prognosis with only local or no recurrence, but in others can appear as a more aggressive tumor with progression to more advanced stages. The aim here was to investigate stage T1 tumors regarding MDM2 promoter SNP309 polymorphism, mutations in the p53 gene, and expression of p53 and p16 measured by immunohistochemistry, and subsequently relate these changes to tumor recurrence and progression. We examined a cohort of patients with primary stage T1 urothelial carcinoma of the bladder and their tumors. Methods After re-evaluation of the original slides and exclusions, the study population comprised 141 patients, all with primary stage T1 urothelial carcinoma of the bladder. The hospital records were screened for clinical parameters and information concerning presence of histologically proven recurrence and progression. The paraffin-embedded tumor material was evaluated by immunohistochemistry. Any mutations found in the p53 gene were studied by single-strand conformation analysis and Sanger sequencing. The MDM2 SNP309 polymorphism was investigated by pyrosequencing. Multivariate analyses concerning association with prognosis were performed, and Kaplan-Meier analysis was conducted for a combination of changes and time to progression. Results Of the 141 patients, 82 had at least one MDM2 SNP309 G allele, and 53 had a mutation in the p53 gene, but neither of those anomalies was associated with a worse prognosis. A mutation in the p53 gene was associated with immunohistochemically visualized p53 protein expression at a cut-off value of 50%. In the group with p53 mutation Kaplan-Meier analysis showed higher rate of progression and shorter time to progression in patients with immunohistochemically abnormal p16 expression compared to them with normal p16 expression (p = 0.038. Conclusions MDM2 SNP309 promoter polymorphism and mutations in

  12. MAGE-A Cancer/Testis Antigens Inhibit MDM2 Ubiquitylation Function and Promote Increased Levels of MDM4

    OpenAIRE

    Marcar, Lynnette; Ihrig, Bianca; Hourihan, John; Bray, Susan E; Quinlan, Philip R; Jordan, Lee B; Thompson, Alastair M; Hupp, Ted R; Meek, David W

    2015-01-01

    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquityla...

  13. d-Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions.

    Science.gov (United States)

    Li, Xiang; Liu, Chao; Chen, Si; Hu, Honggang; Su, Jiacan; Zou, Yan

    2017-10-15

    According to the previously reported potent dual l-peptide PMI of p53-MDM2/MDMX interactions, a series of d-amino acid mutational PMI analogues, PMI-1-4, with enhanced proteolytic resistence and in vitro tumor cell inhibitory activities were reported, of which Liposome-PMI-1 showed a stronger inhibitory activity against the U87 cell lines than Nutlin-3. This d-amino acid mutation strategy may give a hand for enhancing the potential of peptide drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2

    DEFF Research Database (Denmark)

    Jansson, M D; Djodji Damas, Nkerorema; Lees, M

    2014-01-01

    MicroRNAs (miRNAs) regulate many key cancer-relevant pathways and may themselves possess oncogenic or tumor-suppressor functions. Consequently, miRNA dysregulation has been shown to be a prominent feature in many human cancers. The p53 tumor suppressor acts as a negative regulator of cell prolife...... tumor cells. Furthermore, we show that a negative correlation between miR-339-5p and MDM2 expression exists in human cancer, implying that the interaction is important for cancer development.Oncogene advance online publication, 2 June 2014; doi:10.1038/onc.2014.130....

  15. Np9, a cellular protein of retroviral ancestry restricted to human, chimpanzee and gorilla, binds and regulates ubiquitin ligase MDM2

    Science.gov (United States)

    Heyne, Kristina; Kölsch, Kathrin; Bruand, Marine; Kremmer, Elisabeth; Grässer, Friedrich A; Mayer, Jens; Roemer, Klaus

    2015-01-01

    Humans and primates are long-lived animals with long reproductive phases. One factor that appears to contribute to longevity and fertility in humans, as well as to cancer-free survival, is the transcription factor and tumor suppressor p53, controlled by its main negative regulator MDM2. However, p53 and MDM2 homologs are found throughout the metazoan kingdom from Trichoplacidae to Hominidae. Therefore the question arises, if p53/MDM2 contributes to the shaping of primate features, then through which mechanisms. Previous findings have indicated that the appearances of novel p53-regulated genes and wild-type p53 variants during primate evolution are important in this context. Here, we report on another mechanism of potential relevance. Human endogenous retrovirus K subgroup HML-2 (HERV-K(HML-2)) type 1 proviral sequences were formed in the genomes of the predecessors of contemporary Hominoidea and can be identified in the genomes of Nomascus leucogenys (gibbon) up to Homo sapiens. We previously reported on an alternative splicing event in HERV-K(HML-2) type 1 proviruses that can give rise to nuclear protein of 9 kDa (Np9). We document here the evolution of Np9-coding capacity in human, chimpanzee and gorilla, and show that the C-terminal half of Np9 binds directly to MDM2, through a domain of MDM2 that is known to be contacted by various cellular proteins in response to stress. Np9 can inhibit the MDM2 ubiquitin ligase activity toward p53 in the cell nucleus, and can support the transactivation of genes by p53. Our findings point to the possibility that endogenous retrovirus protein Np9 contributes to the regulation of the p53-MDM2 pathway specifically in humans, chimpanzees and gorillas. PMID:26103464

  16. Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma

    Science.gov (United States)

    Arnhold, Viktor; Schmelz, Karin; Proba, Jutta; Winkler, Annika; Wünschel, Jasmin; Toedling, Joern; Deubzer, Hedwig E.; Künkele, Annette; Eggert, Angelika; Schulte, Johannes H.; Hundsdoerfer, Patrick

    2018-01-01

    Fewer than 50% of patients with high-risk neuroblastoma survive five years after diagnosis with current treatment protocols. Molecular targeted therapies are expected to improve survival. Although MDM2 has been validated as a promising target in preclinical models, no MDM2 inhibitors have yet entered clinical trials for neuroblastoma patients. Toxic side effects, poor bioavailability and low efficacy of the available MDM2 inhibitors that have entered phase I/II trials drive the development of novel MDM2 inhibitors with an improved risk-benefit profile. We investigated the effect of the novel MDM2 small molecular inhibitor, DS-3032b, on viability, proliferation, senescence, migration, cell cycle arrest and apoptosis in a panel of six neuroblastoma cell lines with different TP53 and MYCN genetic backgrounds, and assessed efficacy in a murine subcutaneous model for high-risk neuroblastoma. Re-analysis of existing expression data from 476 primary neuroblastomas showed that high-level MDM2 expression correlated with poor patient survival. DS-3032b treatment enhanced TP53 target gene expression and induced G1 cell cycle arrest, senescence and apoptosis. CRISPR-mediated MDM2 knockout in neuroblastoma cells mimicked DS-3032b treatment. TP53 signaling was selectively activated by DS-3032b in neuroblastoma cells with wildtype TP53, regardless of the presence of MYCN amplification, but was significantly reduced by TP53 mutations or expression of a dominant-negative TP53 mutant. Oral DS-3032b administration inhibited xenograft tumor growth and prolonged mouse survival. Our in vitro and in vivo data demonstrate that DS-3032b reactivates TP53 signaling even in the presence of MYCN amplification in neuroblastoma cells, to reduce proliferative capacity and cause cytotoxicity. PMID:29416773

  17. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2.

    Science.gov (United States)

    Wang, Wei; Zhang, Xu; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree Ashok; Wang, Ming-Hai; Wang, Hui; Zhang, Ruiwen

    2012-01-01

    Although ginseng and related herbs have a long history of utility for various health benefits, their application in cancer therapy and underlying mechanisms of action are not fully understood. Our recent work has shown that 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol (25-OCH(3)-PPD), a newly identified ginsenoside from Panax notoginseng, exerts activities against a variety of cancer cells in vitro and in vivo. This study was designed to investigate its anti-breast cancer activity and the underlying mechanisms of action. We observed that 25-OCH(3)-PPD decreased the survival of breast cancer cells by induction of apoptosis and G1 phase arrest and inhibited the growth of breast cancer xenografts in vivo. We further demonstrated that, in a dose- and time-dependent manner, 25-OCH(3)-PPD inhibited MDM2 expression at both transcriptional and post-translational levels in human breast cancer cells with various p53 statuses (wild type and mutant). Moreover, 25-OCH(3)-PPD inhibited in vitro cell migration, reduced the expression of epithelial-to-mesenchymal transition (EMT) markers, and prevented in vivo metastasis of breast cancer. In summary, 25-OCH(3)-PPD is a potential therapeutic and anti-metastatic agent for human breast cancer through down-regulating MDM2. Further preclinical and clinical development of this agent is warranted.

  18. Cyclophilin B induces chemoresistance by degrading wild type p53 via interaction with MDM2 in colorectal cancer.

    Science.gov (United States)

    Choi, Tae Gyu; Nguyen, Minh Nam; Kim, Jieun; Jo, Yong Hwa; Jang, Miran; Nguyen, Ngoc Ngo Yen; Yun, Hyeong Rok; Choe, Wonchae; Kang, Insug; Ha, Joohun; Tang, Dean G; Kim, Sung Soo

    2018-06-06

    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Chemoresistance is a major problem for effective therapy in CRC. Here, we investigated the mechanism by which peptidylprolyl isomerase B (PPIB; cyclophilin B, CypB) regulates chemoresistance in CRC. We found that CypB is a novel wild type p53 (p53WT)-inducible gene but a negative regulator of p53WT in response to oxaliplatin treatment. Overexpression of CypB shortens the half-life of p53WT and inhibits oxaliplatin-induced apoptosis in CRC cells, whereas knockdown of CypB lengthens the half-life of p53WT and stimulates p53WT dependent apoptosis. CypB interacts directly with MDM2, and enhances MDM2-dependent p53WT ubiquitination and degradation. Furthermore, we firmly validated using bioinformatics analyses that overexpression of CypB is associated with poor prognosis in CRC progression and chemoresistance. Hence, we suggest a novel mechanism of chemoresistance caused by overexpressed CypB, which may help to develop new anti-cancer drugs. We also propose that CypB may be utilized as a predictive biomarker in CRC patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons

    Directory of Open Access Journals (Sweden)

    Sei-ichi Yoshihara

    2014-08-01

    Full Text Available Sensory experience regulates the development of various brain structures, including the cortex, hippocampus, and olfactory bulb (OB. Little is known about how sensory experience regulates the dendritic spine development of OB interneurons, such as granule cells (GCs, although it is well studied in mitral/tufted cells. Here, we identify a transcription factor, Npas4, which is expressed in OB GCs immediately after sensory input and is required for dendritic spine formation. Npas4 overexpression in OB GCs increases dendritic spine density, even under sensory deprivation, and rescues reduction of dendrite spine density in the Npas4 knockout OB. Furthermore, loss of Npas4 upregulates expression of the E3-ubiquitin ligase Mdm2, which ubiquitinates a microtubule-associated protein Dcx. This leads to reduction in the dendritic spine density of OB GCs. Together, these findings suggest that Npas4 regulates Mdm2 expression to ubiquitinate and degrade Dcx during dendritic spine development in newborn OB GCs after sensory experience.

  20. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

    Directory of Open Access Journals (Sweden)

    Mariell Pettersson

    Full Text Available The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2 via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

  1. Computational Studies of Difference in Binding Modes of Peptide and Non-Peptide Inhibitors to MDM2/MDMX Based on Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    2012-02-01

    Full Text Available Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π–π, CH–π and CH–CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors.

  2. Comparison of Chromogenic In Situ Hybridization and Fluorescence In Situ Hybridization for the Evaluation of MDM2 Amplification in Adipocytic Tumors.

    Science.gov (United States)

    Mardekian, Stacey K; Solomides, Charalambos C; Gong, Jerald Z; Peiper, Stephen C; Wang, Zi-Xuan; Bajaj, Renu

    2015-11-01

    Atypical lipomatous tumor/well-differentiated liposarcoma (ALT-WDLPS) and dedifferentiated liposarcoma (DDLPS) are characterized cytogenetically by a 12q13-15 amplification involving the mouse double minute 2 (MDM2) oncogene. Fluorescence in situ hybridization (FISH) is used frequently to detect this amplification and aid with the diagnosis of these entities, which is difficult by morphology alone. Recently, bright-field in situ hybridization techniques such as chromogenic in situ hybridization (CISH) have been introduced for the determination of MDM2 amplification status. The present study compared the results of FISH and CISH for detecting MDM2 amplification in 41 cases of adipocytic tumors. Amplification was defined in both techniques as a MDM2/CEN12 ratio of 2 or greater. Eleven cases showed amplification with both FISH and CISH, and 26 cases showed no amplification with both methods. Two cases had discordant results between CISH and FISH, and two cases were not interpretable by CISH. CISH is advantageous for allowing pathologists to evaluate the histologic and molecular alterations occurring simultaneously in a specimen. Moreover, CISH is found to be more cost- and time-efficient when used with automation, and the signals do not quench over time. CISH technique is a reliable alternative to FISH in the evaluation of adipocytic tumors for MDM2 amplification. © 2014 Wiley Periodicals, Inc.

  3. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations.

    Directory of Open Access Journals (Sweden)

    Sharad Verma

    Full Text Available p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy have major contribution in binding free energy.

  4. Fluorescence In Situ Hybridization for MDM2 Amplification as a Routine Ancillary Diagnostic Tool for Suspected Well-Differentiated and Dedifferentiated Liposarcomas: Experience at a Tertiary Center

    Directory of Open Access Journals (Sweden)

    Khin Thway

    2015-01-01

    Full Text Available Background. The assessment of MDM2 gene amplification by fluorescence in situ hybridization (FISH has become a routine ancillary tool for diagnosing atypical lipomatous tumor (ALT/well-differentiated liposarcoma and dedifferentiated liposarcoma (WDL/DDL in specialist sarcoma units. We describe our experience of its utility at our tertiary institute. Methods. All routine histology samples in which MDM2 amplification was assessed with FISH over a 2-year period were included, and FISH results were correlated with clinical and histologic findings. Results. 365 samples from 347 patients had FISH for MDM2 gene amplification. 170 were positive (i.e., showed MDM2 gene amplification, 192 were negative, and 3 were technically unsatisfactory. There were 122 histologically benign cases showing a histology:FISH concordance rate of 92.6%, 142 WDL/DDL (concordance 96.5%, and 34 cases histologically equivocal for WDL (concordance 50%. Of 64 spindle cell/pleomorphic neoplasms (in which DDL was a differential diagnosis, 21.9% showed MDM2 amplification. Of the cases with discrepant histology and FISH, all but 3 had diagnoses amended following FISH results. For discrepancies of benign histology but positive FISH, lesions were on average larger, more frequently in “classical” (intra-abdominal or inguinal sites for WDL/DDL and more frequently core biopsies. Discrepancies of malignant histology but negative FISH were smaller, less frequently in “classical” sites but again more frequently core biopsies. Conclusions. FISH has a high correlation rate with histology for cases with firm histologic diagnoses of lipoma or WDL/DDL. It is a useful ancillary diagnostic tool in histologically equivocal cases, particularly in WDL lacking significant histologic atypia or DDL without corresponding WDL component, especially in larger tumors, those from intra-abdominal or inguinal sites or core biopsies. There is a significant group of well-differentiated adipocytic neoplasms

  5. Effect of MDM2 SNP309 and p53 codon 72 polymorphisms on lung cancer risk and survival among non-smoking Chinese women in Singapore

    Directory of Open Access Journals (Sweden)

    Sabapathy Kanaga

    2010-03-01

    Full Text Available Abstract Background Single nucleotide polymorphism (SNP 309 resulting in a T or G allele in the promoter of MDM2, the negative regulator of p53, has been suggested to affect cancer predisposition and age of onset, primarily in females. However, findings have been inconsistent in various cancers, and ethnicity appears to be a critical factor influencing the effects of the SNP on cancer risk. An increasing trend has been observed in the prevalence of lung cancers in non-smokers, especially females, though the underlying genetic basis is unclear. Methods We therefore examined the role of the SNPs in the p53 pathway (p53 codon 72 and MDM2 SNP309 on lung cancer risk and prognosis of a life-time non-smoking female Chinese population, in a hospital-based case-control study of 123 cases and 159 age-matched controls, by PCR analysis. Results Our findings reveal that the risk of lung cancer among individuals with the MDM2 SNP309 TT genotype was 2.1 (95% CI 1.01-4.36 relative to the GG genotype, contrary to initial expectations that the GG genotype with elevated MDM2 levels will increase cancer risk. Those who had this genotype in combination with the p53 Pro allele had a risk of 2.5 (95% CI 1.2-5.0. There was however no effect of either polymorphism on age at diagnosis of lung cancer or on overall survival. Conclusions The results thus demonstrate that the MDM2 SNP309 TT rather than the GG genotype is associated with increased risk of lung cancer in this population, suggesting that other mechanisms independent of increased MDM2 levels can influence cancer susceptibility.

  6. Effect of etoposide-induced alteration of the Mdm2-Rb signaling pathway on cellular senescence in A549 lung adenocarcinoma cells.

    Science.gov (United States)

    Dai, Wenjing; Jiang, Yi; Chen, Kairong; Qiu, Jing; Sun, Jian; Zhang, Wei; Zhou, Xiafei; Huang, Na; Li, Yunhui; Li, Wancheng

    2017-10-01

    The present study aimed to investigate the effect of various concentrations of etoposide (VP-16) on the E3 ubiquitin-protein ligase Mdm2 (Mdm2)-retinoblastoma (Rb) signaling pathway in the cellular senescence of A549 lung adenocarcinoma cells. A549 cells were randomly divided into the following four groups: Control group (no treatment), group 1 (1 µmol/l VP-16), group 2 (5 µmol/l VP-16) and group 3 (25 µmol/l VP-16). Each group was cultured for 48 h after treatment prior to observation of the alterations to cellular morphology. The cell cycle distribution of each group was also detected by flow cytometry. In addition, the activity of cellular senescence-associated β-galactosidase, and the expression of Mdm2 and phosphorylated (p-) Rb protein, was measured. The percentage of senescent cells was significantly higher following VP-16 treatment compared with the control group. The percentage of G 1 phase cells, and p-Rb protein and Mdm2 protein expression were also significantly different following VP-16 treatment compared with the control group. VP-16 increased the activity of β-galactosidase in the A459 cells. VP-16 also decreased the expression level of Mdm2 and p-Rb protein and inhibited cell cycle progression in G 1 . These results indicate that VP-16 induces the cellular senescence of A549 cells via the Mdm2-Rb signaling pathway. However, further investigations are required to validate the mechanisms underlying these effects of VP-16.

  7. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid conjugates targeting intron-exon junctions

    Directory of Open Access Journals (Sweden)

    Nielsen Peter E

    2010-06-01

    Full Text Available Abstract Background Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human cancer gene in JAR cells. Methods We screened 10 different 15 mer PNAs targeting intron2 at both the 5' - and the 3'-splice site for their effects on the splicing of mdm2 using RT-PCR analysis. We also tested a PNA (2512 targeting the 3'-splice site of intron3 with a complementarity of 4 bases to intron3 and 11 bases to exon4 for its splicing modulation effect. This PNA2512 was further tested for the effects on the mdm2 protein level as well as for inhibition of cell growth in combination with the DNA damaging agent camptothecin (CPT. Results We show that several of these PNAs effectively inhibit the splicing thereby producing a larger mRNA still containing intron2, while skipping of exon3 was not observed by any of these PNAs. The most effective PNA (PNA2406 targeting the 3'-splice site of intron2 had a complementarity of 4 bases to intron2 and 11 bases to exon3. PNA (2512 targeting the 3'-splice site of intron3 induced both splicing inhibition (intron3 skipping and skipping of exon4. Furthermore, treatment of JAR cells with this PNA resulted in a reduction in the level of MDM2 protein and a concomitant increase in the level of tumor suppressor p53. In addition, a combination of this PNA with CPT inhibited cell growth more than CPT alone. Conclusion We have identified several PNAs targeting the 5'- or 3'-splice sites in intron2 or the 3'-splice site of intron3 of mdm2 pre-mRNA which can inhibit splicing. Antisense targeting of splice junctions of mdm2 pre-mRNA may be a powerful method to evaluate the cellular function of MDM2 splice variants as well as a promising approach for discovery of mdm2 targeted anticancer drugs.

  8. Association between MDM2 SNP309 T>G polymorphism and the risk of bladder cancer: new data in a Chinese population and an updated meta-analysis

    OpenAIRE

    Xie, Linguo; Sun, Yan; Chen, Tao; Tian, Dawei; Li, Yujuan; Zhang, Yu; Ding, Na; Shen, Zhonghua; Xu, Hao; Nian, Xuewu; Sha, Nan; Han, Ruifa; Hu, Hailong; Wu, Changli

    2015-01-01

    Linguo Xie,1,2,* Yan Sun,2,* Tao Chen,1,2,* Dawei Tian,1,2 Yujuan Li,3 Yu Zhang,1,2 Na Ding,2 Zhonghua Shen,1,2 Hao Xu,1,2 Xuewu Nian,4 Nan Sha,1,2 Ruifa Han,1,2 Hailong Hu,1,2 Changli Wu1,2 Objective: Human murine double minute 2 protein (MDM2) is mainly a negative regulator of p53 tumor suppressor pathway. We aimed to investigate the association between MDM2 SNP309 polymorphism and bladder cancer risk. Methods: A total of 535 bladder cancer patients and 649 health controls were recruited f...

  9. The Heparanase Inhibitor PG545 Attenuates Colon Cancer Initiation and Growth, Associating with Increased p21 Expression

    Directory of Open Access Journals (Sweden)

    Preeti Singh

    2017-03-01

    Full Text Available Heparanase activity is highly implicated in cellular invasion and tumor metastasis, a consequence of cleavage of heparan sulfate and remodeling of the extracellular matrix underlying epithelial and endothelial cells. Heparanase expression is rare in normal epithelia, but is often induced in tumors, associated with increased tumor metastasis and poor prognosis. In addition, heparanase induction promotes tumor growth, but the molecular mechanism that underlines tumor expansion by heparanase is still incompletely understood. Here, we provide evidence that heparanase down regulates the expression of p21 (WAF1/CIP1, a cyclin-dependent kinase inhibitor that attenuates the cell cycle. Notably, a reciprocal effect was noted for PG545, a potent heparanase inhibitor. This compound efficiently reduced cell proliferation, colony formation, and tumor xenograft growth, associating with a marked increase in p21 expression. Utilizing the APC Min+/− mouse model, we show that heparanase expression and activity are increased in small bowel polyps, whereas polyp initiation and growth were significantly inhibited by PG545, again accompanied by a prominent induction of p21 levels. Down-regulation of p21 expression adds a novel feature for the emerging pro-tumorigenic properties of heparanase, while the potent p21 induction and anti-tumor effect of PG545 lends optimism that it would prove an efficacious therapeutic in colon carcinoma patients.

  10. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Justina McEvoy

    Full Text Available Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191 was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma.

  11. Association of the germline TP53 R72P and MDM2 SNP309 variants with breast cancer survival in specific breast tumor subgroups

    NARCIS (Netherlands)

    van den Broek, Alexandra J.; Broeks, Annegien; Horlings, Hugo M.; Canisius, Sander V. M.; Braaf, Linde M.; Langerød, Anita; van't Veer, Laura J.; Schmidt, Marjanka K.

    2011-01-01

    The tumor suppressor gene TP53 and its regulator MDM2 are both important players in the DNA-damage repair "TP53 response pathway". Common germline polymorphisms in these genes may affect outcome in patients with tumors characterized by additional somatic changes in the same or a related pathway. To

  12. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Eysturskard, Jonhard; Nielsen, Peter E

    2010-01-01

    ABSTRACT: BACKGROUND: Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA) 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human ca...

  13. The MDM2-p53-pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells

    DEFF Research Database (Denmark)

    Li, Xiaomu; Cheng, Kenneth K. Y.; Liu, Zhuohao

    2016-01-01

    deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates...

  14. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  15. Intraesophageal administratio (JP4-039) and p53/MDM2/MDM4 Inhibitor (BEB55) ameliorates radiation esophagitisn of GS-Nitroxide

    NARCIS (Netherlands)

    Kim, H.; Bernard, M.; Epperly, M.W.; Shen, H.; Dixon, T.M.; Amoscato, A.A.; Doemling, A.S.; Li, S.; Gao, X.; Wipf, P.

    2011-01-01

    Purpose/Objective(s): To evaluate the esophageal radiation dose modification properties of the GS-nitroxide (JP4-039) and the p53/MDM2/MDM4 inhibitor (BEB55). Materials/Methods: Esophagitis is a significant toxicity of radiation therapy of thoracic cancers. We evaluated radiation dose modification

  16. MDM2 phenotypic and genotypic profiling, respective to TP53 genetic status, in diffuse large B-cell lymphoma patients treated with rituximab-CHOP immunochemotherapy: a report from the International DLBCL Rituximab-CHOP Consortium Program

    NARCIS (Netherlands)

    Xu-Monette, Z.Y.; Moller, M.B.; Tzankov, A.; Montes-Moreno, S.; Hu, W.; Manyam, G.C.; Kristensen, L.; Fan, L.; Visco, C.; Dybkaer, K.; Chiu, A.; Tam, W.; Zu, Y.; Bhagat, G.; Richards, K.L.; Hsi, E.D.; Choi, W.W.; Krieken, J.H.J.M. van; Huang, Q.; Huh, J.; Ai, W.; Ponzoni, M.; Ferreri, A.J.; Wu, L.; Zhao, X.; Bueso-Ramos, C.E.; Wang, S.A.; Go, R.S.; Li, Y.; Winter, J.N.; Piris, M.A.; Medeiros, L.J.; Young, K.H.

    2013-01-01

    MDM2 is a key negative regulator of the tumor suppressor p53, however, the prognostic significance of MDM2 overexpression in diffuse large B-cell lymphoma (DLBCL) has not been defined convincingly. In a p53 genetically-defined large cohort of de novo DLBCL patients treated with rituximab,

  17. In squamous cell carcinoma of the vulva, overexpression of p53 is a late event and neither p53 nor mdm2 expression is a useful marker to predict lymph node metastases

    NARCIS (Netherlands)

    Emanuels, AG; Koudstaal, J; Burger, MPM; Hollema, H

    To offer more tailored treatment to individual patients with squamous cell carcinoma of the vulval more accurate prediction of lymph node metastases is required. As p53 and mdm2 are genes known to be involved in the development of other tumours, we studied expression of p53 and mdm2 in

  18. Association between MDM2 SNP309 T>G polymorphism and the risk of bladder cancer: new data in a Chinese population and an updated meta-analysis

    Directory of Open Access Journals (Sweden)

    Xie LG

    2015-12-01

    Full Text Available Linguo Xie,1,2,* Yan Sun,2,* Tao Chen,1,2,* Dawei Tian,1,2 Yujuan Li,3 Yu Zhang,1,2 Na Ding,2 Zhonghua Shen,1,2 Hao Xu,1,2 Xuewu Nian,4 Nan Sha,1,2 Ruifa Han,1,2 Hailong Hu,1,2 Changli Wu1,2 Objective: Human murine double minute 2 protein (MDM2 is mainly a negative regulator of p53 tumor suppressor pathway. We aimed to investigate the association between MDM2 SNP309 polymorphism and bladder cancer risk. Methods: A total of 535 bladder cancer patients and 649 health controls were recruited for our study. MDM2 SNP309 T>G polymorphism was genotyped by polymerase chain reaction-ligase detection reaction method. Logistic regression was used to analyze the relationship between the genotype and susceptibility of bladder cancer. Kaplan–Meier estimates and log-rank test were obtained to analyze the association between the genotype and risk of recrudesce in nonmuscle-invasive bladder cancer patients. A multivariable Cox proportional hazards model was fitted to identify independent prognostic factors. To further investigate the association, we conducted a meta-analysis including six studies. Results: The frequency of the MDM2 SNP309 T>G polymorphism showed no significant difference between cases and controls (all P>0.05. In the stratification analysis, the results showed that G allele carriers were prone to have a significant decrease in risk of low-grade bladder cancer (adjusted odds ratio: 0.613, 95% confidence interval: 0.427–0.881, and G variant was associated with a significantly reduced risk of recurrence in nonmuscle-invasive bladder cancer patients with or without chemotherapy (P<0.05. The results of the meta-analysis showed that G allele and GG genotype of MDM2 SNP309 polymorphism were significantly associated with increased risk of bladder cancer in Caucasians (both P<0.05, and no association was observed in total populations and Asians (P>0.05. Conclusion: MDM2 SNP309 T>G polymorphism has no influence on bladder cancer risk in Asians, but

  19. Rapid detection of SNP (c.309T>G in the MDM2 gene by the Duplex SmartAmp method.

    Directory of Open Access Journals (Sweden)

    Yasuaki Enokida

    Full Text Available BACKGROUND: Genetic polymorphisms in the human MDM2 gene are suggested to be a tumor susceptibility marker and a prognostic factor for cancer. It has been reported that a single nucleotide polymorphism (SNP c.309T>G in the MDM2 gene attenuates the tumor suppressor activity of p53 and accelerates tumor formation in humans. METHODOLOGY: In this study, to detect the SNP c.309T>G in the MDM2 gene, we have developed a new SNP detection method, named "Duplex SmartAmp," which enabled us to simultaneously detect both 309T and 309G alleles in one tube. To develop this new method, we introduced new primers i.e., nBP and oBPs, as well as two different fluorescent dyes that separately detect those genetic polymorphisms. RESULTS AND CONCLUSIONS: By the Duplex SmartAmp method, the genetic polymorphisms of the MDM2 gene were detected directly from a small amount of genomic DNA or blood samples. We used 96 genomic DNA and 24 blood samples to validate the Duplex SmartAmp by comparison with results of the conventional PCR-RFLP method; consequently, the Duplex SmartAmp results agreed totally with those of the PCR-RFLP method. Thus, the new SNP detection method is considered useful for detecting the SNP c.309T>G in the MDM2 gene so as to judge cancer susceptibility against some cellular stress in the clinical setting, and also to handle a large number of samples and enable rapid clinical diagnosis.

  20. Actinomycin D synergistically enhances the cytotoxicity of CDDP on KB cells by activating P53 via decreasing P53-MDM2 complex.

    Science.gov (United States)

    Wang, Lin; Pang, Xiao-Cong; Yu, Zi-Ru; Yang, Sheng-Qian; Liu, Ai-Lin; Wang, Jin-Hua; Du, Guan-Hua

    2017-06-01

    The aim of this study is to investigate the synergism of low dose of actinomycin D (LDActD) to the cytotoxicity of cisplatin (CDDP) on KB cells. The role of P53 reactivation by LDActD in the synergism and its mechanism were further studied. Cell viability was determined by MTT assay. Apoptosis was determined by AnnexinV-FITC/PI staining. Mitochondrial membrane potential (MMP) was detected by JC-1 staining. Expression of proteins was detected by Western blotting (WB) and/or immunofluorescence (IF). Molecular docking of actinomycin D (ACTD) to Mouse double minute 2 homolog (MDM2) and Mouse double minute 2 homolog X (MDMX). MDMX was analyzed by Discovery Studio. The content of P53-MDM2 complex was detected by ELISA assay. The cytotoxicity of CDDP was increased by the combination of LDActD in kinds of cancer cells. Molecular docking showed strong interaction between ACTD and MDM2/MDMX. Meanwhile, LDActD significantly decreased P53-MDM2 complex. Significant increase of the apoptotic activity by the combination therapy in KB cells is P53 upregulated modulator of apoptosis (PUMA) dependent. In addition to the decrease in MMP, LDActD increased P53 regulated protein and decreased BCL-XL in KB cells. LDActD efficiently enhanced the cytotoxicity of CDDP in cancer cells and induced P53-PUMA-dependent and mitochondria-mediated apoptosis in KB cells. The reactivation of P53 was probably achieved by disturbing the interaction of P53 and MDM2/MDMX.

  1. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    International Nuclear Information System (INIS)

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid; Gjerloev, Simon; Birk, Jesper; Roepke, Carsten; Norrild, Bodil

    2004-01-01

    Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation and induction of cell death. We have used the osteosarcoma cell line U2OS cells provided with E7 and the cdk2 inhibitor p21 (cip1/waf1) under inducible control, as a model system for the analysis of E7-mediated apoptosis. Our data shows that simultaneous expression of E7 and p21 proteins induces cell death, possibly because of conflicting growth control. Interestingly, E7/p21-induced cell death is associated with the activation of a newly identified mediator of apoptosis, namely cathepsin B. Activation of the cellular caspases is undetectable in cells undergoing E7/p21-induced apoptosis. To our knowledge, this is the first time a role for cathepsin B is reported in HPV-induced apoptotic signalling

  2. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease.

    Science.gov (United States)

    Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J

    2016-08-15

    Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. © 2016 The Author(s).

  3. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    Directory of Open Access Journals (Sweden)

    Huarong Guo

    2012-09-01

    Full Text Available p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase and pRL-CMV-luc (CMV promoter linked to Renilla luciferase into marine flatfish flounder gill (FG cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation, but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl phthalate (DEHP, a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner.

  4. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    OpenAIRE

    Jaako, Pekka; Debnath, Shubhranshu; Olsson, Karin; Zhang, Y; Flygare, Johan; Lindström, M S; Bryder, David; Karlsson, Stefan

    2015-01-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of Mdm2, the main negative regulator of p53, by the 5S ribonucleoprot...

  5. Double-edged swords as cancer therapeutics: novel, orally active, small molecules simultaneously inhibit p53-MDM2 interaction and the NF-κB pathway.

    Science.gov (United States)

    Zhuang, Chunlin; Miao, Zhenyuan; Wu, Yuelin; Guo, Zizhao; Li, Jin; Yao, Jianzhong; Xing, Chengguo; Sheng, Chunquan; Zhang, Wannian

    2014-02-13

    Simultaneous inactivation of p53 and hyperactivation of nuclear factor-κB (NF-κB) is a common occurrence in human cancer. Currently, antitumor agents are being designed to selectively activate p53 or inhibit NF-κB. However, there is no concerted effort yet to deliberately design inhibitors that can simultaneously do both. This paper provided a proof-of-concept study that p53-MDM2 interaction and NF-κB pathway can be simultaneously targeted by a small-molecule inhibitor. A series of pyrrolo[3,4-c]pyrazole derivatives were rationally designed and synthesized as the first-in-class inhibitors of p53-MDM2 interaction and NF-κB pathway. Most of the compounds were identified to possess nanomolar p53-MDM2 inhibitory activity. Compounds 5q and 5s suppressed NF-κB activation through inhibition of IκBα phosphorylation and elevation of the cytoplasmic levels of p65 and phosphorylated IKKα/β. Biochemical assay for the kinases also supported the fact that pyrrolo[3,4-c]pyrazole compounds directly targeted the NF-κB pathway. In addition, four compounds (5j, 5q, 5s, and 5u) effectively inhibited tumor growth in the A549 xenograft model. Further pharmacokinetic study revealed that compound 5q exhibited excellent oral bioavailability (72.9%).

  6. Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells.

    Science.gov (United States)

    Proietti, Sara; Cucina, Alessandra; D'Anselmi, Fabrizio; Dinicola, Simona; Pasqualato, Alessia; Lisi, Elisabetta; Bizzarri, Mariano

    2011-03-01

    Melatonin and vitamin D3 inhibit breast cancer cell growth and induce apoptosis, but they have never been combined as a breast cancer treatment. Therefore, we investigated whether their association could lead to an enhanced anticancer activity. In MCF-7 breast cancer cells, melatonin together with vitamin D3, induced a synergistic proliferative inhibition, with an almost complete cell growth arrest at 144 hr. Cell growth blockade is associated to an activation of the TGFβ-1 pathway, leading to increased TGFβ-1, Smad4 and phosphorylated-Smad3 levels. Concomitantly, melatonin and D3, alone or in combination, caused a significant reduction in Akt phosphorylation and MDM2 values, with a consequent increase of p53/MDM2 ratio. These effects were completely suppressed by adding a monoclonal anti-TGFβ-1 antibody to the culture medium. Taken together, these results indicate that cytostatic effects triggered by melatonin and D3 are likely related to a complex TGFβ-1-dependent mechanism, involving down-regulation of both MDM2 and Akt-phosphorylation. © 2010 The Authors. Journal of Pineal Research © 2010 John Wiley & Sons A/S.

  7. Suppression of hypoxia inducible factor-1α (HIF-1α) by YC-1 is dependent on murine double minute 2 (Mdm2)

    International Nuclear Information System (INIS)

    Lau, C.K.; Yang, Z.F.; Lam, C.T.; Tam, K.H.; Poon, R.T.P.; Fan, S.T.

    2006-01-01

    Inhibition of HIF-1α activity provides an important strategy for the treatment of cancer. Recently, 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) has been identified as an anti-HIF-1α drug in cancer therapy with unclear molecular mechanism. In the present study, we aimed to investigate the effect and mechanism of YC-1 on HIF-1α in a hepatocellular carcinoma cell line under hypoxic condition, which was generated by incubating cells with 0.1% O 2 . The phenotypic and molecular changes of cells were determined by cell proliferation assay, apoptosis assay, luciferase promoter assay, and Western blot analysis. YC-1 arrested tumor cell growth in a dose-dependent manner, whereas it did not induce cell apoptosis. Hypoxia-induced upregulation of HIF-1α was suppressed by YC-1 administration. YC-1 inhibited HIF-1α protein synthesis under normoxia and affected protein stability under hypoxia. YC-1 suppressed the expression of total and phosphorylated forms of murine double minute 2 (Mdm2), whereas this inhibitory effect was blocked by overexpression of Mdm2. In conclusion, YC-1 suppressed both protein synthesis and stability of HIF-1α in HCC cells, and its inhibitory effects on HIF-1α were dependent on Mdm2

  8. MDM2 Antagonist Nutlin-3a Reverses Mitoxantrone Resistance by Inhibiting Breast Cancer Resistance Protein Mediated Drug Transport

    Science.gov (United States)

    Zhang, Fan; Throm, Stacy L.; Murley, Laura L.; Miller, Laura A.; Zatechka, D. Steven; Guy, R. Kiplin; Kennedy, Rachel; Stewart, Clinton F.

    2011-01-01

    Breast cancer resistance protein (BCRP; ABCG2), a clinical marker for identifying the side population (SP) cancer stem cell subgroup, affects intestinal absorption, brain penetration, hepatobiliary excretion, and multidrug resistance of many anti-cancer drugs. Nutlin-3a is currently under pre-clinical investigation in a variety of solid tumor and leukemia models as a p53 reactivation agent, and has been recently demonstrated to also have p53 independent actions in cancer cells. In the present study, we first report that nutlin-3a can inhibit the efflux function of BCRP. We observed that although the nutlin-3a IC50 did not differ between BCRP over-expressing and vector control cells, nutlin-3a treatment significantly potentiated the cells to treatment with the BCRP substrate mitoxantrone. Combination index calculations suggested synergism between nutlin-3a and mitoxantrone in cell lines over-expressing BCRP. Upon further investigation, it was confirmed that nutlin-3a increased the intracellular accumulation of BCRP substrates such as mitoxantrone and Hoechst 33342 in cells expressing functional BCRP without altering the expression level or localization of BCRP. Interestingly, nutlin-3b, considered virtually “inactive” in disrupting the MDM2/p53 interaction, reversed Hoechst 33342 efflux with the same potency as nutlin-3a. Intracellular accumulation and bi-directional transport studies using MDCKII cells suggested that nutlin-3a is not a substrate of BCRP. Additionally, an ATPase assay using Sf9 insect cell membranes over-expressing wild-type BCRP indicated that nutlin-3a inhibits BCRP ATPase activity in a dose-dependent fashion. In conclusion, our studies demonstrate that nutlin-3a inhibits BCRP efflux function, which consequently reverses BCRP-related drug resistance. PMID:21459080

  9. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    Science.gov (United States)

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.

  10. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  11. Flavonoids and Tannins from Smilax china L. Rhizome Induce Apoptosis Via Mitochondrial Pathway and MDM2-p53 Signaling in Human Lung Adenocarcinoma Cells.

    Science.gov (United States)

    Fu, San; Yang, Yanfang; Liu, Dan; Luo, Yan; Ye, Xiaochuan; Liu, Yanwen; Chen, Xin; Wang, Song; Wu, Hezhen; Wang, Yuhang; Hu, Qiwei; You, Pengtao

    2017-01-01

    In vitro evidence indicates that Smilax china L. rhizome (SCR) can inhibit cell proliferation. Therefore, in the present study, we analyzed the effects in vitro of SCR extracts on human lung adenocarcinoma A549 cells. Our results showed that A549 cell growth was inhibited in a dose- and time-dependent manner after treatment with SCR extracts. Total flavonoids and total tannins from SCR induced A549 apoptosis in a dose-dependent manner, as shown by our flow cytometry analysis, which was consistent with the alterations in nuclear morphology we observed. In addition, the total apoptotic rate induced by total tannins was higher than the rate induced by total flavonoids at the same dose. Cleaved-caspase-3 protein levels in A549 cells after treatment with total flavonoids or total tannins were increased in a dose-dependent manner, followed by the activation of caspase-8 and caspase-9, finally triggering to PARP cleavage. Furthermore, total flavonoids and total tannins increased the expression of Bax, decreased the expression of Bcl-2, and promoted cytochrome [Formula: see text] release. Moreover, MDM2 and p-MDM2 proteins were decreased, while p53 and p-p53 proteins were increased, both in a dose-dependent manner, after A549 treatment with total flavonoids and total tannins. Finally, cleaved-caspase-3 protein levels in the total flavonoids or total tannins-treated H1299 (p53 null) and p53-knockdown A549 cells were increased. Our results indicated that total flavonoids and total tannins from SCR exerted a remarkable effect in reducing A549 growth through their action on mitochondrial pathway and disruption of MDM2-p53 balance. Hence, our findings demonstrated a potential application of total flavonoids and total tannins from SCR in the treatment of human lung adenocarcinoma.

  12. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  13. Expression signature based on TP53 target genes doesn't predict response to TP53-MDM2 inhibitor in wild type TP53 tumors

    OpenAIRE

    Sonkin, Dmitriy

    2015-01-01

    eLife digest Damaged cells in the human body can develop into tumors if left unchecked. TP53 (also called p53) is a protein that normally helps to repair or eliminate these damaged cells and prevent tumors from forming. About half of all cancerous tumors have mutations that prevent TP53 from working. In tumors with normal TP53 (called TP53 wild type tumors), another protein that acts to keep TP53 in check is often overly active. This overactive protein (called MDM2) prevents TP53 from suppres...

  14. Detection of MDM2/CDK4 amplification in lipomatous soft tissue tumors from formalin-fixed, paraffin-embedded tissue: comparison of multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Creytens, David; van Gorp, Joost; Ferdinande, Liesbeth; Speel, Ernst-Jan; Libbrecht, Louis

    2015-02-01

    In this study, the detection of MDM2 and CDK4 amplification was evaluated in lipomatous soft tissue tumors using multiplex ligation-dependent probe amplification (MLPA), a PCR-based technique, in comparison with fluorescence in situ hybridization (FISH). These 2 techniques were evaluated in a series of 77 formalin-fixed, paraffin-embedded lipomatous tumors (27 benign adipose tumors, 28 atypical lipomatous tumors/well-differentiated liposarcomas, 18 dedifferentiated liposarcomas, and 4 pleomorphic liposarcomas). Using MLPA, with a cut-off ratio of >2, 36/71 samples (22 atypical lipomatous tumors/well-differentiated liposarcomas, and 14 dedifferentiated liposarcomas) showed MDM2 and CDK4 amplification. Using FISH as gold standard, MLPA showed a sensitivity of 90% (36/40) and a specificity of 100% (31/31) in detecting amplification of MDM2 and CDK4 in lipomatous soft tissue tumors. In case of high-level amplification (MDM2-CDK4/CEP12 ratio >5), concordance was 100%. Four cases of atypical lipomatous tumor/well-differentiated liposarcoma (4/26, 15%) with a low MDM2 and CDK4 amplification level (MDM2-CDK4/CEP12 ratio ranging between 2 and 2.5) detected by FISH showed no amplification by MLPA, although gain of MDM2 and CDK4 (ratios ranging between 1.6 and 1.9) was seen with MLPA. No amplification was detected in benign lipomatous tumors and pleomorphic liposarcomas. Furthermore, there was a very high concordance between the ratios obtained by FISH and MLPA. In conclusion, MLPA proves to be an appropriate and straightforward technique for screening MDM2/CDK4 amplification in lipomatous tumors, especially when a correct cut-off value and reference samples are chosen, and could be considered a good alternative to FISH to determine MDM2 and CDK4 amplification in liposarcomas. Moreover, because MLPA, as a multiplex technique, allows simultaneous detection of multiple chromosomal changes of interest, it could be in the future a very reliable and fast molecular analysis on

  15. Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action.

    Science.gov (United States)

    Voruganti, Sukesh; Qin, Jiang-Jiang; Sarkar, Sushanta; Nag, Subhasree; Walbi, Ismail A; Wang, Shu; Zhao, Yuqing; Wang, Wei; Zhang, Ruiwen

    2015-08-28

    The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.

  16. Anti-cancer effect of novel PAK1 inhibitor via induction of PUMA-mediated cell death and p21-mediated cell cycle arrest.

    Science.gov (United States)

    Woo, Tae-Gyun; Yoon, Min-Ho; Hong, Shin-Deok; Choi, Jiyun; Ha, Nam-Chul; Sun, Hokeun; Park, Bum-Joon

    2017-04-04

    Hyper-activation of PAK1 (p21-activated kinase 1) is frequently observed in human cancer and speculated as a target of novel anti-tumor drug. In previous, we also showed that PAK1 is highly activated in the Smad4-deficient condition and suppresses PUMA (p53 upregulated modulator of apoptosis) through direct binding and phosphorylation. On the basis of this result, we have tried to find novel PAK1-PUMA binding inhibitors. Through ELISA-based blind chemical library screening, we isolated single compound, IPP-14 (IPP; Inhibitor of PAK1-PUMA), which selectively blocks the PAK1-PUMA binding and also suppresses cell proliferation via PUMA-dependent manner. Indeed, in PUMA-deficient cells, this chemical did not show anti-proliferating effect. This chemical possessed very strong PAK1 inhibition activity that it suppressed BAD (Bcl-2-asoociated death promoter) phosphorylation and meta-phase arrest via Aurora kinase inactivation in lower concentration than that of previous PAK1 kinase, FRAX486 and AG879. Moreover, our chemical obviously induced p21/WAF1/CIP1 (Cyclin-dependent kinase inhibitor 1A) expression by releasing from Bcl-2 (B-cell lymphoma-2) and by inhibition of AKT-mediated p21 suppression. Considering our result, IPP-14 and its derivatives would be possible candidates for PAK1 and p21 induction targeted anti-cancer drug.

  17. Prevalence of p21 immunohistochemical expression in esophageal adenocarcinoma Prevalência da expressão imunoistoquímica da proteína p21 em adenocarcinoma do esôfago

    Directory of Open Access Journals (Sweden)

    Maitê de Mello Villwock

    2006-09-01

    Full Text Available BACKGROUND: In western societies, the prevalence of adenocarcinoma of the gastroesophageal junction has increased in recent years. It is commonly accepted today that esophageal adenocarcinoma develops from a premalignant lesion: Barrett's esophagus. This type of carcinoma is hardly diagnosed at early stages, which results in significant mortality. Molecular biology studies have shown that most malignant tumors originate from the interaction between inherited characteristics and external factors, which may cause genetic changes that interfere with the control over the differentiation and growth of cells in susceptible individuals. p21 (WAF1/CIP1 has a key role in the regulation of the cell cycle, and its immunohistochemical expression has been investigated in several tumors, showing that it influences the prognosis of various neoplasms. AIM: To check the prevalence of p21 protein expression in patients with esophageal adenocarcinoma diagnosed in the last 5 years by the Group for Surgeries of the Esophagus and Stomach of "Hospital de Clínicas de Porto Alegre", RS, Brazil. METHODS: The study population consisted of 42 patients with esophageal adenocarcinoma diagnosed by the Group for Surgeries of the Esophagus and Stomach between January 1998 and December 2002. The expression of p21 protein was determined by immunohistochemistry using primary antibody, p21, clone SX118, code M7202 (Dako, and assessed according to the immunoreactive scoring system. RESULTS: Of 42 analyzed patients, 83.3% were male and older than 40 years. Among these, 56.2% were submitted to curative resection: total gastrectomy and transhiatal esophagogastrectomy. The remaining patients were submitted to palliative surgery or did not undergo any surgical treatment. Only five patients received adjuvant chemotherapy and radiation therapy, either alone or combined. Advanced disease (stages III and IV was detected in 78.6% of the patients. Only nine patients were positive for p21

  18. Clinical and pathological associations with p53 tumour-suppressor gene mutations and expression of p21WAF1/Cip1 in colorectal carcinoma

    NARCIS (Netherlands)

    Slebos, R. J.; Baas, I. O.; Clement, M.; Polak, M.; Mulder, J. W.; van den Berg, F. M.; Hamilton, S. R.; Offerhaus, G. J.

    1996-01-01

    Inactivation of the p53 tumour-suppressor gene is common in a wide variety of human neoplasms. In the majority of cases, single point mutations in the protein-encoding sequence of p53 lead to positive immunohistochemistry (IHC) for the p53 protein, and are accompanied by loss of the wild-type

  19. The influence of occupational exposure to PAHs on the blood plasma levels of p53 and p21WAF1 proteins

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Binková, Blanka; Šrám, Radim

    2003-01-01

    Roč. 535, - (2003), s. 87-94 ISSN 0027-5107 R&D Projects: GA MŽP SI/340/1/97 Institutional research plan: CEZ:AV0Z5039906 Keywords : polycyclic aromatic hydrocarbons Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.433, year: 2003

  20. Kõlar Hi-Waf / Ell-Maaja Randküla

    Index Scriptorium Estoniae

    Randküla, Ell-Maaja, 1939-2016

    2005-01-01

    Disain: Galina Burnakova. Tootja: AS Sarkop. Kõlar Hi-Waf tehti Brüsselis galeriis Creneau International toimuvale näitusele viimiseks. Galina Burnakovast, tema erialasest tegevusest. Ill.: kõlari vaade, foto sisearhtektist

  1. An Integrative Analysis Reveals a Central Role of P53 Activation via MDM2 in Zika Virus Infection Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Yue Teng

    2017-07-01

    Full Text Available Zika virus (ZIKV infection is an emerging global threat that is suspected to be associated with fetal microcephaly. However, the molecular mechanisms underlying ZIKV disease pathogenesis in humans remain elusive. Here, we investigated the human protein interaction network associated with ZIKV infection using a systemic virology approach, and reconstructed the transcriptional regulatory network to analyze the mechanisms underlying ZIKV-elicited microcephaly pathogenesis. The bioinformatics findings in this study show that P53 is the hub of the genetic regulatory network for ZIKV-related and microcephaly-associated proteins. Importantly, these results imply that the ZIKV capsid protein interacts with mouse double-minute-2 homolog (MDM2, which is involved in the P53-mediated apoptosis pathway, activating the death of infected neural cells. We also found that synthetic mimics of the ZIKV capsid protein induced cell death in vitro and in vivo. This study provides important insight into the relationship between ZIKV infection and brain diseases.

  2. Luteolin Prevents H2O2-Induced Apoptosis in H9C2 Cells through Modulating Akt-P53/Mdm2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hong Chang

    2016-01-01

    Full Text Available Introduction. Luteolin, a falconoid compound in many Chinese herbs and formula, plays important roles in cardiovascular diseases. The underlying mechanism of luteolin remains to be further elaborated. Methods. A model of hydrogen peroxide- (H2O2- induced H9C2 cells apoptosis was established. Cell viabilities were examined with an MTT assay. 2′,7′-Dichlorofluorescin diacetate (DCFH-DA and flow cytometry were used to detect ROS level and apoptosis rate, respectively. The expressions of signaling proteins related to apoptosis were analyzed by western blot and mRNA levels were detected by real-time polymerase chain reaction (PCR. Quercetin was applied as positive drug. Results. Incubation with various concentrations of H2O2 (0, 50, 100, and 200 μM for 1 h caused dose-dependent loss of cell viability and 100 μM H2O2 reduced the cell viability to approximately 50%. Treatments with luteolin and quercetin protected cells from H2O2-induced cytotoxicity and reduced cellular ROS level and apoptosis rate. Moreover, luteolin could downregulate the expressions of Bax, caspase-8, cleaved-caspase-3, and p53 in apoptotic signaling pathway. Further study showed that the expressions of Akt, Bcl-2, and Mdm2 were upregulated by luteolin. Conclusion. Luteolin protects H9C2 cells from H2O2-induced apoptosis. The protective and antiapoptotic effects of luteolin could be mediated by regulating the Akt-P53/Mdm2 apoptotic pathway.

  3. MDM2 regulates hypoxic hypoxia-inducible factor 1α stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner.

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R; Durden, Donald L

    2014-08-15

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α-HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. MDM2 Regulates Hypoxic Hypoxia-inducible Factor 1α Stability in an E3 Ligase, Proteasome, and PTEN-Phosphatidylinositol 3-Kinase-AKT-dependent Manner*

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R.; Durden, Donald L.

    2014-01-01

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α–HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. PMID:24982421

  5. Expression of Bcl-2, p53, and MDM2 in Localized Prostate Cancer With Respect to the Outcome of Radical Radiotherapy Dose Escalation

    International Nuclear Information System (INIS)

    Vergis, Roy; Corbishley, Catherine M.; Thomas, Karen

    2010-01-01

    Purpose: Established prognostic factors in localized prostate cancer explain only a moderate proportion of variation in outcome. We analyzed tumor expression of apoptotic markers with respect to outcome in men with localized prostate cancer in two randomized controlled trials of radiotherapy dose escalation. Methods and Materials: Between 1995 and 2001, 308 patients with localized prostate cancer received neoadjuvant androgen deprivation and radical radiotherapy at our institution in one of two dose-escalation trials. The biopsy specimens in 201 cases were used to make a biopsy tissue microarray. We evaluated tumor expression of Bcl-2, p53, and MDM2 by immunohistochemistry with respect to outcome. Results: Median follow-up was 7 years, and 5-year freedom from biochemical failure (FFBF) was 70.4% (95% CI, 63.5-76.3%). On univariate analysis, expression of Bcl-2 (p < 0.001) and p53 (p = 0.017), but not MDM2 (p = 0.224), was significantly associated with FFBF. Expression of Bcl-2 remained significantly associated with FFBF (p = 0.001) on multivariate analysis, independently of T stage, Gleason score, initial prostate-specific antigen level, and radiotherapy dose. Seven-year biochemical control was 61% vs. 41% (p = 0.0122) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-positive tumors and 87% vs. 81% (p = 0.423) for 74 Gy vs. 64 Gy, respectively, among patients with Bcl-2-negative tumors. There was no statistically significant interaction between dose and Bcl-2 expression. Conclusions: Bcl-2 expression was a significant, independent determinant of biochemical control after neoadjuvant androgen deprivation and radical radiotherapy for prostate cancer. These data generate the hypothesis that Bcl-2 expression could be used to inform the choice of radiotherapy dose in individual patients.

  6. Familial partial duplication (1)(p21p31)

    Energy Technology Data Exchange (ETDEWEB)

    Hoechstetter, L.; Soukup, S.; Schorry, E.K. [Children`s Hospital Research Foundation, Cincinnati, OH (United States)

    1995-11-20

    A partial duplication (1)(p21p31), resulting from a maternal direct insertion (13,1) (q22p21p31), was found in a 30-year-old woman with mental retardation, cleft palate, and multiple minor anomalies. Two other affected and deceased relatives were presumed to have the same chromosome imbalance. Duplication 1p cases are reviewed. 8 refs., 5 figs., 1 tab.

  7. Expression of p53 and p21 in primary glioblastomas

    International Nuclear Information System (INIS)

    Gross, M.W.; Nashwan, K.; Engenhart-Cabillic, R.; Kraus, A.; Mennel, H.D.; Schlegel, J.

    2005-01-01

    Background and purpose: primary glioblastomas (GBMs) are highly radioresistant, and in contrast to secondary GBMs, they bear wild-type (wt) p53 protein, which is stabilized in a proportion of these tumors. Therefore, it was investigated in vivo whether p53 expression has prognostic value in patients undergoing radiochemotherapy. Additionally, the authors tried to identify, in vitro, subgroups of primary GBM with different susceptibilities to irradiation, on the basis of their p53 and p21 responses to ionizing radiation. Material and methods: tumor tissue samples from 31 patients suffering from primary GBM undergoing a combined radiochemotherapy with topotecan were investigated. The percentage of cells expressing p53 protein was determined immunohistochemically. Additionally, primary cultures from eleven primary GBMs were established and investigated. p53 and p21 expressions were evaluated before irradiation with 10 Gy and at 2 and 8 h after irradiation. p53 protein expression was measured by western analysis and p21 mRNA expression by reverse transcription-polymerase chain reaction (RT-PCR). Results: the percentage of p53-positive cells within the tumor specimens obtained from the 31 patients ranged from 0% to 28%, the median value being 4.3%. No significant correlation with disease-free survival or overall survival was found. In vitro, p53 protein was detected in seven of eleven cultures from primary GBM. After irradiation a decrease in p53 protein expression was seen in six of the seven p53-positive cultures. Half of the cultures (two of four) without basal p53 expression showed an increase in p53 expression after irradiation. Basal overexpression of p21 was detected in six of the eleven cultures; in four out of six irradiation led to a decrease in p21 expression. In all cell lines (five of eleven) initially showing absent p21 expression, irradiation induced p21 expression. Despite these responses, G1 arrest was not detectable in any of the GBM cultures

  8. Molecular mechanisms of MYCN-dependent apoptosis and the MDM2–p53 pathway: an Achille’s heel to be exploited for the therapy of MYCN-amplified neuroblastoma

    International Nuclear Information System (INIS)

    Petroni, Marialaura; Veschi, Veronica; Gulino, Alberto; Giannini, Giuseppe

    2012-01-01

    The p53 oncosuppressor is very seldom mutated in neuroblastoma, but several mechanisms cooperate to its functional inactivation in this tumor. Increased MDM2 levels, due to genetic amplification or constitutive inhibition of p14 ARF , significantly contribute to this event highlighting p53 reactivation as an attractive perspective for neuroblastoma treatment. In addition to its role in tumorigenesis, MYCN sensitizes untransformed and cancer cells to apoptosis. This is associated to a fine modulation of the MDM2–p53 pathway. Indeed MYCN induces p53 and MDM2 transcription, and, by evoking a DNA damage response (DDR), it stabilizes p53 and its proapoptotic kinase Homeodomain Interacting Protein Kinase 2 (HIPK2). Through the regulation of the HIPK2-p53 inhibitor High Mobility Group protein A1 (HMGA1) and the homeobox proteins BMI-1 and TWIST-1, MYCN establishes a delicate balance between pro- and antiapoptotic molecules that might be easily perturbed by a variety of insults, leading to cell death. MDM2–p53 antagonists, such as Nutlin-3, are strikingly prone to inducing death in MYCN-amplified neuroblastoma, by further pushing on HIPK2 accumulation. Here we discuss implications and caveats of exploiting this pathway and its connections to MYCN-induced DDR for a tailored therapy of MYCN-amplified neuroblastoma.

  9. Molecular mechanisms of MYCN-dependent apoptosis and the MDM2-p53 pathway: an Achille’s heel to be exploited for the therapy of MYCN amplified neuroblastoma

    Directory of Open Access Journals (Sweden)

    Marialaura ePetroni

    2012-10-01

    Full Text Available The p53 oncosuppressor is very seldom mutated in neuroblastoma, but several mechanisms cooperate to its functional inactivation in this tumor. Increased MDM2 levels, due to genetic amplification or constitutive inhibition of p14ARF, significantly contribute to this event highlighting p53 reactivation as an attractive perspective for neuroblastoma treatment.In addition to its role in tumorigenesis, MYCN sensitizes untransformed and cancer cells to apoptosis. This is associated to a fine modulation of the MDM2-p53 pathway. Indeed MYCN induces p53 and MDM2 transcription, and, by evoking a DNA damage response (DDR, it stabilizes p53 and its proapoptotic kinase HIPK2. Through the regulation of the HIPK2-p53 inhibitor HMGA1 and the homeobox proteins BMI-1 and TWIST-1, MYCN establishes a delicate balance between pro- and anti-apoptotic molecules that might be easily perturbed by a variety of insults, leading to cell death. MDM2-p53 antagonists, such as Nutlin-3, are strikingly prone to inducing death in MYCN-amplified neuroblastoma, by further pushing on HIPK2 accumulation. Here we discuss implications and caveats of exploiting this pathway and its connections to MYCN-induced DDR for a tailored therapy of MYCN-amplified neuroblastoma.

  10. Molecular mechanisms of MYCN-dependent apoptosis and the MDM2–p53 pathway: an Achille’s heel to be exploited for the therapy of MYCN-amplified neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Marialaura; Veschi, Veronica; Gulino, Alberto; Giannini, Giuseppe, E-mail: giuseppe.giannini@uniroma1.it [Department of Molecular Medicine, University “La Sapienza”, Rome (Italy)

    2012-10-12

    The p53 oncosuppressor is very seldom mutated in neuroblastoma, but several mechanisms cooperate to its functional inactivation in this tumor. Increased MDM2 levels, due to genetic amplification or constitutive inhibition of p14{sup ARF}, significantly contribute to this event highlighting p53 reactivation as an attractive perspective for neuroblastoma treatment. In addition to its role in tumorigenesis, MYCN sensitizes untransformed and cancer cells to apoptosis. This is associated to a fine modulation of the MDM2–p53 pathway. Indeed MYCN induces p53 and MDM2 transcription, and, by evoking a DNA damage response (DDR), it stabilizes p53 and its proapoptotic kinase Homeodomain Interacting Protein Kinase 2 (HIPK2). Through the regulation of the HIPK2-p53 inhibitor High Mobility Group protein A1 (HMGA1) and the homeobox proteins BMI-1 and TWIST-1, MYCN establishes a delicate balance between pro- and antiapoptotic molecules that might be easily perturbed by a variety of insults, leading to cell death. MDM2–p53 antagonists, such as Nutlin-3, are strikingly prone to inducing death in MYCN-amplified neuroblastoma, by further pushing on HIPK2 accumulation. Here we discuss implications and caveats of exploiting this pathway and its connections to MYCN-induced DDR for a tailored therapy of MYCN-amplified neuroblastoma.

  11. Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer

    International Nuclear Information System (INIS)

    Sun, Ying-Fang; Leu, Jyh-Der; Chen, Su-Mei; Lin, I-Feng; Lee, Yi-Jang

    2009-01-01

    It has been suggested that the single nucleotide polymorphism 309 (SNP309, T -> G) in the promoter region of the MDM2 gene is important for tumor development; however, with regards to breast cancer, inconsistent associations have been reported worldwide. It is speculated that these conflicting results may have arisen due to different patient subgroups and ethnicities studied. For the first time, this study explores the effect of the MDM2 SNP309 genotype on Taiwanese breast cancer patients. Genomic DNA was obtained from the whole blood of 124 breast cancer patients and 97 cancer-free healthy women living in Taiwan. MDM2 SNP309 genotyping was carried out by restriction fragment length polymorphism (RFLP) assay. The multivariate logistic regression and the Kaplan-Meier method were used for analyzing the risk association and significance of age at diagnosis among different MDM2 SNP309 genotypes, respectively. Compared to the TT genotype, an increased risk association with breast cancer was apparent for the GG genotype (OR = 3.05, 95% CI = 1.04 to 8.95), and for the TG genotype (OR = 2.12, 95% CI = 0.90 to 5.00) after adjusting for age, cardiovascular disease/diabetes, oral contraceptive usage, and body mass index, which exhibits significant difference between cases and controls. Furthermore, the average ages at diagnosis for breast cancer patients were 53.6, 52 and 47 years for those harboring TT, TG and GG genotypes, respectively. A significant difference in median age of onset for breast cancer between GG and TT+TG genotypes was obtained by the log-rank test (p = 0.0067). Findings based on the current sample size suggest that the MDM2 SNP309 GG genotype may be associated with both the risk of breast cancer and an earlier age of onset in Taiwanese women

  12. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway.

    Science.gov (United States)

    Llanos, Susana; Serrano, Manuel

    2010-10-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.

  13. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma

    Science.gov (United States)

    Baglioni, Michele; Fornari, Francesca; Giannone, Ferdinando; Ravaioli, Matteo; Cescon, Matteo; Chieco, Pasquale; Bolondi, Luigi; Gramantieri, Laura

    2014-01-01

    To successfully target Notch receptors as part of a multidrug anticancer strategy, it will be essential to fully characterize the factors that are modulated by Notch signaling. We recently reported that Notch3 silencing in HCC results in p53 up-regulation in vitro and, therefore, we focused on the mechanisms that associate Notch3 to p53 protein expression. We explored the regulation of p53 by Notch3 signalling in three HCC cell lines HepG2, SNU398 and Hep3B.We found that Notch3 regulates p53 at post-transcriptional level controlling both Cyclin G1 expression and the feed-forward circuit involving p53, miR-221 and MDM2. Moreover, our results were validated in human HCCs and in a rat model of HCC treated with Notch3 siRNAs. Our findings are becoming an exciting area for further in-depth research toward targeted inactivation of Notch3 receptor as a novel therapeutic approach for increasing the drug-sensitivity, and thereby improving the treatment outcome of patients affected by HCC. Indeed, we proved that Notch3 silencing strongly increases the effects of Nutilin-3. With regard to therapeutic implications, Notch3-specific drugs could represent a valuable strategy to limit Notch signaling in the context of hepatocellular carcinoma over-expressing this receptor. PMID:25431954

  14. E2/ER β Enhances Calcineurin Protein Degradation and PI3K/Akt/MDM2 Signal Transduction to Inhibit ISO-Induced Myocardial Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Kuan-Ho Lin

    2017-04-01

    Full Text Available Secretion of multifunctional estrogen and its receptor has been widely considered as the reason for markedly higher frequency of heart disease in men than in women. 17β-Estradiol (E2, for instance, has been reported to prevent development of cardiac apoptosis via activation of estrogen receptors (ERs. In addition, protein phosphatase such as protein phosphatase 1 (PP1 and calcineurin (PP2B are also involved in cardiac hypertrophy and cell apoptosis signaling. However, the mechanism by which E2/ERβ suppresses apoptosis is not fully understood, and the role of protein phosphatase in E2/ERβ action also needs further investigation. In this study, we observed that E2/ERβ inhibited isoproterenol (ISO-induced myocardial cell apoptosis, cytochrome c release and downstream apoptotic markers. Moreover, we found that E2/ERβ blocks ISO-induced apoptosis in H9c2 cells through the enhancement of calcineurin protein degradation through PI3K/Akt/MDM2 signaling pathway. Our results suggest that supplementation with estrogen and/or overexpression of estrogen receptor β gene may prove to be effective means to treat stress-induced myocardial damage.

  15. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway.

    Science.gov (United States)

    Bailly, A; Perrin, A; Bou Malhab, L J; Pion, E; Larance, M; Nagala, M; Smith, P; O'Donohue, M-F; Gleizes, P-E; Zomerdijk, J; Lamond, A I; Xirodimas, D P

    2016-01-28

    The ubiquitin-like molecule NEDD8 is essential for viability, growth and development, and is a potential target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human and germline cells of Caenorhabditis elegans in the absence of nucleolar fragmentation. SILAC proteomics and monitoring of rRNA production, processing and ribosome profiling shows that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of inhibitors of NEDDylation and provides a mechanism for p53 activation upon NEDD8 inhibition. It also indicates that targeting the nucleolar proteome without affecting nucleolar transcription initiates the required signalling events for the control of cell cycle regulators.

  16. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus.

    Science.gov (United States)

    Lee, Kyun-Woo; Shim, Won Joon; Yim, Un Hyuk; Kang, Jung-Hoon

    2013-08-01

    We determined the toxicity of the water accommodated hydrocarbon fraction (WAF), two chemically enhanced WAFs (CEWAFs; CEWAF-C, Crude oil+Corexit 9500 and CEWAF-H, Crude oil+Hiclean) of crude oil and two dispersants (Corexit 9500 and Hiclean) to the rock pool copepod Tigriopus japonicus. In the acute toxicity test, Corexit 9500 was the most toxic of all the chemicals studied. The nauplius stage of T. japonicus was more susceptible to the toxic chemicals studied than the adult female. The toxicity data using the nauplius stage was then considered as baseline to determine the spiking concentration of chemicals for chronic toxicity tests on the copepod. As the endpoints in the chronic toxicity test, survival, sex ratio, developmental time and fecundity of the copepod were used. All chemicals used in this study resulted in increased toxicity in the F1 generation. The lowest-observed-adverse-effect (LOAE) concentrations of WAF, CEWAF-H, CEWAF-C, Hiclean and Corexit 9500 were observed to be 50%, 10%, 0.1%, 1% and 1%, respectively. The results in present study imply that copepods in marine may be negatively influenced by spilled oil and dispersant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Markers aiding the diagnosis of chondroid tumors: an immunohistochemical study including osteonectin, bcl-2, cox-2, actin, calponin, D2-40 (podoplanin), mdm-2, CD117 (c-kit), and YKL-40

    Science.gov (United States)

    DAUGAARD, SØREN; CHRISTENSEN, LISE H; HØGDALL, ESTRID

    2009-01-01

    Chondroid tumors comprise a heterogenous group of benign to overt malignant neoplasms, which may be difficult to differentiate from one another by histological examination. A group of 43 such tumors was stained with nine relevant antibodies in an attempt to find consistent marker profile(s) for the different subgroups. Archival material from three extraskeletal myxoid chondrosarcomas, five chordomas, five chondromyxoid fibromas, five chondroblastomas and 25 chondrosarcomas was stained with antibodies against osteonectin, bcl-2, cox-2, actin, calponin, D2-40 (podoplanin), mdm-2, CD117 (c-kit) and YKL-40. All 25 chondrosarcomas showed a positive staining reaction for D2-40, none for actin and CD117, and a partial reactivity for bcl-2 (36%). Chondroblastomas (5/5) and chondromyxoid fibromas (2/5) were the only tumors with a positive reaction for actin, and all chondroblastomas (n=5) and extraskeletal myxoid chondrosarcomas (n=3) were positive for bcl-2. In contrast to all other tumors, two of three extraskeletal myxoid chondrosarcomas were also positive for CD17 and negative for osteonectin, cox-2, mdm-2 and actin. All five chordomas were negative for D2-40 and positive for mdm-2 and YKL-40. The diagnosis of chondrosarcoma may be aided by its positivity for D2-40 and YKL-40 and its lack of reactivity for actin and CD117. This should be seen in the light of no reaction for D2-40 in chordomas and a corresponding lack of reaction for osteonectin, cox-2, mdm-2 and actin in extraskeletal myxoid chondrosarcomas. A convincing immunoreactivity for calponin and/or actin in chondromyxoid fibromas and chondroblastomas may also be helpful in differentiating these tumors from chondrosarcomas. PMID:19594492

  18. Selective increase in the association of the β2 adrenergic receptor, β Arrestin-1 and p53 with Mdm2 in the ventral hippocampus one month after underwater trauma.

    Science.gov (United States)

    Sood, Rapita; Ritov, Gilad; Richter-Levin, Gal; Barki-Harrington, Liza

    2013-03-01

    Chronic infusion of mice with a β2 adrenergic receptor (β2AR) analog was shown to cause long-term DNA damage in a pathway which involves β Arresin-1-mediated activation of Mdm2 and subsequent degradation of the tumor suppressor protein p53. The objective of the present study was to test whether a single acute stress, which manifests long lasting changes in behavior, affects the interaction of Mdm2 with p53, β2AR, and β Arrestin-1 in the dorsal and ventral hippocampal CA1. Adult rats were subject to underwater trauma, a brief forceful submersion under water and tested a month later for behavioral and biochemical changes. Elevated plus maze tests confirmed that animals that experienced the threat of drowning present heightened levels of anxiety one month after trauma. An examination of the CA1 hippocampal areas of the same rats showed that underwater trauma caused a significant increase in the association of Mdm2 with β2AR, β Arrestin-1, and p53 in the ventral but not dorsal CA1. Our results provide support for the idea that stress-related events may result in biochemical changes restricted to the ventral 'emotion-related' parts of the hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  20. Development and characterization of a cell line WAF from freshwater shark Wallago attu.

    Science.gov (United States)

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Sharma, Bhagwati S

    2014-02-01

    A new epithelial cell line, WAF was developed from caudal fin of freshwater shark, Wallago attu. The cell line was optimally maintained at 28 °C in Leibovitz-15 (L-15) medium supplemented with 20 % fetal bovine serum. The cell line was characterized by various cytogenetic and molecular markers. The cytogenetic analysis revealed a diploid count of 86 chromosomes at different passages. The origin of the cell lines was confirmed by the amplification of 547 and 654 bp sequences of 16S rRNA and cytochrome oxidase subunit I genes of mitochondrial DNA, respectively. WAF cells were characterized for their growth characteristics at different temperature and serum concentration. Epithelial morphology of the cell line was confirmed using immunocytochemistry. Further cell plating efficiency, transfection efficiency and viability of cryopreserved WAF cells was also determined. Cytotoxicity and genotoxicity assessment of cadmium salts on WAF cells by MTT, NR and comet assay illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The cell line will be further useful for studying oxidative stress markers against aquatic pollutants.

  1. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Ogino, S; Kawasaki, T; Kirkner, G J; Ogawa, A; Dorfman, I; Loda, M; Fuchs, C S

    2006-10-01

    p21 (CDKN1A/CIP1/WAF1), one of the cyclin-dependent kinase inhibitors, plays a key role in regulating the cell cycle and is transcriptionally regulated by p53. Down-regulation of p21 is caused by TP53 mutations in colorectal cancer. CpG island methylator phenotype (CIMP) appears to be a distinct subtype of colorectal cancer with concordant methylation of multiple gene promoters and is associated with a high degree of microsatellite instability (MSI-H) and BRAF mutations. However, no study to date has evaluated the relationship between p21 expression and CIMP in colorectal cancer. The purpose of this study was to examine the inter-relationships between p21, p53, CIMP, MSI and KRAS/BRAF status in colorectal cancer. We utilized 737 relatively unbiased samples of colorectal cancers from two large prospective cohort studies. Using quantitative real-time PCR (MethyLight), we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1 and NEUROG1]. CIMP-high (>or=4/5 methylated promoters) was diagnosed in 118 (16%) of the 737 tumours. We also assessed expression of p21 and p53 by immunohistochemistry. Among the 737 tumours, 371 (50%) showed p21 loss. Both p21 loss and p53 positivity were inversely associated with CIMP-high, MSI-H and BRAF mutations. The associations of p21 with these molecular features were still present after tumours were stratified by p53 status. In contrast, the associations of p53 positivity with the molecular features were no longer present after tumours were stratified by p21 status. When CIMP-high and non-CIMP-high tumours were stratified by MSI or KRAS/BRAF status, CIMP-high and MSI-H (but not BRAF mutations) were still inversely associated with p21 loss. In conclusion, down-regulation of p21 is inversely correlated with CIMP-high and MSI-H in colorectal cancer, independent of TP53 and BRAF status.

  2. Variants at the 9p21 locus and melanoma risk

    International Nuclear Information System (INIS)

    Maccioni, Livia; Rachakonda, Panduranga Sivaramakrishna; Bermejo, Justo Lorenzo; Planelles, Dolores; Requena, Celia; Hemminki, Kari; Nagore, Eduardo; Kumar, Rajiv

    2013-01-01

    The influence of variants at the 9p21 locus on melanoma risk has been reported through investigation of CDKN2A variants through candidate gene approach as well as by genome wide association studies (GWAS). In the present study we genotyped, 25 SNPs that tag 273 variants on chromosome 9p21 in 837 melanoma cases and 1154 controls from Spain. Ten SNPs were selected based on previous associations, reported in GWAS, with either melanocytic nevi or melanoma risk or both. The other 15 SNPs were selected to fine map the CDKN2A gene region. All the 10 variants selected from the GWAS showed statistically significant association with melanoma risk. Statistically significant association with melanoma risk was also observed for the carriers of the variant T-allele of rs3088440 (540 C>T) at the 3’ UTR of CDKN2A gene with an OR 1.52 (95% CI 1.14-2.04). Interaction analysis between risk associated polymorphisms and previously genotyped MC1R variants, in the present study, did not show any statistically significant association. Statistical significant association was observed for the interaction between phototypes and the rs10811629 (located in intron 5 of MTAP). The strongest association was observed between the homozygous carrier of the A–allele and phototype II with an OR of 15.93 (95% CI 5.34-47.54). Our data confirmed the association of different variants at chromosome 9p21 with melanoma risk and we also found an association of a variant with skin phototypes

  3. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models

    Directory of Open Access Journals (Sweden)

    Christian Lehmann

    2016-06-01

    Full Text Available Abstract Background Venetoclax, a small molecule BH3 mimetic which inhibits the anti-apoptotic protein Bcl-2, and idasanutlin, a selective MDM2 antagonist, have both shown activity as single-agent treatments in pre-clinical and clinical studies in acute myeloid leukemia (AML. In this study, we deliver the rationale and molecular basis for the combination of idasanutlin and venetoclax for treatment of p53 wild-type AML. Methods The effect of idasanutlin and venetoclax combination on cell viability, apoptosis, and cell cycle progression was investigated in vitro using established AML cell lines. In vivo efficacy was demonstrated in subcutaneous and orthotopic xenograft models generated in female nude or non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice. Mode-of-action analyses were performed by means of cell cycle kinetic studies, RNA sequencing as well as western blotting experiments. Results Combination treatment with venetoclax and idasanutlin results in synergistic anti-tumor activity compared with the respective single-agent treatments in vitro, in p53 wild-type AML cell lines, and leads to strongly superior efficacy in vivo, in subcutaneous and orthotopic AML models. The inhibitory effects of idasanutlin were cell-cycle dependent, with cells arresting in G1 in consecutive cycles and the induction of apoptosis only evident after cells had gone through at least two cell cycles. Combination treatment with venetoclax removed this dependency, resulting in an acceleration of cell death kinetics. As expected, gene expression studies using RNA sequencing showed significant alterations to pathways associated with p53 signaling and cell cycle arrest (CCND1 pathway in response to idasanutlin treatment. Only few gene expression changes were observed for venetoclax treatment and combination treatment, indicating that their effects are mediated mainly at the post-transcriptional level. Protein expression studies demonstrated that

  4. The effects of production water, WAF or CEWAF on the fertilization success of Atlantic cod eggs

    International Nuclear Information System (INIS)

    Burridge, L; Wong, D.; Trippel, E.

    2010-01-01

    Production water (PW), dispersed oil, and oil released from offshore oil and gas platforms can adversely affect fish populations. In this study, eggs from Atlantic cod were fertilized in the presence of PW collected from the Terra Nova and Hibernia offshore platforms in 2008. Cod eggs were also fertilized in the presence of the water accommodated fraction (WAF) and chemically enhanced water accommodated fraction (CEWAF) of Alaskan North Slope oil (ANS). Results of the study showed that exposure to the Terra Nova PW at 12 per cent (V/V) or higher resulted in significantly lower fertilization rates than those observed in controls. Exposure to Hibernia PW at 0.5 per cent (V/V) also resulted in significantly lower fertilization rates. The WAF of ANS up to 25 per cent (V/V) had no effect on fertilization rates. At 50 per cent (V/V), the fertilization rate for WAF ANS was much lower than rates observed in controls. The CEWAF significantly reduced fertilization at all tested concentrations.

  5. Fluorine-18 labelling of a novel series of chimeric, mdm2 oncogene targeting, peptide-pna oligomers using [18F]FPyME

    International Nuclear Information System (INIS)

    Kuhnast, B.; Hinnen, F.; Boisgard, R.; Tavitian, B.; Dolle, F.; Nielsen, P.

    2011-01-01

    Complete text of publication follows: Peptide nucleic acids (PNAs) form a unique class of synthetic macromolecules, originally designed as ligands for the recognition of double stranded DNA, where the deoxyribose phosphate backbone of original DNA is replaced by a pseudo-peptide N-(2-aminoethyl)glycyl backbone, while retaining the nucleobases of DNA. PNAs have already showed promising therapeutic potential as antisense and anti-gene agents and are inspiring the development of a variety of research and diagnostic assays, including their use as imaging tools. Within our intensive programs of development of oligonucleotide-based probes for PET-imaging, a novel series of chimeric peptide-PNA oligomers has been designed as complementary antisense probes targeting a specific 15-base sequence located at the intron-exon junction of the pre-mRNA of the murine double minute (mdm2) oncogene. This gene codes for a p53 interacting protein that represses p53 transcriptional activity, and appears to be over expressed in several tumor types including soft tissue sarcomas and osteosarcomas as well as breast tumors. For in vivo 3D-imaging purposes, all oligomers include a cysteine thus providing a sulfhydryl function permitting prosthetic conjugation with maleimide-based reagents such as AlexaFluor680 R (AF680) for optical fluorescence imaging and [ 18 F]FPyME (1-[3-(2-[ 18 F]fluoropyridin-3-yloxy)propyl]pyrrole-2, 5-dione), a prosthetic reagent labeled with the positron-emitter fluorine-18 for PET imaging, which latter work is presented herein. Methods: [ 18 F]FPyME was prepared using a three-step radiochemical pathway already reported and includes an HPLC-purification (semi-preparative SiO 2 Zorbax R Rx-SIL, Hewlett Packard). [ 18 F]FPyME was conjugated with the peptide-PNA oligomers (PNA3132, PNA3133, and PNA3135, 0.25-0.30 micro-moles) in 1/9 (v:v) mixture (1 mL) of DMSO and 0.1 M aq. PBS (pH 8) at room temperature for 15 min. The [ 18 F]FPyME-conjugated products (c-[ 18 F

  6. The 3p21.1-p21.3 hereditary vascular retinopathy locus increases the risk for Raynaud's phenomenon and migraine

    NARCIS (Netherlands)

    Hottenga, J. J.; Vanmolkot, K. R. J.; Kors, E. E.; Kheradmand Kia, S.; de Jong, P. T. V. M.; Haan, J.; Terwindt, G. M.; Frants, R. R.; Ferrari, M. D.; van den Maagdenberg, A. M. J. M.

    2005-01-01

    Previously, we described a large Dutch family with hereditary vascular retinopathy (HVR), Raynaud's phenomenon and migraine. A locus for HVR was mapped on chromosome 3p21.1-p21.3, but the gene has not yet been identified. The fact that all three disorders share a vascular aetiology prompted us to

  7. Digital expression profiling identifies RUNX2, CDC5L, MDM2, RECQL4, and CDK4 as potential predictive biomarkers for neo-adjuvant chemotherapy response in paediatric osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Martin

    Full Text Available Osteosarcoma is the most common malignancy of bone, and occurs most frequently in children and adolescents. Currently, the most reliable technique for determining a patients' prognosis is measurement of histopathologic tumor necrosis following pre-operative neo-adjuvant chemotherapy. Unfavourable prognosis is indicated by less than 90% estimated necrosis of the tumor. Neither genetic testing nor molecular biomarkers for diagnosis and prognosis have been described for osteosarcomas. We used the novel nanoString mRNA digital expression analysis system to analyse gene expression in 32 patients with sporadic paediatric osteosarcoma. This system used specific molecular barcodes to quantify expression of a set of 17 genes associated with osteosarcoma tumorigenesis. Five genes, from this panel, which encoded the bone differentiation regulator RUNX2, the cell cycle regulator CDC5L, the TP53 transcriptional inactivator MDM2, the DNA helicase RECQL4, and the cyclin-dependent kinase gene CDK4, were differentially expressed in tumors that responded poorly to neo-adjuvant chemotherapy. Analysis of the signalling relationships of these genes, as well as other expression markers of osteosarcoma, indicated that gene networks linked to RB1, TP53, PI3K, PTEN/Akt, myc and RECQL4 are associated with osteosarcoma. The discovery of these networks provides a basis for further experimental studies of role of the five genes (RUNX2, CDC5L, MDM2, RECQL4, and CDK4 in differential response to chemotherapy.

  8. Overexpression of K-p21Ras play a prominent role in lung cancer

    Science.gov (United States)

    Zhang, Peng-bo; Zhou, Xin-liang; Yang, Ju-lun

    2018-06-01

    The proto-oncogene ras product, p21Ras, has been found overexpression in many human tumors. However, the subtypes of overexpressed p21Ras still remain unclear. The purpose of this study was to investigate overexpressed isoforms of p21Ras and their roles in the progress of lung cancer. Method: The expression of total p21Ras in normal lung tissues and lung cancers was determined by immunohistochemically staining with monoclonal antibody (Mab) KGHR-1 which could recognize and broad spectrum reaction with the (K/H/N) ras protein. Then, the isoforms of p21Ras was examined by specific Mab for each p21Ras subtypes. Results: Low expression of total p21Ras was found in 26.67% (8/30) of normal lung tissues, and 81.31% (87/107) of adenocarcinoma harbored overexpressed total p21Ras. Besides, 70.00% (35/50) of squamous cell carcinoma were detected overexpressed total p21Ras. In addition, 122 lung cancer tissues from overexpression of total p21Ras protein were selected to detect the expression of each subtype. And all the 122 lung cancer tissues were K-p21Ras overexpression. Moreover, there was a statistical significance difference between the expression level of total p21Ras and differentiation, and the same results were observed between the expression level of total p21Ras and lymph node metastasis (P0.05). Conclusions: Overexpression of K-p21Ras plays a prominent role in the progress of lung cancer and it is suggested that the p21Ras could serve as a promising treatment target in lung cancer.

  9. Hypermethylation of the 5′ CpG island of the p14ARF flanking exon 1β in human colorectal cancer displaying a restricted pattern of p53 overexpression concomitant with increased MDM2 expression

    Directory of Open Access Journals (Sweden)

    Nyiraneza Christine

    2012-06-01

    Full Text Available Abstract Background It has been suggested that inactivation of p14ARF, a tumor suppressor central to regulating p53 protein stability through interaction with the MDM2 oncoprotein, abrogates p53 activity in human tumors retaining the wild-type TP53 gene. Differences in expression of tumor suppressor genes are frequently associated with cancer. We previously reported on a pattern of restricted p53 immunohistochemical overexpression significantly associated with microsatellite instability (MSI, low TP53 mutation frequency, and MDM2 overexpression in colorectal cancers (CRCs. In this study, we investigated whether p14ARF alterations could be a mechanism for disabling the p53 pathway in this subgroup of CRCs. Results Detailed maps of the alterations in the p14ARF gene were determined in a cohort of 98 CRCs to detect both nucleotide and copy-number changes. Methylation-specific PCR combined with bisulfite sequencing was used to evaluate the prevalence and distribution of p14ARF methylation. p14ARF alterations were then correlated with MSI status, TP53 mutations, and immunohistochemical expression of p53 and MDM2. The frequency of p14ARF mutations was extremely low (1/98; 1%, whereas coexistence of methylated and unmethylated alleles in both tumors and normal colon mucosa was common (91/98; 93%. Only seven of ninety-eight tumors (7% had a distinct pattern of methylation compared with normal colon mucosa. Evaluation of the prevalence and distribution of p14ARF promoter methylation in a region containing 27 CpG sites in 35 patients showed a range of methylated CpG sites in tumors (0 to 25 (95% CI 1 to 13 versus 0 to 17 (95% CI 0 to 2 in adjacent colon mucosa (P = 0.004. Hypermethylation of the p14ARF promoter was significantly correlated with the restricted p53 overexpression pattern (P = 0.03, and MDM2 overexpression (P = 0.02, independently of MSI phenotype. Although no significant correlation between p14ARF methylation and TP53 mutational

  10. Laser microdissection and capture of pure cardiomyocytes and fibroblasts from infarcted heart regions: perceived hyperoxia induces p21 in peri-infarct myocytes.

    Science.gov (United States)

    Kuhn, Donald E; Roy, Sashwati; Radtke, Jared; Khanna, Savita; Sen, Chandan K

    2007-03-01

    Myocardial infarction caused by ischemia-reperfusion in the coronary vasculature is a focal event characterized by an infarct-core, bordering peri-infarct zone and remote noninfarct zone. Recently, we have reported the first technique, based on laser microdissection pressure catapulting (LMPC), enabling the dissection of infarction-induced biological responses in multicellular regions of the heart. Molecular mechanisms in play at the peri-infarct zone are central to myocardial healing. At the infarct site, myocytes are more sensitive to insult than robust fibroblasts. Understanding of cell-specific responses in the said zones is therefore critical. In this work, we describe the first technique to collect the myocardial tissue with a single-cell resolution. The infarcted myocardium was identified by using a truncated hematoxylin-eosin stain. Cell elements from the infarct, peri-infarct, and noninfarct zones were collected in a chaotropic RNA lysis solution with micron-level surgical precision. Isolated RNA was analyzed for quality by employing microfluidics technology and reverse transcribed to generate cDNA. Purity of the collected specimen was established by real-time PCR analyses of cell-specific genes. Previously, we have reported that the oxygen-sensitive induction of p21/Cip1/Waf1/Sdi1 in cardiac fibroblasts in the peri-infarct zone plays a vital role in myocardial remodeling. Using the novel LMPC technique developed herein, we confirmed that finding and report for the first time that the induction of p21 in the peri-infarct zone is not limited to fibroblasts but is also evident in myocytes. This work presents the first account of an analytical technique that applies the LMPC technology to study myocardial remodeling with a cell-type specific resolution.

  11. WAF1 induction and infection by HPV E6 as a determinants of radiosensitivity in human cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harima, Yoko; Oka, Atsutoshi; Harima, Keizo; Tanaka, Yoshimasa [Kansai Medical Univ., Moriguchi, Osaka (Japan)

    1998-02-01

    To establish a new predictor of outcome for human cervical carcinoma treatment, the relationship between WAF1 mRNA levels during treatment, human papilloma virus (HPV) infection and tumor radiosensitivity were investigated. Forty patients with uterine cervical carcinoma were treated with definitive radiotherapy. Only those patients who beard wild-type p53 were included into present clinical trial. p53 status was investigated using SSCP analysis. HPV E6 was determined by PCR, WAF1 mRNA was estimated by RT-PCR. Twenty-one patients achieved complete response (CR), 11 patients achieved partial response (PR), and 8 patients had no change (NC). The increase in WAF1 mRNA after irradiation at 10.8 Gy positively correlated both with better treatment response and improved survival. Although the infection by HPV did not directly influence on the survival rate, it decreased the inducibility of WAF1. p53-dependent activation of WAF1 gene expression during treatment may be a strong determinant of the efficacy of cervical cancer radiotherapy. (author)

  12. WAF1 induction and infection by HPV E6 as a determinants of radiosensitivity in human cervical cancer

    International Nuclear Information System (INIS)

    Harima, Yoko; Oka, Atsutoshi; Harima, Keizo; Tanaka, Yoshimasa

    1998-01-01

    To establish a new predictor of outcome for human cervical carcinoma treatment, the relationship between WAF1 mRNA levels during treatment, human papilloma virus (HPV) infection and tumor radiosensitivity were investigated. Forty patients with uterine cervical carcinoma were treated with definitive radiotherapy. Only those patients who beard wild-type p53 were included into present clinical trial. p53 status was investigated using SSCP analysis. HPV E6 was determined by PCR, WAF1 mRNA was estimated by RT-PCR. Twenty-one patients achieved complete response (CR), 11 patients achieved partial response (PR), and 8 patients had no change (NC). The increase in WAF1 mRNA after irradiation at 10.8 Gy positively correlated both with better treatment response and improved survival. Although the infection by HPV did not directly influence on the survival rate, it decreased the inducibility of WAF1. p53-dependent activation of WAF1 gene expression during treatment may be a strong determinant of the efficacy of cervical cancer radiotherapy. (author)

  13. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    International Nuclear Information System (INIS)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun; Zheng, Lemin; Zhou, Boda; Zhang, Wei; Lv, He; Yuan, Yun

    2014-01-01

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21

  14. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Zheng, Lemin [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing 100191 (China); Zhou, Boda [The Department of Cardiology, Peking University Third Hospital, Beijing 100191 (China); Zhang, Wei; Lv, He [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Yuan, Yun, E-mail: yuanyun2002@sohu.com [Department of Neurology, Peking University First Hospital, Beijing 100034 (China)

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  15. Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3.

    Science.gov (United States)

    Shi, Z; Li, Z; Li, Z J; Cheng, K; Du, Y; Fu, H; Khuri, F R

    2015-05-07

    The cyclin-dependent kinase (CDK) inhibitor 1A, p21/Cip1, is a vital cell cycle regulator, dysregulation of which has been associated with a large number of human malignancies. One critical mechanism that controls p21 function is through its degradation, which allows the activation of its associated cell cycle-promoting kinases, CDK2 and CDK4. Thus delineating how p21 is stabilized and degraded will enhance our understanding of cell growth control and offer a basis for potential therapeutic interventions. Here we report a novel regulatory mechanism that controls the dynamic status of p21 through its interaction with Cdk5 and Abl enzyme substrate 1 (Cables1). Cables1 has a proposed role as a tumor suppressor. We found that upregulation of Cables1 protein was correlated with increased half-life of p21 protein, which was attributed to Cables1/p21 complex formation and supported by their co-localization in the nucleus. Mechanistically, Cables1 interferes with the proteasome (Prosome, Macropain) subunit alpha type 3 (PSMA3) binding to p21 and protects p21 from PSMA3-mediated proteasomal degradation. Moreover, silencing of p21 partially reverses the ability of Cables1 to induce cell death and inhibit cell proliferation. In further support of a potential pathophysiological role of Cables1, the expression level of Cables1 is tightly associated with p21 in both cancer cell lines and human lung cancer patient tumor samples. Together, these results suggest Cables1 as a novel p21 regulator through maintaining p21 stability and support the model that the tumor-suppressive function of Cables1 occurs at least in part through enhancing the tumor-suppressive activity of p21.

  16. Effects of ionizing radiation on expression of P21 protein in Jurkat cell line and p21 gene in thymocytes and splenocytes of mice

    International Nuclear Information System (INIS)

    Ni Guanying; Wu Ning; Guo Haizhuo; Jin Shunzi

    2011-01-01

    Objective: To investigate the effects of ionizing radiation on the expression of P21 protein in Jurkat cell line and p21 gene in thymocytes and splenocytes of mice. Methods: Flow cytometry (FCM) was used to analyze the expression of P21 protein in Jurkat cells at 12 and 24 h after irradiation to 0, 0.5, 1.0, 2.0, 4.0, and 6.0 Gy. Real-time PCR was used to detect the expression of p21 gene in thymocytes and splenocytes of mice at 4 and 24 h after irradiation to 0, 0.5, 1.0, 2.0, 4.0, and 6.0 Gy. Multi-staining was used to analyze the micronucleus rates of Rct in bone marrow. Results: The expressions of P21 protein were increased in a dose-dependent manner during 0.5-4.0 Gy (t=-24.23 - -3.96, P<0.05), but decreased at 6.0 Gy at 12 and 24 h post-irradiation (t=-11.19, -14.50, P<0.05). The expressions of p21 gene in both thymocytes and splenocytes of mice were increased in dose-dependent manner in the range of 0-6.0 Gy (including 6.0 Gy) (t=-29.96-8.80, P<0.05), and reached to the peak at 6.0 Gy at 4 and 24 h post-irradiation (t=-11.84 - -3.42, P<0.05), except thymocytes at 4 h and 1.0 Gy post-irradiation (t=-3.42, P>0.05). Conclusions: The expressions of P21 protein and p21 gene could be increased by X-ray irradiation, which shows good dose-dependent manners in certain range of dose. (authors)

  17. Flow cytometric analysis of p21 protein expression on irradiated human lymphocytes; Analise por citometria de fluxo da expressao da proteina p21 em linfocitos humanos irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Santos, N.F.G.; Amaral, A., E-mail: neyliane@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Laboratorio de Modelagem e Biodosimetria Aplicada; Freitas-Silva, R. [Universidade Federal de Pernambuco (UFPE), Garanhuns, PE (Brazil). Departamento de Ciencias Naturais e Exatas; Pereira, V.R.A. [Fundacao Oswaldo Cruz (FIOCRUZ), Recife, PE (Brazil). Centro de Pesquisas Aggeu Magalhaes. Departamento de Imunologia. Lab. de Imunoparasitologia; Tasat, D.R. [Universidad Nacional de General San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Tecnologia. Laboratorio de Biologia Celular del Pulmon

    2013-08-15

    Cell cycle blockage in G1 is a mechanism p21 protein-regulated and coupled to DNA damage response to permit genetic content analysis, damage repair and cell death. Analysis of proteins that participates of this response has progressed with new analytic tools, and data contributes to comprehension of radioinduced molecular events as well as to new approaches on practices that employ ionizing radiation. On this perspective, the aim of this research was to evaluate, by flow cytometry, p21 expression on irradiated human lymphocytes, maintained under different experimental conditions. Peripheral blood samples from 10 healthy subjects were irradiated with doses of 0 (non-irradiated), 1, 2 and 4 Gy. Lymphocytes were processed to analysis on ex vivo (no cultured) condition and after 24; 48 and 72 hours culture, with and without phytohemagglutinin stimulation. p21 protein expression levels were measured by flow cytometry, as percentage values. Results indicate that flow cytometric assay allows detection of changes on p21 expression, since it was detected significant increase on phytohemagglutinin-stimulated samples, for all times, against basal expression (ex vivo). However, it was not observed significant alterations on p21 protein radioinduced levels, for all doses, times and culture conditions analyzed. These results not indicate so p21 protein as bioindicator of ionizing radiation exposure. Nevertheless, data confirmation may to require analysis of a more numerous population. (author)

  18. Markers aiding the diagnosis of chondroid tumors: an immunohistochemical study including osteonectin, bcl-2, cox-2, actin, calponin, D2-40 (podoplanin), mdm-2, CD117 (c-kit), and YKL-40

    DEFF Research Database (Denmark)

    Daugaard, Søren; Christensen, Lise H; Høgdall, Estrid

    2009-01-01

    (s) for the different subgroups. Archival material from three extraskeletal myxoid chondrosarcomas, five chordomas, five chondromyxoid fibromas, five chondroblastomas and 25 chondrosarcomas was stained with antibodies against osteonectin, bcl-2, cox-2, actin, calponin, D2-40 (podoplanin), mdm-2, CD117 (c-kit) and YKL......-40. All 25 chondrosarcomas showed a positive staining reaction for D2-40, none for actin and CD117, and a partial reactivity for bcl-2 (36%). Chondroblastomas (5/5) and chondromyxoid fibromas (2/5) were the only tumors with a positive reaction for actin, and all chondroblastomas (n=5...... chondrosarcomas. A convincing immunoreactivity for calponin and/or actin in chondromyxoid fibromas and chondroblastomas may also be helpful in differentiating these tumors from chondrosarcomas....

  19. Orphan nuclear receptor TLX functions as a potent suppressor of oncogene-induced senescence in prostate cancer via its transcriptional co-regulation of the CDKN1A (p21(WAF1) (/) (CIP1) ) and SIRT1 genes.

    Science.gov (United States)

    Wu, Dinglan; Yu, Shan; Jia, Lin; Zou, Chang; Xu, Zhenyu; Xiao, Lijia; Wong, Kam-Bo; Ng, Chi-Fai; Chan, Franky L

    2015-05-01

    Oncogene-induced senescence is an important tumour-suppressing mechanism to prevent both premalignant transformation and cancer progression. Overcoming this process is a critical step in early cancer development. The druggable orphan nuclear receptor TLX (NR2E1) is characterized as an important regulator of neural stem cells and is also implicated in the development of some brain tumours. However, its exact functional roles in cancer growth regulation still remain unclear. Here we report that TLX can act as a promoter of tumourigenesis in prostate cancer by suppressing oncogene-induced senescence. We determined that TLX exhibited an increased expression in high-grade prostate cancer tissues and many prostate cancer cell lines. Functional studies revealed that TLX could perform an oncogenic function in prostate cancer cells, as its knockdown triggered cellular senescence and cell growth arrest in vitro and in vivo, whereas its over-expression promoted the malignant growth of prostate cancer cells. Furthermore, enhancement of TLX activity, by either ectopic expression or ligand stimulation, could potently prevent doxorubicin-induced senescence in prostate cancer cells and also allow prostatic epithelial cells to escape oncogene-induced senescence induced either by activated oncogene H-Ras(G12V) or knockdown of tumour suppressor PTEN, via a mechanism of direct but differential transcriptional regulation of two senescence-associated genes, repression of CDKN1A and transactivation of SIRT1. Together, our present study shows, for the first time, that TLX may play an important role in prostate carcinogenesis through its suppression of oncogene-induced senescence, and also suggests that targeting the senescence-regulatory TLX is of potential therapeutic significance in prostate cancer. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein

    International Nuclear Information System (INIS)

    Lee, G.; Ronai, Z.A.; Pincus, M.R.; Brandt-Rauf, P.W.; Weinstein, I.B.; Murphy, R.B.; Delohery, T.M.; Nishimura, S.; Yamaizumi, Z.

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with modified p21 protein, the cells were pulsed with [ 35 S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21 - protein complexes. By using this technique, the authors found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. They suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes

  1. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    Science.gov (United States)

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  2. Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3

    OpenAIRE

    Shi, Zhi; Li, Zenggang; Li, Zijian; Cheng, Kejun; Du, Yuhong; Fu, Haian; Khuri, Fadlo R.

    2014-01-01

    The cyclin-dependent kinase inhibitor 1A (CDKN1A), p21/Cip1, is a vital cell cycle regulator, dysregulation of which has been associated with a large number of human malignancies. One critical mechanism that controls p21 function is through its degradation, which allows the activation of its associated cell cycle promoting kinases, CDK2 and CDK4. Thus, delineating how p21 is stabilized and degraded will enhance our understanding of cell growth control and offer a basis for potential therapeut...

  3. The p21 ras C-terminus is required for transformation and membrane association

    DEFF Research Database (Denmark)

    Willumsen, B M; Christensen, A; Hubbert, N L

    1984-01-01

    The Harvey murine sarcoma virus (Ha-MuSV) transforming gene, v-rasH, encodes a 21,000 molecular weight protein (p21) that is closely related to the p21 proteins encoded by the cellular transforming genes of the ras gene family. The primary translation product (prop21), which is found in the cytosol...... of these biochemical features of the protein, we have now studied a series of deletion mutants located at or near the C-terminus of the viral p21 protein. Our tissue culture studies indicate that amino acids located at or near the C-terminus are required for cellular transformation, membrane association and lipid...

  4. p21 is Responsible for Ionizing Radiation-induced Bypass of Mitosis.

    Science.gov (United States)

    Zhang, Xu Rui; Liu, Yong Ai; Sun, Fang; Li, He; Lei, Su Wen; Wang, Ju Fang

    2016-07-01

    To explore the role of p21 in ionizing radiation-induced changes in protein levels during the G2/M transition and long-term G2 arrest. Protein expression levels were assessed by western blot in the human uveal melanoma 92-1 cells after treatment with ionizing radiation. Depletion of p21 was carried out by employing the siRNA technique. Cell cycle distribution was determined by flow cytometry combined with histone H3 phosphorylation at Ser28, an M-phase marker. Senescence was assessed by senescence- associated-β-galactosidase (SA-β-gal) staining combined with Ki67 staining, a cell proliferation marker. Accompanying increased p21, the protein levels of G2/M transition genes declined significantly in 92-1 cells irradiated with 5 Gy of X-rays. Furthermore, these irradiated cells were blocked at the G2 phase followed by cellular senescence. Depletion of p21 rescued radiation-induced G2 arrest as demonstrated by the upregulation of G2/M transition kinases, as well as the high expression of histone H3 phosphorylated at Ser28. Knockdown of p21 resulted in entry into mitosis of irradiated 92-1 cells. However, cells with serious DNA damage failed to undergo cytokinesis, leading to the accumulation of multinucleated cells. Our results indicated that p21 was responsible for the downregulation of G2/M transition regulatory proteins and the bypass of mitosis induced by irradiation. Downregulation of p21 by siRNA resulted in G2-arrested cells entering into mitosis with serious DNA damage. This is the first report on elucidating the role of p21 in the bypass of mitosis. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  5. Association of p21 SNPs and risk of cervical cancer among Chinese women

    International Nuclear Information System (INIS)

    Wang, Ning; Wang, Shizhuo; Zhang, Qiao; Lu, Yanming; Wei, Heng; Li, Wei; Zhang, Shulan; Yin, Duo; Ou, Yangling

    2012-01-01

    The p21 codon 31 single nucleotide polymorphism (SNP), rs1801270, has been linked to cervical cancer but with controversial results. The aims of this study were to investigate the role of p21 SNP-rs1801270 and other untested p21 SNPs in the risk of cervical cancer in a Chinese population. We genotyped five p21 SNPs (rs762623, rs2395655, rs1801270, rs3176352, and rs1059234) using peripheral blood DNA from 393 cervical cancer patients and 434 controls. The frequency of the rs1801270 A allele in patients (0.421) was significantly lower than that in controls (0.494, p = 0.003). The frequency of the rs3176352 C allele in cases (0.319) was significantly lower than that in controls (0.417, p < 0.001).The allele frequency of other three p21 SNPs showed not statistically significantly different between patients and controls. The rs1801270 AA genotype was associated with a decreased risk for the development of cervical cancer (OR = 0.583, 95%CI: 0.399 - 0.853, P = 0.005). We observed that the three p21 SNPs (rs1801270, rs3176352, and rs1059234) was in linkage disequilibrium (LD) and thus haplotype analysis was performed. The AGT haplotype (which includes the rs1801270A allele) was the most frequent haplotype among all subjects, and both homozygosity and heterozygosity for the AGT haplotype provided a protective effect from development of cervical cancer. We show an association between the p21 SNP rs1801270A allele and a decreased risk for cervical cancer in a population of Chinese women. The AGT haplotype formed by three p21 SNPs in LD (rs1801270, rs3176352 and rs1059234) also provided a protective effect in development of cervical cancer in this population

  6. Nitric oxide induces thioredoxin-1 nuclear translocation: Possible association with the p21Ras survival pathway

    International Nuclear Information System (INIS)

    Arai, Roberto J.; Masutani, H.; Yodoi, J.; Debbas, V.; Laurindo, Francisco R.; Stern, A.; Monteiro, Hugo P.

    2006-01-01

    One of the major redox-regulating molecules with thiol reducing activity is thioredoxin-1 (TRX-1). TRX-1 is a multifunctional protein that exists in the extracellular millieu, cytoplasm, and nucleus, and has a distinct role in each environment. It is well known that TRX-1 promptly migrates to the nuclear compartment in cells exposed to oxidants. However, the intracellular location of TRX-1 in cells exposed to nitrosothiols has not been investigated. Here, we demonstrated that the exposure of HeLa cells to increasing concentrations of the nitrosothiol S-nitroso-N-acetylpenicillamine (SNAP) promoted TRX-1 nuclear accumulation. The SNAP-induced TRX-1 translocation to the nucleus was inhibited by FPTIII, a selective inhibitor of p21Ras. Furthermore, TRX-1 migration was attenuated in cells stably transfected with NO insensitive p21Ras (p21 RasC118S ). Downstream to p21Ras, the MAP Kinases ERK1/2 were activated by SNAP under conditions that promote TRX-1 nuclear translocation. Inhibition of MEK prevented SNAP-stimulated ERK1/2 activation and TRX-1 nuclear migration. In addition, cells treated with p21Ras or MEK inhibitor showed increased susceptibility to cell death induced by SNAP. In conclusion, our observations suggest that the nuclear translocation of TRX-1 is induced by SNAP involving p21Ras survival pathway

  7. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Hwang, Dae-Sik; Lee, Min-Chul; Kyung, Do-Hyun; Kim, Hui-Su; Han, Jeonghoon; Kim, Il-Chan; Puthumana, Jayesh; Lee, Jae-Seong

    2017-03-01

    Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Expression and significance of VEGF, CD34, Ki-67 and p21 in pterygium

    Directory of Open Access Journals (Sweden)

    Li-Bo Wang

    2014-07-01

    Full Text Available AIM: To investigate the expression of VEGF, CD34, Ki-67 and p21 in pterygium as well as the correlation between their expression and clinical pathological characteristics; explore its pathogenesis. METHODS: Immunohistochemical S-P staining method was adopted in detecting the expression of VEGF, CD34, Ki-67 and p21 in 62 cases of pterygia and 20 cases of normal conjunctival tissues. Relationship between these markers and clinical pathological characteristics was analyzed. RESULTS:(1The positive expression of VEGF, CD34, Ki-67 and p21 in 62 cases of pterygia was 74.2%(46/62, 77.4%(48/62, 66.1%(41/62and 40.3%(25/62respectively. The differences were statistically significant compared with normal conjunctival tissues(PPP>0.05; the expression of Ki-67 was correlated with clinical stages(PP>0.05; the expression of p21 was correlated with clinical stages and pterygium characters(PP>0.05.(3Spearman correlation showed that there was a positive correlation between VEGF and Ki-67(r=0.279, Pr=0.299, Pr=-0.267, PP>0.05.CONCLUSION:(1Overexpression of VEGF, Ki-67, CD34 and low expression of p21 suggest that these markers are concerned with the development and progression of pterygium.(2Expression of VEGF and CD34 increases along with the increase of clinical types and stages, expression of Ki-67 increases along with the increase of clinical stages, and expression of p21 decreases along with the improvement of clinical types or stages; they suggest that these markers may play important roles in the development and recurrence of pterygium.(3There is positive correlation between VEGF and Ki-67, VEGF and CD34 as well as negative correlation between VEGF and p21. They suggest that there may be synergistic action between two factors during the development and progression of pterygium.

  9. Coordination between p21 and DDB2 in the cellular response to UV radiation.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available The tumor suppressor p53 guides the cellular response to DNA damage mainly by regulating expression of target genes. The cyclin-dependent kinase inhibitor p21, which is induced by p53, can both arrest the cell cycle and inhibit apoptosis. Interestingly, p53-inducible DDB2 (damaged-DNA binding protein 2 promotes apoptosis by mediating p21 degradation after ultraviolet (UV-induced DNA damage. Here, we developed an integrated model of the p53 network to explore how the UV-irradiated cell makes a decision between survival and death and how the activities of p21 and DDB2 are modulated. By numerical simulations, we found that p53 is activated progressively and the promoter selectivity of p53 depends on its concentration. For minor DNA damage, p53 settles at an intermediate level. p21 is induced by p53 to arrest the cell cycle via inhibiting E2F1 activity, allowing for DNA repair. The proapoptotic genes are expressed at low levels. For severe DNA damage, p53 undergoes a two-phase behavior and accumulates to high levels in the second phase. Consequently, those proapoptotic proteins accumulate remarkably. Bax activates the release of cytochrome c, while DDB2 promotes the degradation of p21, which leads to activation of E2F1 and induction of Apaf-1. Finally, the caspase cascade is activated to trigger apoptosis. We revealed that the downregulation of p21 is necessary for apoptosis induction and PTEN promotes apoptosis by amplifying p53 activation. This work demonstrates that how the dynamics of the p53 network can be finely regulated through feed-forward and feedback loops within the network and emphasizes the importance of p21 regulation in the DNA damage response.

  10. p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells

    Science.gov (United States)

    Deng, Wen; Zhou, Yuan; Tiwari, Agnes FY; Su, Hang; Yang, Jie; Zhu, Dandan; Lau, Victoria Ming Yi; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie LM; Guan, Xin-Yuan; Tsao, Sai Wah

    2015-01-01

    Apart from regulating stem cell self-renewal, embryonic development and proliferation, Bmi-1 has been recently reported to be critical in the maintenance of genome integrity. In searching for novel mechanisms underlying the anticlastogenic function of Bmi-1, we observed, for the first time, that Bmi-1 positively regulates p21 expression. We extended the finding that Bmi-1 deficiency induced chromosome breaks in multiple cancer cell models. Interestingly, we further demonstrated that knockdown of cyclin E or ectopic overexpression of p21 rescued Bmi-1 deficiency-induced chromosome breaks. We therefore conclude that p21/cyclin E pathway is crucial in modulating the anticlastogenic function of Bmi-1. As it is well established that the overexpression of cyclin E potently induces genome instability and p21 suppresses the function of cyclin E, the novel and important implication from our findings is that Bmi-1 plays an important role in limiting genomic instability in cylin E-overexpressing cancer cells by positive regulation of p21. PMID:25131797

  11. Lipotoxic effect of p21 on free fatty acid-induced steatosis in L02 cells.

    Directory of Open Access Journals (Sweden)

    Jie-wei Wang

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is increasingly regarded as a hepatic manifestation of metabolic syndrome. Though with high prevalence, the mechanism is poorly understood. This study aimed to investigate the effects of p21 on free fatty acid (FFA-induced steatosis in L02 cells. We therefore analyzed the L02 cells with MG132 and siRNA treatment for different expression of p21 related to lipid accumulation and lipotoxicity. Cellular total lipid was stained by Oil Red O, while triglyceride content, cytotoxicity assays, lipid peroxidation markers and anti-oxidation levels were measured by enzymatic kits. Treatment with 1 mM FFA for 48 hr induced magnificent intracellular lipid accumulation and increased oxidative stress in p21 overload L02 cells compared to that in p21 knockdown L02 cells. By increasing oxidative stress and peroxidation, p21 accelerates FFA-induced lipotoxic effect in L02 cells and might provide information about potentially new targets for drug development and treatments of NAFLD.

  12. Correlation between chromosome 9p21 locus deletion and prognosis in clinically localized prostate cancer.

    Science.gov (United States)

    Barros, Érika Aparecida Felix de; Pontes-Junior, José; Reis, Sabrina Thalita; Lima, Amanda Eunice Ramos; Souza, Isida C; Salgueiro, Jose Lucas; Fontes, Douglas; Dellê, Humberto; Coelho, Rafael Ferreira; Viana, Nayara Izabel; Leite, Kátia Ramos Moreira; Nahas, William C; Srougi, Miguel

    2017-05-04

    Some studies have reported that deletions at chromosome arm 9p occur frequently and represent a critical step in carcinogenesis of some neoplasms. Our aim was to evaluate the deletion of locus 9p21 and chromosomes 3, 7 and 17 in localized prostate cancer (PC) and correlate these alterations with prognostic factors and biochemical recurrence after surgery. We retrospectively evaluated surgical specimens from 111 patients with localized PC who underwent radical prostatectomy. Biochemical recurrence was defined as a prostate-specific antigen (PSA) >0.2 ng/mL and the mean postoperative follow-up was 123 months. The deletions were evaluated using fluorescence in situ hybridization with centromeric and locus-specific probes in a tissue microarray containing 2 samples from each patient. We correlated the occurrence of any deletion with pathological stage, Gleason score, ISUP grade group, PSA and biochemical recurrence. We observed a loss of any probe in only 8 patients (7.2%). The most common deletion was the loss of locus 9p21, which occurred in 6.4% of cases. Deletions of chromosomes 3, 7 and 17 were observed in 2.3%, 1.2% and 1.8% patients, respectively. There was no correlation between chromosome loss and Gleason score, ISUP, PSA or stage. Biochemical recurrence occurred in 83% cases involving 9p21 deletions. Loss of 9p21 locus was significantly associated with time to recurrence (p = 0.038). We found low rates of deletion in chromosomes 3, 7 and 17 and 9p21 locus. We observed that 9p21 locus deletion was associated with worse prognosis in localized PC treated by radical prostatectomy.

  13. p21 promotes oncolytic adenoviral activity in ovarian cancer and is a potential biomarker

    Directory of Open Access Journals (Sweden)

    Lockley Michelle

    2010-07-01

    Full Text Available Abstract The oncolytic adenovirus dl922-947 replicates selectively within and lyses cells with a dysregulated Rb pathway, a finding seen in > 90% human cancers. dl922-947 is more potent than wild type adenovirus and the E1B-deletion mutant dl1520 (Onyx-015. We wished to determine which host cell factors influence cytotoxicity. SV40 large T-transformed MRC5-VA cells are 3-logs more sensitive to dl922-947 than isogenic parental MRC5 cells, confirming that an abnormal G1/S checkpoint increases viral efficacy. The sensitivity of ovarian cancer cells to dl922-947 varied widely: IC50 values ranged from 51 (SKOV3ip1 to 0.03 pfu/cell (TOV21G. Cells sensitive to dl922-947 had higher S phase populations and supported earlier E1A expression. Cytotoxicity correlated poorly with both infectivity and replication, but well with expression of p21 by microarray and western blot analyses. Matched p21+/+ and -/- Hct116 cells confirmed that p21 influences dl922-947 activity in vitro and in vivo. siRNA-mediated p21 knockdown in sensitive TOV21G cells decreases E1A expression and viral cytotoxicity, whilst expression of p21 in resistant A2780CP cells increases virus activity in vitro and in intraperitoneal xenografts. These results highlight that host cell factors beyond simple infectivity can influence the efficacy of oncolytic adenoviruses. p21 expression may be an important biomarker of response in clinical trials.

  14. MDM2 gene SNP309 T/G and p53 gene SNP72 G/C do not influence diffuse large B-cell non-Hodgkin lymphoma onset or survival in central European Caucasians

    Directory of Open Access Journals (Sweden)

    Landt Olfert

    2008-04-01

    Full Text Available Abstract Background SNP309 T/G (rs2279744 causes higher levels of MDM2, the most important negative regulator of the p53 tumor suppressor. SNP72 G/C (rs1042522 gives rise to a p53 protein with a greatly reduced capacity to induce apoptosis. Both polymorphisms have been implicated in cancer. The SNP309 G-allele has recently been reported to accelerate diffuse large B-cell lymphoma (DLBCL formation in pre-menopausal women and suggested to constitute a genetic basis for estrogen affecting human tumorigenesis. Here we asked whether SNP309 and SNP72 are associated with DLBCL in women and are correlated with age of onset, diagnosis, or patient's survival. Methods SNP309 and SNP72 were PCR-genotyped in a case-control study that included 512 controls and 311 patients diagnosed with aggressive NHL. Of these, 205 were diagnosed with DLBCL. Results The age of onset was similar in men and women. The control and patients group showed similar SNP309 and SNP72 genotype frequencies. Importantly and in contrast to the previous findings, similar genotype frequencies were observed in female patients diagnosed by 51 years of age and those diagnosed later. Specifically, 3/20 female DLBCL patients diagnosed by 51 years of age were homozygous for SNP309 G and 2/20 DLBCL females in that age group were homozygous for SNP72 C. Neither SNP309 nor SNP72 had a significant influence on event-free and overall survival in multivariate analyses. Conclusion In contrast to the previous study on Ashkenazi Jewish Caucasians, DLBCL in pre-menopausal women of central European Caucasian ethnicity was not associated with SNP309 G. Neither SNP309 nor SNP72 seem to be correlated with age of onset, diagnosis, or survival of patients.

  15. Regulation of MDM2 Activity by Nucleolin

    Science.gov (United States)

    2007-06-01

    plicated in the binding of HIV particles to CD4 cells. J. Biol. Chem. 273:21988–21997. 8. Carty, M. P., M. Zernik -Kobak, S. McGrath, and K. Dixon. 1994...replication products and not due to repair synthesis (Fig. 3D ). RPARPA2D is therefore functionally active in supporting DNA replication in vitro...Further intermediate RPA2 mutants were designed to roughly follow the phosphor- ylation pathway, as suggested by the data of Zernik -Kobak and colleagues

  16. Regulation of MDM2 Activity by Nucleolin

    Science.gov (United States)

    2005-06-01

    the mock- treated ceIlls (from 4.5 to 2.9%). In other words, over-expression of nucleolin stimulates apoptosis under normal growth conditions, but...yeast cells with PBS, and then incubated with P13S containing 0.5% Nonidet P-40. Cover- bI using 2-5- to 50-i.m glass beads in uracil RIPA buffer (50 mM...followed by incubation to bind the GST- PBS containing 0.5% Tween 20 and mounted onto glass slides, Fluorescent nucleolin proteins. After three washes with a

  17. Increased p21ras activity in human fibroblasts transduced with survivin enhances cell proliferation

    International Nuclear Information System (INIS)

    Temme, Achim; Diestelkoetter-Bachert, Petra; Schmitz, Marc; Morgenroth, Agnieszka; Weigle, Bernd; Rieger, Michael A.; Kiessling, Andrea; Rieber, E. Peter

    2005-01-01

    Survivin is critically involved in mitosis and when overexpressed enhances the activity of the Aurora B kinase, a serine-threonine kinase belonging to the family of oncogenic Aurora/IpI1p-related kinases. Both proteins interact with Ras GTPase-activating protein suggesting an impact on the Ras pathway. This study aimed at defining the role of survivin in proliferation and potential transformation of cells. When survivin was overexpressed in normal human lung fibroblasts, the characteristic track lanes of fibroblasts were disturbed and the rate of cell proliferation was increased. An enhanced level of p21 ras mRNA and protein expression and concomitant rise in levels of activated p21 ras were observed. Despite increased proliferation cell survival remained dependent on serum and cells were not able to form colonies in soft agar assays. These data suggest that overexpression of survivin increases cell growth but, despite the increase in active p21 ras , is not sufficient to transform primary cells. Yet, in addition to its anti-apoptotic function it might contribute to the accelerated growth of tumour cells by increasing p21 ras activity

  18. Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma.

    Directory of Open Access Journals (Sweden)

    Alfonso Baldi

    Full Text Available BACKGROUND: Malignant mesothelioma (MM is a rare, highly aggressive tumor, associated to asbestos exposure. To date no chemotherapy regimen for MM has proven to be definitively curative, and new therapies for MM treatment need to be developed. We have previously shown in vivo that piroxicam/cisplatin combined treatment in MM, specifically acts on cell cycle regulation triggering apoptosis, with survival increase. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed, at molecular level, the apoptotic increase caused by piroxicam/cisplatin treatment in MM cell lines. By means of genome wide analyses, we analyzed transcriptional gene deregulation both after the single piroxicam or cisplatin and the combined treatment. Here we show that apoptotic increase following combined treatment is mediated by p21, since apoptotic increase in piroxicam/cisplatin combined treatment is abolished upon p21 silencing. CONCLUSIONS/SIGNIFICANCE: Piroxicam/cisplatin combined treatment determines an apoptosis increase in MM cells, which is dependent on the p21 expression. The results provided suggest that piroxicam/cisplatin combination might be tested in clinical settings in tumor specimens that express p21.

  19. Apoptosis Induced by Piroxicam plus Cisplatin Combined Treatment Is Triggered by p21 in Mesothelioma

    Science.gov (United States)

    Baldi, Alfonso; Piccolo, Maria Teresa; Boccellino, Maria Rosaria; Donizetti, Aldo; Cardillo, Irene; La Porta, Raffaele; Quagliuolo, Lucio; Spugnini, Enrico P.; Cordero, Francesca; Citro, Gennaro; Menegozzo, Massimo; Calogero, Raffaele A.; Crispi, Stefania

    2011-01-01

    Background Malignant mesothelioma (MM) is a rare, highly aggressive tumor, associated to asbestos exposure. To date no chemotherapy regimen for MM has proven to be definitively curative, and new therapies for MM treatment need to be developed. We have previously shown in vivo that piroxicam/cisplatin combined treatment in MM, specifically acts on cell cycle regulation triggering apoptosis, with survival increase. Methodology/Principal Findings We analyzed, at molecular level, the apoptotic increase caused by piroxicam/cisplatin treatment in MM cell lines. By means of genome wide analyses, we analyzed transcriptional gene deregulation both after the single piroxicam or cisplatin and the combined treatment. Here we show that apoptotic increase following combined treatment is mediated by p21, since apoptotic increase in piroxicam/cisplatin combined treatment is abolished upon p21 silencing. Conclusions/Significance Piroxicam/cisplatin combined treatment determines an apoptosis increase in MM cells, which is dependent on the p21 expression. The results provided suggest that piroxicam/cisplatin combination might be tested in clinical settings in tumor specimens that express p21. PMID:21858171

  20. Interaction between the p21ras GTPase activating protein and the insulin receptor

    NARCIS (Netherlands)

    Pronk, G.J.; Medema, R.H.; Burgering, B.M.T.; Clark, R.; McCormick, F.; Bos, J.L.

    1992-01-01

    We investigated the involvement of the p21ras-GTPase activating protein (GAP) in insulin-induced signal transduction. In cells overexpressing the insulin receptor, we did not observe association between GAP and the insulin receptor after insulin treatment nor the phosphorylation of GAP on tyrosine

  1. Matrix mechanics controls FHL2 movement to the nucleus to activate p21 expression

    Science.gov (United States)

    Nakazawa, Naotaka; Sathe, Aneesh R.; Shivashankar, G. V.; Sheetz, Michael P.

    2016-01-01

    Substrate rigidity affects many physiological processes through mechanochemical signals from focal adhesion (FA) complexes that subsequently modulate gene expression. We find that shuttling of the LIM domain (domain discovered in the proteins, Lin11, Isl-1, and Mec-3) protein four-and-a-half LIM domains 2 (FHL2) between FAs and the nucleus depends on matrix mechanics. In particular, on soft surfaces or after the loss of force, FHL2 moves from FAs into the nucleus and concentrates at RNA polymerase (Pol) II sites, where it acts as a transcriptional cofactor, causing an increase in p21 gene expression that will inhibit growth on soft surfaces. At the molecular level, shuttling requires a specific tyrosine in FHL2, as well as phosphorylation by active FA kinase (FAK). Thus, we suggest that FHL2 phosphorylation by FAK is a critical, mechanically dependent step in signaling from soft matrices to the nucleus to inhibit cell proliferation by increasing p21 expression. PMID:27742790

  2. p21-LacZ reporter mice reflect p53-dependent toxic insult

    International Nuclear Information System (INIS)

    Vasey, Douglas B.; Wolf, C. Roland; MacArtney, Thomas; Brown, Ken; Whitelaw, C. Bruce A.

    2008-01-01

    There is an urgent need to discover less toxic and more selective drugs to treat disease. The use of transgenic mice that report on toxic insult-induced transcription can provide a valuable tool in this regard. To exemplify this strategy, we have generated transgenic mice carrying a p21-LacZ transgene. Transgene activity reflected endogenous p21 gene activation in various tissues, displayed compound-specific spatial expression signatures in the brain and immune tissues and enabled p53-dependent and p53-independent responses to be identified. We discuss the application of these mice in delineating the molecular events in normal cellular growth and disease and for the evaluation of drug toxicity

  3. The Prognostic Impact of p53 Expression on Sporadic Colorectal Cancer Is Dependent on p21 Status

    International Nuclear Information System (INIS)

    Kruschewski, Martin; Mueller, Kathrin; Lipka, Sybille; Budczies, Jan; Noske, Aurelia; Buhr, Heinz Johannes; Elezkurtaj, Sefer

    2011-01-01

    The prognostic value of p53 and p21 expression in colorectal cancer is still under debate. We hypothesize that the prognostic impact of p53 expression is dependent on p21 status. The expression of p53 and p21 was immunohistochemically investigated in a prospective cohort of 116 patients with UICC stage II and III sporadic colorectal cancer. The results were correlated with overall and recurrence-free survival. The mean observation period was 51.8 ± 2.5 months. Expression of p53 was observed in 72 tumors (63%). Overall survival was significantly better in patients with p53-positive carcinomas than in those without p53 expression (p = 0.048). No differences were found in recurrence-free survival (p = 0.161). The p53+/p21− combination was seen in 68% (n = 49), the p53+/p21+ combination in 32% (n = 23). Patients with p53+/p21− carcinomas had significantly better overall and recurrence-free survival than those with p53+/p21+ (p < 0.0001 resp. p = 0.003). Our data suggest that the prognostic impact of p53 expression on sporadic colorectal cancer is dependent on p21 status

  4. LincRNA-p21 Impacts Prognosis in Resected Non-Small Cell Lung Cancer Patients through Angiogenesis Regulation.

    Science.gov (United States)

    Castellano, Joan J; Navarro, Alfons; Viñolas, Nuria; Marrades, Ramon M; Moises, Jorge; Cordeiro, Anna; Saco, Adela; Muñoz, Carmen; Fuster, Dolors; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2016-12-01

    Long intergenic noncoding RNA-p21 (lincRNA-p21) is a long noncoding RNA transcriptionally activated by tumor protein p53 (TP53) and hypoxia inducible factor 1 alpha subunit (HIF1A). It is involved in the regulation of TP53-dependent apoptosis and the Warburg effect. We have investigated the role of lincRNA-p21 in NSCLC. LincRNA-p21 expression was assessed in tumor and normal tissue from 128 patients with NSCLC and correlated with time to relapse and cancer-specific survival (CSS). H23, H1299, and HCC-44 cell lines were cultured in hypoxic conditions after silencing of lincRNA-p21. The TaqMan human angiogenesis array was used to explore angiogenesis-related gene expression. Levels of the protein vascular endothelial growth factor A were measured by enzyme-linked immunosorbent assay in the cell supernatants. Angiogenic capability was measured by human umbilical vein endothelial cell tube formation assay. Microvascular density in tumor samples was analyzed by immunohistochemistry. LincRNA-p21 was down-regulated in tumor tissue, but no association was observed with TP53 mutational status. High lincRNA-p21 levels were associated with poor CSS in all patients (p = 0.032). When patients were classified according to histological subtypes, the impact of lincRNA-p21 was confined to patients with adenocarcinoma in both time to relapse (p = 0.006) and CSS (p < 0.001). To explain the poor outcome of patients with high lincRNA-p21 expression, we studied the role of lincRNA-p21 in angiogenesis in vitro and observed a global downregulation in the expression of angiogenesis-related genes when lincRNA-p21 was inhibited. Moreover, supernatants from lincRNA-p21-inhibited cells were significantly less angiogenic and had lower levels of secreted vascular endothelial growth factor A than controls did. Finally, tumor samples with high lincRNA-p21 levels had higher microvascular density. Our findings suggest that lincRNA-p21 affects outcome in patients with NSCLC adenocarcinoma through

  5. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Céline; Barbier, Ewa; Miscioscia, Audrey; Saint-Pierre, Christine [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France); Kraut, Alexandra; Couté, Yohann [Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S_1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France); Plo, Isabelle [INSERM, U1009, Institut Gustave Roussy, Université Paris 11, 114 rue Edouard Vaillant, Villejuif F-94805 (France); Gasparutto, Didier; Ravanat, Jean-Luc [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France); Breton, Jean, E-mail: jean.breton@cea.fr [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France)

    2014-03-28

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied this strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis.

  6. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    International Nuclear Information System (INIS)

    3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Lafaye, Céline; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Barbier, Ewa; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Miscioscia, Audrey; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Saint-Pierre, Christine; 1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" >Kraut, Alexandra; 1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" >Couté, Yohann; Plo, Isabelle; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Gasparutto, Didier; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Ravanat, Jean-Luc; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Breton, Jean

    2014-01-01

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied this strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis

  7. Common genetic variants in the 9p21 region and their associations with multiple tumours.

    Science.gov (United States)

    Gu, F; Pfeiffer, R M; Bhattacharjee, S; Han, S S; Taylor, P R; Berndt, S; Yang, H; Sigurdson, A J; Toro, J; Mirabello, L; Greene, M H; Freedman, N D; Abnet, C C; Dawsey, S M; Hu, N; Qiao, Y-L; Ding, T; Brenner, A V; Garcia-Closas, M; Hayes, R; Brinton, L A; Lissowska, J; Wentzensen, N; Kratz, C; Moore, L E; Ziegler, R G; Chow, W-H; Savage, S A; Burdette, L; Yeager, M; Chanock, S J; Chatterjee, N; Tucker, M A; Goldstein, A M; Yang, X R

    2013-04-02

    The chromosome 9p21.3 region has been implicated in the pathogenesis of multiple cancers. We systematically examined up to 203 tagging SNPs of 22 genes on 9p21.3 (19.9-32.8 Mb) in eight case-control studies: thyroid cancer, endometrial cancer (EC), renal cell carcinoma, colorectal cancer (CRC), colorectal adenoma (CA), oesophageal squamous cell carcinoma (ESCC), gastric cardia adenocarcinoma and osteosarcoma (OS). We used logistic regression to perform single SNP analyses for each study separately, adjusting for study-specific covariates. We combined SNP results across studies by fixed-effect meta-analyses and a newly developed subset-based statistical approach (ASSET). Gene-based P-values were obtained by the minP method using the Adaptive Rank Truncated Product program. We adjusted for multiple comparisons by Bonferroni correction. Rs3731239 in cyclin-dependent kinase inhibitors 2A (CDKN2A) was significantly associated with ESCC (P=7 × 10(-6)). The CDKN2A-ESCC association was further supported by gene-based analyses (Pgene=0.0001). In the meta-analyses by ASSET, four SNPs (rs3731239 in CDKN2A, rs615552 and rs573687 in CDKN2B and rs564398 in CDKN2BAS) showed significant associations with ESCC and EC (PASSET (P=0.007). Our data indicate that genetic variants in CDKN2A, and possibly nearby genes, may be associated with ESCC and several other tumours, further highlighting the importance of 9p21.3 genetic variants in carcinogenesis.

  8. The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tayebeh Hamzehloie

    2012-03-01

    Full Text Available The gene TP53 (also known as protein 53 or tumor protein 53, encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. The main function of P53 is to organize cell defense against cancerous transformation. P53 is a potent transcription factor that is activated in response to diverse stresses, leading to the induction of cell cycle arrest, apoptosis or senescence. The P53 tumor suppressor is negatively regulated in cells by the murine double minute 2 (MDM2 protein. Murine double minute 2 favors its nuclear export, and stimulates its degradation. Inhibitors of the P53-MDM2 interaction might be attractive new anticancer agents that could be used to activate wild-type P53 in tumors. Down regulation of MDM2 using an small interfering RNA (siRNA approach has recently provided evidence for a new role of MDM2 in the P53 response, by modulating the inhibition of the cyclin dependent kinase 2 (cdk2 by P21/WAF1 (also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1.

  9. Ecdysone receptor (EcR) and ultraspiracle (USP) genes from the cyclopoid copepod Paracyclopina nana: Identification and expression in response to water accommodated fractions (WAFs).

    Science.gov (United States)

    Puthumana, Jayesh; Lee, Min-Chul; Han, Jeonghoon; Kim, Hui-Su; Hwang, Dae-Sik; Lee, Jae-Seong

    2017-02-01

    Ecdysteroid hormones are pivotal in the development, growth, and molting of arthropods, and the hormone pathway is triggered by binding ecdysteroid to a heterodimer of the two nuclear receptors; ecdysone receptors (EcR) and ultraspiracle (USP). We have characterized EcR and USP genes, and their 5'-untranslated region (5'-UTR) from the copepod Paracyclopina nana, and studied mRNA transcription levels in post-embryonic stages and in response to water accommodated fractions (WAFs) of crude oil. The open reading frames (ORF) of EcR and USP were 1470 and 1287bp that encoded 490 and 429 amino acids with molecular weight of 121.18 and 105.03kDa, respectively. Also, a well conserved DNA-binding domain (DBD) and ligand-binding domain (LBD) were identified which confirmed by phylogenetic analysis. Messenger RNA transcriptional levels of EcR and USP were developmental stage-specific in early post-embryonic stages (N3-4). However, an evoked expression of USP was observed throughout copepodid stage and in adult females. WAFs (40 and 80%) were acted as an ecdysone agonist in P. nana, and elicited the mRNA transcription levels in adults. Developmental stage-specific transcriptional activation of EcR and USP in response to WAFs was observed. USP gene was down-regulated in the nauplius in response to WAF, whereas up-regulation of USP was observed in the adults. This study represents the first data of molecular elucidation of EcR and USP genes and their regulatory elements from P. nana and the developmental stage specific expression in response to WAFs, which can be used as potential biomarkers for environmental stressors with ecotoxicological evaluations in copepods. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels.

    Science.gov (United States)

    Lu, Yunqi; Hu, Zhongyi; Mangala, Lingegowda S; Stine, Zachary E; Hu, Xiaowen; Jiang, Dahai; Xiang, Yan; Zhang, Youyou; Pradeep, Sunila; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; DeMarzo, Angelo M; Sood, Anil K; Zhang, Lin; Dang, Chi V

    2018-01-01

    The MYC oncogene broadly promotes transcription mediated by all nuclear RNA polymerases, thereby acting as a positive modifier of global gene expression. Here, we report that MYC stimulates the transcription of DANCR, a long noncoding RNA (lncRNA) that is widely overexpressed in human cancer. We identified DANCR through its overexpression in a transgenic model of MYC-induced lymphoma, but found that it was broadly upregulated in many human cancer cell lines and cancers, including most notably in prostate and ovarian cancers. Mechanistic investigations indicated that DANCR limited the expression of cell-cycle inhibitor p21 (CDKN1A) and that the inhibitory effects of DANCR loss on cell proliferation could be partially rescued by p21 silencing. In a xenograft model of human ovarian cancer, a nanoparticle-mediated siRNA strategy to target DANCR in vivo was sufficient to strongly inhibit tumor growth. Our observations expand knowledge of how MYC drives cancer cell proliferation by identifying DANCR as a critical lncRNA widely overexpressed in human cancers. Significance: These findings expand knowledge of how MYC drives cancer cell proliferation by identifying an oncogenic long noncoding RNA that is widely overexpressed in human cancers. Cancer Res; 78(1); 64-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Effect of RNAi p21 gene on uncoupling of EL-4 cells induced by X-irradiation

    International Nuclear Information System (INIS)

    Ju Guizhi; Yan Fengqin; Fu Shibo; Shen Bo; Sun Shilong; Yang Ying; Li Pengwu

    2008-01-01

    Objective: To investigate the effect of RNAi p21 gene on uncoupling of EL-4 cells induced by X-irradiation. Methods: Construction of RNAi p21 plasmid of pSileneer3.1-H1 neo-p21 was performed. Lipofectamine transfection assay was used to transfer the p21siBNA into EL-4 cells. Fluorescent staining and flow cytometry (FCM) analysis were employed for measurement of protein expression. Fluorescent staining of propidium iodide (PI) and FCM were used for measurement of potyploid cells. Results: In dose-effect experiment it was found that the expression of P21 protein of EL-4 cells increased significantly 24 h after X- irradiation with different doses compared with sham-inadiated control. In time course experiment it was found that the expression of P21 protein of EL-4 cells increased significantly at 8 h to 72 h after 4.0 Gy X-irradiation compared with sham-irradiated control. The results showed that the number of polyploid cells in EL-4 cells was not changed markedly after X-irradiation with doses of 0.5-6.0 Gy. After RNA interference with p21 gene, the expression of P21 protein of EL-4 cells decreased significantly 24 h and 48 h after 4.0 Gy X-irradiation in transfection of plasmid of pSilencer3.1-H1 neo-p21 compared with transfection of plasmid of pSilencer3.1-H1 nco control. And at the same time, the number of polyploid cells in EL-4 cells was increased significantly in transfection of plasmid of pSilencer3.1-H1 neo-p21 compared with transfection of plasmid of pSilencer3.1-H1 nco control. Conclusions: Uncoupling could be induced by X-irradiation in EL-4 cells following BNAi p21 gene, suggesting that P21 protein may play an important role in uncoupling induced by X-rays. (authors)

  12. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization.

    Science.gov (United States)

    Taylor, Lisa M; James, Alexander; Schuller, Christine E; Brce, Jesena; Lock, Richard B; Mackenzie, Karen L

    2004-10-15

    Recent investigations, including our own, have shown that specific strains of fibroblasts expressing telomerase reverse transcriptase (hTERT) have an extended lifespan, but are not immortal. We previously demonstrated that hTERT-transduced MRC5 fetal lung fibroblasts (MRC5hTERTs) bypassed senescence but eventually succumbed to a second mortality barrier (crisis). In the present study, 67 MRC5hTERT clones were established by limiting dilution of a mass culture. Whereas 39/67 clones had an extended lifespan, all 39 extended lifespan clones underwent crisis. 11 of 39 clones escaped crisis and were immortalized. There was no apparent relationship between the fate of clones at crisis and the level of telomerase activity. Telomeres were hyperextended in the majority of the clones analyzed. There was no difference in telomere length of pre-crisis compared with post-crisis and immortal clones, indicating that hyperextended telomeres were conducive for immortalization and confirming that crisis was independent of telomere length. Immortalization of MRC5hTERT cells was associated with repression of the cyclin-dependent kinase inhibitor p16INK4a and up-regulation of pRB. However, the regulation of pRB phosphorylation and the response of the p53/p21cip1/waf1 pathway were normal in immortal cells subject to genotoxic stress. Overexpression of oncogenic ras failed to de-repress p16INK4a in immortal cells. Furthermore, expression of ras enforced senescent-like growth arrest in p16INK4a-positive, but not p16INK4a-negative MRC5hTERT cells. Immortal cells expressing ras formed small, infrequent colonies in soft agarose, but were non-tumorigenic. Overall, these results implicate the inactivation of p16INK4a as a critical event for overcoming telomere-independent crisis, immortalizing MRC5 fibroblasts and overcoming ras-induced premature senescence.

  13. Differential effects of chromosome 9p21 variation on subphenotypes of intracranial aneurysm: site distribution.

    Science.gov (United States)

    Nakaoka, Hirofumi; Takahashi, Tomoko; Akiyama, Koichi; Cui, Tailin; Tajima, Atsushi; Krischek, Boris; Kasuya, Hidetoshi; Hata, Akira; Inoue, Ituro

    2010-08-01

    Recently, a genome-wide association study identified associations between single nucleotide polymorphisms on chromosome 9p21 and risk of harboring intracranial aneurysm (IA). Aneurysm characteristics or subphenotypes of IAs, such as history of subarachnoid hemorrhage, presence of multiple IAs and location of IAs, are clinically important. We investigated whether the association between 9p21 variation and risk of IA varied among these subphenotypes. We conducted a case-control study of 981 cases and 699 controls in Japanese. Four single nucleotide polymorphisms tagging the 9p21 risk locus were genotyped. The OR and 95% CI were estimated using logistic regression analyses. Among the 4 single nucleotide polymorphisms, rs1333040 showed the strongest evidence of association with IA (P=1.5x10(-6); per allele OR, 1.43; 95% CI, 1.24-1.66). None of the patient characteristics (gender, age, smoking, and hypertension) was a significant confounder or effect modifier of the association. Subgroup analyses of IA subphenotypes showed that among the most common sites of IAs, the association was strongest for IAs of the posterior communicating artery (OR, 1.69; 95% CI, 1.26-2.26) and not significant for IAs in the anterior communicating artery (OR, 1.22; 95% CI, 0.96-1.57). When dichotomizing IA sites, the association was stronger for IAs of the posterior circulation-posterior communicating artery group (OR, 1.73; 95% CI, 1.32-2.26) vs the anterior circulation group (OR, 1.28; 95% CI, 1.07-1.53). Heterogeneity in these ORs was significant (P=0.032). The associations did not vary when stratifying by history of subarachnoid hemorrhage (OR, 1.42; 95% CI, 1.18-1.71 for ruptured IA; OR, 1.27; 95% CI, 1.00-1.62 for unruptured IA) or by multiplicity of IA (OR, 1.57; 95% CI, 1.21-2.03 for multiple IAs; OR, 1.36; 95% CI, 1.15-1.61 for single IA). Our results suggest that genetic influence on formation may vary between IA subphenotypes.

  14. Selenium and sulindac are synergistic to inhibit intestinal tumorigenesis in Apc/p21 mice

    Directory of Open Access Journals (Sweden)

    Bi Xiuli

    2013-01-01

    Full Text Available Abstract Background Both selenium and non-steroidal anti-inflammatory drug (NSAID sulindac are effective in cancer prevention, but their effects are affected by several factors including epigenetic alterations and gene expression. The current study was designed to determine the effects of the combination of selenium and sulindac on tumor inhibition and the underlying mechanisms. Results We fed the intestinal tumor model Apc/p21 mice with selenium- and sulindac-supplemented diet for 24 weeks, and found that the combination of selenium and sulindac significantly inhibited intestinal tumorigenesis, in terms of reducing tumor incidence by 52% and tumor multiplicities by 80% (p Conclusions The selenium is synergistic with sulindac to exert maximal effects on tumor inhibition. This finding provides an important chemopreventive strategy using combination of anti-cancer agents, which has a great impact on cancer prevention and has a promising translational potential.

  15. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    International Nuclear Information System (INIS)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani; Oh, Seung Hyun; Ryu, Jae-Ha; Kim, Woo-Young

    2016-01-01

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  16. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seula [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Woo, Jong Kyu [College of Pharmacy, Gachon University, Incheon (Korea, Republic of); Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Oh, Seung Hyun [College of Pharmacy, Gachon University, Incheon (Korea, Republic of); Ryu, Jae-Ha [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Kim, Woo-Young, E-mail: wykim@sookmyung.ac.kr [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of)

    2016-01-22

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  17. Immunohistochemical study of p21 and Bcl-2 in leukoplakia, oral submucous fibrosis and oral squamous cell carcinoma.

    Science.gov (United States)

    Sutariya, Rakesh V; Manjunatha, Bhari Sharanesha

    2016-11-01

    Oral Squamous cell carcinoma (OSCC) results from genetic damage, leading to uncontrolled cell proliferation of damaged cells and the cell death. In the course of its progression, visible changes are taking place at the cellular level (atypical) and the resultant at the tissue level (epithelial dysplasia). The Aim of the present study was to evaluate and compare the expressions of intensity of p21 and Bcl-2 in Leukoplakia, oralsubmucous fibrosis (OSMF) and oral squamous cell carcinoma. Total 60 cases, 30 cases of oral squamous cell carcinoma, 15 cases of oral submucous fibrosis and 15 cases of Leukoplakia were evaluated immunohistochemically for p21 and Bcl-2 expression. p21 showed positive expression in 13 (86.67%) cases out of 15 cases of OSMF, 12 (80%) cases of leukoplakia out of 15 cases and 24 (80%) cases out of 30 cases of OSCC. The Bcl-2 expression was positive in 13 (86.67%) cases of OSMF, all cases of Leukoplakia and 25 (83.33%) cases of OSCC. No statistical significance was noted in the expression of p21 and Bcl-2 positive expression between OSMF, Leukoplakia and OSCC. Statistical analysis for comparison of intensity of p21 expression in different grades of OSCC showed no significance. Statistical significance difference was found between the expressions of Bcl-2 in moderately and poorly differentiated SCC. The intensity of p21 and Bcl-2 expressions in different grades of OSCC indicates a key role in progression of oral neoplasia.

  18. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment.

    Science.gov (United States)

    Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon

    2012-11-14

    Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.

  19. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    Science.gov (United States)

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  20. Study of P21 Expression in Oral Lichen Planus and Oral Squamous Cell Carcinoma by Immunohistochemical Technique.

    Science.gov (United States)

    Baghaei, Fahimeh; Shojaei, Setareh; Afshar-Moghaddam, Noushin; Zargaran, Massoumeh; Rastin, Verisheh; Nasr, Mohsen; Moghimbeigi, Abbas

    2015-09-01

    Lichen planus is a mucocutaneous disease that is relatively common in middle aged individuals. Some studies have shown that oral lichen planus has a potential to progress to squamous cell carcinoma.p21 is a cyclin-dependent kinase inhibitor that regulates the cell cycle, thus it acts as an inhibitor in cell proliferation. This study was aimed to evaluate and compare the immunostaining of p21 (as a proliferation inhibitory factor) in oral lichen planus (OLP) and oral squamous cell carcinoma (OSCC). In this descriptive cross-sectional study, p21expression was investigated in 24 samples of oral lichen planus (OLP), 24 samples of oral squamous cell carcinoma (OSCC) and 24 samples of oral epithelial hyperplasia (OEH) by employing immunohistochemical staining. The mean percentage of p21-positive cells in OSCC (54.5±6.6) was significantly higher than that in OLP (32.8±6.08) and OEH (9.4±3.8). Moreover, OLP samples expressed p21 significantly higher than the OEH. Kruskal Wallis test revealed a statistically significant difference between the groups regarding the intensity of staining (plichen planus to SCC. Therefore, continuous follow-up periods for OLP are recommended for diagnosis of the malignant transformations in early stages.

  1. Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development.

    Science.gov (United States)

    Luo, Ting; Xu, Yanhua; Hoffman, Trevor L; Zhang, Tailin; Schilling, Thomas; Sargent, Thomas D

    2007-04-01

    Inca (induced in neural crest by AP2) is a novel protein discovered in a microarray screen for genes that are upregulated in Xenopus embryos by the transcriptional activator protein Tfap2a. It has no significant similarity to any known protein, but is conserved among vertebrates. In Xenopus, zebrafish and mouse embryos, Inca is expressed predominantly in the premigratory and migrating neural crest (NC). Knockdown experiments in frog and fish using antisense morpholinos reveal essential functions for Inca in a subset of NC cells that form craniofacial cartilage. Cells lacking Inca migrate successfully but fail to condense into skeletal primordia. Overexpression of Inca disrupts cortical actin and prevents formation of actin "purse strings", which are required for wound healing in Xenopus embryos. We show that Inca physically interacts with p21-activated kinase 5 (PAK5), a known regulator of the actin cytoskeleton that is co-expressed with Inca in embryonic ectoderm, including in the NC. These results suggest that Inca and PAK5 cooperate in restructuring cytoskeletal organization and in the regulation of cell adhesion in the early embryo and in NC cells during craniofacial development.

  2. Genetic Variant rs10757278 on Chromosome 9p21 Contributes to Myocardial Infarction Susceptibility

    Directory of Open Access Journals (Sweden)

    Guangyuan Chen

    2015-05-01

    Full Text Available Large-scale genome-wide association studies (GWAS have revealed that rs10757278 polymorphism (or its proxy rs1333049 on chromosome 9p21 is associated with myocardial infarction (MI susceptibility in individuals of Caucasian ancestry. Following studies in other populations investigated this association. However, some of these studies reported weak or no significant association. Here, we reevaluated this association using large-scale samples by searching PubMed and Google Scholar databases. Our results showed significant association between rs10757278 polymorphism and MI with p = 6.09 × 10−22, odds ratio (OR = 1.29, 95% confidence interval (CI 1.22–1.36 in pooled population. We further performed a subgroup analysis, and found significant association between rs10757278 polymorphism and MI in Asian and Caucasian populations. We identified that the association between rs10757278 polymorphism and MI did not vary substantially by excluding any one study. However, the heterogeneity among the selected studies varies substantially by excluding the study from the Pakistan population. We found even more significant association between rs10757278 polymorphism and MI in pooled population, p = 3.55 × 10−53, after excluding the study from the Pakistan population. In summary, previous studies reported weak or no significant association between rs10757278 polymorphism and MI. Interestingly, our analysis suggests that rs10757278 polymorphism is significantly associated with MI susceptibility by analyzing large-scale samples.

  3. A norovirus GII.P21 outbreak in a boarding school, Austria 2014.

    Science.gov (United States)

    Lin, Yung-Ching; Hipfl, Elisabeth; Lederer, Ingeborg; Allerberger, Franz; Schmid, Daniela

    2015-08-01

    An Austrian boarding school reported a cluster of gastroenteritis on January 10, 2014. Environmental swabs from the school cafeteria and a nearby kebab restaurant tested positive for norovirus. The outbreak was investigated to identify its source(s). An outbreak case was defined as a student or staff member with diarrhoea or vomiting that developed between January 7 and 13. Details on food exposure were collected via a self-administered questionnaire; risk ratios (RR) and 95% confidence intervals (CI) were calculated. Norovirus from the stool specimens of cases and asymptomatic kebab restaurant workers were genotyped. Twenty-eight cases were identified among 144 persons (attack rate 19%). The outbreak emerged and peaked on January 9, and ended on January 12. Compared to those who did not eat kebab, those who ate kebab on 7, 8, and 9 January were respectively 11 (95% CI 4.2-28), 6.7 (95% CI 3.4-13), and 9.3 (95% CI 4.0-22) times more likely to develop disease within the following 2 days. Stool specimens from three cases and three restaurant workers were positive for norovirus GII.P21. The kebab prepared by norovirus-positive restaurant workers was the most likely source of the outbreak. It is recommended that food handlers comply strictly with hand hygiene and avoid bare-handed contact with ready-to-eat food to minimize the risk of food-borne infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. p21-Activated kinase (PAK regulates cytoskeletal reorganization and directional migration in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Asako Itakura

    Full Text Available Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in migrating neutrophils remain ill-defined. In this study, we characterized the role of p21-activated kinase (PAK downstream of Rho GTPases in cytoskeletal remodeling and chemotactic processes of human neutrophils. We found that PAK activation occurred upon stimulation of neutrophils with f-Met-Leu-Phe (fMLP, and PAK accumulated at the actin-rich leading edge of stimulated neutrophils, suggesting a role for PAK in Rac-dependent actin remodeling. Treatment with the pharmacological PAK inhibitor, PF3758309, abrogated the integrity of RhoA-mediated actomyosin contractility and surface adhesion. Moreover, inhibition of PAK activity impaired neutrophil morphological polarization and directional migration under a gradient of fMLP, and was associated with dysregulated Ca(2+ signaling. These results suggest that PAK serves as an important effector of Rho-family GTPases in neutrophil cytoskeletal reorganization, and plays a key role in driving efficient directional migration of human neutrophils.

  5. HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes.

    Science.gov (United States)

    Marroncelli, Nicoletta; Bianchi, Marzia; Bertin, Marco; Consalvi, Silvia; Saccone, Valentina; De Bardi, Marco; Puri, Pier Lorenzo; Palacios, Daniela; Adamo, Sergio; Moresi, Viviana

    2018-02-22

    Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7 + cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion.

  6. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells.

    Science.gov (United States)

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2016-07-05

    P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Fabrication of functionally graded materials between P21 tool steel and Cu by using laser aided layered manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Seol; Shin, Ki Hoon [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one dimensional P21 Cu FGMs were fabricated by using laser aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

  8. Inhibition of FoxO1 acetylation by INHAT subunit SET/TAF-Iβ induces p21 transcription.

    Science.gov (United States)

    Chae, Yun-Cheol; Kim, Kee-Beom; Kang, Joo-Young; Kim, Se-Ryeon; Jung, Hyeon-Soo; Seo, Sang-Beom

    2014-08-25

    Post-translational modification of forkhead family transcription factor, FoxO1, is an important regulatory mode for its diverse activities. FoxO1 is acetylated by HAT coactivators and its transcriptional activity is decreased via reduced DNA binding affinity. Here, we report that SET/TAF-Iβ inhibited p300-mediated FoxO1 acetylation in an INHAT domain-dependent manner. SET/TAF-Iβ interacted with FoxO1 and activated transcription of FoxO1 target gene, p21. Moreover, SET/TAF-Iβ inhibited acetylation of FoxO1 and increased p21 transcription induced by oxidative stress. Our results suggest that SET/TAF-Iβ inhibits FoxO1 acetylation and activates its transcriptional activity toward p21. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. CDKN2B expression and subcutaneous adipose tissue expandability: Possible influence of the 9p21 atherosclerosis locus

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Per-Arne; Wahlstrand, Björn; Olsson, Maja [Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg (Sweden); Froguel, Philippe; Falchi, Mario [Department of Genomics of Common Disease, School of Public Health, Imperial College London (United Kingdom); Bergman, Richard N. [Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (United States); McTernan, Philip G. [Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry (United Kingdom); Hedner, Thomas; Carlsson, Lena M.S. [Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg (Sweden); Jacobson, Peter, E-mail: peter.jacobson@medfak.gu.se [Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg (Sweden)

    2014-04-18

    Highlights: • The tumor suppressor gene CDKN2B is highly expressed in human adipose tissue. • Risk alleles at the 9p21 locus modify CDKN2B expression in a BMI-dependent fashion. • There is an inverse relationship between expression of CDKN2B and adipogenic genes. • CDKN2B expression influences to postprandial triacylglycerol clearance. • CDKN2B expression in adipose tissue is linked to markers of hepatic steatosis. - Abstract: Risk alleles within a gene desert at the 9p21 locus constitute the most prevalent genetic determinant of cardiovascular disease. Previous research has demonstrated that 9p21 risk variants influence gene expression in vascular tissues, yet the biological mechanisms by which this would mediate atherosclerosis merits further investigation. To investigate possible influences of this locus on other tissues, we explored expression patterns of 9p21-regulated genes in a panel of multiple human tissues and found that the tumor suppressor CDKN2B was highly expressed in subcutaneous adipose tissue (SAT). CDKN2B expression was regulated by obesity status, and this effect was stronger in carriers of 9p21 risk alleles. Covariation between expression of CDKN2B and genes implemented in adipogenesis was consistent with an inhibitory effect of CDKN2B on SAT proliferation. Moreover, studies of postprandial triacylglycerol clearance indicated that CDKN2B is involved in down-regulation of SAT fatty acid trafficking. CDKN2B expression in SAT correlated with indicators of ectopic fat accumulation, including markers of hepatic steatosis. Among genes regulated by 9p21 risk variants, CDKN2B appears to play a significant role in the regulation of SAT expandability, which is a strong determinant of lipotoxicity and therefore might contribute to the development of atherosclerosis.

  10. Targeted deletion of the 9p21 noncoding coronary artery disease risk interval in mice

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Zhu, Yiwen; May, Dalit; Afzal, Veena; Gong, Elaine; Attanasio, Catia; Blow, Matthew J.; Cohen, Jonathan C.; Rubin, Edward M.; Pennacchio, Len A.

    2010-01-01

    Sequence polymorphisms in a 58kb interval on chromosome 9p21 confer a markedly increased risk for coronary artery disease (CAD), the leading cause of death worldwide 1,2. The variants have a substantial impact on the epidemiology of CAD and other life?threatening vascular conditions since nearly a quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein?coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70kb noncoding interval on mouse chromosome 4 affects cardiac expression of neighboring genes, as well as proliferation properties of vascular cells. Chr4delta70kb/delta70kb mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the noncoding interval, Cdkn2a and Cdkn2b, is severely reduced in chr4delta70kb/delta70kb mice, indicating that distant-acting gene regulatory functions are located in the noncoding CAD risk interval. Allelespecific expression of Cdkn2b transcripts in heterozygous mice revealed that the deletion affects expression through a cis-acting mechanism. Primary cultures of chr4delta70kb/delta70kb aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval plays a pivotal role in regulation of cardiac Cdkn2a/b expression and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.

  11. The cardiovascular implication of single nucleotide polymorphisms of chromosome 9p21 locus among Arab population

    Directory of Open Access Journals (Sweden)

    Ayman A El-Menyar

    2015-01-01

    Full Text Available Background: Based on several reports including genome-wide association studies, genetic variability has been linked with higher (nearly half susceptibility toward coronary artery disease (CAD. We aimed to evaluate the association of chromosome 9p21 single nucleotide polymorphisms (SNPs: rs2383207, rs10757278, and rs10757274 with the risk and severity of CAD among Arab population. Materials and Methods: A prospective observational case-control study was conducted between 2011 and 2012, in which 236 patients with CAD were recruited from the Heart Hospital in Qatar. Patients were categorized according to their coronary angiographic findings. Also, 152 healthy volunteers were studied to determine if SNPs are associated with risk of CAD. All subjects were genotyped for SNPs (rs2383207, rs2383206, rs10757274 and rs10757278 using allele-specific real-time polymerase chain reaction. Results: Patients with CAD had a mean age of 57 ± 10; of them 77% were males, 54% diabetics, and 25% had family history of CAD. All SNPs were in Hardy-Weinberg equilibrium except rs2383206, with call rate >97%. After adjusting for age, sex and body mass index, the carriers of GG genotype for rs2383207 have increased the risk of having CAD with odds ratio (OR of 1.52 (95% confidence interval [CI] = 1.01-2.961, P = 0.046. Also, rs2383207 contributed to CAD severity with adjusted OR 1.80 (95% CI = 1.04-3.12, P = 0.035 based on the dominant genetic model. The other SNPs (rs10757274 and rs10757278 showed no significant association with the risk of CAD or its severity. Conclusion: Among Arab population in Qatar, only G allele of rs2483207 SNP is significantly associated with risk of CAD and its severity.

  12. Chromosome 9p21 genetic variants are associated with myocardial infarction but not with ischemic stroke in a Taiwanese population.

    Science.gov (United States)

    Lin, Hsiu-Fen; Tsai, Pei-Chien; Liao, Yi-Chu; Lin, Tsung-Hsien; Tai, Chih-Ta; Juo, Suh-Hang Hank; Lin, Ruey-Tay

    2011-08-01

    Genetic variants on chromosome 9p21 confer a robust risk for coronary artery disease but inconsistent risk for stroke. This study investigated whether such genetic variants exert differential risks on myocardial infarction (MI) and ischemic stroke in a Taiwanese population. The study recruited 425 MI patients, 687 patients with ischemic stroke, and 1377 healthy controls. Four key single nucleotide polymorphisms (SNPs) on chromosome 9p21 were genotyped. Multivariate permutation analyses demonstrated that the risk T allele of rs1333040 and G allele of rs2383207 were associated with MI (P = 0.045 and 0.002, respectively). Subjects with the rs2383207 GG genotype had a 1.85-fold (P = 0.021) risk for MI when compared with the subjects with the AA genotype. Further analysis showed that significant results only exist in the young MI group (stroke (adjusted P ranged from 0.097 to 0.540). Haplotype analysis showed global P values of 0.032 for MI and 0.290 for stroke. Genetic variations in the 9p21 region are associated with MI but not with stroke in a Taiwanese population. Early-onset MI was more likely to carry the risk genotypes of 9p21 SNPs.

  13. Immunoscintigraphy of human tumors transplanted in nude mice with radiolabeled anti-ras p21 monoclonal antibodies

    International Nuclear Information System (INIS)

    Katoh, Y.; Nakata, K.; Kohno, K.; Shima, M.; Satoh, A.; Kusumoto, Y.; Ishii, N.; Kohji, T.; Shiku, H.; Nagataki, S.

    1990-01-01

    Anti-ras p21 monoclonal antibody (RASK-3) was used for immunoscintigraphy of human cancer cell lines in nude mice. Iodine-125-labeled RASK-3 was injected into nude mice with either human colon cancers (FCC-1 or BM-314) or lung cancer (KNS-62). Clear images were obtained in all three cancers 7 days after the injection of antibody. No localization of 125 I-labeled control monoclonal antibody was observed. The ratio of tissue/blood radioactivity and % ID/g in the tumor were significantly higher than other organs by Day 8. The specific localization index examined by 131 I-RASK-3 and 125 I-control monoclonal antibody was also higher in the tumor than in other tissues. In the in vitro study, binding of RASK-3 to tumor cells increased significantly by treatment of cells with either lysolecithin or periodate-lysine-paraformaldehyde, which confirmed the intracellular localization of ras p21. The mechanism by which anti-ras p21 antibodies accumulate in tumor sites could be the necrotic changes in tumor cells or changes in membrane permeability of non-necrotic cells. These results provide a strong rationale for the utilization of ras p21 as a target antigen in the imaging of a variety of human cancers

  14. CAR-mediated repression of Foxo1 transcriptional activity regulates the cell cycle inhibitor p21 in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2014-01-01

    Highlights: • CAR activation decreased the level of Foxo1 in mouse livers. • CAR activation decreased the level of p21 in mouse livers. • CAR activation inhibited Foxo1 transcriptional activity in mouse livers. - Abstract: 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), an agonist of constitutive androstane receptor (CAR), is a well-known strong primary chemical mitogen for the mouse liver. Despite extensive investigation of the role of CAR in the regulation of cell proliferation, our knowledge of the intricate mediating mechanism is incomplete. In this study, we demonstrated that long-term CAR activation by TCPOBOP increased liver-to-body weight ratio and decreased tumour suppressor Foxo1 expression and transcriptional activity, which were correlated with reduced expression of genes regulated by Foxo1, including the cell-cycle inhibitor Cdkn1a(p21), and upregulation of the cell-cycle regulator Cyclin D1. Moreover, we demonstrated the negative regulatory effect of TCPOBOP-activated CAR on the association of Foxo1 with the target Foxo1 itself and Cdkn1a(p21) promoters. Thus, we identified CAR-mediated repression of cell cycle inhibitor p21, as mediated by repression of FOXO1 expression and transcriptional activity. CAR-FOXO1 cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments

  15. Further genetic localization of the transforming sequences of the p21 v-ras gene of Harvey murine sarcoma virus

    DEFF Research Database (Denmark)

    Willumsen, B M; Ellis, R W; Scolnick, E M

    1984-01-01

    , DNA sequence analysis has found a single open reading frame large enough to encode the viral p21 (R. Dhar, R. W. Ellis, T. Y. Shih, S. Oroszlan, B. Shapiro, J. Maizel, D. Lowy, and E. M. Scolnick, Science 217:934-937, 1982). There are three potential in-frame ATG initiation codons at the 5' end...

  16. Immunodetection of rasP21 and c-myc oncogenes in oral mucosal swab preparation from clove cigarette smokers

    Directory of Open Access Journals (Sweden)

    Silvi Kintawati

    2008-12-01

    Full Text Available Background: Smoking is the biggest factor for oral cavity malignancy. Some carcinogens found in cigar will stimulate epithel cell in oral cavity and cause mechanism disturbance on tissue resistance and produce abnormal genes (oncogenes. Oncogenes ras and myc are found on malignant tumor in oral cavity which are associated with smoking. Purpose: This research is to find the expression of oncogenes rasP21 and c-myc in oral mucosa epithelial of smoker with immunocytochemistry reaction. Methods: An oral mucosal swab was performed to 30 smokers categorized as light, moderate, and chain, and 10 non smokers which was followed by immunocytochemistry reaction using antibody towards oncogene rasP21 and c-myc is reacted to identify the influence of smoking towards malignant tumor in oral cavity. The result is statistically analyzed using Kruskal-Wallis test. Result: Based on the observation result of oncogene rasP21reaction, it shows that there is significant difference between non smoker group and light smoker, compared to moderate and chain smoker group (p < 0.01. On the other side, the observation result of oncogene c-myc indicates that there is no significant difference between the group of non smokers and the group of light, moderate, and chain smokers (p > 0.05. Conclusion: The higher the possibility of oral cavity malignancy and that the antibody for rasP21 oncogene can be used as a marker for early detection of oral cavity malignancy caused by smoking.

  17. IL-6 modulates hepatocyte proliferation via induction of HGF/p21cip1: Regulation by SOCS3

    International Nuclear Information System (INIS)

    Sun Rui; Jaruga, Barbara; Kulkarni, Shailin; Sun Haoyu; Gao Bin

    2005-01-01

    The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21 cip1 protein expression in primary mouse hepatocytes. Disruption of the p21 cip1 gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21 cip1 protein expression and a slightly stronger inhibition of cell proliferation in SOCS3 +/- mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3 +/- mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21 cip1 -dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration

  18. Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells

    Science.gov (United States)

    Li, Ju; Han, Suhyoun; Cousin, Wendy; Conboy, Irina M.

    2014-01-01

    The regenerative capacity of muscle dramatically decreases with age because old muscle stem cells fail to proliferate in response to tissue damage. Here we uncover key age-specific differences underlying this proliferative decline: namely, the genetic loci of CDK inhibitors (CDKI) p21 and p16 are more epigenetically silenced in young muscle stem cells, as compared to old, both in quiescent cells and those responding to tissue injury. Interestingly, phosphorylated ERK (pERK) induced in these cells by ectopic FGF-2 is found in association with p21 and p16 promoters, and moreover, only in the old cells. Importantly, in the old satellite cells FGF-2/pERK silences p21 epigenetically and transcriptionally, which leads to reduced p21 protein levels and enhanced cell proliferation. In agreement with the epigenetic silencing of the loci, young muscle stem cells do not depend as much as old on ectopic FGF/pERK for their myogenic proliferation. In addition, other CDKIs, such asp15INK4B and p27KIP1, become elevated in satellite cells with age, confirming and explaining the profound regenerative defect of old muscle. This work enhances our understanding of tissue aging, promoting strategies for combating age-imposed tissue degeneration. PMID:25447026

  19. TGFbeta induces apoptosis and EMT in primary mouse hepatocytes independently of p53, p21Cip1 or Rb status

    International Nuclear Information System (INIS)

    Sheahan, Sharon; Bellamy, Christopher O; Harland, Stephen N; Harrison, David J; Prost, Sandrine

    2008-01-01

    TGFβ has pleiotropic effects that range from regulation of proliferation and apoptosis to morphological changes and epithelial-mesenchymal transition (EMT). Some evidence suggests that these effects may be interconnected. We have recently reported that P53, P21 Cip1 and pRB, three critical regulators of the G1/S transition are variably involved in TGFβ-induced cell cycle arrest in hepatocytes. As these proteins are also involved in the regulation of apoptosis in many circumstances, we investigated their contribution to other relevant TGFβ-induced effects, namely apoptosis and EMT, and examined how the various processes were interrelated. Primary mouse hepatocytes deficient in p53, p21 and/or Rb, singly or in combination were treated with TGFβ for 24 to 96 hours. Apoptosis was quantified according to morphology and by immunostaining for cleaved-capsase 3. Epithelial and mesenchymal marker expression was studied using immunocytochemistry and real time PCR. We found that TGFβ similarly induced morphological changes regardless of genotype and independently of proliferation index or sensitivity to inhibition of proliferation by TGFβ. Morphological changes were accompanied by decrease in E-cadherin and increased Snail expression but the mesenchymal markers (N-cadherin, SMAα and Vimentin) studied remained unchanged. TGFβ induced high levels of apoptosis in p53-/-, Rb-/-, p21 cip1 -/- and control hepatocytes although with slight differences in kinetics. This was unrelated to proliferation or changes in morphology and loss of cell-cell adhesion. However, hepatocytes deficient in both p53 and p21 cip1 were less sensitive to TGFβ-induced apoptosis. Although p53, p21 Cip1 and pRb are well known regulators of both proliferation and apoptosis in response to a multitude of stresses, we conclude that they are critical for TGFβ-driven inhibition of hepatocytes proliferation, but only slightly modulate TGFβ-induced apoptosis. This effect may depend on other parameters

  20. Significant difference in p53 and p21 protein immunoreactivity in HPV 16 positive and HPV negative breast carcinomas

    International Nuclear Information System (INIS)

    Hennig, E.M.; Norwegian Radium Hospital, Oslo; Kvinnsland, S.; Holm, R.; Nesland, J.M.

    1999-01-01

    Human papillomavirus (HPV) 16 has previously been found in 19/41 breast carcinomas (46%) in women with a history of HPV 16 positive CIN III lesions. There was no significant difference in distribution of histological subtypes, mean or median tumour diameter or number of regional lymph node metastases in the HPV positive and HPV negative breast carcinoma groups. P53, p21 and c-erbB-2 proteins were analyzed by immunohistochemistry in the HPV 16 positive and HPV negative breast carcinomas. There was a significant difference in p53 and p21 protein immunoreactivity between HPV 16 positive and HPV negative breast carcinomas (p=0.0091 and p=0.0040), with a significant less detectable p53 and p21 protein immunoreactivity in the HPV 16 positive cases. There was also a significant difference in the coexpression of p53/p21 between the HPV 16 positive and HPV 16 negative breast carcinomas (p=0.002). No significant difference in immunostaining for c-erbB-2 protein in the two groups was found (p=0.15), or for the coexpression of p53/c-erbB-2 (p=0.19). The significantly lower expression of p53 and p21 proteins in HPV 16 positive than in HPV 16 negative breast carcinomas supports the hypothesis of inactivation and degradation of wild-type p53 proteins by HPV 16 E6 and that p53 mutation is not necessary for transformation in the HPV 16 positive cases. (orig.)

  1. Up-Regulation of P21 Inhibits TRAIL-Mediated Extrinsic Apoptosis, Contributing Resistance to SAHA in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Xing Wu

    2014-08-01

    Full Text Available Background/Aim: P21, a multifunctional cell cycle-regulatory molecule, regulates apoptotic cell death. In this study we examined the effect of altered p21 expression on the sensitivity of acute myeloid leukemia cells in response to HDAC inhibitor SAHA treatment and investigated the underlying mechanism. Methods: Stably transfected HL60 cell lines were established in RPMI-1640 with supplementation of G-418. Cell viability was measured by MTT assay. Western blot was applied to assess the protein expression levels of target genes. Cell apoptosis was monitored by AnnexinV-PE/7AAD assay. Results: We showed HL60 cells that that didn't up-regulate p21 expression were more sensitive to SAHA-mediated apoptosis than NB4 and U937 cells that had increased p21 level. Enforced expression of p21 in HL60 cells reduced sensitivity to SAHA and blocked TRAIL-mediated apoptosis. Conversely, p21 silencing in NB4 cells enhanced SAHA-mediated apoptosis and lethality. Finally, we found that combined treatment with SAHA and rapamycin down-regulated p21 and enhanced apoptosis in AML cells. Conclusion: We conclude that up-regulated p21 expression mediates resistance to SAHA via inhibition of TRAIL apoptotic pathway. P21 may serve as a candidate biomarker to predict responsiveness or resistance to SAHA-based therapy in AML patients. In addition, rapamycin may be an effective agent to override p21-mediated resistance to SAHA in AML patients.

  2. The CDK inhibitor p21 is a novel target gene of ATF4 and contributes to cell survival under ER stress.

    Science.gov (United States)

    Inoue, Yasumichi; Kawachi, Shiori; Ohkubo, Tsubasa; Nagasaka, Mai; Ito, Shogo; Fukuura, Keishi; Itoh, Yuka; Ohoka, Nobumichi; Morishita, Daisuke; Hayashi, Hidetoshi

    2017-11-01

    Activating transcription factor 4 (ATF4) is well known for its role in the endoplasmic reticulum (ER) stress response. ATF4 also transcriptionally induces multiple effectors that determine cell fate depending on cellular context. In addition, ATF4 can communicate both pro-apoptotic and pro-survival signals. How ATF4 mediates its prosurvival roles, however, requires further investigation. Here, we report that the CDK inhibitor p21 is a novel target gene of ATF4. We identified two ATF4-responsive elements, one of which directly binds ATF4, within the first intron of the p21 gene. Importantly, overexpression of p21 enhances cell survival following ER stress induction, while p21 knockdown increases cell death. These results suggest that p21 induction plays a vital role in the cellular response to ER stress and indicate that p21 is a prosurvival effector of ATF4. © 2017 Federation of European Biochemical Societies.

  3. p53-Induced Apoptosis Occurs in the Absence of p14ARF in Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Sally Hopkins-Donaldson

    2006-07-01

    Full Text Available Malignant pleural mesotheliomas (MPMs are usually wild type for the p53 gene but contain homozygous deletions in the INK4A locus that encodes p14ARF, an inhibitor of p53-MDM2 interaction. Previous findings suggest that lack of p14ARF expression and the presence of SV40 large T antigen (L-Tag result in p53 inactivation in MPM. We did not detect SV40 L-Tag mRNA in either MPM cell lines or primary cultures, treatment of p14ARF-deficient cells with cisplatin (CDDP increased both total and phosphorylated p53 and enhanced p53 DNA-binding activity. On incubation with CDDP, levels of positively regulated p53 transcriptional targets p21WAF, PIG3, MDM2, Bax, PUMA increased in p14ARF-deficient cells, whereas negatively regulated survivin decreased. Significantly, p53-induced apoptosis was activated by CDDP in p14ARF-deficient cells, treatment with p53-specific siRNA rendered them more CDDP-resistant. p53 was also activated by: 1 inhibition of MDM2 (using nutlin-3; 2 transient overexpression of p14ARF; and 3 targeting of survivin using antisense oligonucleotides. However, it is noteworthy that only survivin downregulation sensitized cells to CDDP-induced apoptosis. These results suggest that p53 is functional in the absence of p14ARF in MPM and that targeting of the downstream apoptosis inhibitor survivin can sensitize to CDDP-induced apoptosis.

  4. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  5. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    DEFF Research Database (Denmark)

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid

    2004-01-01

    Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation and induc......Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation......, possibly because of conflicting growth control. Interestingly, E7/p21-induced cell death is associated with the activation of a newly identified mediator of apoptosis, namely cathepsin B. Activation of the cellular caspases is undetectable in cells undergoing E7/p21-induced apoptosis. To our knowledge...

  6. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling.

    Science.gov (United States)

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek; Lee, Jong Eun

    2016-02-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia.

  7. PPM1K Regulates Hematopoiesis and Leukemogenesis through CDC20-Mediated Ubiquitination of MEIS1 and p21

    Directory of Open Access Journals (Sweden)

    Xiaoye Liu

    2018-05-01

    Full Text Available Summary: In addition to acting as building blocks for biosynthesis, amino acids might serve as signaling regulators in various physiological and pathological processes. However, it remains unknown whether amino acid levels affect the activities of hematopoietic stem cells (HSCs. By using a genetically encoded fluorescent sensor of the intracellular levels of branched-chain amino acids (BCAAs, we could monitor the dynamics of BCAA metabolism in HSCs. A mitochondrial-targeted 2C-type Ser/Thr protein phosphatase (PPM1K promotes the catabolism of BCAAs to maintain MEIS1 and p21 levels by decreasing the ubiquitination-mediated degradation controlled by the E3 ubiquitin ligase CDC20. PPM1K deficiency led to a notable decrease in MEIS1/p21 signaling to reduce the glycolysis and quiescence of HSCs, followed by a severe impairment in repopulation activities. Moreover, the deletion of Ppm1k dramatically extended survival in a murine leukemia model. These findings will enhance the current understanding of nutrient signaling in metabolism and function of stem cells. : Liu et al. show that the dynamics of BCAA metabolism in hematopoietic stem cells (HSCs and leukemia-initiating cells (LICs can be monitored by a genetically encoded fluorescent sensor. PPM1K promotes BCAA catabolism and maintains the glycolysis and quiescence of HSCs/LICs through the downregulation of CDC20-mediated ubiquitination of MEIS1 and p21. Keywords: branched-chain amino acids, PPM1K, ubiquitination, CDC20, MEIS1/p21, hematopoietic stem cells, leukemia-initiating cells

  8. Isolation of probes specific to human chromosomal region 6p21 from immunoselected irradiation-fusion gene transfer hybrids

    International Nuclear Information System (INIS)

    Ragoussis, J.; Jones, T.A.; Sheer, D.; Shrimpton, A.E.; Goodfellow, P.N.; Trowsdale, J.; Ziegler, A.

    1991-01-01

    A hybrid cell line (R21/B1) containing a truncated human chromosome 6 (6pter-6q21) and a human Y chromosome on a hamster background was irradiated and fused to A23 (TK-) or W3GH (HPRT-) hamster cells. Clones containing expressed HLA class I genes (4/40) were selected using monoclonal antibodies. These clones were recloned and analyzed with a panel of probes from the HLA region. One hybrid (4G6) contained the entire HLA complex. Two other hybrids (4J4 and 4H2) contained only the HLA class I region, while the fourth hybrid (5P9) contained HLA class I and III genes in addition to other genes located in the 6p21 chromosomal region. In situ hybridization showed that the hybrid cells contained more than one fragment of human DNA. Alu and LINE PCR products were derived from these cells and compared to each other as well as to products from two somatic cell hybrids having the 6p21 region in common. The PCR fragments were then screened on conventional Southern blots of the somatic cell hybrids to select a panel of novel probes encompassing the 6p21 region. In addition, the origin of the human DNA fragments in hybrid 4J4 was determined by regional mapping of PCR products

  9. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean

    International Nuclear Information System (INIS)

    Hollmann, Gabriela; Linden, Rafael; Giangrande, Angela; Allodi, Silvana

    2016-01-01

    Highlights: • The paper characterizes molecular pathways of cell responses to environmental doses of UV in brain tissue of a crab species. • The UV radiation changes levels of proteins which trigger apoptotic or cell cycle arrest pathways and also it changes neurotrophins which lead to apoptosis of neural cell in the central nervous system (CNS) of the crab Ucides cordatus. • The UVB wavelengths in the solar simulator damaged the DNA, either directly or indirectly, by increasing ROS, and induced the increase of p53 and AKT, which blocked p21 and increased the expression of activated caspase-3, triggering apoptosis. The signs of death increased the expression of neurotrophins (BDNF and GDNF), which continued to stimulate the apoptosis signaling mediated by caspase-3. • In the brain of the crab U. cordatus, p53/p21 relationship in response to UV radiation is different from that of most mammals. - Abstract: Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while

  10. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, Gabriela, E-mail: gabrielahollmann@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Linden, Rafael, E-mail: rlinden@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil); Giangrande, Angela, E-mail: angela.giangrande@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire-IGBMC, INSERM, Strasbourg (France); Allodi, Silvana, E-mail: sallodi@biof.ufrj.br [Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21941-590 (Brazil)

    2016-04-15

    Highlights: • The paper characterizes molecular pathways of cell responses to environmental doses of UV in brain tissue of a crab species. • The UV radiation changes levels of proteins which trigger apoptotic or cell cycle arrest pathways and also it changes neurotrophins which lead to apoptosis of neural cell in the central nervous system (CNS) of the crab Ucides cordatus. • The UVB wavelengths in the solar simulator damaged the DNA, either directly or indirectly, by increasing ROS, and induced the increase of p53 and AKT, which blocked p21 and increased the expression of activated caspase-3, triggering apoptosis. The signs of death increased the expression of neurotrophins (BDNF and GDNF), which continued to stimulate the apoptosis signaling mediated by caspase-3. • In the brain of the crab U. cordatus, p53/p21 relationship in response to UV radiation is different from that of most mammals. - Abstract: Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while

  11. Long-term effects of the water-accomodated fraction (WAF) of diesel oil on rocky shore populations maintained in experimental mesocosms

    Energy Technology Data Exchange (ETDEWEB)

    Bokn, T.L. [Norwegian Inst. for Water Research, Oslo (Norway); Moy, F.E. [Norwegian Inst. for Water Research, Oslo (Norway); Murray, S.N. [California State Univ., Fullerton, CA (United States). Dept. of Biological Science

    1993-12-31

    The long-term effects of continuous doses (average hydrocarbon concentration =129.4 {mu}g L{sup -1} and 30.1 {mu}g L{sup -1}) of the water-accommodated fraction (WAF) of diesel oil on 15 rocky littoral populations were determined at three tidal levels in experimental mesocosms over two years. At each tidal level, most species exhibited similar abundance changes in both oil-contaminated and control (average background hydrocarbon concentration = 5.6 {mu}g L{sup -1}) mesocosms. Significant changes in species abundances attributable to oil (WAF) were demonstrated for only two of ten seaweeds and three of five invertebrates. Compared with the other mesocosms, significantly greater reductions in upper-level cover were recorded in the basin receiving the highest oil dosage for the seaweeds Phymatolithon lenormandii and Fucus evanescents together with lower recruitment of the barnacle Semibalanus balanoides. The mussel Mytilus edulis was storngly affected by the oil treatments and essentially disappeared from both oil-contaminated mesocosms. Numbers of the starfish Asterias rubens also fell to zero at the lowest tidal level in the basin receiving the highest oil dosage. There were no demonstrable differences in the abundance patterns of the gastropod Littorina littorea, the crab Carcinus maenus, and a total of eight brown (Ascophyllum nodosum, Fucus serratus, F. vesiculosus, Laminaria digitata), red (Chondrus crispus), and green (Cladophora rupestris, Enteromorpha spp., Ulva lactuca) seaweeds in the oil-contaminated compared with the control mesocosms. (orig.)

  12. Long-term effects of the water-accomodated fraction (WAF) of diesel oil on rocky shore populations maintained in experimental mesocosms

    International Nuclear Information System (INIS)

    Bokn, T.L.; Moy, F.E.; Murray, S.N.

    1993-01-01

    The long-term effects of continuous doses (average hydrocarbon concentration =129.4 μg L -1 and 30.1 μg L -1 ) of the water-accommodated fraction (WAF) of diesel oil on 15 rocky littoral populations were determined at three tidal levels in experimental mesocosms over two years. At each tidal level, most species exhibited similar abundance changes in both oil-contaminated and control (average background hydrocarbon concentration = 5.6 μg L -1 ) mesocosms. Significant changes in species abundances attributable to oil (WAF) were demonstrated for only two of ten seaweeds and three of five invertebrates. Compared with the other mesocosms, significantly greater reductions in upper-level cover were recorded in the basin receiving the highest oil dosage for the seaweeds Phymatolithon lenormandii and Fucus evanescents together with lower recruitment of the barnacle Semibalanus balanoides. The mussel Mytilus edulis was storngly affected by the oil treatments and essentially disappeared from both oil-contaminated mesocosms. Numbers of the starfish Asterias rubens also fell to zero at the lowest tidal level in the basin receiving the highest oil dosage. There were no demonstrable differences in the abundance patterns of the gastropod Littorina littorea, the crab Carcinus maenus, and a total of eight brown (Ascophyllum nodosum, Fucus serratus, F. vesiculosus, Laminaria digitata), red (Chondrus crispus), and green (Cladophora rupestris, Enteromorpha spp., Ulva lactuca) seaweeds in the oil-contaminated compared with the control mesocosms. (orig.)

  13. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    Science.gov (United States)

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  14. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus

    DEFF Research Database (Denmark)

    Willumsen, B M; Norris, K; Papageorge, A G

    1984-01-01

    localization. We have now further characterized the post-translational processing of these mutants and have also studied two C-terminal v-rasH point mutants: one encodes serine in place of cysteine-186, the other threonine for valine-187. The Thr-187 mutant was transformation-competent, and its p21 protein...... not undergo the posttranslational processing common to biologically active ras proteins: their electrophoretic migration rate did not change, they remained in the cytosol, and they failed to bind lipid. Since the cell-encoded ras proteins also contain this cysteine, we conclude that this amino acid residue...

  15. LincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through miR-9/E-cadherin cascade signaling pathway molecular mechanism

    Directory of Open Access Journals (Sweden)

    Ding G

    2017-06-01

    Full Text Available Gangqiang Ding, Zhen Peng, Jia Shang, Yi Kang, Huibin Ning, Chongshan Mao Department of Infectious Diseases, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China Abstract: In the previous study, it was found that long intergenic noncoding RNA-p21 (lincRNA-p21 was downregulated in hepatocellular carcinoma (HCC and lincRNA-p21 overexpression inhibited tumor invasion through inducing epithelial–mesenchymal transition. However, the underlying mechanism was not fully elaborated. In this study, lincRNA-p21 expression was measured in 12 paired HCC and nontumor adjacent normal tissues by ­quantitative real-time polymerase chain reaction. The effects of lincRNA-p21 on HCC cells were studied using lentivirus expressing lincRNA-p21 vector in vitro. The association between lincRNA-p21 level and miR-9 level was tested with the Spearman rank correlation. The effects of miR-9 on HCC cells were studied by using miR-9 inhibitor in vitro. Luciferase assay was used to validate the target of miR-9. The results showed that lincRNA-p21 was downregulated in human HCC tissues and cell lines. LincRNA-p21 overexpression significantly inhibited HCC cell migration and invasion in vitro. Besides, lincRNA-p21 negatively regulated miR-9 expression level, and miR-9 was upregulated in human HCC tissues and cells. MiR-9 knockdown inhibited HCC cell migration and invasion in vitro. Finally, the luciferase assay results showed that E-cadherin was a direct target of miR-9. The expression level of E-cadherin was found to be regulated by lincRNA-p21 and miR-9. Altogether, the results suggested that lincRNA-p21 inhibits migration and invasion of HCC cells through regulating miR-9-mediated E-cadherin cascade signaling pathway. Keywords: hepatocellular carcinoma, lincRNA-p21, miR-9, E-cadherin, epithelial–mesenchymal transition

  16. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  17. Inhibition of the ERK phosphorylation plays a role in terbinafine-induced p21 up-regulation and DNA synthesis inhibition in human vascular endothelial cells

    International Nuclear Information System (INIS)

    Ho, P.-Y.; Hsu, S.-P.; Liang, Y.-C.; Kuo, M.-L.; Ho, Y.-S.; Lee, W.-S.

    2008-01-01

    Previously, we showed that terbinafine (TB) induces cell-cycle arrest in cultured human umbilical vein endothelial cells (HUVEC) through an up-regulation of the p21 protein. The aim of this study is to delineate the molecular mechanisms underlying TB-induced increase of p21 protein. RT-PCR analysis demonstrated that the mRNA levels of p21 and p53 were increased in the TB-treated HUVEC. The p21 promoter activity was also increased by TB treatment. Transfection of HUVEC with p53 dominant negative (DN) abolished the TB-induced increases of p21 promoter activity and protein level, suggesting that the TB-induced increase of p21 is p53-dependent. Western blot analysis demonstrated that TB decreased the levels of phosphorylated extracellular signal-regulated kinase (ERK). Over-expression of mitogen-activated protein kinase (MEK)-1, the immediate upstream activator kinase of ERK, abolished the TB-induced increases of p21 and p53 protein and decrease of thymidine incorporation. The ERK inhibitor (PD98059) enhanced the TB-induced inhibition of thymidine incorporation into HUVEC. Taken together, these data suggest that the decrease of ERK activity plays a role in the TB-induced up-regulation of p21 in HUVEC. On the other hand, pretreatment of the cells with geranylgeraniol (GGOH), farnesol (FOH), or Ras inhibitor peptide did not affect the TB-induced decrease of thymidine incorporation. Taken together, our results suggest that TB might cause a decrease of MEK, which in turn up-regulates p53 through the inhibition of ERK phosphorylation, and finally causes an increase of p21 expression and cell-cycle arrest

  18. UBE2S associated with OSCC proliferation by promotion of P21 degradation via the ubiquitin-proteasome system

    International Nuclear Information System (INIS)

    Yoshimura, Shusaku; Kasamatsu, Atsushi; Nakashima, Dai; Iyoda, Manabu; Kasama, Hiroki; Saito, Tomoaki; Takahara, Toshikazu; Endo-Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2017-01-01

    Ubiquitin-conjugating enzyme E2S (UBE2S), a family of E2 protein in the ubiquitin-proteasome system, is highly expressed in several types of cancers; however, its roles in oral squamous cell carcinoma (OSCC) have not yet been well elucidated. The purpose of this study was to clarify the functional activities of UBE2S in OSCCs. We analyzed the expression levels of UBE2S in nine OSCC cell lines and primary OSCC tissues by quantitative reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry (IHC). The correlations between UBE2S expression and clinical classifications of OSCCs were analyzed using the IHC scoring system. We also used UBE2S knockdown OSCC cells for functional assays (proliferation assay, flow cytometry, and Western blotting). UBE2S was overexpressed in OSCCs in vitro and in vivo and was correlated significantly (P < 0.05) with the primary tumoral size. The cellular growth was decreased and the cell-cycle was arrested in the G2/M phase in the UBE2S knockdown (shUBE2S) cells. The expression level of P21, a target of the ubiquitin-proteasome system, was increased in the shUBE2S cells because of lower anaphase activity that promotes complex subunit 3 (APC3), an E3 ubiquitin ligase, compared with shMock cells. These findings might promote the understanding of the relationship between UBE2S overexpression and oral cancer proliferation, indicating that UBE2S would be a potential biomarker of and therapeutic target in OSCCs. - Highlights: • UBE2S contributes to tumor progression in OSCCs. • UBE2S regulated the cell-cycle arrest at G2/M phase in OSCC cells. • UBE2S and APC3 co-regulate the expression level of P21 at G2/M check point via the ubiquitin-proteasome system. • P21 is one of the proliferation-regulating factors in OSCC. • UBE2S would be a potential therapeutic target for OSCCs.

  19. Higher incidence of death in multi-vessel coronary artery disease patients associated with polymorphisms in chromosome 9p21

    Directory of Open Access Journals (Sweden)

    Gioli-Pereira Luciana

    2012-08-01

    Full Text Available Abstract Background We investigated whether 9p21 polymorphisms are associated with cardiovascular events in a group of 611 patients enrolled in the Medical, Angioplasty or Surgery Study II (MASS II, a randomized trial comparing treatments for patients with coronary artery disease (CAD and preserved left ventricular function. Methods The participants of the MASS II were genotyped for 9p21 polymorphisms (rs10757274, rs2383206, rs10757278 and rs1333049. Survival curves were calculated with the Kaplan–Meier method and compared with the log-rank statistic. We assessed the relationship between baseline variables and the composite end-point of death, death from cardiac causes and myocardial infarction using a Cox proportional hazards survival model. Results We observed significant differences between patients within each polymorphism genotype group for baseline characteristics. The frequency of diabetes was lower in patients carrying GG genotype for rs10757274, rs2383206 and rs10757278 (29.4%, 32.8%, 32.0% compared to patients carrying AA or AG genotypes (49.1% and 39.2%, p = 0.01; 52.4% and 40.1%, p = 0.01; 47.8% and 37.9%, p = 0.04; respectively. Significant differences in genotype frequencies between double and triple vessel disease patients were observed for the rs10757274, rs10757278 and rs1333049. Finally, there was a higher incidence of overall mortality in patients with the GG genotype for rs2383206 compared to patients with AA and AG genotypes (19.5%, 11.9%, 11.0%, respectively; p = 0.04. Moreover, the rs2383206 was still significantly associated with a 1.75-fold increased risk of overall mortality (p = 0.02 even after adjustment of a Cox multivariate model for age, previous myocardial infarction, diabetes, smoking and type of coronary anatomy. Conclusions Our data are in accordance to previous evidence that chromosome 9p21 genetic variation may constitute a genetic modulator in the cardiovascular system in different

  20. Coordinating structural and functional synapse development: postsynaptic p21-activated kinase independently specifies glutamate receptor abundance and postsynaptic morphology.

    Science.gov (United States)

    Albin, Stephanie D; Davis, Graeme W

    2004-08-04

    Here, we show that postsynaptic p21-activated kinase (Pak) signaling diverges into two genetically separable pathways at the Drosophila neuromuscular junction. One pathway controls glutamate receptor abundance. Pak signaling within this pathway is specified by a required interaction with the adaptor protein Dreadlocks (Dock). We demonstrate that Dock is localized to the synapse via an Src homology 2-mediated protein interaction. Dock is not necessary for Pak localization but is necessary to restrict Pak signaling to control glutamate receptor abundance. A second genetically separable function of Pak kinase signaling controls muscle membrane specialization through the regulation of synaptic Discs-large. In this pathway, Dock is dispensable. We present a model in which divergent Pak signaling is able to coordinate two different features of postsynaptic maturation, receptor abundance, and muscle membrane specialization.

  1. Association between 9p21 genetic variants and mortality risk in a prospective cohort of patients with type 2 diabetes (ZODIAC-15)

    NARCIS (Netherlands)

    Landman, G.; van Vliet-Ostaptchouk, J.V.; Kleefstra, N.; van Hateren, K.J.J.; Drion, I.; Groenier, K.H.; Gans, R.O.B.; Snieder, H.; Hofker, M.H.; Bilo, H.J.G.

    2012-01-01

    The genomic region at 9p21 chromosome near the CDKN2A/CDKN2B genes is associated with type 2 diabetes(T2D) and cardiovascular disease(CVD). The effect of the 9p21 locus on long-term mortality in patients with T2D has yet to be determined. We examined three single nucleotide polymorphisms (SNPs) on

  2. C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint

    Science.gov (United States)

    Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C

    2014-01-01

    The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090

  3. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions

    Directory of Open Access Journals (Sweden)

    Eugene B. Chang

    2013-01-01

    Full Text Available Compound K (20-O-beta-D-glucopyranosyl-20(S-protopanaxadiol, CK, an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC. A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC.

  4. [Effect of sodium phenylbutyrate on the apoptosis of human tongue squamous cancer cell line and expression of p21 and survivin genes].

    Science.gov (United States)

    Chen, Wei-qiang; Feng, Feng-lan; Gu, Hong-biao; Pan, De-shun

    2010-07-01

    To examine the effects of sodium phenylbutyrate on the apoptosis of human tongue squamous cancer cell line and expression of p21 and survivin genes. The inhibition effects of sodium phenylbutyrate on Tca8113 and human tongue squamous cell carcinoma (TCSSA) cell lines were detected by methyl thiazoly terazolium (MTT) and the apoptosis of the cancer cells after being induced by sodium phenylbutyrate examined by flow cytometry (FCM). The expression of p21 and survivin genes were observed with Western blotting and RT-PCR. Compared with control group, the level of p21 mRNA and protein of Tca8113 cellline increased to 0.09 ± 0.08 and increased 0.72 ± 0.10, that of TCSSA cellline increased 1.34 ± 0.12 and 1.56 ± 0.09 (P Sodium phenylbutyrate inhibited the cell proliferation, promoted cell apoptosis and arrested the cells in G₁/G₀ phase. The amount of p21 mRNA and protein were increased, and the expression of survivin gene was decreased. Sodium phenylbutyrate exhibited remarkable inhibitory effects on human tongue squamous cancer cell proliferation and induced cancer cell apoptosis. The mechanism may be due to up-regulation of p21 gene and down-regulation of survivin gene. The mRNA level of p21 gene and survivin gene showed a strong correlation.

  5. Translational Upregulation of an Individual p21Cip1 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress.

    Directory of Open Access Journals (Sweden)

    Stacey L Lehman

    2015-06-01

    Full Text Available Multiple transcripts encode for the cell cycle inhibitor p21(Cip1. These transcripts produce identical proteins but differ in their 5' untranslated regions (UTRs. Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through (35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5' upstream open reading frames (uORFs through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress.

  6. CyclinD1, CDK4, and P21 expression by IEC-6 cells in response to NiTi alloy and polymeric biomaterials

    International Nuclear Information System (INIS)

    Wang, Zhanhui; Yan, Jun; Zheng, Qi; Wang, Zhigang

    2012-01-01

    In order to investigate how cells recognize biomaterials, mRNA that was expressed in attached Intestinal epithelial cells (IEC-6) on various suture substrates was evaluated. The expressed cell cycle regulators (cyclin D1, CDK4 and p21) mRNA were then isolated and detected using the real time- polymerase chain reaction (PCR) method. As a result, cyclin D1 gene expression was affected by cell-polymer adhesion and was associated with cell proliferation. In addition, CDK4 gene expression was affected by cell proliferation rather than by cell-biomaterial interaction. The p21 mRNA gene expression was higher in cells on more hydrophilic surfaces than on hydrophobic surfaces. Further, the cyclin D1, CDK4 and p21 gene expression were also influenced by the surface chemistry of suture materials. We concluded that the expression of cyclin D1, CDK4 and p21 mRNA was a powerful method for studying cell-biomaterial interactions or the evaluation of the carcinogenic activity of biomaterials. - Highlights: ►We evaluated the effects of biomaterials on the cyclin D1, CDK4 and p21 expression. ►Cell-polymer adhesion and cell proliferation affected cyclin D1 and CDK4 expression. ►The p21 expression was higher on more hydrophilic surfaces than on hydrophobic. ►They were also influenced by surface chemistry of biomaterials.

  7. Vorinostat enhances protein stability of p27 and p21 through negative regulation of Skp2 and Cks1 in human breast cancer cells.

    Science.gov (United States)

    Uehara, Norihisa; Yoshizawa, Katsuhiko; Tsubura, Airo

    2012-07-01

    Vorinostat is a histone deacetylase inhibitor that blocks cancer cell proliferation through the regulation of cyclin-dependent kinase inhibitors. We, herein, examined the involvement of S-phase kinase-associated protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1), the components of the SCFSkp2-Cks1 (Skp1/Cul1/F-box protein) ubiquitin ligase complex, in the regulation of p27 and p21 during vorinostat-induced growth arrest of MDA-MB-231 and MCF-7 human breast cancer cells. Vorinostat significantly reduced BrdU incorporation in MDA-MB-231 and MCF-7 cells, which was associated with increased p27 and p21 protein levels without concomitant induction of p27 mRNA. Vorinostat-induced accumulation of p27 and p21 proteins was inversely correlated with the mRNA and protein levels of Skp2 and Cks1. Cycloheximide chase analysis revealed that vorinostat increased the half-life of p27 and p21 proteins. The accumulation of p27 and p21 proteins was attenuated by forced expression of Skp2 and Cks1, which conferred resistance to the vorinostat-induced S-phase reduction. These results suggest that vorinostat-induced growth arrest may be in part due to the enhanced protein stability of p27 and p21 through the downregulation of Skp2 and Cks1.

  8. Involvement of Histone Lysine Methylation in p21 Gene Expression in Rat Kidney In Vivo and Rat Mesangial Cells In Vitro under Diabetic Conditions

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2016-01-01

    Full Text Available Diabetic nephropathy (DN, a common complication associated with type 1 and type 2 diabetes mellitus (DM, characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD. Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG- treated rat mesangial cells (RMCs. p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP assays showed decreased histone H3-lysine9-dimethylation (H3K9me2 accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3 and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.

  9. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis.

    Science.gov (United States)

    Dong, Xingchen; Hu, Xiangming; Chen, Jinjing; Hu, Dan; Chen, Lin-Feng

    2018-02-12

    Small molecules targeting bromodomains of BET proteins possess strong anti-tumor activities and have emerged as potential therapeutics for cancer. However, the underlying mechanisms for the anti-proliferative activity of these inhibitors are still not fully characterized. In this study, we demonstrated that BET inhibitor JQ1 suppressed the proliferation and invasiveness of gastric cancer cells by inducing cellular senescence. Depletion of BRD4, which was overexpressed in gastric cancer tissues, but not other BET proteins recapitulated JQ1-induced cellular senescence with increased cellular SA-β-Gal activity and elevated p21 levels. In addition, we showed that the levels of p21 were regulated at the post-transcriptional level by BRD4-dependent expression of miR-106b-5p, which targets the 3'-UTR of p21 mRNA. Overexpression of miR-106b-5p prevented JQ1-induced p21 expression and BRD4 inhibition-associated cellular senescence, whereas miR-106b-5p inhibitor up-regulated p21 and induced cellular senescence. Finally, we demonstrated that inhibition of E2F suppressed the binding of BRD4 to the promoter of miR-106b-5p and inhibited its transcription, leading to the increased p21 levels and cellular senescence in gastric cancer cells. Our results reveal a novel mechanism by which BRD4 regulates cancer cell proliferation by modulating the cellular senescence through E2F/miR-106b-5p/p21 axis and provide new insights into using BET inhibitors as potential anticancer drugs.

  10. Overexpression of 15-lipoxygenase-1 induces growth arrest through phosphorylation of p53 in human colorectal cancer cells.

    Science.gov (United States)

    Kim, Jong-Sik; Baek, Seung Joon; Bottone, Frank G; Sali, Tina; Eling, Thomas E

    2005-09-01

    To investigate the function of 15-lipoxygenase-1 (15-LOX-1) in human colorectal cancer, we overexpressed 15-LOX-1 in HCT-116 human colorectal cancer cells. Clones expressing the highest levels of 15-LOX-1 displayed reduced viability compared with the HCT-116-Vector control cells. Further, by cell cycle gene array analyses, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and MDM2 genes were up-regulated in 15-LOX-1-overexpressing cells. The induction of p21(WAF1/CIP1) and MDM2 were linked to activation of p53 by 15-LOX-1, as there was a dramatic induction of phosphorylated p53 (Ser15) in 15-LOX-1-overesxpressing cells. However, the 15-LOX-1 metabolites 13(S)-hydroxyoctadecadienoic acid and 15(S)-hydroxyeicosatetraenoic acid failed to induce phosphorylation of p53 at Ser15, and the 15-LOX-1 inhibitor PD146176 did not inhibit the phosphorylation of p53 at Ser15 in 15-LOX-1-overexpressing cells. Nonetheless, the growth-inhibitory effects of 15-LOX-1 were p53 dependent, as 15-LOX-1 overexpression had no effect on cell growth in p53 (-/-) HCT-116 cells. Finally, treatment of HCT-116-15-LOX-1 cells with different kinase inhibitors suggested that the effects of 15-LOX-1 on p53 phosphorylation and activation were due to effects on DNA-dependent protein kinase. Collectively, these findings suggest a new mechanism to explain the biological activity of 15-LOX-1, where 15-LOX plays a stoichiometric role in activating a DNA-dependent protein kinase-dependent pathway that leads to p53-dependent growth arrest.

  11. RT-PCR amplification of RNA extracted from formalin-fixed, paraffin-embedded oral cancer sections: analysis of p53 pathway.

    Science.gov (United States)

    Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro

    2003-01-01

    We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.

  12. Smoking modifies the associated increased risk of future cardiovascular disease by genetic variation on chromosome 9p21.

    Directory of Open Access Journals (Sweden)

    Viktor Hamrefors

    Full Text Available AIMS: Genetic predisposition for cardiovascular disease (CVD is likely to be modified by environmental exposures. We tested if the associated risk of CVD and CVD-mortality by the single nucleotide polymorphism rs4977574 on chromosome 9p21 is modified by life-style factors. METHODS AND RESULTS: A total of 24,944 middle-aged subjects (62% females from the population-based Malmö-Diet-and-Cancer-Cohort were genotyped. Smoking, education and physical activity-levels were recorded. Subjects were followed for 15 years for incidence of coronary artery disease (CAD; N = 2309, ischemic stroke (N = 1253 and CVD-mortality (N = 1156. Multiplicative interactions between rs4977574 and life-style factors on endpoints were tested in Cox-regression-models. We observed an interaction between rs4977574 and smoking on incident CAD (P = 0.035 and CVD-mortality (P = 0.012. The hazard ratios (HR per risk allele of rs4977574 were highest in never smokers (N = 9642 for CAD (HR = 1.26; 95% CI 1.13-1.40; P<0.001 and for CVD-mortality (HR = 1.40; 95% CI 1.20-1.63; P<0.001, whereas the risk increase by rs4977574 was attenuated in current smokers (N = 7000 for both CAD (HR = 1.05; 95%CI 0.95-1.16; P = 0.326 and CVD-mortality (HR = 1.08; 95%CI 0.94-1.23; P = 0.270. A meta-analysis supported the finding that the associated increased risk of CAD by the risk-allele was attenuated in smokers. Neither education nor physical activity-levels modified the associated risk of CAD, ischemic stroke and CVD mortality conferred by rs4977574. CONCLUSION: Smoking may modify the associated risk of CAD and CVD-mortality conferred by genetic variation on chromosome 9p21. Whether the observed attenuation of the genetic risk reflects a pathophysiological mechanism or is a result of smoking being such a strong risk-factor that it may eliminate the associated genetic effect, requires further investigation.

  13. Deficiency of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 accelerates atherogenesis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Akyuerek, Levent M.; Boehm, Manfred; Olive, Michelle; Zhou, Alex-Xianghua; San, Hong; Nabel, Elizabeth G.

    2010-01-01

    Cyclin-dependent kinase inhibitors, p21 Cip1 and p27 Kip1 , are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21 Cip1 or p27 Kip1 in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE -/- aortae, both apoE -/- /p21 -/- and apoE -/- /p27 -/- aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27 Kip1 accelerated plaque formation significantly more than p21 -/- in apoE -/- mice. This increased plaque formation was in parallel with increased intima/media area ratios. Deficiency of p21 Cip1 and p27 Kip1 accelerates atherogenesis in apoE -/- mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.

  14. LncRNA-SNHG16 predicts poor prognosis and promotes tumor proliferation through epigenetically silencing p21 in bladder cancer.

    Science.gov (United States)

    Cao, Xianxiang; Xu, Jing; Yue, Dong

    2018-02-01

    More and more evidences have ensured the crucial functions of long non-coding RNAs (lncRNAs) in multiple tumors. It has been discovered that lncRNA-SNHG16 is involved in many tumors. Even so, it is still necessary to study SNHG16 comprehensively in bladder cancer. In terms of our study, the level of SNHG16 both in the tumor tissues and cell lines was measured and the relationship among SNHG16, clinicopathological traits and prognosis was explored. Interference assays were applied to determine the biological functions of SNHG16. It was discovered that the level of SNHG16 was evidently enhanced both in tissues and cell lines of bladder cancer. Patients with highly expressed SNHG16 suffered from poor overall survival. Multivariable Cox proportional hazards regression analysis implied that highly expressed SNHG16 could be used as an independent prognostic marker. It could be known from functional assays that silenced SNHG16 impaired cell proliferation, owing to the effects of SNHG16 on cell cycle and apoptosis. Finally, mechanism experiments revealed that SNHG16 could epigenetically silence the expression of p21. The facts above pointed out that lncRNA-SNHG16 might be quite vital for the diagnosis and development of bladder cancer, and could even become an important therapeutic target for bladder cancer.

  15. S-phase Specific Downregulation of Human O6-Methylguanine DNA Methyltransferase (MGMT and its Serendipitous Interactions with PCNA and p21cip1 Proteins in Glioma Cells

    Directory of Open Access Journals (Sweden)

    AGM Mostofa

    2018-04-01

    Full Text Available Whether the antimutagenic DNA repair protein MGMT works solo in human cells and if it has other cellular functions is not known. Here, we show that human MGMT associates with PCNA and in turn, with the cell cycle inhibitor, p21cip1 in glioblastoma and other cancer cell lines. MGMT protein was shown to harbor a nearly perfect PCNA-Interacting Protein (PIP box motif. Isogenic p53-null H1299 cells were engineered to express the p21 protein by two different procedures. Reciprocal immunoprecipitation/western blotting, Far-western blotting, and confocal microscopy confirmed the specific association of MGMT with PCNA and the ability of p21 to strongly disrupt the MGMT-PCNA complexes in tumor cells. Alkylation DNA damage resulted in a greater colocalization of MGMT and PCNA proteins, particularly in HCT116 cells deficient in p21 expression. p21 expression in isogenic cell lines directly correlated with markedly higher levels of MGMT mRNA, protein, activity and greater resistance to alkylating agents. In other experiments, four glioblastoma cell lines synchronized at the G1/S phase using either double thymidine or thymidine-mimosine blocks and subsequent cycling consistently showed a loss of MGMT protein at mid- to late S-phase, irrespective of the cell line, suggesting such a downregulation is fundamental to cell cycle control. MGMT protein was also specifically degraded in extracts from S-phase cells and evidence strongly suggested the involvement of PCNA-dependent CRL4Cdt2 ubiquitin-ligase in the reaction. Overall, these data provide the first evidence for non-repair functions of MGMT in cell cycle and highlight the involvement of PCNA in MGMT downregulation, with p21 attenuating the process.

  16. Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFβ cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Harrison David J

    2007-11-01

    Full Text Available Abstract Background TGFβ is critical to control hepatocyte proliferation by inducing G1-growth arrest through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory potential of TGFβ in disease. We asked how Rb-deficiency would affect responses to TGFβ-induced cell cycle arrest. Results Primary hepatocytes isolated from Rb-floxed mice were infected with an adenovirus expressing CRE-recombinase to delete the Rb gene. In control cells treatment with TGFβ prevented cells to enter S phase via decreased cMYC activity, activation of P16INK4A and P21Cip and reduction of E2F activity. In Rb-null hepatocytes, cMYC activity decreased slightly but P16INK4A was not activated and the great majority of cells continued cycling. Rb is therefore central to TGFβ-induced cell cycle arrest in hepatocytes. However some Rb-null hepatocytes remained sensitive to TGFβ-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21Cip1 and P53 we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by evaluating the consequences of disruption of p53 and p21Cip1. Hepatocytes deficient in p53 or p21Cip1 showed diminished growth inhibition by TGFβ. Double deficiency had a similar impact showing that in cells containing functional pRb; P21Cip and P53 work through the same pathway to regulate G1/S in response to TGFβ. In Rb-deficient cells however, p53 but not p21Cip deficiency had an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of E2F activity. Conclusion The present results show that otherwise genetically normal hepatocytes with disabled p53, p21Cip1 or Rb genes respond less well to the antiproliferative effects of TGFβ. As the function of

  17. Ras p21 and other Gn proteins are detected in mammalian cell lines by [gamma-35S]GTP gamma S binding

    International Nuclear Information System (INIS)

    Comerford, J.G.; Gibson, J.R.; Dawson, A.P.; Gibson, I.

    1989-01-01

    The presence of guanine nucleotide binding proteins in mouse and human cell lines was investigated using [gamma- 35 S]GTP gamma S and [gamma-32P]GTP. Cell lysate polypeptides were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and transferred to nitrocellulose. Incubation of the nitrocellulose blots with [gamma- 35 S]GTP gamma S identified 9 distinct GTP-binding polypeptides in all lysates. One of these is the ras oncogene product, p21, as demonstrated by subsequent immunochemical staining of the nitrocellulose blots. We have shown that this procedure provides a sensitive method for detection of p21 in culture cell lines

  18. Potential role of p21 Activated Kinase 1 (PAK1) in the invasion and motility of oral cancer cells

    International Nuclear Information System (INIS)

    Parvathy, Muraleedharan; Sreeja, Sreeharshan; Kumar, Rakesh; Pillai, Madhavan Radhakrishna

    2016-01-01

    Oral cancer malignancy consists of uncontrolled division of cells primarily in and around the floor of the oral cavity, gingiva, oropharynx, lower lip and base of the tongue. According to GLOBOCAN 2012 report, oral cancer is one of the most common cancers among males and females in India. Even though significant advancements have been made in the field of oral cancer treatment modalities, the overall prognosis for the patients has not improved in the past few decades and hence, this demands a new thrust for the identification of novel therapeutic targets in oral cancer. p21 Activated Kinases (PAKs) are potential therapeutic targets that are involved in numerous physiological functions. PAKs are serine-threonine kinases and they serve as important regulators of cytoskeletal dynamics and cell motility, transcription through MAP kinase cascades, death and survival signalling, and cell-cycle progression. Although PAKs are known to play crucial roles in cancer progression, the role and clinical significance of PAKs in oral cancer remains poorly understood. Our results suggest that PAK1 is over-expressed in oral cancer cell lines. Stimulation of Oral Squamous Cell Carcinoma (OSCC) cells with serum growth factors leads to PAK1 re-localization and might cause a profound cytoskeletal remodelling. PAK1 was also found to be involved in the invasion, migration and cytoskeletal remodelling of OSCC cells. Our study revealed that PAK1 may play a crucial role in the progression of OSCC. Studying the role of PAK1 and its substrates is likely to enhance our understanding of oral carcinogenesis and potential therapeutic value of PAKs in oral cancer. The online version of this article (doi:10.1186/s12885-016-2263-8) contains supplementary material, which is available to authorized users

  19. HOMOZYGOUS DELETION IN A SMALL-CELL LUNG-CANCER CELL-LINE INVOLVING A 3P21 REGION WITH A MARKED INSTABILITY IN YEAST ARTIFICIAL CHROMOSOMES

    NARCIS (Netherlands)

    KOK, K; van den Berg, Anke; VELDHUIS, PMJF; VANDERVEEN, AY; FRANKE, M; SCHOENMAKERS, EFPM; HULSBEEK, MMF; VANDERHOUT, AH; DELEIJ, L; VANDEVEN, W; BUYS, CHCM

    1994-01-01

    All types of lung carcinoma are characterized by a high frequency of loss of sequences from the short arm of chromosome 3, the smallest region of overlap containing D3F15S2 in band p21. Here we characterize a 440-kilobase segment from this region, which we found homozygously deleted in one of our

  20. Hepatitis C virus core protein expression leads to biphasic regulation of the p21 cdk inhibitor and modulation of hepatocyte cell cycle

    International Nuclear Information System (INIS)

    Nguyen, Hau; Mudryj, Maria; Guadalupe, Moraima; Dandekar, Satya

    2003-01-01

    Hepatitis C virus (HCV) Core protein is implicated in viral pathogenesis by the modulation of hepatocyte gene expression and function. To determine the effect of Core protein on the cell-cycle control of hepatocytes, a HepG2 cell line containing a Flag-tagged Core under the control of an inducible promoter was generated. Initial Core protein expression included the presence of unprocessed (191 aa) and processed (173 aa) forms of the Core proteins with the processed form becoming dominant later. Expression of the 191 aa form of Core protein corresponded to an increase in the expression of the p21, a decrease in cdk2-dependent kinase activity, and a decrease in the percentage of cells in S-phase along with an accumulation of cells in the G 0 /G 1 phase of the cell cycle. As the processed form accumulated, the p21 levels started to decline, suggesting that Core protein regulates p21 expression in a biphasic manner. These findings implicate Core protein in potentially modulating hepatocyte cell cycle differentially in the early stages of infection through biphasic regulation of p21 cdk kinase inhibitor

  1. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3

    NARCIS (Netherlands)

    Purdue, Mark P.; Johansson, Mattias; Zelenika, Diana; Toro, Jorge R.; Scelo, Ghislaine; Moore, Lee E.; Prokhortchouk, Egor; Wu, Xifeng; Kiemeney, Lambertus A.; Gaborieau, Valerie; Jacobs, Kevin B.; Chow, Wong-Ho; Zaridze, David; Matveev, Vsevolod; Lubinski, Jan; Trubicka, Joanna; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Bucur, Alexandru; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo; Colt, Joanne S.; Davis, Faith G.; Schwartz, Kendra L.; Banks, Rosamonde E.; Selby, Peter J.; Harnden, Patricia; Berg, Christine D.; Hsing, Ann W.; Grubb, Robert L.; Boeing, Heiner; Vineis, Paolo; Clavel-Chapelon, Francoise; Palli, Domenico; Tumino, Rosario; Krogh, Vittorio; Panico, Salvatore; Duell, Eric J.; Quiros, Jose Ramon; Sanchez, Maria-Jose; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Khaw, Kay-Tee; Allen, Naomi E.; Bueno-de-Mesquita, H. Bas; Peeters, Petra H. M.; Trichopoulos, Dimitrios; Linseisen, Jakob; Ljungberg, Borje; Overvad, Kim; Tjonneland, Anne; Romieu, Isabelle; Riboli, Elio; Mukeria, Anush; Shangina, Oxana; Stevens, Victoria L.; Thun, Michael J.; Diver, W. Ryan; Gapstur, Susan M.; Pharoah, Paul D.; Easton, Douglas F.; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Vatten, Lars; Hveem, Kristian; Njolstad, Inger; Tell, Grethe S.; Stoltenberg, Camilla; Kumar, Rajiv; Koppova, Kvetoslava; Cussenot, Olivier; Benhamou, Simone; Oosterwijk, Egbert; Vermeulen, Sita H.; Aben, Katja K. H.; van der Marel, Saskia L.; Ye, Yuanqing; Wood, Christopher G.; Pu, Xia; Mazur, Alexander M.; Boulygina, Eugenia S.; Chekanov, Nikolai N.; Foglio, Mario; Lechner, Doris; Gut, Ivo; Heath, Simon; Blanche, Helene; Hutchinson, Amy; Thomas, Gilles; Wang, Zhaoming; Yeager, Meredith; Fraumeni, Joseph F.; Skryabin, Konstantin G.; McKay, James D.; Rothman, Nathaniel; Chanock, Stephen J.; Lathrop, Mark; Brennan, Paul

    We conducted a two-stage genome-wide association study of renal cell carcinoma (RCC) in 3,772 affected individuals (cases) and 8,505 controls of European background from 11 studies and followed up 6 SNPs in 3 replication studies of 2,198 cases and 4,918 controls. Two loci on the regions of 2p21 and

  2. Replication study and meta-analysis in European samples supports association of the 3p21.1 locus with bipolar disorder

    DEFF Research Database (Denmark)

    Vassos, Evangelos; Steinberg, Stacy; Cichon, Sven

    2012-01-01

    Common genetic polymorphisms at chromosome 3p21.1, including rs2251219 in polybromo 1 (PBRM1), have been implicated in susceptibility to bipolar affective disorder (BP) through genome-wide association studies. Subsequent studies have suggested that this is also a risk locus for other psychiatric ...... phenotypes, including major depression and schizophrenia....

  3. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Smedby, Karin E; Foo, Jia Nee; Skibola, Christine F

    2011-01-01

    Non-Hodgkin lymphoma (NHL) represents a diverse group of hematological malignancies, of which follicular lymphoma (FL) is a prevalent subtype. A previous genome-wide association study has established a marker, rs10484561 in the human leukocyte antigen (HLA) class II region on 6p21.32 associated w...

  4. Prevalence of human papillomavirus, Epstein-Barr virus, p21, and p53 expression in sinonasal inverted papilloma, nasal polyp, and hypertrophied turbinate in Hong Kong patients.

    Science.gov (United States)

    Sham, C L; To, K F; Chan, Paul K S; Lee, Dennis L Y; Tong, Michael C F; van Hasselt, C Andrew

    2012-04-01

    The purpose of this study of human papillomavirus (HPV), Epstein-Barr virus (EBV), p21, and p53 in sinonasal inverted papilloma (IP) was to help elucidate its pathogenesis. Seventy-three IPs, 48 nasal polyps, and 85 hypertrophied turbinates were subjected to HPV polymerase chain reaction (PCR) study. Seventy-three IPs, 30 nasal polyps, and 32 hypertrophied turbinates were subjected to EBV in situ hybridization (ISH), p21, and p53 immunohistochemical (IHC) studies. HPV was positive in 3 of 73 IPs (4.1%). All specimens were EBV negative. In all, 99% of IPs showed strong and diffuse p21 nuclear reactivity. Most nasal polyps and hypertrophied turbinates showed weak to moderate immunoreactivity of the basal and parabasal cells. Only focal p53 immunoreactivity of the basal and parabasal cells was found in 19% of IPs and 40% of nasal polyps. HPV prevalence of our IP is low. EBV is not present in IP. High p21 and low p53 expression in IP suggests a non-p53-dependent regulation pathway. Copyright © 2011 Wiley Periodicals, Inc.

  5. Predictive effect of p53 and p21 alteration on chemotherapy response and survival in locally advanced adenocarcinoma of the esophagus

    NARCIS (Netherlands)

    Heeren, PAM; Kloppenberg, FWH; Hollema, H; Mulder, NH; Nap, RE; Plukker, JTM

    2004-01-01

    Background: Cell cycle regulating proteins (p53/p21) and proliferation index Ki-67 have been associated with prognosis and response to chemotherapy. The aim of this study was to determine the significance of these molecular markers on tumor response and prognostic effect in a group of esophageal

  6. Assignment of the gene for human tetranectin (TNA) to chromosome 3p22-->p21.3 by somatic cell hybrid mapping

    DEFF Research Database (Denmark)

    Durkin, M E; Naylor, S L; Albrechtsen, R

    1997-01-01

    Tetranectin is a plasminogen-binding protein that is induced during the mineralization phase of osteogenesis. By screening a human chromosome 3 somatic cell hybrid mapping panel, we have localized the human tetranectin gene (TNA) to 3p22-->p21.3, which is distinct from the loci of two human...

  7. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi- Gyeong [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Kwang Soo [Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 (United States); Hwang, Eun Sook, E-mail: eshwang@ewha.ac.kr [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2016-05-27

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21 induction is

  8. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    International Nuclear Information System (INIS)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi- Gyeong; Kim, Kwang Soo; Hwang, Eun Sook

    2016-01-01

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21 induction is

  9. Quality of warfarin therapy and risk of stroke, bleeding, and mortality among patients with atrial fibrillation: results from the nationwide FinWAF Registry.

    Science.gov (United States)

    Lehto, Mika; Niiranen, Jussi; Korhonen, Pasi; Mehtälä, Juha; Khanfir, Houssem; Hoti, Fabian; Lassila, Riitta; Raatikainen, Pekka

    2017-06-01

    The most important management strategy in atrial fibrillation (AF) patients is preventing stroke with oral anticoagulants. Warfarin is still used as a first-line anticoagulant, although non-vitamin K antagonist oral anticoagulants are currently recommended to manage AF. Using a large, unselected national sample of AF patients, we evaluated the relationships between quality of warfarin therapy and the risks of thromboembolism, bleeding complications, and mortality. The nationwide FinWAF study included 54 568 AF patients taking warfarin. Time in the therapeutic range (TTR) was calculated on a continuous basis using the Rosendaal method and international normalized ratio values over the previous 60 days. Adjusted Cox proportional hazard models were prepared for different TTR levels and major clinical end points. The mean age of patients was 73.1 years (standard deviation 10.8), and 47% were female. The mean follow-up time was 3.2 ± 1.6 years (median 3.4). In the TTR groups of ≤40%, 60-70%, 70-80%, and >80%, the annual risk of stroke was 9.3%, 4.7%, 4.6%, and 3.1%; bleeding events 7.5%, 4.5%, 4.3%, and 2.6%; and overall mortality 20.9%, 8.5%, 6.4%, and 3.1%, respectively. All differences among the TTR groups were highly significant (p warfarin treatment was strongly associated with the risk of stroke and the prognosis of AF patients. Patient outcomes continued to improve with increasing TTR values up to a TTR ≥80%; therefore, the target for the TTR should exceed 80% instead of the traditional range of at least 60-70%. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. The effects of two polymorphisms on p21cip1 function and their association with Alzheimer's disease in a population of European descent.

    Directory of Open Access Journals (Sweden)

    Sharon C Yates

    Full Text Available With the exception of ApoE4, genome-wide association studies have failed to identify strong genetic risk factors for late-onset Alzheimer's disease, despite strong evidence of heritability, suggesting that many low penetrance genes may be involved. Additionally, the nature of the identified genetic risk factors and their relation to disease pathology is also largely obscure. Previous studies have found that a cancer-associated variant of the cell cycle inhibitor gene p21cip1 is associated with increased risk of Alzheimer's disease. The aim of this study was to confirm this association and to elucidate the effects of the variant on protein function and Alzheimer-type pathology. We examined the association of the p21cip1 variant with Alzheimer's disease and Parkinson's disease with dementia. The genotyping studies were performed on 719 participants of the Oxford Project to Investigate Memory and Ageing, 225 participants of a Parkinson's disease DNA bank, and 477 participants of the Human Random Control collection available from the European Collection of Cell Cultures. The post mortem studies were carried out on 190 participants. In the in-vitro study, human embryonic kidney cells were transfected with either the common or rare p21cip1 variant; and cytometry was used to assess cell cycle kinetics, p21cip1 protein expression and sub-cellular localisation. The variant was associated with an increased risk of Alzheimer's disease, and Parkinson's disease with dementia, relative to age matched controls. Furthermore, the variant was associated with an earlier age of onset of Alzheimer's disease, and a more severe phenotype, with a primary influence on the accumulation of tangle pathology. In the in-vitro study, we found that the SNPs reduced the cell cycle inhibitory and anti-apoptotic activity of p21cip1. The results suggest that the cancer-associated variant of p21cip1 may contribute to the loss of cell cycle control in neurons that may lead to

  11. Interphase fluorescent in situ hybridization deletion analysis of the 9p21 region and prognosis in childhood acute lymphoblastic leukaemia (ALL)

    DEFF Research Database (Denmark)

    Kuchinskaya, Ekaterina; Heyman, Mats; Nordgren, Ann

    2011-01-01

    Interphase fluorescent in situ hybridization (FISH) was applied on diagnostic BM smears from 519 children with acute lymphoblastic leukaemia (ALL) in order to establish the frequency and prognostic importance of 9p21 deletion in children enrolled in the Nordic Society of Paediatric Haematology...... and Oncology (NOPHO) - 2000 treatment protocol. Among the patients, 452 were diagnosed with B-cell precursor (BCP)-ALL and 66 with T-ALL. A higher incidence of 9p21 deletions was found in T-ALL (38%) compared to BCP-ALL (15·7%). Homozygous deletions were found in 19·7% of T-ALL and 4·0% of BCP-ALL; hemizygous...

  12. Assessment of p21, p53 expression, and Ki-67 proliferative activities in the gastric mucosa of children with Helicobacter pylori gastritis.

    Science.gov (United States)

    Saf, Coskun; Gulcan, Enver Mahir; Ozkan, Ferda; Cobanoglu Saf, Seyhan Perihan; Vitrinel, Ayca

    2015-02-01

    Helicobacter pylori that is generally acquired in childhood and infects the gastric mucosa is considered to be responsible for many pathobiological changes that are linked to the pathogenesis of gastric cancer. Although the majority of studies on the subject have been carried out in adults, there are a limited number of studies on children that reflect the early period of infection and may be of greater significance. We aimed to determine the role of H. pylori infection and/or gastritis in several histopathological changes, p53, p21, and cell proliferation-associated Ki-67 antigen expression in the gastric mucosa. We studied 60 patients with a mean age of 7.5 ± 4.5 years at referral. On the basis of endoscopic appearance and the evaluation of the gastric antral specimens, the patients were divided into three groups: patients without gastritis, patients with H. pylori-positive gastritis, and patients with H. pylori-negative gastritis. To determine the expression of p53, Ki-67, and p21 in gastric biopsy specimens, immunohistochemical stains were performed. The incidence of neutrophil activity, which was one of our histopathologic parameters, was significantly higher in the H. pylori-positive gastritis group than the other two groups. The presence of lymphoid aggregate was more frequent in H. pylori ± gastritis groups than the nongastritis group. p53 expression was found to be significantly higher in the H. pylori-positive gastritis group than the nongastritis group. Ki-67 and p21 expressions were significantly more frequent in the H. pylori-positive gastritis group than the other two groups. When we evaluated the density of H. pylori, as the density of bacteria increases, we found that the expressions of p53, p21, and Ki-67 increased significantly. Expression of the studied precancerous markers in significant amounts indicates the importance of childhood H. pylori infection in the constitution of gastric cancer in adulthood.

  13. The new ternary pnictides Er12Ni30P21 and Er13Ni25As19: Crystal structures and magnetic properties

    International Nuclear Information System (INIS)

    Oryshchyn, Stepan; Babizhetskyy, Volodymyr; Zhak, Olga; Zelinska, Mariya; Pivan, Jean-Yves; Duppel, Viola; Simon, Arndt; Kienle, Lorenz

    2010-01-01

    The new ternary pnictides Er 12 Ni 30 P 21 and Er 13 Ni 25 As 19 have been synthesized from the elements. They crystallize with hexagonal structures determined from single-crystal X-ray data for Er 12 Ni 30 P 21 (space group P6 3 /m, a=1.63900(3) nm, c=0.37573(1) nm, Z=1, R F =0.062 for 1574 F-values and 74 variable parameters), and for Er 13 Ni 25 As 19 (Tm 13 Ni 25 As 19 -type structure, space group P6-bar , a=1.6208(1) nm, c=0.38847(2) nm, Z=1, R F =0.026 for 1549 F-values and 116 variable parameters). These compounds belong to a large family of hexagonal structures with a metal-metalloid ratio of 2:1. HRTEM investigations were conducted to probe for local ordering of the disordered structure at the nanoscale. The magnetic properties of the phosphide Er 12 Ni 30 P 21 have been studied in the temperature of range 2 eff =9.59 μ B corresponds to the theoretical value of Er 3+ . - Graphical abstract: The new ternary pnictides Er 12 Ni 30 P 21 and Er 13 Ni 25 As 19 have been synthesized from the elements. They crystallize with hexagonal structures determined from single-crystal X-ray data. The compounds belong to a large family of structures with a metal-metalloid ratio of 2:1. HRTEM investigations were conducted to probe for local ordering of the disordered structure at the nanoscale. Display Omitted

  14. An evolutionary rearrangement of the Xp11.3-11.23 region in 3p21.3, a region frequently deleted in a variety of cancers

    NARCIS (Netherlands)

    Timmer, T; Terpstra, P; van den Berg, Anke; Veldhuis, PMJF; Ter Elst, A; van der Veen, AY; Kok, K; Naylor, SL; Buys, CHCM

    1999-01-01

    In searching for a tumor suppressor gene in the 3p21.3 region, we isolated two genes, RBM5 and RBM6. Sequence analysis indicated that these genes share similarity. RBM5 and-to a lesser extent-RBM6 also have similarity to DXS8237E at Xp11.3-11.23, which maps less than 20 kb upstream of UBE1. A

  15. Co-existence of t(6;13)(p21;q14.1) and trisomy 12 in chronic lymphocytic leukemia.

    Science.gov (United States)

    de Oliveira, Fábio Morato; de Figueiredo Pontes, Lorena Lobo; Bassi, Sarah Cristina; Dalmazzo, Leandro Felipe Figueiredo; Falcão, Roberto Passetto

    2012-06-01

    We report a case of a 57-year-old man diagnosed with chronic lymphocytic leukemia (CLL) and presence of a rare t(6;13)(p21;q14.1) in association with an extra copy of chromosome 12. Classical cytogenetic analysis using the immunostimulatory combination of DSP30 and IL-2 showed the karyotype 47,XY,t(6;13)(p21;q14.1), +12 in 75% of the metaphase cells. Spectral karyotype analysis (SKY) confirmed the abnormality previously seen by G-banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 12 probe performed on peripheral blood cells without any stimulant agent showed trisomy of chromosome 12 in 67% of analyzed cells (134/200). To the best of our knowledge, the association of t(6;13)(p21;q14.1) and +12 in CLL has never been described. The prognostic significance of these new findings in CLL remains to be elucidated. However, the patient has been followed up since 2009 without any therapeutic intervention and has so far remained stable.

  16. The rs10757278 Polymorphism of the 9p21.3 Locus in Children with Arterial Ischemic Stroke: A Family-Based and Case-Control Study.

    Science.gov (United States)

    Niemiec, Pawel; Balcerzyk, Anna; Iwanicki, Tomasz; Emich-Widera, Ewa; Kopyta, Ilona; Nowak, Tomasz; Pilarska, Ewa; Pienczk-Ręcławowicz, Karolina; Kaciński, Marek; Wendorff, Janusz; Gorczynska-Kosiorz, Sylwia; Trautsolt, Wanda; Grzeszczak, Władysław; Zak, Iwona

    2017-12-01

    The association of 9p21.3 locus single nucleotide polymorphisms with arterial ischemic stroke in adults was demonstrated in many studies, but there are no studies in pediatric arterial ischemic stroke patients. We investigated whether the 9p21.3 locus polymorphism, namely rs10757278, is associated with the arterial ischemic stroke risk in children. The study group consisted of 335 individuals: 80 children with arterial ischemic stroke, their biological parents (n = 122), and 133 children (age and sex matched) without any symptoms of arterial ischemic stroke as a control group. The rs10757278 polymorphism was genotyped using the TaqMan® Pre-designed SNP Genotyping Assay (Applied Biosystems). Two different study design models were used: family-based association test (transmission-disequilibrium test) and case-control model. There were no statistically significant differences in the distribution of genotypes and alleles of the rs10757278 polymorphism between groups of children with arterial ischemic stroke and controls. The frequency of both transmitted alleles in transmission-disequilibrium test analysis was identical (50%). The A allele carrier state (AA+AG genotype) was more frequent in arterial ischemic stroke children with hemiparesis than in patients without this symptom (94.5% versus 68.0%, P = .004). There is no evidence to consider the 9p21.3 locus polymorphism as a risk factor for childhood arterial ischemic stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  17. Suppression of Cancer Stemness p21-regulating mRNA and microRNA Signatures in Recurrent Ovarian Cancer Patient Samples

    LENUS (Irish Health Repository)

    Gallagher, Michael F

    2012-01-19

    Abstract Background Malignant ovarian disease is characterised by high rates of mortality due to high rates of recurrent chemoresistant disease. Anecdotal evidence indicates this may be due to chemoresistant properties of cancer stem cells (CSCs). However, our understanding of the role of CSCs in recurrent ovarian disease remains sparse. In this study we used gene microarrays and meta-analysis of our previously published microRNA (miRNA) data to assess the involvement of cancer stemness signatures in recurrent ovarian disease. Methods Microarray analysis was used to characterise early regulation events in an embryonal carcinoma (EC) model of cancer stemness. This was then compared to our previously published microarray data from a study of primary versus recurrent ovarian disease. In parallel, meta-analysis was used to identify cancer stemness miRNA signatures in tumor patient samples. Results Microarray analysis demonstrated a 90% difference between gene expression events involved in early regulation of differentiation in murine EC (mEC) and embryonic stem (mES) cells. This contrasts the known parallels between mEC and mES cells in the undifferentiated and well-differentiated states. Genelist comparisons identified a cancer stemness signature set of genes in primary versus recurrent data, a subset of which are known p53-p21 regulators. This signature is present in primary and recurrent or in primary alone but essentially never in recurrent tumors specifically. Meta-analysis of miRNA expression showed a much stronger cancer stemness signature within tumor samples. This miRNA signature again related to p53-p21 regulation and was expressed prominently in recurrent tumors. Our data indicate that the regulation of p53-p21 in ovarian cancer involves, at least partially, a cancer stemness component. Conclusion We present a p53-p21 cancer stemness signature model for ovarian cancer. We propose that this may, at least partially, differentially regulate the p53-p21

  18. Suppression of cancer stemness p21-regulating mRNA and microRNA signatures in recurrent ovarian cancer patient samples

    Directory of Open Access Journals (Sweden)

    Gallagher Michael F

    2012-01-01

    Full Text Available Abstract Background Malignant ovarian disease is characterised by high rates of mortality due to high rates of recurrent chemoresistant disease. Anecdotal evidence indicates this may be due to chemoresistant properties of cancer stem cells (CSCs. However, our understanding of the role of CSCs in recurrent ovarian disease remains sparse. In this study we used gene microarrays and meta-analysis of our previously published microRNA (miRNA data to assess the involvement of cancer stemness signatures in recurrent ovarian disease. Methods Microarray analysis was used to characterise early regulation events in an embryonal carcinoma (EC model of cancer stemness. This was then compared to our previously published microarray data from a study of primary versus recurrent ovarian disease. In parallel, meta-analysis was used to identify cancer stemness miRNA signatures in tumor patient samples. Results Microarray analysis demonstrated a 90% difference between gene expression events involved in early regulation of differentiation in murine EC (mEC and embryonic stem (mES cells. This contrasts the known parallels between mEC and mES cells in the undifferentiated and well-differentiated states. Genelist comparisons identified a cancer stemness signature set of genes in primary versus recurrent data, a subset of which are known p53-p21 regulators. This signature is present in primary and recurrent or in primary alone but essentially never in recurrent tumors specifically. Meta-analysis of miRNA expression showed a much stronger cancer stemness signature within tumor samples. This miRNA signature again related to p53-p21 regulation and was expressed prominently in recurrent tumors. Our data indicate that the regulation of p53-p21 in ovarian cancer involves, at least partially, a cancer stemness component. Conclusion We present a p53-p21 cancer stemness signature model for ovarian cancer. We propose that this may, at least partially, differentially regulate the p

  19. MicroRNA-17-5p post-transcriptionally regulates p21 expression in irradiated betel quid chewing-related oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Wu, S.Y.; HungKuang Univ., Taichung; Lin, K.C.; Chiou, J.F.; Taipei Medical Univ. Hospital, Taipei; Taipei Medical Univ. Hospital, Taipei; Taipei Medical Univ. Hospital, Taipei; Jeng, S.C.; Cheng, W.H.; Chang, C.I.; Lin, W.C.; Wu, L.L.; Lee, H.L.; Chen, R.J.

    2013-01-01

    Background and purpose: Betel nut chewing is associated with oral cavity cancer in Taiwan. OC3 is an oral carcinoma cell line that was established from cells collected from a long-term betel nut chewer who does not smoke. After we found that microRNA-17-5p (miR-17-5p) is induced in OC3 cells, we used this cell line to examine the biological role(s) of this microRNA in response to exposure to ionizing radiation. Materials and methods: A combined SYBR green-based real-time PCR and oligonucleotide ligation assay was used to examine the expression of the miR-17 polycistron in irradiated OC3 cells. The roles of miR-17-5p and p21 were evaluated with specific antisense oligonucleotides (ODN) that were designed and used to inhibit their expression. Expression of the p21 protein was evaluated by Western blotting. The clonogenic assay and annexin V staining were used to evaluate cell survival and apoptosis, respectively. Cells in which miR-17-5p was stably knocked down were used to create ectopic xenografts to evaluate in vivo the role of miR-17-5p. Results: A radiation dose of 5 Gy significantly increased miR-17-5p expression in irradiated OC3 cells. Inhibition of miR-17-5p expression enhanced the radiosensitivity of the OC3 cells. We found that miR-17-5p downregulates radiation-induced p21 expression in OC3 cells and, by using a tumor xenograft model, it was found that p21 plays a critical role in increasing the radiosensitivity of OC3 cells in vitro and in vivo. Conclusion: miR-17-5p is induced in irradiated OC3 cells and it downregulates p21 protein expression, contributing to the radioresistance of OC3 cells. (orig.)

  20. MicroRNA-17-5p post-transcriptionally regulates p21 expression in irradiated betel quid chewing-related oral squamous cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.Y. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Dept. of Radiation-Oncology; HungKuang Univ., Taichung (China). Dept. of Biotechnology; Lin, K.C. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Dept. of Oral and Maxillofacial Surgery; Chiou, J.F. [Taipei Medical Univ., Taipei (China). Dept. of Radiology; Taipei Medical Univ. Hospital, Taipei (China). Dept. of Radiation Oncology; Taipei Medical Univ. Hospital, Taipei (China). Dept. of Hospice and Palliative Center; Taipei Medical Univ. Hospital, Taipei (China). Cancer Center; Jeng, S.C. [Taipei Medical Univ. Hospital, Taipei (China). Dept. of Radiation Oncology; Cheng, W.H.; Chang, C.I. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Dept. of Hemato-Ongology; Lin, W.C. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Div. of Thoracic Surgery; Wu, L.L. [National Taiwan Univ. Hospital, Taipei (China). Dept. of Ophthalmology; Lee, H.L. [Taipei Medical Univ., Wan Fang Hospital, Taipei (China). Dept. of Radiation-Oncology; Chen, R.J. [National Taiwan Univ. Hospital and National Taiwan Univ., Taipei (China). Dept. of Obstetrics and Gynecology

    2013-08-15

    Background and purpose: Betel nut chewing is associated with oral cavity cancer in Taiwan. OC3 is an oral carcinoma cell line that was established from cells collected from a long-term betel nut chewer who does not smoke. After we found that microRNA-17-5p (miR-17-5p) is induced in OC3 cells, we used this cell line to examine the biological role(s) of this microRNA in response to exposure to ionizing radiation. Materials and methods: A combined SYBR green-based real-time PCR and oligonucleotide ligation assay was used to examine the expression of the miR-17 polycistron in irradiated OC3 cells. The roles of miR-17-5p and p21 were evaluated with specific antisense oligonucleotides (ODN) that were designed and used to inhibit their expression. Expression of the p21 protein was evaluated by Western blotting. The clonogenic assay and annexin V staining were used to evaluate cell survival and apoptosis, respectively. Cells in which miR-17-5p was stably knocked down were used to create ectopic xenografts to evaluate in vivo the role of miR-17-5p. Results: A radiation dose of 5 Gy significantly increased miR-17-5p expression in irradiated OC3 cells. Inhibition of miR-17-5p expression enhanced the radiosensitivity of the OC3 cells. We found that miR-17-5p downregulates radiation-induced p21 expression in OC3 cells and, by using a tumor xenograft model, it was found that p21 plays a critical role in increasing the radiosensitivity of OC3 cells in vitro and in vivo. Conclusion: miR-17-5p is induced in irradiated OC3 cells and it downregulates p21 protein expression, contributing to the radioresistance of OC3 cells. (orig.)

  1. Detecção imunoistoquímica das oncoproteínas p21ras, c-myc E p53 no carcinoma hepatocelular e no tecido hepático não-neoplásico Immunohistochemical detection of p21ras, c-myc and p53 oncoproteins in hepatocellular carcinoma and in non-neoplastic liver tissue

    Directory of Open Access Journals (Sweden)

    Vera Lucia Nunes Pannain

    2004-12-01

    Full Text Available RACIONAL: A hepatocarcinogênese é um processo no qual as alterações genéticas e epigenéticas são bem conhecidas em modelos animais, mas carece de estudos no homem. OBJETIVOS: Analisar a freqüência das oncoproteínas p21ras, c-myc e p53 no carcinoma hepatocelular e no fígado não-neoplásico. Verificar ainda a associação destas oncoproteínas com os padrões e graus histológicos, assim como com as infecções pelos vírus das hepatites B e C. MÉTODOS: Foi analisada por método imunoistoquímico a detecção das oncoproteínas p21ras, c-myc e p53 em 47 casos de carcinoma hepatocelular e no tecido não-neoplásico circunjacente ao tumor (40 casos. RESULTADOS: As oncoproteínas p21ras, c-myc e p53 foram detectadas, respectivamente, em 44,7%, 53,2% e 36,2% dos casos de carcinoma hepatocelular. A imunorreatividade do p21ras e c-myc mostrou uma associação significativa. Contudo, não houve associação significativa entre a detecção do p21ras, c-myc e p53 com os diferentes graus e padrões histológicos, nem tampouco com as infecções pelos vírus das hepatites B e C. A mesma associação significativa entre o p21ras e c-myc foi encontrada no tecido não-neoplásico dos casos de cirrose em relação aos que não apresentaram cirrose, enquanto que o p53 foi negativo em todos os casos. CONCLUSÕES: A imunorreatividade das oncoproteínas p21ras, c-myc e p53 corrobora evidências prévias de sua detecção no carcinoma hepatocelular, o que sugere poder haver participação destas proteínas na hepatocarcinogênese humana. A significativa associação entre as proteínas p21ras, c-myc e p53 no carcinoma hepatocelular e na cirrose pode apontar uma interação entre as mesmas, sobretudo na hepatocarcinogênese pela via da cirrose.BACKGROUND: Genetic and epigenetic alterations have been described in animal hepatocarcinogenesis models but need to be studied in human being. AIMS: To assess the immunoreactivity of p21ras, c-myc and p53

  2. Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells.

    Science.gov (United States)

    Zhou, Zhihui; Yin, Yanlin; Chang, Qun; Sun, Guanqun; Lin, Jiahui; Dai, Yalei

    2017-04-01

    To reveal whether B-myb is involved in preventing senescence of vascular endothelial cells, and if so, to identify possible mechanisms for it. C57/BL6 male mice and primary human aortic endothelial cells (HAECs) were used. Bleomycin was applied to induce stress-related premature senescence. B-myb knockdown was achieved using an siRNA technique and cell senescence was assessed using the senescence-associated β-galactosidase (SA-β-gal) assay. Intracellular reactive oxygen species (ROS) production was analysed using an ROS assay kit and cell proliferation was evaluated using KFluor488 EdU kit. Capillary tube network formation was determined by Matrigel assay. Expressions of mRNA and protein levels were detected by real-time PCR and western blotting. B-myb expression significantly decreased, while p53 and p21 expressions increased in the aortas of aged mice. This expression pattern was also found in replicative senescent HAECs and senescent HAECs induced by bleomycin. B-myb knockdown resulted in upregulation of p22 phox , ROS accumulation and cell senescence of HAECs. Downregulation of B-myb significantly inhibited cell proliferation and capillary tube network formation and activated the p53/p21 signalling pathway. Blocking ROS production or inhibiting p53 activation remarkably attenuated SA-β-gal activity and delayed cell senescence induced by B-myb-silencing. Downregulation of B-myb induced senescence by upregulation of p22 phox and activation of the ROS/p53/p21 pathway, in our vascular endothelial cells, suggesting that B-myb may be a novel candidate for regulating cell senescence to protect against endothelial senescence-related cardiovascular diseases. © 2016 John Wiley & Sons Ltd.

  3. The quiescent and mitogen stimulated peripheral blood mononuclear cells after gamma irradiation and their P53, P21 and H2AX expression

    International Nuclear Information System (INIS)

    Vilasova, Z.; Vavrova, J.; Sinkorova, Z.; Tichy, A.; Oesterreicher, J.; Rezacova, M.; Zoelzer, F.

    2008-01-01

    The aim of this study was to compare reaction of quiescent and proliferating PHA (mitogenic lectin phytohemagglutinin)-stimulated human peripheral blood mononuclear cells (PBMCs) to γ-irradiation and analyze changes of proteins related to repair if DNA damage and apoptosis, such as γH2A.X, p53 and its phosphorylations on serine 15 and 392, and p21. Protein changes induced by radiation are different in quiescent and stimulated PBMCs. W e analyzed changes in proteins related to DNA damage repair and apoptosis using the western blot method in quiescent and stimulated PBMCs. Western blot technique can detect γH2A.X increase only at later times, when the phosphorylation of H2A.X is related to the onset of apoptosis (24-72 h after irradiation by the dose of 4 Gy). The level of H2A.X phosphorylation increased after stimulation of PBMC by PHA (72 h, 10 μg/ml) and as shown here it was detectable by western blot analysis. The increase in γH2A.X that we detected by western blot 4 h after irradiation of stimulated lymphocytes was dose dependent. It can be concluded that measurement of γH2A.X during the first hours after the irradiation is a good marker of the received dose of radiation. We compared the dynamics of p53 induction after irradiation by IR in both quiescent and stimulated lymphocytes. p53 increase was observed only in stimulated lymphocytes, as was p53 phosphorylation at serines-392 and -15. The increase in the amount of p53 was not dose-dependent 4 h after the irradiation. On the other hand, phosphorylation of p53 at serine-15 analyzed 4 h after the irradiation is dose-dependent over the studied dose range. Despite the fact that p53 was not detected in quiescent lymphocytes and a reaction to irradiation was not observed either, p21 levels increased after irradiation in both quiescent and stimulated lymphocytes in a dose-dependent manner. IR induces phosphorylation of p53 at both serines-15 and -392 in PHA stimulated human lymphocytes. However

  4. Genetic variants in loci 1p13 and 9p21 and fatal coronary heart disease in a Norwegian case-cohort study.

    Science.gov (United States)

    Jansen, Mona Dverdal; Knudsen, Gun Peggy; Myhre, Ronny; Høiseth, Gudrun; Mørland, Jørg; Næss, Øyvind; Tambs, Kristian; Magnus, Per

    2014-05-01

    Single nucleotide polymorphisms (SNPs) in loci 1p13 and 9p21 have previously been found to be associated with incident coronary heart disease (CHD). This study aimed to investigate whether these SNPs show associations with fatal CHD in a population-based cohort study after adjustment for socioeconomic- and lifestyle-related CHD risk factors not commonly included in genetic association studies. Using the population-based Cohort of Norway (CONOR), a nested case-cohort study was set up and DNA from 2,953 subjects (829 cases and 2,124 non-cases) were genotyped. The association with fatal CHD was estimated for four SNPs, three from locus 1p13 and one from locus 9p21. Multivariable Cox regression was used to estimate unstratified and gender-stratified hazard ratios while adjusting for major CHD risk factors. The associations between three SNPs from locus 1p13 and non-HDL cholesterol levels were also estimated. Men homozygous for the risk alleles on rs1333049 (9p21) and rs14000 (1p13) were found to have significantly increased hazard ratios in crude and adjusted models, and the hazard ratios remained statistically significant when both genders were analyzed together. Adjustment for additional socioeconomic- and lifestyle-related CHD risk factors influenced the association estimates only slightly. No significant associations were observed between the other two SNPs in loci 1p13 (rs599839 and rs646776) and CHD mortality in either gender. Both rs599839 and rs646776 showed significant, gradual increases in non-HDL cholesterol levels with increasing number of risk alleles. This study confirms the association between 9p21 (rs1333049) and fatal CHD in a Norwegian population-based cohort. The effect was not influenced by several socioeconomic- and lifestyle-related risk factors. Our results show that 1p13 (rs14000) may also be associated with fatal CHD. SNPs at 1p13 (rs599839 and rs646776) were associated with non-HDL cholesterol levels.

  5. A synthetic peptide derived from alpha-fetoprotein inhibits the estradiol-induced proliferation of mammary tumor cells in culture through the modulation of p21.

    Science.gov (United States)

    Sierralta, Walter D; Epuñan, María J; Reyes, José M; Valladares, Luis E; Pino, Ana M

    2008-01-01

    A stable cyclized 9-mer peptide (cP) containing the active site of alpha-alpha fetoprotein (alphaFP) has been shown to be effective for prevention of estrogen-stimulated tumor cell proliferation in culture or of xenographt growth in immunodeficient mice. cP does not block 17beta-estradiol (E2) binding to its receptors, but rather appears to interfere with intracellular processing of the signal that supports growth. To obtain insight on that mechanism we studied the effect of cP on the proliferation of MCF-7 cells in culture. Proliferation in the presence of 2 microM E2 is decreased up to 40% upon addition of 2 microg ml(-1) cP to the medium; the presence of cP did not increase cell death, cP reduced also the proliferation of estrogen-dependent ZR75-1 cells but had no effect on autonomous MDA-MB-231 cells, cP did not modify the number of binding sites for labeled E2 or affected cell death. We detected increased nuclear p21Cip1 immunoreactivity after cP treatment. Our results suggest that cP acts via p21Cip1 to slow the process of MCF-7 cells through the cycle.

  6. Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic β-Cells*

    Science.gov (United States)

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-01-01

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945

  7. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells.

    Science.gov (United States)

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-07-27

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.

  8. Prognostic value of TP53 transcriptional activity on p21 and bax in patients with esophageal squamous cell carcinomas treated by definitive chemoradiotherapy

    International Nuclear Information System (INIS)

    Michel, Pierre; Magois, Karine; Robert, Valerie; Chiron, Anne; Lepessot, Florence; Bodenant, Corinne; Roque, Isabelle; Seng, Sok H.; Frebourg, Thierry; Paillot, Bernard

    2002-01-01

    Purpose: The aim of this study was to evaluate biologic factors on survival and clinical response after definitive concomitant chemoradiotherapy (CRT) in patients with esophageal squamous cell carcinoma (ESCC). Methods and Materials: TP53 protein hyperexpression (immunochemistry [IHC]) and functional assay (FA) of TP53, measuring the ability of TP53 to transactivate p21 and bax reporter systems, were performed in patients with ESCC treated by CRT. The impact of parameters studied on survival and clinical response to CRT was assessed. Results: Thirty-eight patients with ESCC were included. TP53 alterations were detected in 84.2% of cases with FA. All TP53 mutations abolished the transactivation of p21 and bax reporter systems. After CRT, complete response rate was 55.3%. The median survival of the population was 17.5 months. Serum albumin (p=0.002), weight loss <10% (p=0.005), and response to treatment (p<0.001) were significantly linked with survival. TP53 alteration in FA was not significantly predictive of response to CRT (p=0.132) nor survival (p=0.154). Conclusions: Our results suggest that wild-type TP53 in ESCC could be associated with good response to definitive CRT. However, the small rate of ESCC with wild-type TP53 suggests that systematic determination of TP53 status is not appropriate for the management of the ESCC population

  9. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemo-resistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals

    Science.gov (United States)

    Cui, Yun; Sun, Yin; Hu, Shuai; Luo, Jie; Li, Lei; Li, Xin; Yeh, Shuyuan; Jin, Jie; Chang, Chawnshang

    2016-01-01

    Prostatic neuroendocrine cells (NE) are an integral part of prostate cancer (PCa) that are associated with PCa progression. As the current androgen-deprivation therapy (ADT) with anti-androgens may promote the neuroendocrine PCa (NEPCa) development, and few therapies can effectively suppress NEPCa, understanding the impact of NEPCa on PCa progression may help us to develop better therapies to battle PCa. Here we found NEPCa cells could increase the docetaxel-resistance of their neighboring PCa cells. Mechanism dissection revealed that through secretion of PTHrP, NEPCa cells could alter the p38/MAPK/Hsp27 signals in their neighboring PCa cells that resulted in increased androgen receptor (AR) activity via promoting AR nuclear translocation. The consequences of increased AR function might then increase docetaxel-resistance via increasing p21 expression. In vivo xenograft mice experiments also confirmed NEPCa could increase the docetaxel-resistance of neighboring PCa, and targeting this newly identified PTHrP/p38/Hsp27/AR/p21 signaling pathway with either p38 inhibitor (SB203580) or sh-PTHrP may result in improving/restoring the docetaxel sensitivity to better suppress PCa. PMID:27375022

  10. The expression of cyclin-dependent kinase inhibitors p15, p16, p21, and p27 during ovarian follicle growth initiation in the mouse

    Directory of Open Access Journals (Sweden)

    Bayrak Aykut

    2003-05-01

    Full Text Available Abstract Background Cyclins regulate the cell cycle in association with cyclin dependent kinases (CDKs. CDKs are under inhibitory control of cyclin dependent kinase inhibitors (CDKIs. Method In this study we tested the expression of CDKIs p15, p16, p21 and p27 by immunohistochemistry to determine the role of CDKIs in the initiation of primordial follicle growth. Ovaries were collected from 60-day-old cycling B6D2F1/J mice (n = 16. Results Expression of p15, p16, p21 and p27 did not vary in granulosa and theca cells by the follicle stage. However, p16 staining was stronger (++ in the oocytes of all primordial, and 57.4 ± 3.1% of primary follicles compared to the remaining primary and more advanced follicles (+. Interestingly, primary follicles with weaker (+ oocyte staining for p16 had significantly larger mean follicle diameter compared to the primary and primordial follicles with stronger (++ oocyte staining (55.6 ± 2.1 vs. 32.0 ± 1.0 and 26.5 ± 0.7 μm, respectively, p Conclusions These preliminary findings suggest that the initiation of oocyte growth, which seems to lead follicle growth, is associated with diminished p16 expression in the mouse ovary. Further studies are needed to investigate the factors that regulate the expression of p16 in the oocyte, which might also govern the initiation of primordial follicle growth.

  11. Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway.

    Science.gov (United States)

    Zhang, Erli; Guo, Qianyun; Gao, Haiyang; Xu, Ruixia; Teng, Siyong; Wu, Yongjian

    2015-01-01

    Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as "metabolic memory." Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how "metabolic memory" would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement of SIRT1 axis as well as the protective effects of resveratrol (RSV) and metformin (MET), two potent SIRT1 activators, during the occurrence of "metabolic memory" of cellular senescence (senescent "memory"). Human umbilical vascular endothelial cells (HUVECs) were cultured in either normal glucose (NG)/high glucose (HG) media for 6 days, or 3 days of HG followed by 3 days of NG (HN), with or without RSV or MET treatment. It was shown that HN incubation triggered persistent downregulation of deacetylase SIRT1 and upregulation of acetyltransferase p300, leading to sustained hyperacetylation (at K382) and activation of p53, and subsequent p53/p21-mediated senescent "memory." In contrast, senescent "memory" was abrogated by overexpression of SIRT1 or knockdown of p300. Interestingly, we found that SIRT1 and p300 could regulate each other in response to HN stimulation, suggesting that a delicate balance between acetyltransferases and deacetylases may be particularly important for sustained acetylation and activation of non-histone proteins (such as p53), and eventually the occurrence of "metabolic memory." Furthermore, we found that RSV or MET treatment prevented senescent "memory" by modulating SIRT1/p300/p53/p21 pathway. Notably, early and continuous treatment of MET, but not RSV, was particularly important for preventing senescent "memory." In conclusion, short-term high glucose stimulation could induce sustained endothelial senescence via SIRT1/p300/p53/p21 pathway. RVS or MET

  12. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production

    International Nuclear Information System (INIS)

    Shen, S.-C.; Ko, C.H.; Tseng, S.-W.; Tsai, S.-H.; Chen, Y.-C.

    2004-01-01

    Flavonoids exist extensively in plants and Chinese herbs, and several biological effects of flavonoids have been demonstrated. The antitumor effects in colorectal carcinoma cells (HT29, COLO205, and COLO320HSR) of eight flavanones including flavanone, 2'-OH flavanone, 4'-OH flavanone, 6-OH flavanone, 7-OH flavanone, naringenin, nargin, and taxifolin were investigated. Results of the MTT assay indicate that 2'-OH flavanone showed the most potent cytotoxic effect on these three cells, and cell death induced by 2'-OH flavanone was via the occurrence of DNA ladders, apoptotic bodies, and hypodiploid cells, all characteristics of apoptosis. Induction of caspase 3 protein processing and enzyme activity associated with cleavage of poly(ADP-ribose) polymerase (PARP) was identified in 2'-OH flavanone-treated cells, and a peptidyl inhibitor (Ac-DEVD-FMK) of caspase 3 attenuated the cytotoxicity of 2'-OH flavanone in COLO205 and HT-29 cells. Elevation of p21 (but not p53) and a decrease in Mcl-1 protein were found in 2'-OH flavanone-treated COLO205 and HT-29 cells. Elevation of intracellular reactive oxygen species (ROS) was detected in 2'-OH flavanone-treated cells by the 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA) assay, and ROS scavengers including 4,5-dihydro-1,3-benzene disulfonic acid (tiron), catalase, superoxide dismutase (SOD), and pyrrolidine dithiocarbamate (PDTC) suppressed the 2'-OH flavanone-induced cytotoxic effect. Subcutaneous injection of COLO205 induced tumor formation in nude mice, and 2'-OH flavanone showed a significant inhibitory effect on tumor formation. The appearance of apoptotic cells with H and E staining, and an increase in p21, but not p53, protein by immunohistochemistry were observed in tumor tissues under 2'-OH flavanone treatment. Primary tumor cells (COLO205-X) derived from a tumor specimen elicited by COLO205 were established, and 2'-OH flavanone showed an significant apoptotic effect in COLO205-X cells in accordance with the

  13. Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis.

    Science.gov (United States)

    Devadas, Deepika; Koithan, Thalea; Diestel, Randi; Prank, Ute; Sodeik, Beate; Döhner, Katinka

    2014-11-01

    Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the

  14. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    International Nuclear Information System (INIS)

    Yu, Zhendong; Wang, Hao; Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li; Li, Pengfei

    2009-01-01

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  15. Involvement of the actin cytoskeleton and p21rho-family GTPases in the pathogenesis of the human protozoan parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    G.D. Godbold

    1998-08-01

    Full Text Available It has been estimated that infection with the enteric protozoan parasite Entamoeba histolytica kills more than 50,000 people a year. Central to the pathogenesis of this organism is its ability to directly lyse host cells and cause tissue destruction. Amebic lesions show evidence of cell lysis, tissue necrosis, and damage to the extracellular matrix. The specific molecular mechanisms by which these events are initiated, transmitted, and effected are just beginning to be uncovered. In this article we review what is known about host cell adherence and contact-dependent cytolysis. We cover the involvement of the actin cytoskeleton and small GTP-binding proteins of the p21rho-family in the process of cell killing and phagocytosis, and also look at how amebic interactions with molecules of the extracellular matrix contribute to its cytopathic effects.

  16. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk

    Science.gov (United States)

    Broderick, Peter; Chen, Bowang; Johnson, David C; Försti, Asta; Vijayakrishnan, Jayaram; Migliorini, Gabriele; Dobbins, Sara E; Holroyd, Amy; Hose, Dirk; Walker, Brian A; Davies, Faith E; Gregory, Walter A; Jackson, Graham H; Irving, Julie A; Pratt, Guy; Fegan, Chris; Fenton, James AL; Neben, Kai; Hoffmann, Per; Nöthen, Markus M; Mühleisen, Thomas W; Eisele, Lewin; Ross, Fiona M; Straka, Christian; Einsele, Hermann; Langer, Christian; Dörner, Elisabeth; Allan, James M; Jauch, Anna; Morgan, Gareth J; Hemminki, Kari; Houlston, Richard S; Goldschmidt, Hartmut

    2016-01-01

    To identify variants for multiple myeloma risk, we conducted a genome-wide association study with validation in additional series totaling 4,692 cases and 10,990 controls. We identified four risk loci at 3q26.2 (rs10936599, P=8.70x10-14), 6p21.33 (rs2285803, PSORS1C2; P= 9.67x10-11), 17p11.2 (rs4273077, TNFRSF13B; P=7.67x10-9) and 22q13.1 (rs877529, CBX7; P=7.63x10-16). These data provide further evidence for genetic susceptibility to this B-cell hematological malignancy and insight into the biological basis of predisposition. PMID:23955597

  17. Structural and functional organization of the HF.10 human zinc finger gene (ZNF35) located on chromosome 3p21-p22

    DEFF Research Database (Denmark)

    Lanfrancone, L; Pengue, G; Pandolfi, P P

    1992-01-01

    We report the structural and functional characterization of the HF.10 zinc finger gene (ZNF35) in normal human cells, as well as a processed pseudogene. The HF.10 gene spans about 13 kb and it is interrupted by three introns. All 11 zinc finger DNA-binding domains are contiguously encoded within...... and partial nucleotide sequencing of the HF.10 pseudogene indicated that it has arisen by retroposition of spliced HF.10 mRNA. In situ hybridization experiments revealed that both the functional locus and the pseudogene map to chromosome 3p21p22, a region that is frequently deleted in small cell lung...... and renal carcinomas. Hybridization of the HF.10 gene and the HF.10 pseudogene DNA probes to metaphases from a small cell lung carcinoma cell line with the 3p deletion revealed that both loci are part of the deleted chromosome region....

  18. Genome-wide meta-analysis identifies regions on 7p21 (AHR and 15q24 (CYP1A2 as determinants of habitual caffeine consumption.

    Directory of Open Access Journals (Sweden)

    Marilyn C Cornelis

    2011-04-01

    Full Text Available We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4 × 10(-19, near AHR, and 15q24 (P = 5.2 × 10(-14, between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2.

  19. Jackson-Weiss syndrome: Clinical and radiological findings in a large kindred and exclusion of the gene from 7p21 and 5qter

    Energy Technology Data Exchange (ETDEWEB)

    Ades, L.C.; Haan, E.A.; Mulley, J.C.; Senga, I.P.; Morris, L.L.; David, D.J. [Women`s and Children`s Hospital, North Adelaide (Australia)

    1994-06-01

    We describe the clinical and radiological manifestations of the Jackson-Weiss syndrome (JWS) in a large South Australian kindred. Radiological abnormalities not previously described in the hands include coned epiphyses, distal and middle phalangeal hypoplasia, and carpal bone malsegmentation. New radiological findings in the feet include coned epiphyses, hallux valgus, phalangeal, tarso-navicular and calcaneo-navicular fusions, and uniform absence of metatarsal fusions. Absence of linkage to eight markers along the short arm of chromosome 7 excluded allelian between JWS and Saethre-Chotzen syndrome at 7p21. No linkage was detected to D5S211, excluding allelism to another recently described cephalosyndactyly syndrome mapping to 5qter. 35 refs., 5 figs., 4 tabs.

  20. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhendong, E-mail: zdyu@hotmail.com [Department of Clinical laboratory, Peking University Shenzhen Hospital, Guangdong (China); Wang, Hao [Department of pathology, The Chinese University of Hong Kong, Hong Kong (China); Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li [Department of Clinical laboratory, Peking University Shenzhen Hospital, Guangdong (China); Li, Pengfei, E-mail: lipengfei@cuhk.edu.hk [Department of pathology, The Chinese University of Hong Kong, Hong Kong (China)

    2009-09-04

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  1. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc

    International Nuclear Information System (INIS)

    Gao, Feng-Hou; Liu, Feng; Zhao, Ying-Zheng; Fang, Yong; Chen, Fang-Yuan; Wu, Ying-Li; Hu, Xiao-Hui; Li, Wei; Liu, Hua; Zhang, Yan-Jie; Guo, Zhu-Ying; Xu, Mang-Hua; Wang, Shi-Ting; Jiang, Bin

    2010-01-01

    Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer. Effects of oridonin on cell proliferation were determined by using a CCK-8 Kit. Cell cycle distribution was determined by flow cytometry. Apoptosis was examined by analyzing subdiploid population and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Senescent cells were determined by senescence-associated β-galactosidase activity analysis. Semi-quantitative RT-PCR was used to examine the changes of mRNA of p16, p21, p27 and c-myc. The concomitant changes of protein expression were analyzed with Western blot. Expression of AcH3 and AcH4 were examined by immunofluorescence staining and Western blots. Effects of oridonin on colony formation of SW1116 were examined by Soft Agar assay. The in vivo efficacy of oridonin was detected using a xenograft colorectal cancer model in nude mice. Oridonin induced potent growth inhibition, cell cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice. With western blot and reverse transcription-PCR, we further showed that the antitumor activities of oridonin correlated with induction of histone (H3 and H4) hyperacetylation, activation of p21, p27 and p16, and suppression of c-myc expression. Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment

  2. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc

    Directory of Open Access Journals (Sweden)

    Zhao Ying-Zheng

    2010-11-01

    Full Text Available Abstract Background Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer. Methods Effects of oridonin on cell proliferation were determined by using a CCK-8 Kit. Cell cycle distribution was determined by flow cytometry. Apoptosis was examined by analyzing subdiploid population and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Senescent cells were determined by senescence-associated β-galactosidase activity analysis. Semi-quantitative RT-PCR was used to examine the changes of mRNA of p16, p21, p27 and c-myc. The concomitant changes of protein expression were analyzed with Western blot. Expression of AcH3 and AcH4 were examined by immunofluorescence staining and Western blots. Effects of oridonin on colony formation of SW1116 were examined by Soft Agar assay. The in vivo efficacy of oridonin was detected using a xenograft colorectal cancer model in nude mice. Results Oridonin induced potent growth inhibition, cell cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice. With western blot and reverse transcription-PCR, we further showed that the antitumor activities of oridonin correlated with induction of histone (H3 and H4 hyperacetylation, activation of p21, p27 and p16, and suppression of c-myc expression. Conclusion Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment.

  3. Human amniotic fluid stem cells (hAFSCs expressing p21 and cyclin D1 genes retain excellent viability after freezing with (dimethyl sulfoxide DMSO

    Directory of Open Access Journals (Sweden)

    Shiva Gholizadeh-Ghaleh Aziz

    2018-04-01

    Full Text Available Human amniotic fluid stem cells (hAFSCs have features intermediate between embryonic and adult SCs, can differentiate into lineages of all three germ layers, and do not develop into tumors in vivo. Moreover, hAFSCs can be easily obtained in routine procedures and there is no ethical or legal limitations regarding their use for clinical and experimental applications. The aim of this study was to assess the effect of slow freezing/thawing and two different concentrations of DMSO (10% DMSO + 90% fetal bovine serum [FBS] and 5% DMSO + 95% FBS on the survival of hAFSCs. hAFSCs were obtained from 5 pregnant women during amniocentesis at 16–22 weeks of gestation. The expression of pluripotency markers (Octamer-binding transcription factor 4 [Oct4] and NANOG by reverse transcription polymerase chain reaction and cell surface markers (cluster of differentiation [CD31], CD44, CD45, and CD90 by flow cytometry was analyzed before and after the slow-freezing. Cell viability was assessed by trypan blue exclusion or MTT assay. Quantitative mRNA expression of Oct4, NANOG, cyclin D1 and p21 was determined by real-time PCR before and after the slow-freezing. Pluripotency of hAFSCs was confirmed by NANOG and POU5F1 (Oct4 gene expression before and after slow-freezing. All hAFSC cultures were positive for CD44 and CD90. A higher viability of hAFSCs was observed after freezing with 90% FBS + 10% DMSO. There was increased expression of NANOG and decreased expression of POU5F1 gene after freezing, compared to control cells (before freezing. DMSO and the process of freezing did not significantly change the expression of p21 and cyclin D1 genes in hAFSCs. Overall, our results indicate the applicability of slow-freezing and DMSO in cryopreservation of SCs.

  4. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Karin E Smedby

    2011-04-01

    Full Text Available Non-Hodgkin lymphoma (NHL represents a diverse group of hematological malignancies, of which follicular lymphoma (FL is a prevalent subtype. A previous genome-wide association study has established a marker, rs10484561 in the human leukocyte antigen (HLA class II region on 6p21.32 associated with increased FL risk. Here, in a three-stage genome-wide association study, starting with a genome-wide scan of 379 FL cases and 791 controls followed by validation in 1,049 cases and 5,790 controls, we identified a second independent FL-associated locus on 6p21.32, rs2647012 (OR(combined  = 0.64, P(combined  = 2 × 10(-21 located 962 bp away from rs10484561 (r(2<0.1 in controls. After mutual adjustment, the associations at the two SNPs remained genome-wide significant (rs2647012:OR(adjusted  = 0.70, P(adjusted  =  4 × 10(-12; rs10484561:OR(adjusted  = 1.64, P(adjusted  = 5 × 10(-15. Haplotype and coalescence analyses indicated that rs2647012 arose on an evolutionarily distinct haplotype from that of rs10484561 and tags a novel allele with an opposite (protective effect on FL risk. Moreover, in a follow-up analysis of the top 6 FL-associated SNPs in 4,449 cases of other NHL subtypes, rs10484561 was associated with risk of diffuse large B-cell lymphoma (OR(combined  = 1.36, P(combined  =  1.4 × 10(-7. Our results reveal the presence of allelic heterogeneity within the HLA class II region influencing FL susceptibility and indicate a possible shared genetic etiology with diffuse large B-cell lymphoma. These findings suggest that the HLA class II region plays a complex yet important role in NHL.

  5. MiR-146b-5p overexpression attenuates stemness and radioresistance of glioma stem cells by targeting HuR/lincRNA-p21/β-catenin pathway

    Science.gov (United States)

    Yang, Wei; Yu, Hongquan; Shen, Yueming; Liu, Yingying; Yang, Zhanshan; Sun, Ting

    2016-01-01

    A stem-like subpopulation existed in GBM cells, called glioma stem cells (GSCs), might contribute to cancer invasion, angiogenesis, immune evasion, and therapeutic resistance, providing a rationale to eliminate GSCs population and their supporting niche for successful GBM treatment. LincRNA-p21, a novel regulator of cell proliferation, apoptosis and DNA damage response, is found to be downregulated in several types of tumor. However, little is known about the role of lincRNA-p21 in stemness and radioresistance of GSCs and its regulating mechanisms. In this study, we found that lincRNA-p21 negatively regulated the expression and activity of β-catenin in GSCs. Downregulation of lincRNA-p21 in GSCs was resulted from upregulation of Hu antigen R (HuR) expression caused by miR-146b-5p downregulation. MiR-146b-5p overexpression increased apoptosis and radiosensitivity, decreased cell viability, neurosphere formation capacity and stem cell marker expression, and induced differentiation in GSCs. Moreover, knock-down lincRNA-p21 or HuR and β-catenin overexpression could rescue the phenotypic changes resulted from miR-146b-5p overexpression in GSCs. These findings suggest that targeting the miR-146b-5p/HuR/lincRNA-p21/β-catenin signaling pathway may be valuable therapeutic strategies against glioma. PMID:27166258

  6. Internal Tandem Duplication in FLT3 Attenuates Proliferation and Regulates Resistance to the FLT3 Inhibitor AC220 by Modulating p21Cdkn1a and Pbx1 in Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Mariko Abe

    Full Text Available Internal tandem duplication (ITD mutations in the Fms-related tyrosine kinase 3 (FLT3 gene (FLT3-ITD are associated with poor prognosis in patients with acute myeloid leukemia (AML. Due to the development of drug resistance, few FLT3-ITD inhibitors are effective against FLT3-ITD+ AML. In this study, we show that FLT3-ITD activates a novel pathway involving p21Cdkn1a (p21 and pre-B cell leukemia transcription factor 1 (Pbx1 that attenuates FLT3-ITD cell proliferation and is involved in the development of drug resistance. FLT3-ITD up-regulated p21 expression in both mouse bone marrow c-kit+-Sca-1+-Lin- (KSL cells and Ba/F3 cells. The loss of p21 expression enhanced growth factor-independent proliferation and sensitivity to cytarabine as a consequence of concomitantly enriching the S+G2/M phase population and significantly increasing the expression of Pbx1, but not Evi-1, in FLT3-ITD+ cells. This enhanced cell proliferation following the loss of p21 was partially abrogated when Pbx1 expression was silenced in FLT3-ITD+ primary bone marrow colony-forming cells and Ba/F3 cells. When FLT3-ITD was antagonized with AC220, a selective inhibitor of FLT3-ITD, p21 expression was decreased coincident with Pbx1 mRNA up-regulation and a rapid decline in the number of viable FLT3-ITD+ Ba/F3 cells; however, the cells eventually became refractory to AC220. Overexpressing p21 in FLT3-ITD+ Ba/F3 cells delayed the emergence of cells that were refractory to AC220, whereas p21 silencing accelerated their development. These data indicate that FLT3-ITD is capable of inhibiting FLT3-ITD+ cell proliferation through the p21/Pbx1 axis and that treatments that antagonize FLT3-ITD contribute to the subsequent development of cells that are refractory to a FLT3-ITD inhibitor by disrupting p21 expression.

  7. Effect of irradiation on cell cycle, cell death and expression of its related proteins in normal human oral keratinocytes

    International Nuclear Information System (INIS)

    Kang, Mi Ae; Heo, Min Suk; Lee, Sam Sun; Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; Lee, Sul Mi; Jeon, In Seong

    2003-01-01

    To investigate the radiosensitivity of the normal human oral keratinocytes (NHOK), and the effect of irradiation on cell cycle and protein expression. To evaluate the radiosensitivity of NHOK, the number of colonies and cells were counted after irradiation and the SF2 (survival fraction as 2 Gy) value, and the cell survival curve fitted on a linear-quadratic model were obtained. LDH analysis was carried out to evaluate the necrosis of NHOK at 1, 2,3, and 4 days after 2, 10, and 20 Gy irradiation. Cell cycle arrest and the induction of apoptosis were analyzed using flow cytometry at 1, 2, 3, and 4 days after 2, 10, and 20 Gy irradiation. Finally, proteins related cell cycle arrest and apoptosis were analysed by Western blot. The number of survival cell was significantly decreased in a dose-dependent manner. The cell survival curve showed SF2, α, and β values to be 0.568, 0.209, and 0.020 respectively. At 20 Gy irradiated cells showed higher optical density than the control group. After irradiation, apoptosis was not observed but G2 arrest was observed in the NHOK cells. 1 day after 10 Gy irradiation, the expression of p53 remained unchanged, the p21 WAF1/Cip1 increased and the mdm2 decreased. The expression of bax, bcl-2, cyclin B1, and cyclin D remained unchanged. These results indicate that NHOK responds to irradiation by G2 arrest, which is possibly mediated by the expression of p21 WAF1/Cip1 , and that cell necrosis occurs by high dose irradiation.

  8. Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair.

    Science.gov (United States)

    Warbrick, E; Lane, D P; Glover, D M; Cox, L S

    1997-05-15

    Following genomic damage, the cessation of DNA replication is co-ordinated with onset of DNA repair; this co-ordination is essential to avoid mutation and genomic instability. To investigate these phenomena, we have analysed proteins that interact with PCNA, which is required for both DNA replication and repair. One such protein is p21Cip1, which inhibits DNA replication through its interaction with PCNA, while allowing repair to continue. We have identified an interaction between PCNA and the structure specific nuclease, Fen1, which is involved in DNA replication. Deletion analysis suggests that p21Cip1 and Fen1 bind to the same region of PCNA. Within Fen1 and its homologues a small region (10 amino acids) is sufficient for PCNA binding, which contains an 8 amino acid conserved PCNA-binding motif. This motif shares critical residues with the PCNA-binding region of p21Cip1. A PCNA binding peptide from p21Cip1 competes with Fen1 peptides for binding to PCNA, disrupts the Fen1-PCNA complex in replicating cell extracts, and concomitantly inhibits DNA synthesis. Competition between homologous regions of Fen1 and p21Cip1 for binding to the same site on PCNA may provide a mechanism to co-ordinate the functions of PCNA in DNA replication and repair.

  9. Enhancement of Cisplatin-Mediated Apoptosis in Ovarian Cancer Cells through Potentiating G2/M Arrest and p21 Upregulation by Combinatorial Epigallocatechin Gallate and Sulforaphane

    Directory of Open Access Journals (Sweden)

    Huaping Chen

    2013-01-01

    Full Text Available Advanced-stage ovarian cancer is characterized by high mortality due to development of resistance to conventional chemotherapy. Novel compounds that can enhance the efficacy of conventional chemotherapy in ovarian cancer may overcome this drug resistance. Consumption of green tea (epigallocatechin gallate, EGCG and cruciferous vegetables (sulforaphane, SFN is inversely associated with occurrence of ovarian cancer and has anticancer effects through targeting multiple molecules in cancer cells. However, the effects of EGCG and SFN combinational treatment on ovarian cancer cells and on efficacy of cisplatin to these cells are unknown. In this study, EGCG or SFN was used to treat both cisplatin-sensitive (A2780 and cisplatin-resistant (A2780/CP20 ovarian cancer cells alone or in combination with cisplatin. We found that EGCG and SFN combinational treatment can reduce cell viability of both ovarian cancer cell lines time- and dose-dependently. Furthermore, EGCG and SFN combinational treatment can enhance cisplatin-induced apoptosis and G2/M phase arrest, thereby enhancing the efficacy of cisplatin on both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. EGCG and SFN combinational treatment upregulated p21 expression induced by cisplatin in cisplatin-sensitive ovarian cancer cells, while p27 expression was not regulated by these treatments. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer.

  10. Ehlers-Danlos Syndrome, Hypermobility Type, Is Linked to Chromosome 8p22-8p21.1 in an Extended Belgian Family

    Directory of Open Access Journals (Sweden)

    Delfien Syx

    2015-01-01

    Full Text Available Joint hypermobility is a common, mostly benign, finding in the general population. In a subset of individuals, however, it causes a range of clinical problems, mainly affecting the musculoskeletal system. Joint hypermobility often appears as a familial trait and is shared by several heritable connective tissue disorders, including the hypermobility subtype of the Ehlers-Danlos syndrome (EDS-HT or benign joint hypermobility syndrome (BJHS. These hereditary conditions provide unique models for the study of the genetic basis of joint hypermobility. Nevertheless, these studies are largely hampered by the great variability in clinical presentation and the often vague mode of inheritance in many families. Here, we performed a genome-wide linkage scan in a unique three-generation family with an autosomal dominant EDS-HT phenotype and identified a linkage interval on chromosome 8p22-8p21.1, with a maximum two-point LOD score of 4.73. Subsequent whole exome sequencing revealed the presence of a unique missense variant in the LZTS1 gene, located within the candidate region. Subsequent analysis of 230 EDS-HT/BJHS patients resulted in the identification of three additional rare variants. This is the first reported genome-wide linkage analysis in an EDS-HT family, thereby providing an opportunity to identify a new disease gene for this condition.

  11. Substance P induces rapid and transient membrane blebbing in U373MG cells in a p21-activated kinase-dependent manner.

    Directory of Open Access Journals (Sweden)

    John Meshki

    Full Text Available U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R. Substance P (SP, the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells.

  12. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling.

    Science.gov (United States)

    Feng, Guijuan; Zheng, Ke; Cao, Tong; Zhang, Jinlong; Lian, Min; Huang, Dan; Wei, Changbo; Gu, Zhifeng; Feng, Xingmei

    2018-02-26

    Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.

  13. The discovery and the structural basis of an imidazo[4,5-b]pyridine-based p21-activated kinase 4 inhibitor.

    Science.gov (United States)

    Park, Jeung Kuk; Kim, Sunmin; Han, Yu Jin; Kim, Seong Hwan; Kang, Nam Sook; Lee, Hyuk; Park, SangYoun

    2016-06-01

    p21-Activated kinases (PAKs) which belong to the family of ste20 serine/threonine protein kinases regulate cytoskeletal reorganization, cell motility, cell proliferation, and oncogenic transformation which are all related to the cellular functions during cancer induction and metastasis. The fact that PAK mutations are detected in multiple tumor tissues makes PAKs a novel therapeutic drug target. In this study, an imidazo[4,5-b]pyridine-based PAK4 inhibitor, KY-04045 (6-Bromo-2-(3-isopropyl-1-methyl-1H-pyrazol-4-yl)-1H-imidazo[4,5-b]pyridine), was discovered using a virtual site-directed fragment-based drug design and was validated using an inhibition assay. Although PAK4 affinity to KY-04045 seems much weaker than that of the reported PAK4 inhibitors, the location of KY-04045 is clearly defined in the structure of PAK4 co-crystallized with KY-04045. The crystal structure illustrates that the pyrazole and imidazopyridine rings of KY-04045 are sufficient for mediating PAK4 hinge loop interaction. Hence, we believe that KY-04045 can be exploited as a basic building block in designing novel imidazo[4,5-b]pyridine-based PAK4 inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Notch1/3 and p53/p21 are a potential therapeutic target for APS-induced apoptosis in non-small cell lung carcinoma cell lines.

    Science.gov (United States)

    Zhang, Jing-Xi; Han, Yi-Ping; Bai, Chong; Li, Qiang

    2015-01-01

    Previous studies have shown that Astragalus polysaccharide (APS) can be applied to anti-cancer. However, the mechanism by which APS mediate this effect is unclear. In the present study, APS-mediated NSCLC cell apoptosis was investigated through the regulation of the notch signaling pathway. The cell viability was detected by the CCK8 assay. The mRNA and protein expression of notch1/3 and tumor suppressors were analyzed by RT-PCR and western blotting, respectively. The mRNA and protein of notch1 and notch3 were significantly up-regulated in tumor tissues as compared to non-tumor adjacent tissues. Treatment of human NSCLC cells with APS induced cell death in a dose-and time-dependent manner by using CCK8 assay. The mRNA and protein expression of notch1 and notch3 were significantly lower in NSCLC cells with APS treatment than that in control group. Moreover, western blotting analysis showed that treatment of H460 cells with APS significantly increased the pro-apoptotic Bax and caspase 8 levels, decreased the anti-apoptotic Bcl-2 level. Furthermore, p53, p21 and p16 were obviously up-regulated by APS treatment in H460 cell. This study demonstrated that APS-treated could inhibit proliferation and promote cell apoptosis, at least partially, through suppressing the expression of notch1 and notch3 and up-regulating the expression of tumor suppressors in H460 NSCLC cell lines.

  15. Cell free expression of hif1α and p21 in maternal peripheral blood as a marker for preeclampsia and fetal growth restriction.

    Directory of Open Access Journals (Sweden)

    Osnat Ashur-Fabian

    Full Text Available Preeclampsia, a severe unpredictable complication of pregnancy, occurs in 6% of pregnancies, usually in the second or third trimester. The specific etiology of preeclampsia remains unclear, although the pathophysiological hallmark of this condition appears to be an inadequate blood supply to the placenta. As a result of the impaired placental blood flow, intrauterine growth restriction (IUGR and consequential fetal oxidative stress may occur. Consistent with this view, pregnancies complicated by preeclampsia and IUGR are characterized by up-regulation of key transcriptional regulators of the hypoxic response including, hif1α and as well as p53 and its target genes. Recently, the presence of circulating cell-free fetal RNA has been documented in maternal plasma. We speculated that pregnancies complicated by preeclampsia and IUGR, will be associated with an abnormal expression of p53 and/or hif1α related genes in the maternal plasma. Maternal plasma from 113 singleton pregnancies (72 normal and 41 complicated pregnancies and 19 twins (9 normal and 10 complicated pregnancies were collected and cell free RNA was extracted. The expression of 18 genes was measured by one step real-time RT-PCR and was analyzed for prevalence of positive/negative expression levels. Results indicate that, among the genes examined, cell free plasma expressions of p21 and hif1α were more prevalent in pregnancies complicated by hypoxia and/or IUGR (p<0.001. To conclude, we present in this manuscript data to support the association between two possible surrogate markers of hypoxia and common complications of pregnancy. More work is needed in order to implement these findings in clinical practice.

  16. Analysis of the 9p21.3 sequence associated with coronary artery disease reveals a tendency for duplication in a CAD patient

    Science.gov (United States)

    Kouprina, Natalay; Noskov, Vladimir N.; Waterfall, Joshua J.; Walker, Robert L.; Meltzer, Paul S.; Topol, Eric J.; Larionov, Vladimir

    2018-01-01

    Tandem segmental duplications (SDs) greater than 10 kb are widespread in complex genomes. They provide material for gene divergence and evolutionary adaptation, while formation of specific de novo SDs is a hallmark of cancer and some human diseases. Most SDs map to distinct genomic regions termed ‘duplication blocks’. SDs organization within these blocks is often poorly characterized as they are mosaics of ancestral duplicons juxtaposed with younger duplicons arising from more recent duplication events. Structural and functional analysis of SDs is further hampered as long repetitive DNA structures are underrepresented in existing BAC and YAC libraries. We applied Transformation-Associated Recombination (TAR) cloning, a versatile technique for large DNA manipulation, to selectively isolate the coronary artery disease (CAD) interval sequence within the 9p21.3 chromosome locus from a patient with coronary artery disease and normal individuals. Four tandem head-to-tail duplicons, each ∼50 kb long, were recovered in the patient but not in normal individuals. Sequence analysis revealed that the repeats varied by 10-15 SNPs between each other and by 82 SNPs between the human genome sequence (version hg19). SNPs polymorphism within the junctions between repeats allowed two junction types to be distinguished, Type 1 and Type 2, which were found at a 2:1 ratio. The junction sequences contained an Alu element, a sequence previously shown to play a role in duplication. Knowledge of structural variation in the CAD interval from more patients could help link this locus to cardiovascular diseases susceptibility, and maybe relevant to other cases of regional amplification, including cancer. PMID:29632643

  17. Dietary turmeric modulates DMBA-induced p21ras, MAP kinases and AP-1/NF-κB pathway to alter cellular responses during hamster buccal pouch carcinogenesis

    International Nuclear Information System (INIS)

    Garg, Rachana; Ingle, Arvind; Maru, Girish

    2008-01-01

    The chemopreventive efficacy of turmeric has been established in experimental systems. However, its mechanism(s) of action are not fully elucidated in vivo. The present study investigates the mechanism of turmeric-mediated chemoprevention in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis at 2, 4, 6, 10 and 12 weeks. Dietary turmeric (1%) led to decrease in DMBA-induced tumor burden and multiplicity, and enhanced the latency period in parallel, to its modulatory effects on oncogene products and various cellular responses during HBP tumorigenesis. DMBA-induced expression of ras oncogene product, p21 and downstream target, the mitogen-activated protein kinases were significantly decreased by turmeric during HBP carcinogenesis. Turmeric also diminished the DMBA-induced mRNA expression of proto-oncogenes (c-jun, c-fos) and NF-κB, leading to decreased protein levels and in further attenuation of DMBA-induced AP-1/NF-κB DNA-binding in the buccal pouch nuclear extracts. Besides, buccal pouch of hamsters receiving turmeric diet showed significant alterations in DMBA-induced effects: (a) decrease in cell proliferation (diminished PCNA and Bcl2 expression), (b) enhanced apoptosis (increased expression of Bax, caspase-3 and apoptotic index), (c) decrease in inflammation (levels of Cox-2, the downstream target of AP-1/NF-κB, and PGE2) and (d) aberrant expression of differentiation markers, the cytokeratins (1, 5, 8, and 18). Together, the protective effects of dietary turmeric converge on augmenting apoptosis of the initiated cells and decreasing cell proliferation in DMBA-treated animals, which in turn, is reflected in decreased tumor burden, multiplicity and enhanced latency period. Some of these biomarkers are likely to be helpful in monitoring clinical trials and evaluating drug effect measurements

  18. Branched-chain amino acids enhance premature senescence through mammalian target of rapamycin complex I-mediated upregulation of p21 protein.

    Directory of Open Access Journals (Sweden)

    Masayuki Nakano

    Full Text Available Branched-chain amino acids (BCAAs have been applied as an oral supplementation to patients with liver cirrhosis. BCAAs not only improve nutritional status of patients but also decrease the incidence of liver cancer. Mammalian target of rapamycin (mTOR links cellular metabolism with growth and proliferation in response to nutrients, energy, and growth factors. BCAAs, especially leucine, have been shown to regulate protein synthesis through mTOR activities. On the other hand, cellular senescence is suggested to function as tumor suppressor mechanisms, and induced by a variety of stimuli including DNA damage-inducing drugs. However, it is not clear how BCAA supplementation prevents the incidence of liver cancer in patients with cirrhosis. Here we showed that human cancer cells, HepG2 and U2OS, cultured in medium containing BCAAs with Fischer's ratio about 3, which was shown to have highest activities to synthesize and secrete of albumin, had higher activities to induce premature senescence and elevate mTORC1 activities. Furthermore, BCAAs themselves enhanced the execution of premature senescence induced by DNA damage-inducing drugs, which was effectively prevented by rapamycin. These results strongly suggested the contribution of the mTORC1 pathway to the regulation of premature senescence. Interestingly, the protein levels of p21, a p53 target and well-known gene essential for the execution of cellular senescence, were upregulated in the presence of BCAAs. These results suggested that BCAAs possibly contribute to tumor suppression by enhancing cellular senescence mediated through the mTOR signalling pathway.

  19. Hair Growth Promoting and Anticancer Effects of p21-activated kinase 1 (PAK1 Inhibitors Isolated from Different Parts of Alpinia zerumbet

    Directory of Open Access Journals (Sweden)

    Nozomi Taira

    2017-01-01

    Full Text Available PAK1 (p21-activated kinase 1 is an emerging target for the treatment of hair loss (alopecia and cancer; therefore, the search for PAK1 blockers to treat these PAK1-dependent disorders has received much attention. In this study, we evaluated the anti-alopecia and anticancer effects of PAK1 inhibitors isolated from Alpinia zerumbet (alpinia in cell culture. The bioactive compounds isolated from alpinia were found to markedly promote hair cell growth. Kaempferol-3-O-β-d-glucuronide (KOG and labdadiene, two of the isolated compounds, increased the proliferation of human follicle dermal papilla cells by approximately 117%–180% and 132%–226%, respectively, at 10–100 μM. MTD (2,5-bis(1E,3E,5E-6-methoxyhexa-1,3,5-trien-1-yl-2,5-dihydrofuran and TMOQ ((E-2,2,3,3-tetramethyl-8-methylene-7-(oct-6-en-1-yloctahydro-1H-quinolizine showed growth-promoting activity around 164% and 139% at 10 μM, respectively. The hair cell proliferation induced by these compounds was significantly higher than that of minoxidil, a commercially available treatment for hair loss. Furthermore, the isolated compounds from alpinia exhibited anticancer activity against A549 lung cancer cells with IC50 in the range of 67–99 μM. Regarding the mechanism underlying their action, we hypothesized that the anti-alopecia and anticancer activities of these compounds could be attributed to the inhibition of the oncogenic/aging kinase PAK1.

  20. Hematological malignancies with t(9;11)(p21-22;q23)--a laboratory and clinical study of 125 cases. European 11q23 Workshop participants.

    Science.gov (United States)

    Swansbury, G J; Slater, R; Bain, B J; Moorman, A V; Secker-Walker, L M

    1998-05-01

    This paper reports clinical and cytogenetic data from 125 cases with t(9;11)(p21-22;q32) which were accepted for a European Union Concerted Action Workshop on 11q23. This chromosome abnormality is known to occur predominantly in acute myeloid leukemia (AML) FAB type M5a and less often in AML M4; in this series it was also found to occur, uncommonly, in other AML FAB types, in childhood acute lymphoblastic leukemia (ALL) (nine cases), in relatively young patients with myelodysplastic syndrome (MDS) (five cases), acute biphenotypic leukemia (two cases), and acute undifferentiated leukemia (one case). All age groups were represented but 50% of the patients were aged less than 15 years. The t(9;11) was the sole abnormality in 57 cases with AML; trisomy 8 was the most common additional abnormality (23 cases, including seven with further abnormalities), and 28 cases had other additional abnormalities. Among the t(9;11)+ve patients with AML, the white cell count (WBC) and age group were significant predictors of event-free survival; central nervous system (CNS) involvement or karyotype class (sole, with trisomy 8, or with other), also contributed to prognosis although our data could not show these to be independent factors. The best outcome was for patients aged 1-9 years, with low WBC, and with absence of CNS disease or presence of trisomy 8. For patients aged less than 15 years, the event-free survival for ALL patients was not significantly worse than that of AML patients.

  1. Elevated p21-Activated Kinase 2 Activity Results in Anchorage-Independent Growth and Resistance to Anticancer Drug–Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Jerry W. Marlin

    2009-03-01

    Full Text Available p21-Activated kinase 2 (PAK-2 seems to be a regulatory switch between cell survival and cell death signaling. We have shown previously that activation of full-length PAK-2 by Rac or Cdc42 stimulates cell survival, whereas caspase activation of PAK-2 to the proapoptotic PAK-2p34 fragment is involved in the cell death response. In this study, we present a role of elevated activity of full-length PAK-2 in anchorage-independent growth and resistance to anticancer drug–induced apoptosis of cancer cells. Hs578T human breast cancer cells that have low levels of PAK-2 activity were more sensitive to anticancer drug–induced apoptosis and showed higher levels of caspase activation of PAK-2 than MDA-MB435 and MCF-7 human breast cancer cells that have high levels of PAK-2 activity. To examine the role of elevated PAK-2 activity in breast cancer, we have introduced a conditionally active PAK-2 into Hs578T human breast cells. Conditional activation of PAK-2 causes loss of contact inhibition and anchorage-independent growth of Hs578T cells. Furthermore, conditional activation of PAK-2 suppresses activation of caspase 3, caspase activation of PAK-2, and apoptosis of Hs578T cells in response to the anticancer drug cisplatin. Our data suggest a novel mechanism by which full-length PAK-2 activity controls the apoptotic response by regulating levels of activated caspase 3 and thereby its own cleavage to the proapoptotic PAK-2p34 fragment. As a result, elevated PAK-2 activity interrupts the apoptotic response and thereby causes anchorage-independent survival and growth and resistance to anticancer drug–induced apoptosis.

  2. A PCR-aided transcript titration assay revealing very low expression of a gene at band 3p21 in 33 cells lines derived from all types of lung cancer

    NARCIS (Netherlands)

    Kok, K; Buchhagen, D L; Carritt, B; Buys, C H; van den Berg, Anke

    1993-01-01

    We have developed a general PCR-based method to quantify the amount of a specific mRNA present in a given cell line or tissue. We applied this quantitative PCR to analyse the expression of D8, a human gene which we recently identified in the chromosomal region 3p21, the common deletion region of

  3. The p21-activated kinase (PAK family member PakD is required for chemorepulsion and proliferation inhibition by autocrine signals in Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Jonathan E Phillips

    Full Text Available In Dictyostelium discoideum, the secreted proteins AprA and CfaD function as reporters of cell density and regulate cell number by inhibiting proliferation at high cell densities. AprA also functions to disperse groups of cells at high density by acting as a chemorepellent. However, the signal transduction pathways associated with AprA and CfaD are not clear, and little is known about how AprA affects the cytoskeleton to regulate cell movement. We found that the p21-activated kinase (PAK family member PakD is required for both the proliferation-inhibiting activity of AprA and CfaD and the chemorepellent activity of AprA. Similar to cells lacking AprA or CfaD, cells lacking PakD proliferate to a higher cell density than wild-type cells. Recombinant AprA and CfaD inhibit the proliferation of wild-type cells but not cells lacking PakD. Like AprA and CfaD, PakD affects proliferation but does not significantly affect growth (the accumulation of mass on a per-nucleus basis. In contrast to wild-type cells, cells lacking PakD are not repelled from a source of AprA, and colonies of cells lacking PakD expand at a slower rate than wild-type cells, indicating that PakD is required for AprA-mediated chemorepulsion. A PakD-GFP fusion protein localizes to an intracellular punctum that is not the nucleus or centrosome, and PakD-GFP is also occasionally observed at the rear cortex of moving cells. Vegetative cells lacking PakD show excessive actin-based filopodia-like structures, suggesting that PakD affects actin dynamics, consistent with previously characterized roles of PAK proteins in actin regulation. Together, our results implicate PakD in AprA/CfaD signaling and show that a PAK protein is required for proper chemorepulsive cell movement in Dictyostelium.

  4. The p21-activated kinase (PAK) family member PakD is required for chemorepulsion and proliferation inhibition by autocrine signals in Dictyostelium discoideum.

    Science.gov (United States)

    Phillips, Jonathan E; Gomer, Richard H

    2014-01-01

    In Dictyostelium discoideum, the secreted proteins AprA and CfaD function as reporters of cell density and regulate cell number by inhibiting proliferation at high cell densities. AprA also functions to disperse groups of cells at high density by acting as a chemorepellent. However, the signal transduction pathways associated with AprA and CfaD are not clear, and little is known about how AprA affects the cytoskeleton to regulate cell movement. We found that the p21-activated kinase (PAK) family member PakD is required for both the proliferation-inhibiting activity of AprA and CfaD and the chemorepellent activity of AprA. Similar to cells lacking AprA or CfaD, cells lacking PakD proliferate to a higher cell density than wild-type cells. Recombinant AprA and CfaD inhibit the proliferation of wild-type cells but not cells lacking PakD. Like AprA and CfaD, PakD affects proliferation but does not significantly affect growth (the accumulation of mass) on a per-nucleus basis. In contrast to wild-type cells, cells lacking PakD are not repelled from a source of AprA, and colonies of cells lacking PakD expand at a slower rate than wild-type cells, indicating that PakD is required for AprA-mediated chemorepulsion. A PakD-GFP fusion protein localizes to an intracellular punctum that is not the nucleus or centrosome, and PakD-GFP is also occasionally observed at the rear cortex of moving cells. Vegetative cells lacking PakD show excessive actin-based filopodia-like structures, suggesting that PakD affects actin dynamics, consistent with previously characterized roles of PAK proteins in actin regulation. Together, our results implicate PakD in AprA/CfaD signaling and show that a PAK protein is required for proper chemorepulsive cell movement in Dictyostelium.

  5. Microsatellite alteration and immunohistochemical expression profile of chromosome 9p21 in patients with sporadic renal cell carcinoma following surgical resection

    International Nuclear Information System (INIS)

    El-Mokadem, Ismail; Lim, Alison; Kidd, Thomas; Garret, Katherine; Pratt, Norman; Batty, David; Fleming, Stewart; Nabi, Ghulam

    2016-01-01

    Long-term prognostic significance of loss of heterozygosity on chromosome 9p21 for localized renal cell carcinoma following surgery remains unreported. The study assessed the frequency of deletions of different loci of chromosome 9p along with immunohistochemical profile of proteins in surgically resected renal cancer tissue and correlated this with long-term outcomes. DNA was extracted from renal tumours and corresponding normal kidney tissues in prospectively collected samples of 108 patients who underwent surgical resection for clinically localized disease between January 2001 and December 2005, providing a minimum of 9 years follow-up for each participant. After checking quality of DNA, amplified by PCR, loss of heterozygosity (LOH) on chromosome 9p was assessed using 6 microsatellite markers in 77 clear cell carcinoma. Only 5 of the markers showed LOH (D9S1814, D9S916, D9S974, D9S942, and D9S171). Protein expression of p15(INK4b), p16(INK4a), p14(ARF), CAIX, and adipose related protein (ADFP) were demonstrated by immunostaining in normal and cancer tissues. Loss of heterozygosity for microsatellite analysis was correlated with tumour characteristics, recurrence free, cancer specific, and overall survival, including significance of immunohistochemical profile of protein expressions. The main deletion was found at loci telomeric to CDKN2A region at D9S916. There was a significant correlation between frequency of LOH stage (p = 0.005) and metastases (p = 0.006) suggesting a higher LOH for advanced and aggressive renal cell carcinoma. Most commonly observed LOH in the 3 markers: D9S916, D9S974, and D9S942 were associated with poor survival, and were statistically significant on multivariate analysis. Immunohistochemical expression of p14, p15, and p16 proteins were either low or absent in cancer tissue compared to normal. Loss of heterozygosity of p921 chromosome is associated with aggressive tumours, and predicts cancer specific or recurrence free survival on

  6. Custom CGH array profiling of copy number variations (CNVs) on chromosome 6p21.32 (HLA locus) in patients with venous malformations associated with multiple sclerosis

    Science.gov (United States)

    2010-01-01

    Background Multiple sclerosis (MS) is a complex disorder thought to result from an interaction between environmental and genetic predisposing factors which have not yet been characterised, although it is known to be associated with the HLA region on 6p21.32. Recently, a picture of chronic cerebrospinal venous insufficiency (CCSVI), consequent to stenosing venous malformation of the main extra-cranial outflow routes (VM), has been described in patients affected with MS, introducing an additional phenotype with possible pathogenic significance. Methods In order to explore the presence of copy number variations (CNVs) within the HLA locus, a custom CGH array was designed to cover 7 Mb of the HLA locus region (6,899,999 bp; chr6:29,900,001-36,800,000). Genomic DNA of the 15 patients with CCSVI/VM and MS was hybridised in duplicate. Results In total, 322 CNVs, of which 225 were extragenic and 97 intragenic, were identified in 15 patients. 234 known polymorphic CNVs were detected, the majority of these being situated in non-coding or extragenic regions. The overall number of CNVs (both extra- and intragenic) showed a robust and significant correlation with the number of stenosing VMs (Spearman: r = 0.6590, p = 0.0104; linear regression analysis r = 0.6577, p = 0.0106). The region we analysed contains 211 known genes. By using pathway analysis focused on angiogenesis and venous development, MS, and immunity, we tentatively highlight several genes as possible susceptibility factor candidates involved in this peculiar phenotype. Conclusions The CNVs contained in the HLA locus region in patients with the novel phenotype of CCSVI/VM and MS were mapped in detail, demonstrating a significant correlation between the number of known CNVs found in the HLA region and the number of CCSVI-VMs identified in patients. Pathway analysis revealed common routes of interaction of several of the genes involved in angiogenesis and immunity contained within this region. Despite the small

  7. Frequent deletion of 3p21.1 region carrying semaphorin 3G and aberrant expression of the genes participating in semaphorin signaling in the epithelioi