WorldWideScience

Sample records for w22 combines arginine

  1. Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine

    NARCIS (Netherlands)

    Pereira, C. I.; San Romao, M. V.; Lolkema, J. S.; Barreto Crespo, M. T.; Baretto Crespo, M.

    2009-01-01

    Aims: To demonstrate that the meat food strain Weissella halotolerans combines an ornithine decarboxylation pathway and an arginine deiminase (ADI) pathway and is able to produce putrescine, a biogenic amine. Evidence is shown that these two pathways produce a proton motive force (PMF). Methods and

  2. The Arginine/ADMA Ratio Is Related to the Prevention of Atherosclerotic Plaques in Hypercholesterolemic Rabbits When Giving a Combined Therapy with Atorvastatine and Arginine

    Directory of Open Access Journals (Sweden)

    Saskia J. H. Brinkmann

    2015-05-01

    Full Text Available Supplementation with arginine in combination with atorvastatin is more efficient in reducing the size of an atherosclerotic plaque than treatment with a statin or arginine alone in homozygous Watanabe heritable hyperlipidemic (WHHL rabbits. We evaluated the mechanism behind this feature by exploring the role of the arginine/asymmetric dimethylarginine (ADMA ratio, which is the substrate and inhibitor of nitric oxide synthase (NOS and thereby nitric oxide (NO, respectively. Methods: Rabbits were fed either an arginine diet (group A, n = 9, standard rabbit chow plus atorvastatin (group S, n = 8, standard rabbit chow plus an arginine diet with atorvastatin (group SA, n = 8 or standard rabbit chow (group C, n = 9 as control. Blood was sampled and the aorta was harvested for topographic and histological analysis. Plasma levels of arginine, ADMA, cholesterol and nitric oxide were determined and the arginine/ADMA ratio was calculated. Results: The decrease in ADMA levels over time was significantly correlated to fewer aortic lesions in the distal aorta and total aorta. The arginine/ADMA ratio was correlated to cholesterol levels and decrease in cholesterol levels over time in the SA group. A lower arginine/ADMA ratio was significantly correlated to lower NO levels in the S and C group. Discussion: A balance between arginine and ADMA is an important indicator in the prevention of the development of atherosclerotic plaques.

  3. Sequence, assembly and annotation of the maize W22 genome

    Science.gov (United States)

    Since its adoption by Brink and colleagues in the 1950s and 60s, the maize W22 inbred has been utilized extensively to understand fundamental genetic and epigenetic processes such recombination, transposition and paramutation. To maximize the utility of W22 in gene discovery, we have Illumina sequen...

  4. Combination of arginine deprivation with TRAIL treatment as a targeted-therapy for mesothelioma.

    Science.gov (United States)

    Wangpaichitr, Medhi; Wu, Chunjing; Bigford, Gregory; Theodoropoulos, George; You, Min; Li, Ying Ying; Verona-Santos, Javier; Feun, Lynn G; Nguyen, Dao M; Savaraj, Niramol

    2014-12-01

    In the present study we present data to show that certain tumor cells including malignant pleural mesothelioma (MPM) cells do not express argininosuccinate synthetase (ASS), and thus are unable to synthesize arginine from citrulline. Exposure of these ASS-negative cells to the arginine degrading enzyme, arginine deiminase (ADI-PEG20), for 72 h results in significant increases in cleaved caspase-3. Importantly, this apoptotic signal is further strengthened by the addition of TNF-related apoptosis-inducing ligand (TRAIL). Using flow cytometry, we showed that the combination treatment (ADI-PEG20 at 50 ng/ml and TRAIL at 10 ng/ml) for 24 h resulted in profound cell death with 67% of cells positive for caspase-3 activity, while ADI-PEG20 alone or TRAIL alone resulted in only 10-15% cell death. This positive amplification loop is mediated through the cleavage of proapototic protein "BID". Our work represents a new strategy for treating patients with malignant pleural mesothelioma using targeted molecular therapeutics based on selected tumor markers, thus avoiding the use of potentially cytotoxic chemotherapy. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. L-Arginine

    Science.gov (United States)

    ... with this combination.Talk with your health provider.Sildenafil (Viagra)Sildenafil (Viagra) can lower blood pressure. L-arginine can also lower blood pressure. Taking sildenafil (Viagra) and L-arginine together might cause the ...

  6. Blood oxygen transport in rats under hypothermia combined with modification of the L-Arginine-NO pathway.

    Science.gov (United States)

    Zinchuk, V V; Dorokhina, L V

    2002-02-01

    Nitric oxide (NO) has high affinity to heme and by interaction with oxyhemoglobin (HbO2) is converted into nitrate to form methemoglobin (MetHb) as a side product. In combining with deoxy-Hb NO yields a stable molecule of nitrosyl-hemoglobin (HbFe(II)NO) that can further be converted into nitrate and hemoglobin (Hb). In addition, Hb was shown to transport NO in a form of S-nitrosohemoglobin (SNO-Hb). These features of the Hb and NO interaction are important for blood oxygen transport including hemoglobin-oxygen affinity (HOA). The present investigation was aimed to study the blood oxygen transport indices (pO2, pCO2, pH, HOA, etc.) in rats under hypothermia combined with a modification of L-arginine-NO pathway. To modify the L-arginine-NO pathway, rats were administered with N(G)-nitro-L-arginine methyl ester (L-NAME), L-arginine, or sodium nitroprusside (SNP) intravenously before cooling. A substantial impairment of oxygen delivery and development of hypoxia, with an important contribution of HOA into the latter accompanied the deep hypothermia in rats. All the experimental groups developed metabolic acidosis, less pronounced in rats treated with L-arginine only. In the experiments with a modification of the L-arginine-NO pathway, an enhanced cold resistance, attenuated oxygen deficiency, and a weaker oxyhemoglobin dissociation curve (ODC) shift leftwards were observed only after the administration of L-arginine. Neither SNP nor L-NAME had not any protective effects. L-Arginine lowered the value of standard P50 (pO2, corresponding to 50% Hb saturation with oxygen at 37 degrees C, pH 7.4, and pCO2 = 40 mmHg). The actual P50 (at actual pH, pCO2 and temperature) decreased by approximately 15 mmHg and was significantly higher than that under hypothermia without the drug treatment (21.03 +/- 0.35 vs 17.45 +/- 0.60 mmHg). NO also can contribute to this system through different mechanisms (HOA modification, vascular tone regulation, peroxynitrite formation, and effects).

  7. The Combination of Arginine Deprivation and 5-Fluorouracil Improves Therapeutic Efficacy in Argininosuccinate Synthetase Negative Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Angkana Thongkum

    2017-06-01

    Full Text Available Argininosuccinate synthetase (ASS, a key enzyme to synthesize arginine is down regulated in many tumors including hepatocellular carcinoma (HCC. Similar to previous reports, we have found the decrease in ASS expression in poorly differentiated HCC. These ASS(- tumors are auxotrophic for arginine. Pegylated arginine deiminase (ADI-PEG20, which degrades arginine, has shown activity in these tumors, but the antitumor effect is not robust and hence combination treatment is needed. Herein, we have elucidated the effectiveness of ADI-PEG20 combined with 5-Fluorouracil (5-FU in ASS(-HCC by targeting urea cycle and pyrimidine metabolism using four HCC cell lines as model. SNU398 and SNU387 express very low levels of ASS or ASS(- while Huh-1, and HepG2 express high ASS similar to normal cells. Our results showed that the augmented cytotoxic effect of combination treatment only occurs in SNU398 and SNU387, and not in HepG2 and Huh-1 (ASS(+ cells, and is partly due to reduced anti-apoptotic proteins X-linked inhibitor of apoptosis protein (XIAP, myeloid leukemia cell differentiation protein (Mcl-1 and B-cell lymphoma-2 (Bcl-2. Importantly, lack of ASS also influences essential enzymes in pyrimidine synthesis (carbamoyl-phosphate synthetase2, aspartate transcarbamylase and dihydrooratase (CAD and thymidylate synthase (TS and malate dehydrogenase-1 (MDH-1 in TCA cycle. ADI-PEG20 treatment decreased these enzymes and made them more vulnerable to 5-FU. Transfection of ASS restored these enzymes and abolished the sensitivity to ADI-PEG20 and combination treatment. Overall, our data suggest that ASS influences multiple enzymes involved in 5-FU sensitivity. Combining ADI-PEG20 and 5-FU may be effective to treat ASS(-hepatoma and warrants further clinical investigation.

  8. [A combination of timoptol and L-arginine HCl: a regulator of intraocular pressure in rabbits].

    Science.gov (United States)

    Veselovský, J; Oláh, Z; Veselá, A; Gressnerová, S

    2003-09-01

    In our experimental study were determined changes IOP an pupil after application mixture of aminoacid 10% L-arginine.HCl in 0.5% Timoptol into the conjunctival sac of left eye of 5 healthy albinotic rabbits (the New-Zeland White species). The right eye was control. Our results proved that the mixture of 0.5% Timoptol with 10% L-arginine.HCl has significantly decreases IOP against the control eye during the whole experiment. The maximum of decrease IOP was reached in 60th min. (20.1%; 4 torr) and in 240th min. (10.7%; 2.1 torr). In comparison with effect of mixture of both compartments, the 10% L-arginine.HCl and 0.5% Timoptol applicated alone caused only non-significant IOP decrease. Papilar diameter in both eyes were identical (7-7.5 mm) during the whole experiment. We suggest that the interaction of L-arginine.HCl with Timoptol causes formation of the new metabolite which is, in fact already effective component; this new substance decreases production of aqueous humor of corpus ciliare and the IOP is decreased in this way in physiological conditions. Utilization of this knowledge in clinical conditions could contribute to better utilization and more harmless use of antiglaucomatics in glaucoma disease therapy. For that reason, more longtime studies should be performed to evaluate the effect of this new metabolite in local application.

  9. Protein Profiling Reveals Novel Proteins in Pollen and Pistil of W22 (ga1; Ga1 in Maize

    Directory of Open Access Journals (Sweden)

    Jin Yu

    2014-05-01

    Full Text Available Gametophytic factors mediate pollen-pistil interactions in maize (Zea mays L. and play active roles in limiting gene flow among maize populations and between maize and teosinte. This study was carried out to identify proteins and investigate the mechanism of gametophytic factors using protein analysis. W22 (ga1; which did not carry a gametophytic factor and W22 (Ga1, a near iso-genic line, were used for the proteome investigation. SDS-PAGE was executed to investigate proteins in the pollen and pistil of W22 (ga1 and W22 (Ga1. A total of 44 differentially expressed proteins were identified in the pollen and pistil on SDS-PAGE using LTQ-FTICR MS. Among the 44 proteins, a total of 24 proteins were identified in the pollen of W22 (ga1 and W22 (Ga1 whereas 20 differentially expressed proteins were identified from the pistil of W22 (ga1 and W22 (Ga1. However, in pollen, 2 proteins were identified only in the W22 (ga1 and 12 proteins only in the W22 (Ga1 whereas 10 proteins were confirmed from the both of W22 (ga1 and W22 (Ga1. In contrary, 10 proteins were appeared only in the pistil of W22 (ga1 and 7 proteins from W22 (Ga1 while 3 proteins confirmed in the both of W22 (ga1 and W22 (Ga1. Moreover, the identified proteins were generally involved in hydrolase activity, nucleic acid binding and nucleotide binding. These results help to reveal the mechanism of gametophytic factors and provide a valuable clue for the pollen and pistil research in maize.

  10. Combination of aerobic exercise and an arginine, alanine, and phenylalanine mixture increases fat mobilization and ketone body synthesis.

    Science.gov (United States)

    Ueda, Keisuke; Sanbongi, Chiaki; Takai, Shoko; Ikegami, Shuji; Fujita, Satoshi

    2017-07-01

    During exercise, blood levels of several hormones increase acutely. We hypothesized that consumption of a specific combination of amino acids (arginine, alanine, and phenylalanine; A-mix) may be involved in secretion of glucagon, and when combined with exercise may promote fat catabolism. Ten healthy male volunteers were randomized in a crossover study to ingest either A-mix (3 g/dose) or placebo (3 g of dextrin/dose). Thirty minutes after ingesting, each condition subsequently performed workload trials on a cycle ergometer at 50% of maximal oxygen consumption for 1 h. After oral intake of A-mix, the concentrations of plasma ketone bodies and adrenalin during and post-exercise were significantly increased. The area under the curve for glycerol and glucagon was significantly increased in the post-exercise by A-mix administration. These results suggest that pre-exercise ingestion of A-mix causes a shift of energy source from carbohydrate to fat combustion by increasing secretion of adrenalin and glucagon.

  11. Effects of BCAA, arginine and carbohydrate combined drink on post-exercise biochemical response and psychological condition.

    Science.gov (United States)

    Hsu, Mei-Chich; Chien, Kuei-Yu; Hsu, Cheng-Chen; Chung, Chia-Jung; Chan, Kuei-Hui; Su, Borcherng

    2011-04-30

    This study investigated the effects of BCAA, arginine and carbohydrate combined beverage (BCAA Drink) on biochemical responses and psychological conditions during recovery after a single bout of exhaustive exercise. Fourteen healthy males were assigned to drink either BCAA Drink (BA trial) or placebo (PL trial) on two sessions separated by 2 weeks. Blood samples of each subject were collected before exercise, 0, 10, 20, 40, 60, 120 min and 24 h after exercise. No significant differences in the levels of lactate, ammonia, creatine kinase and glycerol between the two groups were observed at any of the time points. However, the levels of glucose and insulin were significantly higher in the BA trial as compared to those in the PL trial at the 40 and 60 min recovery points. Furthermore, the testosterone-to-cortisol ratio at the 120 min recovery point was significantly higher in the BA trial as compared to that in the PL trial. The results indicate the occurrence of anabolic response during the recovery period. The benefit of BCAA Drink was also performed by Profile of Mood States to assess the psychological condition. Fatigue score increased immediately at exhaustion in both groups, but the decrease in the fatigue score at 120 min recovery point was significant only in BA trial. These data indicate that a single bout of exhaustive exercise enhanced the feeling of fatigue. The detrimental consequence was reduced by an ingestion of BCAA Drink.

  12. Combined aliskiren and L-arginine treatment has antihypertensive effects and prevents vascular endothelial dysfunction in a model of renovascular hypertension

    Directory of Open Access Journals (Sweden)

    C.H. Santuzzi

    2015-01-01

    Full Text Available Angiotensin II is a key player in the pathogenesis of renovascular hypertension, a condition associated with endothelial dysfunction. We investigated aliskiren (ALSK and L-arginine treatment both alone and in combination on blood pressure (BP, and vascular reactivity in aortic rings. Hypertension was induced in 40 male Wistar rats by clipping the left renal artery. Animals were divided into Sham, 2-kidney, 1-clip (2K1C hypertension, 2K1C+ALSK (ALSK, 2K1C+L-arginine (L-arg, and 2K1C+ALSK+L-arginine (ALSK+L-arg treatment groups. For 4 weeks, BP was monitored and endothelium-dependent and independent vasoconstriction and relaxation were assessed in aortic rings. ALSK+L-arg reduced BP and the contractile response to phenylephrine and improved acetylcholine relaxation. Endothelium removal and incubation with N-nitro-L-arginine methyl ester (L-NAME increased the response to phenylephrine in all groups, but the effect was greater in the ALSK+L-arg group. Losartan reduced the contractile response in all groups, apocynin reduced the contractile response in the 2K1C, ALSK and ALSK+L-arg groups, and incubation with superoxide dismutase reduced the phenylephrine response in the 2K1C and ALSK groups. eNOS expression increased in the 2K1C and L-arg groups, and iNOS was increased significantly only in the 2K1C group compared with other groups. AT1 expression increased in the 2K1C compared with the Sham, ALSK and ALSK+L-arg groups, AT2 expression increased in the ALSK+L-arg group compared with the Sham and L-arg groups, and gp91phox decreased in the ALSK+L-arg group compared with the 2K1C and ALSK groups. In conclusion, combined ALSK+L-arg was effective in reducing BP and preventing endothelial dysfunction in aortic rings of 2K1C hypertensive rats. The responsible mechanisms appear to be related to the modulation of the local renin-angiotensin system, which is associated with a reduction in endothelial oxidative stress.

  13. Sperm quality in men is improved by supplementation with a combination of L-arginine, L-citrullin, roburins and Pycnogenol®.

    Science.gov (United States)

    Stanislavov, R; Rohdewald, P

    2014-12-01

    The aim of this study was to investigate the influence of Prelox®R, a combination of French maritime pine bark extract (Pycnogenol®), L-arginine, L-citrulline and roburins, on male fertility. Sperm quality of 50 subfertile men was tested in monthly intervals in a double-blind, randomized, placebo controlled, crossover study. Patients received 2 tablets Prelox®R or placebo twice daily during test periods. Following a run-in period of 1 month, patients received either Prelox®R or a placebo for 1 month. After a wash-out period of 1 month, patients received Prelox®R or a placebo in a crossover manner for 1 month. Sperm volume, concentration of spermatozoa, total count, motility, vitality and morphology were measured by standard methods of calculation of the Fertility Index (FI) in monthly intervals. Activity of e-NOS in sperm was evaluated in parallel by measuring the quantity of L-citulline produced from L-arginine. Supplementation with Prelox®R enhanced sperm volume and concentration, motility, vitality and morphology significantly versus placebo. The Fertility Index rose to normal values during treatment with Prelox®R. e-NOS activity in sperm was elevated by Prelox®R. No adverse effects were reported. Prelox®R offers a safe method to improve quality of human spermatozoa in subfertile men.

  14. Efficacy of a combined in-office/home-use desensitizing system containing 8% arginine and calcium carbonate in reducing dentin hypersensitivity: an 8-week randomized clinical study.

    Science.gov (United States)

    França, Isabela Lima; Sallum, Enilson Antonio; Do Vale, Hugo Felipe; Casati, Márcio Zaffalon; Sallum, Antonio Wilson; Stewart, Bernal

    2015-02-01

    To determine the efficacy in reducing dentin hypersensitivity (DHS) of a combined in-office and home-use desensitizing system, each product containing 8% arginine and calcium carbonate (Test), following a dental scaling procedure, compared to the combination of a conventional prophylactic paste and a potassium nitrate dentifrice (Control), in a group of patients with known dentin hypersensitivity. An 8-week clinical study, with 50 subjects, was conducted in Piracicaba, São Paulo, Brazil, using a double-blind/two treatment design. Air blast sensitivity assessments were used to compare the efficacy of the two approaches using both the Schiff scale as well as a Visual Analogue Scale (VAS). Immediately after prophylaxis, the Test treatment provided significant reduction in DHS when compared to baseline values (VAS = 26.2% and Schiff = 29.1%), while for Control treatment this difference was not statistically significant (VAS = 8.1% and Schiff = 6.6%). The comparison between groups after prophylaxis showed a greater DHS reduction for the Test treatment (P < 0.05). The reductions in DHS after 2, 4 and 8 weeks were significant for both groups, however, when considering Schiff scale, the Test treatment provided greater DHS reduction after 2 weeks (44.5% for Test versus 27.7% for Control) and 4 weeks (55.2% for Test and 40.5% for Control), while after 8 weeks there was no significant difference between groups (71.1% for Test versus 61.1% for Control).

  15. Chitosan Combined with Poly-L-arginine as Efficient, Safe, and Serum-Insensitive Vehicle with RNase Protection Ability for siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Samarwadee Plianwong

    2013-01-01

    Full Text Available Chitosan (CS combined with poly-L-arginine (PLA was formulated and evaluated for its performance to deliver siRNA to HeLa cells expressing enhanced green fluorescent protein (EGFP. Compared with the formulations using single polymer in which the polyplexes were completely formed at the weight ratio of >20 : 1 for CS/siRNA or 1 : 1 for PLA/siRNA, the combination of CS and PLA could reduce the amounts of the polymers required for the complete complexation with siRNA, thereby forming positively charged, nanosized polyplex at the weight ratio of CS/PLA/siRNA of 5 : 0.5: 1. In addition, while the transfection efficiency of CS/siRNA and PLA/siRNA was very low at physiological pH (7.4, CS/PLA/siRNA at the optimal weight ratio of 5 : 0.5 : 1 satisfactorily silenced the endogenous EGFP gene at pH 7.4 as well as at pH 6.4 without the deterrent effect from serum. The combined polymers could protect siRNA from RNase degradation over a period of at least 6 h. Furthermore, MTT assay results demonstrated that CS/PLA/siRNA complexes showed acceptably low cytotoxicity with 75% cell viability. Therefore, CS combined with PLA is easy to prepare, safe, and promising for use as an efficient siRNA delivery vehicle.

  16. Combined effects of dietary arginine, leucine and protein levels on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of crossbred pigs.

    Science.gov (United States)

    Madeira, Marta S; Pires, Virgínia M R; Alfaia, Cristina M; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M

    2014-05-01

    The cumulative effects of dietary arginine, leucine and protein levels on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig longissimus lumborum muscle and subcutaneous adipose tissue (SAT) were investigated. The experiment was performed on fifty-four intact male pigs (Duroc × Pietrain × Large White × Landrace crossbred), with a live weight ranging from 59 to 92 kg. The pigs were randomly assigned to one of six experimental treatments (n 9). The treatments followed a 2 × 3 factorial arrangement, with two levels of arginine supplementation (0 v. 1 %) and three levels of a basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet to achieve 2 % of leucine, RPDL). The results showed that dietary arginine supplementation did not affect the intramuscular fat (IMF) content and back fat thickness, but increased the total fat in SAT. This effect was associated with an increase in fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) mRNA levels in SAT, which suggests that arginine might be involved in the differential regulation of some key lipogenic genes in pig muscle and SAT. The increase in IMF content under the RPD, with or without leucine supplementation, was accompanied by increased FASN and SCD mRNA levels. Arginine supplementation did not influence the percentage of main fatty acids, while the RPD had a significant effect on fatty acid composition in both tissues. Leucine supplementation of RPD did not change IMF, total fat of SAT and back fat thickness, but increased 16 : 0 and 18 : 1cis-9 and decreased 18 : 2n-6 in muscle.

  17. Arginine and immunity

    National Research Council Canada - National Science Library

    Popovic, Petar J; Zeh, 3rd, Herbert J; Ochoa, Juan B

    2007-01-01

    .... Considerable controversy, however, exists as to the benefits and indications of dietary arginine due in part to a poor understanding of the role played by this amino acid in maintaining immune function...

  18. The Ergogenic Potential of Arginine

    Directory of Open Access Journals (Sweden)

    La Bounty Paul M

    2004-12-01

    Full Text Available Abstract Arginine is a conditionally essential amino acid that is involved in protein synthesis, the detoxification of ammonia, and its conversion to glucose as well as being catabolized to produce energy. In addition to these physiological functions, arginine has been purported to have ergogenic potential. Athletes have taken arginine for three main reasons: 1 its role in the secretion of endogenous growth hormone; 2 its involvement in the synthesis of creatine; 3 its role in augmenting nitric oxide. These aspects of arginine supplementation will be discussed as well as a review of clinical investigations involving exercise performance and arginine ingestion.

  19. Evaluation of the effects of Er:YAG laser and desensitizing paste containing 8% arginine and calcium carbonate, and their combinations on human dentine tubules: a scanning electron microscopic analysis.

    Science.gov (United States)

    Tunar, Ogul L; Gürsoy, Hare; Çakar, Gökser; Kuru, Bahar; Ipci, Sebnem Dirikan; Yılmaz, Selçuk

    2014-10-01

    The aim of this study was to evaluate the in vitro effects of Er:YAG laser and an in-office desensitizing paste alone or in combination by using scanning electron microscopic (SEM) analysis. Various treatment modalities have been proposed for dentin hypersensitivity, but to date, no single agent or form of treatment has been found effective. Forty dentine specimens obtained from freshly extracted impacted third molars were included and divided into four groups. Group I served as the control, whereas Group II, Group III, and Group IV recieved Er:YAG laser (30 Hz, 60 mJ/pulse, 10 sec), a desensitizing paste (DP) containing 8% arginine and calcium carbonate, and DP+Er:YAG laser in combination, respectively, evaluated under SEM. SEM analysis presented occlusion and narrowing of dentinal tubules in all treatment groups, but more prominent occlusion was observed in the combined treatment group. Intergroup comparisons regarding the tubule diameters and the number of the open dentinal tubules per 100 μm2 revealed statistically significant difference in favor of combined group (ptreatment procedures are effective in dentinal tubule occlusion. However, more prominent occlusion is observed in the combined treatment group.

  20. Effects of a supplement combining Pycnogenol® and l-arginine aspartate on lower urinary dysfunction compared with saw palmetto extract.

    Science.gov (United States)

    Yagi, Hiroshi; Sato, Ryo; Nishio, Kojiro; Arai, Gaku; Soh, Shigehiro; Okada, Hiroshi

    2017-01-01

    Lower urinary tract symptoms (LUTS) and sexual dysfunction (SDys) are common problems that affect quality of life (QOL) in elderly men. In addition to prescribed drugs, many over-the-counter medications including supplements are used to treat QOL diseases. Phosphodiesterase inhibitors are reported to be effective for both LUTS and SDys by increasing nitric oxide levels. French maritime pine bark extract Pycnogenol®, which is a potent nitric oxide donor, is reported to be effective for SDys. However, no reports have been published on whether it ameliorates LUTS. Open-labeled, randomized study. The effects of two supplements, Nokogiriyashi EX® containing 160 mg saw palmetto (SP) extract per tablet and Edicare® containing 10 mg of Pycnogenol®, 115 mg of l-arginine and 92 mg of aspartate (PAA) per tablet on International Prostate Symptom Score (IPSS), IPSS-QOL, Overactive Bladder Symptom Score (OABSS), International Index of Erectile Function 5 (IIEF5), Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF), urinary 8-OHdG and uroflowmetry (UFM) of total 40 men with LUTS and SDys were examined. 19 subjects were instructed to take two tablets of SP, on the other 20 were on four tablets of PAA for 16 weeks. IPSS and IPSS-QOL showed statistically significant improvements in both groups. OABSS and IIEF5 were significantly improved in the PAA group. Conversely, ICIQ-SF, 8-OHdG and UFM did not change in either group. PAA might be an effective therapeutic alternative for elderly patients with LUTS and SDys.

  1. Combinatorial Effects of Arginine and Fluoride on Oral Bacteria

    Science.gov (United States)

    Zheng, X.; Cheng, X.; Wang, L.; Qiu, W.; Wang, S.; Zhou, Y.; Li, M.; Li, Y.; Cheng, L.; Li, J.; Zhou, X.

    2015-01-01

    Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicating synergy between fluoride and arginine in caries management. Here, we hypothesize that arginine may augment the ecological benefit of fluoride by enriching alkali-generating bacteria in the plaque biofilm and thus synergizes with fluoride in controlling dental caries. Specifically, we assessed the combinatory effects of NaF/arginine on planktonic and biofilm cultures of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis with checkerboard microdilution assays. The optimal NaF/arginine combinations were selected, and their combinatory effects on microbial composition were further examined in single-, dual-, and 3-species biofilm using bacterial species–specific fluorescence in situ hybridization and quantitative polymerase chain reaction. We found that arginine synergized with fluoride in suppressing acidogenic S. mutans in both planktonic and biofilm cultures. In addition, the NaF/arginine combination synergistically reduced S. mutans but enriched S. sanguinis within the multispecies biofilms. More importantly, the optimal combination of NaF/arginine maintained a “streptococcal pressure” against the potential growth of oral anaerobe P. gingivalis within the alkalized biofilm. Taken together, we conclude that the combinatory application of fluoride and arginine has a potential synergistic effect in maintaining a healthy oral microbial equilibrium and thus represents a promising ecological approach to caries management. PMID:25477312

  2. Effects of three permeases on arginine utilization in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Peng; Du, Guocheng; Zou, Huijun; Chen, Jian; Xie, Guangfa; Shi, Zhongping; Zhou, Jingwen

    2016-02-11

    Arginine plays an important role in cellular function and metabolism. Arginine uptake mainly occurs through three amino acid permeases, Alp1p, Gap1p and Can1p, which act as both transporters and receptors for amino acid utilization. In this study, seven mutants were constructed with different combinations of permease deficiencies that inhibit arginine utilization. Their effects on arginine metabolism were measured. The three amino acid permeases were also individually overexpressed in wild-type (WT), Δalp1Δgap1Δcan1 and Δnpr1 strains. The growth and arginine utilization of Δcan1, Δgap1Δcan1 and Δalp1Δgap1Δcan1 mutants were suppressed in YNB medium when arginine was the sole nitrogen source. Meanwhile, overexpression of Alp1p and Can1p enhanced growth and arginine utilization in WT, Δalp1Δgap1Δcan1 and Δnpr1. Besides, overexpression of Can1p caused a 26.7% increase in OD600 and 29.3% increase in arginine utilization compared to that of Alp1p in Δalp1Δgap1Δcan1. Transcription analysis showed that the effects of three amino acid permeases on the arginine utilization and the regulation of related genes, were tightly related to their individual characteristics. However, their overall effects were different for different combinations of mutants. The results presented here suggest some possible synergistic effects of different amino acid permeases on regulation of amino acid utilization and metabolism.

  3. Dietary arginine and linear growth

    DEFF Research Database (Denmark)

    van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W

    2013-01-01

    The amino acid arginine is a well-known growth hormone (GH) stimulator and GH is an important modulator of linear growth. The aim of the present study was to investigate the effect of dietary arginine on growth velocity in children between 7 and 13 years of age. Data from the Copenhagen School...... Child Intervention Study during 2001-2 (baseline), and at 3-year and 7-year follow-up, were used. Arginine intake was estimated via a 7 d precoded food diary at baseline and 3-year follow-up. Data were analysed in a multilevel structure in which children were embedded within schools. Random intercept...... and slopes were defined to estimate the association between arginine intake and growth velocity, including the following covariates: sex; age; baseline height; energy intake; puberty stage at 7-year follow-up and intervention/control group. The association between arginine intake and growth velocity...

  4. Exercise training reverses the negative effects of chronic L-arginine supplementation on insulin sensitivity.

    Science.gov (United States)

    Salgueiro, Rafael Barrera; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Castro Barbosa, Thais; Nunes, Maria Tereza

    2017-12-15

    L-Arginine has emerged as an important supplement for athletes and non-athletes in order to improve performance. Arginine has been extensively used as substrate for nitric oxide synthesis, leading to increased vasodilatation and hormonal secretion. However, the chronic consumption of arginine has been shown to impair insulin sensitivity. In the present study, we aimed to evaluate whether chronic arginine supplementation associated with exercise training would have a beneficial impact on insulin sensitivity. We, therefore, treated Wistar rats for 4weeks with arginine, associated or not with exercise training (treadmill). We assessed the somatotropic activation, by evaluating growth hormone (GH) gene expression and protein content in the pituitary, as well is GH concentration in the serum. Additionally, we evaluate whole-body insulin sensitivity, by performing an insulin tolerance test. Skeletal muscle morpho-physiological parameters were also assessed. Insulin sensitivity was impaired in the arginine-treated rats. However, exercise training reversed the negative effects of arginine. Arginine and exercise training increased somatotropic axis function, muscle mass and body weight gain. The combination arginine and exercise training further decreased total fat mass. Our results confirm that chronic arginine supplementation leads to insulin resistance, which can be reversed in the association with exercise training. We provide further evidence that exercise training is an important tool to improve whole-body metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Regulation of Arginine-Ornithine Exchange and the Arginine Deiminase Pathway in Streptococcus lactis

    NARCIS (Netherlands)

    POOLMAN, B; DRIESSEN, AJM; KONINGS, WN

    1987-01-01

    Streptococcus lactis metabolizes arginine by the argiqine deiminase (ADI) pathway. Resting cells of S. lactis grown in the presence of galactose and arginine maintain a high intracellular ornithine pool in the absence of arginine and other exogenous energy sources. Addition of arginine results in a

  6. [Effect of a fixed-dose combination of perindopril arginine/amlodipine on the level and variability of blood pressure according to its office visit-to-visit measurements and self-measurements at home: A subanalysis of the PREVOSHODSTVO (SUPERIORITY) program].

    Science.gov (United States)

    Ostroumova, O D

    To study the effect of a fixed-dose combination of perindopril arginine/amlodipine (prestans) on the goal levels and variability of blood pressure (BP) according to its office visit-to-visit measurements and self-measurement (OVVM and SM) in a subgroup of 483 people from the population of the Russian observational SUPERIORITY program, most cases of whom are given the combination replacing the previously ineffective mono- and combination antihypertensive therapy (AHT). The subanalysis included data on 483 patients (34% men) aged 57.9±10.8 years with uncontrolled hypertension, who were both untreated and treated with antihypertensive mono- or combination therapy using a free or fixed-dose combination of 2-3 antihypertensive drugs and in whom the physicians decided to use prestans to correct AHT. The follow-up period was 24 weeks. At the end of the investigation, the patients received prestans in the following doses: 5/5 mg (34% of the patients), 10/5 mg (39.5%), 5/10 mg (3.9%), and 10/10 mg (22%). In the analyzed patient group, the baseline BP was 160.8±8.8/92.6±7.4 mm Hg and dropped to 125.9±7.9/77.8±5.0 mm Hg at 24 weeks (p<0.001). According to SM, the morning BP significantly decreased from 147.0±13.3/85.6±7.2 to 127.5±8.3/78,9±5.6 mm Hg at 24 weeks (p<0.001). The evening BP readings showed the similar trends. Target BP was achieved in 93 and 78% of the patients, as shown by OVVM and SM, respectively. According to SCM, the day-to-day variability of BP significantly decreased from 5.1±3.2/3.4±2.3 Hg mm at Visit 2 to 2.7±2/0/2,3±1/5 mm Hg at Visit 5 (p<0.001). The use of the fixed-dose combination of perindopril arginine/amlodipine in hypertensive patients just at the beginning of treatment, by switching from insufficiently effective mono- or combination AHT to the fixed-dose combination of perindopril arginine/amlodipine, is an effective way to optimize AHT in clinical practice, which lowers the BP level and variability, as evidenced by both OVVM and

  7. DIVERSE POTENTIAL AND PHARMACOLOGICAL STUDIES OF ARGININE

    OpenAIRE

    Anju Meshram; Nidhi Srivastava

    2015-01-01

    Arginine is metabolically flexible amino acid with major role in protein synthesis and detoxification of ammonia. It is involved in several metabolic pathways for the production of biologically active compounds such as creatine, nitric oxide, ornithine, glutamate, agmatine, citrulline and polyamines. Regarding this all, we review the crucial role of arginine in metabolism, diversified prospective uses and pharmacological applications. Arginine plays an important role in the treatm...

  8. L-arginine biosensors: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Neelam Verma

    2017-12-01

    Full Text Available Arginine has been considered as the most potent nutraceutics discovered ever, due to its powerful healing property, and it's been known to scientists as the Miracle Molecule. Arginine detection in fermented food products is necessary because, high level of arginine in foods forms ethyl carbamate (EC during the fermentation process. Therefore, L-arginine detection in fermented food products is very important as a control measure for quality of fermented foods, food supplements and beverages including wine. In clinical analysis arginine detection is important due to their enormous inherent versatility in various metabolic pathways, topmost in the synthesis of Nitric oxide (NO and tumor growth. A number of methods are being used for arginine detection, but biosensors technique holds prime position due to rapid response, high sensitivity and high specificity. However, there are many problems still to be addressed, including selectivity, real time analysis and interference of urea presence in the sample. In the present review we aim to emphasize the significant role of arginine in human physiology and foods. A small attempt has been made to discuss the various techniques used for development of arginine biosensor and how these techniques affect their performance. The choice of transducers for arginine biosensor ranges from optical, pH sensing, ammonia gas sensing, ammonium ion-selective, conductometric and amperometric electrodes because ammonia is formed as a final product.

  9. The Nitric Oxide Synthase Inhibitor NG-Nitro-L-Arginine Methyl Ester Diminishes the Immunomodulatory Effects of Parental Arginine in Rats with Subacute Peritonitis

    Science.gov (United States)

    Lo, Hui-Chen; Hung, Ching-Yi; Huang, Fu-Huan; Su, Tzu-Cheng; Lee, Chien-Hsing

    2016-01-01

    The combined treatment of parenteral arginine and the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) have been shown to improve liver function and systemic inflammation in subacute peritonitic rats. Here, we investigated the effects of single and combined parenteral arginine and L-NAME treatments on leukocyte and splenocyte immunity. Male Wistar rats were subjected to cecal punctures and were intravenously given total parenteral nutrition solutions with or without arginine and/or L-NAME supplementations for 7 days. Non-surgical and sham-operated rats with no cecal puncture were given a chow diet and parenteral nutrition, respectively. Parenteral feeding elevated the white blood cell numbers and subacute peritonitis augmented the parenteral nutrition-induced alterations in the loss of body weight gain, splenomegaly, and splenocyte decreases. Parenteral arginine significantly increased the B-leukocyte level, decreased the natural killer T (NKT)-leukocyte and splenocyte levels, alleviated the loss in body weight gain and total and cytotoxic T-splenocyte levels, and attenuated the increases in plasma nitrate/nitrite and interferon-gamma production by T-splenocytes. L-NAME infusion significantly decreased NKT-leukocyte level, tumor-necrosis factor (TNF)-alpha production by T-splenocytes and macrophages, and interferon-gamma production by T-leukocytes, monocytes, and T-splenocytes, as well as increased interleukin-6 production by T-leukocytes and monocytes and nitrate/nitrite production by T-leukocytes. Combined treatment significantly decreased plasma nitrate/nitrite, the NKT-leukocyte level, and TNF-alpha production by T-splenocytes. Parenteral arginine may attenuate immune impairment and L-NAME infusion may augment leukocyte proinflammatory response, eliminate splenocyte proinflammatory and T-helper 1 responses, and diminish arginine-induced immunomodulation in combined treatment in subacute peritonitic rats. PMID:27007815

  10. Phosphorylation Drives a Dynamic Switch in Serine/Arginine-Rich Proteins

    OpenAIRE

    Xiang, ShengQi; Gapsys, Vytautas; Kim, Hai-Young; Bessonov, Sergey; Hsiao, He-Hsuan; Möhlmann, Sina; Klaukien, Volker; Ficner, Ralf; Becker, Stefan; Urlaub, Henning; Lührmann, Reinhard; de Groot, Bert; Zweckstetter, Markus

    2013-01-01

    Serine/arginine-rich (SR) proteins are important players in RNA metabolism and are extensively phosphorylated at serine residues in RS repeats. Here, we show that phosphorylation switches the RS domain of the serine/arginine-rich splicing factor 1 from a fully disordered state to a partially rigidified arch-like structure. Nuclear magnetic resonance spectroscopy in combination with molecular dynamics simulations revealed that the conformational switch is restricted to RS repeats, critically d...

  11. Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk.

    Science.gov (United States)

    Zhou, Yijun; Li, Xiao-Ping; Chen, Brian Y; Tumer, Nilgun E

    2017-02-23

    Ricin toxin A chain (RTA) binds to stalk P-proteins to reach the α-sarcin/ricin loop (SRL) where it cleaves a conserved adenine. Arginine residues at the RTA/RTB interface are involved in this interaction. To investigate the individual contribution of each arginine, we generated single, double and triple arginine mutations in RTA. The R235A mutation reduced toxicity and depurination activity more than any other single arginine mutation in yeast. Further reduction in toxicity, depurination activity and ribosome binding was observed when R235A was combined with a mutation in a nearby arginine. RTA interacts with the ribosome via a two-step process, which involves slow and fast interactions. Single arginine mutations eliminated the fast interactions with the ribosome, indicating that they increase the binding rate of RTA. Arginine residues form a positively charged patch to bind to negatively charged residues at the C-termini of P-proteins. When electrostatic interactions conferred by the arginines are lost, hydrophobic interactions are also abolished, suggesting that the hydrophobic interactions alone are insufficient to allow binding. We propose that Arg235 serves as an anchor residue and cooperates with nearby arginines and the hydrophobic interactions to provide the binding specificity and strength in ribosome targeting of RTA.

  12. The role of arginine and arginine-metabolizing enzymes during Giardia - host cell interactions in vitro.

    Science.gov (United States)

    Stadelmann, Britta; Hanevik, Kurt; Andersson, Mattias K; Bruserud, Oystein; Svärd, Staffan G

    2013-11-14

    Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. Giardia affects the host's arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy.

  13. DIVERSE POTENTIAL AND PHARMACOLOGICAL STUDIES OF ARGININE

    Directory of Open Access Journals (Sweden)

    Anju Meshram

    2015-09-01

    Full Text Available Arginine is metabolically flexible amino acid with major role in protein synthesis and detoxification of ammonia. It is involved in several metabolic pathways for the production of biologically active compounds such as creatine, nitric oxide, ornithine, glutamate, agmatine, citrulline and polyamines. Regarding this all, we review the crucial role of arginine in metabolism, diversified prospective uses and pharmacological applications. Arginine plays an important role in the treatment of tumorigenesis, asthama, gastric, erectile dysfunction, apoptosis, melanoma and congestive heart failure. Ability to produce nitric oxide offers various applications as in the prevention of age and hair loss. It serves as a precursor of creatine with ergogenic potential. The ability to increase endogenous growth hormone makes arginine a preferred supplement for the improvement of physical performance. In the present study details about the pharmacological applications of arginine based on modern scientific investigations have been discussed. There are immense properties hidden in arginine that need to be explored using the scientific investigations to make it beneficial for the medicine and human health. More research is needed to evaluate the role of arginine supplementation on exercise performance and training adaptations in healthy and diseased populations before taking any conclusions.

  14. THE METHODS OF L-ARGININE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Gayda G. Z.

    2014-02-01

    Full Text Available Physicochemical and enzymatic methods of quantitative L-arginine estimation are described. A variety of detection procedures for L-arginine analysis have been developed. The majority of the frequently used approaches are marked by poor precision, low sensitivity and selectivity. These methods are time-consuming, expensive and require skilful labor techniques, so it needs to develop novel highly selective and sensitive ones for improvement of L-arginine monitoring in clinical diagnostics and food industry. Experimental data concerning development and testing of effective enzymatic methods of L-arginine determination, including biosensors, are presented. All proposed methods are based on human liver arginase I isolated from the recombinant yeast strain Hansenula polymorpha NCYC-495 pGAP1-HsARG1 (leu2car1 Sc:LEU2. Arginase I (EC 3.5.3.1; L-arginine amidinohydrolase, a key enzyme of the urea cycle, catalyses the conversion of L-arginine to ornithine and urea. An effectiveness of the proposed enzymatic methods for L-arginine assay, as amperometric and potentiometric biosensors so as enzymatic methods with spectrophotometric and fluorometric detection of the product, was demonstrated on the samples of commercial pharmaceuticals. These methods seem to be prospective for L-arginine analyses in food industry (juices and wines and in medicine, for diagnostics and drug control in blood serum under treatment of cancer malignances. Hence, the proposed L-Arg selective and simple methods would be convenient and useful in the future for routine clinical analysis and food quality control.

  15. Symmetric allosteric mechanism of hexameric Escherichia coli arginine repressor exploits competition between L-arginine ligands and resident arginine residues.

    Directory of Open Access Journals (Sweden)

    Rebecca Strawn

    2010-06-01

    Full Text Available An elegantly simple and probably ancient molecular mechanism of allostery is described for the Escherichia coli arginine repressor ArgR, the master feedback regulator of transcription in L-arginine metabolism. Molecular dynamics simulations with ArgRC, the hexameric domain that binds L-arginine with negative cooperativity, reveal that conserved arginine and aspartate residues in each ligand-binding pocket promote rotational oscillation of apoArgRC trimers by engagement and release of hydrogen-bonded salt bridges. Binding of exogenous L-arginine displaces resident arginine residues and arrests oscillation, shifting the equilibrium quaternary ensemble and promoting motions that maintain the configurational entropy of the system. A single L-arg ligand is necessary and sufficient to arrest oscillation, and enables formation of a cooperative hydrogen-bond network at the subunit interface. The results are used to construct a free-energy reaction coordinate that accounts for the negative cooperativity and distinctive thermodynamic signature of L-arginine binding detected by calorimetry. The symmetry of the hexamer is maintained as each ligand binds, despite the conceptual asymmetry of partially-liganded states. The results thus offer the first opportunity to describe in structural and thermodynamic terms the symmetric relaxed state predicted by the concerted allostery model of Monod, Wyman, and Changeux, revealing that this state is achieved by exploiting the dynamics of the assembly and the distributed nature of its cohesive free energy. The ArgR example reveals that symmetry can be maintained even when binding sites fill sequentially due to negative cooperativity, which was not anticipated by the Monod, Wyman, and Changeux model. The molecular mechanism identified here neither specifies nor requires a pathway for transmission of the allosteric signal through the protein, and it suggests the possibility that binding of free amino acids was an early

  16. The influence of gastric pentadecapeptide BPC 157 on acute and chronic ethanol administration in mice. The effect of N(G)-nitro-L-arginine methyl ester and L-arginine.

    Science.gov (United States)

    Boban-Blagaic, Alenka; Blagaic, Vladimir; Romic, Zeljko; Jelovac, Nikola; Dodig, Goran; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Seiwerth, Sven; Sikiric, Predrag

    2006-01-01

    Alcohol disturbances, NO stimulation (by the NO-precursor L-arginine), and/or NO-synthesis blockade (by N(G)-nitro-L-arginine methyl ester, i.e. L-NAME) were challenged with stable gastric pentadecapeptide BPC 157, which inhibits both acute alcohol intoxication and alcohol withdrawal symptoms. Mice received intraperitoneally (i.p.) BPC 157 (10 microg/kg), L-NAME (10 mg/kg), and L-arginine (400 mg/kg), alone or in combination, 5 minutes before or after acute ethanol (4 g/kg i.p.) intoxication or after 0, 3, or 7 hours of withdrawal after drinking 20% alcohol for 13 days. BPC 157 rapidly opposes the strongest disturbance presentations in acute intoxication (sustained ethanol anesthesia, complete loss of righting reflex, no reaction to external stimuli, hypothermia, 25% mortality) and withdrawal (prominent seizures). NO-agents: Aggravation of acute alcohol intoxication and opposition to withdrawal are common, but the later intervals affected by L-arginine and the action throughout the experiment by L-NAME are distinctive. Given together, L-arginine and L-NAME counteract each other, while either the "L-NAME presentation" (acute intoxication) or the "L-arginine presentation" (withdrawal) predominates. BPC157+NO-agent: In acute intoxication (L-NAME predominating in NO-system functioning to aggravate intoxication), both BPC157+L-NAME and BPC157+L-arginine follow the presentation of L-NAME, but without worsened mortality. In withdrawal (L-arginine predominating in NO-system functioning to oppose disturbance symptoms), BPC157+L-NAME follows the presentation of L-NAME, while BPC 157+L-arginine imitates that of L-arginine. The relationships among pentadecapeptide BPC 157, the NO-system, acute alcohol intoxication, and opposed withdrawal may be important, presenting pentadecapeptide BPC 157 as a suitable alcohol antagonist.

  17. IMMUNOSUPPRESSIVE EFFECTS OF ARGININE DEIMINASE FROM STREPTOCOCCUS PYOGENES

    Directory of Open Access Journals (Sweden)

    E. A. Starikova

    2015-01-01

    Full Text Available Many pathogens use metabolic pathway of arginine for successful dissemination. Bacterial arginine deiminase hydrolyzes arginine to form one molecule of ammonia and two molecules of ATP. The activity of the enzyme contributes to the improvement of survival of pathogenic bacteria in conditions of low pH at the site of infection or in phagolysosome, as well as in anaerobic conditions, and also leads to deficiency of arginine. Metabolism of arginine plays an important role in regulating the functions of immune system cells in mammals. Arginine is a substrate of enzymes NOS and arginase. Arginine depletion, potentially contributs to immunosuppression. The review analyzed the literature data on the effect of streptococcal arginine deiminase on the metabolism of arginine eukaryotic cells, and discusses immunosuppressive action of the enzyme.

  18. Arginine, scurvy and Cartier's "tree of life"

    Directory of Open Access Journals (Sweden)

    Durzan Don J

    2009-02-01

    Full Text Available Abstract Several conifers have been considered as candidates for "Annedda", which was the source for a miraculous cure for scurvy in Jacques Cartier's critically ill crew in 1536. Vitamin C was responsible for the cure of scurvy and was obtained as an Iroquois decoction from the bark and leaves from this "tree of life", now commonly referred to as arborvitae. Based on seasonal and diurnal amino acid analyses of candidate "trees of life", high levels of arginine, proline, and guanidino compounds were also probably present in decoctions prepared in the severe winter. The semi-essential arginine, proline and all the essential amino acids, would have provided additional nutritional benefits for the rapid recovery from scurvy by vitamin C when food supply was limited. The value of arginine, especially in the recovery of the critically ill sailors, is postulated as a source of nitric oxide, and the arginine-derived guanidino compounds as controlling factors for the activities of different nitric oxide synthases. This review provides further insights into the use of the candidate "trees of life" by indigenous peoples in eastern Canada. It raises hypotheses on the nutritional and synergistic roles of arginine, its metabolites, and other biofactors complementing the role of vitamin C especially in treating Cartier's critically ill sailors.

  19. Arginine Adjunctive Therapy in Active Tuberculosis

    Directory of Open Access Journals (Sweden)

    Aliasghar Farazi

    2015-01-01

    Full Text Available Background. Dietary supplementation has been used as a mechanism to augment the immune system. Adjunctive therapy with L-arginine has the potential to improve outcomes in active tuberculosis. Methods. In a randomized clinical trial 63 participants with smear-positive pulmonary tuberculosis in Markazi Province of Iran were given arginine or placebo for 4 weeks in addition to conventional chemotherapy. The final treatment success, sputum conversion, weight gain, and clinical symptoms after one and two months were considered as primary outcomes and secondary outcomes were ESR, CRP, and Hg. Data were collected and analyzed with SPSS software (ver. 18. Results. Arginine supplementation reduced constitutional symptoms (P=0.032 in patients with smear-positive TB at the end of the first month of treatment. Arginine treated patients had significantly increased BMI at the end of the first and second months of treatment (P=0.032 and P=0.04 and a reduced CRP at the end of the first month of treatment (P=0.03 versus placebo group. Conclusion. Arginine is useful as an adjunctive therapy in patients with active tuberculosis, in which the effects are more likely mediated by the increased production of nitric oxide and improved constitutional symptoms and weight gain. This trial is registered with Clinical Trials Registry of Iran: IRCT201211179855N2.

  20. Arginine methylation regulates the p53 response

    DEFF Research Database (Denmark)

    Jansson, Martin; Durant, Stephen T; Cho, Er-Chieh

    2008-01-01

    Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence...... on the p53 response. We show that the protein arginine methyltransferase (PRMT) 5, as a co-factor in a DNA damage responsive co-activator complex that interacts with p53, is responsible for methylating p53. Arginine methylation is regulated during the p53 response and affects the target gene specificity...... of p53. Furthermore, PRMT5 depletion triggers p53-dependent apoptosis. Thus, methylation on arginine residues is an underlying mechanism of control during the p53 response....

  1. Arginine: Its pKa value revisited

    Science.gov (United States)

    Fitch, Carolyn A; Platzer, Gerald; Okon, Mark; Garcia-Moreno E, Bertrand; McIntosh, Lawrence P

    2015-01-01

    Using complementary approaches of potentiometry and NMR spectroscopy, we have determined that the equilibrium acid dissociation constant (pKa value) of the arginine guanidinium group is 13.8 ± 0.1. This is substantially higher than that of ∼12 often used in structure-based electrostatics calculations and cited in biochemistry textbooks. The revised intrinsic pKa value helps explains why arginine side chains in proteins are always predominantly charged, even at pH values as great as 10. The high pKa value also reinforces the observation that arginine side chains are invariably protonated under physiological conditions of near neutral pH. This occurs even when the guanidinium moiety is buried in a hydrophobic micro-environment, such as that inside a protein or a lipid membrane, thought to be incompatible with the presence of a charged group. PMID:25808204

  2. [L-arginine and male infertility].

    Science.gov (United States)

    Scibona, M; Meschini, P; Capparelli, S; Pecori, C; Rossi, P; Menchini Fabris, G F

    1994-12-01

    The clinical efficacy and acceptance of L-arginina HCL was tested in 40 infertile men. All of these men had a normal number of spermatozoa (> 20 million/ml), but a decreased motility; this decreased motility was not due to infection or to immunological disorders. The treatment consisted of 80 ml of 10% L-arginine HCL administered daily per os for 6 months. L-arginine HCL showed to be able to improve the motility of spermatozoa without any side-effects.

  3. Preparation and evaluation of glycosylated arginine-glycine-aspartate (RGD) derivatives for integrin targeting.

    NARCIS (Netherlands)

    Kuijpers, B.H.M.; Groothuys, S.; Soede, A.C.; Laverman, P.; Boerman, O.C.; Delft, F.L. van; Rutjes, F.P.J.T.

    2007-01-01

    Arginine-glycine-aspartate (RGD) derivatives were prepared by a combination of solid-phase and solution-phase synthesis for selective targeting of alpha vbeta 3 integrin expressed in tumors. In order to evaluate the value of a triazole moiety as a proposed amide isostere, the side chain glycosylated

  4. Arginine and Citrulline and the Immune Response in Sepsis

    Directory of Open Access Journals (Sweden)

    Karolina A.P. Wijnands

    2015-02-01

    Full Text Available Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.

  5. Low plasma arginine:asymmetric dimethyl arginine ratios predict mortality after intracranial aneurysm rupture

    DEFF Research Database (Denmark)

    Staalsø, Jonatan Myrup; Bergström, Anita; Edsen, Troels

    2013-01-01

    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthases, predicts mortality in cardiovascular disease and has been linked to cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). In this prospective study, we assessed whether circulating ADMA, arginine...

  6. Modulators of arginine metabolism support cancer immunosurveillance

    Directory of Open Access Journals (Sweden)

    Freschi Massimo

    2009-01-01

    Full Text Available Abstract Background Tumor-associated accrual of myeloid derived suppressor cells (MDSC in the blood, lymphoid organs and tumor tissues may lead to perturbation of the arginine metabolism and impairment of the endogenous antitumor immunity. The objective of this study was to evaluate whether accumulation of MDSC occurred in Th2 prone BALB/c and Th1 biased C57BL/6 mice bearing the C26GM colon carcinoma and RMA T lymphoma, respectively, and to investigate whether N(G nitro-L-arginine methyl ester (L-NAME and sildenafil, both modulators of the arginine metabolism, restored antitumor immunity. Results We report here that MDSC accumulate in the spleen and blood of mice irrespective of the mouse and tumor model used. Treatment of tumor-bearing mice with either the phosphodiesterase-5 inhibitor sildenafil or the nitric-oxide synthase (NOS inhibitor L-NAME significantly restrained tumor growth and expanded the tumor-specific immune response. Conclusion Our data emphasize the role of MDSC in modulating the endogenous tumor-specific immune response and underline the anti-neoplastic therapeutic potential of arginine metabolism modulators.

  7. Lysine and arginine requirements of Salminus brasiliensis

    Directory of Open Access Journals (Sweden)

    Jony Koji Dairiki

    2013-08-01

    Full Text Available The objective of this work was to determine the dietary lysine (DL and dietary arginine (DA requirements of dourado (Salminus brasiliensis, through dose-response trials using the amino acid profiles of whole carcasses as a reference. Two experiments were carried out in a completely randomized design (n=4. In the first experiment, groups of 12 feed-conditioned dourado juveniles (11.4±0.2 g were stocked in 60 L cages placed in 300 L plastic indoor tanks in a closed circulation system. Fish were fed for 60 days on diets containing 1.0, 1.5, 2.0, 2.5, 3.0, or 3.5 % dietary lysine. In the second experiment, dourado juveniles (27.0±0.8 g were fed for 60 days on semipurified diets containing arginine at 1.0, 1.5, 2.0, 2.5 or 3.0%, in similar conditions to those of the first experiment. Optimal DL requirements, as determined by broken-line analysis method for final weight, weight gain and specific growth rate, were 2.15% DL or 5% lysine in dietary protein, and 1.48% DA or 3.43% arginine in dietary protein. The best feed conversion ratio is attained with 2.5% DL or 5.8% lysine in dietary protein and 1.4% DA or 3.25% arginine in dietary protein.

  8. 21 CFR 582.5145 - Arginine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arginine. 582.5145 Section 582.5145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  9. Estimation of Plasma Arginine Vasopressin Concentration Using ...

    African Journals Online (AJOL)

    olayemitoyin

    increase in plasma osmolality and increase in ADH and thirst. The purpose of this study was to estimate plasma arginine vasopressin (PAVP) using thirst perception (TP) and plasma osmolality (POSM) values before and at 60 minutes in control or euhydrate (group A, 0.0 ml/kg body weight of distilled water), hydrated (group ...

  10. Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods

    Directory of Open Access Journals (Sweden)

    Cabrera-Luque Juan

    2008-09-01

    Full Text Available Abstract Background The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG, an essential allosteric activator of carbamylphosphate synthetase I (CPSI in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS, which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS. Results Information from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine. Conclusion Difference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine

  11. Arginine Vasopressin and Copeptin in Perinatology

    OpenAIRE

    Evers, Katrina Suzanne; Wellmann, Sven

    2016-01-01

    Arginine vasopressin (AVP) plays a major role in the homeostasis of fluid balance, vascular tonus, and the regulation of the endocrine stress response. The measurement of AVP levels is difficult due to its short half-life and laborious method of detection. Copeptin is a more stable peptide derived from the same precursor molecule, is released in an equimolar ratio to AVP, and has a very similar response to osmotic, hemodynamic, and stress-related stimuli. In fact, copeptin has been propagated...

  12. Epidermal growth factor and human growth hormone induce two sodium-dependent arginine transport systems after massive enterectomy.

    Science.gov (United States)

    Iannoli, P; Miller, J H; Sax, H C

    1998-01-01

    A combination of epidermal growth factor (EGF) and human growth hormone (hGH) after massive enterectomy induces a 400% increase in arginine transport in the remnant distal small intestine. The kinetic mechanism(s) responsible for enhanced arginine transport under these conditions is unknown. New Zealand White rabbits underwent 70% midjejunoileal resection. After a 1-week recovery period, animals received hGH (0.2 mg/kg/d IM), EGF (1.5 microg/kg/h SC), hGH + EGF, or vehicle (equal volume) for 7 days. Transport of tritiated arginine into brush border membrane vesicles prepared from distal remnant small intestinal mucosa was quantified in the presence and absence of a sodium gradient over a range of arginine concentrations (25 to 5000 micromol/L). Eadie-Hofstee transformation of the kinetic data demonstrates two sodium-dependent arginine transport systems, comprising a high-capacity, low-affinity system and a low-capacity, high-affinity system. A combination of EGF and hGH significantly upregulates both the high-capacity (685%) and low-capacity (350%) maximum transport velocity (Vmax). Additionally, EGF alone significantly upregulates Vmax by 200% in the low-capacity system. There were no significant changes in transport affinity (Km) in either system. There are two quiescent sodium-dependent arginine transport systems in the distal small intestine. A combination of EGF and hGH after massive enterectomy increase arginine transport by Vmax upregulation in both the high-capacity/low-affinity and low-capacity/high-affinity systems.

  13. Interaction of arginine with Capto MMC in multimodal chromatography.

    Science.gov (United States)

    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi

    2014-04-18

    This study highlights the ability of arginine to elute bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8) from Capto MMC, which is a multimodal cation exchanger. Arginine provides high recovery of monomeric BSA from Capto MMC chromatography columns at yields similar to NaCl elution, and oligomeric BSA was more readily eluted by arginine than by NaCl. The effectiveness of arginine as an eluent also enabled the separation of monomeric BSA from the oligomeric forms. The purification of mAb-IL8 was successfully achieved using Capto MMC chromatography and arginine as the eluent. The mechanism of the effects of arginine on protein elution was determined by calculating the binding free energy between arginine and Capto MMC using molecular dynamics simulations. The overall affinity of arginine for Capto MMC was associated with electrostatic interactions. However, additional affinities contributed by hydrophobic interaction or hydrogen bonding were also observed to play a role in the interaction between arginine and Capto MMC, which likely results in the characteristic elution by arginine. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effects of exercise and L-arginine on ventricular remodeling and oxidative stress.

    Science.gov (United States)

    Xu, Xiaohua; Zhao, Weiyan; Lao, Shunhua; Wilson, Bryan S; Erikson, John M; Zhang, John Q

    2010-02-01

    Our aim was to characterize the changes in messenger RNA (mRNA) abundance, protein, and activity levels of the enzymatic antioxidants, superoxide dismutase (SOD), glutathione peroxidase, and catalase by exercise training combined with L-arginine after myocardial infarction (MI). L-Arginine (1 g x kg(-1) x d(-1)) and N(G)-nitro-L-arginine methyl ester (L-NAME; 10 mg x kg(-1) x d(-1)) were administered in drinking water for 8 wk. Sprague-Dawley rats were randomized to the following groups: sham-operated control (Sham); MI sedentary (Sed); MI exercise (Ex); MI sedentary + L-arginine (Sed + LA); MI exercise + L-arginine (Ex + LA); MI sedentary + L-NAME (Sed + L-NAME); and MI exercise + L-NAME (Ex + L-NAME). The glutathione peroxidase, catalase, and gp91(phox) mRNA levels were comparable among all the groups. The SOD mRNA level was significantly increased in the Ex group (5.43 +/- 0.87) compared with the Sed group (1.74 +/- 0.29), whereas this effect was pronouncedly down-regulated by the L-NAME intervention (2.51 +/- 1.17, P levels of SOD in the Sed and Ex groups were both significantly decreased with the administration of L-NAME. The protein levels of catalase were significantly higher in the Ex and Ex + LA groups than that in the Sed, Sed + LA, and L-NAME-treated groups. The collagen volume fraction was significantly lowered by the exercise and/or L-arginine treatment when compared with the Sed group. Fractional shortening was significantly preserved in the trained groups compared with their corresponding sedentary groups with or without drug treatments. However, the beneficial effect was not further improved by L-arginine treatment. Our results suggest that exercise training exerts antioxidative effects and attenuates myocardial fibrosis in the MI rats. These improvements, in turn, alleviate cardiac stiffness and preserve post-MI cardiac function. In addition, L-arginine appears to have no additive effect on cardiac function or expression of enzymatic antioxidants.

  15. Efficacy L-Arginine In Patients With Nonalcoholic Steatohepatitis Associated With Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Oleksandr Fediv

    2015-01-01

    Full Text Available Abstract Background and Purpose Recent research in the field of hematology indicate that among the many pathogenic mechanisms of development and progression of nonalcoholic steatohepatitis NASH which occurs on the background of the metabolic syndrome an important role is played by endothelial dysfunction and violations of haemocoagulation. The aim of this research was to study the effectiveness of L-arginine as it corrects endothelial dysfunction and disorders of homeostasis haemocoagulation link in patients with NASH associated with the metabolic syndrome. Subjects and Methods 128 patients with nonalcoholic steatohepatitis associated with metabolic syndrome were examined. Some patients 63 persons received standard treatment according to national guidelines. To another group 65 patients on the background of basic therapy L-arginine hydrochloride followed by transition to oral form of L-arginine aspartate was administered. Blood levels of stable nitrogen monoxide metabolites nitrites nitrates endothelin-1 and plasma recalcification time prothrombin time thrombin time activated partial thromboplastin time fibrinogen plasma level activity of antithrombin III and coagulation factor XIII potential activity of plasminogen plasma fibrinolytic blood activity were studied. Results Originally significantly increased levels of endothelin-1 decreased after the therapy in all studied groups but more noticeable changes in the group with L-arginine appointment were observed p0.05. In the studied groups normalization of stable nitrogen monoxide metabolites after treatment was also noticed. Significant p0.05 increase in all haemocoagulation time characteristics and activities of antithrombin-III and factor XIII was found. The positive effect of L-arginine on blood fibrinolytic activity was noted. Discussion and Conclusion Combined therapy of nonalcoholic steatohepatitis associated with metabolic syndrome with a differentiated degreeal L-arginine assignment by

  16. The role of arginine and arginine-metabolizing enzymes during Giardia – host cell interactions in vitro

    Science.gov (United States)

    2013-01-01

    Background Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. Results RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. Conclusions Giardia affects the host’s arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy. PMID:24228819

  17. Synergistic Protection of L-Arginine and Vitamin E On Lipid Peroxidation of Asthenospermic Patients

    Directory of Open Access Journals (Sweden)

    Sudha Srivastava

    2008-01-01

    Full Text Available Background: Lipid peroxidation is known to cause various impairments to sperm cells and mayplay a major role in the etiology of male infertility. Asthenospermia is the main factor of maleinfertility and has significantly higher level of peroxidation than in normozoospermic males.Materials and Methods: Using thiobarbituric acid (TBA assay procedure, we have determinedthe level of lipid peroxidation as indicated by malondialdehyde (MDA in the spermatozoa obtainedfrom asthenospermic male semen.Results: An inverse correlation of MDA concentration with sperm motility is observed. Treatmentof cells with L-arginine and vitamin E significantly decreases the MDA concentration and improvesthe sperm motility as compared to that in case of control samples. A combination of L-arginine andvitamin E shows synergistic effect on sperm motility and prevention of lipid peroxidation.Conclusion: L-arginine and vitamin E protect the cells against the loss of sperm motility by lipidperoxidation. Therefore, supplementation of both L-arginine and vitamin E may improve spermmotility and increase the possibility of fertilization in asthenospermic subjects.

  18. Effects of Arginine on Multimodal Chromatography: Experiments and Simulations.

    Science.gov (United States)

    Hirano, Atsushi; Shiraki, Kentarou; Kameda, Tomoshi

    2017-10-24

    Multimodal or mixed-mode chromatography can be used to separate various proteins, including antibodies. The separation quality and efficiency have been improved by the addition of solutes, especially arginine. This review summarizes the mechanism underlying the effects of arginine on protein elution in multimodal chromatography with neutral, anionic or cationic resin ligands; the mechanism has been investigated using experiments and molecular dynamics simulations. Arginine is effective in facilitating protein elution compared to salts and protein denaturants such as guanidine and urea. The unique elution effect of arginine can be explained by the interplay among arginine, proteins and the resin ligands. Arginine exhibits multiple binding modes for the ligands and further affinity for protein aromatic residues through its guanidinium group. These properties make arginine versatile for protein elution in multimodal chromatography. Taking into account that arginine is an aggregation suppressor for proteins but not a protein denaturant, arginine is a promising protein-eluting reagent for multimodal chromatography. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae

    Science.gov (United States)

    Hodges, Amelia J.; Gallegos, Isaura J.; Laughery, Marian F.; Meas, Rithy; Tran, Linh; Wyrick, John J.

    2015-01-01

    A critical feature of the intermolecular contacts that bind DNA to the histone octamer is the series of histone arginine residues that insert into the DNA minor groove at each superhelical location where the minor groove faces the histone octamer. One of these “sprocket” arginine residues, histone H4 R45, significantly affects chromatin structure in vivo and is lethal when mutated to alanine or cysteine in Saccharomyces cerevisiae (budding yeast). However, the roles of the remaining sprocket arginine residues (H3 R63, H3 R83, H2A R43, H2B R36, H2A R78, H3 R49) in chromatin structure and other cellular processes have not been well characterized. We have genetically characterized mutations in each of these histone residues when introduced either singly or in combination to yeast cells. We find that pairs of arginine residues that bind DNA adjacent to the DNA exit/entry sites in the nucleosome are lethal in yeast when mutated in combination and cause a defect in histone occupancy. Furthermore, mutations in individual residues compromise repair of UV-induced DNA lesions and affect gene expression and cryptic transcription. This study reveals simple rules for how the location and structural mode of DNA binding influence the biological function of each histone sprocket arginine residue. PMID:25971662

  20. Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hodges, Amelia J; Gallegos, Isaura J; Laughery, Marian F; Meas, Rithy; Tran, Linh; Wyrick, John J

    2015-07-01

    A critical feature of the intermolecular contacts that bind DNA to the histone octamer is the series of histone arginine residues that insert into the DNA minor groove at each superhelical location where the minor groove faces the histone octamer. One of these "sprocket" arginine residues, histone H4 R45, significantly affects chromatin structure in vivo and is lethal when mutated to alanine or cysteine in Saccharomyces cerevisiae (budding yeast). However, the roles of the remaining sprocket arginine residues (H3 R63, H3 R83, H2A R43, H2B R36, H2A R78, H3 R49) in chromatin structure and other cellular processes have not been well characterized. We have genetically characterized mutations in each of these histone residues when introduced either singly or in combination to yeast cells. We find that pairs of arginine residues that bind DNA adjacent to the DNA exit/entry sites in the nucleosome are lethal in yeast when mutated in combination and cause a defect in histone occupancy. Furthermore, mutations in individual residues compromise repair of UV-induced DNA lesions and affect gene expression and cryptic transcription. This study reveals simple rules for how the location and structural mode of DNA binding influence the biological function of each histone sprocket arginine residue. Copyright © 2015 by the Genetics Society of America.

  1. Arginine and aerobic training prevent endothelial and metabolic alterations in rats at high risk for the development of the metabolic syndrome.

    Science.gov (United States)

    Medeiros, Renata F; Gaique, Thaiane G; Bento-Bernardes, Thais; Kindlovits, Raquel; Gomes, Tamiris M B; Motta, Nadia Alice V; Brito, Fernanda Carla; Fernandes-Santos, Caroline; Oliveira, Karen J; Nóbrega, Antonio Claudio L

    2017-07-01

    Endothelial function is a key mechanism in the development of CVD. Arginine and exercise are important non-pharmacological strategies for mitigating the impact of metabolic changes in the metabolic syndrome, but the effect of their combined administration is unknown. Thus, the aim of this study was to investigate the isolated and combined effects of aerobic training and arginine supplementation on metabolic variables and vascular reactivity in rats at high risk for developing the metabolic syndrome. Wistar rats were divided into two groups: control and fructose (F - water with 10 % fructose). After 2 weeks, the F group was divided into four groups: F, fructose+arginine (FA, 880 mg/kg per d of l-arginine), fructose+training (FT) and fructose+arginine+training (FTA); treatments lasted for 8 weeks, and no difference was observed in body mass gain. Arginine did not improve the body protein content, and both the FA and FT groups show a reversal of the increase in adipose tissue. Insulin increase was prevented by training and arginine, without additive effect, and the increase in serum TAG was prevented only by training. The F group showed impaired endothelium-dependent vasodilation and hyperreactivity to phenylephrine, but arginine and training were capable of preventing these effects, even separately. Higher nitric oxide level was observed in the FA and FT groups, and no potentiating effect was detected. Thus, only training was able to prevent the increase in TAG and improve the protein mass, and training and arginine exert similar effects on fat content, insulin and endothelial function, but these effects are not additive.

  2. Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    OpenAIRE

    Guerron, Alfredo D.; Rashmi Rawat; Arpana Sali; Spurney, Christopher F.; Emidio Pistilli; Hee-Jae Cha; Pandey, Gouri S.; Ramkishore Gernapudi; Dwight Francia; Viken Farajian; ESCOLAR, DIANA M.; Laura Bossi; Magali Becker; Patricia Zerr; Sabine de la Porte

    2010-01-01

    Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 mo...

  3. Arginine specific aminopeptidase from Lactobacillus brevis

    Directory of Open Access Journals (Sweden)

    Arya Nandan

    2010-12-01

    Full Text Available The proteolytic system of lactic acid bacteria contribute to the development of flavor during the ripening of cheese through the generation of short peptides and free amino acids, which directly or indirectly act as flavor precursors. Newly isolated lactic acid bacteria (LAB as well as those procured from culture collection centers were screened for the production of various substrate specific aminopeptidases. Among all the strains screened, L. brevis (NRRL B-1836 was found to produce quantifiable amount of intracellular arginine specific aminopeptidase (EC 3.4.11.6. The productivity of arginine aminopeptidase in 5 L fermentor was 36 IU/L/h. The Luedeking and Piret model was tested for intracellular production of aminopeptidase and the data seemed to fit well, as the correlation coefficient was 0.9964 for MRS. The αAP and βAP was 0.4865 and 0.0046, respectively in MRS medium indicating that the yield was predominantly depended on growth. The culture produced lactic acid and also tolerated pH 2.0-3.0 and 0.3-0.5% bile salts, the most important probiotic features.

  4. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    Energy Technology Data Exchange (ETDEWEB)

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  5. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    Directory of Open Access Journals (Sweden)

    Juan C Marini

    Full Text Available Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20 on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L, and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  6. Arginine, citrulline and nitric oxide metabolism in sepsis

    Science.gov (United States)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  7. L-Arginine supplementation in sepsis: beneficial or harmful?

    Science.gov (United States)

    Kalil, Andre C; Danner, Robert L

    2006-08-01

    Recent results are reviewed on the effects of L-arginine supplements in excess of standard nutritional practices during severe sepsis and septic shock. Septic shock has been alternatively viewed as an L-arginine-deficient state or as a syndrome caused by excess nitric oxide, a vasoactive product of L-arginine metabolism. L-Arginine has many physiologic and pharmacologic effects that indicate its potential to affect survival in septic patients. Animal studies have documented immunologic effects of L-arginine and of commercial 'immune-enhancing' diets. However, survival studies in small animals have not consistently favored L-arginine. L-Arginine monotherapy in a canine model of septic shock found significant harm at infusion rates of less than twice that administered in standard formulations of total parenteral nutrition. Meanwhile, clinical studies have suffered from lack of statistical power, patient heterogeneity, randomization failures, and use of complex nutritional formulas. Meta-analyses have noted heterogeneity between the effects of immune-enhancing diets in surgical versus medical patients and mixed critically ill populations that include subjects with sepsis, indicating that these results may not be reliably pooled. To date, published evidence has not established the safety and efficacy of L-arginine at doses above standard dietary practices in severe sepsis or septic shock.

  8. Esophagogastric anastomosis in rats: Improved healing by BPC 157 and L-arginine, aggravated by L-NAME.

    Science.gov (United States)

    Djakovic, Zeljko; Djakovic, Ivka; Cesarec, Vedran; Madzarac, Goran; Becejac, Tomislav; Zukanovic, Goran; Drmic, Domagoj; Batelja, Lovorka; Zenko Sever, Anita; Kolenc, Danijela; Pajtak, Alen; Knez, Nikica; Japjec, Mladen; Luetic, Kresimir; Stancic-Rokotov, Dinko; Seiwerth, Sven; Sikiric, Predrag

    2016-11-07

    To cure typically life-threatening esophagogastric anastomosis in rats, lacking anastomosis healing and sphincter function rescue, in particular. Because we assume esophagogastric fistulas represent a particular NO-system disability, we attempt to identify the benefits of anti-ulcer stable gastric pentadecapeptide BPC 157, which was in trials for ulcerative colitis and currently for multiple sclerosis, in rats with esophagocutaneous fistulas. Previously, BPC 157 therapies have promoted the healing of intestinal anastomosis and fistulas, and esophagitis and gastric lesions, along with rescued sphincter function. Additionally, BPC 157 particularly interacts with the NO-system. In the 4 d after esophagogastric anastomosis creation, rats received medication (/kg intraperitoneally once daily: BPC 157 (10 μg, 10 ng), L-NAME (5 mg), or L-arginine (100 mg) alone and/or combined or BPC 157 (10 μg, 10 ng) in drinking water). For rats underwent esophagogastric anastomosis, daily assessment included progressive stomach damage (sum of the longest diameters, mm), esophagitis (scored 0-5), weak anastomosis (mL H2O before leak), low pressure in esophagus at anastomosis and in the pyloric sphincter (cm H2O), progressive weight loss (g) and mortality. Immediate effect assessed blood vessels disappearance (scored 0-5) at the stomach surface immediately after anastomosis creation. BPC 157 (all regimens) fully counteracted the perilous disease course from the very beginning (i.e., with the BPC 157 bath, blood vessels remained present at the gastric surface after anastomosis creation) and eliminated mortality. Additionally, BPC 157 treatment in combination with L-NAME nullified any effect of L-NAME that otherwise intensified the regular course. Consistently, with worsening (with L-NAME administration) and amelioration (with L-arginine), either L-arginine amelioration prevails (attenuated esophageal and gastric lesions) or they counteract each other (L-NAME + L-arginine); with the

  9. Functional and neurochemical profile of place learning after L-nitro-arginine in the rat

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Wörtwein, Gitta; Hasman, Andreas

    1995-01-01

    Neurobiology, nitrogenoxid (NO), place learning, rotte, L-Nitro-Arginin, funktionel genopretning......Neurobiology, nitrogenoxid (NO), place learning, rotte, L-Nitro-Arginin, funktionel genopretning...

  10. Effects of acute supplementation of L-arginine and nitrate on endurance and sprint performance in elite athletes.

    Science.gov (United States)

    Sandbakk, Silvana Bucher; Sandbakk, Øyvind; Peacock, Oliver; James, Philip; Welde, Boye; Stokes, Keith; Böhlke, Nikolai; Tjønna, Arnt Erik

    2015-08-01

    This study examined the effects of acute supplementation with L-arginine and nitrate on running economy, endurance and sprint performance in endurance-trained athletes. In a randomised cross-over, double-blinded design we compared the effects of combined supplementation with 6 g L-arginine and 614 mg nitrate against 614 mg nitrate alone and placebo in nine male elite cross-country skiers (age 18 ± 0 years, VO2max 69.3 ± 5.8 ml ⋅ min(-1) ⋅ kg(-1)). After a 48-hour standardisation of nutrition and exercise the athletes were tested for plasma nitrate and nitrite concentrations, blood pressure, submaximal running economy at 10 km ⋅ h(-1) and 14 km ⋅ h(-1) at 1% incline and 180 m as well as 5-km time-trial running performances. Plasma nitrite concentration following L-arginine + nitrate supplementation (319 ± 54 nmol ⋅ L(-1)) did not differ from nitrate alone (328 ± 107 nmol ⋅ L(-1)), and both were higher than placebo (149 ± 64 nmol ⋅ L(-1), p supplementation of L-arginine + nitrate and with nitrate alone compared to placebo, but no additional effect was revealed when L-arginine was added to nitrate. Still, there were no effects of supplementation on exercise economy or endurance running performance in endurance-trained cross-country skiers. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Plasma arginine correlations in trauma and sepsis.

    Science.gov (United States)

    Chiarla, C; Giovannini, I; Siegel, J H

    2006-02-01

    Arginine (ARG) is an amino acid (AA) with unique properties and with a key-role in the metabolic, immune and reparative response to trauma and sepsis. This study has been performed to characterize the correlations between plasma levels of ARG, of other AA and of multiple metabolic variables in trauma and sepsis. Two-hundred and sixty-three plasma amino-acidograms with a large series of additional biochemical and blood variables were obtained consecutively in 9 trauma patients who developed sepsis, undergoing total parenteral nutrition with dextrose, fat and a mixed AA solution containing 10.4% arginine. ARG was low soon after trauma, then it increased with increasing distance from trauma and with the development of sepsis. ARG was also directly related to the AA infusion rate (AAIR) and for any given AAIR, was lower after trauma than after the development of sepsis. ARG was also related directly to the plasma levels of most of the other AA, the best correlation being that with lysine (r(2) = 0.81, p AAIR and urinary 3-methylhistidine excretion (accounting for the effect of endogenous proteolysis) (multiple r(2) = 0.70, p AAIR better than ARG and, for any given AAIR, was lower after trauma than after the development of sepsis. Correlations of ORN with other AA levels were poorer than those found for ARG, however ORN was directly related to white blood cell and platelet count, fibrinogen, transferrin, cholesterol and many AA clearances. These data show that changes in ARG in trauma and sepsis are correlated with changes in other AA and, within these correlations, reconfirm a tendency to lower ARG in trauma compared to sepsis. The strong correlation with lysine warrants a deeper assessment of the practical implications of interdependency between these two AA. The data also suggest that changes in plasma ORN in trauma and sepsis may reflect adequacy of AA substrate to support acute-phase and other synthetic processes.

  12. Pentadecapeptide BPC 157 Reduces Bleeding and Thrombocytopenia after Amputation in Rats Treated with Heparin, Warfarin, L-NAME and L-Arginine.

    Directory of Open Access Journals (Sweden)

    Mirjana Stupnisek

    Full Text Available BPC 157 is a stable gastric pentadecapeptide recently implicated with a role in hemostasis. While NO is largely implicated in hemostatic mechanisms, in tail-amputation-models under heparin- and warfarin-administration, both the NO-synthase (NOS-blocker, L-NAME (prothrombotic and the NOS-substrate L-arginine (antithrombotic, were little investigated. Objective. To investigate the effect of L-NAME and L-arginine on hemostatic parameters, and to reveal the effects of BPC 157 on the L-NAME- and L-arginine-induced hemostatic actions under different pathological condition: tail amputation without or with anticoagulants, heparin or warfarin.Tail amputation, and/or i.v.-heparin (10 mg/kg, i.g.-warfarin (1.5 mg/kg/day for 3 days were used in rats. Treatment includes BPC 157, L-NAME, L-arginine, per se and their combination.After (tail amputation, with or without i.v.-heparin or i.g.-warfarin, BPC 157 (10 μg/kg, 10 ng/kg, i.p., i.v. (heparin, 10 μg/kg i.g. (warfarin always reduced bleeding time and/or haemorrhage and counteracted thrombocytopenia. As for L-NAME and/or L-arginine, we noted: L-arginine (100 mg/kg i.p.-rats: more bleeding, less/no thrombocytopenia; L-NAME (5 mg/kg i.p.-rats: less bleeding (amputation only, but present thrombocytopenia; L-NAME+L-arginine-rats also exhibited thrombocytopenia: L-NAME counteracted L-arginine-increased bleeding, L-arginine did not counteract L-NAME-thrombocytopenia. All animals receiving BPC 157 in addition (BPC 157 μg+L-NAME; BPC 157 μg+L-arginine, BPC 157 μg+L-NAME+L-arginine, exhibited decreased haemorrhage and markedly counteracted thrombocytopenia.L-NAME (thrombocytopenia, L-arginine (increased haemorrhage counteraction and BPC 157 (decreased haemorrhage, counteracted thrombocytopenia with rescue against two different anticoagulants, implicate a BPC 157 modulatory and balancing role with rescued NO-hemostatic mechanisms.

  13. Pentadecapeptide BPC 157 Reduces Bleeding and Thrombocytopenia after Amputation in Rats Treated with Heparin, Warfarin, L-NAME and L-Arginine.

    Science.gov (United States)

    Stupnisek, Mirjana; Kokot, Antonio; Drmic, Domagoj; Hrelec Patrlj, Masa; Zenko Sever, Anita; Kolenc, Danijela; Radic, Bozo; Suran, Jelena; Bojic, Davor; Vcev, Aleksandar; Seiwerth, Sven; Sikiric, Predrag

    2015-01-01

    BPC 157 is a stable gastric pentadecapeptide recently implicated with a role in hemostasis. While NO is largely implicated in hemostatic mechanisms, in tail-amputation-models under heparin- and warfarin-administration, both the NO-synthase (NOS)-blocker, L-NAME (prothrombotic) and the NOS-substrate L-arginine (antithrombotic), were little investigated. Objective. To investigate the effect of L-NAME and L-arginine on hemostatic parameters, and to reveal the effects of BPC 157 on the L-NAME- and L-arginine-induced hemostatic actions under different pathological condition: tail amputation without or with anticoagulants, heparin or warfarin. Tail amputation, and/or i.v.-heparin (10 mg/kg), i.g.-warfarin (1.5 mg/kg/day for 3 days) were used in rats. Treatment includes BPC 157, L-NAME, L-arginine, per se and their combination. After (tail) amputation, with or without i.v.-heparin or i.g.-warfarin, BPC 157 (10 μg/kg, 10 ng/kg, i.p., i.v. (heparin), 10 μg/kg i.g. (warfarin)) always reduced bleeding time and/or haemorrhage and counteracted thrombocytopenia. As for L-NAME and/or L-arginine, we noted: L-arginine (100 mg/kg i.p.)-rats: more bleeding, less/no thrombocytopenia; L-NAME (5 mg/kg i.p.)-rats: less bleeding (amputation only), but present thrombocytopenia; L-NAME+L-arginine-rats also exhibited thrombocytopenia: L-NAME counteracted L-arginine-increased bleeding, L-arginine did not counteract L-NAME-thrombocytopenia. All animals receiving BPC 157 in addition (BPC 157 μg+L-NAME; BPC 157 μg+L-arginine, BPC 157 μg+L-NAME+L-arginine), exhibited decreased haemorrhage and markedly counteracted thrombocytopenia. L-NAME (thrombocytopenia), L-arginine (increased haemorrhage) counteraction and BPC 157 (decreased haemorrhage, counteracted thrombocytopenia) with rescue against two different anticoagulants, implicate a BPC 157 modulatory and balancing role with rescued NO-hemostatic mechanisms.

  14. Celecoxib-induced gastrointestinal, liver and brain lesions in rats, counteraction by BPC 157 or L-arginine, aggravation by L-NAME.

    Science.gov (United States)

    Drmic, Domagoj; Kolenc, Danijela; Ilic, Spomenko; Bauk, Lara; Sever, Marko; Zenko Sever, Anita; Luetic, Kresimir; Suran, Jelena; Seiwerth, Sven; Sikiric, Predrag

    2017-08-07

    To counteract/reveal celecoxib-induced toxicity and NO system involvement. Celecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 μg/kg, 10 ng/kg, or 1 ng/kg ip) and L-arginine (100 mg/kg ip), as well as NOS blockade [N(G)-nitro-L-arginine methyl ester (L-NAME)] (5 mg/kg ip) given alone and/or combined immediately after celecoxib. Gastrointestinal, liver, and brain lesions and liver enzyme serum values in rats were assessed at 24 h and 48 h thereafter. This high-dose celecoxib administration, as a result of NO system dysfunction, led to gastric, liver, and brain lesions and increased liver enzyme serum values. The L-NAME-induced aggravation of the lesions was notable for gastric lesions, while in liver and brain lesions the beneficial effect of L-arginine was blunted. L-arginine counteracted gastric, liver and brain lesions. These findings support the NO system mechanism(s), both NO system agonization (L-arginine) and NO system antagonization (L-NAME), that on the whole are behind all of these COX phenomena. An even more complete antagonization was identified with BPC 157 (at both 24 h and 48 h). A beneficial effect was evident on all the increasingly negative effects of celecoxib and L-NAME application and in all the BPC 157 groups (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157). Thus, these findings demonstrated that BPC 157 may equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME). BPC 157 and L-arginine alleviate gastrointestinal, liver and brain lesions, redressing NSAIDs' post-surgery application and NO system involvement.

  15. NO system dependence of atropine-induced mydriasis and L-NAME- and L-arginine-induced miosis: Reversal by the pentadecapeptide BPC 157 in rats and guinea pigs.

    Science.gov (United States)

    Kokot, Antonio; Zlatar, Mirna; Stupnisek, Mirjana; Drmic, Domagoj; Radic, Radivoje; Vcev, Aleksandar; Seiwerth, Sven; Sikiric, Predrag

    2016-01-15

    We revealed an immediate and hours-lasting particular NO-specific parallel miotic effect of L-NAME and L-arginine in rats and guinea pigs and a stable gastric pentadecapeptide BPC 157 157-particular effect vs. that of atropine-induced mydriasis while examining the NO system role in the normal pupils responses and pupils with atropine-induced mydriasis. We also assessed the responses to BPC 157 and its possible modulation of the changes caused by L-NAME/L-arginine and atropine. We administered locally (two drops/eye) or systemically (intraperitoneally/kg) [BPC 157 (0.4µg/eye; 10µg, 10ng, 10pg/kg), L-NAME (0.1mg/eye; 5mg/kg), and L-arginine (2mg/eye; 100mg/kg) alone and combined] at 3min prior to assessment (normal pupils) or alternatively at maximal 1% atropine-induced mydriasis (30min after two drops were administered to each eye). L-NAME/L-arginine. Normal pupil. L-NAME-miosis and L-arginine-miosis shortened and attenuated each other's responses when combined (L-NAME+L-arginine) (except with guinea pigs treated locally) and were thereby NO-specific. Atropine-pupil. Both L-NAME and L-arginine counteracted atropine-induced mydriasis. With few exceptions, the atropine+L-NAME+L-arginine-animals showed a consistent shift toward the left. BPC 157. Normal pupil. Always, BPC 157 alone (both species; locally; systemically; all regimens) did not affect normal pupils. Despite specific exceptions, BPC 157 distinctively affects L-arginine-miosis (prolongation) and L-NAME-miosis (shortening). When L-arginine and L-NAME were combined (L-NAME+L-arginine+BPC 157), the effect was less pronounced. Atropine-pupil. BPC 157 alone counteracted atropine-induced mydriasis. With few exceptions (when administered with L-NAME or L-arginine or L-NAME+L-arginine), BPC 157 augments their counteracting effects. Thus, along with its l-NAME/L-arginine effects, BPC 157 participates in ocular control, potentially via NO-mediated and cholinergic mechanisms. Copyright © 2015 Elsevier B.V. All

  16. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  17. [Effect of L-arginine on platelet aggregation, endothelial function adn exercise tolerance in patients with stable angina pectoris].

    Science.gov (United States)

    Sozykin, A V; Noeva, E A; Balakhonova, T V; Pogorelova, O A; Men'shikov, M Iu

    2000-01-01

    Examination of the action of donor NO (L-arginine) on platelet aggregation, endothelial function and exercise tolerance in patients with stable angina of effort (SAE). 42 patients with SAE (functional class I-II) and 10 healthy volunteers (control group) were assigned to two groups. 22 patients of group 1 were randomized to cross-over. They received cardiket (60 mg/day for 10 days or cardiket (60 mg/day) in combination with L-arginine (15 g/day for 10 days). 20 SAE patients of group 2 and control group received L-arginine (15 g/day for 10 days). In each group blood lipids were examined, and bicycle exercise test (BET) was performed. In addition, platelet aggregation and endothelial function were studied in group 2 and control group before and after the course of L-arginine. Compared to control group, endothelial function significantly improved in group 2 (from 5.0 +/- 2.9 to 7.8 +/- 4.1% vs 7.1 +/- 1.9 to 6.6 +/- 4.8%) (M +/- SD). BET duration increased in all the patients. After ADP addition in concentrations 1.5, 2.0, and 5.0 micromol/l platelet aggregation declined in 17 patients except 3 in whom the aggregation remained unchanged. Positive effect of L-arginine on endothelial function, exercise tolerance and platelet aggregation was observed in patients with stable angina of effort (functional class I-II). Therefore, arginine can be recommended as an adjuvant in the treatment of patients with ischemic heart disease.

  18. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    Science.gov (United States)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Enveloped virus inactivation using neutral arginine solutions and applications in therapeutic protein purification processes.

    Science.gov (United States)

    McCue, Justin T; Selvitelli, Keith; Cecchini, Doug; Brown, Rhonda

    2014-01-01

    For the manufacturing of recombinant protein therapeutics produced from mammalian cell culture, demonstrating the capacity of the purification process to effectively clear infectious viruses is a regulatory requirement. At least two process steps, using different mechanisms of virus removal and/or inactivation, should be validated in support of the regulatory approval process. For example, exposure of the product stream to low pH, detergents or solvent/detergent combinations is commonly incorporated in protein purification processes for the inactivation of lipid-enveloped viruses. However, some proteins have limited stability at low pH or in the presence of the detergents, and alternative techniques for achieving the inactivation of enveloped viruses would be beneficial. We present here an alternative and novel approach for the rapid inactivation of enveloped viruses using pH-neutral buffer solutions containing arginine. The implementation of this approach in a monoclonal antibody or Fc-fusion protein purification process is described and illustrated with several different therapeutic proteins. The use of the neutral pH arginine solution was able to effectively inactivate two enveloped model viruses, with no measurable effect on the product quality of the investigated proteins. Thus, the use of pH-neutral arginine containing buffer solutions provides an alternative means of virus inactivation where other forms of virus inactivation, such as low pH and/or solvent/detergent treatments are not possible or undesirable due to protein stability limitations. © 2013 American Institute of Chemical Engineers.

  20. Intricate Effects of α-Amino and Lysine Modifications on Arginine Methylation of the N-Terminal Tail of Histone H4.

    Science.gov (United States)

    Fulton, Melody D; Zhang, Jing; He, Maomao; Ho, Meng-Chiao; Zheng, Y George

    2017-07-18

    Chemical modifications of the DNA and nucleosomal histones tightly control the gene transcription program in eukaryotic cells. The "histone code" hypothesis proposes that the frequency, combination, and location of post-translational modifications (PTMs) of the core histones compose a complex network of epigenetic regulation. Currently, there are at least 23 different types and >450 histone PTMs that have been discovered, and the PTMs of lysine and arginine residues account for a crucial part of the histone code. Although significant progress has been achieved in recent years, the molecular basis for the histone code is far from being fully understood. In this study, we investigated how naturally occurring N-terminal acetylation and PTMs of histone H4 lysine-5 (H4K5) affect arginine-3 methylation catalyzed by both type I and type II PRMTs at the biochemical level. Our studies found that acylations of H4K5 resulted in decreased levels of arginine methylation by PRMT1, PRMT3, and PRMT8. In contrast, PRMT5 exhibits an increased rate of arginine methylation upon H4K5 acetylation, propionylation, and crotonylation, but not upon H4K5 methylation, butyrylation, or 2-hydroxyisobutyrylation. Methylation of H4K5 did not affect arginine methylation by PRMT1 or PRMT5. There was a small increase in the rate of arginine methylation by PRMT8. Strikingly, a marked increase in the rate of arginine methylation was observed for PRMT3. Finally, N-terminal acetylation reduced the rate of arginine methylation by PRMT3 but had little influence on PRMT1, -5, and -8 activity. These results together highlight the underlying mechanistic differences in substrate recognition among different PRMTs and pave the way for the elucidation of the complex interplay of histone modifications.

  1. Arginine and nitric oxide synthase: regulatory mechanisms and cardiovascular aspects.

    Science.gov (United States)

    Lorin, Julie; Zeller, Marianne; Guilland, Jean-Claude; Cottin, Yves; Vergely, Catherine; Rochette, Luc

    2014-01-01

    L-Arginine (L-Arg) is a conditionally essential amino acid in the human diet. The most common dietary sources of L-Arg are meat, poultry and fish. L-Arg is the precursor for the synthesis of nitric oxide (NO); a key signaling molecule via NO synthase (NOS). Endogenous NOS inhibitors such as asymmetric-dimethyl-L-Arg inhibit NO synthesis in vivo by competing with L-Arg at the active site of NOS. In addition, NOS possesses the ability to be "uncoupled" to produce superoxide anion instead of NO. Reduced NO bioavailability may play an essential role in cardiovascular pathologies and metabolic diseases. L-Arg deficiency syndromes in humans involve endothelial inflammation and immune dysfunctions. Exogenous administration of L-Arg restores NO bioavailability, but it has not been possible to demonstrate, that L-Arg supplementation improved endothelial function in cardiovascular disease such as heart failure or hypertension. L-Arg supplementation may be a novel therapy for obesity and metabolic syndrome. The utility of l-Arg supplementation in the treatment of L-Arg deficiency syndromes remains to be established. Clinical trials need to continue to determine the optimal concentrations and combinations of L-Arg, with other protective compounds such as tetrahydrobiopterin (BH4 ), and antioxidants to combat oxidative stress that drives down NO production in humans. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    Science.gov (United States)

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. © 2016. Published by The Company of Biologists Ltd.

  3. Three consecutive arginines are important for the mycobacterial peptide deformylase enzyme activity.

    Science.gov (United States)

    Saxena, Rahul; Kanudia, Pavitra; Datt, Manish; Dar, Haider Hussain; Karthikeyan, Subramanian; Singh, Balvinder; Chakraborti, Pradip K

    2008-08-29

    Genes encoding the peptide deformylase enzyme (def) are present in all eubacteria and are involved in the deformylation of the N-formyl group of newly synthesized polypeptides during protein synthesis. We compared the amino acid sequences of this enzyme in different mycobacterial species and found that they are highly conserved (76% homology with 62% identity); however, when this comparison was extended to other eubacterial homologs, it emerged that the mycobacterial proteins have an insertion region containing three consecutive arginine residues (residues 77-79 in Mycobacterium tuberculosis peptide deformylase (mPDF)). Here, we demonstrate that these three arginines are important for the activity of mPDF. Circular dichroism studies of wild-type mPDF and of mPDF containing individual conservative substitutions (R77K, R78K, or R79K) or combined substitutions incorporated into a triple mutant (R77K/R78K/R79K) indicate that such mutations cause mPDF to undergo structural alterations. Molecular modeling of mPDF suggests that the three arginines are distal to the active site. Molecular dynamics simulations of wild-type and mutant mPDF structures indicate that the arginines may be involved in the stabilization of substrate binding pocket residues for their proper interaction with peptide(s). Treatment with 5'-phosphothiorate-modified antisense oligodeoxyribonucleotides directed against different regions of def from M. tuberculosis inhibits growth of Mycobacterium smegmatis in culture. Taken together, these results hold out the possibility of future design of novel mycobacteria-specific PDF inhibitors.

  4. Fluorometric enzymatic assay of L-arginine

    Science.gov (United States)

    Stasyuk, Nataliya; Gayda, Galina; Yepremyan, Hasmik; Stepien, Agnieszka; Gonchar, Mykhailo

    2017-01-01

    The enzymes of L-arginine (further - Arg) metabolism are promising tools for elaboration of selective methods for quantitative Arg analysis. In our study we propose an enzymatic method for Arg assay based on fluorometric monitoring of ammonia, a final product of Arg splitting by human liver arginase I (further - arginase), isolated from the recombinant yeast strain, and commercial urease. The selective analysis of ammonia (at 415 nm under excitation at 360 nm) is based on reaction with o-phthalaldehyde (OPA) in the presence of sulfite in alkali medium: these conditions permit to avoid the reaction of OPA with any amino acid. A linearity range of the fluorometric arginase-urease-OPA method is from 100 nM to 6 μМ with a limit of detection of 34 nM Arg. The method was used for the quantitative determination of Arg in the pooled sample of blood serum. The obtained results proved to be in a good correlation with the reference enzymatic method and literature data. The proposed arginase-urease-OPA method being sensitive, economical, selective and suitable for both routine and micro-volume formats, can be used in clinical diagnostics for the simultaneous determination of Arg as well as urea and ammonia in serum samples.

  5. Arginine vasopressin and copeptin in perinatology

    Directory of Open Access Journals (Sweden)

    Katrina Suzanne Evers

    2016-08-01

    Full Text Available Arginine vasopressin (AVP plays a major role in the homeostasis of fluid balance, vascular tonus and the regulation of the endocrine stress response. The measurement of AVP levels is difficult due to its short half-life and laborious method of detection. Copeptin is a more stable peptide derived from the same precursor molecule, is released in an equimolar ratio to AVP and has a very similar response to osmotic, hemodynamic and stress-related stimuli. In fact, copeptin has been propagated as surrogate marker to indirectly determine circulating AVP concentrations in various conditions. Here, we present an overview of the current knowledge on AVP and copeptin in perinatology with a particular focus on the baby’s transition from placenta to lung breathing. We performed a systematic review of the literature on fetal stress hormone levels, including norepinephrine, cortisol, AVP and copeptin, in regard to birth stress. Finally, diagnostic and therapeutic options for copeptin measurement and AVP functions are discussed.

  6. Prediction of twin-arginine signal peptides

    Directory of Open Access Journals (Sweden)

    Widdick David

    2005-07-01

    Full Text Available Abstract Background Proteins carrying twin-arginine (Tat signal peptides are exported into the periplasmic compartment or extracellular environment independently of the classical Sec-dependent translocation pathway. To complement other methods for classical signal peptide prediction we here present a publicly available method, TatP, for prediction of bacterial Tat signal peptides. Results We have retrieved sequence data for Tat substrates in order to train a computational method for discrimination of Sec and Tat signal peptides. The TatP method is able to positively classify 91% of 35 known Tat signal peptides and 84% of the annotated cleavage sites of these Tat signal peptides were correctly predicted. This method generates far less false positive predictions on various datasets than using simple pattern matching. Moreover, on the same datasets TatP generates less false positive predictions than a complementary rule based prediction method. Conclusion The method developed here is able to discriminate Tat signal peptides from cytoplasmic proteins carrying a similar motif, as well as from Sec signal peptides, with high accuracy. The method allows filtering of input sequences based on Perl syntax regular expressions, whereas hydrophobicity discrimination of Tat- and Sec-signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at http://www.cbs.dtu.dk/services/TatP/.

  7. Transsulfuration pathway thiols and methylated arginines: the Hunter Community Study.

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    Full Text Available Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH activity] and with symmetric dimethylarginine (SDMA. We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level.Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS, and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR = 64 (60-70 years].REGRESSION ANALYSIS SHOWED THAT: a age (P = 0.001, gender (P = 0.03, lower estimated glomerular filtration rate (eGFR, P = 0.08, body mass index (P = 0.008, treatment with beta-blockers (P = 0.03, homocysteine (P = 0.02, and glutamylcysteine (P = 0.003 were independently associated with higher ADMA concentrations; and b age (P = 0.001, absence of diabetes (P = 0.001, lower body mass index (P = 0.01, lower eGFR (P<0.001, cysteine (P = 0.007, and glutamylcysteine (P < 0.001 were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations.After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA and/or cationic amino acid transport requires further investigations.

  8. Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats

    Directory of Open Access Journals (Sweden)

    Takashi Kondoh

    2010-06-01

    Full Text Available Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid, arginine, and their combination on ischemic insults (cerebral edema and infarction and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed two days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg, arginine (0.6 g/kg, or their combined administration (0.6 g/kg each. Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg, were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction, especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects.

  9. L-Arginine Supplementation and Metabolism in Asthma

    Directory of Open Access Journals (Sweden)

    Angela Linderholm

    2011-01-01

    Full Text Available L-Arginine, the amino acid substrate for nitric oxide synthase, has been tested as a therapeutic intervention in a variety of chronic diseases and is commonly used as a nutritional supplement. In this study, we hypothesized that a subset of moderate to severe persistent asthma patients would benefit from supplementation with L-arginine by transiently increasing nitric oxide levels, resulting in bronchodilation and a reduction in inflammation. The pilot study consisted of a 3 month randomized, double-blind, placebo-controlled trial of L-arginine (0.05 g/kg twice daily in patients with moderate to severe asthma. We measured spirometry, exhaled breath nitric oxide, serum arginine metabolites, questionnaire scores, daily medication use and PEFR with the primary endpoint being the number of minor exacerbations at three months. Interim analysis of the 20 subjects showed no difference in the number of exacerbations, exhaled nitric oxide levels or lung function between groups, though participants in the L-arginine group had higher serum L-arginine at day 60 (2.0 ± 0.6 × 10−3 vs. 1.1 ± 0.2 × 10−3 µmol/L, p < 0.05, ornithine at day 30 (2.4 ± 0.9 vs. 1.2 ± 0.3 µmol/L serum, p < 0.05 and ADMA at day 30 (6.0 ± 1.5 × 10−1 vs. 2.6 ± 0.6 × 10−1 µmol/L serum, p < 0.05 on average compared to the placebo group. The study was terminated prematurely. Supplementing asthma subjects with L-arginine increases plasma levels; whether subgroups might benefit from such supplementation requires further study.

  10. Digestible arginine concentrations in the diet of Japanese quails

    Directory of Open Access Journals (Sweden)

    Thamírys Vianelli Maurício

    2016-09-01

    Full Text Available The objective of this study was to evaluate the effect of different levels of arginine in the diet of Japanese quails and to determine which provides the best egg production indices. We used 400 birds with an initial average weight of 180 g at 140 days of age. These were distributed among experimental units in a randomized design. Five levels of digestible arginine were studied (1.148, 1.256, 1.364, 1.472, and 1.580% in reference to a fixed level of digestible lysine (1.083%; for arginine to lysine ratios of 1.06, 1.16, 1.26, 1.36, and 1.46. Each treatment was replicated 10 times for a total of 50 experimental units, each with eight quails. Feed rations, leftovers, and dead animals were weighed to calculate and adjust performance parameters. The variables analyzed were: daily feed intake (DFI, egg laying rate (ER, average egg weight (EW, total egg mass (EM, feed conversion per egg mass and per dozen eggs (FCEM and FCDE, yolk, skin, and albumen weights (AYW, ASW and AAW, relative weights of yolk, albumen and shell (RYW, RAW and RSW, the Haugh unit (HU, and the percentage of eggs suitable for market (EP. The variables associated with performance and internal and external quality were not affected (P > 0.05 by different levels of arginine, except for EP, which decreased linearly (P = 0.009 with increasing arginine according to the equation: ? = -3.44x + 103.13, r² = 0.94. We conclude that the best concentration of arginine in quail diets is 1.148%, corresponding to an arginine to lysine ratio of 1.06.

  11. In situ clinical effects of new dentifrices containing 1.5% arginine and fluoride on enamel de- and remineralization and plaque metabolism.

    Science.gov (United States)

    Cantore, R; Petrou, I; Lavender, S; Santarpia, P; Liu, Z; Gittins, E; Vandeven, M; Cummins, D; Sullivan, R; Utgikar, N

    2013-01-01

    .5% arginine/calcium carbonate/1 000 ppm fluoride, the positive control, and negative control dentifrices, respectively. Study validation was successfully achieved by showing that the positive control was statistically significantly better at preventing demineralization than the negative control (p sucrose challenge, expressed in nanomoles per milligram plaque: 99.6; 56.2; and 42.2 for the 1.5% arginine/calcium carbonate/1000 ppm fluoride, the positive control, and negative control dentifrices, respectively. Plaque treated with the arginine- containing dentifrice produced significantly more ammonia than the positive and negative control dentifrices (p sucrose challenge gave the following values, expressed as nanomoles per milligram plaque: 4.06; 5.12; and 4.64 for the 1.5% arginine/calcium carbonate/1000 ppm fluoride, the positive control, and negative control dentifrices, respectively. No significant difference was observed between the three treatments, but the arginine-based treatment showed directionally lower lactic acid production. The results of these three studies show that dentifrices containing 1.5% arginine, an insoluble calcium compound, and fluoride have a significantly improved ability to promote remineralization and prevent demineralization of enamel relative to dentifrices containing the same level of fluoride alone. Two different sources of insoluble calcium were evaluated, Dical and calcium carbonate. Dentifrices with Dical and with calcium carbonate, each in combination with 1.5% arginine and fluoride, provided superior efficacy as compared to matched dentifrices with fluoride alone, and the two products demonstrated comparable efficacy in promoting remineralization. The results of these studies demonstrate that the addition of 1.5% arginine to Dical-and calcium carbonate-based fluoride dentifrices provides superior efficacy in preventing demineralization and promoting remineralization, and, further, indicate that he arginine-containing dentifrices enhance

  12. Increased mitochondrial arginine metabolism supports bioenergetics in asthma

    Science.gov (United States)

    Xu, Weiling; Ghosh, Sudakshina; Comhair, Suzy A.A.; Asosingh, Kewal; Janocha, Allison J.; Mavrakis, Deloris A.; Bennett, Carole D.; Gruca, Lourdes L.; Graham, Brian B.; Queisser, Kimberly A.; Kao, Christina C.; Wedes, Samuel H.; Petrich, John M.; Tuder, Rubin M.; Kalhan, Satish C.; Erzurum, Serpil C.

    2016-01-01

    High levels of arginine metabolizing enzymes, including inducible nitric oxide synthase (iNOS) and arginase (ARG), are typical in asthmatic airway epithelium; however, little is known about the metabolic effects of enhanced arginine flux in asthma. Here, we demonstrated that increased metabolism sustains arginine availability in asthmatic airway epithelium with consequences for bioenergetics and inflammation. Expression of iNOS, ARG2, arginine synthetic enzymes, and mitochondrial respiratory complexes III and IV was elevated in asthmatic lung samples compared with healthy controls. ARG2 overexpression in a human bronchial epithelial cell line accelerated oxidative bioenergetic pathways and suppressed hypoxia-inducible factors (HIFs) and phosphorylation of the signal transducer for atopic Th2 inflammation STAT6 (pSTAT6), both of which are implicated in asthma etiology. Arg2-deficient mice had lower mitochondrial membrane potential and greater HIF-2α than WT animals. In an allergen-induced asthma model, mice lacking Arg2 had greater Th2 inflammation than WT mice, as indicated by higher levels of pSTAT6, IL-13, IL-17, eotaxin, and eosinophils and more mucus metaplasia. Bone marrow transplants from Arg2-deficient mice did not affect airway inflammation in recipient mice, supporting resident lung cells as the drivers of elevated Th2 inflammation. These data demonstrate that arginine flux preserves cellular respiration and suppresses pathological signaling events that promote inflammation in asthma. PMID:27214549

  13. Inhibitory Effects of Arginine on the Aggregation of Bovine Insulin

    Directory of Open Access Journals (Sweden)

    Michael M. Varughese

    2012-01-01

    Full Text Available Static and dynamic light scattering were used to investigate the effects of L-arginine, commonly used to inhibit protein aggregation, on the initial aggregation kinetics of solutions of bovine insulin in 20% acetic acid and 0.1 M NaCl as a model system for amyloidosis. Measurements were made as a function of insulin concentration (0.5–2.0 mM, quench temperature (60–85°C, and arginine concentration (10–500 mM. Aggregation kinetics under all conditions had a lag phase, whose duration decreased with increasing temperature and with increasing insulin concentration but which increased by up to a factor of 8 with increasing added arginine. Further, the initial growth rate after the lag phase also slowed by up to a factor of about 20 in the presence of increasing concentrations of arginine. From the temperature dependence of the lag phase duration, we find that the nucleation activation energy doubles from 17±5 to 36±3 kcal/mol in the presence of 500 mM arginine.

  14. Determination of l-arginine and NG, NG - and NG, NG' -dimethyl-L-arginine in plasma by liquid chromatography as AccQ-Fluor fluorescent derivatives.

    Science.gov (United States)

    Heresztyn, Tamila; Worthley, Matthew I; Horowitz, John D

    2004-06-15

    A new HPLC assay for the detection of L-arginine, NG, NG-dimethyl-L-arginine (ADMA) and NG, NG' -dimethyl-L-arginine (SDMA) in plasma using the derivatisation reagent AccQ-Fluor (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) is described. The fluorescent derivatives produced are extremely stable enabling routine processing of large numbers of samples. Arginine and its metabolites are extracted from plasma on strong cation exchange (SCX) cartridges with NG-monomethyl-L-arginine (NMMA) as internal standard, derivatised and separated on a C18 column with acetonitrile in 0.1M sodium acetate buffer pH 6. Separation of the stereoisomers ADMA and SDMA was excellent and improvements to the solid phase extraction (SPE) procedure enabled good recovery (>80%) of arginine, ADMA and SDMA. The utility of the method is exemplified by comparison of plasma concentrations of ADMA, SDMA and arginine in healthy volunteers and diabetic/ischaemic patients.

  15. Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20).

    Science.gov (United States)

    Burrows, Natalie; Cane, Gaelle; Robson, Mathew; Gaude, Edoardo; Howat, William J; Szlosarek, Peter W; Pedley, R Barbara; Frezza, Christian; Ashcroft, Margaret; Maxwell, Patrick H

    2016-03-14

    The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours.

  16. Arginine for gestating sows and foetal development: A systematic review.

    Science.gov (United States)

    Palencia, J Y P; Lemes, M A G; Garbossa, C A P; Abreu, M L T; Pereira, L J; Zangeronimo, M G

    2018-02-01

    The use of functional amino acids during pregnancy has been linked to improved reproduction in mammals. In this context, arginine is a precursor in the synthesis of numerous molecules, such as nitric oxide and polyamines, which play an important role during reproduction. However, contradictory studies are found in the literature, particularly regarding the amount of supplementation and the period of pregnancy in which it is used. The objective of this study was to evaluate the effects of dietary arginine supplementation for pregnant sows on foetal development via a systematic review. The search for papers was performed during the month of December 2015, in the databases ISI Web of Science, Science Direct, Scopus, and SciELO. From a total of 5675 returned studies, only 13 papers were selected after applying selection criteria. Most (47%) of the studies that evaluated the effects of dietary arginine supplementation on foetal development in pigs used 1% arginine. Supplementation was initiated in the first third of pregnancy in 47% of tests, including in both primiparous and multiparous sows. These studies showed positive results for embryo survival and foetal development, evidenced by the increase in placental weight and the number and weight of piglets born alive. Of all evaluated studies, 53% showed benefits on foetal development. It is concluded that supplementing dietary arginine in gestating sows can benefit embryo survival and foetal development. However, to establish a supplementation plan with this amino acid, aspects related to the period of pregnancy, supplementation levels, and source of arginine must be well defined. © 2017 Blackwell Verlag GmbH.

  17. The Neuroprotective Peptide Poly-Arginine-12 (R12) Reduces Cell Surface Levels of NMDA NR2B Receptor Subunit in Cortical Neurons; Investigation into the Involvement of Endocytic Mechanisms.

    Science.gov (United States)

    MacDougall, Gabriella; Anderton, Ryan S; Edwards, Adam B; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    We have previously reported that cationic poly-arginine and arginine-rich cell-penetrating peptides display high-level neuroprotection and reduce calcium influx following in vitro excitotoxicity, as well as reduce brain injury in animal stroke models. Using the neuroprotective peptides poly-arginine R12 (R12) and the NR2B9c peptide fused to the arginine-rich carrier peptide TAT (TAT-NR2B9c; also known as NA-1), we investigated the mechanisms whereby poly-arginine and arginine-rich peptides reduce glutamate-induced excitotoxic calcium influx. Using cell surface biotin protein labeling and western blot analysis, we demonstrated that R12 and TAT-NR2B9c significantly reduced cortical neuronal cell surface expression of the NMDA receptor subunit NR2B. Chemical endocytic inhibitors used individually or in combination prior to glutamate excitotoxicity did not significantly affect R12 peptide neuroprotective efficacy. Similarly, pretreatment of neurons with enzymes to degrade anionic cell surface proteoglycans, heparan sulfate proteoglycan (HSPG), and chondroitin sulfate proteoglycan (CSPG), as well as sialic acid residues, did not significantly affect peptide neuroprotective efficacy. While the exact mechanisms responsible for R12 peptide-mediated NMDA receptor NR2B subunit cell surface downregulation were not identified, an endocytic process could not be ruled out. The study supports our hypothesis that arginine-rich peptides reduce excitotoxic calcium influx by reducing the levels of cell surface ion channels.

  18. Inhibitory Effects of Arginine on the Aggregation of Bovine Insulin

    OpenAIRE

    Varughese, Michael M.; Jay Newman

    2012-01-01

    Static and dynamic light scattering were used to investigate the effects of L-arginine, commonly used to inhibit protein aggregation, on the initial aggregation kinetics of solutions of bovine insulin in 20% acetic acid and 0.1 M NaCl as a model system for amyloidosis. Measurements were made as a function of insulin concentration (0.5–2.0 mM), quench temperature (60–85°C), and arginine concentration (10–500 mM). Aggregation kinetics under all conditions had a lag phase, whose duration decreas...

  19. Arginine intake and risk of coronary heart disease mortality in elderly men

    NARCIS (Netherlands)

    Oomen, C.M.; Erk, van M.J.; Feskens, E.J.M.; Kok, F.J.; Kromhout, D.

    2000-01-01

    From experimental studies, the hypothesis is derived that the amino acid arginine, the precursor of NO, could restore the impaired endothelial function and increased platelet activation observed in atherosclerosis. We investigated whether dietary intake of arginine is associated with reduced

  20. An Association between l-Arginine/Asymmetric Dimethyl Arginine Balance, Obesity, and the Age of Asthma Onset Phenotype

    Science.gov (United States)

    Comhair, Suzy A. A.; Hazen, Stanley L.; Powers, Robert W.; Khatri, Sumita S.; Bleecker, Eugene R.; Busse, William W.; Calhoun, William J.; Castro, Mario; Fitzpatrick, Anne M.; Gaston, Benjamin; Israel, Elliot; Jarjour, Nizar N.; Moore, Wendy C.; Peters, Stephen P.; Teague, W. Gerald; Chung, Kian Fan; Erzurum, Serpil C.; Wenzel, Sally E.

    2013-01-01

    Rationale: Increasing body mass index (BMI) has been associated with less fractional exhaled nitric oxide (FeNO). This may be explained by an increase in the concentration of asymmetric dimethyl arginine (ADMA) relative to l-arginine, which can lead to greater nitric oxide synthase uncoupling. Objectives: To compare this mechanism across age of asthma onset groups and determine its association with asthma morbidity and lung function. Methods: Cross-sectional study of participants from the Severe Asthma Research Program, across early- (12 yr) onset asthma phenotypes. Measurements and Main Results: Subjects with late-onset asthma had a higher median plasma ADMA level (0.48 μM, [interquartile range (IQR), 0.35–0.7] compared with early onset, 0.37 μM [IQR, 0.29–0.59], P = 0.01) and lower median plasma l-arginine (late onset, 52.3 [IQR, 43–61] compared with early onset, 51 μM [IQR 39–66]; P = 0.02). The log of plasma l-arginine/ADMA was inversely correlated with BMI in the late- (r = −0.4, P = 0.0006) in contrast to the early-onset phenotype (r = −0.2, P = 0.07). Although FeNO was inversely associated with BMI in the late-onset phenotype (P = 0.02), the relationship was lost after adjusting for l-arginine/ADMA. Also in this phenotype, a reduced l-arginine/ADMA was associated with less IgE, increased respiratory symptoms, lower lung volumes, and worse asthma quality of life. Conclusions: In late-onset asthma phenotype, plasma ratios of l-arginine to ADMA may explain the inverse relationship of BMI to FeNO. In addition, these lower l-arginine/ADMA ratios are associated with reduced lung function and increased respiratory symptom frequency, suggesting a role in the pathobiology of the late-onset phenotype. PMID:23204252

  1. Entamoeba histolytica: protein arginine transferase 1a methylates arginine residues and potentially modify the H4 histone.

    Science.gov (United States)

    Borbolla-Vázquez, Jessica; Orozco, Esther; Betanzos, Abigail; Rodríguez, Mario A

    2015-04-10

    In eukaryotes, histone arginine methylation associates with both active and repressed chromatin states depending on the residues involved and the status of methylation. Even when the amino-terminus of Entamoeba histolytica histones diverge from metazoan sequences, these regions contain arginine residues that are potential targets for methylation. However, histone arginine methylation as well as the activity of arginine methyltransferases (PRMTs) has not been studied in this parasite. The aim of this work was to examine the dimethylation of arginine 3 of H4 histone (H4R3me2) and to identify the parasite PRMT that could be responsible for this modification (EhPRMT1). To examine the presence of H4R3me2 in E histolytica, we performed Western blot and immunofluorescence assays on trophozoites using an antibody against this epigenetic mark. To recognize the PRMT1 enzyme of this parasite that possibly perform that modification, we first performed a phylogenetic analysis of E. histolytica and human PRMTs. RT-PCR assays were carried out to analyze the expression of the putative PRMT1 genes. One of these genes was cloned and expressed in Escherichia coli. The recombinant protein was tested by its recognition by an antibody against human PRMT1 and in its ability to form homodimers and to methylate commercial histones. The arginine 3 of human H4, which is subjected to post translational methylation, was aligned with the arginine 8 of E. histolytica H4, suggesting that this residue could be methylated. The recognition of an 18 kDa nuclear protein of E. histolytica by an antibody against H4R3me2 confirmed this assumption. We found that this parasite expresses three phylogenetic and structural proteins related to PRMT1. Antibodies against the human PRMT1 detected E. histolytica proteins in cytoplasm and nuclei and recognized a recombinant PRMT1 of this parasite. The recombinant protein was able to form homodimers and homotetramers and displayed methyltransferase activity on

  2. Effect of in ovo injection with L-arginine on productive and ...

    African Journals Online (AJOL)

    p2492989

    main functions is its participation in protein synthesis. Arginine is involved in a number of ... The in ovo injection solutions were 0% L-arginine (sterile distilled water; control group); 1% L-arginine (1 g .... to the suppression of endogenous somatostatin secretion (Alba-Roth et al., 1988). Darras et al. (1990; 1992) indicated that ...

  3. Intravenous glutamine supplementation enhances renal de novo arginine synthesis in humans: a stable isotope study

    NARCIS (Netherlands)

    Buijs, Nikki; Brinkmann, Saskia J. H.; Oosterink, J. Efraim; Luttikhold, Joanna; Schierbeek, Henk; Wisselink, Willem; Beishuizen, Albertus; van Goudoever, Johannes B.; Houdijk, Alexander P. J.; van Leeuwen, Paul A. M.; Vermeulen, Mechteld A. R.

    2014-01-01

    Arginine plays a role in many different pathways in multiple cell types. Consequently, a shortage of arginine, caused by pathologic conditions such as cancer or injury, has the potential to disturb many cellular and organ functions. Glutamine is the ultimate source for de novo synthesis of arginine

  4. Factors associated with alkali production from arginine in dental biofilms

    NARCIS (Netherlands)

    Huang, X.; Exterkate, R.A.M.; ten Cate, J.M.

    2012-01-01

    Alkali production by oral bacteria in the oral cavity has been linked to protection against dental caries. The current study assessed various parameters associated with ammonium produced during arginine catabolism in dental biofilms. Polymicrobial biofilms were formed with saliva as the inoculum.

  5. The do's and don'ts of arginine supplementation

    African Journals Online (AJOL)

    Nutritional therapy (in critical care) has generally been designed to meet the body's nutritional needs for ... that increased protein turnover requires during periods of stress, such as critical illness. In such situations, arginine ... stress and the expression of redox-regulated genes.13. In certain animal models and in some ...

  6. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1.

    Directory of Open Access Journals (Sweden)

    Ruihan Zhang

    Full Text Available Protein arginine methyltransferase 1 (PRMT1, the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD simulation and quantum mechanics/molecular mechanics (QM/MM calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.

  7. Effects of L-arginine on intestinal development and endogenous ...

    African Journals Online (AJOL)

    This effect correlated with profound change in enzyme activities as inducible nitric oxide synthetase (iNOS), glutamine synthetase (GS) and ornithine decarboxylase (ODC) were elevated on day 18. The concentrations of spermine was increased (P<0.05) by L-arginine supplementation on day 18. These results collectively ...

  8. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  9. L-Arginine Attenuates Diabetic Nephropathy In Streptozotocin ...

    African Journals Online (AJOL)

    Oxidative stress is widely recognized as a key component in the development and progression of diabetic complications, such as diabetic nephropathy (DN). The present study aimed to evaluate the efficacy of dietary L-arginine supplementation as a potentially novel and useful strategy for the management of oxidative ...

  10. L-arginine transport in the human coronary and peripheral circulation.

    Science.gov (United States)

    Miner, S E S; Al-Hesayen, A; Kelly, S; Benson, T; Thiessen, J J; Young, V R; Parker, J D

    2004-03-16

    Nitric oxide synthase (NOS) uses arginine for the production of nitric oxide (NO). High intracellular concentrations of arginine suggest that NOS activity should be independent of plasma arginine supply. However, under certain conditions, increased plasma arginine concentrations appear to be associated with increased NOS activity. The purpose of this study was to explore arginine transport within the human coronary and peripheral circulation Mass-labeled 15N2-arginine was infused to steady state before cardiac catheterization in 31 patients. After diagnostic angiography, a catheter was placed in the coronary sinus. The transcardiac concentration gradient (aorta-coronary sinus) of 15N2-arginine was used as a measure of arginine transport at baseline and during infusions of acetylcholine and N(G)-monomethyl-L-arginine (L-NMMA). No gradient was detected at rest. During the infusion of acetylcholine, a significant gradient was detected (2.5+/-1.2 micromol/L, P=0.01) corresponding to a fractional extraction of 11.7+/-7.5%. This is consistent with in vitro studies that suggest that stimulation of NOS induces arginine transport. During the infusion of L-NMMA, the concentration of 15N2-arginine increased in the coronary sinus, producing a gradient of -3.9+/-1.3 micromol/L (P=0.0002), corresponding to a fractional production of 20.5+/-5.0%. This is consistent with in vitro studies that suggest that L-NMMA induces the efflux of arginine from the cell to the extracellular space via transporter-mediated transstimulation. The use of steady-state 15N2-arginine to examine transorgan L-arginine gradients represents a novel tool for the study of L-arginine transport and the mechanisms of endothelial and NOS dysfunction.

  11. Analysis of an Alanine/Arginine Mixture by Using TLC/FTIR Technique

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available We applied TLC/FTIR coupled with mapping technique to analyze an alanine/arginine mixture. Narrow band TLC plates prepared by using AgI as a stationary phase were used to separate alanine and arginine. The distribution of alanine and arginine spots was manifested by a 3D chromatogram. Alanine and arginine can be successfully separated by the narrow band TLC plate. In addition, the FTIR spectra of the separated alanine and arginine spots on the narrow band TLC plate are roughly the same as the corresponding reference IR spectra.

  12. In vivo whole body and organ arginine metabolism during endotoxemia (sepsis) is dependent on mouse strain and gender

    NARCIS (Netherlands)

    Luiking, Y. C.; Hallemeesch, M. M.; Vissers, Y. L. J.; Lamers, W. H.; Deutz, N. E. P.

    2004-01-01

    Arginine metabolism involves various organs such as the kidney, the intestines, and the liver, which act together in an interorgan axis. Major pathways for arginine production are protein breakdown and de novo arginine production from citrulline; disposal of arginine is mainly used for protein

  13. Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells.

    Science.gov (United States)

    Stadelmann, Britta; Merino, María C; Persson, Lo; Svärd, Staffan G

    2012-01-01

    In the field of infectious diseases the multifaceted amino acid arginine has reached special attention as substrate for the hosts production of the antimicrobial agent nitric oxide (NO). A variety of infectious organisms interfere with this part of the host immune response by reducing the availability of arginine. This prompted us to further investigate additional roles of arginine during pathogen infections. As a model we used the intestinal parasite Giardia intestinalis that actively consumes arginine as main energy source and secretes an arginine-consuming enzyme, arginine deiminase (ADI). Reduced intestinal epithelial cell (IEC) proliferation is a common theme during bacterial and viral intestinal infections, but it has never been connected to arginine-consumption. Our specific question was thereby, whether the arginine-consumption by Giardia leads to reduced IEC proliferation, in addition to NO reduction. In vitro cultivation of human IEC lines in arginine-free or arginine/citrulline-complemented medium, as well as in interaction with different G. intestinalis isolates, were used to study effects on host cell replication by MTT assay. IEC proliferation was further analyzed by DNA content analysis, polyamine measurements and expressional analysis of cell cycle regulatory genes. IEC proliferation was reduced upon arginine-withdrawal and also in an arginine-dependent manner upon interaction with G. intestinalis or addition of Giardia ADI. We show that arginine-withdrawal by intestinal pathogens leads to a halt in the cell cycle in IECs through reduced polyamine levels and upregulated cell cycle inhibitory genes. This is of importance with regards to intestinal tissue homeostasis that is affected through reduced cell proliferation. Thus, the slower epithelial cell turnover helps the pathogen to maintain a more stable niche for colonization. This study also shows why supplementation therapy of diarrhea patients with arginine/citrulline is helpful and that

  14. Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Britta Stadelmann

    Full Text Available In the field of infectious diseases the multifaceted amino acid arginine has reached special attention as substrate for the hosts production of the antimicrobial agent nitric oxide (NO. A variety of infectious organisms interfere with this part of the host immune response by reducing the availability of arginine. This prompted us to further investigate additional roles of arginine during pathogen infections. As a model we used the intestinal parasite Giardia intestinalis that actively consumes arginine as main energy source and secretes an arginine-consuming enzyme, arginine deiminase (ADI. Reduced intestinal epithelial cell (IEC proliferation is a common theme during bacterial and viral intestinal infections, but it has never been connected to arginine-consumption. Our specific question was thereby, whether the arginine-consumption by Giardia leads to reduced IEC proliferation, in addition to NO reduction. In vitro cultivation of human IEC lines in arginine-free or arginine/citrulline-complemented medium, as well as in interaction with different G. intestinalis isolates, were used to study effects on host cell replication by MTT assay. IEC proliferation was further analyzed by DNA content analysis, polyamine measurements and expressional analysis of cell cycle regulatory genes. IEC proliferation was reduced upon arginine-withdrawal and also in an arginine-dependent manner upon interaction with G. intestinalis or addition of Giardia ADI. We show that arginine-withdrawal by intestinal pathogens leads to a halt in the cell cycle in IECs through reduced polyamine levels and upregulated cell cycle inhibitory genes. This is of importance with regards to intestinal tissue homeostasis that is affected through reduced cell proliferation. Thus, the slower epithelial cell turnover helps the pathogen to maintain a more stable niche for colonization. This study also shows why supplementation therapy of diarrhea patients with arginine/citrulline is helpful

  15. Dietary arginine requirements for growth are dependent on the rate of citrulline production in mice.

    Science.gov (United States)

    Marini, Juan C; Agarwal, Umang; Didelija, Inka C

    2015-06-01

    In many species, including humans, arginine is considered a semiessential amino acid because under certain conditions endogenous synthesis cannot meet its demand. The requirements of arginine for growth in mice are ill defined and seem to vary depending on the genetic background of the mice. The objective of this study was to determine the metabolic and molecular basis for the requirement of arginine in 2 mouse strains. Institute of Cancer Research (ICR) and C57BL/6 (BL6) male mice were fed arginine-free or arginine-sufficient diets (Expt. 1) or 1 of 7 diets with increasing arginine concentration (from 0- to 8-g/kg diet, Expt. 2) between day 24 and 42 of life to determine the arginine requirements for growth. Citrulline production and "de novo" arginine synthesis were measured with use of stable isotopes, and arginine requirements were determined by breakpoint analysis and enzyme expression by reverse transcriptase-polymerase chain reaction. In Expt. 1, ICR mice grew at the same rate regardless of the arginine concentration of the diet (mean ± SE: 0.66 ± 0.04 g/d, P = 0.80), but BL6 mice had a reduced growth rate when fed the arginine-free diet (0.25 ± 0.02 g/d, P requirement for growth of BL6 mice was met with 2.32 ± 0.39 g arginine/kg diet; for ICR mice, however, no breakpoint was found. Our data indicate that a reduced expression of OTC in BL6 mice translates into a reduced production of citrulline and arginine compared with ICR mice, which results in a dietary arginine requirement for growth in BL6 mice, but not in ICR mice. © 2015 American Society for Nutrition.

  16. Arginine vasopressin, fluid balance and exercise: is exercise-associated hyponatraemia a disorder of arginine vasopressin secretion?

    Science.gov (United States)

    Hew-Butler, Tamara

    2010-06-01

    The ability of the human body to regulate plasma osmolality (POsm) within a very narrow and well defined physiological range underscores the vital importance of preserving water and sodium balance at rest and during exercise. The principle endocrine regulator of whole body fluid homeostasis is the posterior pituitary hormone, arginine vasopressin (AVP). Inappropriate AVP secretion may perpetuate either slow or rapid violation of these biological boundaries, thereby promoting pathophysiology, morbidity and occasional mortality. In the resting state, AVP secretion is primarily regulated by changes in POsm (osmotic regulation). The osmotic regulation of AVP secretion during exercise, however, may possibly be enhanced or overridden by many potential non-osmotic factors concurrently stimulated during physical activity, particularly during competition. The prevalence of these highly volatile non-osmotic AVP stimuli during strenuous or prolonged physical activity may reflect a teleological mechanism to promote water conservation during exercise. However, non-osmotic AVP secretion, combined with high fluid availability plus sustained fluid intake (exceeding fluid output), has been hypothesized to lead to an increase in both the incidence and related deaths from exercise-associated hyponatraemia (EAH) in lay and military populations. Inappropriately, high plasma AVP concentrations ([AVP](p)) associated with low blood sodium concentrations facilitate fluid retention and sodium loss, thereby possibly reconciling both the water intoxication and sodium loss theories of hyponatraemia that are currently under debate. Therefore, given the potential for a variety of exercise-induced non-osmotic stimuli for AVP secretion, hydration strategies must be flexible, individualized and open to change during competitive events to prevent the occurrence of rare, but life-threatening, EAH. This review focuses on the potential osmotic and non-osmotic stimuli to AVP secretion that may affect

  17. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    Science.gov (United States)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  18. Arginine and Nitric Oxide Pathways in Obesity-Associated Asthma

    Directory of Open Access Journals (Sweden)

    Fernando Holguin

    2013-01-01

    Full Text Available Obesity is a comorbidity that adversely affects asthma severity and control by mechanisms that are not fully understood. This review will discuss evidence supporting a role for nitric oxide (NO as a potential mechanistic link between obesity and late-onset asthma (>12 years. Several studies have shown that there is an inverse association between increasing body mass index (BMI and reduced exhaled NO. Newer evidence suggests that a potential explanation for this paradoxical relationship is related to nitric oxide synthase (NOS uncoupling, which occurs due to an imbalance between L-arginine (NOS substrate and its endogenous inhibitor, asymmetric di-methyl arginine (ADMA. The review will propose a theoretical framework to understand the relevance of this pathway and how it may differ between early and late-onset obese asthmatics. Finally, the paper will discuss potential new therapeutic approaches, based on these paradigms, for improving the respiratory health of obese subjects with asthma.

  19. Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications.

    Science.gov (United States)

    Theerdhala, Sriharsha; Bahadur, Dhirendra; Vitta, Satish; Perkas, Nina; Zhong, Ziyi; Gedanken, Aharon

    2010-04-01

    Materials obtained by the synergistic combination of nanotechnology and biomedicine are an important source of drug delivery and other health care related applications. The anchoring of amino acids onto the surface of nano-sized magnetite is one such example. Herein, we report on the binding of a semi-essential amino acid, L-arginine, onto the surface of nano magnetite, creating a stable aqueous suspension by an in situ one-step method using sonochemical synthesis. An ex situ two-step process was also attempted, but was soon discarded owing to the relative short duration of the suspension attributed to increase in particle size and lower extent of binding. The initial concentration of the amino acid was found to play an important role in controlling the particle size and also the binding motif. Lower concentrations of arginine were found to favor the formation of elongated tubular structures, while at higher concentrations, the elongated structures were less prominent and arginine was found to be adsorbed onto the surface of the magnetite. This surface-functionalized nanomagnetite with amino acids could become a promising vehicle for drug delivery. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  20. Protective effect of quercetin and/or l-arginine against nano-zinc oxide-induced cardiotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Faddah, L. M.; Baky, Nayira A. Abdel [King Saud University, Pharmacology Department, Faculty of Pharmacy (Saudi Arabia); Mohamed, Azza M., E-mail: azzamohamed99@yahoo.com [King Abdulaziz University, Biochemistry Department, Faculty of Science for Girls (Saudi Arabia); Al-Rasheed, Nouf M.; Al-Rasheed, Nawal M. [King Saud University, Pharmacology Department, Faculty of Pharmacy (Saudi Arabia)

    2013-04-15

    The aim of this study was to investigate the protective role of quercetin and/or l-arginine against the cardiotoxic potency of zinc oxide nanoparticle (ZnO-NP)-induced cardiac infarction. ZnO-NPs (50 nm) were administered orally at either 600 mg or 1 g/kg body weight for 5 consecutive days. The results revealed that co-administration of quercetin and/or l-arginine (each 200 mg/kg body weight) daily for 3 weeks to rats intoxicated by either of the two doses markedly ameliorated increases in serum markers of cardiac infarction, including troponin T, creatine kinase-MB, and myoglobin, as well as increases in proinflammatory biomarkers, including tumor necrosis factor-{alpha}, interleukin-6, and C-reactive protein, compared with intoxicated, untreated rats. Each agent alone or in combination also successfully modulated the alterations in serum vascular endothelial growth factor, cardiac calcium concentration, and oxidative DNA damage as well as the increase in the apoptosis marker caspase 3 of cardiac tissue in response to ZnO-NP toxicity. In conclusion, early treatment with quercetin and l-arginine may protect cardiac tissue from infarction induced by the toxic effects of ZnO-NPs.

  1. The Supplementation of Branched-Chain Amino Acids, Arginine, and Citrulline Improves Endurance Exercise Performance in Two Consecutive Days

    Directory of Open Access Journals (Sweden)

    I-Shiung Cheng, Yi-Wen Wang, I-Fan Chen, Gi-Sheng Hsu, Chun-Fang Hsueh, Chen-Kang Chang

    2016-09-01

    Full Text Available The central nervous system plays a crucial role in fatigue during endurance exercise. Branched-chain amino acids (BCAA could reduce cerebral serotonin synthesis by competing with its precursor tryptophan for crossing the blood brain barrier. Arginine and citrulline could prevent excess hyperammonemia accompanied by BCAA supplementation. This study investigated the combination of BCAA, arginine, and citrulline on endurance performance in two consecutive days. Seven male and three female endurance runners ingested 0.17 g·kg-1 BCAA, 0.05 g·kg-1 arginine and 0.05 g·kg-1 citrulline (AA trial or placebo (PL trial in a randomized cross-over design. Each trial contained a 5000 m time trial on the first day, and a 10000 m time trial on the second day. The AA trial had significantly better performance in 5000 m (AA: 1065.7 ± 33.9 s; PL: 1100.5 ± 40.4 s and 10000 m (AA: 2292.0 ± 211.3 s; PL: 2375.6 ± 244.2 s. The two trials reported similar ratings of perceived exertion. After exercise, the AA trial had significantly lower tryptophan/BCAA ratio, similar NH3, and significantly higher urea concentrations. In conclusion, the supplementation could enhance time-trial performance in two consecutive days in endurance runners, possibly through the inhibition of cerebral serotonin synthesis by BCAA and the prevention of excess hyperammonemia by increased urea genesis.

  2. Combinatorial Effects of Arginine and Fluoride on Oral Bacteria

    OpenAIRE

    Zheng, X.; Cheng, X.; Wang, L.; Qiu, W.; Wang, S.; Zhou, Y.; Li, M.; Li, Y.; Cheng, L.; Li, J.; Zhou, X.; Xu, X.

    2015-01-01

    Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicati...

  3. PRMT1-mediated arginine methylation controls ATXN2L localization

    Energy Technology Data Exchange (ETDEWEB)

    Kaehler, Christian; Guenther, Anika; Uhlich, Anja; Krobitsch, Sylvia, E-mail: krobitsc@molgen.mpg.de

    2015-05-15

    Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine–glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory. - Highlights: • ATXN2L is asymmetrically dimethylated in vivo. • ATXN2L interacts with PRMT1 under normal and stress conditions. • PRMT1-mediated dimethylation of ATXN2L controls its nuclear localization. • ATXN2L localization to stress granules appears independent of its methylation state.

  4. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation.

    Science.gov (United States)

    Lee, Young-Ho; Stallcup, Michael R

    2009-04-01

    Endocrine regulation frequently culminates in altered transcription of specific genes. The signal transduction pathways, which transmit the endocrine signal from cell surface to the transcription machinery, often involve posttranslational modifications of proteins. Although phosphorylation has been by far the most widely studied protein modification, recent studies have indicated important roles for other types of modification, including protein arginine methylation. Ten different protein arginine methyltransferase (PRMT) family members have been identified in mammalian cells, and numerous substrates are being identified for these PRMTs. Whereas major attention has been focused on the methylation of histones and its role in chromatin remodeling and transcriptional regulation, there are many nonhistone substrates methylated by PRMTs. This review primarily focuses on recent progress on the roles of the nonhistone protein methylation in transcription. Protein methylation of coactivators, transcription factors, and signal transducers, among other proteins, plays important roles in transcriptional regulation. Protein methylation may affect protein-protein interaction, protein-DNA or protein-RNA interaction, protein stability, subcellular localization, or enzymatic activity. Thus, protein arginine methylation is critical for regulation of transcription and potentially for various physiological/pathological processes.

  5. Arginine-Amino Acid Interactions and Implications to Protein Solubility and Aggregation

    Directory of Open Access Journals (Sweden)

    A. R. Shaikh

    2015-12-01

    Full Text Available Arginine, useful in protein refolding, solubilization of proteins, and suppression of protein aggregation and non-specific adsorption during formulation and purification, is a ubiquitous additive in the biotechnology and pharmaceutical industries. In order to provide a framework for analyzing the molecular level mechanisms behind arginine/protein interactions in the above context, density functional theory was used to systematically examine how arginine interacts with naturally occurring amino acids. The results show that the most favorable interaction of arginine is with acidic amino acids and arises from charge interactions and hydrogen-bond interactions. Arginine is also shown to form stacking and T-shaped structures with aromatic amino acids, the types of cation–p and N–H…p interactions, respectively, known to be important contributors to protein stability. The analysis also shows that arginine-arginine interactions lead to stable clusters, with the stability of the clusters arising from the stacking of the guanidinium part of arginine. The results show that the unique ability of arginine to form clusters with itself makes it an effective aggregation suppressant and support the interpretations of the current study using experimental and molecular dynamics results available in the literature. The results also contribute to understanding the role of arginine in increasing protein solubility, imparting thermal stability of important enzymes, and designing better additives.

  6. RGD peptide conjugation results in enhanced antitumor activity of PD0325901 against glioblastoma by both tumor-targeting delivery and combination therapy.

    Science.gov (United States)

    Hou, Jianjun; Diao, Yiping; Li, Wei; Yang, Zhenjun; Zhang, Lihe; Chen, Zili; Wu, Yun

    2016-05-30

    Glioblastoma (GBM) is the most aggressive tumor type in the central nervous system. Both tumor-targeting drug delivery and combination therapy of multiple therapeutic agents with distinct mechanisms are important for GBM treatment. We combined these two strategies and developed a new platform of peptide-drug conjugate (RGD-PEG-Suc-PD0325901, W22) for tumor-targeting delivery using a combination of PD0325901 (a MEK1/2 inhibitor) and RGD peptide. In the present study, the combination of PD0325901 and RGD peptide strongly inhibited U87MG model in vitro and in vivo. This inhibition contributed to synergistic suppression of cell proliferation by blocking ERK pathway activity and cell migration. Modified by conjugation strategy, their conjugate W22 enhanced PD0325901 delivery to GBM cells by receptor mediated cellular internalization. W22 showed great superiority in targeting to U87MG xenografted tumors and strong anti-tumor efficacy based on ERK pathway inhibition and tumor-targeted delivery in vitro and in vivo. Moreover, W22 was stable in serum and able to release PD0325901 in the enzymatic environment. These data indicated that the RGD-PEG-Suc-PD0325901 conjugate provided a strategy for effective delivery of PD0325901 and RGD peptide into the GBM cells and inhibition of tumor growth in a synergistic manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Arginine increases the solubility of coumarin: comparison with salting-in and salting-out additives.

    Science.gov (United States)

    Hirano, Atsushi; Arakawa, Tsutomu; Shiraki, Kentaro

    2008-09-01

    Poor aqueous solubility of low molecular weight drug substances hampers their development as pharmacological agents. Here, we have examined the effects of arginine on the solubility of organic compounds, coumarin, caffeine and benzyl alcohol, in aqueous solution. Arginine increased the solubility of aromatic coumarin, but not non-aromatic caffeine, concentration dependently, suggesting the favourable interaction of arginine with the aromatic structure. Consistent with this, arginine also increased the solubility of aromatic benzyl alcohol. Guanidine hydrochloride, urea and salting-in salts increased both coumarin and caffeine solubilities, while salting-out salts decreased them. These results suggest the specific interaction of arginine with aromatic groups, leading to increased solubility of coumarin. However, the effect of 1 M arginine on coumarin solubility was at most approximately 2-fold, which may limit its applications as a solubility enhancing agent.

  8. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina

    2010-06-21

    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  9. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    2010-06-01

    Full Text Available The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  10. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Marcus eFulde

    2014-08-01

    Full Text Available The arginine-ornithine antiporter (ArcD is part of the Arginine Deiminase System (ADS, a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-13C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth rate in chemically defined media supplemented with arginine when compared to the WT strain, indicating that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  11. Copper Complexes Of Di-, Tri-, And Tetra-Peptides Containing Tryptophan, Histidine And Arginine

    OpenAIRE

    El Naggar, A. M. [احمد محمد النجار; El-Ghaffar, S. A. A.; Zaher, M. R.

    1983-01-01

    Fifty Seven copper complexes of di-, tri-. and tetra-peptides containing tryptophan, histidine and arginine are studied spectrophotometrically. The ^a, and colour of the complexes are dependent on the sequence of the amino acid in the dipeptide methyl esters of tryptophan and arginine; and independent on the sequence of dipeptides of histidine or in any of the tri- and tetra-peptides of histidine, arginine and tryptophan. The results achieved confirmed that the nitrogen atoms of the indole nu...

  12. Deciphering molecular mechanisms of arginine deiminase-based therapy - Comparative response analysis in paired human primary and recurrent glioblastomas.

    Science.gov (United States)

    Maletzki, Claudia; Rosche, Yvonne; Riess, Christin; Scholz, Aline; William, Doreen; Classen, Carl Friedrich; Kreikemeyer, Bernd; Linnebacher, Michael; Fiedler, Tomas

    2017-12-25

    Arginine auxotrophy constitutes the Achilles' heel for several tumors, among them glioblastoma multiforme (GBM). Hence, arginine-depleting enzymes such as arginine deiminase (ADI) from Streptococcus pyogenes are promising for treatment of primary and maybe even refractory GBM. Based on our previous study in which ADI-susceptibility was shown on a panel of patient-derived GBM cell lines, we here aimed at deciphering underlying molecular mechanisms of ADI-mediated growth inhibition. We found that ADI (35 mU/mL) initially induces a cellular stress-response that is characterized by upregulation of genes primarily belonging to the heat-shock protein family. In addition to autophagocytosis, we show for the first time that senescence constitutes another cellular response mechanism upon ADI-treatment and that this bacterial enzyme is able to act as radiosensitizer (¼ cases). Long-term treatment schedules revealed no resistance development, with treated cells showing morphological signs of cell stress. Next, several combination strategies were employed to optimize ADI-based treatment. Simultaneous and sequential S. pyogenes ADI-based combinations included substances acting at different molecular pathways (curcumin, resveratrol, quinacrine, and sorafenib, 2 × 72 h treatment). Adding drugs to GBM cell lines (n = 4, including a matched pair of primary and recurrent GBM in one case) accelerated and potentiated ADI-mediated cytotoxicity. Autophagy was identified as the main cause of tumor growth inhibition. Of note, residual cells again showed classical signs of senescence in most combinations. Our results suggest an alternative treatment regimen for this fatal cancer type which circumvents many of the traditional barriers. Using the metabolic defect in GBM thus warrants further (pre-) clinical evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  14. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon; Yang, Sujeong; Choi, Seunga [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); BK21 Bio Brain Center, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); Kang, Misun [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); Rho, Jaerang, E-mail: jrrho@cnu.ac.kr [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); BK21 Bio Brain Center, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); GRAST, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of)

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.

  15. Protein Arginine Methyltransferase 5 as a Driver of Lymphomagenesis

    Science.gov (United States)

    Smith, Porsha Latrice

    Over the past decade, it has become clear that oncogenesis is a process driven by a wide variety of triggers including gene mutations, gene amplifications, inflammation, and immune deficiency. The growing pool of data collected from whole genome and epigenome studies of both solid and blood cancers has pointed toward dysregulation of chromatin remodelers as a unique class of cancer drivers. Next generation sequencing studies of lymphomas have identified a wide array of somatic mutations affecting enzymes that regulate epigenetic control of gene expression. Lymphoma is a type of cancer that originates in secondary lymphoid organs and manifests as an outgrowth of transformed lymphocytes, or white blood cells (WBCs) in the blood. The majority of lymphoma cases can be grouped into the Non-Hodgkins lymphoma (NHL) subset and mainly occurs in B-cells. B-cell NHL is a heterogeneous set of cancers that would benefit from new therapies to improve patient progression-free survival. Cancers such as NHL typically present with a combination of genetic and epigenetic aberrations that contribute to the malignancy program. The epigenetic modifier protein arginine methyltransferase 5 (PRMT5) is required for B-cell transformation following Epstein-Barr virus (EBV) infection, and is overexpressed in various subsets of B-cell NHL. Based on these data we hypothesized that PRMT5 is a major driver of B-cell lymphomagenesis. To explore the role of PRMT5 in the development and progression of B-cell NHL we created a small molecule inhibitors targeted to PRMT5. Using the NHL subset mantle cell lymphoma (MCL) as a model we tested the efficacy of the drug. We discovered that PRMT5 was overexpressed in MCL primary samples and cell lines as compared to normal resting B cells. Furthermore, use of the small molecule inhibitor decreased the proliferation and viability in these cells without affecting the normal B-cells. Additionally, use of inhibitors caused G2/M cell cycle and decreased the

  16. Melatonin treatment following stroke induction modulates L-arginine metabolism.

    Science.gov (United States)

    Nair, Shiva M; Rahman, Rosanna M A; Clarkson, Andrew N; Sutherland, Brad A; Taurin, Sebastien; Sammut, Ivan A; Appleton, Ian

    2011-10-01

    The efficacy of melatonin treatment in experimental stroke has been established. Some of the neuroprotective properties have been attributed to its anti-oxidant and anti-inflammatory effects. Nitric oxide synthases (NOS) and cyclooxygenases (COX) are considered to have a significant role in the inflammatory milieu occurring in acute stroke. While previous reports have shown that pretreatment with melatonin in a stroke model can modulate NOS isoforms, the effect of post-treatment with melatonin on l-arginine metabolism has not been investigated. This study initially examined the effect of melatonin (1 nm-1 mm) on l-arginine metabolism pathways in human fibrosarcoma fibroblasts (HT-1080) fibroblasts. Evidence of neuroprotection with melatonin was evaluated in rats subjected to middle cerebral artery occlusion (MCAO). Animals were treated with three daily doses of 5 mg/kg i.p., starting 1 hr after the onset of ischemia. Constitutive NOS activity but not expression was significantly increased by in vitro exposure (72 hr) to melatonin. In addition, melatonin treatment increased arginase activity by increasing arginase II expression. In vivo studies showed that melatonin treatment after MCAO significantly inhibited inducible NOS activity and attenuated expression of the inducible isoform, resulting in decreased total NOS activity and tissue nitrite levels. COX activity was significantly reduced with melatonin treatment. The neuroprotective anti-inflammatory effects of melatonin were consistent with the substantial reduction in infarct volume throughout the cortex and striatum and recovery of mitochondrial enzyme activities. The evidence presented here suggests that modulation of l-arginine metabolism by melatonin make it a valuable neuroprotective therapy for stroke. © 2011 John Wiley & Sons A/S.

  17. Detection of a novel arginine vasopression defect by dideoxy fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamani, M.R.S.; Phillips, J.A. III; Copeland, K.C. (Vanderbilt Univ. School of Medicine, Nashville, TN (United States) Univ. of Vermont College of Medicine, Burlington, VT (United States))

    1993-09-01

    Autosomal dominant neurohypophyseal diabetes insipidus is a familial form of diabetes insipidus. This disorder is associated with variable levels of arginine vasopressin (AVP) and diabetes insipidus of varying severity, which responds to exogenous AVP. To determine the molecular basis of autosomal dominant neurohypophyseal diabetes insipidus, the AVP genes of members of a large kindred were analyzed. A new method, called dideoxy fingerprinting, was used to detect an AVP mutation that was characterized by DNA sequencing. The novel defect found changes the last codon of the AVP signal peptide from alanine to threonine, which should perturb cleavage of mature AVP from its precursor protein and inhibit its secretion or action. 18 refs., 3 figs.

  18. Effects of arginine and phytogenic additive supplementation on performance and health of brown-egg layers

    Directory of Open Access Journals (Sweden)

    Vitor Barbosa Fascina

    Full Text Available ABSTRACT This study was performed to evaluate the effects of the association of different digestible arginine and phytogenic additive dietary levels on performance and health status of brown-egg layers. In this study, a total of 504 33-week-old Hisex Brown layers were distributed into a completely randomized experimental design to a 4 × 3 factorial arrangement (dietary digestible arginine levels: 880, 968, 1056, or 1144 mg/kg of feed × phytogenic additive levels: 0, 100, and 200 mg/kg of feed with six replicate cages of seven birds per cage. The phytogenic additive was composed of extracts of Baccharis dracunculifolia (40%, Astragalus membranaceus lipopolysaccharides (20%, cinnamon, and grape seed (20%. Feed intake was reduced when diets containing 1056 mg of arginine were supplemented with 100 or 200 mg phytogenic additive per kg. Feed conversion ratio was improved when diets were supplemented with 100 mg of phytogenic additive or with 1056 mg of arginine per kg of feed. Egg mass was increased when diets were supplemented with 1056 mg arginine per kg of feed. Arginine supplementation quadratically increased albumen percentage and reduced yolk percentage. Higher arginine and phytogenic additive levels reduced heterophyl:lymphocyte ratio and blood uric acid, total cholesterol, very-low density lipoprotein, and triglyceride levels. Dietary supplementation of 100 mg of phytogenic additive associated with high arginine levels increased nitric oxide production by peritoneal macrophages and 1056 mg of arginine increased antibodies titers against Newcastle disease virus. Blood and intestinal malonaldehyde levels were reduced when 200 mg of the phytogenic additive was added. Dietary supplementation of 968 mg of arginine or 100 mg of a phytogenic additive (40% Baccharis dracunculifolia, 20% Astragalus membranaceus, 20% cinnamon, and 20% grape seed extracts per kilogram of diet improves the feed conversion ratio and associated inclusion of 1144 mg of

  19. Plasma L-arginine levels distinguish pulmonary arterial hypertension from left ventricular systolic dysfunction.

    Science.gov (United States)

    Sandqvist, Anna; Schneede, Jörn; Kylhammar, David; Henrohn, Dan; Lundgren, Jakob; Hedeland, Mikael; Bondesson, Ulf; Rådegran, Göran; Wikström, Gerhard

    2017-10-03

    Pulmonary arterial hypertension (PAH) is a life-threatening condition, characterized by an imbalance of vasoactive substances and remodeling of pulmonary vasculature. Nitric oxide, formed from L-arginine, is essential for homeostasis and smooth muscle cell relaxation in PAH. Our aim was to compare plasma concentrations of L-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) in PAH compared to left ventricular systolic dysfunction (LVSD) and healthy subjects. This was an observational, multicenter study comparing 21 patients with PAH to 14 patients with LVSD and 27 healthy subjects. Physical examinations were obtained and blood samples were collected. Plasma levels of ADMA, SDMA, L-arginine, L-ornithine, and L-citrulline were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma levels of ADMA and SDMA were higher, whereas L-arginine and L-arginine/ADMA ratio were lower in PAH patients compared to healthy subjects (p L-arginine than patients with LVSD (p L-Arginine correlated to 6 min walking distance (6MWD) (r s = 0.58, p = 0.006) and L-arginine/ADMA correlated to WHO functional class (r s = -0.46, p = 0.043) in PAH. In conclusion, L-arginine levels were significantly lower in treatment naïve PAH patients compared to patients with LVSD. Furthermore, L-arginine correlated with 6MWD in PAH. L-arginine may provide useful information in differentiating PAH from LVSD.

  20. Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency.

    Science.gov (United States)

    Burrage, Lindsay C; Sun, Qin; Elsea, Sarah H; Jiang, Ming-Ming; Nagamani, Sandesh C S; Frankel, Arthur E; Stone, Everett; Alters, Susan E; Johnson, Dale E; Rowlinson, Scott W; Georgiou, George; Lee, Brendan H

    2015-11-15

    Arginase deficiency is caused by deficiency of arginase 1 (ARG1), a urea cycle enzyme that converts arginine to ornithine. Clinical features of arginase deficiency include elevated plasma arginine levels, spastic diplegia, intellectual disability, seizures and growth deficiency. Unlike other urea cycle disorders, recurrent hyperammonemia is typically less severe in this disorder. Normalization of plasma arginine levels is the consensus treatment goal, because elevations of arginine and its metabolites are suspected to contribute to the neurologic features. Using data from patients enrolled in a natural history study conducted by the Urea Cycle Disorders Consortium, we found that 97% of plasma arginine levels in subjects with arginase deficiency were above the normal range despite conventional treatment. Recently, arginine-degrading enzymes have been used to deplete arginine as a therapeutic strategy in cancer. We tested whether one of these enzymes, a pegylated human recombinant arginase 1 (AEB1102), reduces plasma arginine in murine models of arginase deficiency. In neonatal and adult mice with arginase deficiency, AEB1102 reduced the plasma arginine after single and repeated doses. However, survival did not improve likely, because this pegylated enzyme does not enter hepatocytes and does not improve hyperammonemia that accounts for lethality. Although murine models required dosing every 48 h, studies in cynomolgus monkeys indicate that less frequent dosing may be possible in patients. Given that elevated plasma arginine rather than hyperammonemia is the major treatment challenge, we propose that AEB1102 may have therapeutic potential as an arginine-reducing agent in patients with arginase deficiency. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Effect of supplementation during pregnancy with L-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population: randomised controlled trial

    Science.gov (United States)

    Perichart-Perera, Otilia; Espino, Salvador; Avila-Vergara, Marco Antonio; Ibarra, Isabel; Ahued, Roberto; Godines, Myrna; Parry, Samuel; Macones, George; Strauss, Jerome F

    2011-01-01

    generalisability of the protective effect, and the relative contributions of L-arginine and antioxidant vitamins to the observed effects of the combined treatment need to be determined. Trial registration Clinical trials NCT00469846. PMID:21596735

  2. Arginine kinase from Myzostoma cirriferum, a basal member of annelids.

    Science.gov (United States)

    Yano, Daichi; Mimura, Sayo; Uda, Kouji; Suzuki, Tomohiko

    2016-08-01

    We assembled a phosphagen kinase gene from the Expressed Sequence Tags database of Myzostoma cirriferum, a basal member of annelids. The assembled gene sequence was synthesized using an overlap extension polymerase chain reaction method and was expressed in Escherichia coli. The recombinant enzyme (355 residues) exhibited monomeric behavior on a gel filtration column and showed strong activity only for l-arginine. Thus, the enzyme was identified as arginine kinase (AK). The two-substrate kinetic parameters were obtained and compared with other AKs. Phylogenetic analysis of amino acid sequences of phosphagen kinases indicated that the Myzostoma AK gene lineage differed from that of the polychaete Sabellastarte spectabilis AK, which is a dimer of creatine kinase (CK) origin. It is likely that the Myzostoma AK gene lineage was lost at an early stage of annelid evolution and that Sabellastarte AK evolved secondarily from the CK gene. This work contributes to our understanding of the evolution of phosphagen kinases of annelids with marked diversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Molecular characterization of the Arginine decarboxylase gene family in rice.

    Science.gov (United States)

    Peremarti, Ariadna; Bassie, Ludovic; Zhu, Changfu; Christou, Paul; Capell, Teresa

    2010-10-01

    Arginine decarboxylase (ADC) is a key enzyme in plants that converts arginine into putrescine, an important mediator of abiotic stress tolerance. Adc genes have been isolated from a number of dicotyledonous plants but the oat and rice Adc genes are the only representatives of monocotyledonous species described thus far. Rice has a small family of Adc genes, and OsAdc1 expression has been shown to fluctuate under drought and chilling stress. We identified and characterized a second rice Adc gene (OsAdc2) which encodes a 629-amino-acid protein with a predicted molecular mass of 67 kDa. An unusual feature of the OsAdc2 gene is the presence of an intron and a short upstream open reading frame in the 5'-UTR. Sequence comparisons showed that OsAdc2 is more closely related to the oat Adc gene than to OsAdc1 or to its dicot homologs, and mRNA analysis showed that the two rice genes are also differently regulated. Whereas OsAdc1 is expressed in leaf, root and stem, OsAdc2 expression is restricted to stem tissue. Protein expression was investigated with specific antibodies against ADC1 and ADC2, corroborating the mRNA data. We discuss the expression profiles of OsAdc1 and OsAdc2 and potential functions for the two corresponding proteins.

  4. Factors associated with alkali production from arginine in dental biofilms.

    Science.gov (United States)

    Huang, X; Exterkate, R A M; ten Cate, J M

    2012-12-01

    Alkali production by oral bacteria in the oral cavity has been linked to protection against dental caries. The current study assessed various parameters associated with ammonium produced during arginine catabolism in dental biofilms. Polymicrobial biofilms were formed with saliva as the inoculum. The NH(3) level and the pH of the spent medium were used to monitor and quantitate the bacterial reactions. The presence of sucrose, a low buffer capacity, and a low pH (≤ pH 4.5) were found to hamper alkali production from arginine. The rate of alkali production exhibited an optimum around pH 5.5. Biofilms were found to produce NH(3) also from polypeptides and proteins in the medium. The biofilm age affected these processes. The experimental model proved valuable for the assessment of the collective bacterial reactions determining the overall pH outcome. This experimental approach could bridge the gap in our knowledge between pH-rise phenomena and caries susceptibility from clinical observations and studies performed on alkali-producing bacteria in well- controlled, though simplified, in vitro models. Analysis of our data supports the hypothesis that the initiation and progression of dental caries may be influenced by the relative rates of acid and base formation, which critically depend on the aforementioned parameters.

  5. Arginine phosphorylation marks proteins for degradation by a Clp protease.

    Science.gov (United States)

    Trentini, Débora Broch; Suskiewicz, Marcin Józef; Heuck, Alexander; Kurzbauer, Robert; Deszcz, Luiza; Mechtler, Karl; Clausen, Tim

    2016-11-03

    Protein turnover is a tightly controlled process that is crucial for the removal of aberrant polypeptides and for cellular signalling. Whereas ubiquitin marks eukaryotic proteins for proteasomal degradation, a general tagging system for the equivalent bacterial Clp proteases is not known. Here we describe the targeting mechanism of the ClpC-ClpP proteolytic complex from Bacillus subtilis. Quantitative affinity proteomics using a ClpP-trapping mutant show that proteins phosphorylated on arginine residues are selectively targeted to ClpC-ClpP. In vitro reconstitution experiments demonstrate that arginine phosphorylation by the McsB kinase is required and sufficient for the degradation of substrate proteins. The docking site for phosphoarginine is located in the amino-terminal domain of the ClpC ATPase, as resolved at high resolution in a co-crystal structure. Together, our data demonstrate that phosphoarginine functions as a bona fide degradation tag for the ClpC-ClpP protease. This system, which is widely distributed across Gram-positive bacteria, is functionally analogous to the eukaryotic ubiquitin-proteasome system.

  6. Mapping arginine methylation in the human body and cardiac disease.

    Science.gov (United States)

    Onwuli, Donatus O; Rigau-Roca, Laura; Cawthorne, Chris; Beltran-Alvarez, Pedro

    2017-01-01

    Arginine methylation (ArgMe) is one of the most ubiquitous PTMs, and hundreds of proteins undergo ArgMe in, for example, brain. However, the scope of ArgMe in many tissues, including the heart, is currently underexplored. Here, we aimed to (i) identify proteins undergoing ArgMe in human organs, and (ii) expose the relevance of ArgMe in cardiac disease. The publicly available proteomic data is used to search for ArgMe in 13 human tissues. To induce H9c2 cardiac-like cell hypertrophy glucose is used. The results show that ArgMe is mainly tissue-specific; nevertheless, the authors suggest an embryonic origin of core ArgMe events. In the heart, 103 mostly novel ArgMe sites in 58 nonhistone proteins are found. The authors provide compelling evidence that cardiac protein ArgMe is relevant to cardiomyocyte ontology, and important for proper cardiac function. This is highlighted by the fact that genetic mutations affecting methylated arginine positions are often associated with cardiac disease, including hypertrophic cardiomyopathy. The pilot experimental data suggesting significant changes in ArgMe profiles of H9c2 cells upon induction of cell hypertrophy using glucose is provided. The work calls for in-depth investigation of ArgMe in normal and diseased tissues using methods including clinical proteomics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Role of Protein Arginine Methyltransferases in Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Protein arginine methyltransferases (PRMTs mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV. Although most PRMTs do not require posttranslational modification (PTM to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6 in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.

  8. Influence of metformin on arginine-induced glucagon secretion in human diabetes.

    Science.gov (United States)

    Carpentier, J; Luyckx, A S; Lefebvre, P J

    1975-03-01

    The insulin and glucagon responses to arginine infusion were investigated in patients with maturity-onset diabetes under control conditions and during metformin therapy. Metformin did not significantly affect the insulin nor the glucagon response to arginine. These data support the concept that biguanide do not act directly on the islets of Langerhans.

  9. Thermal, FT–IR and SHG efficiency studies of L-arginine doped KDP ...

    Indian Academy of Sciences (India)

    Thermal, FT–IR and SHG efficiency studies of L-arginine doped KDP crystals ... In the present study, amino acid L-arginine was doped in KDP. ... Department of Physics, Saurashtra University, Rajkot 360 005, India; Institute of Diploma Studies, Nirma University of Science and Technology, S.G. Highway, Ahmedabad 384 ...

  10. The do's and don'ts of arginine supplementation | Chetty | South ...

    African Journals Online (AJOL)

    In the last three decades the nutritional and pharmacologic effects of arginine have been the subject of intense investigation. Taking into consideration the many benefits that have been demonstrated from arginine supplementation, the question remains: “Can we afford not to supplement with this immuno-nutrient”.

  11. Metabolic fate of L-arginine in relation to microbiostatic capability of murine macrophages.

    Science.gov (United States)

    Granger, D L; Hibbs, J B; Perfect, J R; Durack, D T

    1990-01-01

    L-arginine is required for the fungistatic action of murine macrophages in vitro. To further investigate this requirement, L-arginine metabolism by macrophages was measured under conditions where fungistasis either succeeded or failed. Macrophage fungistasis correlated with metabolism of L-arginine to citrulline, nitrite, and nitrate. The metabolic rate was dependent on extracellular L-arginine concentration, reaching a maximum of 67 nmol nitrite/h per mg protein. It accounted for one-third of arginine consumed by fungistatic macrophages. Equimolar amounts of citrulline and total nitrite plus nitrate accumulated in medium. This was consistent with the hypothesis that one of the equivalent guanidino nitrogens of L-arginine was oxidized to both nitrite and nitrate leaving L-citrulline as the amino acid reaction product. The analogue, NG-mono-methyl-L-arginine, selectively inhibited nitrogen oxidation and it was shown previously that it inhibited fungistatic capability. Resident macrophages were not fungistatic and their nitrogen oxidation was low. Once macrophages began producing nitrite/nitrate, protein synthesis was not required during the next 8 h for either fungistasis or nitrogen oxidation. Two-thirds of L-arginine consumption was due to macrophage arginase yielding L-ornithine and urea, which accumulated in medium. This activity was dissociated from macrophage fungistasis. Nitrogen oxidation metabolism by macrophages is linked to a mechanism that inhibits proliferation of fungi. This may involve synthesis of an intermediate compound(s) that has antimicrobial properties.

  12. Structural diversity in twin-arginine signal peptide-binding proteins

    NARCIS (Netherlands)

    Maillard, J.; Spronk, C.A.E.M.; Buchanan, G.; Lyall, V.; Richardson, D.J.; Palmer, T.; Vuister, G.W.; Sargent, F.

    2007-01-01

    The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Escherichia coli, many Tat substrates bind redox-active cofactors

  13. Growth and characterization of pure and doped NLO L-arginine ...

    Indian Academy of Sciences (India)

    Administrator

    doped LAA were prepared by dissolving stoichiometric L-arginine. (AR grade) and acetic acid in double deionized water. The pure and doped LAA crystals were grown by slow evaporation technique at room temperature (30°C). The reaction that takes place between L-arginine and acetic acid in water medium is as follows:.

  14. Impaired endothelial function after aneurysmal subarachnoid haemorrhage correlates with arginine:asymmetric dimethylarginine ratio

    DEFF Research Database (Denmark)

    Bergström, A; Staalsø, J M; Romner, B

    2014-01-01

    ) measured by peripheral arterial tonometry and plasma concentrations of S-100B protein, nitrite/nitrate, arginine, and asymmetric dimethyl arginine (ADMA). Clinical variables were flow velocity in the middle cerebral artery (VMCA), angiographic vasospasm, delayed neurological deficit, and 30 day survival...

  15. Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation.

    Science.gov (United States)

    Lott, Kaylen; Li, Jun; Fisk, John C; Wang, Hao; Aletta, John M; Qu, Jun; Read, Laurie K

    2013-10-08

    Arginine methylation is a common posttranslational modification with reported functions in transcription, RNA processing and translation, and DNA repair. Trypanosomes encode five protein arginine methyltransferases, suggesting that arginine methylation exerts widespread impacts on the biology of these organisms. Here, we performed a global proteomic analysis of Trypanosoma brucei to identify arginine methylated proteins and their sites of modification. Using an approach entailing two-dimensional chromatographic separation and alternating electron transfer dissociation and collision induced dissociation, we identified 1332 methylarginines in 676 proteins. The resulting data set represents the largest compilation of arginine methylated proteins in any organism to date. Functional classification revealed numerous arginine methylated proteins involved in flagellar function, RNA metabolism, DNA replication and repair, and intracellular protein trafficking. Thus, arginine methylation has the potential to impact aspects of T. brucei gene expression, cell biology, and pathogenesis. Interestingly, pathways with known methylated proteins in higher eukaryotes were identified in this study, but often different components of the pathway were methylated in trypanosomes. Methylarginines were often identified in glycine rich contexts, although exceptions to this rule were detected. Collectively, these data inform on a multitude of aspects of trypanosome biology and serve as a guide for the identification of homologous arginine methylated proteins in higher eukaryotes. T. brucei is a protozoan parasite that causes lethal African sleeping sickness in humans and nagana in livestock, thereby imposing a significant medical and economic burden on sub-Saharan Africa. The parasite encounters very different environments as it cycles between mammalian and insect hosts, and must exert cellular responses to these varying milieus. One mechanism by which all cells respond to changing

  16. Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis

    Directory of Open Access Journals (Sweden)

    Jaffrezic-Renault N.

    2012-12-01

    Full Text Available Aim. To determine an influence of serum components on the L-arginine biosensor sensitivity and to formulate practical recommendations for its reliable analysis. Methods. The L-arginine biosensor comprised arginase and urease co-immobilized by cross-linking. Results. The biosensor specificity was investigated based on a series of representative studies (namely, through urea determination in the serum; inhibitory effect studies of mercury ions; high temperature treatment of sensors; studying the biosensor sensitivity to the serum treated by enzymes, and selectivity studies. It was found that the response of the biosensor to the serum injections was determined by high sensitivity of the L-arginine biosensor toward not only to L-arginine but also toward two other basic amino acids (L-lysine and L-histidine. Conclusions. A detailed procedure of optimization of the conductometric biosensor for L-arginine determination in blood serum has been proposed.

  17. Colostrum and milk production in multiparous sows fed supplementary arginine during gestation and lactation

    DEFF Research Database (Denmark)

    Larsen, Uffe Krogh; Oksbjerg, Niels; Purup, Stig

    2016-01-01

    Arginine can be converted into the vasoactive metabolite nitric oxide and may, consequently, increase mammary blood flow, and arginine was, therefore, hypothesized to increase the output of nutrients in mammary secreta. Sows were supplemented with an additional 25 g arginine/d (ARG; n = 11......) or isonitrogenous amounts of alanine (CON; n = 10) from d 30 of gestation until weaning on d 28 of lactation (in 2 blocks). Piglets were weighed 0, 12, 24, and 36 h after birth of the first piglet and on d 2, 7, 14, 21, and 28 in lactation for estimation of colostrum and milk intake. Colostrum samples obtained at 0......, 12, 24, and 36 h after parturition and milk from sows on d 3, 10, 17, and 24 of lactation were analyzed for macrochemical composition. Also, the content of IGF-I was determined in colostrum. Arginine supplementation decreased lactose and increased DM content of colostrum (P

  18. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells

    DEFF Research Database (Denmark)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas

    2016-01-01

    The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic...... kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified...... as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human...

  19. Clinical effectiveness of exogenous L-arginine in patients with coronary heart disease after community-acquired pneumonia

    Directory of Open Access Journals (Sweden)

    T. O. Kulynych

    2017-02-01

    Full Text Available Coronary heart disease and community acquired pneumonia associated with a higher risk for morbidity and mortality. The optimization of treatment of comorbid pathology by medicines which modify endothelium functional state is important. Aim: to study effect of exogenous L-arginine on clinical course of disease, markers of systemic inflammation and endothelial dysfunction in patients with coronary heart disease (CHD and community-acquired pneumonia (CAP. Materials and methods. 60 patients with CHD and CAP (the median 72.50 years, range 66.00; 75.00 were included into the study. Patients were randomized in 2 groups: first – 30 patients with basic therapy combined with L-arginine; and second – 30 patients with basic therapy. hs-CRP, neopterin, РАРР-А, NT-proBNP were measured by ELISA-TEST before treatment and 1 month after. Clinical course was assessed during 1 year of follow-up. Results. In the first group the hospitalization rate due to CHD and heart failure decompensation was significantly rare. Biomarkers changes in the 1st group were significant: hs-CRP was significantly decreased by 57.14 % (in the 2nd group – by 28.57 %; neopterin – by 36.57 % (in the 2nd group – by 20.91 %; РАРР-А – by 35.71 % (in the 2nd group – by 4.76 %. There was revealed a significant decreasing of NT-proBNP levels in patients receiving L-arginine by comparing with basic therapy: with the I stage of heart failure (HF – by 50.97 % vs 21.82 %, with the II-A stage of HF – by 43.82 % vs 5.61 % (p < 0.05. After 1 month of therapy patients from the 1st group had significantly lower rates of neopterin – by 16.46 %, and NT-proBNP – by 40.92 % in the subgroup of patients with II-A stage of HF (p < 0.05 compared with patients who received only the basic therapy. Conclusions. Combination of exogenous L-arginine and basic therapy in patients with CHD and CAP was associated with benign clinical course and positive changes of endothelium functional

  20. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery.

    Science.gov (United States)

    Linh, Nguyen Tb; Paul, Kallyanashis; Kim, Boram; Lee, Byong-Taek

    2016-11-01

    A functionally modified peptide-conjugated hydrogel system was fabricated with oxidized alginate/gelatin loaded with biphasic calcium phosphate to improve its biocompatibility and functionality. Sodium alginate was treated by controlled oxidation to transform the cis-diol group into an aldehyde group in a controlled manner, which was then conjugated to the amine terminus of glycine-arginine-glycine-aspartic. Oxidized alginate glycine-arginine-glycine-aspartic was then combined with gelatin-loaded biphasic calcium phosphate to form a hydrogel of composite oxidized alginate/gelatin/biphasic calcium phosphate that displayed enhanced human adipose stem cell adhesion, spreading and differentiation. 1H nuclear magnetic resonance and electron spectroscopy for chemical analysis confirmed that the glycine-arginine-glycine-aspartic was successfully grafted to the oxidized alginate. Co-delivery of glycine-arginine-glycine-aspartic and human adipose stem cell in a hydrogel matrix was studied with the results indicating that hydrogel incorporated modified with glycine-arginine-glycine-aspartic and seeded with human adipose stem cell enhanced osteogenesis in vitro and bone formation in vivo. © The Author(s) 2016.

  1. Regulating Effect Of Carnosine And /Or L- Arginine On The Expression Of Inflammatory Molecules Induced Nephropathy In The Hypoxic Rat Model

    Directory of Open Access Journals (Sweden)

    Nouf M. Al-Rasheed

    Full Text Available This study aimed to explore the effective role of carnosine and /or L- arginine in down regulation of the inflammatory molecule expression caused renal damage in response to sodium nitrite (NaNO2 induced hypoxia in rats . NaNO2 was administered subcutaneously (s.c. to rats as a single dose (60 mg/kg body weight . L-arginine (200mg/Kg body weight and carnosine (250 mg/ Kg body weight were administered (i.p. as a single dose , 24 h before NaNO2 injection. The results revealed that pre- administration of arginine and /or carnosine to NaNO2 hypoxic rats, significantly modulated the increases in serum markers of renal function (creatinine and urea as well as the decrease in hemoglobin (Hb level versus hypoxic rats. The two agents each alone or in a combination, markedly down regulated the serum pro-inflammatory molecules, including tumor necrosis factor-α (TNF- α , C-reactive protein (CRP, vascular endothelial growth factor (VEGF and heat shock protein -70 (HSP-70 as well as interleukin-6 (IL-6 in renal tissue compared to NaNO2 hypoxic rats . Also, the two agents successfully down modulated the alteration in the serum hypoxia inducible factor 1α (HIF 1α . The present biochemical results were also supported by histopathological examination. In conclusion, the current data revealed that although the efficacy of arginine or carnosine each alone, their combination was more effective in ameliorating the renal damage induced by inflammatory molecules in response to NaNO2 hypoxia . This may support the use of this combination as an effective drug to treat hypoxic renal damage

  2. Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability

    Directory of Open Access Journals (Sweden)

    David Sabater

    2014-01-01

    rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

  3. Haloarchaeal Protein Translocation via the Twin Arginine Translocation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pohlschroder Mechthild

    2009-02-03

    Protein transport across hydrophobic membranes that partition cellular compartments is essential in all cells. The twin arginine translocation (Tat) pathway transports proteins across the prokaryotic cytoplasmic membranes. Distinct from the universally conserved Sec pathway, which secretes unfolded proteins, the Tat machinery is unique in that it secretes proteins in a folded conformation, making it an attractive pathway for the transport and secretion of heterologously expressed proteins that are Sec-incompatible. During the past 7 years, the DOE-supported project has focused on the characterization of the diversity of bacterial and archaeal Tat substrates as well as on the characterization of the Tat pathway of a model archaeon, Haloferax volcanii, a member of the haloarchaea. We have demonstrated that H. volcanii uses this pathway to transport most of its secretome.

  4. Microwave heating of arginine yields highly fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Philippidis, Aggelos [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser (Greece); Stefanakis, Dimitrios [University of Crete, Department of Chemistry (Greece); Anglos, Demetrios, E-mail: anglos@iesl.forth.gr [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser (Greece); Ghanotakis, Demetrios, E-mail: ghanotakis@chemistry.uoc.gr [University of Crete, Department of Chemistry (Greece)

    2013-01-15

    Brightly fluorescent nanoparticles were produced via a single-step, single-precursor procedure based on microwave heating of an aqueous solution of the amino acid arginine. Key structural and optical properties of the resulting Arg nanoparticles, Arg-dots, are reported and discussed with emphasis on the pH dependence of their fluorescence emission. The surface of the Arg-dots was functionalised through coupling to folic acid, opening up ways for connecting fluorescent nanoparticles to cancer cells. The generality and versatility of the microwave heating procedure was further demonstrated by the synthesis of different types of carbon nanoparticles, such as CE-dots, that were produced by use of citric acid and ethanolamine as precursors and compared to the Arg-dots.

  5. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles

    Directory of Open Access Journals (Sweden)

    Walter Wilczynski

    2017-08-01

    Full Text Available Arginine vasotocin (AVT is the non-mammalian homolog of arginine vasopressin (AVP and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens–amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT’s social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT’s many effects on behavior.

  6. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles

    Science.gov (United States)

    Wilczynski, Walter; Quispe, Maricel; Muñoz, Matías I.; Penna, Mario

    2017-01-01

    Arginine vasotocin (AVT) is the non-mammalian homolog of arginine vasopressin (AVP) and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens–amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT’s social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT’s many effects on behavior. PMID:28824546

  7. Improvement of seminal quality and sexual function of men with oligoasthenoteratozoospermia syndrome following supplementation with L-arginine and Pycnogenol®

    Directory of Open Access Journals (Sweden)

    Yoshitomo Kobori

    2015-09-01

    Full Text Available We evaluated the effectiveness of antioxidant co-supplementation therapy using Larginine and Pycnogenol® in Japanese men with oligoasthenozoospermia and mild erectile dysfunction (ED. A total of forty-seven adult males with oligoasthenoteratozoospermia syndrome (OAT were eligible for enrollment. The effectiveness of supplementation with a combination of L-arginine 690 mg and French maritime pine bark extract (Pycnogenol® 60mg for OAT and ED was investigated. The sperm concentration was enhanced significantly after treatment 2 and 4 months (11.79 ± 9.86 to 21.22 ± 28.17 and 20.15 ± 23.99 × 106/ml. Significant improvements in the International Index of Erectile Function (IIEF were observed in the total score of IIEF (57.69 ± 11.04 to 59.43 ± 12.57 and domain of Orgasmic Function (9.01 ± 1.92 to 9.34 ± 1.66 after 4 months of treatment. L-arginine acts to increase the production of nitric oxide and Pycnogenol® activates the endothelial nitric oxide synthase and it is a potent antioxidant and inhibitor of inducible nitric oxide synthase. This study suggests that the combination of Pycnogenol® and L-arginine (Edicare® is helpful for infertile men to ameliorate simultaneously quality of sperms as well as erectile functions.

  8. Improvement of seminal quality and sexual function of men with oligoasthenoteratozoospermia syndrome following supplementation with L-arginine and Pycnogenol®.

    Science.gov (United States)

    Kobori, Yoshitomo; Suzuki, Keisuke; Iwahata, Toshiyuki; Shin, Takeshi; Sadaoka, Yuko; Sato, Ryo; Nishio, Kojiro; Yagi, Hiroshi; Arai, Gaku; Soh, Shigehiro; Okada, Hiroshi; Strong, Jeffry Michael; Rohdewald, Peter

    2015-09-30

    We evaluated the effectiveness of antioxidant co-supplementation therapy using Larginine and Pycnogenol(®) in Japanese men with oligoasthenozoospermia and mild erectile dysfunction (ED). A total of forty-seven adult males with oligoasthenoteratozoospermia syndrome (OAT) were eligible for enrollment. The effectiveness of supplementation with a combination of L-arginine 690 mg and French maritime pine bark extract (Pycnogenol(®)) 60mg for OAT and ED was investigated. The sperm concentration was enhanced significantly after treatment 2 and 4 months (11.79 ± 9.86 to 21.22 ± 28.17 and 20.15 ± 23.99 × 106/ml). Significant improvements in the International Index of Erectile Function (IIEF) were observed in the total score of IIEF (57.69 ± 11.04 to 59.43 ± 12.57) and domain of Orgasmic Function (9.01 ± 1.92 to 9.34 ± 1.66) after 4 months of treatment. L-arginine acts to increase the production of nitric oxide and Pycnogenol(®) activates the endothelial nitric oxide synthase and it is a potent antioxidant and inhibitor of inducible nitric oxide synthase. This study suggests that the combination of Pycnogenol(®) and L-arginine (Edicare(®)) is helpful for infertile men to ameliorate simultaneously quality of sperms as well as erectile functions.

  9. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles

    Science.gov (United States)

    Wang, Zhongjun; Zhu, Hui; Wang, Xiaolei; Yang, Fan; Yang, Xiurong

    2009-11-01

    A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl2 with arginine under ambient conditions. It was found that the Fe2+/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques. The results show that the prepared nanoparticles are spherically shaped with a nearly uniform size distribution and pure magnetite phase. The presence of arginine on the magnetic nanoparticle surface has been confirmed and the amount of surface arginine varies with the Fe2+/arginine molar ratio. The surface amine densities are calculated to be 5.60 and 7.84 µmol mg-1 for magnetic nanoparticles prepared at 1:1 and 1:2 Fe2+/arginine molar ratio, respectively. The as-synthesized nanoparticles show superparamagnetic behavior at room temperature and good solubility in water. In addition, using a similar synthesis procedure, we have been able to synthesize superparamagnetic manganese and cobalt ferrite nanoparticles.

  10. Depletion of arginine in yeast cells decreases the resistance to hydrostatic pressure

    Science.gov (United States)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2015-07-01

    High hydrostatic pressure (HP) inhibits growth and inactivates microorganisms by destabilizing non-covalent molecular interactions. Arginine contributes to stress resistance because it has a guanidine side chain, which assists in the refolding of aggregated proteins. We attempted to analyze the contribution of arginine to high HP stress using a pressure-sensitive mutant strain of Saccharomyces cerevisiae and a metabolomics approach. Our results showed that the content of 136 out of 250 detected metabolites differed in the mutant and parent strains. Decreased metabolites were involved in the tricarboxylic acid cycle and arginine biosynthesis. The expression of genes contributing to arginine biosynthesis was significantly lower in the mutant strain than in the parent strain. When arginine was supplemented to the medium, the mutant strain showed more tolerance to pressure. These results suggest that yeast cells survived due to the contribution of arginine to high pressure resistance. This indicates that depletion of arginine caused by decreased activity of the biosynthesis pathway confers sensitivity to HP.

  11. Protein substrates of the arginine methyltransferase Hmt1 identified by proteome arrays.

    Science.gov (United States)

    Low, Jason K K; Im, Hogune; Erce, Melissa A; Hart-Smith, Gene; Snyder, Michael P; Wilkins, Marc R

    2016-02-01

    Arginine methylation on nonhistone proteins is associated with a number of cellular processes including RNA splicing, protein localization, and the formation of protein complexes. In this manuscript, Saccharomyces cerevisiae proteome arrays carrying 4228 proteins were used with an antimethylarginine antibody to first identify 88 putatively arginine-methylated proteins. By treating the arrays with recombinant arginine methyltransferase Hmt1, 42 proteins were found to be possible substrates of this enzyme. Analysis of the putative arginine-methylated proteins revealed that they were predominantly nuclear or nucleolar in localization, consistent with the localization of Hmt1. Many are involved in known methylarginine-associated functions, such as RNA processing and ribonucleoprotein complex biogenesis, yet others are of newer classes, namely RNA/DNA helicases and tRNA-associated proteins. Using ex vivo methylation and MS/MS, a set of 12 proteins (Brr1, Dia4, Hts1, Mpp10, Mrd1, Nug1, Prp43, Rpa43, Rrp43, Spp381, Utp4, and Npl3), including the RNA helicase Prp43 and tRNA ligases Dia4 and Hts1, were all validated as Hmt1 substrates. Interestingly, the majority of these also had human orthologs, or family members, that have been documented elsewhere to carry arginine methylation. These results confirm arginine methylation as a widespread modification and Hmt1 as the major arginine methyltransferase in the S. cerevisiae cell. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    Directory of Open Access Journals (Sweden)

    Mechteld A. R. Vermeulen

    2016-01-01

    Full Text Available Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%. Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.

  13. Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats

    Directory of Open Access Journals (Sweden)

    J.M. Cruciol-Souza

    1999-10-01

    Full Text Available Although it has been demonstrated that nitric oxide (NO released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg or ODQ (15 µg/kg. ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.

  14. PRE-EXERCISE ARGININE SUPPLEMENTATION INCREASES TIME TO EXHAUSTION IN ELITE MALE WRESTLERS

    Directory of Open Access Journals (Sweden)

    H.U. Yavuz

    2014-08-01

    Full Text Available Dietary supplements containing arginine are among the most popular ergogenics intended to enhance strength, power and muscle recovery associated with both anaerobic and aerobic exercise. The aim of the present study was to evaluate the possible effect of pre-exercise acute intake of arginine on performance and exercise metabolism during incremental exhaustive exercise in elite male wrestlers. Nine volunteer elite male wrestlers (24.7±3.8 years participated in this study. The test-retest protocol was used on the same subjects. The study was conducted using a cross-over design. A single dose of arginine (1.5 g · 10 kg-1 body weight or placebo was given to the subjects after 12 hours fasting (during the night for both test and retest. Subjects were allowed to drink water but not allowed to eat anything between arginine or placebo ingestion and the exercise protocol. An incremental exercise protocol was applied and oxygen consumption was measured during the exercise. Heart rate and plasma lactate levels were measured during the exercise and recovery. Results showed that in the same working loads there was no significant difference for the mean lactate levels and no difference in maximum oxygen consumption (arginine 52.47±4.01 mL · kg-1 · min-1, placebo 52.07±5.21 mL · kg-1 · min-1 or in maximum heart rates (arginine 181.09±13.57 bpm, placebo 185.89±7.38 bpm between arginine and placebo trials. Time to exhaustion was longer with arginine supplementation (1386.8±69.8 s compared to placebo (1313±90.8 s (p<0.05. These results suggest that L-arginine supplementation can have beneficial effects on exercise performance in elite male wrestlers but cannot explain the metabolic pathways which are responsible from these effects.

  15. Hepatic adaptation compensates inactivation of intestinal arginine biosynthesis in suckling mice.

    Directory of Open Access Journals (Sweden)

    Vincent Marion

    Full Text Available Suckling mammals, including mice, differ from adults in the abundant expression of enzymes that synthesize arginine from citrulline in their enterocytes. To investigate the importance of the small-intestinal arginine synthesis for whole-body arginine production in suckling mice, we floxed exon 13 of the argininosuccinate synthetase (Ass gene, which codes for a key enzyme in arginine biosynthesis, and specifically and completely ablated Ass in enterocytes by crossing Ass (fl and Villin-Cre mice. Unexpectedly, Ass (fl/fl /VilCre (tg/- mice showed no developmental impairments. Amino-acid fluxes across the intestine, liver, and kidneys were calculated after determining the blood flow in the portal vein, and hepatic and renal arteries (86%, 14%, and 33%, respectively, of the transhepatic blood flow in 14-day-old mice. Relative to control mice, citrulline production in the splanchnic region of Ass (fl/fl /VilCre (tg/- mice doubled, while arginine production was abolished. Furthermore, the net production of arginine and most other amino acids in the liver of suckling control mice declined to naught or even changed to consumption in Ass (fl/fl /VilCre (tg/- mice, and had, thus, become remarkably similar to that of post-weaning wild-type mice, which no longer express arginine-biosynthesizing enzymes in their small intestine. The adaptive changes in liver function were accompanied by an increased expression of genes involved in arginine metabolism (Asl, Got1, Gpt2, Glud1, Arg1, and Arg2 and transport (Slc25a13, Slc25a15, and Slc3a2, whereas no such changes were found in the intestine. Our findings suggest that the genetic premature deletion of arginine synthesis in enterocytes causes a premature induction of the post-weaning pattern of amino-acid metabolism in the liver.

  16. Arginine metabolism and the synthesis of nitric oxide in the nervous system.

    Science.gov (United States)

    Wiesinger, H

    2001-07-01

    The biochemistry and physiology of L-arginine have to be reconsidered in the light of the recent discovery that the amino acid is the only substrate of all isoforms of nitric oxide synthase (NOS). Generation of nitric oxide, NO, a versatile molecule in signaling processes and unspecific immune defense, is intertwined with synthesis, catabolism and transport of arginine which thus ultimately participates in the regulation of a fine-tuned balance between normal and pathophysiological consequences of NO production. The complex composition of the brain at the cellular level is reflected in a complex differential distribution of the enzymes of arginine metabolism. Argininosuccinate synthetase (ASS) and argininosuccinate lyase which together can recycle the NOS coproduct L-citrulline to L-arginine are expressed constitutively in neurons, but hardly colocalize with each other or with NOS in the same neuron. Therefore, trafficking of citrulline and arginine between neurons necessitates transport capacities in these cells which are fulfilled by well-described carriers for cationic and neutral amino acids. The mechanism of intercellular exchange of argininosuccinate, a prerequisite also for its proposed function as a neuromodulator, remains to be elucidated. In cultured astrocytes transcription and protein expression of arginine transport system y(+) and of ASS are upregulated concomittantly with immunostimulant-mediated induction of NOS-2. In vivo ASS-immunoreactivity was found in microglial cells in a rat model of brain inflammation and in neurons and glial cells in the brains of Alzheimer patients. Any attempt to estimate the contributions of arginine transport and synthesis to substrate supply for NOS has to consider competition for arginine between NOS and arginase, the latter enzyme being expressed as mitochondrial isoform II in nervous tissue. Generation of NOS inhibitors agmatine and methylarginines is documented for the nervous system. Suboptimal supply of NOS with

  17. Dietary l-arginine supplementation improves semen quality and libido of boars under high ambient temperature.

    Science.gov (United States)

    Chen, J Q; Li, Y S; Li, Z J; Lu, H X; Zhu, P Q; Li, C M

    2017-12-04

    l-Arginine is a nutritionally essential amino acid for spermatogenesis and plays versatile roles in animal health and can be utilized as a potential agent to improve reproductive performance of boars under high ambient temperature. The present study aimed to determine whether dietary l-arginine could alleviate heat stress-induced infertility in boars. In all, 20 boars (PIC 1040; 248.59±3.84 kg BW and 407.65±6.40 days of age) were selected and randomly assigned to four groups (group 0.0%, basal diet; group 0.6%, 0.8% or 1.0%, basal diet added with 0.6%, 0.8% or 1.0% l-arginine (wt:wt), respectively.) The four diets were made isonitrogenous by addition of appropriate amounts of l-alanine. Boars were pre-fed the corresponding experimental diet for 42 days. Then, the semen characteristics and libido were accessed for 6 weeks during the hot summer period (25.5° to 33.0°C). Results show that dietary l-arginine remarkably improved sperm motility, normality, total sperm number and effective total sperm number. Also, dietary l-arginine improved semen antioxidant capacity, such as decrease of malondialdehyde and 8-Hydroxy-2'-deoxyguanosine content in sperm (Pl-arginine-supplemented group which also accompany with higher ATP content than the 0.0% group. The boars fed 0.8% l-arginine show increased levels of estradiol-17β and testosterone and exhibit improved libido performance than boars in the 0.0% group. Adding dietary l-arginine linearly increased (P=0.002) nitric oxide content (as l-arginine increased). The scrotal surface temperature in the 0.6%, 0.8% and 1.0% group were decreased by 0.9°C, 0.9°C and 0.4°C, respectively, compared with the 0.0% group. l-Arginine levels caused linear effect on semen quality and antioxidant capacity, also caused quadratic effect on libido performance. During the hot summer months, the predicted optimal l-arginine levels for best semen quality and antioxidant capacity was 0.8% to 1.0% and for best libido performance was 0.8%. It can

  18. Arginine as an adjuvant to chemotherapy improves clinical outcome in active tuberculosis

    DEFF Research Database (Denmark)

    Schön, T; Elias, D; Moges, F

    2003-01-01

    NO production, would improve the clinical outcome of TB by increasing NO production. In a randomised double-blind study, patients with smear-positive TB (n = 120) were given arginine or placebo for 4 weeks in addition to conventional chemotherapy. Primary outcomes were sputum conversion, weight gain......, defined as increased weight gain, higher sputum conversion rate and faster reduction of symptoms, such as cough. The arginine level increased after week 2 in the HIV-/TB+ arginine group (100.2 microM (range 90.5-109.9) versus 142.1 microM (range 114.1-170.1)) compared with the HIV-/TB+ placebo group (105...

  19. Inhibition of corrosion of carbon steel in well water by arginine-Zn2+ system

    Directory of Open Access Journals (Sweden)

    ANTHONY SAMY SAHAYA RAJA

    2012-06-01

    Full Text Available The environmental friendly inhibitor system arginine-Zn2+, has been investigated by weight-loss method. A synergistic effect exists between arginine and Zn2+ system. The formulation consisting of 250 ppm of arginine and 5 ppm of Zn2+ offers good inhibition efficiency of 98 %. Polarization study reveals that this formulation functions as an anodic inhibitor. AC impedance spectra reveal that a protective film is formed on the metal sur­face. The FTIR spectral study leads to the conclusion that the Fe2+- DL-arginine complex, formed on anodic sites of the metal surface, controls the anodic reaction. Zn(OH2 formed on the cathodic sites of the metal surface controls the cathodic reaction. The surface morphology and the roughness of the metal surface were analyzed with Atomic Force Microscope. A suitable mechanism of corrosion inhibition is proposed based on the results obtained from weight loss study and surface analysis technique.

  20. Synthesis, characterization and properties of L-arginine-passivated silver nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Sunatkari, A. L., E-mail: ashok.sunatkari@rediffmail.com [Department of Physics, Siddhartha College of Arts, Science and Commerce, Fort, Mumbai-400001, India. Email: ashok.sunatkari@rediffmail.com (India); Talwatkar, S. S. [Department of Physics, N.G. Aacharya and D.K. Maratha College of Arts, Science and Commerce, Chembur, Mumbai-400071, India. Email: swarna-81@rediffmail.com (India); Tamgadge, Y. S. [Department of Physics, Mahatma Phule Arts, Commerce & S.R.C. Science College, Warud-444906, India. Email: ystamgadge@gmail.com (India); Muley, G. G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati-444602 India. Email: gajananggm@yahoo.co.in (India)

    2016-05-06

    We investigate the effect of L-arginine-surface passivation on localised surface plasmon resonance (LSPR), size and stability of colloidal Silver Nanoparticles (AgNPs) synthesized by chemical reduction method. The surface Plasmon resonance absorption peak of AgNPs shows blue shift with the increase in L-arginine concentration. Transmission electron microscopy (TEM) analysis confirmed that the average size of AgNPs reduces from 10 nm to 6 nm as the concentration of L-Arginine increased from 1 to 5 mM. The X-ray diffraction study (XRD) confirmed the formation face-centred cubic (fcc) structured AgNPs. FT-IR studies revealed strong bonding between L-arginine functional groups and AgNPs.

  1. Microcirculatory effects of L-arginine during acute anaerobic exercise in healthy men: A pilot study

    Directory of Open Access Journals (Sweden)

    Andrius Pranskunas

    2015-12-01

    Conclusion: Our findings show that supplementation with L-arginine may cause additional effects on the acute anaerobic exercise-induced transient increase in capillary density in the sublingual mucosa of untrained men.

  2. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    NARCIS (Netherlands)

    Vermeulen, Mechteld A. R.; Brinkmann, Saskia J. H.; Buijs, Nikki; Beishuizen, Albertus; Bet, Pierre M.; Houdijk, Alexander P. J.; van Goudoever, Johannes B.; van Leeuwen, Paul A. M.

    2016-01-01

    Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of

  3. [Effect of an arginine-containing polishing paste on Streptococcus mutans adhesion to exposed dentin surfaces].

    Science.gov (United States)

    Liu, Yinchen; Fu, Dongiie; Huang, Cui; Pei, Dandan; Sun, Hualing

    2013-10-01

    To evaluate the effect of an arginine-containing antihypersensitivity polishing paste on Streptococcus mutans (S. mutans) adhesion to treated dentin. Dentin discs were treated with acid to expose dentin tubules, and then polished with either pumice or a polishing paste containing arginine. The surface roughness of the treated dentin was measured. The effects of dentin treatment on S. mutans adhesion and glucosyltransferase (GTFs) gene expression were also evaluated. The surface roughness decreased after polishing with both pumice and arginine-containing polishing paste. Moreover, the polishing paste affected gtfB and gtfC expressions. The arginine-containing polishing paste affects S. mutans adhesion, as well as gtfB and gtfC expressions. The polishing paste may be used to prevent caries in exposed dentin areas.

  4. Large-Scale Identification of the Arginine Methylome by Mass Spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Nielsen, Michael L

    2015-01-01

    The attachment of one or more methylation groups to the side chain of arginine residues is a regulatory mechanism for cellular proteins. Recent advances in mass spectrometry-based characterization allow comprehensive identification of arginine methylation sites by peptide-level enrichment...... strategies. Described in this unit is a 4-day protocol for enrichment of arginine-methylated peptides and subsequent identification of thousands of distinct sites by mass spectrometry. Specifically, the protocol explains step-by-step sample preparation, enrichment using commercially available antibodies......, prefractionation using strong cation exchange, and identification using liquid chromatography coupled to tandem mass spectrometry. A strategy for relative quantification is described using stable isotope labeling by amino acids in cell culture (SILAC). Approaches for analysis of arginine methylation site occupancy...

  5. Oral L-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P

    2013-01-01

    in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1......Pharmacological and surgical interventions that increase glucagon-like peptide 1 (GLP-1) action are effective to improve glucose homeostasis in type 2 diabetes mellitus. In light of this, nutritional strategies to enhance postprandial GLP-1 secretion, particularly in the context of diet......-induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue...

  6. Tyrosine binding and promiscuity in the arginine repressor from the pathogenic bacterium Corynebacterium pseudotuberculosis.

    Science.gov (United States)

    Mariutti, Ricardo Barros; Ullah, Anwar; Araujo, Gabriela Campos; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy

    2016-07-08

    The arginine repressor (ArgR) regulates arginine biosynthesis in a number of microorganisms and consists of two domains interlinked by a short peptide; the N-terminal domain is involved in DNA binding and the C-terminal domain binds arginine and forms a hexamer made-up of a dimer of trimers. The crystal structure of the C-terminal domain of ArgR from the pathogenic Corynebacterium pseudotuberculosis determined at 1.9 Å resolution contains a tightly bound tyrosine at the arginine-binding site indicating hitherto unobserved promiscuity. Structural analysis of the binding pocket displays clear molecular adaptations to accommodate tyrosine binding suggesting the possible existence of an alternative regulatory process in this pathogenic bacterium. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Plasma l-citrulline concentrations in l-arginine-supplemented healthy dogs.

    Science.gov (United States)

    Flynn, K M; Kellihan, H B; Trepanier, L A

    2017-08-01

    To determine whether oral l-arginine increases plasma [l-citrulline] in dogs. Eleven healthy staff-owned dogs were used in this study. Dogs (n = 3) were given l-arginine (50mg/kg PO q8h) for 7 days, and plasma [l-arginine] and [l-citrulline] were analyzed by high performance liquid chromatography at baseline (BL), steady state trough, and 0.5, 1, 1.5, 2, 4, 6, and 8 h after final dosing on day 7. Eleven dogs were then treated with 100mg/kg l-arginine PO q8h for 7 days, and [l-arginine] and [l-citrulline] were measured at BL, steady state trough, and at peak 4 hrs after dosing (T4 hrs). - Plasma [l-arginine] and [l-citrulline] peaked at T4 hrs on the 50mg/kg dosage. Target outcome, modeled after human study results, of a doubling of [l-arginine] and a 25-30% increase in [l-citrulline] from BL were not reached. After the 100mg/kg dosage, plasma [l-arginine] increased from a BL median of 160.1 μM (range, 100.2-231.4 μM) to a peak of 417.4 μM (206.5-807.3 μM) at T4 hrs, and plasma [l-citrulline] increased from a BL median of 87.8 μM (59.1-117.1 μM) to peak of 102.2 μM (47.4-192.6 μM) at T4 hrs. Ten of eleven dogs showed a doubling of plasma [l-arginine] and 4/11 dogs achieved 25-30% or greater increases in plasma [l-citrulline]. No adverse effects on heart rate or blood pressure were noted. - Oral l-arginine dosage of 100mg/kg q8h doubles plasma [l-arginine] in healthy dogs, but conversion to l-citrulline is quite variable. Further evaluation of this dosage regimen in dogs with pulmonary hypertension is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. New insights into the methodology of L-arginine-induced acute pancreatitis.

    Directory of Open Access Journals (Sweden)

    Balázs Kui

    Full Text Available Animal models are ideal to study the pathomechanism and therapy of acute pancreatitis (AP. The use of L-arginine-induced AP model is nowadays becoming increasingly popular in mice. However, carefully looking through the literature, marked differences in disease severity could be observed. In fact, while setting up the L-arginine (2×4 g/kg i.p.-induced AP model in BALB/c mice, we found a relatively low rate (around 15% of pancreatic necrosis, whereas others have detected much higher rates (up to 55%. We suspected that this may be due to differences between mouse strains. We administered various concentrations (5-30%, pH = 7.4 and doses (2×4, 3×3, or 4×2.5 g/kg of L-arginine-HCl in BALB/c, FVB/n and C57BL/6 mice. The potential gender-specific effect of L-arginine was investigated in C57BL/6 mice. The fate of mice in response to the i.p. injections of L arginine followed one of three courses. Some mice (1 developed severe AP or (2 remained AP-free by 72 h, whereas others (3 had to be euthanized (to avoid their death, which was caused by the high dose of L-arginine and not AP within 12 h., In FVB/n and C57BL/6 mice, the pancreatic necrosis rate (about 50% was significantly higher than that observed in BALB/c mice using 2×4 g/kg 10% L-arginine, but euthanasia was necessary in a large proportion of animals, The i.p. injection of lower L-arginine concentrations (e.g. 5-8% in case of the 2×4 g/kg dose, or other L-arginine doses (3×3 or 4×2.5 g/kg, 10% were better for inducing AP. We could not detect any significant differences between the AP severity of male and female mice. Taken together, when setting up the L-arginine-induced AP model, there are several important factors that are worth consideration such as the dose and concentration of the administered L arginine-HCl solution and also the strain of mice.

  10. Clinical assessment of a supplement of Pycnogenol® and L-arginine in Japanese patients with mild to moderate erectile dysfunction.

    Science.gov (United States)

    Aoki, Hiromitsu; Nagao, Junji; Ueda, Taro; Strong, Jeffry M; Schonlau, Frank; Yu-Jing, Song; Lu, Yan; Horie, Shigeo

    2012-02-01

    A double-blind parallel group comparison design clinical study was conducted in Japanese patients with mild to moderate erectile dysfunction to investigate the efficacy of a supplement containing Pycnogenol® and L-arginine. Subjects were instructed to take a supplement (Pycnogenol® 60 mg/day, L-arginine 690 mg/day and aspartic acid 552 mg/day) or an identical placebo for 8 weeks, and the results were assessed using the five-item erectile domain (IIEF-5) of the International Index of Erectile Function. Additionally, blood biochemistry, urinalysis and salivary testosterone were measured. Eight weeks of supplement intake improved the total score of the IIEF-5. In particular, a marked improvement was observed in 'hardness of erection' and 'satisfaction with sexual intercourse'. A decrease in blood pressure, aspartate transaminase and γ-glutamyl transpeptidase (γ-GTP), and a slight increase in salivary testosterone were observed in the supplement group. No adverse reactions were observed during the study period. In conclusion, Pycnogenol® in combination with L-arginine as a dietary supplement is effective and safe in Japanese patients with mild to moderate erectile dysfunction. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants.

    Science.gov (United States)

    Fait, M Elisa; Garrote, Graciela L; Clapés, Pere; Tanco, Sebastian; Lorenzo, Julia; Morcelle, Susana R

    2015-07-01

    Two novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate N (α)-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of N (α)-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and N (α)-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations.

  12. Cerebral Endothelial Function Determined by Cerebrovascular Reactivity to L-Arginine

    OpenAIRE

    Pretnar-Oblak, Janja

    2014-01-01

    Endothelium forms the inner cellular lining of blood vessels and plays an important role in many physiological functions including the control of vasomotor tone. Cerebral endothelium is probably one of the most specific types but until recently it was impossible to determine its function. In this review, the role of cerebrovascular reactivity to L-arginine (CVR-L-Arg) for assessment of cerebral endothelial function is discussed. L-Arginine induces vasodilatation through enhanced production of...

  13. Cleansing effect of acidic L-arginine on human oral biofilm.

    Science.gov (United States)

    Tada, Ayano; Nakayama-Imaohji, Haruyuki; Yamasaki, Hisashi; Hasibul, Khaleque; Yoneda, Saori; Uchida, Keiko; Nariya, Hirofumi; Suzuki, Motoo; Miyake, Minoru; Kuwahara, Tomomi

    2016-03-22

    Dental plaque formed on tooth surfaces is a complex ecosystem composed of diverse oral bacteria and salivary components. Accumulation of dental plaque is a risk factor for dental caries and periodontal diseases. L-arginine has been reported to decrease the risk for dental caries by elevating plaque pH through the activity of arginine deiminase in oral bacteria. Here we evaluated the potential of L-arginine to remove established oral biofilms. Biofilms were formed using human saliva mixed with Brain Heart Infusion broth supplemented with 1 % sucrose in multi-well plates or on plastic discs. After washing the biofilms with saline, citrate (10 mM, pH3.5), or L-arginine (0.5 M, pH3.5), the retained biofilms were analyzed by crystal violet staining, scanning electron microscopy, and Illumina-based 16S rDNA sequencing. Washing with acidic L-arginine detached oral biofilms more efficiently than saline and significantly reduced biofilm mass retained in multi-well plates or on plastic discs. Illumina-based microbiota analysis showed that citrate (pH3.5) preferentially washed out Streptococcus from mature oral biofilm, whereas acidic L-arginine prepared with 10 mM citrate buffer (pH3.5) non-specifically removed microbial components of the oral biofilm. Acidic L-arginine prepared with citrate buffer (pH3.5) effectively destabilized and removed mature oral biofilms. The acidic L-arginine solution described here could be used as an additive that enhances the efficacy of mouth rinses used in oral hygiene.

  14. Cyclophosphamide induced stomach and duodenal lesions as a NO-system disturbance in rats: L-NAME, L-arginine, stable gastric pentadecapeptide BPC 157.

    Science.gov (United States)

    Luetic, Krešimir; Sucic, Mario; Vlainic, Josipa; Halle, Zeljka Belosic; Strinic, Dean; Vidovic, Tinka; Luetic, Franka; Marusic, Marinko; Gulic, Sasa; Pavelic, Tatjana Turudic; Kokot, Antonio; Seiwerth, Ranka Serventi; Drmic, Domagoj; Batelja, Lovorka; Seiwerth, Sven; Sikiric, Predrag

    2017-04-01

    We revealed a new point with cyclophosphamide (150 mg/kg/day intraperitoneally for 7 days): we counteracted both rat stomach and duodenal ulcers and increased NO- and MDA-levels in these tissues. As a NO-system effect, BPC 157 therapy (10 µg/kg, 10 ng/kg, intraperitoneally once a day or in drinking water, till the sacrifice) attenuated the increased NO- and MDA-levels and nullified, in rats, severe cyclophosphamide-ulcers and even stronger stomach and duodenal lesions after cyclophosphamide + L-NAME (5 mg/kg intraperitoneally once a day). L-arginine (100 mg/kg intraperitoneally once a day not effective alone) led L-NAME-values only to the control values (cyclophosphamide + L-NAME + L-arginine-rats). Briefly, rats were sacrificed at 24 h after last administration on days 1, 2, 3, or 7, and assessment included sum of longest lesions diameters (mm) in the stomach and duodenum, oxidative stress by quantifying thiobarbituric acid reactivity as malondialdehyde equivalents (MDA), NO in stomach and duodenal tissue samples using the Griess reaction. All these parameters were highly exaggerated in rats who underwent cyclophosphamide treatment. We identified high MDA-tissue values, high NO-tissue values, ulcerogenic and beneficial potential in cyclophosphamide-L-NAME-L-arginine-BPC 157 relationships. This suggests that in cyclophosphamide damaged rats, NO excessive release generated by the inducible isozyme, damages the vascular wall and other tissue cells, especially in combination with reactive oxygen intermediates, while failing endothelial production and resulting in further aggravation by L-NAME which was inhibited by L-arginine. Finally, BPC 157, due to its special relations with NO-system, may both lessen increased MDA- and NO-tissues values and counteract effects of both cyclophosphamide and L-NAME on stomach and duodenal lesions.

  15. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  16. Depression of enzyme synthesis in response to arginine limitation in Neurospora crassa.

    Science.gov (United States)

    Flint, H J; Dible, S; Kacser, H

    1985-11-01

    Ornithine carbamoyltransferase and argininosuccinase, two enzymes involved in arginine synthesis, are regulated by cross-pathway amino acid control in Neurospora and show derepression in response to limitation of any one of a number of amino acids. The effects of varying the severity of arginine limitation upon the synthesis of these enzymes, in mycelial cultures of an arginine auxotrophic strain, are reported here. Depression occurred at arginine concentrations sufficient to allow normal rates of protein accumulation, leading to increases of not more than fourfold in the absolute rate of enzyme synthesis. On the other hand, differential rates of enzyme synthesis increased progressively up to 20-fold or more under extreme conditions of arginine limitation that also limit net protein synthesis. The major part of the derepression response thus occurred at arginine concentrations that allowed low net rates of protein synthesis. The physiological significance of this is not yet understood. Our evidence suggests that these responses were mediated entirely through the cross-pathway control system, and may not be untypical (allowing for variations in magnitude) of depression resulting through this mechanism in Neurospora.

  17. Relationship of arginine with lysine in diets for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Renata de Souza Reis

    2012-01-01

    Full Text Available To determine the relationship of arginine with lysine for Japanese quails during the period of production, an experiment was conducted using 360 subspecies of Japanese quails (Coturnix coturnix japonica with 162 days of age, distributed in a completely randomized design. Diets were formulated with corn, soybean meal, sorghum and wheat bran containing 20.0% crude protein and 2,800 kcal ME/kg. The basal diet contained suboptimal level of lysine equal to 1% and was supplemented with five levels of L-arginine 99% (0.032; 0.083; 0.134; 0.185 and 0.236% to replace the glutamic acid, corresponding to the relationship of arginine with digestible lysine of 1.16, 1.21, 1.26, 1.31 and 1.36. The parameters studied were: feed intake, egg production per hen/day, egg production per hen housed, commercial egg production, egg weight, egg mass, feed conversion by egg mass, feed conversion per dozen eggs, weight and percentage of components of the eggs (yolk, albumen and shell and specific gravity. There was no significant effect on the relationship of arginine with digestible lysine in the diet of Japanese quails for any of the parameters examined. The arginine/lysine ratio of 1.16, which corresponds to a daily intake of 288.84 mg of arginine, provides satisfactory performance and egg quality of Japanese quails.

  18. tlpA gene expression is required for arginine and bicarbonate chemotaxis in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Oscar A Cerda

    2011-01-01

    Full Text Available About half of the human population is infected with Helicobacter pylori, a bacterium causing gastritis, peptic ulcer and progression to gastric cancer. Chemotaxis and flagellar motility are required for colonization and persistence of H. pylori in the gastric mucus layer. It is not completely clear which chemical gradients are used by H. pylori to maintain its position. TlpA, a chemotaxis receptor for arginine/ bicarbonate, has been identified. This study aimed to find out whether tlpA gene expression is required for the chemotactic response to arginine/bicarbonate. Wild-type motile H. pylori ATCC 700392 and H. pylori ATCC 43504, a strain having an interrupted tlpA gene, were used. Also, a tlpA-knockout mutant of H. pylori 700392 (H. pylori 700-tlpA::cat was produced by homologous recombination. Expression of tlpA was assessed by a Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR assay. Chemotaxis was measured as a Relative Chemotaxis Response (RCR by a modified capillary assay. H. pylori 700392 presented chemotaxis to arginine and sodium bicarbonate. H. pylori 700-tlpA::cat showed neither tlpA gene expression nor chemotaxis towards arginine and bicarbonate. Besides confirming that TlpA is a chemotactic receptor for arginine/bicarbonate in H. pylori, this study showed that tlpA gene expression is required for arginine/bicarbonate chemotaxis.

  19. Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity.

    Science.gov (United States)

    Cusumano, Zachary T; Watson, Michael E; Caparon, Michael G

    2014-01-01

    A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS(-/-)) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient.

  20. Identification of physicochemical properties of Scylla paramamosain allergen, arginin kinase.

    Science.gov (United States)

    Yu, Hui-Lin; Ruan, Wei-Wei; Cao, Min-Jie; Cai, Qiu-Feng; Shen, Hai-Wang; Liu, Guang-Ming

    2013-01-01

    Arginine kinase (AK) is expressed in a wide variety of species, including human food sources (seafood) and pests (cockroaches and moths), and has been reported as a novel allergen. However, there has been little research on the allergenicity of AK in crustaceans. In this study the physicochemical properties of AK from mud crab (Scylla paramamosain) were investigated. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotting and inhibition enzyme-linked immunosorbent assay revealed that purified AK was unstable in thermal processing and in acid buffer. Under simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) conditions, purified AK was much more readily degraded by pepsin than by trypsin or chymotrypsin. The unpurified AK in crab myogen degraded more markedly than purified AK. In addition, in two-phase gastrointestinal digestion, AK was rapidly degraded by pepsin but resistant to trypsin and chymotrypsin digestion, while tropomyosin derived from mud crab was resistant to pepsin digestion but digested readily by trypsin or chymotrypsin. Further study of serum samples obtained from crab-allergic human patients indicated that the allergenicity of AK was markedly reduced by digestion with SGF but not SIF. AK is an important food allergen despite its unstable physicochemical properties of digestibility. Copyright © 2012 Society of Chemical Industry.

  1. Effects of arginine vasopressin on musical working memory.

    Science.gov (United States)

    Granot, Roni Y; Uzefovsky, Florina; Bogopolsky, Helena; Ebstein, Richard P

    2013-01-01

    Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP) and musical working memory (WM). The current study set out to test the influence of intranasal administration (INA) of AVP on musical as compared to verbal WM using a double blind crossover (AVP-placebo) design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo) in a second session, 1 week apart. In each session subjects completed the tonal subtest from Gordon's "Musical Aptitude Profile," the interval subtest from the "Montreal Battery for Evaluation of Amusias (MBEA)," and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV) were higher than for the group receiving vasopressin in the first session (VP) (p music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other.

  2. L-arginine and Arginase Products Potentiate Dexmedetomidine-induced Contractions in the Rat Aorta.

    Science.gov (United States)

    Wong, Emily S W; Man, Ricky Y K; Ng, Kwok F J; Leung, Susan W S; Vanhoutte, Paul M

    2018-03-01

    The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 μM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed. Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4). These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of

  3. Chimpanzee Personality and the Arginine Vasopressin Receptor 1A Genotype.

    Science.gov (United States)

    Wilson, V A D; Weiss, A; Humle, T; Morimura, N; Udono, T; Idani, G; Matsuzawa, T; Hirata, S; Inoue-Murayama, M

    2017-03-01

    Polymorphisms of the arginine vasopressin receptor 1a (AVPR1a) gene have been linked to various measures related to human social behavior, including sibling conflict and agreeableness. In chimpanzees, AVPR1a polymorphisms have been associated with traits important for social interactions, including sociability, joint attention, dominance, conscientiousness, and hierarchical personality dimensions named low alpha/stability, disinhibition, and negative emotionality/low dominance. We examined associations between AVPR1a and six personality domains and hierarchical personality dimensions in 129 chimpanzees (Pan troglodytes) living in Japan or in a sanctuary in Guinea. We fit three linear and three animal models. The first model included genotype, the second included sex and genotype, and the third included genotype, sex, and sex × genotype. All personality phenotypes were heritable. Chimpanzees possessing the long form of the allele were higher in conscientiousness, but only in models that did not include the other predictors; however, additional analyses suggested that this may have been a consequence of study design. In animal models that included sex and sex × genotype, chimpanzees homozygous for the short form of the allele were higher in extraversion. Taken with the findings of previous studies of chimpanzees and humans, the findings related to conscientiousness suggest that AVPR1a may be related to lower levels of impulsive aggression. The direction of the association between AVPR1a genotype and extraversion ran counter to what one would expect if AVPR1a was related to social behaviors. These results help us further understand the genetic basis of personality in chimpanzees.

  4. Effects of Arginine Vasopressin on musical short-term memory

    Directory of Open Access Journals (Sweden)

    Roni Y. Granot

    2013-10-01

    Full Text Available Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP and musical working memory (WM. The current study set out to test the influence of intranasal administration (INA of AVP on musical as compared to verbal WM using a double blind crossover (AVP – placebo design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo in a second session, one week apart. In each session subjects completed the tonal subtest from Gordon's Musical Aptitude Profile, the interval subtest from the Montreal Battery for Evaluation of Amusias (MBEA, and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV were higher than for the group receiving vasopressin in the first session (VP (p < .05 with no main Session effect nor Group * Session interaction. In the Gordon test there was a main Session effect (p < .05 with scores higher in the second as compared to the first session, a marginal main Group effect (p = .093 and a marginal Group X Session interaction (p = 0.88. In addition we found that the group that received AVP in the first session scored higher on scales indicative of happiness, and alertness on the Positive and Negative Affect Scale, (PANAS. Only in this group and only in the music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other.

  5. The presence of arginine may be a source of false positive results in the Ames test.

    Science.gov (United States)

    Khandoudi, Nassirah; Porte, Pierre; Chtourou, Sami; Nesslany, Fabrice; Marzin, Daniel; Le Curieux, Frank

    2009-01-01

    An increase in the number of revertant colonies in the Ames test is generally taken as a strong indication of mutagenic activity of a test compound. However, irrelevant positive findings may constitute a major problem in regulatory drug testing. In this study, mixtures containing only amino acids such as glycine, lysine, arginine and isoleucine, routinely used as peptide preservatives in polypeptide pharmaceutical products, were investigated for mutagenesis in the Ames Salmonella typhimurium test. The results demonstrated that in the presence of metabolic activation, all the solutions containing arginine induced an increase in the number of revertant colonies in strains TA98, TA100 and TA1535 compared with the solvent control. More specifically, for strain TA98, all arginine doses tested, i.e. from 0.4 to 8 mg/plate induced a statistically significant increase in the number of revertants. This increase was biologically significant from 1.2 to 8 mg/plate. For strain TA100, the five highest test doses, i.e., from 1.2 to 8 mg/plate, induced statistically and biologically significant increases in the number of revertants. A statistically significant increase in colony number was also observed in strain TA1535, but only at the maximal test dose of 8 mg/plate arginine. These increases were observed with arginine from two different sources, suggesting that the observed effect would not be due to the presence of potential impurities in the type of arginine used. Our findings show that a functional metabolic activation system was required to induce an increase in the number of colonies. The presence of vitamin C inhibited the arginine-induced increase in the number of revertant colonies in S. typhimurium strain TA98, suggesting a potential involvement of oxidative stress.

  6. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages.

    Science.gov (United States)

    Rath, Meera; Müller, Ingrid; Kropf, Pascale; Closs, Ellen I; Munder, Markus

    2014-01-01

    Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase, which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline-NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and anti-inflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th)1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions, and cancer.

  7. Efficacy of arginine-enriched enteral formulas for the healing of pressure ulcers: a systematic review.

    Science.gov (United States)

    Liu, P; Shen, W-Q; Chen, H-L

    2017-06-02

    Arginine improves healing and modulates inflammation and the immune response. This systematic review aimed to assess the effect of arginine-enriched enteral formulas in pressure ulcer (PU) healing. Systematic computerised searches of PubMed, Web of Knowledge, Scopus, ENTRAL and CINAHL databases were performed from their inception to 20 January 2016. Randomised controlled trials (RCTs) were included in this systematic review. We used the Jadad scale as a quality assessment tool. There were seven RCTs with 369 patients included in this systematic review; four RCTs assessed healing by PU area reduction. All of them reported arginine-enriched enteral nutrition led to a significant improved PU healing compared with standard hospital diet in 2-12 weeks follow-up. Among these four RCTs, one enrolled malnourished patients, one enrolled non-malnourished patients, and the other two studies did not restrict the nutritional status of the patients. Using the Pressure Ulcer Scale for Healing (PUSH) four RCTs assessed healing of PU, all reporting arginine-enriched enteral nutrition resulted in a significant PUSH score improvement compared with control at follow-up. Using the Pressure Sore Status Tool (PSST) one RCT assessed healing of PUs, finding patients receiving arginine had the lowest PSST scores compared with controls. An RCT compared healing with two doses of arginine (4.5g versus 9g), but no difference was found between the doses. Evidence showed that arginine-enriched enteral nutrition led to a significant improvement in PU healing. It was effective not only in malnourished patients, but also in non-malnourished patients.

  8. Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis.

    Science.gov (United States)

    Catoni, Elisabetta; Desimone, Marcelo; Hilpert, Melanie; Wipf, Daniel; Kunze, Reinhard; Schneider, Anja; Flügge, Ulf-Ingo; Schumacher, Karin; Frommer, Wolf B

    2003-01-07

    Arginine and citrulline serve as nitrogen storage forms, but are also involved in biosynthetic and catabolic pathways. Metabolism of arginine, citrulline and ornithine is distributed between mitochondria and cytosol. For the shuttle of intermediates between cytosol and mitochondria transporters present on the inner mitochondrial membrane are required. Yeast contains a mitochondrial translocator for ornithine and arginine, Ort1p/Arg11p. Ort1p/Arg11p is a member of the mitochondrial carrier family (MCF) essential for ornithine export from mitochondria. The yeast arg11 mutant, which is deficient in Ort1p/Arg11p grows poorly on media lacking arginine. High-level expression of a nuclear encoded Arabidopsis thaliana homolog (AtmBAC2) of Ort1p/Arg11p was able to suppress the growth deficiency of arg11. RT-PCR analysis demonstrated expression of AtmBAC2 in all tissues with highest levels in flowers. Promoter-GUS fusions showed preferential expression in flowers, i.e. pollen, in the vasculature of siliques and in aborted seeds. Variable expression was observed in leaf vasculature. Induction of the promoter was not observed during the first two weeks in seedlings grown on media containing NH4NO3, arginine or ornithine as sole nitrogen sources. AtmBAC2 was isolated as a mitochondrial transporter for arginine in Arabidopsis. The absence of expression in developing seeds and in cotyledons of seedlings indicates that other transporters are responsible for storage and mobilization of arginine in seeds.

  9. L-arginine Attenuates Hypobaric Hypoxia-Induced Increase in Ornithine Decarboxylase 1.

    Science.gov (United States)

    Yuhong, Li; Zhengzhong, Bai; Feng, Tang; Quanyu, Yang; Ge, Ri-Li

    2017-12-01

    Chronic hypoxia-induced pulmonary hypertension and vascular remodeling have been shown to be associated with ornithine decarboxylase 1 (ODC1). However, few animal studies have investigated the role of ODC1 in acute hypoxia. We investigated ODC1 gene expression, morphologic and functional changes, and the effect of L-arginine as an attenuator in lung tissues of rats exposed to acute hypobaric hypoxia at a simulated altitude of 6000 m. Sprague-Dawley rats exposed to simulated hypobaric hypoxia (6000 m) for 24, 48, or 72 hours were treated with L-arginine (L-arginine group, 20 mg/100 g intraperitoneal; n=15) or untreated (non-L-arginine group, n=15). Control rats (n=5) were maintained at 2260 m in a normal environment for the same amount of time but were treated without L-arginine. The mean pulmonary artery pressure was measured by PowerLab system. The morphologic and immunohistochemical changes in lung tissue were observed under a microscope. The mRNA and protein levels of ODC1 were measured by real-time polymerase chain reaction and Western-blot, respectively. Hypobaric hypoxia induced pulmonary interstitial hyperemia and capillary expansion in the lungs of rats exposed to acute hypoxia at 6000 m. The mean pulmonary artery pressure and the mRNA and protein levels of ODC1 were significantly increased, which could be attenuated by treatment with L-arginine. L-arginine attenuates acute hypobaric hypoxia-induced increase in mean pulmonary artery pressure and ODC1 gene expression in lung tissues of rats. ODC1 gene contributes to the development of hypoxic pulmonary hypertension. Copyright © 2017. Published by Elsevier Inc.

  10. Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis

    Directory of Open Access Journals (Sweden)

    Schneider Anja

    2003-01-01

    Full Text Available Abstract Background Arginine and citrulline serve as nitrogen storage forms, but are also involved in biosynthetic and catabolic pathways. Metabolism of arginine, citrulline and ornithine is distributed between mitochondria and cytosol. For the shuttle of intermediates between cytosol and mitochondria transporters present on the inner mitochondrial membrane are required. Yeast contains a mitochondrial translocator for ornithine and arginine, Ort1p/Arg11p. Ort1p/Arg11p is a member of the mitochondrial carrier family (MCF essential for ornithine export from mitochondria. The yeast arg11 mutant, which is deficient in Ort1p/Arg11p grows poorly on media lacking arginine. Results High-level expression of a nuclear encoded Arabidopsis thaliana homolog (AtmBAC2 of Ort1p/Arg11p was able to suppress the growth deficiency of arg11. RT-PCR analysis demonstrated expression of AtmBAC2 in all tissues with highest levels in flowers. Promoter-GUS fusions showed preferential expression in flowers, i.e. pollen, in the vasculature of siliques and in aborted seeds. Variable expression was observed in leaf vasculature. Induction of the promoter was not observed during the first two weeks in seedlings grown on media containing NH4NO3, arginine or ornithine as sole nitrogen sources. Conclusion AtmBAC2 was isolated as a mitochondrial transporter for arginine in Arabidopsis. The absence of expression in developing seeds and in cotyledons of seedlings indicates that other transporters are responsible for storage and mobilization of arginine in seeds.

  11. Coagulase-Negative Staphylococci Favor Conversion of Arginine into Ornithine despite a Widespread Genetic Potential for Nitric Oxide Synthase Activity

    OpenAIRE

    Sánchez Mainar, María; Weckx, Stefan; Leroy, Frédéric

    2014-01-01

    Within ecosystems that are poor in carbohydrates, alternative substrates such as arginine may be of importance to coagulase-negative staphylococci (CNS). However, the versatility of arginine conversion in CNS remains largely uncharted. Therefore, a set of 86 strains belonging to 17 CNS species was screened for arginine deiminase (ADI), arginase, and nitric oxide synthase (NOS) activities, in view of their ecological relevance. In fermented meats, for instance, ADI could improve bacterial comp...

  12. Decreased Rate of Plasma Arginine Appearance in Murine Malaria May Explain Hypoargininemia in Children With Cerebral Malaria.

    Science.gov (United States)

    Alkaitis, Matthew S; Wang, Honghui; Ikeda, Allison K; Rowley, Carol A; MacCormick, Ian J C; Chertow, Jessica H; Billker, Oliver; Suffredini, Anthony F; Roberts, David J; Taylor, Terrie E; Seydel, Karl B; Ackerman, Hans C

    2016-12-15

     Plasmodium infection depletes arginine, the substrate for nitric oxide synthesis, and impairs endothelium-dependent vasodilation. Increased conversion of arginine to ornithine by parasites or host arginase is a proposed mechanism of arginine depletion.  We used high-performance liquid chromatography to measure plasma arginine, ornithine, and citrulline levels in Malawian children with cerebral malaria and in mice infected with Plasmodium berghei ANKA with or without the arginase gene. Heavy isotope-labeled tracers measured by quadrupole time-of-flight liquid chromatography-mass spectrometry were used to quantify the in vivo rate of appearance and interconversion of plasma arginine, ornithine, and citrulline in infected mice.  Children with cerebral malaria and P. berghei-infected mice demonstrated depletion of plasma arginine, ornithine, and citrulline. Knock out of Plasmodium arginase did not alter arginine depletion in infected mice. Metabolic tracer analysis demonstrated that plasma arginase flux was unchanged by P. berghei infection. Instead, infected mice exhibited decreased rates of plasma arginine, ornithine, and citrulline appearance and decreased conversion of plasma citrulline to arginine. Notably, plasma arginine use by nitric oxide synthase was decreased in infected mice.  Simultaneous arginine and ornithine depletion in malaria parasite-infected children cannot be fully explained by plasma arginase activity. Our mouse model studies suggest that plasma arginine depletion is driven primarily by a decreased rate of appearance. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Molecular characterization of arginine deiminase pathway in Laribacter hongkongensis and unique regulation of arginine catabolism and anabolism by multiple environmental stresses.

    Science.gov (United States)

    Xiong, Lifeng; Teng, Jade L L; Watt, Rory M; Liu, Cuihua; Lau, Susanna K P; Woo, Patrick C Y

    2015-11-01

    The betaproteobacterium Laribacter hongkongensis is associated with invasive bacteremic infections and gastroenteritis. Its genome contains two adjacent arc gene cassettes (arc1 and arc2) under independent transcriptional control, which are essential for acid resistance. Laribacter hongkongensis also encodes duplicate copies of the argA and argB genes from the arginine biosynthesis pathway. We show that arginine enhances the transcription of arcA2 but suppresses arcA1 expression. We demonstrate that ArgR acts as a transcriptional regulator of the two arc operons through binding to ARG operator sites (ARG boxes). Upon temperature shift from 20°C to 37°C, arcA1 transcription is upregulated while arcA2, argA2, argB2 and argG are downregulated. The transcription of arcA1 and arcA2 are augmented under anaerobic and acidic conditions. The transcription levels of argA1, argA2, argB1, argB2 and argG are significantly increased under anaerobic and acidic conditions but are repressed by the addition of arginine. Deletion of argR significantly decreases bacterial survival in macrophages, while expression of both arc operons, argR and all five of the anabolic arg genes increases 8 h post-infection. Our results show that arginine catabolism in L. hongkongensis is finely regulated by controlling the transcription of two arc operons, whereas arginine anabolism is controlled by two copies of argA and argB. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway

    Science.gov (United States)

    Mandal, Abhishek; Das, Sushmita; Roy, Saptarshi; Ghosh, Ayan Kumar; Sardar, Abul Hasan; Verma, Sudha; Saini, Savita; Singh, Ruby; Abhishek, Kumar; Kumar, Ajay; Mandal, Chitra; Das, Pradeep

    2016-01-01

    The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis. PMID:26808657

  15. The modulation of NMDA receptors and L-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test.

    Science.gov (United States)

    Cunha, Mauricio P; Pazini, Francis L; Ludka, Fabiana K; Rosa, Julia M; Oliveira, Ágatha; Budni, Josiane; Ramos-Hryb, Ana B; Lieberknecht, Vicente; Bettio, Luis E B; Martín-de-Saavedra, Maria D; López, Manuela G; Tasca, Carla I; Rodrigues, Ana Lúcia S

    2015-04-01

    The modulation of N-methyl-D-aspartate receptor (NMDAR) and L-arginine/nitric oxide (NO) pathway is a therapeutic strategy for treating depression and neurologic disorders that involves excitotoxicity. Literature data have reported that creatine exhibits antidepressant and neuroprotective effects, but the implication of NMDAR and L-arginine/nitric oxide (NO) pathway in these effects is not established. This study evaluated the influence of pharmacological agents that modulate NMDAR/L-arginine-NO pathway in the anti-immobility effect of creatine in the tail suspension test (TST) in mice. The NOx levels and cellular viability in hippocampal and cerebrocortical slices of creatine-treated mice were also evaluated. The anti-immobility effect of creatine (10 mg/kg, po) in the TST was abolished by NMDA (0.1 pmol/mouse, icv), D-serine (30 µg/mouse, icv, glycine-site NMDAR agonist), arcaine (1 mg/kg, ip, polyamine site NMDAR antagonist), L-arginine (750 mg/kg, ip, NO precursor), SNAP (25 μg/mouse, icv, NO donor), L-NAME (175 mg/kg, ip, non-selective NOS inhibitor) or 7-nitroindazole (50 mg/kg, ip, neuronal NOS inhibitor), but not by DNQX (2.5 µg/mouse, icv, AMPA receptor antagonist). The combined administration of sub-effective doses of creatine (0.01 mg/kg, po) and NMDAR antagonists MK-801 (0.001 mg/kg, po) or ketamine (0.1 mg/kg, ip) reduced immobility time in the TST. Creatine (10 mg/kg, po) increased cellular viability in hippocampal and cerebrocortical slices and enhanced hippocampal and cerebrocortical NO x levels, an effect potentiated by L-arginine or SNAP and abolished by 7-nitroindazole or L-NAME. In conclusion, the anti-immobility effect of creatine in the TST involves NMDAR inhibition and enhancement of NO levels accompanied by an increase in neural viability.

  16. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig.

    Science.gov (United States)

    Marini, Juan C; Agarwal, Umang; Robinson, Jason L; Yuan, Yang; Didelija, Inka C; Stoll, Barbara; Burrin, Douglas G

    2017-08-01

    The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for arginine synthesis argininosuccinate synthase (ASS1) and lyase (ASL) are present in the gut. However, evidence of high plasma citrulline concentrations in neonates suggests otherwise. We quantified in vivo citrulline production in premature (10 days preterm), neonatal (7 days old), and young pigs (35 days old) using citrulline tracers. Neonatal pigs had higher fluxes (69 µmol·kg-1·h-1, P synthesis and utilization of citrulline in neonatal and young pigs by measuring organ balances across the gut and the kidney. Citrulline was released from the gut and utilized by the kidney in both neonatal and young pigs. The abundance and localization of the enzymes involved in the synthesis and utilization were determined in intestinal and kidney tissue. Despite the presence of ASS1 and ASL in the neonatal small intestine, the lack of colocalization with the enzymes that produce citrulline results in the release of citrulline by the PDV and its utilization by the kidney to produce arginine. In conclusion, the intestinal-renal axis for arginine synthesis is present in the neonatal pig. Copyright © 2017 the American Physiological Society.

  17. [Arginine and lysine as products of basic carboxypeptidase activity associated with fibrinolysis].

    Science.gov (United States)

    Zhloba, A A; Subbotina, T F; Lupan, D S; Bogova, V A; Kusheleva, O A

    2013-01-01

    Blood carboxypeptidases play an important role in the regulation of fibrinolysis. We have proposed here the method for the assay of blood carboxypeptidase activity associated with coagulation/fibrinolysis using the natural substrate fibrin and the detection of basic amino acids arginine and lysine as products in the conditions close to those in vivo. Plasma samples from 15 patients with arterial hypertension were investigated. The coagulation and subsequent fibrinolysis were initiated by addition of standard doses of thrombin and tissue plasminogen activator, respectively. Arginine and lysine concentrations before, during, and after completion of fibrinolysis were determined using HPLC. The parameters of fibrinolysis were evaluated by clot turbidity assay. Fibrinolysis led to a large and significant increase in concentrations of arginine and lysine in the incubation mixture by 101 and 81%, respectively. The duration of fibrinolysis initiation significantly correlated to the degree of increase of these amino acids: r(s) = -0.733 and -0.761 for arginine and lysine, respectively (p fibrinolysis demonstrate different pattern: arginine generation had two maximums: at the beginning of clot lysis and at his end, whereas the liberation of lysine occurred mainly at the middle of fibrinolysis. Thus, the carboxypeptidase activity associated with fibrinolysis can be considered as a local source of the essential aminoacids.

  18. Effects of acute phencyclidine administration on arginine metabolism in the hippocampus and prefrontal cortex in rats.

    Science.gov (United States)

    Knox, Logan T; Jing, Yu; Collie, Nicola D; Zhang, Hu; Liu, Ping

    2014-06-01

    Phencyclidine (PCP), a non-competitive N-methyl-d-aspartate glutamate receptor antagonist, induces schizophrenic symptoms in healthy individuals, and altered arginine metabolism has been implicated in schizophrenia. The present study investigated the effects of a single subcutaneous injection of PCP (2, 5 or 10 mg/kg) on arginine metabolism in the sub-regions of the hippocampus and prefrontal cortex in male young adult Sprague-Dawley rats. Animals' general behaviour was assessed in the open field apparatus 30 min after the treatment, and the brain tissues were collected at the time point of 60 min post-treatment. Behaviourally, PCP resulted in reduced exploratory activity in a dose-dependent manner, and severe stereotype behaviour and ataxia at the highest dose. Neurochemically, PCP significantly altered the nitric oxide synthase and arginase activities, the l-arginine, agmatine, spermine, glutamate and GABA levels, and the glutamine/glutamate and glutamate/GABA ratios in a dose-dependent and/or region-specific manner. Cluster analyses showed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which changed as a function of PCP mainly in the hippocampus. Multiple regression analysis revealed significant neurochemical-behavioural correlations. These results demonstrate, for the first time, that a single acute administration of PCP affects animals' behaviour and arginine metabolism in the brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    Energy Technology Data Exchange (ETDEWEB)

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (GUW); (Maryland); (GWU); (Georgia)

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  20. Reconstitution of an active arginine deiminase pathway in Mycoplasma pneumoniae M129.

    Science.gov (United States)

    Rechnitzer, Hagai; Rottem, Shlomo; Herrmann, Richard

    2013-10-01

    Some species of the genus Mycoplasma code for the arginine deiminase pathway (ADI), which enables these bacteria to produce ATP from arginine by the successive reaction of three enzymes: arginine deiminase (ArcA), ornithine carbamoyltransferase (ArcB), and carbamate kinase (ArcC). It so far appears that independently isolated strains of Mycoplasma pneumoniae encode an almost identical truncated version of the ADI pathway in which the proteins ArcA and ArcB have lost their original enzymatic activities due to the deletion of significant regions of these proteins. To study the consequences of a functional ADI pathway, M. pneumoniae M129 was successfully transformed with the cloned functional arcA, arcB, and arcC genes from Mycoplasma fermentans. Enzymatic tests showed that while the M. pneumoniae ArcAB and ArcABC transformants possess functional arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase, they were unable to grow on arginine as the sole energy source. Nevertheless, infection of a lung epithelial cell line, A549, with the M. pneumoniae transformants showed that almost 100% of the infected host cells were nonviable, while most of the lung cells infected with nontransformed M. pneumoniae were viable under the same experimental conditions.

  1. L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Directory of Open Access Journals (Sweden)

    G. Kocic

    2012-01-01

    Full Text Available L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU, adenosine deaminase (ADA, AMP deaminase, and xanthine oxidase (XO, during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake.

  2. The impact of arginine-modified chitosan-DNA nanoparticles on the function of macrophages

    Science.gov (United States)

    Liu, Lanxia; Bai, Yuanyuan; Song, Chunni; Zhu, Dunwan; Song, Liping; Zhang, Hailing; Dong, Xia; Leng, Xigang

    2010-06-01

    It has been demonstrated that incorporation of arginine moieties into chitosan significantly elevates the transgenic efficacy of the chitosan. However, little is known about the impact of arginine-modified chitosan on the function of macrophages, which play a vitally important role in the inflammatory response of the body to foreign substances, especially particulate substances. This study was designed to investigate the impact of arginine-modified chitosan/DNA nanoparticles on the function of the murine macrophage through observation of phagocytic activity and production of pro-inflammatory cytokines (IL-1β, IL-6, IL-10, IL-12, and TNF-α). Results showed that both chitosan/DNA nanoparticles and arginine-modified chitosan/DNA nanoparticles, containing 20 μg/mL DNA, were internalized by almost all the macrophages in contact. This led to no significant changes, compared to the non-exposure group, in production of cytokines and phagocytic activity of the macrophages 24 h post co-incubation, whereas exposure to LPS induced obviously elevated cytokine production and phagocytic activity, suggesting that incorporation of arginine moieties into chitosan does not have a negative impact on the function of the macrophages.

  3. The impact of arginine-modified chitosan-DNA nanoparticles on the function of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lanxia; Bai Yuanyuan; Song Chunni; Zhu Dunwan; Song Liping; Zhang Hailing; Dong Xia; Leng Xigang, E-mail: lengxg@bme.org.c [Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Laboratory of Bioengineering (China)

    2010-06-15

    It has been demonstrated that incorporation of arginine moieties into chitosan significantly elevates the transgenic efficacy of the chitosan. However, little is known about the impact of arginine-modified chitosan on the function of macrophages, which play a vitally important role in the inflammatory response of the body to foreign substances, especially particulate substances. This study was designed to investigate the impact of arginine-modified chitosan/DNA nanoparticles on the function of the murine macrophage through observation of phagocytic activity and production of pro-inflammatory cytokines (IL-1{beta}, IL-6, IL-10, IL-12, and TNF-{alpha}). Results showed that both chitosan/DNA nanoparticles and arginine-modified chitosan/DNA nanoparticles, containing 20 {mu}g/mL DNA, were internalized by almost all the macrophages in contact. This led to no significant changes, compared to the non-exposure group, in production of cytokines and phagocytic activity of the macrophages 24 h post co-incubation, whereas exposure to LPS induced obviously elevated cytokine production and phagocytic activity, suggesting that incorporation of arginine moieties into chitosan does not have a negative impact on the function of the macrophages.

  4. The LargPAD Trial: Phase IIA evaluation of l-arginine infusion in patients with peripheral arterial disease.

    Science.gov (United States)

    Kashyap, Vikram S; Lakin, Ryan O; Campos, Patricia; Allemang, Matthew; Kim, Ann; Sarac, Timur P; Hausladen, Alfred; Stamler, Jonathan S

    2017-07-01

    Endothelial function is improved by l-arginine (l-arg) supplementation in preclinical and clinical studies of mildly diseased vasculature; however, endothelial function and responsiveness to l-arg in severely diseased arteries is not known. Our objective was to evaluate the acute effects of catheter-directed l-arg delivery in patients with chronic lower extremity ischemia secondary to peripheral arterial disease. The study enrolled 22 patients (45% male) with peripheral arterial disease (mean age, 62 years) requiring lower extremity angiography. Endothelium-dependent relaxation of patent but atherosclerotic superficial femoral arteries was measured using a combination of intravascular ultrasound (IVUS) imaging and a Doppler FloWire (Volcano Corporation, Rancho Cordova, Calif) during the infusion of incremental acetylcholine (10-6 to 10-4 molar concentration) doses. Patients received 50 mg (n = 3), 100 mg (n = 10), or 500 mg (n = 9) l-arg intra-arterially, followed by repeat endothelium-dependent relaxation measurement (limb volumetric flow). IVUS-derived virtual histology of the culprit vessel was also obtained. Endothelium-independent relaxation was measured using a nitroglycerin infusion. Levels of nitrogen oxides and arginine metabolites were measured by chemiluminescence and mass spectrometry, respectively. Patients tolerated limb l-arg infusion well. Serum arginine and ornithine levels increased by 43.6% ± 13.0% and 23.2% ± 10.3%, respectively (P endothelium-independent relaxation, 137% ± 28% volume flow increase). IVUS-derived virtual histology indicated plaque volume was 14 ± 1.3 mm3/cm, and plaque stratification revealed a predominantly fibrous morphology (46.4%; necrotic core, 28.4%; calcium, 17.4%; fibrolipid, 6.6%). Plaque morphology did not correlate with l-arg responsiveness. Despite extensive atherosclerosis, endothelial function in diseased lower extremity human arteries can be enhanced by l-arg infusion secondary to increased

  5. GHRH plus arginine and arginine administration evokes the same ratio of GH isoforms levels in young patients with Prader-Willi syndrome.

    Science.gov (United States)

    Rigamonti, Antonello E; Crinò, Antonino; Bocchini, Sarah; Convertino, Alessio; Bidlingmaier, Martin; Haenelt, Michael; Tamini, Sofia; Cella, Silvano G; Grugni, Graziano; Sartorio, Alessandro

    2017-11-27

    Human GH is present in pituitary and circulation as several isoforms, the prevalent being 22kDa- and 20kDa-GH. Recently, we have demonstrated the preservation of a normal balance in GH isoforms after GH releasing hormone (GHRH) plus arginine (ARG) administration in adult patients with Prader-Willi syndrome (PWS), one of the most common causes of syndromic obesity, often associated with GH deficiency (GHD). Aim of the present study was to measure circulating levels of 22kDa- and 20kDa-GH in young PWS patients (n=24; F/M: 10/14; genotype UPD/DEL/met+: 11/11/2; age: 10.8±5.3years; BMI SDS: 2.0±2.0; GHD: 16/24; obesity: 12/24) after combined GHRH+ARG or ARG administration. The results were analysed subdividing the GHRH+ARG and ARG groups on the basis of PWS genotype, GHD status and obesity. Circulating levels of 22kDa- and 20kDa-GH were measured by a chemiluminescent or fluorescent method based on specific pairs of monoclonal antibodies. GHRH+ARG or ARG significantly stimulated the secretion of 22kDa-GH but not that of 20kDa-GH in all PWS patients. No significant GHRH+ARG- vs. ARG-induced changes in the ratios of 22kDa- to 20kDa-GH peaks were observed in all PWS patients, although 22kDa- or 20kDa-GH peaks were significantly higher in the GHRH+ARG than ARG group. When subdividing PWS patients in UPD vs. DEL, obese vs. non obese and GHD vs. non GHD subgroups, GH peaks were significantly higher in nonobese than obese patients and in non GHD than GHD patients administered with either GHRH+ARG or ARG test, apart from the comparisons in the DEL/UPD subgroups. Anyway, the ratios of peak levels of 22kDa- to 20kDa-GH were similar after GHRH+ARG vs. ARG in all subgroups investigated. In conclusion, this study shows that administration of two different pharmacological tests, i.e. ARG, capable of reducing hypothalamic somatostatinergic tone, and GHRH (+ARG), that directly acts at pituitary level on the somatotropic cell, evokes the same ratios of GH isoforms in young PWS

  6. Deletion of Genes Encoding Arginase Improves Use of "Heavy" Isotope-Labeled Arginine for Mass Spectrometry in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Weronika E Borek

    Full Text Available The use of "heavy" isotope-labeled arginine for stable isotope labeling by amino acids in cell culture (SILAC mass spectrometry in the fission yeast Schizosaccharomyces pombe is hindered by the fact that under normal conditions, arginine is extensively catabolized in vivo, resulting in the appearance of "heavy"-isotope label in several other amino acids, most notably proline, but also glutamate, glutamine and lysine. This "arginine conversion problem" significantly impairs quantification of mass spectra. Previously, we developed a method to prevent arginine conversion in fission yeast SILAC, based on deletion of genes involved in arginine catabolism. Here we show that although this method is indeed successful when (13C6-arginine (Arg-6 is used for labeling, it is less successful when (13C6(15N4-arginine (Arg-10, a theoretically preferable label, is used. In particular, we find that with this method, "heavy"-isotope label derived from Arg-10 is observed in amino acids other than arginine, indicating metabolic conversion of Arg-10. Arg-10 conversion, which severely complicates both MS and MS/MS analysis, is further confirmed by the presence of (13C5(15N2-arginine (Arg-7 in arginine-containing peptides from Arg-10-labeled cells. We describe how all of the problems associated with the use of Arg-10 can be overcome by a simple modification of our original method. We show that simultaneous deletion of the fission yeast arginase genes car1+ and aru1+ prevents virtually all of the arginine conversion that would otherwise result from the use of Arg-10. This solution should enable a wider use of heavy isotope-labeled amino acids in fission yeast SILAC.

  7. [Nutritional treatment for bronchopleural fistula-promising effect of arginine as a pharmaconutrient].

    Science.gov (United States)

    Inoue, Mari; Kinoshita, Kahori; Isogawa, Naoto; Hino, Nao; Sano, Fumiyasu; Kobayashi, Mizuho; Yasuda, Shigeo; Komatsu, Teruya; Takahashi, Koji; Fujinaga, Takuji

    2013-12-01

    Pharmaconutrition, which is a supportive nutritional care of surgical patients, has been proven to shorten hospital stay, decrease the incidence of infection, and reduce hospital costs in selected groups of patients. Arginine, one of the most essential pharmaconutrients, has also been proven to enhance would healing process. In severely malnourished patients like bronchopleural fistula with resultant empyema, aggressive nutritional approach should be mandatory. And management of the fistula is also important in stabilizing the ongoing infection. Our hypothesis was that basic nutritional support enhanced with arginine would be effective in not only improving the general condition including nutritional status but also in healing the fistula. We report a case of major bronchopleural fistula in which arginine-supplemented diet as well as aggressive nutritional support could accelerate the postoperative recovery after open thoracic window, ultimately leading to the healing of the fistula.

  8. l-Arginine Pathway Metabolites Predict Need for Intra-operative Shunt During Carotid Endarterectomy

    DEFF Research Database (Denmark)

    Szabo, P; Lantos, J; Nagy, L

    2016-01-01

    OBJECTIVE/BACKGROUND: Asymmetric dimethylarginine (ADMA) inhibits nitric oxide (NO) synthesis and is a marker of atherosclerosis. This study examined the correlation between pre-operative l-arginine and ADMA concentration during carotid endarterectomy (CEA), and jugular lactate indicating anaerobic....... Blood gas parameters, concentration of lactate, and S100B were also serially measured in blood taken from both the radial artery and the jugular bulb before and after carotid clamping, and after release of the clamp. To estimate anaerobic metabolism, the jugulo-arterial ratio of CO2 gap......-arginine concentration and both jugular lactate and S100B during carotid clamping suggests a protective role of the NO donor l-arginine....

  9. l-arginine and l-NMMA for assessing cerebral endothelial dysfunction in ischaemic cerebrovascular disease

    DEFF Research Database (Denmark)

    Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and NG -monomethyl-l-arginine (l...... attack (TIA) (n=2) on cerebral ED. Most studies applied transcranial Doppler to quantify cerebral ED. Endothelium-dependent vasodilatation (EDV) induced by l-arginine was impaired in elderly and subjects with leukoaraiosis, but enhanced in CADASIL patients. Studies including subjects with prior ischaemic...... cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease....

  10. Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide.

    Science.gov (United States)

    Fränzel, Benjamin; Penkova, Maya; Frese, Christian; Metzler-Nolte, Nils; Andreas Wolters, Dirk

    2012-08-01

    Since multiresistant bacterial strains are more widespread and the victim numbers steadily increase, it is very important to possess a broad bandwidth of antimicrobial substances. Antibiotics often feature membrane-associated effect mechanisms. So, we present a membrane proteomic approach to shed light on the cellular response of Escherichia coli as model organism to the hexapeptide MP196, which is arginine and tryptophan rich. Analyzing integral membrane proteins are still challenging, although various detection strategies have been developed in the past. In particular, membrane proteomics in bacteria have been conducted very little due to the special physical properties of these membrane proteins. To obtain more information on the cellular response of the new compound group of small peptides, the tryptophan- and arginine-rich hexapeptide MP196 was subject to a comprehensive quantitative membrane proteomic study on E. coli by means of metabolic labeling in combination with membrane lipid analyses. This study provides in total 767 protein identifications including 185 integral membrane proteins, from which 624 could be quantified. Among these proteins, 134 were differentially expressed. Thereby, functional groups such as amino acid and membrane biosynthesis were affected, stress response could be observed, and the lipid composition of the membrane was significantly altered. Especially, the strong upregulation of the envelope stress induced protein. Spy indicates membrane damage, as well as the downregulation of the mechano-sensitive channel MscL beside others. Finally, the exceptional downregulation of transport systems strengthens these findings. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Influence of betaine and arginine supplementation of reduced protein diets on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of cross-bred pigs.

    Science.gov (United States)

    Madeira, Marta S; Rolo, Eva S; Alfaia, Cristina M; Pires, Virgínia R; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M

    2016-03-28

    The isolated or combined effects of betaine and arginine supplementation of reduced protein diets (RPD) on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig m. longissimus lumborum and subcutaneous adipose tissue (SAT) were assessed. The experiment was performed on forty intact male pigs (Duroc×Large White×Landrace cross-breed) with initial and final live weights of 60 and 93 kg, respectively. Pigs were randomly assigned to one of the following five diets (n 8): 16·0 % of crude protein (control), 13·0 % of crude protein (RPD), RPD supplemented with 0·33 % of betaine, RPD supplemented with 1·5 % of arginine and RPD supplemented with 0·33 % of betaine and 1·5 % of arginine. Data confirmed that RPD increase intramuscular fat (IMF) content and total fat content in SAT. The increased total fat content in SAT was accompanied by higher GLUT type 4, lipoprotein lipase and stearoyl-CoA desaturase mRNA expression levels. In addition, the supplementation of RPD with betaine and/or arginine did not affect either IMF or total fat in SAT. However, dietary betaine supplementation slightly affected fatty acid composition in both muscle and SAT. This effect was associated with an increase of carnitine O-acetyltransferase mRNA levels in SAT but not in muscle, which suggests that betaine might be involved in the differential regulation of some key genes of lipid metabolism in pig muscle and SAT. Although the arginine-supplemented diet decreased the mRNA expression level of PPARG in muscle and SAT, it did not influence fat content or fatty acid composition in any of these pig tissues.

  12. Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies.

    Science.gov (United States)

    Ascierto, Paolo A; Scala, Stefania; Castello, Giuseppe; Daponte, Antonio; Simeone, Ester; Ottaiano, Alessandro; Beneduce, Gerardo; De Rosa, Vincenzo; Izzo, Francesco; Melucci, Maria Teresa; Ensor, C Mark; Prestayko, Archie W; Holtsberg, Frederick W; Bomalaski, John S; Clark, Mike A; Savaraj, Niramol; Feun, Lynn G; Logan, Theodore F

    2005-10-20

    Individuals with metastatic melanoma have a poor prognosis. Many human melanomas are auxotrophic for arginine, and arginine is not an essential amino acid in humans. We hypothesized that this auxotrophy may be therapeutically exploited. A novel amino acid-degrading enzyme (arginine deiminase) conjugated to polyethylene glycol (ADI-SS PEG 20,000 mw) was used to lower plasma arginine in individuals with metastatic melanoma. Two cohort dose-escalation studies were performed. A phase I study in the United States enrolled 15 patients, and a phase I to II study in Italy enrolled 24 patients. The Italian patients also received two subsequent cycles of treatment, each consisting of four once-weekly injections of 160 U/m2. The goals of these studies were to determine pharmacokinetics (PK), pharmacodynamics (PD), safety, and the antitumor activity of ADI-SS PEG 20,000 mw. PK and PD studies indicated that a dose of 160 U/m2 lowered plasma arginine from a resting level of approximately 130 micromol/L to less than 2 micromol/L for at least 7 days; nitric oxide levels also were lowered. There were no grade 3 or 4 toxicities directly attributable to the drug. Six of 24 phase I to II patients responded to treatment (five partial responses and one complete response; 25% response rate) and also had prolonged survival. CONCLUSION Elimination of all detectable plasma arginine in patients with metastatic melanoma was well tolerated and may be effective in the treatment of this cancer. Further testing of ADI-SS PEG 20,000 mw in a larger population of individuals with metastatic melanoma is warranted.

  13. Developmental changes of l-arginine transport at the blood-brain barrier in rats.

    Science.gov (United States)

    Tachikawa, Masanori; Hirose, Shirou; Akanuma, Shin-Ichi; Matsuyama, Ryo; Hosoya, Ken-Ichi

    2017-12-14

    l-Arginine is required for regulating synapse formation/patterning and angiogenesis in the developing brain. We hypothesized that this requirement would be met by increased transporter-mediated supply across the blood-brain barrier (BBB). Thus, the purpose of this work was to test the idea that elevation of blood-to-brain l-arginine transport across the BBB in the postnatal period coincides with up-regulation of cationic acid transporter 1 (CAT1) expression in developing brain capillaries. We found that the apparent brain-to-plasma concentration ratio (Kp, app) of l-arginine after intravenous administration during the first and second postnatal weeks was 2-fold greater than that at the adult stage. Kp, app of l-serine was also increased at the first postnatal week. In contrast, Kp, app of d-mannitol, a passively BBB-permeable molecule, did not change, indicating that increased transport of l-arginine and l-serine is not due to BBB immaturity. Double immunohistochemical staining of CAT1 and a marker protein, glucose transporter 1, revealed that CAT1 was localized on both luminal and abluminal membranes of brain capillary endothelial cells during the developmental and adult stages. A dramatic increase in CAT1 expression in the brain was seen at postnatal day 7 (P7) and day 14 (P14) and the expression subsequently decreased as the brain matured. In accordance with this, intense immunostaining of CAT1 was observed in brain capillaries at P7 and P14. These findings strongly support our hypothesis and suggest that the supply of blood-born l-arginine to the brain via CAT1 at the BBB plays a key role in meeting the elevated demand for l-arginine in postnatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effects of withdrawal from repeated phencyclidine administration on behavioural function and brain arginine metabolism in rats.

    Science.gov (United States)

    Knox, Logan T; Jing, Yu; Bawazier-Edgecombe, Jamal; Collie, Nicola D; Zhang, Hu; Liu, Ping

    2017-02-01

    Phencyclidine (PCP) induces behavioural changes in humans and laboratory animals that resemble positive and negative symptoms, and cognitive impairments in schizophrenia. It has been shown repeated treatment of PCP leading to persistent symptoms even after the drug discontinuation, and there is a growing body of evidence implicating altered arginine metabolism in the pathogenesis of schizophrenia. The present study investigated the effects of withdrawal from repeated daily injection of PCP (2mg/kg) for 12 consecutive days on animals'behavioural performance and arginine metabolism in the hippocampus and prefrontal cortex in male young adult rats. Repeated PCP treatment reduced spontaneous alternations in the Y-maze and exploratory and locomotor activities in the open field under the condition of a washout period of 24h, but not 4days. Interestingly, the PCP treated rats also displayed spatial working memory deficits when tested 8-10days after withdrawal from PCP and showed altered levels of arginase activities and eight out of ten l-arginine metabolites in neurochemical- and region-specific manner. Cluster analyses showed altered relationships among l-arginine and its three main metabolites as a function of withdrawal from repeated PCP treatment in a duration-specific manner. Multiple regression analysis revealed significant neurochemical-behavioural correlations. Collectively, the results suggest both the residual and long-term effects of withdrawal from repeated PCP treatment on behavioural function and brain arginine metabolism. These findings demonstrate, for the first time, the influence of the withdrawal duration on animals' behaviour and brain arginine metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Kinetic characterization of arginine deiminase and carbamate kinase from Streptococcus pyogenes M49.

    Science.gov (United States)

    Hering, Silvio; Sieg, Antje; Kreikemeyer, Bernd; Fiedler, Tomas

    2013-09-01

    Streptococcus pyogenes (group A Streptococcus, GAS) is an important human pathogen causing mild superficial infections of skin and mucous membranes, but also life-threatening systemic diseases. S. pyogenes and other prokaryotic organisms use the arginine deiminase system (ADS) for survival in acidic environments. In this study, the arginine deiminase (AD), and carbamate kinase (CK) from S. pyogenes M49 strain 591 were heterologously expressed in Escherichia coli DH5α, purified, and kinetically characterized. AD and CK from S. pyogenes M49 share high amino acid sequence similarity with the respective enzymes from Lactococcus lactis subsp. lactis IL1403 (45.6% and 53.5% identical amino acids) and Enterococcus faecalis V583 (66.8% and 66.8% identical amino acids). We found that the arginine deiminase of S. pyogenes is not allosterically regulated by the intermediates and products of the arginine degradation (e.g., ATP, citrulline, carbamoyl phosphate). The Km and Vmax values for arginine were 1.13±0.12mM (mean±SD) and 1.51±0.07μmol/min/mg protein. The carbamate kinase is inhibited by ATP but unaffected by arginine and citrulline. The Km and Vmax values for ADP were 0.72±0.08mM and 1.10±0.10μmol/min/mg protein and the Km for carbamoyl phosphate was 0.65±0.07mM. The optimum pH and temperature for both enzymes were 6.5 and 37°C, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Cytotoxicity of Tumor Antigen Specific Human T Cells Is Unimpaired by Arginine Depletion

    Science.gov (United States)

    Knies, Diana; Medenhoff, Sergej; Wabnitz, Guido; Luckner-Minden, Claudia; Feldmeyer, Nadja; Voss, Ralf-Holger; Kropf, Pascale; Müller, Ingrid; Conradi, Roland; Samstag, Yvonne; Theobald, Matthias; Ho, Anthony D.; Goldschmidt, Hartmut; Hundemer, Michael

    2013-01-01

    Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i) CD8+ T cells with specificity against the MART-1aa26–35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii) clonal CMV pp65aa495–503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495–503 specific T cell receptor were analyzed. Our data demonstrate that human CD8+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency. PMID:23717444

  17. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

    Directory of Open Access Journals (Sweden)

    Markus Munder

    Full Text Available Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i CD8(+ T cells with specificity against the MART-1aa26-35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii clonal CMV pp65aa495-503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495-503 specific T cell receptor were analyzed. Our data demonstrate that human CD8(+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.

  18. [Citrulline and arginine kinetics and its value as a prognostic factor in pediatric critically ill patients].

    Science.gov (United States)

    Blasco-Alonso, J; SánchezYáñez, P; Rosa Camacho, V; Camacho Alonso, J M; Yahyaoui Macías, R; Gil-Gómez, R; Milano Manso, G

    2015-10-01

    Low concentrations of plasma citrulline and arginine have been reported in children under various pathological conditions. Plasma citrulline and arginine levels undergo different kinetics during the early days of critical illness in children according to the severity of symptoms and can be correlated with other clinical and laboratory parameters associated with the SIR. A single-center prospective observational study in patients 7 days to 14 years admitted to pediatric intensive care unit (PICU). Citrulline and arginine blood levels (blood in dry paper, analysis by mass spectrometry in tandem), acute phase reactants and clinical data were collected on admission, at 12 h, 24 h, 3 and 7 days. A total of 44 critically ill patients were included and control group was formed by 42 healthy children. The citrulline and arginine kinetic analysis showed: 1) Citrulline falls significantly (P<.05) at 12 h of admission; levels remain low until day 7 and begin progressive increase again. 2) Arginine is already lowered at 6h, although an earlier rise occurs (3rd day). 3. The decrease of citrulline in the first 3 days of admission positively correlates with arginine kinetics. Bivariate analysis showed: 1) Correlation of elevated citrulline on the 7th day with shorter duration of mechanical ventilation, lower PICU stay and lower occurrence of complications. The levels of citrulline still descended at day 7 are associated with increased CRP/procalcitonin elevation at first 24 h. 2) The greatest decrease of arginine in the first 12 h is associated with a longer PICU stay and greater number of complications and increase of acute phase reactants at 3 days. There are decreased levels of arginine and citrulline in the first days at PICU, with recovery at the 3rd and 7th day respectively, and a relationship between a greater decrease and a worse outcome and between a longer income and a higher serum CRP/procalcitonin. Copyright © 2015. Published by Elsevier España, S.L.U.

  19. Age-dependent arginine phosphokinase activity changes in male vestigial and wild-type Drosophila melanogaster.

    Science.gov (United States)

    Baker, G T

    1975-01-01

    The activity of arginine phosphokinase, an important muscle enzyme in insects, was investigated with age in vestigial-winged and wild-type Drosophila melanogaster. Identical patterns of age-dependent activity changes were observed in the vestigial-winged flies as in the wild-type, even though vestigial-winged flies exhibit a 50% mortality approximately two thirds that of the wild-type as well as being incapable of flight. Results indicate that the age-dependent changes in arginine phosphokinase activity are intrinsically regulated within the cells of the flight muscle.

  20. Polarized Raman spectra of L-arginine hydrochloride monohydrated single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Faria, J.L.B. [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Fisica; Freire, P.T.C.; Goncalves, R.O.; Melo, F.E.A.; Mendes Filho, J., E-mail: tarso@fisica.ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica; Lima, R.J.C.; Moreno, A.J.D. [Universidade Federal do Maranhao (UFMA), Imperatriz, MA (Brazil). Centro de Ciencias Sociais, Saude e Tecnologia

    2010-09-15

    Polarized Raman spectra of L-arginine hydrochloride monohydrated single crystal in nine different scattering geometries of the two irreducible representations of factor group C{sub 2} were studied at room temperature. The experimental wavenumber values are compared with those obtained from ab-initio calculation and the assignment of the Raman bands to the respective molecular vibrations is also given. Finally, a discussion related to a previously reported phase transition undergone by L-arginine hydrochloride monohydrated single crystal at low temperature is furnished. (author)

  1. Functional variation in the arginine vasopressin 2 receptor as a modifier of human plasma von Willebrand factor levels

    DEFF Research Database (Denmark)

    Nossent, Anne Yaël; Robben, J H; Deen, P M T

    2010-01-01

    SUMMARY OBJECTIVES: Stimulation of arginine vasopressin 2 receptor (V2R) with arginine vasopressin (AVP) results in a rise in von Willebrand factor (VWF) and factor VIII plasma levels. We hypothesized that gain-of-function variations in the V2R gene (AVPR2) would lead to higher plasma levels of V...

  2. Associations between Vocal Symptoms and Genetic Variants in the Oxytocin Receptor and Arginine Vasopressin 1A Receptor Gene

    Science.gov (United States)

    Jämsen, Sofia Holmqvist; Johansson, Ada; Westberg, Lars; Santtila, Pekka; von der Pahlen, Bettina; Simberg, Susanna

    2017-01-01

    Purpose: Oxytocin and arginine vasopressin are associated with different aspects of the stress response. As stress is regarded as a risk factor for vocal symptoms, we wanted to explore the association between the oxytocin receptor gene ("OXTR") and arginine vasopressin 1A receptor gene ("AVPR1A") single-nucleotide polymorphisms…

  3. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth.

    Directory of Open Access Journals (Sweden)

    Priyanka Das

    Full Text Available Cationic amino acid transporters (mCAT1 and mCAT2B regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.

  4. Diminished citrulline-arginine-nitric oxide production rates are associated with necrotizing enterocolitis incidence in premature pigs

    Science.gov (United States)

    Necrotizing enterocolitis (NEC) is a major gastrointestinal disease in premature infants that is associated with formula feeding and intestinal hypoxia. Low arginine availability in these infants has been linked to NEC since arginine is the sole precursor of nitric oxide (NO), a critical mediator of...

  5. L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells

    Science.gov (United States)

    L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can increase the number of implantation sites in mice and rats, suggesting an effect at th...

  6. Arginine promotes Proteus mirabilis motility and fitness by contributing to conservation of the proton gradient and proton motive force.

    Science.gov (United States)

    Armbruster, Chelsie E; Hodges, Steven A; Smith, Sara N; Alteri, Christopher J; Mobley, Harry L T

    2014-10-01

    Swarming contributes to Proteus mirabilis pathogenicity by facilitating access to the catheterized urinary tract. We previously demonstrated that 0.1-20 mmol/L arginine promotes swarming on normally nonpermissive media and that putrescine biosynthesis is required for arginine-induced swarming. We also previously determined that arginine-induced swarming is pH dependent, indicating that the external proton concentration is critical for arginine-dependent effects on swarming. In this study, we utilized survival at pH 5 and motility as surrogates for measuring changes in the proton gradient (ΔpH) and proton motive force (μH(+) ) in response to arginine. We determined that arginine primarily contributes to ΔpH (and therefore μH(+) ) through the action of arginine decarboxylase (speA), independent of the role of this enzyme in putrescine biosynthesis. In addition to being required for motility, speA also contributed to fitness during infection. In conclusion, consumption of intracellular protons via arginine decarboxylase is one mechanism used by P. mirabilis to conserve ΔpH and μH(+) for motility. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Five Friends of Methylated Chromatin Target of Protein-Arginine-Methyltransferase[Prmt]-1 (Chtop), a Complex Linking Arginine Methylation to Desumoylation*

    OpenAIRE

    Fanis, Pavlos; Gillemans, Nynke; Aghajanirefah, Ali; Pourfarzad, Farzin; Demmers, Jeroen; Esteghamat, Fatemehsadat; Vadlamudi, Ratna K.; Grosveld, Frank; Philipsen, Sjaak; van Dijk, Thamar B.

    2012-01-01

    Chromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC). 5FMC is a nuclear complex that can only be recruited by Chtop when the latter is arginine-methylated by Prmt1. It con...

  8. The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes

    Directory of Open Access Journals (Sweden)

    Ruijter Jan M

    2008-11-01

    Full Text Available Abstract Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS, ornithine aminotransferase (OAT, argininosuccinate synthetase (ASS, arginase-1 (ARG1, arginase-2 (ARG2, and nitric-oxide synthase (NOS were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.

  9. The Effects of Pretreatment with Various Doses of L-Arginine on Cisplatin-Induced Nephropathy of Male Rats

    Directory of Open Access Journals (Sweden)

    B Rasoulian

    2016-09-01

    Full Text Available Introduction: Cisplatin is a widely used anti-cancer drug, which its application is limited by nephrotoxicity. In this study, the effect of pretreatment with different l-arginine doses on Cisplatin-induced renal functional injury was investigated. Methods: 63 male rats were divided into 7 groups: In groups 3, 4, 5 and 6, 60 min before the Cisplatin injection (5mg/kg; L-Arginine with doses of 50,100,200 or 400mg/kg was injected, respectively. In group7, normal saline was injected before Cisplatin administration. In groups 1 and 2, normal saline was injected instead of Cisplatin. In group 2, 60min before normal saline injection, 400mg/kg L-Arginine was administered and in group1, instead of L-arginine, normal saline was injected too. Injections were intraperitoneal. 72h after Cisplatin injection, blood sampling and plasma separation were done. Urine sample was collected 24 hours before blood sampling by metabolic cage. The mean of plasma urea and creatinine levels and creatinine clearance (ml/day.kg and fractional excretion of Na (FENa, % were compared among different groups as renal functional parameters. Results: In comparison to group 7, L-arginine injection in a dose of 400mg/kg led to significant amelioration of all parameters. 200 mg/kg L-arginine administration led to significant decrease in plasma urea level and FENa. 100mg/kg L-arginine caused significant improvement in fractional excretion of sodium. L-arginine injection with 50mg/kg dose, significantly ameliorate all renal function tests instead of creatinine clearance. Conclusion: Pretreatment with L-arginine administration with 400 or 50 mg/kg doses, respectively, had the highest effect on reducing Cisplatin-induced nephropathy. L-arginine injection with intermediate doses i.e. 200 or 100 mg/kg had less effect in reducing Cisplatin-induced nephropathy and it needs more investigations.

  10. Regulation of amino acid arginine transport by lipopolysaccharide and nitric oxide in intestinal epithelial IEC-6 cells.

    Science.gov (United States)

    Meng, QingHe; Choudry, Haroon A; Souba, Wiley W; Karinch, Anne M; Huang, JingLi; Lin, ChengMao; Vary, Thomas C; Pan, Ming

    2005-12-01

    As a precursor for nitric oxide (NO) synthesis and an immune-enhancing nutrient, amino acid L-arginine plays a critical role in maintaining intestine mucosal integrity and immune functions in sepsis. However, the relationship between intestinal arginine transport and NO synthesis in sepsis remains unclear. In the present study, we investigated the effects of lipopolysaccharide (LPS) and NO on the arginine transport in cultured rat intestinal epithelial IEC-6 cell. Near-confluent IEC-6 cells were incubated with LPS (0-50 microg/ml) in serum-free Dulbecco's modified Eagles's medium, in the presence and absence of the NO donor sodium nitroprusside (SNP, 0-500 micromol/L) and the inducible nitric oxide synthase (iNOS) inhibitor N-omega-nitro-L-arginine (NNA, 0-1000 micromol/L) for various periods of time (0-48 hours). Arginine transport activity, arginine transporter CAT1 mRNA and protein levels were measured with transport assay, Northern blot analysis, and Western blot analysis, respectively. LPS increased arginine transport activity in a time- and dose-dependent fashion. Prolonged incubation of LPS (24 hours, 25 microg/ml) resulted in a 3-fold increase of arginine transport activity (control: 28 +/- 5; LPS: 92 +/- 20 pmol/mg/min, P System y(+) as the predominant arginine transport system, and a 2-fold increase of System y(+)CAT1 mRNA and transporter protein levels (P System y(+) maximal velocity (V(max), control: 1484 +/- 180; LPS: 2800 +/- 230 pmol/mg/min, P System y(+) mRNA levels and transporter protein levels. The LPS-stimulated arginine transport activity is regulated by the availability of nitric oxide.

  11. Arginine appearance and nitric oxide synthesis in critically ill infants can be increased with a protein-energy-enriched enteral formula

    NARCIS (Netherlands)

    C.T. de Betue (Carlijn); K.F.M. Joosten (Koen); N.E.P. Deutz (Nicolaas); A.C.E. Vreugdenhil; D.A. van Waardenburg (Dick)

    2013-01-01

    textabstractBackground: Arginine is considered an essential amino acid during critical illness in children, and supplementation of arginine has been proposed to improve arginine availability to facilitate nitric oxide (NO) synthesis. Protein-energy-enriched enteral formulas (PE-formulas) can improve

  12. The Effect of Pumpkin ( Cucurbita pepo L) Seeds and L-Arginine ...

    African Journals Online (AJOL)

    The present study aimed to examine the effect of pumpkin (Cucurbita pepo L.) seeds supplementation on androgenic diet-induced atherosclerosis. ... Although, atherogenic rats supplemented with 2% arginine showed significant increase in serum concentration of HDL-C, no significant changes were observed in their ...

  13. Feed supplementation with arginine and zinc on antioxidant status and inflammatory response in challenged weanling piglets

    Directory of Open Access Journals (Sweden)

    Nadia Bergeron

    2017-09-01

    Full Text Available Although supplementing the diet with zinc oxide and arginine is known to improve growth in weanling piglets, the mechanism of action is not well understood. We measured the antioxidant status and inflammatory response in 48 weanling castrated male piglets fed diets supplemented with or without zinc oxide (2,500 mg Zn oxide per kg and arginine (1% starting at the age of 20 days. The animals were injected with lipopolysaccharide (100 μg/kg on day 5. Half of them received another injection on day 12. Blood samples were taken just before and 6, 24 and 48 h after injection and the mucosa lining the ileum was recovered following euthanizing on days 7 and 14. Zinc supplementation increased reduced and total glutathione (GSH (reduced and total during days 5 to 7 and arginine decreased oxidized GSH measured on days 5 and 12 and the ratio of total antioxidant capacity to total oxidative status during days 12 to 14. Zinc decreased plasma malondialdehyde measured on days 5 and 12 and serum haptoglobin measured on day 12 and increased both metallothionein-1 expression and total antioxidant capacity measured in the ileal mucosa on day 14. Tumour necrosis factor α concentration decreased from days 5 to 12 (all effects were significant at P < 0.05. This study shows that the zinc supplement reduced lipid oxidation and lipopolysaccharide-induced inflammation during the post-weaning period, while the arginine supplementation had only a limited effect.

  14. Asymmetric dimethylarginine and L-arginine levels in neonatal sepsis and septic shock.

    Science.gov (United States)

    Aydemir, Ozge; Ozcan, Beyza; Yucel, Husniye; Bas, Ahmet Yagmur; Demirel, Nihal

    2015-05-01

    Nitric oxide (NO) formed by the enzyme NO synthase (NOS) from L-arginine, is an important mediator for pathogen elimination. Being a potent vasodilator NO is implicated in hypotension and decreased organ perfusion in sepsis. Asymmetric dimethylarginine (ADMA) is an endogenous NOS inhibitor. We investigated ADMA and L-arginine levels in neonatal sepsis and their relation to disease severity. A prospective controlled study was conducted including 31 neonates with sepsis and 20 controls. Serum ADMA and L-arginine levels were measured within 24 h of sepsis diagnosis. Clinical and laboratory data including clinical risk index for babies (CRIB) score, presence of septic shock, organ dysfunction and death were recorded. L-arginine and ADMA levels were higher in neonates with sepsis compared to controls (p = 0.029 and p = 0.001, respectively). Neonates with septic shock had higher ADMA levels compared to septic neonates without shock (p = 0.026) and controls (p neonates with septic shock compared to septic neonates without shock (p = 0.012) and controls (p neonatal sepsis and even higher levels are observed in septic shock.

  15. Serum Stabilities of Short Tryptophan-and Arginine-Rich Antimicrobial Peptide Analogs

    NARCIS (Netherlands)

    Nguyen, L.T.; Chau, J.K.; Perry, N.A.; de Boer, L.; Zaat, S.A.J.; Vogel, H.J.

    2010-01-01

    Background: Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the "antimicrobial

  16. Repression of Escherichia coli carbamoylphosphate synthase: relationships with enzyme synthesis in the arginine and pyrimidine pathways.

    Science.gov (United States)

    Piérard, A; Glansdorff, N; Gigot, D; Crabeel, M; Halleux, P; Thiry, L

    1976-07-01

    Cumulative repression of Escherichia coli carbamoylphosphate synthase (CPSase; EC 2.7.2.9) by arginine and pyrimidine was analyzed in relation to control enzyme synthesis in the arginine and pyrimidine pathways. The expression of carA and carB, the adjacent genes that specify the two subunits of the enzyme, was estimated by means of an in vitro complementation assay. The synthesis of each gene product was found to be under repression control. Coordinate expression of the two genes was observed under most conditions investigated. They might thus form an operon. The preparation of strains blocked in the degradation of cytidine and harboring leaky mutations affecting several steps of pyrimidine nucleotide synthesis made it possible to distinguish between the effects of cytidine and uridine compounds in the repression of the pyrimidine pathway enzymes. The data obtained suggest that derivatives of both cytidine and uridine participate in the repression of CPSase. In addition, repression of CPSase by arginine did not appear to occur unless pyrimidines were present at a significant intracellular concentration. This observation, together with our previous report that argR mutations impair the cumulative repression of CPSase, suggests that this control is mediated through the concerted effects of regulatory elements specific for the arginine and pyrimidine pathways.

  17. Arginine Residues are More Effective than Lysine Residues in Eliciting the Cellular Uptake of Onconase

    Science.gov (United States)

    Sundlass, Nadia K.; Raines, Ronald T.

    2011-01-01

    Onconase is an amphibian member of the pancreatic ribonuclease family of enzymes that is in clinical trials for the treatment of cancer. Onconase, which has an abundance of lysine residues, is internalized by cancer cells through endocytosis in a mechanism similar to that of cell-penetrating peptides. Here, we compare the effect of lysine versus arginine residues on the biochemical attributes necessary for Onconase to elicit its cytotoxic activity. In the variant R-Onconase, ten of the twelve lysine residues in Onconase are replaced with arginine, leaving only the two active-site lysines intact. Cytometric assays quantifying internalization showed a 3-fold increase in the internalization of R-Onconase compared with Onconase. R-Onconase also showed greater affinity for heparin and a 2-fold increase in ribonucleolytic activity. Nonetheless, arginine substitution endowed only a slight increase in toxicity towards human cancer cells. Analysis of denaturation induced with guanidine–HCl showed that R-Onconase has less conformational stability than does the wild-type enzyme; moreover, R-Onconase is more susceptible to proteolytic degradation. These data indicate that arginine residues are more effective than lysine in eliciting cellular internalization, but can compromise other aspects of protein structure and function. PMID:21980976

  18. Nutritional supplementation with arginine protects radiation-induced effects: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Flavia Cristina Morone, E-mail: fcmorone@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Campos-Silva, Pamella; Souza, Diogo Benchimol de; Costa, Waldemar Silva; Sampaio, Francisco Jose Barcellos [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2016-10-15

    Purpose: To investigate the protective effect of L-arginine on the prostate (nonneoplasic) of rats with radiation-induced injury. Methods: Twenty-nine Wistar rats, male adult, allocated into three groups: Control group (C) was not exposed to irradiation (n=10); Radiated group (R) had undergone pelvic irradiation (n=10); Supplemented and radiated group (R+S) had undergone pelvic irradiation plus L-arginine supplementation (n=9). The animals were observed for signs of toxicity. After euthanization, the prostate was dissected under magnification and stained by hematoxylin and eosin to study acinar structures and stained with Picrosirius red for collagen analysis. Results: After radiation exposure, all animals presented diarrhea, but supplementation with L-arginine reduced this effect. The weight gain in the R+S group was significantly higher than in the C and R groups. In the R+S group the collagen density and the prostate acinar area was similar to the R and C groups. Epithelial height was significantly reduced in group R compared with group C (p<0.0001). When comparing the group R+S with R, a statistical difference was observed to be present (p<0.0001). Conclusions: Pelvic radiation promotes systemic effects and some structural modifications in the ventral prostate of rats. These modifications can be prevented by oral supplementation with L-arginine. (author)

  19. ARGININE STIMULATED GLUCAGON AND INSULIN-SECRETION BY ISLETS OF LANGERHANS OF PREGNANT AND LACTATING RATS

    NARCIS (Netherlands)

    MOES, H; SCHUILING, GA; KOITER, TR

    Glucagon secretion by isolated pancreatic rat islets was not affected by an increase of the glucose concentration from 2.5 to 5.0 mM, but was stimulated by 25 mM arginine. This stimulation was only slightly increased by pregnancy and lactation. Insulin secretion increased, when the glucose

  20. Allevation of Oxidative Damages Induced by Salinity in Cress (Lepidium sativum by Pretreating with Arginine

    Directory of Open Access Journals (Sweden)

    E Asadi karam

    2015-05-01

    Full Text Available Salinity is one of the main stresses that have negative effectcs on seedling growth, and plant production. It inhibits growth of plants through disturbance of the balance between production of ROS and antioxidant defense mechanism which results in oxidative stress. Because, arginine is a vital regulator of physiological and developmental processes the effect of different concentrations of arginine pretreatment of the plant on alleviation of oxidative stress induced by salt 50 and 100Mm NaCl was investigated. Arginine pretreatment increased chlorophyll a, b, carotenoid and seedling growth under salinity condition. Results also showed that salt stress increased proline, protein, H2O2, soluble sugar and the activity of ascorbate peroxidase, guaiacol peroxidase and catalase. Pretreatment of plants with Arg reduced proline, soluble sugar, H2O2 and antioxidant enzymes activity content significantly. The conclusion is that in garden cress plants, pretreatment with concentration of 5 µM and 10 μM arginine may protect cress under salinity stress, probably through the contracting with ROS and or induction of anti-oxidative enzymes

  1. Arginine supplementation does not alter nitrogen metabolism of beef steers during a lipopolysaccharide challenge

    Science.gov (United States)

    Demand for arginine (Arg) is reported to increase during immune challenges. This study evaluated effects of lipopolysaccharide (LPS) and abomasal Arg infusion on nitrogen (N) metabolism and immune response of 20 ruminally cannulated steers (369 ± 46 kg BW) in a randomized block design. Each block co...

  2. Evidence for a metabolic shift of arginine metabolism in sickle cell disease

    NARCIS (Netherlands)

    Schnog, JJB; Jager, EH; van der Dijs, FPL; Duits, AJ; Moshage, H; Muskiet, FD; Muskiet, FAJ

    Over the last few years, a pivotal role has been ascribed to reduced nitric oxide (NO) availability as a contributing factor to the vaso-occlusive process of sickle cell disease. We investigated whether arginine metabolism in sickle cell patients is different from healthy controls. Blood samples

  3. L-arginine increases nitric oxide and attenuates pressor and heart ...

    African Journals Online (AJOL)

    olayemitoyin

    Summary: Pressor and heart rate changes following change in posture without or with L-arginine supplementation (1g/day for 6 weeks) were studied in 28 sickle cell anemia (SCA) and 32 non-sickle cell anemia (NSCA) subjects. Change in posture increased HR (p<0.01), RPP (p<0.05) in both groups of subjects, MABP ...

  4. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhiza fungi

    DEFF Research Database (Denmark)

    Cruz, C.; Egsgaard, Helge; Trujillo, C.

    2007-01-01

    Key enzymes of the urea cycle and N-15-labeling patterns of arginine (Arg) were measured to elucidate the involvement of Arg in nitrogen translocation by arbuscular mycorrhizal (AM) fungi. Mycorrhiza was established between transformed carrot (Daucus carota) roots and Glomus intraradices in two- ...

  5. Branched-Chain Amino Acids and Arginine Improve Performance in Two Consecutive Days of Simulated Handball Games in Male and Female Athletes: A Randomized Trial

    Science.gov (United States)

    Chang, Chen-Kang; Chang Chien, Kun-Ming; Chang, Jung-Hsien; Huang, Mei-Hsuan; Liang, Ya-Chuan; Liu, Tsung-Han

    2015-01-01

    The central nervous system plays a crucial role in the development of physical fatigue. The purpose of this study is to investigate the effect of combined supplementation of branched-chain amino acids (BCAA) and arginine on intermittent sprint performance in simulated handball games on 2 consecutive days. Methods: Fifteen male and seven female handball players consumed 0.17 g/kg BCAA and 0.04 g/kg arginine together (AA trial), or placebo (PB trial) before exercise. Each trial contained two 60-min simulated handball games on consecutive days. The game was consisted of 30 identical 2-min blocks and a 20 m all-out sprint was performed at the end of each block. The performance, measured by percentage changes of sprint time between day 1 and 2, was significantly better in the AA trial (first half: AA trial: -1.34±0.60%, PB trial: -0.21±0.69%; second half: AA trial: -1.68±0.58%, PB trial: 0.49±0.42%). The average ratings of perceive exertion throughout the 2-day trial was significantly lower in the AA trial (14.2±0.3) than the PB trial (15.1±0.4). Concurrently, post-exercise tryptophan/BCAA ratio on both days in the AA trial was significantly lower than the baseline. This study showed that BCAA and arginine supplementation could improve performance in intermittent sprints on the second consecutive day of simulated handball games in well-trained athletes by potentially alleviating central fatigue. PMID:25803783

  6. Effect of arginase inhibition on pulmonary L-arginine metabolism in murine Pseudomonas pneumonia.

    Directory of Open Access Journals (Sweden)

    Anne Mehl

    Full Text Available RATIONALE: Infection of the lung with Pseudomonas aeruginosa results in upregulation of nitric oxide synthases (NOS and arginase expression, and both enzymes compete for L-arginine as substrate. Nitric oxide (NO production may be regulated by arginase as it controls L-arginine availability for NOS. We here studied the effect of systemic arginase inhibition on pulmonary L-arginine metabolism in Pseudomonas pneumonia in the mouse. METHODS: Mice (C57BL/6, 8-10 weeks old, female underwent direct tracheal instillation of Pseudomonas (PAO-1-coated agar beads and were treated by repeated intra-peritoneal injections of the arginase inhibitor 2(S-amino-6-boronohexanoic acid (ABH or PBS until lungs were harvested on day 3 of the infection. L-arginine metabolites were quantified using liquid chromatography-tandem mass spectrometry, NO metabolites nitrate and nitrite by Griess reagent and cytokines by ELISA. RESULTS: NO metabolite concentrations (48.5±2.9 vs. 10.9±2.3 µM, p<0.0001, as well as L-ornithine (29.6±1.7 vs 2.3±0.4 µM, p<0.0001, the product of arginase activity, were increased in Pseudomonas infected lungs compared to naïve controls. Concentrations of the NOS inhibitor asymmetric dimethylarginine (ADMA were also increased (0.44±0.02 vs. 0.16±0.01 µM, p<0.0001. Arginase inhibition in the infected animals resulted in a significant decrease in L-ornithine (14.6±1.6 µM, p<0.0001 but increase in L-arginine concentration (p<0.001, L-arginine/ADMA ratio (p<0.001, L-arginine availability for NOS (p<0.001, and NO metabolite concentrations (67.3±5.7 µM, p<0.05. Arginase inhibitor treatment also resulted in an increase in NO metabolite levels in animals following intratracheal injection of LPS (p = 0.015. Arginase inhibition was not associated with an increase in inflammatory markers (IFN-γ, IL-1β, IL-6, MIP-2, KC or TNF-α in lung. Concentrations of the L-ornithine-dependent polyamines putrescine, spermidine and spermine were increased

  7. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms.

    Science.gov (United States)

    He, Jinzhi; Hwang, Geelsu; Liu, Yuan; Gao, Lizeng; Kilpatrick-Liverman, LaTonya; Santarpia, Peter; Zhou, Xuedong; Koo, Hyun

    2016-10-01

    l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. Dental caries is one

  8. EFFECTS OF ARGININE AND VITAMIN E SUPPLEMENTED DIETS ON THE IMMUNOLOGICAL RESPONSE OF BROILERS CHICKENS

    Directory of Open Access Journals (Sweden)

    David Jesús Chan Diaz

    2012-08-01

    Full Text Available In order to evaluate the effect of arginine and vitamin E supplementation in broiler chicken diets on the immune response during post-vaccine stress, a trial was conducted with 700 chicks (1 day-old which were distributed into 28 floor-pens and fed one of four dietary treatments (with 7 replicates randomly assigned: T1 = control diet (1.31 % of arginine and 10 IU of vitamin E/kg of feed; T2 = T1 + 0.3 % of arginine; T3 = T1 + 70 IU of vitamin E; T4 = T1 + 0.3 % of arginine + 70 IU of vitamin E. At 12 days of age, all birds were vaccinated against Newcastle disease virus (ND, infectious bronchitis, avian influenza (AI and fowl pox. The traits evaluated were: post-vaccine reaction at days 14, 16, 18, 21 and 23; antibody titers against ND and AI, and relative lymphoid organs weight at days 11, 19 and 26; and the performance were recorded weekly. Chickens fed T2, T4 (at day 16, and T3 (at day 21 had lesser (p≤0.05 post-vaccine reaction than birds fed T1. The antibody titers against ND (at day 11 was higher (p≤0.05 in chickens fed T4 (3.1, T3 (2.7 and T2 (2.7 compared to T1 (1.6; meanwhile, for AI titers no differences were found. There were no differences, neither for immune organs weight, nor for performance. In conclusion, arginine and vitamin E supplementation in broiler chicken diets reduced the post-vaccine stress and improved the immune response without affecting the performance.

  9. Decreased serum L-arginine and L-citrulline levels in major depression.

    Science.gov (United States)

    Hess, S; Baker, G; Gyenes, G; Tsuyuki, R; Newman, S; Le Melledo, Jean-Michel

    2017-11-01

    It has been suggested that endothelial dysfunction caused by a decreased endothelial production of nitric oxide (NO) may contribute to the consistently observed increased risk of developing cardiovascular disease (CVD) in physically healthy patients suffering from major depression (MD). NO is a gas synthesized from Larginine (a conditionally essential amino acid) and oxygen by endothelial nitric oxide synthase (eNOS). The end products of NO production include both NO and L-citrulline. NO is rapidly reduced to the anions nitrite and nitrate, classically referred to as NO metabolites. Their measurement has been used as a surrogate measurement for endothelial NO production. We and others have shown decreased levels of NO metabolites in the serum of MD patients. The mechanism of this decreased production of NO by the endothelium has not yet been elucidated. The purpose of this study is to assess serum levels of L-arginine and L-citrulline in patients with MD. Levels of L-arginine and L-citrulline were measured in 35 unmedicated physically healthy MD patients and 36 healthy controls (HCs). L-arginine and L-citrulline concentrations were significantly lower in MD patients than in healthy controls (L-arginine, 73.54 + 21.53 μmol/L and 84.89 + 25.16, p = 0.04 μmol/L and L-citrulline 31.58 + 6.05 μmol/L and 35.19 + 6.85 μmol/L, p = 0.03, respectively). The decrease in L-arginine levels in MD patients is a possible explanation for the decrease in NO metabolites in MD patients and therefore may contribute, through endothelial dysfunction, to the increased CV risk associated with MD.

  10. Interactions Affected by Arginine Methylation in the Yeast Protein–Protein Interaction Network*

    Science.gov (United States)

    Erce, Melissa A.; Abeygunawardena, Dhanushi; Low, Jason K. K.; Hart-Smith, Gene; Wilkins, Marc R.

    2013-01-01

    Protein–protein interactions can be modulated by the methylation of arginine residues. As a means of testing this, we recently described a conditional two-hybrid system, based on the bacterial adenylate cyclase (BACTH) system. Here, we have used this conditional two-hybrid system to explore the effect of arginine methylation in modulating protein–protein interactions in a subset of the Saccharomyces cerevisiae arginine methylproteome network. Interactions between the yeast hub protein Npl3 and yeast proteins Air2, Ded1, Gbp2, Snp1, and Yra1 were first validated in the absence of methylation. The major yeast arginine methyltransferase Hmt1 was subsequently included in the conditional two-hybrid assay, initially to determine the degree of methylation that occurs. Proteins Snp1 and Yra1 were confirmed as Hmt1 substrates, with five and two novel arginine methylation sites mapped by ETD LC-MS/MS on these proteins, respectively. Proteins Ded1 and Gbp2, previously predicted but not confirmed as substrates of Hmt1, were also found to be methylated with five and seven sites mapped respectively. Air2 was found to be a novel substrate of Hmt1 with two sites mapped. Finally, we investigated the interactions of Npl3 with the five interaction partners in the presence of active Hmt1 and in the presence of Hmt1 with a G68R inactivation mutation. We found that the interaction between Npl3 and Air2, and Npl3 and Ded1, were significantly increased in the presence of active Hmt1; the interaction of Npl3 and Snp1 showed a similar degree of increase in interaction but this was not statistically significant. The interactions of Npl3 and Gbp2, along with Npl3 and Yra1, were not significantly increased or decreased by methylation. We conclude that methylarginine may be a widespread means by which the interactions of proteins are modulated. PMID:23918811

  11. Interactions affected by arginine methylation in the yeast protein-protein interaction network.

    Science.gov (United States)

    Erce, Melissa A; Abeygunawardena, Dhanushi; Low, Jason K K; Hart-Smith, Gene; Wilkins, Marc R

    2013-11-01

    Protein-protein interactions can be modulated by the methylation of arginine residues. As a means of testing this, we recently described a conditional two-hybrid system, based on the bacterial adenylate cyclase (BACTH) system. Here, we have used this conditional two-hybrid system to explore the effect of arginine methylation in modulating protein-protein interactions in a subset of the Saccharomyces cerevisiae arginine methylproteome network. Interactions between the yeast hub protein Npl3 and yeast proteins Air2, Ded1, Gbp2, Snp1, and Yra1 were first validated in the absence of methylation. The major yeast arginine methyltransferase Hmt1 was subsequently included in the conditional two-hybrid assay, initially to determine the degree of methylation that occurs. Proteins Snp1 and Yra1 were confirmed as Hmt1 substrates, with five and two novel arginine methylation sites mapped by ETD LC-MS/MS on these proteins, respectively. Proteins Ded1 and Gbp2, previously predicted but not confirmed as substrates of Hmt1, were also found to be methylated with five and seven sites mapped respectively. Air2 was found to be a novel substrate of Hmt1 with two sites mapped. Finally, we investigated the interactions of Npl3 with the five interaction partners in the presence of active Hmt1 and in the presence of Hmt1 with a G68R inactivation mutation. We found that the interaction between Npl3 and Air2, and Npl3 and Ded1, were significantly increased in the presence of active Hmt1; the interaction of Npl3 and Snp1 showed a similar degree of increase in interaction but this was not statistically significant. The interactions of Npl3 and Gbp2, along with Npl3 and Yra1, were not significantly increased or decreased by methylation. We conclude that methylarginine may be a widespread means by which the interactions of proteins are modulated.

  12. Arginine Enhances Osteoblastogenesis and Inhibits Adipogenesis through the Regulation of Wnt and NFATc Signaling in Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2014-07-01

    Full Text Available Arginine, an α-amino acid, has been reported to exert beneficial effects that ameliorate health problems and prevent excessive fat deposition. In this study, we investigated whether the activation of cell signaling by arginine can induce osteogenic differentiation and modulate excessive adipogenic differentiation in human mesenchymal stem cells (MSCs. Arginine potently induced the expression of type Iα1 collagen, osteocalcin, and ALP in a dose-dependent manner without causing cytotoxicity. Arginine significantly increased the mRNA expression of the osteogenic transcription factors runt-related transcription factor 2 (Runx2, DIx5, and osterix. Furthermore, arginine demonstrated its antiadipogenicity by decreasing adipocyte formation and triglyceride (TG content in MSCs and inhibiting the mRNA expression of the adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ, CCAAT/enhancer-binding protein α (C/EBPα, and fatty acid binding protein 4 (Fabp4. This effect was associated with increased expression of Wnt5a, and nuclear factor of activated T-cells (NFATc, and was abrogated by antagonists of Wnt and NFATc, which indicated a role of Wnt and NFATc signaling in the switch from adipogenesis to osteoblastogenesis induced by arginine. In conclusion, this is the first report of the dual action of arginine in promoting osteogenesis and inhibiting adipocyte formation through involving Wnt5a and NFATc signaling pathway.

  13. Estradiol augments while progesterone inhibits arginine transport in human endothelial cells through modulation of cationic amino acid transporter-1.

    Science.gov (United States)

    Bentur, Ohad S; Schwartz, Doron; Chernichovski, Tamara; Ingbir, Merav; Weinstein, Talia; Chernin, Gil; Schwartz, Idit F

    2015-08-15

    Decreased generation of nitric oxide (NO) by endothelial NO synthase (eNOS) characterizes endothelial dysfunction (ECD). Delivery of arginine to eNOS by cationic amino acid transporter-1 (CAT-1) was shown to modulate eNOS activity. We found in female rats, but not in males, that CAT-1 activity is preserved with age and in chronic renal failure, two experimental models of ECD. In contrast, during pregnancy CAT-1 is inhibited. We hypothesize that female sex hormones regulate arginine transport. Arginine uptake in human umbilical vein endothelial cells (HUVEC) was determined following incubation with either 17β-estradiol (E2) or progesterone. Exposure to E2 (50 and 100 nM) for 30 min resulted in a significant increase in arginine transport and reduction in phosphorylated CAT-1 (the inactive form) protein content. This was coupled with a decrease in phosphorylated MAPK/extracellular signal-regulated kinase (ERK) 1/2. Progesterone (1 and 100 pM for 30 min) attenuated arginine uptake and increased phosphorylated CAT-1, phosphorylated protein kinase Cα (PKCα), and phosphorylated ERK1/2 protein content. GO-6976 (PKCα inhibitor) prevented the progesterone-induced decrease in arginine transport. Coincubation with both progesterone and estrogen for 30 min resulted in attenuated arginine transport. While estradiol increases arginine transport and CAT-1 activity through modulation of constitutive signaling transduction pathways involving ERK, progesterone inhibits arginine transport and CAT-1 via both PKCα and ERK1/2 phosphorylation, an effect that predominates over estradiol. Copyright © 2015 the American Physiological Society.

  14. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Patterson John R

    2008-09-01

    Full Text Available Abstract Background L-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested. Methods Three murine renal cell carcinoma (mRCC cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC. Results Our results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01 reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity. The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function. Conclusion The results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell

  15. Exogenous L-arginine reduces matrix metalloproteinase-2 and -9 activities and oxidative stress in patients with hypertension

    DEFF Research Database (Denmark)

    Garcia, Vinicius P; Rocha, Helena N M; Silva, Gustavo M.

    2016-01-01

    Aims Increased matrix metalloproteinases activity and reduced nitric oxide (NO) bioavailability contributes to development of hypertension and this may be associated with a defective L-arginine-NO pathway. Exogenous L-arginine improves endothelial function to prevent the onset of cardiovascular d...... biomarkers between groups during the saline infusion (P > 0.05). Significance Exogenous L-arginine diminished metalloproteinase-2 and -9 activities and MMP-9/TIMP-1 ratio along with restoring the oxidative stress balance in patients with hypertension....

  16. A randomized pilot study of L-arginine infusion in severe falciparum malaria: preliminary safety, efficacy and pharmacokinetics.

    Directory of Open Access Journals (Sweden)

    Tsin W Yeo

    Full Text Available Decreased nitric oxide (NO and hypoargininemia are associated with severe falciparum malaria and may contribute to severe disease. Intravenous L-arginine increases endothelial NO in moderately-severe malaria (MSM without adverse effects. The safety, efficacy and pharmacokinetics of L-arginine or other agents to improve NO bioavailability in severe malaria have not been assessed.In an open-label pilot study of L-arginine in adults with severe malaria (ARGISM-1 Study, patients were randomized to 12 g L-arginine hydrochloride or saline over 8 hours together with intravenous artesunate. Vital signs, selected biochemical measures (including blood lactate and L-arginine and endothelial NO bioavailability (using reactive hyperemia peripheral arterial tonometry [RH-PAT] were assessed serially. Pharmacokinetic analyses of L-arginine concentrations were performed using NONMEM.Six patients received L-arginine and two saline infusions. There were no deaths in either group. There were no changes in mean systolic (SBP and diastolic blood pressure (DBP or other vital signs with L-arginine, although a transient but clinically unimportant mean maximal decrease in SBP of 14 mmHg was noted. No significant changes in mean potassium, glucose, bicarbonate, or pH were seen, with transient mean maximal increases in plasma potassium of 0.3 mmol/L, and mean maximal decreases in blood glucose of 0.8 mmol/L and bicarbonate of 2.3 mEq/L following L-arginine administration. There was no effect on lactate clearance or RH-PAT index. Pharmacokinetic modelling (n = 4 showed L-arginine concentrations 40% lower than predicted from models developed in MSM.In the first clinical trial of an adjunctive treatment aimed at increasing NO bioavailability in severe malaria, L-arginine infused at 12 g over 8 hours was safe, but did not improve lactate clearance or endothelial NO bioavailability. Future studies may require increased doses of L-arginine.ClinicalTrials.gov NCT00616304.

  17. Vasodilatory effect of L-arginine on isolated rabbit and human posterior ciliary arteries in vitro and increased optic disc blood flow in vivo.

    Science.gov (United States)

    Chuman, Hideki; Sugimoto, Takako; Nao-I, Nobuhisa

    2017-12-01

    This study aimed to clarify the vasodilatory effect of L-arginine on isolated rabbit and human posterior ciliary arteries (PCAs) and to investigate changes in optic disc blood flow after an infusion of L-arginine in vivo. Vascular ring segments were mounted on a double myograph system. After obtaining maximal contraction following administration of high-K solution, L-arginine was administrated. Six volunteers received an intravenous drip infusion of 100 ml of L-arginine or saline. Changes in optic disc blood flow were measured by laser speckle flowgraphy. L-arginine relaxed high-K solution-induced contracted rabbit PCAs. Carboxy-PTIO (nitric oxide scavenger) and L-NAME (nitric oxide synthase inhibitor) inhibited L-arginine-induced relaxation in rabbit PCAs. After removal of the endothelium of the rabbit PCAs, L-arginine still relaxed rabbit PCAs. L-arginine relaxed human PCAs, despite the lack of nitric oxide production. In the L-arginine infusion group, the mean blur rate was significantly greater than that of the control group in vivo. L-arginine has both nitric oxide-dependent and independent vasodilatory effect on high K- induced contractions in isolated rabbit and human PCAs. L-arginine increased optic disc blood flow in vivo.

  18. Arginine Vasopressin and Arginine Vasopressin Receptor 1b Involved in Electroacupuncture‐Attenuated Hypothalamic‐Pituitary‐Adrenal Axis Hyperactivity in Hepatectomy Rats

    Science.gov (United States)

    Zhu, Jing; Chen, Zhejun; Zhu, LiTing; Meng, ZeHui; Wu, GenCheng

    2015-01-01

    Objective The study aims to know the effect of electroacupuncture (EA) in maintenance of the homeostasis of the neuroendocrine system in hepatectomy rats and the involvement of arginine vasopressin (AVP) signaling in hypothalamus after EA was observed. Materials and Methods Rats were randomly assigned to four groups, including the intact group, model group, sham‐EA group, and EA group. EA was given during the perioperative period at the Zusanli (ST36) and Sanyinjiao (SP6) points after hepatectomy. The serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) levels were detected via radioimmunoassay. The expression of AVP, arginine vasopressin receptor 1a (AVPR1a), arginine vasopressin receptor 1b (AVPR1b), and glucocorticoid receptor (GR) was detected by Western blot after surgery. Results Compared with the intact group, the ACTH and CORT levels in the serum of model group were increased, whereas the ACTH and CORT levels were decreased in the EA group compared with the model group. Moreover, AVP and AVPR1b protein levels in the pituitary gland were increased in the model group and decreased in the EA group. Further, a distinct increase in the AVP and AVPR1a protein levels was observed in the model group, whereas they were significantly decreased in the EA group. Blockade of AVPR1b by nelivaptan reduced the increase of ACTH and CORT. D [Leu4, Lys8] vasopressin can inhibit the effect of EA in rectification of the hyperactivity of the hypothalamic‐pituitary‐adrenal (HPA) axis. Conclusions EA application at ST36 and SP6 can ameliorate the hyperactivity of the HPA axis via AVP signaling during the perioperative period. PMID:26573696

  19. Class side effects: decreased pressure in the lower oesophageal and the pyloric sphincters after the administration of dopamine antagonists, neuroleptics, anti-emetics, L-NAME, pentadecapeptide BPC 157 and L-arginine.

    Science.gov (United States)

    Belosic Halle, Zeljka; Vlainic, Josipa; Drmic, Domagoj; Strinic, Dean; Luetic, Kresimir; Sucic, Mario; Medvidovic-Grubisic, Maria; Pavelic Turudic, Tatjana; Petrovic, Igor; Seiwerth, Sven; Sikiric, Predrag

    2017-05-17

    The ulcerogenic potential of dopamine antagonists and L-NAME in rats provides unresolved issues of anti-emetic neuroleptic application in both patients and experimental studies. Therefore, in a 1-week study, we examined the pressures within the lower oesophageal and the pyloric sphincters in rats [assessed manometrically (cm H2O)] after dopamine neuroleptics/prokinetics, L-NAME, L-arginine and stable gastric pentadecapeptide BPC 157 were administered alone and/or in combination. Medication (/kg) was given once daily intraperitoneally throughout the 7 days, with the last dose at 24 h before pressure assessment. Given as individual agents to healthy rats, all dopamine antagonists (central [haloperidol (6.25 mg, 16 mg, 25 mg), fluphenazine (5 mg), levomepromazine (50 mg), chlorpromazine (10 mg), quetiapine (10 mg), olanzapine (5 mg), clozapine (100 mg), sulpiride (160 mg), metoclopramide (25 mg)) and peripheral(domperidone (10 mg)], L-NAME (5 mg) and L-arginine (100 mg) decreased the pressure within both sphincters. As a common effect, this decreased pressure was rescued, dose-dependently, by BPC 157 (10 µg, 10 ng) (also note that L-arginine and L-NAME given together antagonized each other's responses). With haloperidol, L-NAME worsened both the lower oesophageal and the pyloric sphincter pressure, while L-arginine ameliorated lower oesophageal sphincter but not pyloric sphincter pressure, and antagonized L-NAME effect. With domperidone, L-arginine originally had no effect, while L-NAME worsened pyloric sphincter pressure. This effect was opposed by L-arginine. All these effects were further reversed towards a stronger beneficial effect, close to normal pressure values, by the addition of BPC 157. In addition, NO level was determined in plasma, sphincters and brain tissue. Thiobarbituric acid reactive substances (TBARS) were also assessed. Haloperidol increased NO levels (in both sphincters, the plasma and brain), consistently producing increased

  20. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung.

    Directory of Open Access Journals (Sweden)

    Yidan D Zhao

    Full Text Available Pulmonary arterial hypertension (PAH is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH, leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8 and control lung tissue (n = 8 leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH.

  1. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioxide tension

    DEFF Research Database (Denmark)

    Wang, Qian; Paulson, O B; Lassen, N A

    1992-01-01

    , intracarotid infusion of 1.5, or 7.5, or 30 mg/kg NOLAG induced a dose-dependent increase of arterial blood pressure and a decrease of normocapnic CBF from 85 +/- 10 to 78 +/- 6, 64 +/- 5, and 52 +/- 5 ml 100 g-1 min-1, respectively. This effect lasted for at least 2 h. Raising PaCO2 from a control level of 40...... pressure to the same level as the highest dose of NOLAG did not affect the CBF response to hypercapnia. L-Arginine significantly prevented the effect of NOLAG on normocapnic CBF as well as blood pressure and also abolished its inhibitory effect on hypercapnic CBF. D-Arginine had no such effect. Decreasing...... to 68 mm Hg increased CBF to 230 +/- 27 ml 100 g-1 min-1, corresponding to a percentage CBF response (CO2 reactivity) of 3.7 +/- 0.6%/mm Hg PaCO2 in saline-treated rats. NOLAG attenuated this reactivity by 32, 49, and 51% at the three-dose levels. Hypercapnia combined with angiotensin to raise blood...

  2. Anti-stress and Adaptogenic Activity of l-Arginine Supplementation

    Directory of Open Access Journals (Sweden)

    Vanita Gupta

    2005-01-01

    Full Text Available In the present study, oral supplementation of l-arginine in rats was evaluated for its anti-stress and adaptogenic activity using the cold (5°C–hypoxia (428 mmHg–restraint (C-H-R animal model. A dose-dependent study of l-arginine was carried out at doses of 12.5, 25.0, 50.0, 100.0, 200.0 and 500.0 mg/kg body weight, administered orally 30 min prior to C-H-R exposure. The time taken by the rat to attain a rectal temperature of 23°C (Trec 23°C during C-H-R exposure and its recovery to Trec 37°C at normal atmospheric pressure and 32 ± 1°C were used as biomarkers of anti-stress and adaptogenic activity. Biochemical parameters related to lipid peroxidation, anti-oxidants, cell membrane permeability, nitric oxide and stress, with and without administration of the least effective l-arginine dose, were measured in rats on attaining Trec 23°C and Trec 37°C. The least effective adaptogenic dose of l-arginine was 100.0 mg/kg body weight. The C-H-R exposure of control rats, on attaining Trec 23°C, resulted in a significant increase in plasma malondialdehyde (MDA, blood lactate dehydrogenase (LDH and a decrease in blood catalase (CAT and plasma testosterone levels. On recovery (Trec 37°C of control rats, there was a further decrease in CAT and plasma testosterone, and an increase in LDH. l-Arginine supplementation resulted in a significant decrease in plasma MDA, an increase in blood superoxide dismutase (SOD, CAT levels maintained at control values and a lower increase in LDH compared with controls (45.3 versus 58.5% and 21.5 versus 105.2% on attaining Trec 23°C during C-H-R exposure and on recovery to Trec 37°C. The results suggested that l-arginine possesses potent anti-stress activity during C-H-R exposure and recovery from C-H-R-induced hypothermia.

  3. The Ratio of Arginine to Dimethylarginines is Reduced and Predicts Outcomes in Patients with Severe Sepsis

    Science.gov (United States)

    Gough, Michael S.; Morgan, Mary Anne M.; Mack, Cynthia M.; Darling, Denise C.; Frasier, Lauren M.; Doolin, Kathleen P.; Apostolakos, Michael J.; Stewart, Judith C.; Graves, Brian T.; Arning, Erland; Bottiglieri, Teodoro; Mooney, Robert A.; Frampton, Mark W.; Pietropaoli, Anthony P.

    2011-01-01

    Objective Arginine deficiency may contribute to microvascular dysfunction, but previous studies suggest that arginine supplementation may be harmful in sepsis. Systemic arginine availability can be estimated by measuring the ratio of arginine to its endogenous inhibitors, asymmetric and symmetric dimethylarginine. We hypothesized that the arginine to dimethylarginine (Arg/DMA) ratio is reduced in patients with severe sepsis and associated with severity of illness and outcomes. Design Case-control and prospective cohort study Setting Medical and surgical intensive care units of an academic medical center Patients and Subjects 109 severe sepsis and 50 control subjects Measurements and Main Results Plasma and urine were obtained in control subjects and within 48 hours of diagnosis in severe sepsis patients. The Arg/DMA ratio was higher in control subjects vs. sepsis patients ((median = 95 [inter-quartile range = 85 – 114]) vs. 34 [24 – 48], p < 0.001), and in hospital survivors vs. non-survivors ((39 [26 – 52]) vs. 27 [19 – 32], p = 0.004). The Arg/DMA ratio was correlated with Acute Physiology and Chronic Health Evaluation II score (Spearman’s correlation coefficient [rho] = − 0.40, p < 0.001) and organ-failure free days (rho = 0.30, p = 0.001). A declining Arg/DMA ratio was independently associated with hospital mortality (odds ratio =1.63 per quartile, 95% confidence interval [CI] = 1.00 – 2.65, p = 0.048) and risk of death over 6 months (hazard ratio = 1.41 per quartile, 95% CI = 1.01 – 1.98, p = 0.043). The Arg/DMA ratio was correlated with the urinary nitrate to creatinine ratio (rho = 0.46, p < 0.001). Conclusions The Arg/DMA ratio is associated with severe sepsis, severity of illness, and clinical outcomes. The Arg/DMA ratio may be a useful biomarker, and interventions designed to augment systemic arginine availability in severe sepsis may still be worthy of investigation. PMID:21378552

  4. Poly(arginine)-selective coprecipitation properties of self-assembling apoferritin and Its Tb(3+) complex: a new luminescent biotool for sensing of poly(arginine) and its protein conjugates.

    Science.gov (United States)

    Tsukube, Hiroshi; Noda, Yuki; Shinoda, Satoshi

    2010-04-12

    The apoferritin protein and apoferritin-Tb(3+) complex were demonstrated to form oligomeric and polymeric self-assemblies in neutral aqueous solutions, based on characterization by using luminescence and UV/Vis spectroscopy, dynamic light scattering, and transmission electron microscopy. Addition of a 20-mer or higher poly(arginine) to the solution resulted in coprecipitation through nanoscale interactions, while biological proteins and other poly(amino acids) rarely yielded precipitates under the conditions employed. The apoferritin-Tb(3+) complex assembly exhibited a particularly long-lived green luminescence in aqueous solution, and its poly(arginine)-selective precipitation behavior was followed by monitoring the changes in luminescence. The poly(arginine)-tagged albumin precipitated selectively and quantitatively, so that the apoferritin-Tb(3+) complex can function as a new luminescent biotool for the sensing of poly(arginine) and its protein conjugates.

  5. How does spa treatment affect cardiovascular function and vascular endothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio

    Science.gov (United States)

    Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis

    2017-12-01

    The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.

  6. How does spa treatment affect cardiovascular function and vascular endothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio.

    Science.gov (United States)

    Karaarslan, Fatih; Ozkuk, Kagan; Seringec Karabulut, Serap; Bekpinar, Seldag; Karagulle, Mufit Zeki; Erdogan, Nergis

    2017-12-07

    The study aims to investigate the effect of spa treatment on vascular endothelium and clinical symptoms of generalized osteoarthritis. Forty generalized osteoarthritis (GOA) patients referred to a government spa hospital, and 40 GOA patients followed on university hospital locomotor system disease ambulatory clinics were included as study and control groups, respectively. Study group received spa treatment including thermal water baths, physical therapy modalities, and exercises. Control group was followed with home exercises for 15 days. Plasma ADMA, L-arginine, L-arginine/ADMA ratio, routine blood analyses, 6-min walking test, including fingertip O2 saturation, systolic/diastolic blood pressure, and pulse rate, were measured at the beginning and at the end of treatment. Groups were evaluated with VAS pain, patient, and physician global assessment; HAQ; and WOMAC at the beginning, at the end, and after 1 month of treatment. In study group, L-arginine and L-arginine/ADMA ratio showed statistically significant increase after treatment. Plasma ADMA levels did not change. There is no significant difference in intergroup comparison. Study group displayed statistically significant improvements in all clinical parameters. The study showed that spa treatment does not cause any harm to the vascular endothelium through ADMA. Significant increase in plasma L-arginine and L-arginine/ADMA ratio suggests that balneotherapy may play a preventive role on cardiovascular diseases. Balneotherapy provides meaningful improvements on clinical parameters of GOA.

  7. Oral Delivery of L-arginine Stimulates Prostaglandin-dependent Secretory Diarrhea in Cryptosporidium parvum–infected Neonatal Piglets

    National Research Council Canada - National Science Library

    Gookin, Jody L; Foster, Derek M; Coccaro, Maria R; Stauffer, Stephen H

    2008-01-01

    .... MATERIALS AND METHODS:Neonatal piglets were fed a liquid milk replacer and on day 3 of age infected or not with 10 C parvum oocysts and the milk replacer supplemented with L-arginine or L-alanine...

  8. Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery.

    Science.gov (United States)

    Nakase, Ikuhiko; Noguchi, Kosuke; Aoki, Ayako; Takatani-Nakase, Tomoka; Fujii, Ikuo; Futaki, Shiroh

    2017-05-16

    Extracellular vesicles (EVs) including exosomes have been shown to play crucial roles in cell-to-cell communication because of their ability to carry biofunctional molecules (e.g., microRNAs and enzymes). EVs also have pharmaceutical advantages and are highly anticipated to be a next-generation intracellular delivery tool. Here, we demonstrate an experimental technique that uses arginine-rich cell-penetrating peptide (CPP)-modified EVs to induce active macropinocytosis for effective cellular EV uptake. Modification of arginine-rich CPPs on the EV membrane resulted in the activation of the macropinocytosis pathway, and the number of arginine residues in the peptide sequences affected the cellular EV uptake efficiency. Consequently, the ribosome-inactivating protein saporin-encapsulated EVs modified with hexadeca-arginine (R16) peptide effectively attained anti-cancer activity.

  9. Arginine vasopressin stimulates phosphoinositide turnover in an enriched rat Leydig cell preparation

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and phosphatidyl......An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol......-dependent feedback inhibition of the stimulation. Other agonists that might have a regulatory function in the testis were tested for possible effects on phosphoinositide metabolism. Of prostaglandin E (10 µm), angiotensin II (0.1 µM), and bradykinin (0.9 µM), only the latter induced a significant increase...

  10. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Horn, Heiko; Jungmichel, Stephanie

    2014-01-01

    mono-methylation (MMA) sites. We thereby identify 1,027 site-specific MMA sites on 494 human proteins, discovering numerous novel mono-methylation targets and confirming the majority of currently known MMA substrates. Nuclear RNA-binding proteins involved in RNA processing, RNA localization......, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared to the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers...... strong site-specific regulation of MMA sites during transcriptional arrest. Interestingly, several MMA sites are down-regulated after a few hours of transcriptional arrest. In contrast, the corresponding di-methylation or protein expression level is not altered in expression, confirming that MMA sites...

  11. Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase.

    Science.gov (United States)

    Ullah, A H; Cummins, B J; Dischinger, H C

    1991-07-15

    Reaction of Aspergillus ficuum phytase with the arginine specific modifier 1,2-cyclohexanedione causes a rapid loss of activity. The inactivation can be partially reversed by 0.2 M hydroxylamine and exhibits pseudo-first order kinetics. The reaction order and second order rate constant of inactivation were 0.87 and 6.72 M-1 Min-1, respectively. Amino acid analysis of modified phytase indicates that about 7 arginine of the total 19 were modified. While the chymotryptic maps of treated and untreated phytase wer virtually identical, the tryptic maps had 4 peaks of altered mobility. An Arg containing tripeptide was identified in the phytase which is also present in other phosphohydrolases and may represent one of the labile Arg involved in the formation of the active site.

  12. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora.

    Science.gov (United States)

    Elleuche, Skander; Pöggeler, Stefanie

    2008-11-01

    Cyanase degrades toxic cyanate to NH3 and CO2 in a bicarbonate-dependent reaction. High concentrations of cyanate are fairly toxic to organisms. Here, we characterize a eukaryotic cyanase for the first time. We have isolated the cyn1 gene encoding a cyanase from the filamentous ascomycete Sordaria macrospora and functionally characterized the cyn1 product after heterologous expression in Escherichia coli. Site-directed mutagenesis confirmed a predicted catalytic centre of three conserved amino-acids. A Deltacyn1 knockout in S. macrospora was totally devoid of cyanase activity and showed an increased sensitivity to exogenously supplied cyanate in an arginine-depleted medium, defects in ascospore germination, but no other obvious morphological phenotype. By means of real-time PCR we have demonstrated that the transcriptional level of cyn1 is markedly elevated in the presence of cyanate and down-regulated by addition of arginine. The putative functions of cyanase in fungi are discussed.

  13. Synthesis and cytotoxicity of azo nano-materials as new biosensors for L-Arginine determination.

    Science.gov (United States)

    Shang, Xuefang; Luo, Leiming; Ren, Kui; Wei, Xiaofang; Feng, Yaqian; Li, Xin; Xu, Xiufang

    2015-06-01

    Inspired from biological counterparts, chemical modification of azo derivatives with function groups may provide a highly efficient method to detect amino acid. Herein, we have designed and prepared a series of azo nano-materials involving -NO2, -COOH, -SO3H and naphthyl group, which showed high response for Arginine (Arg) among normal twenty kinds of (Alanine, Valine, Leucine, Isoleucine, Methionine, Aspartic acid, Glutamic acid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, nano-material 3 exhibited high binding ability for Arg and low cytotoxicity to KYSE450 cells over a concentration range of 5-50μmol·L(-1) which may be used a biosensor for the Arg detection in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Arginine does not exacerbate markers of inflammation in cocultures of human enterocytes and leukocytes

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Negrier, I.; Neveux, N.

    2007-01-01

    , a monolayer of intestinal epithelial cells (Caco-2) separated compartments with nonpathogenic Escherichia coli and mononuclear leukocytes. Activation of enterocytes and leukocytes was assessed by the measurement of nitric oxide, TNF-alpha, IL-6, IL-8, IL-10, and IFN-gamma. Further outcomes were...... with arginine did not affect epithelial integrity, production of any of the cytokines investigated, or the amount of nitric oxide. The amino acid used primarily by nonstimulated intestinal epithelial cells cocultured with leukocytes was glutamine. Activation of IEC with bacteria significantly enhanced......-talk between human enterocytes and leukocytes. Because it also does not seem to affect the integrity of enterocyte layers, a detrimental role of arginine during septic-like conditions seems unlikely....

  15. Synthesis and characterization of bis(thiourea)zinc chloride doped with L-arginine

    Energy Technology Data Exchange (ETDEWEB)

    Moitra, Sweta [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Kar, Tanusree, E-mail: mstk@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2009-09-15

    Single crystals of bis(thiourea)zinc chloride (BTZC) doped with basic amino acid L-arginine were grown successfully by slow evaporation method at ambient temperature. The doped crystals are optically better and more transparent than the pure ones having wide transmission spectra lying between 280 and 2000 nm. The comparative study of solubility curve shows a slight reduction in the solubility of the doped crystals. There is a drastic change in morphology due to doping which is also reflected in the X-ray diffraction pattern. The Fourier transform infrared spectroscopy study confirms the incorporation of L-arginine into BTZC crystal, as there is a deepening of the absorption peak at around 3200 cm{sup -1}. The second harmonic generation efficiency of the pure and the doped samples are almost same, which is equivalent to potassium dihydrogen phosphate. The doped crystals are harder than the pure one.

  16. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev

    2015-01-01

    Co-amorphous drug formulations provide the possibility to stabilize a drug in its amorphous form by interactions with low molecular weight compounds, e.g. amino acids. Recent studies have shown the feasibility of spray drying as a technique to manufacture co-amorphous indomethacin......–arginine in a larger production scale. In this work, a tablet formulation was developed for a co-amorphous salt, namely spray dried indomethacin–arginine (SD IND–ARG). The effects of compaction pressure on tablet properties, physical stability and dissolution profiles under non-sink conditions were examined....... Dissolution profiles of tablets with SD IND–ARG (TAB SD IND–ARG) were compared to those of tablets containing a physical mixture of crystalline IND and ARG (TAB PM IND–ARG) and to the dissolution of pure spray dried powder. Concerning tableting, the developed formulation allowed for the preparation of tablets...

  17. Five Friends of Methylated Chromatin Target of Protein-Arginine-Methyltransferase[Prmt]-1 (Chtop), a Complex Linking Arginine Methylation to Desumoylation*

    Science.gov (United States)

    Fanis, Pavlos; Gillemans, Nynke; Aghajanirefah, Ali; Pourfarzad, Farzin; Demmers, Jeroen; Esteghamat, Fatemehsadat; Vadlamudi, Ratna K.; Grosveld, Frank; Philipsen, Sjaak; van Dijk, Thamar B.

    2012-01-01

    Chromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC). 5FMC is a nuclear complex that can only be recruited by Chtop when the latter is arginine-methylated by Prmt1. It consists of the co-activator Pelp1, the Sumo-specific protease Senp3, Wdr18, Tex10, and Las1L. Pelp1 functions as the core of 5FMC, as the other components become unstable in the absence of Pelp1. We show that recruitment of 5FMC to Zbp-89, a zinc-finger transcription factor, affects its sumoylation status and transactivation potential. Collectively, our data provide a mechanistic link between arginine methylation and (de)sumoylation in the control of transcriptional activity. PMID:22872859

  18. Biochemical and structural characterization of a novel arginine kinase from the spider Polybetes pythagoricus

    OpenAIRE

    Aldana Laino; Alonso A. Lopez-Zavala; Karina D. Garcia-Orozco; Jesus S. Carrasco-Miranda; Marianela Santana; Vivian Stojanoff; Rogerio R. Sotelo-Mundo; Carlos Fernando Garcia

    2017-01-01

    Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Arg...

  19. Amino acid signaling in the intestine : The roles of glutamine, leucine and arginine

    OpenAIRE

    Yoshida, Kazuhiro; Naomoto, Yoshio; Shigemitsu, Kaori; YAMATSUJI, Tomoki; TAKAOKA, MUNENORI; Fukazawa, Takuya; Hayashi, Jiro; ISHIDA, Naomasa; HIRABAYASHI, Yoko; URAKAMI, Atsushi; Nakashima, Kazutaka; Morita, Ichiro; Haisa, Minoru

    2014-01-01

    Amino acids have an influence on the function of organs, glands, tendons and arteries. Some of them play crucial roles in the control of gene expression by controlling the initiation phase of mRNA translation. Furthermore, recent studies have revealed that some kinds of amino acids directly participate in important signal transduction in the immune system. Glutamine, leucine and arginine play crucial roles in intestinal growth, integrity, and function through cellular signaling mechanisms. In...

  20. Delayed nootropic effects of arginine vasopressin after early postnatal chronic administration to albino rat pups.

    Science.gov (United States)

    Kim, P A; Voskresenskaya, O G; Kamensky, A A

    2009-06-01

    Intranasal administration of arginine vasopressin (10 microg/kg) to albino rat pups had a strong nootropic effect during training with positive and negative reinforcement. This effect was different in animals of various age groups: training with positive reinforcement was improved in "adolescent" rats and pubertal animals, while during training with negative reinforcement, the nootropic effect of the peptide was more prolonged and persisted also in adult animals.

  1. Low dose vitamin C, vitamin E or L-arginine supplementation and ...

    African Journals Online (AJOL)

    The effect of chronic low-dose supplementation with vitamin C (300mg/day for 6 weeks in adults or 100mg/day for 6 weeks in children) or vitamin E (100 IU/day for 6 weeks in adults) or L-Arginine (1g/day for 6 weeks in adults) in ameliorating the pathophysiology and combating the deleterious effects of sickle cell disease in ...

  2. Calendula officinalis ameliorates l-arginine-induced acute necrotizing pancreatitis in rats.

    Science.gov (United States)

    Kaur, Jagdeep; Sidhu, Shabir; Chopra, Kanwaljit; Khan, M U

    2016-12-01

    Calendula officinalis L. (Asteraceae) has been traditionally used in treating inflammation of internal organs, gastrointestinal tract ulcers and wound healing. The present study investigates the effect of ethanol extract (95%) of Calendula officinalis flowers in l-arginine induced acute necrotizing pancreatitis in rats. Rats were divided into four groups: normal control, l-arginine control, Calendula officinalis extract (COE) treated and melatonin treated (positive control), which were further divided into subgroups (24 h, day 3 and 14) according to time points. Two injections of l-arginine 2 g/kg i.p. at 1 h intervals were administered in l-arginine control, COE and melatonin-treated groups to produce acute necrotizing pancreatitis. Biochemical parameters [serum amylase, lipase, pancreatic amylase, nucleic acid content, total proteins, transforming growth factor-β1 (TGF-β1), collagen content, lipid peroxidation, reduced glutathione and nitrite/nitrate] and histopathological studies were carried out. COE treatment (400 mg/kg p.o.) was found to be beneficial. This was evidenced by significantly lowered histopathological scores (2 at day 14). Nucleic acid content (DNA 21.1 and RNA 5.44 mg/g pancreas), total proteins (0.66 mg/mL pancreas) and pancreatic amylase (1031.3 100 SU/g pancreas) were significantly improved. Marked reduction in pancreatic oxidative and nitrosative stress; collagen (122 μmoles/100 mg pancreas) and TGF-β1 (118.56 pg/mL) levels were noted. Results obtained were comparable to those of positive control. The beneficial effect of COE may be attributed to its antioxidant, antinitrosative and antifibrotic actions. Hence, the study concludes that COE promotes spontaneous repair and regeneration of the pancreas.

  3. Modulating short tryptophan- and arginine-rich peptides activity by substitution with histidine.

    Science.gov (United States)

    Bacalum, Mihaela; Janosi, Lorant; Zorila, Florina; Tepes, Ana-Maria; Ionescu, Cristina; Bogdan, Elena; Hadade, Niculina; Craciun, Liviu; Grosu, Ion; Turcu, Ioan; Radu, Mihai

    2017-07-01

    High antimicrobial efficacy of short tryptophan-and arginine-rich peptides makes them good candidates in the fight against pathogens. Substitution of tryptophan and arginine by histidine could be used to modulate the peptides efficacy by optimizing their structures. The peptide (RRWWRWWRR), reported to showed good antimicrobial efficacy, was used as template, seven new analogs being designed substituting tryptophan or arginine with histidine. The peptides' efficacy was tested against E. coli, B. subtilis and S. aureus. The cytotoxicity and hemolytic effect were evaluated and the therapeutic index was inferred for each peptide. Atomic force microscopy and molecular simulation were used to analyze the effects of peptides on bacterial membrane. The substitution of tryptophan by histidine proved to strongly modulate the antimicrobial activity, mainly by changing the peptide-to-membrane binding energy. The substitution of arginine has low effect on the antimicrobial efficacy. The presence of histidine residue reduced the cytotoxic and hemolytic activity of the peptides in some cases maintaining the same efficacy against bacteria. The peptides' antimicrobial activity was correlated to the 3D-hydrophobic moment and to a simple structure-based packing parameter. The results show that some of these peptides have the potential to become good candidates to fight against bacteria. The substitution by histidine proved to fine tune the therapeutic index allowing the optimization of the peptide structure mainly by changing its binding energy and 3D-hydrophobic moment. The short tryptophan reach peptides therapeutic index can be maximized using the histidine substitution to optimize their structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Controlled study of enteral arginine supplementation in burned children: impact on immunologic and metabolic status.

    Science.gov (United States)

    Marin, Veronica B; Rodriguez-Osiac, Lorena; Schlessinger, Liana; Villegas, Jorge; Lopez, Marcelo; Castillo-Duran, Carlos

    2006-01-01

    We compared the effects of an arginine-supplemented diet with those of an isocaloric isonitrogenous diet on immune and metabolic response of children with burns. This was a double-blind, randomized, placebo-controlled trial in a burn treatment center of a pediatric hospital in Santiago, Chile. All children (1-5 y of age) admitted within 48 h of a moderate to deep burn injury covering 10% to 40% of total body surface area were evaluated. Twenty-eight children met the criteria and were randomly assigned to receive an arginine-supplemented diet (AG; n = 14) or an isocaloric isonitrogenous diet (CG; control, n = 14) for 14 d. Samples were collected at admission (baseline) and on days 7 and 14 for lymphoproliferative response to mitogens, plasma interleukins (interleukin-1, interleukin-6, tumor necrosis factor-alpha), plasma arginine and ornithine levels, serum C-reactive protein, prealbumin, albumin, glucose, and total urinary nitrogen. The AG enhanced lymphoproliferative responses (analysis of variance, P responses increased to 144% in the AG group and decreased to 56% in the CG group; both groups returned to normal by day 14. Baseline interleukin-6 was significantly increased in all children. There were no differences in plasma concentrations of interleukin-1, interleukin-6, tumor necrosis factor-alpha, C-reactive protein, prealbumin, albumin, or glucose between the AG and CG groups. On day 7 plasma ornithine levels increased significantly in the AG versus CG group (P change. An exclusively AG improves mitogen-stimulated lymphocyte proliferation in burned children. The benefits of arginine for the immune system do not appear to be related to a metabolic response. The biological significance of this finding remains to be determined.

  5. Arteriolar vasoconstrictive response: comparing the effects of arginine vasopressin and norepinephrine

    OpenAIRE

    Friesenecker, Barbara E; Tsai, Amy G; Martini, Judith; Ulmer, Hanno; Wenzel, Volker; Hasibeder, Walter R; Intaglietta, Marcos; D?nser, Martin W

    2006-01-01

    INTRODUCTION: This study was designed to examine differences in the arteriolar vasoconstrictive response between arginine vasopressin (AVP) and norepinephrine (NE) on the microcirculatory level in the hamster window chamber model in unanesthetized, normotonic hamsters using intravital microscopy. It is known from patients with advanced vasodilatory shock that AVP exerts strong additional vasoconstriction when incremental dosage increases of NE have no further effect on mean arterial blood pre...

  6. Abrogation of the Twin Arginine Transport System in Salmonella enterica Serovar Typhimurium Leads to Colonization Defects during Infection

    Science.gov (United States)

    Reynolds, M. Megan; Bogomolnaya, Lydia; Guo, Jinbai; Aldrich, Lindsay; Bokhari, Danial; Santiviago, Carlos A.; McClelland, Michael; Andrews-Polymenis, Helene

    2011-01-01

    TatC (STM3975) is a highly conserved component of the Twin Arginine Transport (Tat) systems that is required for transport of folded proteins across the inner membrane in gram-negative bacteria. We previously identified a ΔtatC mutant as defective in competitive infections with wild type ATCC14028 during systemic infection of Salmonella-susceptible BALB/c mice. Here we confirm these results and show that the ΔtatC mutant is internalized poorly by cultured J774-A.1 mouse macrophages a phenotype that may be related to the systemic infection defect. This mutant is also defective for short-term intestinal and systemic colonization after oral infection of BALB/c mice and is shed in reduced numbers in feces from orally infected Salmonella-resistant (CBA/J) mice. We show that the ΔtatC mutant is highly sensitive to bile acids perhaps resulting in the defect in intestinal infection that we observe. Finally, the ΔtatC mutant has an unusual combination of motility phenotypes in Salmonella; it is severely defective for swimming motility but is able to swarm well. The ΔtatC mutant has a lower amount of flagellin on the bacterial surface during swimming motility but normal levels under swarming conditions. PMID:21298091

  7. N-nitro-L-arginine, a nitric oxide synthase inhibitor, aggravates iminodipropionitrile-induced neurobehavioral and vestibular toxicities in rats.

    Science.gov (United States)

    Khan, Haseeb Ahmad

    2012-11-01

    Exposure of iminodipropionitrile (IDPN) to rodents produces permanent behavioral syndrome characterized by repetitive head movements, circling and back walking. Other synthetic nitriles of industrial importance such as crotonitrile and allylnitrile are also able to produce similar motor deficits in experimental animals. However, due to the well-defined behavioral deficits and their easy quantification, IDPN-induced behavioral syndrome is a preferential animal model to test the interaction of various agents with synthetic nitriles. This study reports the effect of non-specific nitric oxide synthase inhibitor, N-nitro-L-arginine (NARG) on IDPN-induced neurobehavioral toxicity in adult male Wistar rats. Four groups of animals were given i.p. injections of IDPN (100 mg/kg) for 6 days. These rats were treated with oral administration of NARG in the doses of 0 (IDPN alone group), 50, 150 and 300 mg/kg, 60 min before IDPN, respectively. Control rats received vehicle only, whereas another group was treated with 300 mg/kg of NARG alone (without IDPN). The results showed that NARG significantly exacerbated the incidence and intensity of IDPN-induced dyskinetic head movements, circling and back walking. The histology of inner ear showed massive degeneration of the sensory hair cells in the crista ampullaris of rats receiving the combined treatment with IDPN and NARG, suggesting a possible role of nitric oxide in IDPN-induced neurobehavioral syndrome in rats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Indications and contraindications for infusing specific amino acids (leucine, glutamine, arginine, citrulline, and taurine) in critical illness.

    Science.gov (United States)

    Ginguay, Antonin; De Bandt, Jean-Pascal; Cynober, Luc

    2016-03-01

    The review assesses the utility of supplementing parenteral or enteral nutrition of ICU patients with each of five specific amino acids that display pharmacological properties. Specifying indications implies also stating contraindications.Combined supplementation of amino acids with ω3-fatty acids and/or trace elements (immune-enhancing diets) will not be considered in this review because these mixtures do not allow the role of amino acids in the effect (positive or negative) of the mixture to be isolated, and so cannot show whether or not supplementation of a given amino acid is indicated. After decades of unbridled use of glutamine (GLN) supplementation in critically ill patients, recent large trials have brought a note of caution, indicating for example that GLN should not be used in patients with multiple organ failure. Yet these large trials do not change the conclusions of recent meta-analyses. Arginine (ARG), as a single dietary supplement, is probably not harmful in critical illness, in particular in a situation of ARG deficiency syndrome with low nitric oxide production. Citrulline supplementation strongly improves microcirculation in animal models with gut injury, but clinical studies are lacking. Taurine has a potent protective effect against ischemic reperfusion injury. Amino acid-based pharmaconutrition has displayed familiar 'big project' stages: enthusiasm (citrulline and taurine), doubt (GLN), hunt for the guilty (ARG), and backpedalling (leucine). Progress in this field is very slow, and sometimes gives way to retreat, as demonstrated by recent large trials on GLN supplementation.

  9. Suicide gene therapy using reducible poly (oligo-D-arginine) for the treatment of spinal cord tumors.

    Science.gov (United States)

    Won, Young-Wook; Kim, Kyung-Min; An, Sung Su; Lee, Minhyung; Ha, Yoon; Kim, Yong-Hee

    2011-12-01

    Suicide gene therapy based on a combination of herpes simplex virus-thymidine kinase (HSV-tk) and ganciclovir (GCV) has obstacles to achieving a success in clinical use for the treatment of cancer due to inadequate thymidine kinase (TK) expression. The primary concern for improving anticancer efficacy of the suicide gene therapy is to develop an appropriate carrier that highly expresses TK in vivo. Despite great advances in the development of non-viral vectors, none has been used in cancer suicide gene therapy, not even in experimental challenge. Reducible poly (oligo-D-arginine) (rPOA), one of the effective non-viral carriers working in vivo, was chosen to deliver HSV-tk to spinal cord tumors which are appropriate targets for suicide gene therapy. Since the system exerts toxicity only in dividing cells, cells in the central nervous system, which are non-proliferative, are not sensitive to the toxic metabolites. In the present study, we demonstrated that the locomotor function of the model rat was maintained through the tumor suppression resulting from the tumor-selective suicide activity by co-administration of rPOA/HSV-tk and GCV. Thus, rPOA plays a crucial role in suicide gene therapy for cancer, and an rPOA/HSV-tk and GCV system could help promote in vivo trials of suicide gene therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.

    2012-10-01

    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  11. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    Science.gov (United States)

    Rydberg, Hanna A; Kunze, Angelika; Carlsson, Nils; Altgärde, Noomi; Svedhem, Sofia; Nordén, Bengt

    2014-07-01

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  12. Optimal content and ratio of lysine to arginine in the diet of Pacific white shrimp, Litopenaeus vannamei

    Science.gov (United States)

    Feng, Zhengfu; Dong, Chaohua; Wang, Linlin; Hu, Yanjiang; Zhu, Wei

    2013-07-01

    The optimal quantity of dietary lysine (Lys) and arginine (Arg), and the optimal ratio of dietary Lys to Arg for Pacific white shrimp Litopenaeus vannamei were investigated. Coated Lys and Arg were added to a basal diet (37.99% crude protein and 7.28% crude lipid) to provide graded levels of Lys and Arg. The experimental diets contained three Lys levels (2.51%, 2.11%, and 1.70% of total diet), and three Arg levels (1.41%, 1.80%, and 2.21% of total diet) and all combinations of these levels were tested. Pacific white shrimp, with a mean weight of 3.62±0.1 g, were randomly distributed in 36 fiberglass tanks with 30 shrimp per tank and reared on the experimental diets for 50 days. After the feeding trial, the growth performance, survival, feed conversion rate (FCR), body composition and protease and lipase activities in the hepatopancreases of the experimental shrimps were determined. The results show that weight gain (WG), specific growth rate (SGR), FCR, body protein, body Lys and Arg content were significantly affected by dietary Lys and Arg ( P 0.05). Therefore, according to our results, the optimal Lys and Arg quantities in the diet of Pacific white shrimp, L. vannamei, were considered to be 2.11%-2.51% and 1.80%-2.21%, respectively, and the optimal ratio to be 1:0.88-1:1.05.

  13. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  14. Abrogation of the twin arginine transport system in Salmonella enterica serovar Typhimurium leads to colonization defects during infection.

    Directory of Open Access Journals (Sweden)

    M Megan Reynolds

    2011-01-01

    Full Text Available TatC (STM3975 is a highly conserved component of the Twin Arginine Transport (Tat systems that is required for transport of folded proteins across the inner membrane in gram-negative bacteria. We previously identified a ΔtatC mutant as defective in competitive infections with wild type ATCC14028 during systemic infection of Salmonella-susceptible BALB/c mice. Here we confirm these results and show that the ΔtatC mutant is internalized poorly by cultured J774-A.1 mouse macrophages a phenotype that may be related to the systemic infection defect. This mutant is also defective for short-term intestinal and systemic colonization after oral infection of BALB/c mice and is shed in reduced numbers in feces from orally infected Salmonella-resistant (CBA/J mice. We show that the ΔtatC mutant is highly sensitive to bile acids perhaps resulting in the defect in intestinal infection that we observe. Finally, the ΔtatC mutant has an unusual combination of motility phenotypes in Salmonella; it is severely defective for swimming motility but is able to swarm well. The ΔtatC mutant has a lower amount of flagellin on the bacterial surface during swimming motility but normal levels under swarming conditions.

  15. The Relation Between Thermodynamic and Structural Properties and Cellular Uptake of Peptides Containing Tryptophan and Arginine

    Directory of Open Access Journals (Sweden)

    Ali Shirani

    2015-06-01

    Full Text Available Purpose: Cell-penetrating peptides (CPPs are used for delivering drugs and other macromolecular cargo into living cells. In this paper, we investigated the relationship between the structural/physicochemical properties of four new synthetic peptides containing arginine-tryptophan in terms of their cell membrane penetration efficiency. Methods: The peptides were prepared using solid phase synthesis procedure using FMOC protected amino acids. Fluorescence-activated cell sorting and fluorescence imaging were used to evaluate uptake efficiency. Prediction of the peptide secondary structure and estimation of physicochemical properties was performed using the GOR V method and MPEx 3.2 software (Wimley-White scale, helical wheel projection and total hydrophobic moment. Results: Our data showed that the uptake efficiency of peptides with two tryptophans at the Cand N-terminus were significantly higher (about 4-fold than that of peptides containing three tryptophans at both ends. The distribution of arginine at both ends also increased the uptake efficiency 2.52- and 7.18-fold, compared with arginine distribution at the middle of peptides. Conclusion: According to the obtained results the value of transfer free energies of peptides from the aqueous phase to membrane bilayer could be a good predictor for the cellular uptake efficiency of CPPs.

  16. A putative twin-arginine translocation system in the phytopathogenic bacterium Xylella fastidiosa.

    Science.gov (United States)

    Ciapina, Luciane Prioli; Picchi, Simone Cristina; Lacroix, Jean-Marie; Lemos, Eliana Gertrudes de Macedo; Ödberg-Ferragut, Carmen

    2011-02-01

    The twin-arginine translocation (Tat) pathway of the xylem-limited phytopathogenic bacterium Xylella fastidiosa strain 9a5c, responsible for citrus variegated chlorosis, was explored. The presence of tatA, tatB, and tatC in the X. fastidiosa genome together with a list of proteins harboring 2 consecutive arginines in their signal peptides suggested the presence of a Tat pathway. The functional Tat dependence of X. fastidiosa OpgD was examined. Native or mutated signal peptides were fused to the β-lactamase. Expression of fusion with intact signal peptides mediated high resistance to ampicillin in Escherichia coli tat+ but not in the E. coli tat null mutant. The replacement of the 2 arginines by 2 lysines prevented the export of β-lactamase in E. coli tat+, demonstrating that X. fastidiosa OpgD carries a signal peptide capable of engaging the E. coli Tat machinery. RT-PCR analysis revealed that the tat genes are transcribed as a single operon. tatA, tatB, and tatC genes were cloned. Complementation assays in E. coli devoid of all Tat or TatC components were unsuccessful, whereas X. fastidiosa Tat components led to a functional Tat translocase in E. coli TatB-deficient strain. Additional experiments implicated that X. fastidiosa TatB component could form a functional heterologous complex with the E. coli TatC component.

  17. Histone Arginine Methylation by PRMT7 Controls Germinal Center Formation via Regulating Bcl6 Transcription.

    Science.gov (United States)

    Ying, Zhengzhou; Mei, Mei; Zhang, Peizhun; Liu, Chunyi; He, Huacheng; Gao, Fei; Bao, Shilai

    2015-08-15

    B cells are the center of humoral immunity and produce Abs to protect against foreign Ags. B cell defects lead to diseases such as leukemia and lymphomas. Histone arginine methylation is important for regulating gene activation and silencing in cells. Although the process commonly exists in mammalian cells, its roles in B cells are unknown. To explore the effects of aberrant histone arginine methylation on B cells, we generated mice with a B cell-specific knockout of PRMT7, a member of the methyltransferases that mediate arginine methylation of histones. In this article, we showed that the loss of PRMT7 led to decreased mature marginal zone B cells and increased follicular B cells and promoted germinal center formation after immunization. Furthermore, mice lacking PRMT7 expression in B cells secreted low levels of IgG1 and IgA. Abnormal expression of germinal center genes (i.e., Bcl6, Prdm1, and Irf4) was detected in conditional knockout mice. By overexpressing PRMT7 in the Raji and A20 cell lines derived from B cell lymphomas, we validated the fact that PRMT7 negatively regulated Bcl6 expression. Using chromatin immunoprecipitation-PCR, we found that PRMT7 could recruit H4R3me1 and symmetric H4R3me2 to the Bcl6 promoter. These results provide evidence for the important roles played by PRMT7 in germinal center formation. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. Arginine and antioxidant supplement on performance in elderly male cyclists: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Carpenter Catherine L

    2010-03-01

    Full Text Available Abstract Background Human exercise capacity declines with advancing age. These changes often result in loss of physical fitness and more rapid senescence. Nitric oxide (NO has been implicated in improvement of exercise capacity through vascular smooth muscle relaxation in both coronary and skeletal muscle arteries, as well as via independent mechanisms. Antioxidants may prevent nitric oxide inactivation by oxygen free radicals. The purpose of this study was to investigate the effects of an L-arginine and antioxidant supplement on exercise performance in elderly male cyclists. Methods This was a two-arm prospectively randomized double-blinded and placebo-controlled trial. Sixteen male cyclists were randomized to receive either a proprietary supplement (Niteworks®, Herbalife International Inc., Century City, CA or a placebo powder. Exercise parameters were assessed by maximal incremental exercise testing performed on a stationary cycle ergometer using breath-by-breath analysis at baseline, week one and week three. Results There was no difference between baseline exercise parameters. In the supplemented group, anaerobic threshold increased by 16.7% (2.38 ± 0.18 L/min, p 2 max between control and intervention groups at either week 1 or week 3 by comparison to baseline. Conclusion An arginine and antioxidant-containing supplement increased the anaerobic threshold at both week one and week three in elderly cyclists. No effect on VO2 max was observed. This study indicated a potential role of L-arginine and antioxidant supplementation in improving exercise performance in elderly.

  19. Caries-free subjects have high levels of urease and arginine deiminase activity

    Directory of Open Access Journals (Sweden)

    Evelyn REYES

    2014-06-01

    Full Text Available Objectives: This study investigated the relationship between urease and arginine deiminase system (ADS activities and dental caries through a cross-sectional study. Material and Methods: Urease and ADS activities were measured in saliva and plaque samples from 10 caries-free subjects and 13 caries-active. Urease activity was obtained from the ammonia produced by incubation of plaque and saliva samples in urea. ADS activity was obtained from the ammonia generated by the arginine-HCl and Tris-maleate buffer. Specific activity was defined as micromoles of ammonia per minute per milligram of protein. Shapiro-Wilk statistical test was used to analyze the distribution of the data, and Mann-Whitney test was used to determine the significance of the data. Results: The specific urease activity in saliva and plaque was significantly higher in individuals with low DMFT scores. ADS activity in saliva (6.050 vs 1.350, p=0.0154 and plaque (8.830 vs 1.210, p=0.025 was also higher in individuals with low DMFT scores. Conclusions: Caries-free subjects had a higher ammonia generation activity by urease and arginine deiminase system for both saliva and plaque samples than low caries-active subjects. High levels of alkali production in oral environment were related to caries-free subjects.

  20. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer

    Science.gov (United States)

    Liu, Xiaoxuan; Liu, Cheng; Zhou, Jiehua; Chen, Chao; Qu, Fanqi; Rossi, John J.; Rocchi, Palma; Peng, Ling

    2015-02-01

    RNA interference (RNAi) with small interfering RNA (siRNA) is expected to offer an attractive means to specifically and efficiently silence disease-associated genes for treating various diseases provided that safe and efficient delivery systems are available. In this study, we have established an arginine-decorated amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic PAMAM dendron bearing arginine terminals as nonviral vector for siRNA delivery. Indeed, this dendrimer proved to be very effective at delivering siRNAs in human prostate cancer PC-3 cells and in human hematopoietic CD34+ stem cells, leading to improved gene silencing compared to the corresponding nonarginine decorated dendrimer. Further investigation confirmed that this dendrimer was granted with the capacity to form stable nanoparticles with siRNA and significantly enhance cellular uptake of siRNA. In addition, this dendrimer revealed no discernible cytotoxicity. All these findings demonstrate that decoration of the dendrimer surface with arginine residues is indeed a useful strategy to improve the delivery ability of dendrimers.

  1. Study on mutual interactions and electronic structures of hyaluronan with Lysine, 6-Aminocaproic acid and Arginine.

    Science.gov (United States)

    Chytil, Martin; Trojan, Martin; Kovalenko, Alexander

    2016-05-20

    Interactions between polyelectrolytes and oppositely charged surfactants have been in a great interest for several decades, yet the conventional surfactants may cause a problem in medical applications. Interactivity between polysaccharide hyaluronan (HA) and amino acids Lysine, 6-Aminocaproic acid (6-AcA), and Arginine as an alternative system is reported. The interactions were investigated by means of rheology and electric conductance and the electronic structures were explored by the density functional theory (DFT). Lysine exhibits the strongest interaction of all, which was manifested, e.g. by nearly 6-time drop of the initial viscosity comparing with only 1.3-time lower value in the case of 6-AcA. Arginine interaction with HA was surprisingly weaker in terms of viscosity than that of Lysine due to a lower and delocalized charge density on its guanidine group. According to the DFT calculations, the binding of Lysine to HA was found to be more flexible, while Arginine creates more rigid structure with HA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. D-glyceraldehyde-3-phosphate dehydrogenase. Properties of the enzyme modified at arginine residues.

    Science.gov (United States)

    Nagradova, N K; Schmalhausen, E V; Levashov, P A; Asryants, R A; Muronetz, V I

    1996-01-01

    Examination of the properties of Escherichia coli and rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase (GPDHs) modified by 2,3-butanedione has shown that both tetrameric enzymes are stabilized, on selective modification of arginine residues (probably Arg 231), in an asymmetric state with only two active centers capable of performing the dehydrogenase reaction. The functionally incompetent active centers can be alkylated by iodoacetate or iodoacetamide in the case of E. coli enzyme, but are inaccessible for these reagents in the case of rabbit muscle D-GPDH. These results are consistent with the idea that the two homologous enzymes share common principles of the protein design, but differ somewhat in their active centers geometries. Modification of the arginine procedures marked changes in the shape of the charge transfer complex spectrum in the region of 300-370 nm, suggestive of the alterations in the microenvironment of the nicotinamide ring of NAD(+), although the coenzyme binding characteristics remain largely unaltered. On arginine modification, the enzyme becomes insensitive to the effect of AMP on the kinetic parameters of p-nitrophenyl acetate hydrolysis reaction.

  3. Divergent effects of L-arginine-NO pathway modulators on diazepam and flunitrazepam responses in NOR task performance.

    Science.gov (United States)

    Orzelska, Jolanta; Talarek, Sylwia; Listos, Joanna; Fidecka, Sylwia

    2015-05-01

    The goal of the study was an evaluation of the degree, in which nitric oxide (NO) is involved in the benzodiazepines (BZs)-induced recognition memory impairment in rats. The novel object recognition (NOR) test was used to examine recognition memory. The current research focused on the object memory impairing effects of diazepam (DZ; 0.5 and 1mg/kg, sc) and flunitrazepam (FNZ; 0.1 and 0.2mg/kg; sc) in 1-hour delay periods in rats. It was found that acute ip injection of L-arginine (L-arg; 250 and 500 mg/kg; ip), 5 min before DZ administration (0.5mg/kg, sc) prevented DZ-induced memory deficits. On the other hand, it was also proven that L-arg (125, 250 and 500 mg/kg; ip) did not change the behaviour of rats in the NOR test, following a combined administration with FNZ at a threshold dose (0.05 mg/kg; sc). It was also found that 7-nitroindazole (7-NI; 10, 20 and 40 mg/kg; ip) induced amnesic effects in DZ in rats, submitted to the NOR test, following a combined administration of 7-NI with a threshold dose of DZ (0.25mg/kg; sc). However, following a combined administration of 7-NI (10, 20 and 40 mg/kg; ip) with FNZ (0.1mg/kg; sc), it was observed that 7-NI inhibited the amnesic effects of FNZ on rats in the NOR test. Those findings led us to hypothesize that NO synthesis suppression may induce amnesic effects of DZ, while preventing FNZ memory impairment in rats, submitted to NOR tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Carbamoyl phosphate synthetase subunit MoCpa2 affects development and pathogenicity by modulating arginine biosynthesis in Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    2016-12-01

    Full Text Available Arginine is a semi-essential amino acid that affects physiological and biochemical functions. The CPA2 gene in yeast encodes a large subunit of arginine-specific carbamoyl phosphate synthetase and is involved in arginine biosynthesis. Here, an ortholog of yeast CPA2 was identified in the rice blast fungus Magnaporthe oryzae, and was named MoCPA2. MoCpa2 is an 1180-amino acid protein which contains an ATP grasp domain and two CPSase domains. Targeted deletion of MoCPA2 supported its role in de novo arginine biosynthesis in M. oryzae as mutant phenotypes were complemented by arginine but not ornithine. The ΔMocpa2 mutant exhibited defects in asexual development and pathogenicity but not appressorium formation. Further examination revealed that the invasive hyphae of the ΔMocpa2 mutant were restricted mainly to the primary infected cells. In addition, the ΔMocpa2 mutant was unable to induce a plant defense response and had the ability to scavenge ROS during pathogen-plant interactions. Structure analysis revealed that the ATP grasp domain and each CPS domain were indispensable for the proper localization and full function of MoCpa2. In summary, our results indicate that MoCpa2 plays an important role in arginine biosynthesis, and affects growth, conidiogenesis, and pathogenicity. These results suggest that research into metabolism and processes that mediate amino acid synthesis are valuable for understanding M. oryzae pathogenesis.

  5. The Effects of L-arginine Supplement on Growth, Meat Production, and Fat Deposition in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Marziyeh Ebrahimi

    2014-04-01

    Full Text Available The objective of the present study was to investigate the effects of dietary L-arginine on performance, meat production and its chemical composition, carcass fat deposition, intestine morphology and blood parameters of Ross broiler chickens during 46 days. In this experiment, 192 day old commercial female Ross broiler chicks were used with 4 dietary treatments and 4 replications in a completely randomized design. Dietary treatments included 100, 153, 168 and 183 percentages of digestible arginine, based on the Ross catalogue recommendation. On 46th day of experiment, three chickens per replication were selected randomly, blood samples were collected from each, and thereafter they were slaughtered in order to measure carcass traits, intestine morphology and meat chemical composition. The results showed that dietary arginine treatments caused a significant increase on body weight, carcass efficiency, muscle yield, protein and fat content of muscle, heart weight, and growth of small intestine, while decreased abdominal fat weight. Arginine supplementation increased plasma concentrations of triiodothyronine and thyroxine, but reduced plasma concentrations of cholesterol, triglyceride, and urea. According to the results of this study, consumption level of 168% digestible arginine, based on the Ross catalogue recommendation, had the best results on growth improvement and carcass traits, while consumption level of 183% digestible arginine had the greatest fat carcass reduction.

  6. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    María R. Alberto

    2012-03-01

    Full Text Available The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC, found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively. ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  7. Determination of Homoarginine, Arginine, NMMA, ADMA, and SDMA in Biological Samples by HPLC-ESI-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Domenico Castaldo

    2013-10-01

    Full Text Available NG,NG-dimethyl-L-arginine (ADMA and NG-methyl-L-arginine (NMMA are endogenous inhibitors of nitric oxide synthase (NOS. In contrast, NG,N'G-dimethyl-L-arginine (SDMA possesses only a weak inhibitory potency towards neuronal NOS and it is known to limit nitric oxide (NO production by competing with L-arginine for cellular uptake. The inhibition of NOS is associated with endothelial dysfunction in cardiovascular diseases as well in chronic renal failure. L-Homoarginine (HArg, a structural analog of L-arginine (Arg, is an alternative but less efficient substrate for NOS. Besides, it inhibits arginase, leading to an increased availability of L-arginine for NOS to produce NO. However, its relation with cardiovascular disease remains unclear. To date, several analytical methods for the quantitative determination of Arg, HArg, NMMA, AMDA, and SDMA in biological samples have been described. Here, we present a simple, fast, and accurate HPLC-ESI-MS/MS method which allows both the simultaneous determination and quantification of these compounds without needing derivatization, and the possibility to easily modulate the chromatographic separation between HArg and NMMA (or between SDMA and ADMA. Data on biological samples revealed the feasibility of the method, the minimal sample preparation, and the fast run time which make this method very suitable and accurate for analysis in the basic and clinical settings.

  8. Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats

    Directory of Open Access Journals (Sweden)

    Milan Holecek

    2016-04-01

    Full Text Available Chronic arginine intake is believed to have favorable effects on the body. However, it might be hypothesized that excessive consumption of an individual amino acid exerts adverse effects on distribution and metabolism of other amino acids. We evaluated the effect of chronic intake of arginine on amino acid concentrations in blood plasma, liver, kidneys, and soleus and extensor digitorum longus muscles. Rats were fed a standard diet or a high-arginine diet (HAD for two months. Half of the animals in each group were sacrificed in the fed state, and the other half after fasting overnight. HAD increased blood plasma concentrations of urea, creatinine, arginine, and ornithine and decreased most other amino acids. Arginine and ornithine also increased in muscles and kidneys; an increase of lysine was observed in both muscle types. Methionine, phenylalanine, threonine, asparagine, glycine, serine, and taurine decreased in most tissues of HAD fed animals. Most of the effects of HAD disappeared after overnight fasting. It is concluded that (i enhanced dietary arginine intake alters distribution of almost all amino acids; and (ii to attain a better assessment of the effects of various nutritional interventions, an appropriate number of biochemical measurements must be performed in both postprandial and postabsorptive states.

  9. Adjuvant properties of Cytosine-phosphate-guanosine oligodeoxynucleotide in combination with various polycations in an ovalbumin-vaccine model.

    Science.gov (United States)

    Maubant, Sylvie; Banissi, Claire; Beck, Samantha; Chauvat, Anne; Carpentier, Antoine F

    2011-08-01

    Oligonucleotides containing CpG motifs (cytosine-phosphate-guanosine oligodeoxynucleotide [CpG ODN]) display strong immunostimulatory effects, and polycations have been previously reported as cellular delivery system. In the present study, we investigated the adjuvant properties of combinations of a CpG ODN with various polycations (poly-arginine, poly-lysine, poly-histidine, or chitosan) in an ovalbumin vaccination model. We showed that, when combined to CpG ODN, poly-arginine and poly-histidine, but not poly-lysine or chitosan, enhanced efficiently both the IgG antibody production and the number of splenocytes secreting interferon-gamma after stimulation with a CD8+ T cell-restricted peptide. Interestingly, CpG ODN-poly-arginine, which was the most efficient, compared favorably to the complete Freund's adjuvant and aluminium salts and induced no local toxicity, making this combination a very attractive adjuvant for vaccines.

  10. L-Arginine Destabilizes Oral Multi-Species Biofilm Communities Developed in Human Saliva

    Science.gov (United States)

    Kolderman, Ethan; Bettampadi, Deepti; Samarian, Derek; Dowd, Scot E.; Foxman, Betsy; Jakubovics, Nicholas S.; Rickard, Alexander H.

    2015-01-01

    The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37oC. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm3/μm2) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi

  11. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva.

    Science.gov (United States)

    Kolderman, Ethan; Bettampadi, Deepti; Samarian, Derek; Dowd, Scot E; Foxman, Betsy; Jakubovics, Nicholas S; Rickard, Alexander H

    2015-01-01

    The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37° C. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm(3)/μm(2)) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi

  12. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva.

    Directory of Open Access Journals (Sweden)

    Ethan Kolderman

    Full Text Available The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS in pooled filter-sterilized cell-free saliva (CFS at 37° C. The addition of pH neutral L-arginine monohydrochloride (LAHCl to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm(3/μm(2 developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC, an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl

  13. Effects of L-arginine and NG-nitro L-arginine methyl ester (L-NAME) on ischemia/reperfusion injury of skeletal muscle, small and large intestines.

    Science.gov (United States)

    Krauss, Hanna; Sosnowski, Przemyslaw; Biczysko, Maciej; Biczysko, Wieslawa; Majewski, Przemyslaw; Jablecka, Anna; Miskowiak, Bogdan; Smolarek, Iwona; Konwerska, Aneta; Ignys, Iwona; Micker, Maciej

    2011-02-28

    This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.

  14. Decreased diabetes risk over 9 year after 18-month oral L-arginine treatment in middle-aged subjects with impaired glucose tolerance and metabolic syndrome (extension evaluation of L-arginine study).

    Science.gov (United States)

    Monti, Lucilla D; Galluccio, Elena; Villa, Valentina; Fontana, Barbara; Spadoni, Serena; Piatti, Pier Marco

    2017-10-20

    This study aimed to determine whether L-arginine supplementation lasting for 18 months maintained long-lasting effects on diabetes incidence, insulin secretion and sensitivity, oxidative stress, and endothelial function during 108 months among subjects at high risk of developing type 2 diabetes. One hundred and forty-four middle-aged subjects with impaired glucose tolerance and metabolic syndrome were randomized in 2006 to an L-arginine supplementation (6.4 g orally/day) or placebo therapy lasting 18 months. This period was followed by a 90-month follow-up. The primary outcome was a diagnosis of diabetes during the 108 month study period. Secondary outcomes included changes in insulin secretion (proinsulin/c-peptide ratio), insulin sensitivity (IGI/HOMA-IR), oxidative stress (AOPPs), and vascular function. After the 18 month participation, subjects that were still free of diabetes and willing to continue their participation (104 subjects) were further followed until diabetes diagnosis, with a time span of about 9 years from baseline. Although results derived from the 18 month of the intervention study demonstrated no differences in the probability of becoming diabetics, at the end of the study, the cumulative incidence of diabetes was of 40.6% in the L-arginine group and of 57.4% in the placebo group. The adjusted HR for diabetes (L-arginine vs. placebo) was 0.66; 95% CI 0.48, 0.91; p L-arginine compared to placebo. These results may suggest that the administration of L-arginine could delay the development of T2DM for a long period. This effect could be mediated, in some extent, by L-arginine-induced reduction in oxidative stress.

  15. The role of a disturbed arginine/NO metabolism in the onset of cancer cachexia: a working hypothesis.

    Science.gov (United States)

    Buijs, N; Luttikhold, J; Houdijk, A P J; van Leeuwen, P A M

    2012-01-01

    Cancer cachexia is a complex catabolic state in patients with a malignancy, associated with increased morbidity and mortality. This syndrome is characterized by a redistribution of the body's protein content and a subsequent muscle wasting. The aetiology of this syndrome seems multifactorial, but remains unclear. It is suggested that this catabolic state occurs in response to the alterations in immune interactions between tumor and host. The amino acid arginine and its derivate nitric oxide (NO) play various roles in anti-tumor immune response and the body's homeostasis. Glutamine is the precursor for arginine de novo synthesis and the most abundant amino acid in the body, mainly stored in skeletal muscle. Tumors develop a protection mechanism against the specific anti-tumor attack of the immune system by recruiting myeloid derived suppressor cells (MDSC). The MDSC deplete arginine levels and disturb NO production. We here hypothesize that the perturbation of the arginine/NO metabolism plays a significant role in the aetiology of cancer cachexia. Arginine/ NO metabolism is disturbed in patients with cancer. The body will try to correct this perturbation by mobilizing arginine and glutamine from muscles. The decreased arginine levels and the disturbed NO production activate several cascades, which in turn inhibit protein synthesis and promote proteolysis, leading to cachexia. Cachexia remains one of the most frequent and damaging opportunistic syndromes in cancer patients. In this review we will elaborate on a new hypothesised concept and the underlying mechanisms of this syndrome. New studies are essential to ground this hypothesis and to develop interventions to break through the pathological mechanisms underlying cachexia.

  16. Dietary l-arginine inhibits intestinal Clostridium perfringens colonisation and attenuates intestinal mucosal injury in broiler chickens.

    Science.gov (United States)

    Zhang, Beibei; Lv, Zengpeng; Li, Huixian; Guo, Shuangshuang; Liu, Dan; Guo, Yuming

    2017-09-01

    We investigated the effects of dietary l-arginine level and feeding duration on the intestinal damage of broilers induced by Clostridium perfringens (CP) in vivo, and the antimicrobial effect of its metabolite nitric oxide (NO) in vitro. The in vivo experiment was designed as a factorial arrangement of three dietary treatments×two challenge statuses. Broilers were fed a basal diet (CON) or a high-arginine diet (ARG) containing 1·87 % l-arginine, or CON for the first 8 d and ARG from days 9 to 28 (CON/ARG). Birds were co-infected with or without Eimeria and CP (EM/CP). EM/CP challenge led to intestinal injury, as evidenced by lower plasma d-xylose concentration (P<0·01), higher paracellular permeability in the ileum (P<0·05) and higher numbers of Escherichia coli (P<0·05) and CP (P<0·001) in caecal digesta; however, this situation could be alleviated by l-arginine supplementation (P<0·05). The intestinal claudin-1 and occludin mRNA expression levels were decreased (P<0·05) following EM/CP challenge; this was reversed by l-arginine supplementation (P<0·05). Moreover, EM/CP challenge up-regulated (P<0·05) claudin-2, interferon-γ (IFN-γ), toll-like receptor 2 and nucleotide-binding oligomerisation domain 1 (NOD1) mRNA expression, and l-arginine supplementation elevated (P<0·05) IFN-γ, IL-10 and NOD1 mRNA expression. In vitro study showed that NO had bacteriostatic activity against CP (P<0·001). In conclusion, l-arginine supplementation could inhibit CP overgrowth and alleviate intestinal mucosal injury by modulating innate immune responses, enhancing barrier function and producing NO.

  17. Neuroprotective peptides fused to arginine-rich cell penetrating peptides: Neuroprotective mechanism likely mediated by peptide endocytic properties.

    Science.gov (United States)

    Meloni, Bruno P; Milani, Diego; Edwards, Adam B; Anderton, Ryan S; O'Hare Doig, Ryan L; Fitzgerald, Melinda; Palmer, T Norman; Knuckey, Neville W

    2015-09-01

    Several recent studies have demonstrated that TAT and other arginine-rich cell penetrating peptides (CPPs) have intrinsic neuroprotective properties in their own right. Examples, we have demonstrated that in addition to TAT, poly-arginine peptides (R8 to R18; containing 8-18 arginine residues) as well as some other arginine-rich peptides are neuroprotective in vitro (in neurons exposed to glutamic acid excitotoxicity and oxygen glucose deprivation) and in the case of R9 in vivo (after permanent middle cerebral artery occlusion in the rat). Based on several lines of evidence, we propose that this neuroprotection is related to the peptide's endocytosis-inducing properties, with peptide charge and arginine residues being critical factors. Specifically, we propose that during peptide endocytosis neuronal cell surface structures such as ion channels and transporters are internalised, thereby reducing calcium influx associated with excitotoxicity and other receptor-mediated neurodamaging signalling pathways. We also hypothesise that a peptide cargo can act synergistically with TAT and other arginine-rich CPPs due to potentiation of the CPPs endocytic traits rather than by the cargo-peptide acting directly on its supposedly intended intracellular target. In this review, we systematically consider a number of studies that have used CPPs to deliver neuroprotective peptides to the central nervous system (CNS) following stroke and other neurological disorders. Consequently, we critically review evidence that supports our hypothesis that neuroprotection is mediated by carrier peptide endocytosis. In conclusion, we believe that there are strong grounds to regard arginine-rich peptides as a new class of neuroprotective molecules for the treatment of a range of neurological disorders. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  18. Arginase treatment prevents the recovery of canine lymphoma and osteosarcoma cells resistant to the toxic effects of prolonged arginine deprivation.

    Directory of Open Access Journals (Sweden)

    James W Wells

    Full Text Available Rapidly growing tumor cells require a nutrient-rich environment in order to thrive, therefore, restricting access to certain key amino acids, such as arginine, often results in the death of malignant cells, which frequently display defective cell cycle check-point control. Healthy cells, by contrast, become quiescent and remain viable under arginine restriction, displaying full recovery upon return to arginine-rich conditions. The use of arginase therapy to restrict available arginine for selectively targeting malignant cells is currently under investigation in human clinical trials. However, the suitability of this approach for veterinary uses is unexplored. As a prelude to in vivo studies in canine malignancies, we examined the in vitro effects of arginine-deprivation on canine lymphoid and osteosarcoma cell lines. Two lymphoid and 2 osteosarcoma cell lines were unable to recover following 6 days of arginine deprivation, but all remaining cell lines displayed full recovery upon return to arginine-rich culture conditions. These remaining cell lines all proved susceptible to cell death following the addition of arginase to the cultures. The lymphoid lines were particularly sensitive to arginase, becoming unrecoverable after just 3 days of treatment. Two of the osteosarcoma lines were also susceptible over this time-frame; however the other 3 lines required 6-8 days of arginase treatment to prevent recovery. In contrast, adult progenitor cells from the bone marrow of a healthy dog were able to recover fully following 9 days of culture in arginase. Over 3 days in culture, arginase was more effective than asparaginase in inducing the death of lymphoid lines. These results strongly suggest that short-term arginase treatment warrants further investigation as a therapy for lymphoid malignancies and osteosarcomas in dogs.

  19. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2015-12-01

    We recently reported that the presence of chloride counter ions in freeze-dried l-arginine/sucrose formulations provided the greatest protein stability, but led to low collapse temperatures and glass transition temperatures of the freeze concentrates. The objectives of this study were to identify l-arginine chloride-based formulations and optimize freeze-drying process conditions to deliver a freeze-dried product with good physical quality attributes (including cake appearance, residual moisture, and reconstitution time). Additional properties were tested such as thermal properties, cake microstructure, and protein physical stability. Excipient concentrations were varied with and without a model protein (bovine serum albumin, BSA). Formulations were frozen with and without annealing or with and without controlled nucleation. Primary drying was conducted at high and low shelf temperature. Cakes with least defects and optimum physical attributes were achieved when protein to excipient ratios were high. Controlled nucleation led to elegant cakes for most systems at a low shelf temperature. Replacing BSA by a monoclonal antibody showed that protein (physical) stability was slightly improved under stress storage temperature (i.e., 40°C) in the presence of a low concentration of l-arginine in a sucrose-based formulation. At higher l-arginine concentrations, cake defects increased. Using optimized formulation design, addition of l-arginine chloride to a sucrose-based formulation provided elegant cakes and benefits for protein stability. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2015-07-01

    The objective of this study was to investigate product performance of freeze dried l-arginine/sucrose-based formulations under variation of excipient weight ratios, l-arginine counter ions and formulation pH as a matrix to stabilize a therapeutic monoclonal antibody (MAb) during freeze drying and shelf life. Protein and placebo formulations were lyophilized at aggressive primary drying conditions and key attributes of the freeze dried solids were correlated to their thermal properties and critical formulation temperature. Stability (physical) during processing and long-term storage of the MAb in different formulations was assessed by SE-HPLC. Thermal properties of the mixtures were greatly affected by the type of l-arginine counter ion. High glass transition temperatures were achieved by adding multivalent acids, whereas the temperature values significantly decreased in the presence of chloride ions. All mixtures were stable during freeze drying, but storage stability varied for the different preparations and counter ions. For l-arginine-based formulations, the protein was most stable in the presence of chloride ion, showing no obvious correlation to estimated global mobility of the glass. Besides drying behavior and thermal properties of the freeze dried solids, the counter ion of l-arginine must be considered relevant for protein shelf life stability. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. L-arginine stimulates fibroblast proliferation through the GPRC6A-ERK1/2 and PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Takashi Fujiwara

    Full Text Available L-arginine is considered a conditionally essential amino acid and has been shown to enhance wound healing. However, the molecular mechanisms through which arginine stimulates cutaneous wound repair remain unknown. Here, we evaluated the effects of arginine supplementation on fibroblast proliferation, which is a key process required for new tissue formation. We also sought to elucidate the signaling pathways involved in mediating the effects of arginine on fibroblasts by evaluation of extracellular signal-related kinase (ERK 1/2 activation, which is important for cell growth, survival, and differentiation. Our data demonstrated that addition of 6 mM arginine significantly enhanced fibroblast proliferation, while arginine deprivation increased apoptosis, as observed by enhanced DNA fragmentation. In vitro kinase assays demonstrated that arginine supplementation activated ERK1/2, Akt, PKA and its downstream target, cAMP response element binding protein (CREB. Moreover, knockdown of GPRC6A using siRNA blocked fibroblast proliferation and decreased phosphorylation of ERK1/2, Akt and CREB. The present experiments demonstrated a critical role for the GPRC6A-ERK1/2 and PI3K/Akt signaling pathway in arginine-mediated fibroblast survival. Our findings provide novel mechanistic insights into the positive effects of arginine on wound healing.

  2. Stability of ceftazidime (with arginine) stored in plastic syringes at three temperatures.

    Science.gov (United States)

    Nahata, M C; Morosco, R S; Fox, J L

    1992-12-01

    The stability of ceftazidime (with arginine) stored in plastic syringes at three temperatures was studied. Ceftazidime (with arginine) was reconstituted with sterile water for injection to a concentration of 100 mg/mL and transferred to plastic syringes. Syringes were stored at 22 degrees C for 24 hours; at 4 degrees C for 7 or 10 days, then at 22 degrees C for 24 hours; or at -20 degrees C for 91 days, then at 22 degrees C for 24 hours or at 4 degrees C for seven days followed by 22 degrees C for 24 hours. Ceftazidime concentration was measured at various times by using a stability-indicating high-performance liquid chromatographic method. At each sampling time, each syringe was visually inspected and the pH of each solution was measured. Mean ceftazidime concentration remained > 90% of initial concentration at all storage conditions. Although during storage the color of the solutions changed from light straw to dark yellow and the pH decreased, no precipitate was visually detected and no peaks for degradation products appeared on the chromatograms. Ceftazidime 100 mg/mL (with arginine) in sterile water for injection was stable when stored in plastic syringes for up to 24 hours at 22 degrees C, for 10 days at 4 degrees C followed by up to 24 hours at 22 degrees C, and for 91 days at -20 degrees C followed by up to 24 hours at 22 degrees C or by 7 days at 4 degrees C and up to 24 hours at 22 degrees C.

  3. Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality

    Directory of Open Access Journals (Sweden)

    S. Eskiocak

    2006-05-01

    Full Text Available It has been reported that mental stress causes abnormality of spermiogram parameters. We investigated the effect of psychological stress on the L-arginine-nitric oxide (NO pathway. Semen samples were collected from 29 healthy fourth semester medical students just before (stress and 3 months after (non-stress the final examinations. Psychological stress was measured by the State Anxiety Inventory questionnaire. After standard semen analysis, arginase activity and NO concentration were measured spectrophotometrically in the seminal plasma. Measurements were made in duplicate. During the stress period, sperm concentration (41.28 ± 3.70 vs 77.62 ± 7.13 x 10(6/mL, rapid progressive motility of spermatozoa (8.79 ± 1.66 vs 20.86 ± 1.63% and seminal plasma arginase activity (0.12 ± 0.01 vs 0.22 ± 0.01 U/mL were significantly lower than in the non-stress situation, whereas seminal plasma NO (17.28 ± 0.56 vs 10.02 ± 0.49 µmol/L was higher compared to the non-stress period (P < 0.001 for all. During stress there was a negative correlation between NO concentration and sperm concentration, the percentage of rapid progressive motility and arginase activity (r = -0.622, P < 0.01; r = -0.425, P < 0.05 and r = -0.445, P < 0.05, respectively. These results indicate that psychological stress causes an increase of NO level and a decrease of arginase activity in the L-arginine-NO pathway. Furthermore, poor sperm quality may be due to excessive production of NO under psychological stress. In the light of these results, we suggest that the arginine-NO pathway, together with arginase and NO synthase, are involved in semen quality under stress conditions.

  4. Netrin-1 protects against L-Arginine-induced acute pancreatitis in mice.

    Directory of Open Access Journals (Sweden)

    Ji Chen

    Full Text Available Acute pancreatitis (AP is a common inflammatory disease mediated by damage to acinar cells and subsequent pancreatic inflammation with infiltration of leukocytes. The neuronal guidance protein, netrin-1, has been shown to control leukocyte trafficking and modulate inflammatory responses in several inflammation-based diseases. The present study was aimed toward investigating the effects of netrin-1 in an in vivo model of AP in mice. AP was induced in C57BL/6 mice by administration of two intraperitoneal injections of L-Arginine (4 g/kg. Mice were treated with recombinant mouse netrin-1 at a dose of 1 µg/mouse or vehicle (0.1% BSA intravenously through the tail vein immediately after the second injection of L-Arginine, and every 24 h thereafter. Mice were sacrificed at several time intervals from 0 to 96 h after the induction of pancreatitis. Blood and tissue samples of pancreas and lung were collected and processed to determine the severity of pancreatitis biochemically and histologically. Immunohistochemical staining demonstrated that netrin-1 was mainly expressed in the islet cells of the normal pancreas and the AP model pancreas, and the pancreatic expression of netrin-1 was down-regulated at both the mRNA and protein levels during the course of AP. Exogenous netrin-1 administration significantly reduced plasma amylase levels, myeloperoxidase activity, pro-inflammatory cytokine production, and pancreas and lung tissue damages. Furthermore, netrin-1 administration did not cause significant inhibition of nuclear factor-kappa B activation in the pancreas of L-Arginine-induced AP. In conclusion, our novel data suggest that netrin-1 is capable of improving damage of pancreas and lung, and exerting anti-inflammatory effects in mice with severe acute pancreatitis. Thus, our results indicate that netrin-1 may constitute a novel target in the management of AP.

  5. Effect of arginine on the growth and biofilm formation of oral bacteria.

    Science.gov (United States)

    Huang, Xuelian; Zhang, Keke; Deng, Meng; Exterkate, Robertus A M; Liu, Chengcheng; Zhou, Xuedong; Cheng, Lei; Ten Cate, Jacob M

    2017-10-01

    Alkali production via arginine deiminase system (ADS) of oral bacteria plays a significant role in oral ecology, pH homeostasis and inhibition of dental caries. ADS activity in dental plaque varies greatly between individuals, which may profoundly affect their susceptibility to caries. To investigate the effect of arginine on the growth and biofilm formation of oral bacteria. Polymicrobial dental biofilms derived from saliva were formed in a high-throughput active attachment biofilm model and l-arginine (Arg) was shown to reduce the colony forming units (CFU) counts of such biofilms grown for various periods or biofilms derived from saliva of subjects with different caries status. Arg hardly disturbed bacterial growth of Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis and Streptococcus gordonii in BHI medium, but only inhibited biofilm formation of S. mutans. Scanning electron microscope (SEM) showed S. mutans biofilms harboured fewer cells grown with Arg than that without Arg, even in the initial 2h and 8h phase. Confocal laser scanning microscope (CLSM) images of poly-microbial dental and S. mutans biofilms revealed the biofilms grown with Arg had lower exopolysaccharide (EPS)/bacteria ratios than those without Arg (P=0.004, 0.002, respectively). Arg could significantly reduce the production of water-insoluble EPS in S. mutans biofilms (PgtfC or gtfD (P=0.32, 0.06, 0.44 respectively). Arg could reduce the biomass of poly-microbial dental biofilms and S. mutans biofilms, which may be due to the impact of Arg on water-insoluble EPS. Considering the contribution to pH homeostasis in dental biofilms, Arg may serve as an important agent keeping oral biofilms healthy thus prevent dental caries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Self-assembled arginine-rich peptides as effective antimicrobial agents.

    Science.gov (United States)

    Mi, Gujie; Shi, Di; Herchek, Whitney; Webster, Thomas J

    2017-04-01

    Bacteria can adapt to their ever-changing environment to develop a resistance to commonly used antibiotics. This escalating evolution of bacteria coupled with a diminished number of effective antibiotics has caused a global healthcare crisis. New antimicrobials and novel approaches to tackle this problem are urgently needed. Antimicrobial peptides are of particular interest in this endeavor due to their broad spectrum antimicrobial properties as well as ability to combat multi-drug resistant bacteria. Most peptides have both hydrophobic and hydrophilic regions that enable them to be soluble in an aqueous solution, yet can insert into and subsequently disintegrate lipid rich membranes through diverse mechanisms. In this study, a novel class of cationic nanoparticles (formed by the self-assembly of an amphiphilic peptide) were shown to have strong antimicrobial properties against gram-positive bacteria, specifically Staphylococcus aureus, Staphylococcus epidermidis, and methicillin-resistant Staphylococcus aureus (MRSA) with minimal toxicity to human dermal fibroblasts. The particular self-assembled structure tested here included an arginine rich nanoparticle (C17 H35 GR7RGDS or amphiphilic peptide nanoparticles, APNPs) which incorporated seven arginine residues (imparting a positive charge to improve membrane interactions), a hydrophobic block which drove the self-assembly process, and the presence of an amino acid quadruplet arginine-glycine-aspartic acid-serine (RGDS) which may render these nanoparticles capable of attracting healthy cells while competing bacterial adherence to fibronectin, an adhesive protein found on cell surfaces. As such, this in vitro study demonstrated that the presently formulated APNPs should be further studied for a wide range of antibacterial applications where antibiotics are no longer useful. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1046-1054, 2017. © 2017 Wiley Periodicals, Inc.

  7. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-02-08

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-L-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.

  8. Effects of l-arginine and creatine administration on spatial memory in rats subjected to a chronic variable stress model.

    Science.gov (United States)

    dos Santos, Fabio Seidel; da Silva, Luiz Augusto; Pochapski, José Augusto; Raczenski, Alan; da Silva, Weber Claudio; Grassiolli, Sabrina; Malfatti, Carlos Ricardo Maneck

    2014-08-01

    Chronic stress results from repeated exposure to one or more types of stressors over a period, ranging from days to months, and can be associated with physical, behavioral, and neuropsychiatric manifestations. Some physiological alterations resulting from chronic stress can potentially cause deficits on spatial learning and memory. This study investigated the effects of chronic variable stress (CVS) and administration of l-arginine and creatine on spatial memory in rats. Furthermore, body, heart, adrenal weight, and plasma glucose and corticosterone levels were analyzed. Male Wistar rats were subjected to a CVS model for 40 days and evaluated for spatial memory after the stress period. Chronically stressed animals were treated daily by gavage with: 0.5% carboxymethylcellulose (Group Cs), 500 mg/kg l-arginine (Group Cs/La), 300 mg/kg creatine (Group Cs/Cr); and 500 mg/kg l-arginine and 300 mg/kg creatine (Group Cs/La + Cr) during the entire experimental period. Our results showed that animals in the Cs/Cr and Cs/La + Cr groups presented significantly decreased corticosterone levels compared to group Cs (p working memory task, compared to all other groups (p memory retention compared to controls (p working memory efficiency, and, when co-administrated with l-arginine, improves reference memory retention, a phenomenon that is possibly associated with increased creatine/phosphocreatine levels and l-arginine-derived NO synthesis.

  9. Arginine metabolism in the salivary glands of protein-deficient rats and its potential association with the oral microflora.

    Science.gov (United States)

    Enwonwu, C O; Ilupeju, F; Warren, R C

    1994-01-01

    Salivary glands and their secretions play key roles in the prevention of dental diseases. The antibacterial and physicochemical properties of saliva are compromised in chronic malnutrition. The present study has examined the possibility that some malnutrition-induced changes in salivary gland function are potentially capable of promoting growth and metabolic activities of pathogenic oral microorganisms. Compared to well-fed controls, rats fed a 3% protein diet for 18 days showed a significant reduction (p gland arginase (L-arginine amidinohydrolase, EC 3.5.3.1) activity. Associated with the latter finding was a marked increase (+85%) in the glandular level of free arginine, this basic amino acid accounting for 12.2% of the total essential amino acids as compared with a figure of only 4.6% for the controls. The total free amino acid pool in whole saliva was relatively unaffected by malnutrition, but the levels of the basic amino acids arginine and histidine were marginally increased. Many oral bacterial species, some of which are dominant plaque microorganisms, utilize the arginine deiminase (EC 3.5.3.6) pathway. Thus, increased availability of free arginine from salivary glands offers a plausible explanation for the frequently reported observation of differential overgrowth of several potentially pathogenic microorganisms including some mutants streptococci in protein-deficient laboratory animals and may well apply to similar findings in malnourished populations in Third World countries.

  10. Interaction between Gallotannin and a Recombinant Form of Arginine Kinase of Trypanosoma brucei: Thermodynamic and Spectrofluorimetric Evaluation

    Directory of Open Access Journals (Sweden)

    O. S. Adeyemi

    2014-01-01

    Full Text Available Current chemotherapies against trypanosomiasis are beset with diverse challenges, a situation which underscores the numerous research efforts aimed at finding newer and effective treatments. Arginine kinase of trypanosome has been validated as target for drug development against trypanosomiasis. The present study investigated the interaction between a recombinant form of the arginine kinase (rTbAK of trypanosome and gallotannin. The interaction between gallotannin and recombinant arginine kinase of Trypanosoma brucei caused significant decrease of enzyme activity. Kinetic analysis revealed the interaction to be of noncompetitive inhibition. Further thermodynamic analysis showed that the interaction between gallotannin and the recombinant arginine kinase was nonspontaneous and involved hydrophobic forces. The Ksv values and the FRET analysis suggest that static quenching of fluorescence intensity by gallotannin was static. Data revealed inhibitory interactions between gallotannin and rTbAK of trypanosome. Although the mechanism of inhibition is not clear yet, molecular docking studies are ongoing to clearly define the inhibitory interactions between the gallotannin and rTbAK. The knowledge of such binding properties would enrich development of selective inhibitors for the arginine kinase of Trypanosoma brucei.

  11. Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure.

    Science.gov (United States)

    Ma, Xiao-Juan; Gao, Jin-Yan; Tong, Ping; Li, Xin; Chen, Hong-Bing

    2017-12-01

    High-pressure processing is gaining popularity in the food industry. However, its effect on the Maillard reaction during high-pressure-assisted pasteurization and sterilization is not well documented. This study aimed to investigate the effects of high hydrostatic pressure on the Maillard reaction during these processes using amino acid (lysine or arginine)-sugar (glucose or fructose) solution models. High pressure retarded the intermediate and final stages of the Maillard reaction in the lysine-sugar model. For the lysine-glucose model, the degradation rate of Amadori compounds was decelerated, while acceleration was observed in the arginine-sugar model. Increased temperature not only accelerated the Maillard reaction over time but also formed fluorescent compounds with different emission wavelengths. Lysine reacted with the sugars more readily than arginine under the same conditions. In addition, it was easier for lysine to react with glucose, whereas arginine reacted more readily with fructose under high pressure. High pressure exerts different effects on lysine-sugar and arginine-sugar models. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. A randomized double-blind clinical trial with two different doses of arginine enhanced enteral nutrition in postsurgical cancer patients.

    Science.gov (United States)

    De Luis, D A; Izaola, O; Cuellar, L; Terroba, M C; Martin, T; Ventosa, M

    2010-11-01

    Patients with head and neck cancer undergoing surgery have a high incidence of postoperative complications. The aim of our study was to investigate whether postoperative nutrition of head and neck cancer patients, using an enteral high dose of arginine (20 g per day) vs a medium dose (12.3 g per day) could improve nutritional variables as well as clinical outcome. A population of 115 patients with oral and laryngeal cancer was enrolled. At surgery patients were randomly allocated to two groups: group I (58 patients) received an enteral diet supplements with a high dose of arginine (20 g per day) and group II (57 patients) received an isocaloric, isonitrogenous enteral formula with a medium dose of arginine (12.3 g per day). Gastrointestinal tolerance (diarrhea) of both formulas was good (3.44% group I and 3.51% group II: ns). The postoperative infections complications were similar in both groups (8.6% group I and 12.2% group II: ns). Fistula was less frequent in enriched nutrition group (3.4% group I and 10.5% group II: p = 0.006). The length of postoperative stay was similar in both groups (27.2 +/- 17.8 days in group I vs 25.7 +/- 18.8 days in group II: ns). Enriched arginine formula improves fistula wound complications in postoperative head and neck cancer patients. Our results suggest that these patients could benefit from a high dose of arginine enhanced enteral formula.

  13. Effects of rinsing with arginine bicarbonate and urea solutions on initial enamel lesions in situ.

    Science.gov (United States)

    Yu, Y; Wang, X; Ge, C; Wang, B; Cheng, C; Gan, Y-H

    2017-04-01

    The aim of this study was to investigate the effects of rinsing with arginine or urea solution on initial enamel lesions in situ. Fourteen subjects who wore mandibular removable partial dentures embedded with bovine enamel blocks with artificial enamel lesions were included. The experiment included four 4-week rinsing periods with a 10-day washout period between each rinsing period. In each rinsing period, the subjects rinsed after meal or snack using water, or 2% arginine bicarbonate, or 1% urea, or 0.05% NaF solution, five times daily. The mineralization changes of the enamel lesions were assessed using quantitative light-induced fluorescence. All groups except the water group showed a statistically significant decrease in the fluorescence loss after treatment, compared with their respective baseline. Although both the arginine group and urea group showed more decrease in fluorescence loss than that of the water group, the decrease was not statistically significantly different from that of the water group. The decrease in fluorescence loss of the NaF group was statistically significant than that of the water group, arginine group, and urea group. Rinsing with arginine or urea solution offers limited remineralizing benefit to enamel lesions over a period of 4-week time. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.

  14. Modification of arginine residues in ovine prolactin by 1,2-cyclohexanedione. Effect on binding capacity to lactogenic receptors.

    Science.gov (United States)

    Cymes, G D; Atlasovich, F M; Caridad, J J; Iglesias, M M; Wolfenstein-Todel, C

    1994-07-01

    The reactivity of arginine residues in ovine prolactin was studied by reaction with 1,2-cyclohexanedione. Kinetic analysis of the data showed a good fit with two simultaneous pseudo-first-order equations with apparent velocity constants of 0.28 and 1.2 x 10(-2) min-1, corresponding to 1.8 'fast' and 8.7 'slow' residues, respectively. Modification led to a decrease in binding capacity to lactogenic rat liver receptors, and apparently the modification of the two 'fast' reacting arginine residues is responsible for the rapid loss of this capacity. The presence of a non-reacting arginine has been described in human and bovine growth hormones, and it is located near the carboxy-terminus. This lack of reactivity is probably due to the formation of a salt bridge, since the arginine residue becomes susceptible to modification once the peptide is separated from the rest of the molecule. This salt bridge is absent in ovine prolactin, since the homologous arginine residue is reactive with cyclohexanedione. This result suggests that there could be a difference between the three-dimensional structure of ovine prolactin and of the growth hormones, at least near the carboxy-terminal region of the molecule.

  15. A loose domain swapping organization confers a remarkable stability to the dimeric structure of the arginine binding protein from Thermotoga maritima.

    Directory of Open Access Journals (Sweden)

    Alessia Ruggiero

    Full Text Available The arginine binding protein from Thermatoga maritima (TmArgBP, a substrate binding protein (SBP involved in the ABC system of solute transport, presents a number of remarkable properties. These include an extraordinary stability to temperature and chemical denaturants and the tendency to form multimeric structures, an uncommon feature among SBPs involved in solute transport. Here we report a biophysical and structural characterization of the TmArgBP dimer. Our data indicate that the dimer of the protein is endowed with a remarkable stability since its full dissociation requires high temperature as well as SDS and urea at high concentrations. In order to elucidate the atomic level structural properties of this intriguing protein, we determined the crystallographic structures of the apo and the arginine-bound forms of TmArgBP using MAD and SAD methods, respectively. The comparison of the liganded and unliganded models demonstrates that TmArgBP tertiary structure undergoes a very large structural re-organization upon arginine binding. This transition follows the Venus Fly-trap mechanism, although the entity of the re-organization observed in TmArgBP is larger than that observed in homologous proteins. Intriguingly, TmArgBP dimerizes through the swapping of the C-terminal helix. This dimer is stabilized exclusively by the interactions established by the swapping helix. Therefore, the TmArgBP dimer combines a high level of stability and conformational freedom. The structure of the TmArgBP dimer represents an uncommon example of large tertiary structure variations amplified at quaternary structure level by domain swapping. Although the biological relevance of the dimer needs further assessments, molecular modelling suggests that the two TmArgBP subunits may simultaneously interact with two distinct ABC transporters. Moreover, the present protein structures provide some clues about the determinants of the extraordinary stability of the biomolecule

  16. Dietary arginine silicate inositol complex increased bone healing: histologic and histomorphometric study

    Directory of Open Access Journals (Sweden)

    Yaman F

    2016-06-01

    Full Text Available Ferhan Yaman,1 Izzet Acikan,1 Serkan Dundar,2 Sercan Simsek,3 Mehmet Gul,4 İbrahim Hanifi Ozercan,3 James Komorowski,5 Kazim Sahin6 1Department of Oral-Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey; 2Department of Periodontology, Faculty of Dentistry, Firat University, Elazig, Turkey; 3Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey; 4Department of Periodontology, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey; 5Nutrition 21, LLC, Purchase, NY, USA; 6Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey Background: Arginine silicate inositol complex (ASI; arginine 49.5%, silicon 8.2%, and inositol 25% is a novel material that is a bioavailable source of silicon and arginine. ASI offers potential benefits for vascular and bone health. Objective: The aim of this study was to evaluate the potential effects of ASI complex on bone healing of critical-sized defects in rats. Methods: The rats were randomly assigned to two groups of 21 rats each. The control group was fed a standard diet for 12 weeks; after the first 8 weeks, a calvarial critical-sized defect was created, and the rats were sacrificed 7, 14, and 28 days later. The ASI group was fed a diet containing 1.81 g/kg of ASI for 12 weeks; after the first 8 weeks, a calvarial critical-sized defect was created, and the rats were sacrificed 7, 14, and 28 days later. The calvarial bones of all the rats were then harvested for evaluation. Results: Osteoblasts and osteoclasts were detected at higher levels in the ASI group compared with the control group at days 7, 14, and 28 of the calvarial defect (P<0.05. New bone formation was detected at higher levels in the ASI group compared with the controls at day 28 (P<0.05. However, new bone formation was not detected at days 7 and 14 in both the groups (P>0.05. Conclusion: ASI supplementation significantly improved bone tissue

  17. The story of invasive algae, arginine, and turtle tumors does not make sense

    Science.gov (United States)

    Work, Thierry M.; Ackermann, Mathias; Casey, James W.; Chaloupka, Milani; Herbst, Lawrence; Lynch, Jennifer M.; Stacy, Brian A.

    2014-01-01

    We are presenting a rebuttal letter to the following article that appeared recently on PeerJ: Van Houtan KS, Smith CM, Dailer ML, and Kawachi M. 2014. Eutrophication and the dietary promotion of sea turtle tumors. PeerJ 2:e602. This article is available at the following URL: https://peerj.com/articles/602/. We argue that the article lacks an inferential framework to answer the complex question regarding the drivers of the turtle tumor disease fibropapillomatosis in Hawaii. The article also contains procedural flaws and does not provide any compelling evidence of a link between algae, arginine, and turtle tumors.

  18. Effects of Citrate and Arginine on Sorption of Nickel to Yazd Sepiolite and Calcite

    Directory of Open Access Journals (Sweden)

    Ahmadreza Sheikhhosseini

    2017-03-01

    Full Text Available Introduction: Pollution of soil and water environment by release of heavy metals is of great concerns of the last decades. Sorption of heavy metals by low cost materials is considered as an inexpensive and efficient method used for removal of heavy metals from soil-water systems. The presence of different ligands with various complexing abilities can change the sorption properties of heavy metals and their fate in the environment as well. In order to assess the effect of citrate and arginine as natural organic ligands in soil environment, in a batch study we investigated the effects of these ligands on equilibrium sorption of nickel to sepiolite and calcite minerals and also kinetics of Ni sorption by these minerals. Materials and Methods: Minerals used in this study included sepiolite from Yazd (Iran and pure calcite (Analytical grade, Merck, Germany. Sepiolite was purified, saturated with Ca using 0.5 M CaCl2, powdered in a mortar and sieved by non-metal 230 mesh standard wire sieve. For equilibrium sorption study, in a 50-mL polyethylene centrifuge tube,0.3 g sample of each mineral was suspended in 30 mL of a 0.01 M CaCl2 solution containing 0, 5, 10, 20, 40, 60, 80 and 100 mg L-1 Ni (NiCl2 and containing zero (as control or 0.1mmol L-1 citrate or arginine ligands. The applied concentrationsfor each ligand can naturally occur in soils. Preparedtubes were shaken (180±2 rpm, 25±1oC for 24 h using an orbital shaker and centrifuged (4000×g for 10 min and the supernatants were analyzed for Ni concentration using an atomic absorption spectrophotometer (AAnalyst 200 Perkin-Elmer at a wavelength of 232 nm and a detection limit of 0.05 mg L-1. The quantity of Ni retained by each mineral at equilibrium was calculated using equation qe = (Ci - CeV/W where qe was the amount of nickel retained by mineral surface at equilibrium. Ci and Ce were the initial and the equilibrium concentrations (mg L-1 of Ni, respectively, V was the volume (L of the solution

  19. Optimizing aerosolization of a high-dose L-arginine powder for pulmonary delivery

    Directory of Open Access Journals (Sweden)

    Satu Lakio

    2015-12-01

    Full Text Available In this study a carrier-free dry powder inhalation (DPI containing L-arginine (ARG was developed. As such, it is proposed that ARG could be used for adjunctive treatment of cystic fibrosis and/or tuberculosis. Various processing methods were used to manufacture high-dose formulation batches consisting various amounts of ARG and excipients. The formulations were evaluated using several analytical methods to assess suitability for further investigation. Several batches had enhanced in vitro aerolization properties. Significant future challenges include the highly hygroscopic nature of unformulated ARG powder and identifying the scale of dose of ARG required to achieve the response in lungs.

  20. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis

    Directory of Open Access Journals (Sweden)

    Abhishek Mandal

    2017-07-01

    Full Text Available The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL, depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important

  1. l-Arginine-Dependent Epigenetic Regulation of Interleukin-10, but Not Transforming Growth Factor-β, Production by Neonatal Regulatory T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Kuender D. Yang

    2017-04-01

    Full Text Available A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency.

  2. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis.

    Science.gov (United States)

    Mandal, Abhishek; Das, Sushmita; Kumar, Ajay; Roy, Saptarshi; Verma, Sudha; Ghosh, Ayan Kumar; Singh, Ruby; Abhishek, Kumar; Saini, Savita; Sardar, Abul Hasan; Purkait, Bidyut; Kumar, Ashish; Mandal, Chitra; Das, Pradeep

    2017-01-01

    The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and

  3. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, Rebecca S.; Webb, Kristofor J. [Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (United States); Clarke, Steven G., E-mail: clarke@mbi.ucla.edu [Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (United States)

    2010-01-22

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.

  4. L-arginine and L-NMMA for Assessing Cerebral Endothelial Dysfunction in Ischemic Cerebrovascular Disease: A Systematic Review

    DEFF Research Database (Denmark)

    Karlsson, William Kristian; Sørensen, Caspar Godthaab; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and NG -monomethyl-l-arginine (l...... attack (TIA) (n=2) on cerebral ED. Most studies applied transcranial Doppler to quantify cerebral ED. Endothelium-dependent vasodilatation (EDV) induced by l-arginine was impaired in elderly and subjects with leukoaraiosis, but enhanced in CADASIL patients. Studies including subjects with prior ischaemic...... cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease....

  5. On the synthesis of tailored biomimetic hydroxyapatite nanoplates through a bioinspired approach in the presence of collagen or chitosan and L-arginine

    Energy Technology Data Exchange (ETDEWEB)

    Tsetsekou, A., E-mail: athtse@metal.ntua.gr; Brasinika, D.; Vaou, V.; Chatzitheodoridis, E.

    2014-10-01

    Controlling the structure of hydroxyapatite nanocrystals is vital for acquiring a consistent product. In an effort to synthesize crystals mimicking the morphology of natural bone's apatite, a bioinspired process was developed based on the use of a natural biomacromolecule, collagen or chitosan, in conjunction with L-arginine to direct the formation of hydroxyapatite from H{sub 3}PO{sub 4} and Ca(OH){sub 2}. Different cases were investigated by employing various concentrations of the precursors and two molar ratios of Ca/P 1/1 and 10/6. The reaction was carried out at basic pH conditions and at biomimetic temperature (40 °C). The resulting aqueous suspensions were characterized in terms of their rheological behavior, whereas the derived powders were fully evaluated by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis and Raman spectroscopy. The analysis showed that in all cases, the only phase detected was hydroxyapatite of a plate-like morphology very similar to that of natural apatite. The homogeneity of the morphology and the crystal size distribution depend on the precursors' final concentration with the mean size ranging from 5 nm up to 20 nm. The powder that demonstrated the best characteristics in terms of homogeneity was that produced in the presence of collagen for molar ratio of Ca/P 1/1. - Highlights: • Hydroxyapatite nanoplates similar to those of bone's apatite were developed. • A novel approach simulating the biomineralization environment was developed. • L-Arginine was combined with collagen or chitosan to direct HAp nucleation. • Depending on reaction conditions a very homogeneous nanostructure is attained.

  6. A putative transport protein is involved in citrulline excretion and re-uptake during arginine deiminase pathway activity by Lactobacillus sakei.

    Science.gov (United States)

    Rimaux, Tom; Rivière, Audrey; Hebert, Elvira María; Mozzi, Fernanda; Weckx, Stefan; De Vuyst, Luc; Leroy, Frédéric

    2013-04-01

    Arginine conversion through the arginine deiminase (ADI) pathway is a common metabolic trait of Lactobacillus sakei which is ascribed to an arc operon and which inquisitively involves citrulline excretion and re-uptake. The aim of this study was to verify whether a putative transport protein (encoded by the PTP gene) plays a role in citrulline-into-ornithine conversion by L. sakei strains. This was achieved through a combination of fermentation experiments, gene expression analysis via quantitative real-time reverse transcription PCR (RT-qPCR) and construction of a PTP knock-out mutant. Expression of the PTP gene was modulated by environmental pH and was highest in the end-exponential or mid-exponential growth phase for L. sakei strains CTC 494 and 23K, respectively. In contrast to known genes of the arc operon, the PTP gene showed low expression at pH 7.0, in agreement with the finding that citrulline-into-ornithine conversion is inhibited at this pH. The presence of additional energy sources also influenced ADI pathway activity, in particular by decreasing citrulline-into-ornithine conversion. Further insight into the functionality of the PTP gene was obtained with a knock-out mutant of L. sakei CTC 494 impaired in the PTP gene, which displayed inhibition in its ability to convert extracellular citrulline into ornithine. In conclusion, results indicated that the PTP gene may putatively encode a citrulline/ornithine antiporter. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Improved Muscle Function in Duchenne Muscular Dystrophy through L-Arginine and Metformin: An Investigator-Initiated, Open-Label, Single-Center, Proof-Of-Concept-Study.

    Science.gov (United States)

    Hafner, Patricia; Bonati, Ulrike; Erne, Beat; Schmid, Maurice; Rubino, Daniela; Pohlman, Urs; Peters, Thomas; Rutz, Erich; Frank, Stephan; Neuhaus, Cornelia; Deuster, Stefanie; Gloor, Monika; Bieri, Oliver; Fischmann, Arne; Sinnreich, Michael; Gueven, Nuri; Fischer, Dirk

    2016-01-01

    Altered neuronal nitric oxide synthase function in Duchenne muscular dystrophy leads to impaired mitochondrial function which is thought to be one cause of muscle damage in this disease. The study tested if increased intramuscular nitric oxide concentration can improve mitochondrial energy metabolism in Duchenne muscular dystrophy using a novel therapeutic approach through the combination of L-arginine with metformin. Five ambulatory, genetically confirmed Duchenne muscular dystrophy patients aged between 7–10 years were treated with L-arginine (3 x 2.5 g/d) and metformin (2 x 250 mg/d) for 16 weeks. Treatment effects were assessed using mitochondrial protein expression analysis in muscular biopsies, indirect calorimetry, Dual-Energy X-Ray Absorptiometry, quantitative thigh muscle MRI, and clinical scores of muscle performance. There were no serious side effects and no patient dropped out. Muscle biopsy results showed pre-treatment a significantly reduced mitochondrial protein expression and increased oxidative stress in Duchenne muscular dystrophy patients compared to controls. Post-treatment a significant elevation of proteins of the mitochondrial electron transport chain was observed as well as a reduction in oxidative stress. Treatment also decreased resting energy expenditure rates and energy substrate use shifted from carbohydrates to fatty acids. These changes were associated with improved clinical scores. In conclusion pharmacological stimulation of the nitric oxide pathway leads to improved mitochondria function and clinically a slowing of disease progression in Duchenne muscular dystrophy. This study shall lead to further development of this novel therapeutic approach into a real alternative for Duchenne muscular dystrophy patients. ClinicalTrials.gov NCT02516085.

  8. Effects of Diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 on Gastrointestinal, Liver, and Brain Lesions, Failed Anastomosis, and Intestinal Adaptation Deterioration in 24 Hour-Short-Bowel Rats.

    Science.gov (United States)

    Lojo, Nermin; Rasic, Zarko; Zenko Sever, Anita; Kolenc, Danijela; Vukusic, Darko; Drmic, Domagoj; Zoricic, Ivan; Sever, Marko; Seiwerth, Sven; Sikiric, Predrag

    2016-01-01

    Stable gastric pentadecapeptide BPC 157 was previously used to ameliorate wound healing following major surgery and counteract diclofenac toxicity. To resolve the increasing early risks following major massive small bowel resectioning surgery, diclofenac combined with nitric oxide (NO) system blockade was used, suggesting therapy with BPC 157 and the nitric oxide synthase (NOS substrate) L-arginine, is efficacious. Immediately after anastomosis creation, short-bowel rats were untreated or administered intraperitoneal diclofenac (12 mg/kg), BPC 157 (10 μg/kg or 10 ng/kg), L-NG-nitroarginine methyl ester (L-NAME, 5 mg/kg), L-arginine (100 mg/kg) alone or combined, and assessed 24 h later. Short-bowel rats exhibited poor anastomosis healing, failed intestine adaptation, and gastrointestinal, liver, and brain lesions, which worsened with diclofenac. This was gradually ameliorated by immediate therapy with BPC 157 and L-arginine. Contrastingly, NOS-blocker L-NAME induced further aggravation and lesions gradually worsened. Specifically, rats with surgery alone exhibited mild stomach/duodenum lesions, considerable liver lesions, and severe cerebral/hippocampal lesions while those also administered diclofenac showed widespread severe lesions in the gastrointestinal tract, liver, cerebellar nuclear/Purkinje cells, and cerebrum/hippocampus. Rats subjected to surgery, diclofenac, and L-NAME exhibited the mentioned lesions, worsening anastomosis, and macro/microscopical necrosis. Thus, rats subjected to surgery alone showed evidence of deterioration. Furtheremore, rats subjected to surgery and administered diclofenac showed worse symptoms, than the rats subjected to surgery alone did. Rats subjected to surgery combined with diclofenac and L-NAME showed the worst deterioration. Rats subjected to surgery exhibited habitual adaptation of the remaining small intestine, which was markedly reversed in rats subjected to surgery and diclofenac, and those with surgery, diclofenac, and

  9. Major surgery diminishes systemic arginine availability and suppresses nitric oxide response to feeding in patients with early stage breast cancer.

    Science.gov (United States)

    Engelen, Mariëlle P K J; Klimberg, V Suzanne; Allasia, Arianna; Deutz, Nicolaas E P

    2017-08-05

    Plasma arginine (ARG) levels are reduced in breast cancer, suggesting diminished systemic ARG availability. ARG and its product nitric oxide (NO) are important in early postoperative recovery due to its roles in immune function and wound healing. It remains unclear whether major surgery further diminishes systemic ARG availability due to enhanced ARG catabolism and/or insufficient endogenous ARG synthesis negatively affecting NO synthesis in patients with early stage breast cancer. In 9 women with early stage breast malignancy and 9 healthy women with genetic predisposition to breast cancer, whole body ARG and citrulline (CIT) rates of appearances were measured to determine their production rates prior to and within 24 h after major breast surgery by stable isotope methodology in the postabsorptive and postprandial state. The conversions of CIT > ARG, ARG > CIT, and ARG > Urea (markers of de novo ARG and NO synthesis, arginase activity, respectively), and ARG clearance (reflecting ARG disposal capacity) were calculated. Prior to surgery, plasma ARG, CIT and glutamine concentrations were lower in cancer (P  ARG (P  CIT conversion (P  CIT conversion, plasma CIT (P early stage breast cancer further reduces systemic ARG availability in the early phase of recovery due to a combined process of increased ARG catabolism and impaired endogenous ARG synthesis. The suppressed postprandial NO increase in early stage cancer suggests that specific nutritional approaches are advised to increase ARG availability after major surgery although the effects on postoperative recovery remain unclear. This trial was registered at clinicaltrials.gov as NCT00497380. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Energy Technology Data Exchange (ETDEWEB)

    Olinto, S.C.F. [Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG (Brazil); Adrião, M.G. [Departamento de Morfologia e Fisiologia, Universidade Federal Rural de Pernambuco, Recife, PE (Brazil); Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  11. Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study

    Science.gov (United States)

    Fang, Zhe; Wang, Jianfeng; Yang, Xiaofan; Sun, Qiang; Jia, Yu; Liu, Hairong; Xi, Tingfei; Guan, Shaokang

    2017-07-01

    Studying the adsorption behaviors of biomolecules on the surface of Mg and Mg-based alloy has a fundamental and important role for related applications in biotechnology. In the present work, we systematically investigate and compare the adsorption properties of three typical amino acids, i.e., Arg (arginine), Gly (glycine) and Asp (aspartic acid), which form RGD tripeptide, on the Mg (0 0 0 1) surface with various doping (Zn, Y, and Nd), and aim to realize proper binding between biomolecules and Mg and Mg-based biomedical materials. Our results show that flat adsorption configurations of the functional groups binding to the surfaces are favored in energy for all the three selected amino acids. In specific, for the amino acids adsorped on clean Mg (0 0 0 1) surface, the adsorption energy (Eads) of Arg is found to be -1.67 eV for the most stable configuration, with amino and guanidyl groups binding with the surface. However, Gly (Asp) is found to binding with the surface through amino and carboxyl groups, with a -1.16 eV (-1.15 eV) binding energy. On the 2% Zn doped Mg (0 0 0 1) alloy surface (Mg-Zn (2%)), the Eads are significantly increased to be -1.91 eV, -1.32 eV and -1.35 eV for Arg, Gly and Asp, respectively. While the Mg-Y (1%) and Mg-Nd (1%) slightly weaken the adsorption of three amino acids. Moreover, we have performed detail discussions of the binding properties between amino acids and surfaces by projected density of states (PDOS) combined with charge transfer analyses. Our studies provide a comprehensive understanding on the interactions between amino acids and Mg and Mg-based alloy surfaces, with respect to facilitate the applications of Mg and Mg-based biomedical alloys in biosensing, drug delivery, biomolecule coating and other fields in biotechnology.

  12. Dual effect of nickel on L-arginine/nitric oxide system in RAW 264.7 macrophages.

    Science.gov (United States)

    Volke, Annika; Rünkorg, Kertu; Wegener, Gregers; Vasar, Eero; Volke, Vallo

    2013-03-01

    The immunogenic mechanisms of the potent contact allergen nickel are not completely clear. Nitric oxide (NO) serves as a fundamental signalling and effector molecule in the immune system, but little is known about its possible role in immune reactions elicited by nickel. We investigated the effects of nickel on the L-arginine/inducible NO synthase (iNOS) system in a murine macrophage cell line, RAW 264.7. Both LPS-stimulated and non-stimulated RAW 264.7 cells were incubated in the presence of 0-100 μM nickel sulphate for 24 h. Subsequently, NO production, iNOS protein expression, L-arginine uptake and gene expression of iNOS and cationic amino acid transporter systems (CAT) were measured. We found that 100 μM NiSO4 increased LPS-induced nitrite production as well as the formation of [(3)H]-L-citrulline from [(3)H]-L-arginine in the RAW 264.7 cells. Correspondingly, the expression of iNOS gene and protein was also remarkably enhanced. Nevertheless, nickel had an inhibitory effect on L-arginine transport which disappeared gradually upon LPS-stimulation in parallel with an increase in NO output. LPS was found to significantly amplify CAT-3 as well as CAT-2 mRNA expression, mirroring the increase in L-arginine transport. In the range of 1-10 μM, NiSO4 did not have any additional effect on CAT mRNA expression, but at 100 μM it was able to enhance CAT-1 and CAT-3 mRNA expression upon LPS stimulation. Our data indicate that nickel interferes with macrophages' L-arginine/NOS system on multiple levels. Considering the potent biological effects of NO, these influences may contribute to nickel toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chen, Fangfang; Cheng, Zhangmin; Wang, Yanping; Yang, Pingfang; Zhang, Yansheng; Chan, Zhulong

    2013-03-01

    Arginine is an important medium for the transport and storage of nitrogen, and arginase (also known as arginine amidohydrolase, ARGAH) is responsible for catalyse of arginine into ornithine and urea in plants. In this study, the impact of AtARGAHs on abiotic stress response was investigated by manipulating AtARGAHs expression. In the knockout mutants of AtARGAHs, enhanced tolerances were observed to multiple abiotic stresses including water deficit, salt, and freezing stresses, while AtARGAH1- and AtARGAH2-overexpressing lines exhibited reduced abiotic stress tolerances compared to the wild type. Consistently, the enhanced tolerances were confirmed by the changes of physiological parameters including electrolyte leakage, water loss rate, stomatal aperture, and survival rate. Interestingly, the direct downstream products of arginine catabolism including polyamines and nitric oxide (NO) concentrations significantly increased in the AtARGAHs-knockout lines, but decreased in overexpressing lines under control conditions. Additionally, the AtARGAHs-overexpressing and -knockout lines displayed significantly reduced relative arginine (% of total free amino acids) relative to the wild type. Similarly, reactive oxygen species accumulation was remarkably regulated by AtARGAHs under abiotic stress conditions, as shown from hydrogen peroxide (H2O2), superoxide radical ( ) concentrations, and antioxidant enzyme activities. Taken together, this is the first report, as far as is known, to provide evidence that AtARGAHs negatively regulate many abiotic stress tolerances, at least partially, attribute to their roles in modulating arginine metabolism and reactive oxygen species accumulation. Biotechnological strategy based on manipulation of AtARGAHs expression will be valuable for future crop breeding.

  14. The effect of L-arginine on microvascular reactivity in normotensive subjects with a family history of hypertension

    Directory of Open Access Journals (Sweden)

    Polona Zaletel

    2014-06-01

    Full Text Available Background: An increasing number of studies support the hypothesis that endothelial dysfunction due to reduced availability of nitric oxide plays a key role in initiation, development and progression of essential hypertension. The aim of our study was to determine whether the ingestion of L-arginine actually improves microvascular function in normotensive subjects with a family history of hypertension.Methods: 30 normotensive healthy men, aged 20–30 years, were divided into two groups according to the family history of hypertension. We measured ECG, heart rate, systolic and diastolic arterial pressure, cardiac output, stroke volume, total peripheral resistance (Task Force Monitor and laser Doppler (LD flux in the microvessels of the skin on the forearm at rest, before and after the administration of 0.9 g L-arginine. The endothelium-dependent vasodilation was assessed by iontophoresis of acetylcholine and the endothelium-independent vasodilation by iontophoresis of sodium nitroprusside.Results: After the ingestion of L-arginine the heart rate and the cardiac output statistically significantly decreased in both groups (paired t-test, p < 0.05. Arterial pressure did not change significantly. Stroke volume decreased and total peripheral resistance increased only in the group of subjects with a family history of hypertension (paired t-test, p < 0.05 The ingestion of L-arginine in predisposed normotensive subjects acutely improved the endothelium-dependent vasodilation (Dunnett’s test, p < 0.05, which is consistent with the assumption that endothelial dysfunction is already present in these subjects.Conclusions: In subjects with a family history of hypertension L-arginine improved endothelial function. This justifies L-arginine as a potential agent for the prevention and/or treatment of arterial hypertension.

  15. Positively charged phthalocyanine-arginine conjugates as efficient photosensitizer for photodynamic therapy.

    Science.gov (United States)

    Wang, Ao; Zhou, Rongrong; Zhou, Lin; Sun, Kang; Jiang, Jianchun; Wei, Shaohua

    2017-03-01

    Positively charged drugs usually have enhanced water solubility, cellular uptake efficiency and anticancer activity. However, the common quaternized and protonated cationic photosensitizers both have some drawbacks such as needing potentially dangerous agents for preparation and easily being deprotonated in alkaline circumstance. Arginine is unique among the amino acids as its guanidine group has exceptionally high basicity in aqueous solution, which may make it positively charged in a wide range of pH. In this paper, two arginine substituted zinc phthalocyanines (ArgEZnPc and ArgZnPc) were reported. They can be positively charged in the range of pH 5-9. Moreover, the photobiological, photochemical properties, subcellular localization, and in vitro anticancer activities of the them were also carried out. The results show that ArgZnPc may be not a good photosensitizer because of its poor photobiological activities though it is positively charged in a wide range of pHs. This may be attributed to the formation of inner salts between guanidine and carboxyl groups of ArgZnPc, which weakens its photobiological and in vitro anticancer activity. While in contrast, ArgEZnPc shows preferential localization in the lysosomes of HeLa cells, exhibits high water solubility, excellent (1)O2 and intracellular reactive oxygen species generation efficiency as well as high in vitro anticancer activity, making it a promising photosensitizer for photodynamic therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Antiviral and Virucidal Activities of N-Cocoyl-L-Arginine Ethyl Ester

    Directory of Open Access Journals (Sweden)

    Hisashi Yamasaki

    2011-01-01

    Full Text Available Various amino acid-derived compounds, for example, Nα-Cocoyl-L-arginine ethyl ester (CAE, alkyloxyhydroxylpropylarginine, arginine cocoate, and cocoyl glycine potassium salt (Amilite, were examined for their virucidal activities against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, influenza A virus (IAV, and poliovirus type 1 (PV-1 in comparison to benzalkonium chloride (BKC and sodium dodecylsulfate (SDS as a cationic and anionic control detergent and also to other commercially available disinfectants. While these amino acid-derived compounds were all effective against HSV-1 and HSV-2, CAE and Amilite were the most effective. These two compounds were, however, not as effective against IAV, another enveloped virus, as against HSV. Cytotoxicity of CAE was weak; at 0.012%, only 5% of the cells were killed under the conditions, in which 100% cells were killed by either SDS or BKC. In addition to these direct virucidal effects, CAE inhibited the virus growth in the HSV-1- or PV-1-infected cells even at 0.01%. These results suggest a potential application of CAE as a therapeutic or preventive medicine against HSV superficial infection at body surface.

  17. Molecular and catalytic properties of an arginine kinase from the nematode Ascaris suum.

    Science.gov (United States)

    Nagataki, M; Uda, K; Jarilla, B R; Tokuhiro, S; Wickramasinghe, S; Suzuki, T; Blair, D; Agatsuma, T

    2012-09-01

    We amplified the cDNA coding for arginine kinase (AK) from the parasitic nematode Ascaris suum, cloned it in pMAL plasmid and expressed the enzyme as a fusion protein with the maltose-binding protein. The whole cDNA was 1260 bp, encoding 400 amino acids, and the recombinant protein had a molecular mass of 45,341 Da. Ascaris suum recombinant AK showed significant activity and strong affinity ( K(m)(Arg) = 0.126 mM) for the substrate L-arginine. It also exhibited high catalytic efficiency ( k(ca)/K(m)(Arg) = 352) comparable with AKs from other organisms. Sequence analysis revealed high amino acid sequence identity between A. suum AK and other nematode AKs, all of which cluster in a phylogenetic tree. However, comparison of gene structures showed that A. suum AK gene intron/exon organization is quite distinct from that of other nematode AKs. Phosphagen kinases (PKs) from certain parasites have been shown to be potential novel drug targets or tools for detection of infection. The characterization of A. suum AK will be useful in the development of strategies for control not only of A. suum but also of related species infecting humans.

  18. Evolutionarily conserved protein arginine methyltransferases in non-mammalian animal systems.

    Science.gov (United States)

    Wang, Yi-Chun; Li, Chuan

    2012-03-01

    Protein arginine methylation is catalyzed by members of the protein arginine methyltransferase (PRMT) family. In the present review, nine PRMTs identified in mammals (human) were used as templates to survey homologous PRMTs in 10 animal species with a completed sequence available in non-mammalian vertebrates, invertebrate chordates, echinoderms, arthropods, nematodes and cnidarians. We show the conservation of the most typical type I PRMT1 and type II PRMT5 in all of the species examined, the wide yet different distribution of PRMT3, 4 and 7 in non-mammalian animals, the vertebrate-restricted distribution of PRMT8 and the special reptile/avian-deficient distribution of PRMT2 and 6. We summarize the basic functions of each PRMT and focus on the current investigations of PRMTs in the non-mammalian animal models, including Xenopus, fish (zebrafish, flounder and medaka), Drosophila and Caenorhabditis elegans. Studies in the model systems not only complement the understanding of the functions of PRMTs in mammals, but also provide valuable information about their evolution, as well as their critical roles and interplays. © 2012 The Authors Journal compilation © 2012 FEBS.

  19. Evolution of the Maillard Reaction in Glutamine or Arginine-Dextrinomaltose Model Systems

    Directory of Open Access Journals (Sweden)

    Silvia Pastoriza

    2016-12-01

    Full Text Available Enteral formulas are foods designed for medical uses to feed patients who are unable to eat normally. They are prepared by mixing proteins, amino acids, carbohydrates and fats and submitted to sterilization. During thermal treatment, the Maillard reaction takes place through the reaction of animo acids with reducing sugars. Thus, although glutamine and arginine are usually added to improve the nutritional value of enteral formulas, their final concentration may vary. Thus, in the present paper the early, intermediate, and advanced states of the Maillard reaction were studied in model systems by measuring loss of free amino acids through the decrease of fluorescence intensity with o-phtaldialdehyde (OPA, 5-Hydroximethylfurfural (HMF, furfural, glucosylisomaltol, fluorescence, and absorbance at 420 nm. The systems were prepared by mixing glutamine or arginine with dextrinomaltose (similar ingredients to those used in special enteral formula, and heated at 100 °C, 120 °C and 140 °C for 0 to 30 min. The recorded changes in the concentration of furanic compounds was only useful for longer heating times of high temperatures, while absorbance and fluorescence measurements were useful in all the assayed conditions. In addition, easiness and sensitivity of absorbance and fluorescence make them useful techniques that could be implemented as indicators for monitoring the manufacture of special enteral formulas. Glucosylisomaltol is a useful indicator to monitor the manufacture of glutamine-enriched enteral formulas.

  20. The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies.

    Directory of Open Access Journals (Sweden)

    Cher-Pheng Ooi

    Full Text Available African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma brucei possesses three different genes for arginine kinase (AK including one (AK3 that encodes a protein localised to the flagellum. AK3 is characterised by the presence of a unique amino-terminal insertion that specifies flagellar targeting. We show here a phylogenetic analysis revealing that flagellar AK arose in two independent duplication events in T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the midgut and in the salivary glands as well as in bloodstream cells, but with predominance at insect stages. Genetic knockout leads to a slight reduction in motility and impairs parasite infectivity towards tsetse flies in single and competition experiments, both phenotypes being reverted upon expression of an epitope-tagged version of AK3. We speculate that this flagellar arginine kinase is important for T. brucei infection of tsetse, especially in the context of mixed infections and that its flagellar targeting relies on a system equivalent to that discovered for calflagins, a family of trypanosome flagellum calcium binding proteins.

  1. The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies.

    Science.gov (United States)

    Ooi, Cher-Pheng; Rotureau, Brice; Gribaldo, Simonetta; Georgikou, Christina; Julkowska, Daria; Blisnick, Thierry; Perrot, Sylvie; Subota, Ines; Bastin, Philippe

    2015-01-01

    African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma brucei possesses three different genes for arginine kinase (AK) including one (AK3) that encodes a protein localised to the flagellum. AK3 is characterised by the presence of a unique amino-terminal insertion that specifies flagellar targeting. We show here a phylogenetic analysis revealing that flagellar AK arose in two independent duplication events in T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the midgut and in the salivary glands) as well as in bloodstream cells, but with predominance at insect stages. Genetic knockout leads to a slight reduction in motility and impairs parasite infectivity towards tsetse flies in single and competition experiments, both phenotypes being reverted upon expression of an epitope-tagged version of AK3. We speculate that this flagellar arginine kinase is important for T. brucei infection of tsetse, especially in the context of mixed infections and that its flagellar targeting relies on a system equivalent to that discovered for calflagins, a family of trypanosome flagellum calcium binding proteins.

  2. Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity.

    Directory of Open Access Journals (Sweden)

    Meng-Chiao Ho

    Full Text Available The arginine methyltransferase PRMT5-MEP50 is required for embryogenesis and is misregulated in many cancers. PRMT5 targets a wide variety of substrates, including histone proteins involved in specifying an epigenetic code. However, the mechanism by which PRMT5 utilizes MEP50 to discriminate substrates and to specifically methylate target arginines is unclear. To test a model in which MEP50 is critical for substrate recognition and orientation, we determined the crystal structure of Xenopus laevis PRMT5-MEP50 complexed with S-adenosylhomocysteine (SAH. PRMT5-MEP50 forms an unusual tetramer of heterodimers with substantial surface negative charge. MEP50 is required for PRMT5-catalyzed histone H2A and H4 methyltransferase activity and binds substrates independently. The PRMT5 catalytic site is oriented towards the cross-dimer paired MEP50. Histone peptide arrays and solution assays demonstrate that PRMT5-MEP50 activity is inhibited by substrate phosphorylation and enhanced by substrate acetylation. Electron microscopy and reconstruction showed substrate centered on MEP50. These data support a mechanism in which MEP50 binds substrate and stimulates PRMT5 activity modulated by substrate post-translational modifications.

  3. Cerebral Endothelial Function Determined by Cerebrovascular Reactivity to L-Arginine

    Directory of Open Access Journals (Sweden)

    Janja Pretnar-Oblak

    2014-01-01

    Full Text Available Endothelium forms the inner cellular lining of blood vessels and plays an important role in many physiological functions including the control of vasomotor tone. Cerebral endothelium is probably one of the most specific types but until recently it was impossible to determine its function. In this review, the role of cerebrovascular reactivity to L-arginine (CVR-L-Arg for assessment of cerebral endothelial function is discussed. L-Arginine induces vasodilatation through enhanced production of nitric oxide (NO in the cerebral endothelium. Transcranial Doppler sonography is used for evaluation of cerebral blood flow changes. The method is noninvasive, inexpensive, and enables reproducible measurements. CVR-L-Arg has been compared to flow-mediated dilatation as a gold standard for systemic endothelial function and intima-media thickness as a marker for morphological changes. However, it seems to show specific cerebral endothelial function. So far CVR-L-Arg has been used to study cerebral endothelial function in many pathological conditions such as stroke, migraine, etc. In addition CVR-L-Arg has also proven its usefulness in order to show potential improvement after pharmacological interventions. In conclusion CVR-L-Arg is a promising noninvasive research method that could provide means for evaluation of cerebral endothelial function in physiological and pathological conditions.

  4. Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene.

    Directory of Open Access Journals (Sweden)

    Jungtae Na

    Full Text Available Circadian clocks are the endogenous oscillators that regulate rhythmic physiological and behavioral changes to correspond to daily light-dark cycles. Molecular dissections have revealed that transcriptional feedback loops of the circadian clock genes drive the molecular oscillation, in which PER/CRY complexes inhibit the transcriptional activity of the CLOCK/BMAL1 heterodimer to constitute a negative feedback loop. In this study, we identified the type II protein arginine methyltransferase 5 (PRMT5 as an interacting molecule of CRY1. Although the Prmt5 gene was constitutively expressed, increased interaction of PRMT5 with CRY1 was observed when the Per1 gene was repressed both in synchronized mouse liver and NIH3T3 cells. Moreover, rhythmic recruitment of PRMT5 and CRY1 to the Per1 gene promoter was found to be associated with an increased level of histone H4R3 dimethylation and Per1 gene repression. Consistently, decreased histone H4R3 dimethylation and altered rhythmic Per1 gene expression were observed in Prmt5-depleted cells. Taken together, these findings provide an insight into the link between histone arginine methylation by PRMT5 and transcriptional regulation of the circadian Per1 gene.

  5. Protein arginine deiminase 2 binds calcium in an ordered fashion: implications for inhibitor design.

    Science.gov (United States)

    Slade, Daniel J; Fang, Pengfei; Dreyton, Christina J; Zhang, Ying; Fuhrmann, Jakob; Rempel, Don; Bax, Benjamin D; Coonrod, Scott A; Lewis, Huw D; Guo, Min; Gross, Michael L; Thompson, Paul R

    2015-04-17

    Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.

  6. Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB.

    Science.gov (United States)

    Lüke, Iris; Handford, Jennifer I; Palmer, Tracy; Sargent, Frank

    2009-12-01

    The twin-arginine translocation (Tat) apparatus is a protein targeting system found in the cytoplasmic membranes of many prokaryotes. Substrate proteins of the Tat pathway are synthesised with signal peptides bearing SRRxFLK 'twin-arginine' amino acid motifs. All Tat signal peptides have a common tripartite structure comprising a polar N-terminal region, followed by a hydrophobic region of variable length and a polar C-terminal region. In Escherichia coli, Tat signal peptides are proteolytically cleaved after translocation. The signal peptide C-terminal regions contain conserved AxA motifs, which are possible recognition sequences for leader peptidase I (LepB). In this work, the role of LepB in Tat signal peptide processing was addressed directly. Deliberate repression of lepB expression prevented processing of all Tat substrates tested, including SufI, AmiC, and a TorA-23K reporter protein. In addition, electron microscopy revealed gross defects in cell architecture and membrane integrity following depletion of cellular LepB protein levels.

  7. Arginine side chains as a dispersant for individual single-wall carbon nanotubes.

    Science.gov (United States)

    Hirano, Atsushi; Tanaka, Takeshi; Kataura, Hiromichi; Kameda, Tomoshi

    2014-04-22

    Charged peptides and proteins disperse single-wall carbon nanotubes (SWCNTs) in aqueous solutions. However, little is known about the role of their side chains in their interactions with SWCNTs. Homopolypeptide-SWCNT systems are ideal for investigating the mechanisms of such interactions. In this study, we demonstrate that SWCNTs are individually dispersed by poly-L-arginine (PLA). The debundled SWCNTs exhibited a distinct fluorescence. The dispersibility of SWCNTs with PLA was greater than that of SWCNTs with poly-L-lysine (PLL). Molecular dynamics simulations suggest that the side chains of PLA have stronger interactions with the sidewalls of SWCNTs compared with those of PLL. The guanidinium group at the end of the side chain of an arginine residue plays an important role in the interaction with SWCNTs, likely through hydrophobic, van der Waals, and π-π interactions. PLA can be useful as a tool for the dispersion of SWCNTs and can be used to non-covalently anchor materials to SWCNTs with strong binding. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dietary l-Arginine Supplementation Protects Weanling Pigs from Deoxynivalenol-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Li Wu

    2015-04-01

    Full Text Available This study was conducted to determine the positive effects of dietary supplementation with l-arginine (Arg on piglets fed a deoxynivalenol (DON-contaminated diet. A total of eighteen, 28-day-old healthy weanling pigs were randomly assigned into one of three groups: uncontaminated basal diet (control group, 6 mg/kg DON-contaminated diet (DON group and 6 mg/kg DON + 1% l-arginine (DON + ARG group. After 21 days of Arg supplementation, piglets in the DON and DON + ARG groups were challenged by feeding 6 mg/kg DON-contaminated diet for seven days. The results showed that DON resulted in damage to piglets. However, clinical parameters, including jejunal morphology, amino acid concentrations in the serum, jejunum and ileum, were improved by Arg (p < 0.05. Furthermore, the mRNA levels for sodium-glucose transporter-1 (SGLT-1, glucose transporter type-2 (GLUT-2 and y+l-type amino acid transporter-1 (y+LAT-1 were downregulated in the DON group, but the values were increased in the DON + ARG group (p < 0.05. Collectively, these results indicate that dietary supplementation with Arg exerts a protective role in pigs fed DON-contaminated diets.

  9. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders

    Directory of Open Access Journals (Sweden)

    Derek W. Stouth

    2017-11-01

    Full Text Available Protein arginine methyltransferases (PRMTs are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD. PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD, spinal muscular atrophy (SMA, and amyotrophic lateral sclerosis (ALS suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs. This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.

  10. Gene transport and expression by arginine-rich cell-penetrating peptides in Paramecium.

    Science.gov (United States)

    Dai, Yun-Hao; Liu, Betty Revon; Chiang, Huey-Jenn; Lee, Han-Jung

    2011-12-10

    Owing to the cell membrane barriers, most macromolecules and hydrophilic molecules could not freely enter into living cells. However, cell-penetrating peptides (CPPs) have been discovered that can translocate themselves and associate cargoes into the cytoplasm. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9 and PR9) can form stable complexes with plasmid DNA at the optimized nitrogen/phosphate ratio of 3 and deliver plasmid DNA into Paramecium caudatum in a noncovalent manner. Accordingly, the transported plasmid encoding the green fluorescent protein (GFP) gene could be expressed in cells functionally assayed at both the protein and DNA levels. The efficiency of gene delivery varied among these CPPs in the order of HR9>PR9>SR9. In addition, these CPPs and CPP/DNA complexes were not cytotoxic in Paramecium detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diohenyltetrazolium bromide (MTT) assay. Thus, these results suggest that the functionality of arginine-rich CPPs offers an efficient and safe tool for transgenesis in eukaryotic protozoans. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Stabilization of glycoprotein liquid formulation using arginine: a study with lactoferrin as a model protein.

    Science.gov (United States)

    Kim, Hyun-Jung; Shin, Chang Hoon; Kim, Chan-Wha

    2009-01-01

    The formulation of new biotherapeutics without human serum albumin (HSA) could decrease the potential risk of blood-transmitted diseases and those caused by infectious viruses and other pathogens. In the present study, arginine was examined as a potential alternative to HAS, and bovine lactoferrin (bLf) was used as a representative model glycoprotein since bLf has potential immunomodulatory and antiviral activity. The optimal formulation for the mixture was determined to be 10 mM arginine, 15% (w/v) trehalose, and 0.02% (v/v) Tween 80, using a statistical analysis program, Minitab. Analyses were performed using reverse-phase high-performance liquid chromatography (HPLC) and SDS-PAGE. The blf HSA-free formulations lost only 12-20% of blf compared with 46% for control (without additives) after 28 d of storage. Based on long-term stability studies, the HSA-free formulation developed in this study had a stronger effect on the stability of bLf (1.4-fold) than HSA formulation under various storage conditions over 6 months.

  12. [Mutations in the arginine vasopressin neurophysin-II gene in familial neurohypophyseal diabetes insipidus patients].

    Science.gov (United States)

    Peralta-Leal, Valeria; Durán-González, Jorge; Leal-Ugarte, Evelia

    2008-01-01

    Neurogenic diabetes insipidus (NDI) is a rare condition characterized by polyuria and polydipsia caused by deficient arginine vasopressin hormone production. More than a 50 mutations have been identified for familial autosomic dominant neurogenic diabetes insipidus (FadNDI). These mutations can cause citotoxicity and lead to the degeneration of magnocellular neurons of the hipofisis by aberrant protein accumulation. The NDI diagnosis is based on the water deprivation test, quantification of AVP hormone and Magnetic Resonance Image (MRI), and in families with history of FadNDI has been suggested the molecular analysis of mutation in the arginine vasopressin neurophisin II gene before the signs and symptoms development, with the purpose of offering a suitable diagnosis, clinical follow up and treatment. The treatment with a synthetic analogue of AVP hormone allows the remission of the signs and symptoms in NDI patients and the advances in gene therapy in animal models has been promising, as much for NDI as for other diseases in which the mutant protein production has been involved.

  13. Does L-arginine availability during the early pregnancy alters the immune response of Trypanosoma cruzi infected and pregnant Wistar rats?

    Science.gov (United States)

    da Costa, Cássia Mariana Bronzon; de Freitas, Murilo Rodrigues Barbosa; Brazão, Vânia; dos Santos, Carla Domingues; Sala, Miguel Angel; do Prado Júnior, José Clovis; Abrahão, Ana Amélia Carraro

    2014-07-01

    Chagas disease induces a strong immune response and L-arginine is an essential amino acid which plays an important role in homeostasis of the immune system. The aims of this study were to evaluate parasitemia, corticosterone levels, production of nitric oxide (NO), fetal morphological measurements, and histology of heart and placenta. Twenty pregnant Wistar rats (180-220 g) were grouped in: pregnant control (PC), pregnant control and L-arginine supplied (PCA), pregnant infected (PI), pregnant infected and L-arginine supplied (PIA). Females were infected with 1×10(5) trypomastigotes of the Y strain (3rd day of pregnancy). Animals were supplied with 21 mg of L-arginine/kg/day during 14 days. PIA showed significant decreased levels of corticosterone and parasitemia. For control groups, any alteration in NO production was found with L-arginine supplementation; for PIA, enhanced nitrite concentrations were observed as compared to PI. Weights and lengths of fetuses were higher in L-arginine treated and infected pregnant rats as compared to untreated ones. Placental weight from the PIA group was significantly increased when compared to PI. In L-arginine treated animals, cardiac tissue showed reduced amastigote burdens. PIA and PI displayed similar placental parasitism. Based on these results, L-arginine supplementation may be potentially useful for the protection against Trypanosoma cruzi during pregnancy. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Characterization of the arcD Arginine : Ornithine Exchanger of Pseudomonas aeruginosa. Localization in the Cytoplasmic Membrane and a Topological Model

    NARCIS (Netherlands)

    Bourdineaud, Jean-Paul; Heierli, Daniel; Gamper, Marianne; Verhoogt, Hans J.C.; Driessen, Arnold J.M.; Konings, Wil N.; Lazdunski, Claude; Haas, Dieter

    1993-01-01

    The arcDABC operon of Pseudomonas aeruginosa encodes the enzymes of the arginine deiminase pathway and is induced by oxygen limitation. The arcD gene specifies a 53-kDa protein with arginine: ornithine exchange activity. The ArcD protein of P. aeruginosa, like the LysI lysine transporter of

  15. A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life

    NARCIS (Netherlands)

    Widdick, David A.; Eijlander, Robyn T.; van Dijl, Jan Maarten; Kuipers, Oscar P.; Palmer, Tracy

    2008-01-01

    We have developed a reporter protein system for the experimental verification of twin-arginine signal peptides. This reporter system is based on the Streptomyces coelicolor agarase protein, which is secreted into the growth medium by the twin-arginine translocation (Tat) pathway and whose

  16. Duodenocutaneous fistula in rats as a model for "wound healing-therapy" in ulcer healing: the effect of pentadecapeptide BPC 157, L-nitro-arginine methyl ester and L-arginine.

    Science.gov (United States)

    Skorjanec, S; Kokot, A; Drmic, D; Radic, B; Sever, M; Klicek, R; Kolenc, D; Zenko, A; Lovric Bencic, M; Belosic Halle, Z; Situm, A; Zivanovic Posilovic, G; Masnec, S; Suran, J; Aralica, G; Seiwerth, S; Sikiric, P

    2015-08-01

    While very rarely reported, duodenocutanenous fistula research might alter the duodenal ulcer disease background and therapy. Our research focused on rat duodenocutaneous fistulas, therapy, stable gastric pentadecapeptide BPC 157, an anti-ulcer peptide that healed other fistulas, nitric oxide synthase-substrate L-arginine, and nitric oxide synthase-inhibitor L-nitro-arginine methyl ester (L-NAME). The hypothesis was, duodenal ulcer-healing, like the skin ulcer, using the successful BPC 157, with nitric oxide-system involvement, the "wound healing-therapy", to heal the duodenal ulcer, the fistula-model that recently highlighted gastric and skin ulcer healing. Pressure in the lower esophageal and pyloric sphincters was simultaneously assessed. Duodenocutaneous fistula-rats received BPC 157 (10 μg/kg or 10 ng/kg, intraperitoneally or perorally (in drinking water)), L-NAME (5 mg/kg intraperitoneally), L-arginine (100 mg/kg intraperitoneally) alone and/or together, throughout 21 days. Duodenocutaneous fistula-rats maintained persistent defects, continuous fistula leakage, sphincter failure, mortality rate at 40% until the 4(th) day, all fully counteracted in all BPC 157-rats. The BPC 157-rats experienced rapidly improved complete presentation (maximal volume instilled already at 7(th) day). L-NAME further aggravated the duodenocutaneous fistula-course (mortality at 70% until the 4(th) day); L-arginine was beneficial (no mortality; however, maximal volume instilled not before 21(st) day). L-NAME-worsening was counteracted to the control level with the L-arginine effect, and vice versa, while BPC 157 annulled the L-NAME effects (L-NAME + L-arginine; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157 brought below the level of the control). It is likely that duodenocutaneous fistulas, duodenal/skin defect simultaneous healing, reinstated sphincter function, are a new nitric oxide-system related phenomenon. In conclusion, resolving the duodenocutanenous fistulashealing

  17. Arginine and antioxidant supplement on performance in elderly male cyclists: a randomized controlled trial.

    Science.gov (United States)

    Chen, Steve; Kim, Woosong; Henning, Susanne M; Carpenter, Catherine L; Li, Zhaoping

    2010-03-23

    Human exercise capacity declines with advancing age. These changes often result in loss of physical fitness and more rapid senescence. Nitric oxide (NO) has been implicated in improvement of exercise capacity through vascular smooth muscle relaxation in both coronary and skeletal muscle arteries, as well as via independent mechanisms. Antioxidants may prevent nitric oxide inactivation by oxygen free radicals. The purpose of this study was to investigate the effects of an L-arginine and antioxidant supplement on exercise performance in elderly male cyclists. This was a two-arm prospectively randomized double-blinded and placebo-controlled trial. Sixteen male cyclists were randomized to receive either a proprietary supplement (Niteworks(R), Herbalife International Inc., Century City, CA) or a placebo powder. Exercise parameters were assessed by maximal incremental exercise testing performed on a stationary cycle ergometer using breath-by-breath analysis at baseline, week one and week three. There was no difference between baseline exercise parameters. In the supplemented group, anaerobic threshold increased by 16.7% (2.38 +/- 0.18 L/min, p < 0.01) at week 1, and the effect was sustained by week 3 with a 14.2% (2.33 +/- 0.44 L/min, p < 0.01). In the control group, there was no change in anaerobic threshold at weeks 1 and 3 compared to baseline (1.88 +/- 0.20 L/min at week 1, and 1.86 +/- 0.21 L/min at week 3). The anaerobic threshold for the supplement groups was significantly higher than that of placebo group at week 1 and week 3. There were no significant changes noted in VO2 max between control and intervention groups at either week 1 or week 3 by comparison to baseline. An arginine and antioxidant-containing supplement increased the anaerobic threshold at both week one and week three in elderly cyclists. No effect on VO2 max was observed. This study indicated a potential role of L-arginine and antioxidant supplementation in improving exercise performance in

  18. L-Arginine Modulates Intestinal Inflammation in Rats Submitted to Mesenteric Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Taha, M O; de Oliveira, J V; Dias Borges, M; de Lucca Melo, F; Gualtieri, F G; E Silva Aidar, A L; Pacheco, R L; de Melo Alexandre E Silva, T; Klajner, R K; Iuamoto, L R; Munhoz Torres, L; Morais Mendes de Paula, B J; de Campos, K; Oliveira-Junior, I S; Fagundes, D J

    2016-03-01

    The goal of this study was to investigate whether exogenous offer of L-arginine (LARG) modulates the gene expression of intestinal dysfunction caused by ischemia and reperfusion. Eighteen Wistar-EPM1 male rats (250-300 g) were anesthetized and subjected to laparotomy. The superior mesenteric vessels were exposed, and the rats were randomized into 3 groups (n = 6): the control group (CG), with no superior mesenteric artery interruption; the ischemia/reperfusion group (IRG), with 60 minutes of ischemia and 120 minutes of reperfusion and saline injections; and the L-arginine group (IRG + LARG), with L-arginine injected in the femoral vein 5 minutes before ischemia, 5 minutes after reperfusion, and after 55 minutes of reperfusion. The total RNA was extracted and purified from samples of the small intestine. The concentration of each total RNA sample was determined by using spectrophotometry. The first-strand complementary DNA (cDNA) was synthesized in equal amounts of cDNA and the Master Mix SYBR Green qPCR Mastermix (SABiosciences, a Qiagen Company, Frederick, Md). Amounts of cDNA and Master Mix SYBR Green qPCR Mastermix were distributed to each well of the polymerase chain reaction microarray plate containing the predispensed gene-specific primer sets for Bax and Bcl2. Each sample was evaluated in triplicate, and the Student t test was applied to validate the homogeneity of each gene expression reaction (P < .05). The gene expression of Bax in IRG (+1.48) was significantly higher than in IRG-LARG (+9.69); the expression of Bcl2L1 in IRG (+1.01) was significantly higher than IRG-LARG (+22.89). The apoptotic cell pathway of 2 protagonists showed that LARG improves the gene expression of anti-apoptotic Bcl2l1 (Bcl2-like 1) more than the pro-apoptotic Bax (Bcl2-associated X protein). Copyright © 2016. Published by Elsevier Inc.

  19. BPC 157 antagonized the general anaesthetic potency of thiopental and reduced prolongation of anaesthesia induced by L-NAME/thiopental combination.

    Science.gov (United States)

    Zemba, Mladen; Cilic, Andrea Zemba; Balenovic, Igor; Cilic, Matija; Radic, Bozo; Suran, Jelena; Drmic, Domagoj; Kokot, Antonio; Stambolija, Vasilije; Murselovic, Tamara; Holjevac, Jadranka Katancic; Uzun, Sandra; Djuzel, Viktor; Vlainic, Josipa; Seiwerth, Sven; Sikiric, Predrag

    2015-12-01

    We hypothesized that certain effects of the general anaesthetic thiopental are dependent on NO-related mechanisms, which were consequently counteracted by stable gastric pentadecapeptide BPC 157. (1) All rats intraperitoneally received thiopental (20, 30, 40, and 50 mg/kg) while medication BPC 157 (10 μg/kg, 10 ng/kg, and 10 pg/kg) was given intraperitoneally at 5 min before thiopental. (2) To determine NO-related mechanisms, all rats received intraperitoneally thiopental 40 mg/kg while BPC 157 (10 μg/kg), L-NAME (10 mg/kg) and L-arginine (30 mg/kg) were applied alone and/or combined. BPC 157 was given at 25 min before thiopental while L-NAME, L-arginine, alone and/or combined, were applied at 20 min before thiopental. (1) BPC 157 own effect on thiopental anaesthesia: BPC 157 (10 ng/kg and 10 μg/kg) caused a significant antagonism of general anaesthesia produced by thiopental with a parallel shift of the dose-response curve to the right. (2) L-NAME-L-arginine-BPC 157 interrelations: L-NAME: Thiopental-induced anaesthesia duration was tripled. L-arginine: Usual thiopental anaesthesia time was not influenced. Active only when given with L-NAME or BPC 157: potentiating effects of L-NAME were lessened, not abolished; shortening effect of BPC 157: abolished. BPC 157 and L-NAME: Potentiating effects of L-NAME were abolished. BPC 157 and L-NAME and L-arginine: BPC 157 +L-NAME +L-arginine rats exhibited values close to those in BPC 157 rats. Thiopental general anaesthesia is simultaneously manipulated in both ways with NO system activity modulation, L-NAME (prolongation) and BPC 157 (shortening/counteraction) and L-arginine (interference with L-NAME and BPC 157).

  20. Copeptin, a surrogate marker for arginine vasopressin, is associated with disease severity and progression in IgA nephropathy patients

    NARCIS (Netherlands)

    Zittema, Debbie; van den Brand, Jan A J G; Bakker, Stephan J. L.; Wetzels, Jack F.; Gansevoort, Ron T.

    2017-01-01

    Background. Besides its essential role for water homeostasis, arginine vasopressin (AVP) may have deleterious effects on the kidney. Copeptin, a surrogate marker for AVP, has been shown to be related to renal outcome in patients with diabetic nephropathy and polycystic kidney disease. We

  1. Copeptin, a surrogate marker for arginine vasopressin, is associated with declining glomerular filtration in patients with diabetes mellitus (ZODIAC-33)

    NARCIS (Netherlands)

    Boertien, W. E.; Riphagen, I. J.; Drion, I.; Alkhalaf, A.; Bakker, S. J. L.; Groenier, K. H.; Struck, J.; de Jong, P. E.; Bilo, H. J. G.; Kleefstra, N.; Gansevoort, R. T.

    Arginine vasopressin (AVP), the hormone important for maintaining fluid balance, has been shown to cause kidney damage in rodent models of diabetes. We investigated the potential role of AVP in the natural course of kidney function decline in diabetes in an epidemiological study. Plasma copeptin, a

  2. Copeptin, a surrogate marker for arginine vasopressin, is associated with disease severity and progression in IgA nephropathy patients

    NARCIS (Netherlands)

    Zittema, D.; Brand, J. van den; Bakker, S.J.L.; Wetzels, J.F.M.; Gansevoort, R.T.

    2017-01-01

    Background.: Besides its essential role for water homeostasis, arginine vasopressin (AVP) may have deleterious effects on the kidney. Copeptin, a surrogate marker for AVP, has been shown to be related to renal outcome in patients with diabetic nephropathy and polycystic kidney disease. We

  3. [Modulation of tracer coupling in AII amacrine cells and ON cone bipolars of rabbit retina by L-arginine].

    Science.gov (United States)

    Xia, Xiao-bo; Mills, Stephen L; Huang, Pei-gang; Jiang, You-qin

    2003-04-01

    To determine the relative permeability of the gap junction pathways in AII amacrine cells and ON cone bipolar cells of rabbit retina, and its modulation by L-arginine. The distribution of neurobiotin across the heterologous cell assembly was measured using the confocal microscope after microinjecting neurobiotin into a single AII amacrine cell. Modulation of the tracer coupling by 4 mmol/L L-arginine was also observed. Rabbit anti-calretinin antibody was used to stain the retina injected with neurobiotin. Average neurobiotin concentration in the coupled ON cone bipolar cells was lower than that in the coupled AII amacrine cells. L-arginine selectively reduced the concentration of neurobiotin in the ON cone bipolar cells, this effect was more prominent than that observed in the AII amacrine cells (P AII amacrine cells stained with anti-calretinin antibody. Neurobiotin can pass easily through homologous AII/AII cells gap junctions as compared to the heterologous AII/bipolar cells gap junctions. L-arginine reduces the labeling of neurobiotin in ON cone bipolar cells to a greater degree than in AII amacrine cells. The pathway of this effect is probably by increasing the level of cGMP and acting at the bipolar cell side of this gap junction.

  4. L-Arginine is not the limiting factor for nitric oxide synthesis by human alveolar macrophages in vitro

    NARCIS (Netherlands)

    Muijsers, RBR; ten Hacken, NHT; Van Ark, [No Value; Folkerts, G; Nijkamp, FP; Postma, DS

    2001-01-01

    Unlike murine mononuclear phagocytes, human macrophages do not release high amounts of nitric oxide (NO) in vitro despite the presence of nitric oxide synthase (NOS). To determine whether this limited NO synthesis in vitro is due to limited availability of the NOS substrate L-arginine, and putative

  5. Altered nitrogen balance and decreased urea excretion in male rats fed cafeteria diet are related to arginine availability.

    Science.gov (United States)

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José-Antonio; Romero, María del Mar; Alemany, Marià; Remesar, Xavier

    2014-01-01

    Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids. We analyzed whether reduced urea excretion was a consequence of higher NO x ; (nitrite, nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion. There were no differences in plasma nitrate or nitrite. NO(x) and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithine when compared with controls, whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

  6. Short and long-term soy diet vs. casein protects liver steatosis independent of the arginine content

    Science.gov (United States)

    Non-alcoholic fatty liver disease (NAFLD), the major cause of abnormal liver function, is often associated with obesity. Arginine (ARG) plays a role in modulating body weight/fat, but there are limited data as to the role that ARG may play in soy protein’s ability to protect from liver steatosis. Th...

  7. Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, R; Kok, J; Kuipers, OP

    2005-01-01

    The expression of arginine metabolism in Lactococcus lactis is controlled by the two homologous transcriptional regulators ArgR and AhrC. Genome sequence analyses have shown that the occurrence of multiple homologues of the ArgR family of transcriptional regulators is a common feature of many low-G

  8. l-arginine modulates inflammation and muscle regulatory genes after a single session of resistance exercise in rats.

    Science.gov (United States)

    Morais, S R L; Brito, V G B; Mello, W G; Oliveira, S H P

    2018-02-01

    We investigated the skeletal muscle adaptation to l-arginine supplementation prior to a single session of resistance exercise (RE) during the early phase of muscle repair. Wistar rats were randomly assigned into non-exercised (Control), RE plus vehicle (RE); RE plus l-arginine (RE+L-arg) and RE plus aminoguanidine (RE+AG) groups. Animals received four doses of either vehicle (0.9% NaCl), l-arg (1 g/b.w.), or AG (iNOS inhibitor) (50 mg/b.w.). The animals performed a single RE session until the concentric failure (ladder climbing; 80% overload) and the skeletal muscles were harvested at 0, 8, 24, and 48 hours post-RE. The RE resulted in increased neutrophil infiltrate (24 hours post-RE) (3621 vs 11852; Pl-arginine supplementation attenuates neutrophil infiltration (5622; Pl-arg supplementation [atrogin-1 (0.6 fold; Pl-arg treated animals at 24 hours (2.8 vs 1.5 fold; Pl-arginine supplementation seems to attenuate the resolution of RE-induced muscle inflammation and up-regulates MyoD expression during the early phase of muscle repair. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells

    Science.gov (United States)

    Andrew F. Page; Rakesh Minocha; Subhash C. Minocha

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied...

  10. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine.

    Science.gov (United States)

    Jensen, Jaide V K; Eberhardt, Dorit; Wendisch, Volker F

    2015-11-20

    The glutamate-derived bioproducts ornithine, citrulline, proline, putrescine, and arginine have applications in the food and feed, cosmetic, pharmaceutical, and chemical industries. Corynebacterium glutamicum is not only an excellent producer of glutamate but also of glutamate-derived products. Here, engineering targets beneficial for ornithine production were identified and the advantage of rationally constructing a platform strain for the production of the amino acids citrulline, proline, and arginine, and the diamine putrescine was demonstrated. Feedback alleviation of N-acetylglutamate kinase, tuning of the promoter of glutamate dehydrogenase gene gdh, lowering expression of phosphoglucoisomerase gene pgi, along with the introduction of a second copy of the arginine biosynthesis operon argCJB(A49V,M54V)D into the chromosome resulted in a C. glutamicum strain producing ornithine with a yield of 0.52 g ornithine per g glucose, an increase of 71% as compared to the parental ΔargFRG strain. Strains capable of producing 0.41 g citrulline per g glucose, 0.29 g proline per g glucose, 0.30 g arginine per g glucose, and 0.17 g putrescine per g glucose were derived from the ornithine-producing platform strain by plasmid-based overexpression of appropriate pathway modules with one to three genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of a food supplement rich in arginine in patients with smear positive pulmonary tuberculosis--a randomised trial

    DEFF Research Database (Denmark)

    Schön, T; Idh, J; Westman, A

    2011-01-01

    In tuberculosis (TB), the production of nitric oxide (NO) is confirmed but its importance in host defense is debated. Our aim was to investigate whether a food supplement rich in arginine could enhance clinical improvement in TB patients by increased NO production. Smear positive TB patients from...

  12. Bioinspired synthesis of hydroxyapatite nanocrystals in the presence of collagen and l-arginine: Candidates for bone regeneration.

    Science.gov (United States)

    Brasinika, Despoina; Tsigkou, Olga; Tsetsekou, Athena; Missirlis, Yiannis F

    2016-04-01

    This work aims at the bioinspired synthesis of hydroxyapatite (HAp) crystals in the presence of both collagen and l-arginine, in an effort to obtain a homogeneous hybrid material, having a bone-like nanostructure. Collagen (Col) is the most commonly utilized protein in most species of life, while L-arginine (Arg) encourages cell attachment, proliferation, and differentiation on HAp surfaces. Transmission electron microscopy, X-ray diffraction and Fourier transform-infrared spectroscopy were used to analyze surface morphology and structure of nanocrystals obtained under different synthesis conditions. It was shown that collagen and arginine content affect HAp crystallization. Collagen has an inhibition effect since HAp crystal size is reduced with the increase of collagen content. The presence of arginine is crucial as a critical content exists (Ca(2+):Arg = 1:1) under which HAp nanocrystals coexist with brushite. Under the optimum synthesis conditions (HAp/Col weight ratio 70/30 and Ca(2+):Arg molar ratio 1:1) HAp nanoplates of a uniform size (around 10 × 10 nm) were obtained. The biocompatibility of this hybrid powder was assessed using human bone marrow derived mesenchymal stem cells (MSCs). Cell response in terms of MSC attachment (scanning electron microscopy) and viability/proliferation (Alamar Blue) demonstrated a noncytotoxic effect of the new material. © 2015 Wiley Periodicals, Inc.

  13. Prospective studies on diet and coronary heart disease : the role of fatty acids, B-vitamins and arginine

    NARCIS (Netherlands)

    Oomen, C.M.

    2001-01-01

    In this thesis, the results of prospective studies on fatty acids, B-vitamins and arginine and the occurrence of coronary heart disease have been described. The results presented are mainly based on the Zutphen Elderly Study. In this study of 939 men aged 64-84 years, detailed information

  14. Effect of amino acids lysine and arginine on fracture healing in rabbits: A radiological and histomorphological analysis

    Directory of Open Access Journals (Sweden)

    Sinha Shivam

    2009-01-01

    Full Text Available Background: Amino acids like arginine and lysine have been suggested to hasten the process of fracture healing by improving the local blood supply, supplementing growth factors, and improving collagen synthesis. We studied the role of lysine and arginine in the fracture repair process with regard to the rate of healing, probable mechanisms involved in the process, and mutual synergism between these agents. Materials and Methods: In an experimental study, 40 rabbits were subjected to ulnar osteotomy. They were distributed in control (14 and test groups (26. Twenty-six animals in the test group were fed with a diet rich in lysine and arginine. Both the groups were followed radiologically and histologically till union. Results: There was better healing of osteotomy in terms of better vascularization, callus formation, and mineralization in the test group. The time of healing in the test group was reduced by a period of 2 weeks. Conclusion: We conclude that amino acids like arginine and lysine may hasten fracture healing.

  15. Difference in effectiveness between strontium acetate and arginine-based toothpastes to relieve dentin hypersensitivity. A systematic review.

    Science.gov (United States)

    Magno, Marcela Baraúna; Nascimento, Gláucia Cristina Rodrigues; Da Penha, Natasha Kiss Santos; Pessoa, Oscar Faciola; Loretto, Sandro Cordeiro; Maia, Lucianne Cople

    2015-02-01

    To present an overview of clinical evidence of strontium acetate and arginine-based toothpastes, in order to determine which of these substances was the most effective to relieve dentin hypersensitivity (DH). An electronic search was performed in PubMed, EMBASE, The Cochrane Library, LILACS, Web of Science and Open Grey databases. The search strategy included MeSH terms, synonyms and keywords with no language or date restriction. Randomized controlled clinical trial studies that compared the effectiveness of arginine/calcium carbonate and strontium acetate toothpaste were included. The risk of bias in the included studies was assessed and classified through the Cochrane Collaboration's common scheme for bias. Data were subgrouped and heterogeneity was tested via comprehensive meta-analysis. A total of 3,883 potentially relevant studies were identified. After title and abstract examination, only six studies fulfilled the eligibility criteria and were classified as having a "low risk of bias". The majority of studies found better results for arginine/calcium carbonate in comparison with strontium acetate in alleviating DH. Only one study reported superior efficacy of strontium acetate, and only for tactile stimuli, after 8 weeks of home use. The arginine/calcium carbonate-based toothpaste provided a higher level of efficacy in terms of DH relief than the strontium-based toothpaste.

  16. Specific Targeting of the Metallophosphoesterase YkuE to the Bacillus Cell Wall Requires the Twin-arginine Translocation System

    NARCIS (Netherlands)

    Monteferrante, Carmine G.; Miethke, Marcus; van der Ploeg, Rene; Glasner, Corinna; van Dijl, Jan Maarten

    2012-01-01

    The twin-arginine translocation (Tat) pathway is dedicated to the transport of fully folded proteins across the cytoplasmic membranes of many bacteria and the chloroplast thylakoidal membrane. Accordingly, Tat-dependently translocated proteins are known to be delivered to the periplasm of

  17. Altering dietary lysine: arginine ratio has little effect on cardiovascular risk factors and vascular reactivity in moderately hypercholesterolemic adults

    Science.gov (United States)

    Background: The effect of dietary protein type on cardiovascular risk factors and vascular reactivity, with specific focus on the lysine to arginine (Lys:Arg) ratio, has been studied sporadically. Objective: Determine effect of dietary Lys:Arg ratio on cardiovascular risk factors and vascular reacti...

  18. Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers

    Directory of Open Access Journals (Sweden)

    Jeff Charles Kremer

    2017-01-01

    Full Text Available Targeting defects in metabolism is an underutilized strategy for the treatment of cancer. Arginine auxotrophy resulting from the silencing of argininosuccinate synthetase 1 (ASS1 is a common metabolic alteration reported in a broad range of aggressive cancers. To assess the metabolic effects that arise from acute and chronic arginine starvation in ASS1-deficient cell lines, we performed metabolite profiling. We found that pharmacologically induced arginine depletion causes increased serine biosynthesis, glutamine anaplerosis, oxidative phosphorylation, and decreased aerobic glycolysis, effectively inhibiting the Warburg effect. The reduction of glycolysis in cells otherwise dependent on aerobic glycolysis is correlated with reduced PKM2 expression and phosphorylation and upregulation of PHGDH. Concurrent arginine deprivation and glutaminase inhibition was found to be synthetic lethal across a spectrum of ASS1-deficient tumor cell lines and is sufficient to cause in vivo tumor regression in mice. These results identify two synthetic lethal therapeutic strategies exploiting metabolic vulnerabilities of ASS1-negative cancers.

  19. Gender differences in nighttime plasma arginine vasopressin and delayed compensatory urine output in the elderly population after desmopressin.

    Science.gov (United States)

    Hvistendahl, Gitte M; Frøkiaer, Jørgen; Nielsen, Søren; Djurhuus, Jens Christian

    2007-12-01

    Monosymptomatic polyuric nocturia is a consequence of aging. We investigated physiological differences between nonpolyuric and polyuric nocturia in the elderly population in relation to urine production regulation in young volunteers with special reference to gender. We performed a study in 37 elderly healthy volunteers 65 years or older and 30 young healthy volunteers 20 to 40 years old who were hospitalized for 48 hours. Before admittance and during hospitalization fluid intake was standardized. The first 24 hours were at baseline conditions. On night 2 participants were given a single oral dose of desmopressin (0.4 mg). During 48 hours urine and blood samples were taken at predetermined time points to measure urine output and plasma arginine vasopressin levels. Elderly individuals with nocturnal polyuria had an inverted rhythm in urine output, which was restored after a single dose of desmopressin. There was an age related change in the circadian rhythm of arginine vasopressin secretion, which was associated with the presence or absence of nocturnal polyuria. A novel and unexpected finding was a decreased circadian rhythm of arginine vasopressin secretion in young women, similar to the pattern observed in elderly women but with a preserved decrease in nighttime urine production. Compensatory diuresis following the induction of temporary antidiuresis was markedly postponed in elderly participants. Age and gender related decreased arginine vasopressin secretion at night underscores the fact that other factors modulate urine production. The pharmacodynamics of desmopressin as an antidiuretic in the elderly population are different from those in young individuals.

  20. Arginine-Vasopressin Receptor Antagonists: A New Hope for Treatment of Hyponatremia in Patients with Heart Failure

    Directory of Open Access Journals (Sweden)

    Saepudin

    2015-06-01

    Full Text Available Hyponatremia is an important problem in patients with heart failure. It has also been known as a predictor both of short and long-term clinical outcome of heart failure patients. While evidences of clinical efficacy and safety of conventional options for treatment of hyponatremia resulted from clinical trials are very limited, several clinical trials have been conducted to evaluate the efficacy and safety of arginine vasopressin antagonists or also known as vaptan group. This paper reviews hyponatremia in patients with heart failure and the important roles of arginine vasopressin in its development, pharmacological aspects and clinical trials outcomes of some vaptans and several questions emerged from those clinical trials. Relevant research papers, reviews, and website information have been searched and included in this review using keyword of heart failure, hyponatremia, arginine-vasopressin, arginine-vasopressin receptor antagonist and vaptan. Generally, clinical trials have highlighted the efficacy and safety of vaptan groups in the management of hypervolemic hyponatremia in patients with heart failure. Those drugs can effectively increase serum sodium level with tolerable adverse reactions. Based on those clinical data two drugs of vaptan group, conivaptan and tolvaptan, have been approved by Food and Drug Administration in The United States to be used for the treatment of euvolemic and hypervolemic hyponatremia. However, many experts are still hesitant to recommend vaptans as treatment of choice for hyponatremia due to the lack of patients-focused outcomes measurements.

  1. A di-arginine motif contributes to the ER localization of the type I transmembrane ER oxidoreductase TMX4

    DEFF Research Database (Denmark)

    Roth, Doris; Lynes, Emily; Riemer, Jan

    2010-01-01

    expressed in melanoma cells. Unlike many type I membrane proteins, TMX4 lacks a typical C-terminal di-lysine retrieval signal. Instead, the cytoplasmic tail has a conserved di-arginine motif of the RXR type. We show that mutation of the RQR sequence in TMX4 to KQK interferes with ER localization...

  2. The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries.

    Science.gov (United States)

    Cummins, D

    2013-08-01

    This paper briefly discusses caries prevalence, the multi-factorial nature of caries etiology, caries risk and the role and efficacy of fluoride. The paper also highlights research on bacterial metabolism which provided understanding of the mouth's natural defenses against caries and the basis for the development of a new technology for the everyday prevention and treatment of caries. Finally, evidence that the technology complements and enhances the anti-caries efficacy of fluoride toothpaste is summarized. Global data show that dental caries is a prevalent disease, despite the successful introduction of fluoride. Caries experience depends on the balance between consumption of sugars and oral hygiene and the use of fluoride. Three scientific concepts are fundamental to new measures to detect, treat and monitor caries: (1) dental caries is a dynamic process, (2) dental caries is a continuum of stages from reversible, pre-clinical to irreversible, clinically detectable lesions, and (3) the caries process is a balance of pathological and protective factors that can be modulated to manage caries. Fluoride functions as a protective factor by arresting and reversing the caries process, but fluoride does not prevent pathological factors that initiate the process. A novel technology, based upon arginine and an insoluble calcium compound, has been identified which targets dental plaque to prevent initiation of the caries process by reducing pathological factors. As the mechanisms of action of arginine and fluoride are highly complementary, a new dentifrice, which combines arginine with fluoride, has been developed and clinically proven to provide superior caries prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The L-arginine Pathway in Acute Ischemic Stroke and Severe Carotid Stenosis

    DEFF Research Database (Denmark)

    Molnar, Tihamer; Pusch, Gabriella; Papp, Viktoria

    2014-01-01

    BACKGROUND: Endothelial dysfunction is associated with increased levels of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) resulting in a decreased production of nitric oxide, which regulates the vascular tone. METHODS: Patients with acute ischemic stroke (AIS, n = 55......) and asymptomatic significant carotid stenosis (AsCS, n = 44) were prospectively investigated. L-arginine, ADMA, SDMA, S100 B, and high-sensitivity C-reactive protein (hsCRP) were serially measured within 6 hours after the onset of stroke, at 24 and 72 poststroke hours. All markers were compared with healthy...... infarct size, positively correlated with the level of SDMA at 72 poststroke hours; changes in concentration of S100 B positively correlated with changes in the concentration of ADMA by 72 hours. Change in concentration of both ADMA and SDMA correlated with the change in concentration of hsCRP...

  4. Poly-L-arginine based materials as instructive substrates for fibroblast synthesis of collagen.

    Science.gov (United States)

    Bygd, Hannah C; Akilbekova, Dana; Muñoz, Adam; Forsmark, Kiva D; Bratlie, Kaitlin M

    2015-09-01

    The interactions of cells and surrounding tissues with biomaterials used in tissue engineering, wound healing, and artificial organs ultimately determine their fate in vivo. We have demonstrated the ability to tune fibroblast responses with the use of varied material chemistries. In particular, we examined cell morphology, cytokine production, and collagen fiber deposition angles in response to a library of arginine-based polymeric materials. The data presented here shows a large range of vascular endothelial growth factor (VEGF) secretion (0.637 ng/10(6) cells/day to 3.25 ng/10(6) cells/day), cell migration (∼15 min materials in wound healing and tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability

    Directory of Open Access Journals (Sweden)

    Czaplicki Jerzy

    2004-07-01

    Full Text Available Abstract Background One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface. Results In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion. Conclusion Altough the mutational effects were rather small, this strategy proved to be successful since half of the mutants showed an increased stability. This stability may originate from the suppression of unfavorable interactions of nonpolar residues with water or from addition of new hydrogen bonds with the solvent. Other mechanisms may also contribute to the increased stability observed with some mutants. For example, introduction of a charge at the surface of the protein may provide a new coulombic interaction on the protein surface.

  6. Preparation of Fluorescent Microcystin Derivatives by Direct Arginine Labelling and Their Biological Evaluation.

    Science.gov (United States)

    Grundler, Verena; Faltermann, Susanne; Fent, Karl; Gademann, Karl

    2015-07-27

    Microcystin is the most prevalent toxin produced by cyanobacteria and poses a severe threat to livestock, humans and entire ecosystems. We report the preparation of a series of fluorescent microcystin derivatives by direct arginine labelling of the unprotected peptides at the guanidinium side chain. This new method allows a simple late-stage diversification strategy for native peptides devoid of protecting groups under mild conditions. A series of fluorophores were conjugated to microcystin-LR in good to very good yield. The fluorescent probes displayed biological activity comparable to that of unlabelled microcystin, in both phosphatase inhibition assays and toxicity tests on the crustacean Thamnocephalus platyurus. In addition, we demonstrate that the fluorescent probes penetrated Huh7 cells. Whole-animal imaging was performed on T. platyurus: labelled compound was mainly observed in the digestive tract. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. L-arginine, a nitric oxide precursor, reduces dapsone-induced methemoglobinemia in rats

    Directory of Open Access Journals (Sweden)

    Natália Valadares de Moraes

    2012-03-01

    Full Text Available Dapsone use is frequently associated to hematological side effects such as methemoglobinemia and hemolytic anemia, which are related to N-hydroxylation mediated by the P450 enzyme system. The aim of the present study was to evaluate the influence of L-arginine supplementation, a precursor for the synthesis of nitric oxide, as single or multiple dose regimens on dapsone-induced methemoglobinemia. Male Wistar rats were treated with L-arginine at 5, 15, 30, 60 and 180 mg/kg doses (p.o., gavage in single or multiple dose regimens 2 hours prior to dapsone administration (40 mg/kg, i.p.. The effect of the nitric oxide synthase inhibitor L-NAME was investigated by treatment with multiple doses of 30 mg/kg (p.o., gavage 2 hours before dapsone administration. Blood samples were collected 2 hours after dapsone administration. Erythrocytic methemoglobin levels were assayed by spectrophotometry. The results showed that multiple dose supplementations with 5 and 15 mg/kg L-arginine reduced dapsone-induced methemoglobin levels. This effect is mediated by nitric oxide formation, since the reduction in methemoglobin levels by L-arginine is blocked by simultaneous administration with L-NAME, a nitric oxide synthase inhibitor.O uso da dapsona é frequentemente associado a efeitos adversos hematológicos, como a metemoglobinemia e anemia hemolítica, ambos relacionados com a N-hidroxilação mediada pelo sistema P450. O objetivo do estudo foi avaliar a influência da suplementação de L-arginina, um precursor da síntese de óxido nítrico, administrado em regime de dose única ou múltipla na metemoglobinemia induzida pela dapsona. Ratos machos Wistar foram tratados com L-arginina (po, gavagem em dose única ou múltipla de 5, 15, 30, 60 e 180 mg/kg 2 horas antes da administração de dapsona (40 mg/kg, ip. O efeito do L-NAME, um inibidor de óxido nítrico sintase (NOS, foi avaliado através do tratamento com doses múltiplas de 30 mg/kg. Amostras de sangue

  8. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heran Ma

    2016-09-01

    Full Text Available The antioxidant properties of l-arginine (l-Arg in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate.

  9. Is precocious puberty linked to hypothalamic expression of arginine-phenylalanine-amide-related peptide?

    Science.gov (United States)

    He, Yuanyuan; Sun, Wen; Yu, Jian

    2017-10-01

    The up-regulation and down-regulation of gonadotropin-releasing hormone (GnRH) in central precocious puberty is not yet known. However, recent advances in neuroendocrinology have shown the controlling role of arginine-phenylalanine RF-amide-related peptides (RFRPs) on GnRH secretion in different phenomenon of reproduction such as estrus cycle and pregnancy, but the exact role of RFRPs in puberty and its related pathologic condition, precocious puberty, is not clear yet. This paper hypothesizes that RFRP is a regulatory peptide of puberty and might prevent the precocious puberty. On the basis of previous studies on hormonal fluctuations at the time of puberty, RFRP might have a role on controlling of premature secretion of GnRH and avoiding central precocious puberty.

  10. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-12-01

    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  11. Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation.

    Science.gov (United States)

    Crépin, Lucie; Sanchez, Isabelle; Nidelet, Thibault; Dequin, Sylvie; Camarasa, Carole

    2014-08-19

    Under N-limiting conditions, Saccharomyces cerevisiae strains display a substantial variability in their biomass yield from consumed nitrogen -in particular wine yeasts exhibit high growth abilities- that is correlated with their capacity to complete alcoholic fermentation, a trait of interest for fermented beverages industries. The aim of the present work was to assess the contribution of nitrogen availability to the strain-specific differences in the ability to efficiently use N-resource for growth and to identify the underlying mechanisms. We compared the profiles of assimilation of several nitrogen sources (mostly ammonium, glutamine, and arginine) for high and low biomass-producing strains in various conditions of nitrogen availability. We also analyzed the intracellular fate of nitrogen compounds. Strains clustered into two groups at initial nitrogen concentrations between 85 and 385 mg N.L(-1): high biomass producers that included wine strains, were able to complete fermentation of 240 g.L(-1) glucose and quickly consume nitrogen, in contrast to low biomass producers. The two classes of strains exhibited distinctive characteristics that contributed to their differential capacity to produce biomass. The contribution of each characteristic varied according to nitrogen availability. In high biomass producers, the high rate of ammonium uptake resulted in an important consumption of this preferred nitrogen source that promoted the growth of these yeasts when nitrogen was provided in excess. Both classes of yeast accumulated poor nitrogen sources, mostly arginine, in vacuoles during the first stages of growth. However, at end of the growth phase when nitrogen had become limiting, high biomass producers more efficiently used this vacuolar nitrogen fraction for protein synthesis and further biomass formation than low biomass producers. Overall, we demonstrate that the efficient management of the nitrogen resource, including efficient ammonium uptake and efficient

  12. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism

    LENUS (Irish Health Repository)

    Tansey, Katherine E

    2011-03-31

    Abstract Background Arginine vasopressin (AVP) has been hypothesized to play a role in aetiology of autism based on a demonstrated involvement in the regulation of social behaviours. The arginine vasopressin receptor 1A gene (AVPR1A) is widely expressed in the brain and is considered to be a key receptor for regulation of social behaviour. Moreover, genetic variation at AVPR1A has been reported to be associated with autism. Evidence from non-human mammals implicates variation in the 5\\'-flanking region of AVPR1A in variable gene expression and social behaviour. Methods We examined four tagging single nucleotide polymorphisms (SNPs) (rs3803107, rs1042615, rs3741865, rs11174815) and three microsatellites (RS3, RS1 and AVR) at the AVPR1A gene for association in an autism cohort from Ireland. Two 5\\'-flanking region polymorphisms in the human AVPR1A, RS3 and RS1, were also tested for their effect on relative promoter activity. Results The short alleles of RS1 and the SNP rs11174815 show weak association with autism in the Irish population (P = 0.036 and P = 0.008, respectively). Both RS1 and RS3 showed differences in relative promoter activity by length. Shorter repeat alleles of RS1 and RS3 decreased relative promoter activity in the human neuroblastoma cell line SH-SY5Y. Conclusions These aligning results can be interpreted as a functional route for this association, namely that shorter alleles of RS1 lead to decreased AVPR1A transcription, which may proffer increased susceptibility to the autism phenotype.

  13. [Effects of arginine enriched enteral nutrition on nutritional status and cellular immunity in burn patients].

    Science.gov (United States)

    Guo, Guang-Hua; Xu, Cheng; Bai, Xiang-Jun; Zhan, Jian-Hua; Zhang, Hong-Yan; Zhang, Zhi-An; Wang, Yan-Xia; Fang, Fang; Li, Guo-Hui

    2009-06-01

    To investigate the effects of arginine enriched enteral nutrition (EN) on nutritional status and cellular immunity of severely burned patients. Randomized, single blind, parallel and positive control investigation was employed in the study. Thirty severely burned patients were divided into enteral immune nutrition (EIN) group and EN group. Sixteen patients in EIN group received enteral nutrition enriched with arginine, while the other 14 patients in EN group received standard enteral nutrition. Nutritional support was continued for 14 days. Gastrointestinal reaction of patients in 2 groups was observed. Fasting venous blood was drawn from patients of both groups before receiving nutrition treatment and on the morning of 7th, 14th day of treatment. Level of serum protein, hepatic function parameters, renal function parameters, fasting-blood glucose, and subpopulations of T lymphocytes in peripheral blood were determined. (1) Incidence of gastrointestinal side effect in EIN group (25.0%) was close to that of EN group (21.4% , P > 0.05). (2) Compared with pre-treatment days, levels of prealbumin and transferrin in serum of patients in 2 groups on 7th and 14th post-treatment days were significantly increased (P renal function, and fasting-blood glucose between pre-treatment and post-treatment periods in both groups (P > 0.05). (4) The ratio of CD4(+), CD8(+) on 14th day of treatment in EIN group was close to that of pretreatment level. In EN group, cell percentage of CD4(+) significantly decreased, while that of CD8(+) significantly increased (P nutrition can effectively improve nutritional status and cellular immune function of burn patients.

  14. Morphine hyposensitivity in streptozotocin-diabetic rats: Reversal by dietary l-arginine treatment.

    Science.gov (United States)

    Lotfipour, Shahrdad; Smith, Maree T

    2018-01-01

    Painful diabetic neuropathy (PDN) is a long-term complication of diabetes. Defining symptoms include mechanical allodynia (pain due to light pressure or touch) and morphine hyposensitivity. In our previous work using the streptozotocin (STZ)-diabetic rat model of PDN, morphine hyposensitivity developed in a temporal manner with efficacy abolished at 3 months post-STZ and maintained for 6 months post-STZ. As this time course mimicked that for the temporal development of hyposensitivity to the pain-relieving effects of the furoxan nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde) in STZ-diabetic rats, we hypothesized that progressive depletion of endogenous NO bioactivity may underpin the temporal loss of morphine sensitivity in STZ-diabetic rats. Furthermore, we hypothesized that replenishment of NO bioactivity may restore morphine sensitivity in these animals. Diabetes was induced in male Dark Agouti rats by intravenous injection of STZ (85 mg/kg). Diabetes was confirmed on day 7 if blood glucose concentrations were ≥15 mmol/L. Mechanical allodynia was fully developed in the bilateral hindpaws by 3 weeks of STZ-diabetes in rats and this was maintained for the study duration. Morphine hyposensitivity developed in a temporal manner with efficacy abolished by 3 months post-STZ. Administration of dietary l-arginine (NO precursor) at 1 g/d to STZ-diabetic rats according to a 15-week prevention protocol initiated at 9 weeks post-STZ prevented abolition of morphine efficacy. When given as an 8-week intervention protocol in rats where morphine efficacy was abolished, dietary l-arginine at 1 g/d progressively rescued morphine efficacy and potency. Our findings implicate NO depletion in the development of morphine hyposensitivity in STZ-diabetic rats. © 2017 John Wiley & Sons Australia, Ltd.

  15. Augmented endothelial-specific L-arginine transport prevents obesity-induced hypertension.

    Science.gov (United States)

    Rajapakse, N W; Karim, F; Straznicky, N E; Fernandez, S; Evans, R G; Head, G A; Kaye, D M

    2014-09-01

    Hypertension is a major clinical complication of obesity. Our previous studies show that abnormal uptake of the nitric oxide precursor L-arginine, via the cationic amino acid transporter-1 (CAT1), contributes to endothelial dysfunction in cardiovascular disease. In this study, we tested the hypothesis that abnormal L-arginine transport may be a key mediator of obesity-induced hypertension. Mean arterial pressure (MAP) was monitored by telemetry in conscious wild-type (WT; n = 13) mice, and transgenic mice with endothelial-specific overexpression of CAT1 (CAT+; n = 14) fed a normal or a high fat diet for 20 weeks. Renal angiotensin II (Ang II), CAT1 mRNA and plasma nitrate/nitrite levels were then quantified. In conjunction, plasma nitrate/nitrite levels were assessed in obese normotensive (n = 15) and obese hypertensive subjects (n = 15). Both genotypes of mice developed obesity when fed a high fat diet (P ≤ 0.002). Fat fed WT mice had 13% greater MAP and 78% greater renal Ang II content, 42% lesser renal CAT1 mRNA levels and 42% lesser plasma nitrate/nitrite levels, than WT mice fed a normal fat diet (P ≤ 0.02). In contrast, none of these variables were significantly altered by high fat feeding in CAT+ mice (P ≥ 0.36). Plasma nitrate/nitrite levels were 17% less in obese hypertensives compared with obese normotensives (P = 0.02). Collectively, these data indicate that obesity-induced down-regulation of CAT1 expression and subsequent reduced bioavailability of nitric oxide may contribute to the development of obesity-induced hypertension. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  16. Arginine Vasotocin Preprohormone Is Expressed in Surprising Regions of the Teleost Forebrain

    Directory of Open Access Journals (Sweden)

    Mariana Rodriguez-Santiago

    2017-08-01

    Full Text Available Nonapeptides play a fundamental role in the regulation of social behavior, among numerous other functions. In particular, arginine vasopressin and its non-mammalian homolog, arginine vasotocin (AVT, have been implicated in regulating affiliative, reproductive, and aggressive behavior in many vertebrate species. Where these nonapeptides are synthesized in the brain has been studied extensively in most vertebrate lineages. While several hypothalamic and forebrain populations of vasopressinergic neurons have been described in amniotes, the consensus suggests that the expression of AVT in the brain of teleost fish is limited to the hypothalamus, specifically the preoptic area (POA and the anterior tuberal nucleus (putative homolog of the mammalian ventromedial hypothalamus. However, as most studies in teleosts have focused on the POA, there may be an ascertainment bias. Here, we revisit the distribution of AVT preprohormone mRNA across the dorsal and ventral telencephalon of a highly social African cichlid fish. We first use in situ hybridization to map the distribution of AVT preprohormone mRNA across the telencephalon. We then use quantitative real-time polymerase chain reaction to assay AVT expression in the dorsomedial telencephalon, the putative homolog of the mammalian basolateral amygdala. We find evidence for AVT preprohormone mRNA in regions previously not associated with the expression of this nonapeptide, including the putative homologs of the mammalian extended amygdala, hippocampus, striatum, and septum. In addition, AVT preprohormone mRNA expression within the basolateral amygdala homolog differs across social contexts, suggesting a possible role in behavioral regulation. We conclude that the surprising presence of AVT preprohormone mRNA within dorsal and medial telencephalic regions warrants a closer examination of possible AVT synthesis locations in teleost fish, and that these may be more similar to what is observed in mammals and

  17. Arginine Vasotocin Preprohormone Is Expressed in Surprising Regions of the Teleost Forebrain.

    Science.gov (United States)

    Rodriguez-Santiago, Mariana; Nguyen, Jessica; Winton, Lin S; Weitekamp, Chelsea A; Hofmann, Hans A

    2017-01-01

    Nonapeptides play a fundamental role in the regulation of social behavior, among numerous other functions. In particular, arginine vasopressin and its non-mammalian homolog, arginine vasotocin (AVT), have been implicated in regulating affiliative, reproductive, and aggressive behavior in many vertebrate species. Where these nonapeptides are synthesized in the brain has been studied extensively in most vertebrate lineages. While several hypothalamic and forebrain populations of vasopressinergic neurons have been described in amniotes, the consensus suggests that the expression of AVT in the brain of teleost fish is limited to the hypothalamus, specifically the preoptic area (POA) and the anterior tuberal nucleus (putative homolog of the mammalian ventromedial hypothalamus). However, as most studies in teleosts have focused on the POA, there may be an ascertainment bias. Here, we revisit the distribution of AVT preprohormone mRNA across the dorsal and ventral telencephalon of a highly social African cichlid fish. We first use in situ hybridization to map the distribution of AVT preprohormone mRNA across the telencephalon. We then use quantitative real-time polymerase chain reaction to assay AVT expression in the dorsomedial telencephalon, the putative homolog of the mammalian basolateral amygdala. We find evidence for AVT preprohormone mRNA in regions previously not associated with the expression of this nonapeptide, including the putative homologs of the mammalian extended amygdala, hippocampus, striatum, and septum. In addition, AVT preprohormone mRNA expression within the basolateral amygdala homolog differs across social contexts, suggesting a possible role in behavioral regulation. We conclude that the surprising presence of AVT preprohormone mRNA within dorsal and medial telencephalic regions warrants a closer examination of possible AVT synthesis locations in teleost fish, and that these may be more similar to what is observed in mammals and birds.

  18. Increased brain L-arginine availability facilitates cutaneous heat loss induced by running exercise.

    Science.gov (United States)

    Wanner, Samuel Penna; Leite, Laura Hora Rios; Guimarães, Juliana Bohnen; Coimbra, Cândido Celso

    2015-06-01

    The effects of increased brain availability of L-arginine (L-arg), a precursor for nitric oxide synthesis, on core body temperature (Tcore ) and cutaneous heat loss were evaluated in running rats. One week prior to the experiments, adult male Wistar rats received the following implants: a chronic guide cannula in the lateral cerebral ventricle and a temperature sensor in the abdominal cavity. On the day of the experiments, the rats were assigned to receive a 2-μL intracerebroventricular injection of either NaCl (0.15 mol/L) or L-arg solution (0.825, 1.65 or 3.30 mol/L); Tcore and tail skin temperature were measured while the rats ran at a speed of 18 m/min until they were fatigued. L-arginine induced a dose-dependent reduction in the threshold Tcore required for cutaneous heat loss (38.09 ± 0.20°C for 3.30-mol/L L-arg vs 38.61 ± 0.10°C for saline; P exercise-induced hyperthermia. Although the rats treated with L-arg presented a lower Tcore at the end of exercise (~0.7°C lower after treatment with the highest dose), no changes in the time to fatigue were observed relative to the control trial. These results suggest that brain L-arg controls heat loss during exercise, most likely by modulating the sympathetic vasoconstrictor tonus to skin vessels. Furthermore, despite facilitating cutaneous heat loss mechanisms, increased brain L-arg availability did not enhance physical performance. © 2015 Wiley Publishing Asia Pty Ltd.

  19. Arginine vasotocin regulation of interspecific cooperative behaviour in a cleaner fish.

    Directory of Open Access Journals (Sweden)

    Marta C Soares

    Full Text Available In an interspecific cooperative context, individuals must be prepared to tolerate close interactive proximity to other species but also need to be able to respond to relevant social stimuli in the most appropriate manner. The neuropeptides vasopressin and oxytocin and their non-mammalian homologues have been implicated in the evolution of sociality and in the regulation of social behaviour across vertebrates. However, little is known about the underlying physiological mechanisms of interspecific cooperative interactions. In interspecific cleaning mutualisms, interactions functionally resemble most intraspecific social interactions. Here we provide the first empirical evidence that arginine vasotocin (AVT, a non-mammalian homologue of arginine vasopressin (AVP, plays a critical role as moderator of interspecific behaviour in the best studied and ubiquitous marine cleaning mutualism involving the Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus. Exogenous administration of AVT caused a substantial decrease of most interspecific cleaning activities, without similarly affecting the expression of conspecific directed behaviour, which suggests a differential effect of AVT on cleaning behaviour and not a general effect on social behaviour. Furthermore, the AVP-V1a receptor antagonist (manning compound induced a higher likelihood for cleaners to engage in cleaning interactions and also to increase their levels of dishonesty towards clients. The present findings extend the knowledge of neuropeptide effects on social interactions beyond the study of their influence on conspecific social behaviour. Our evidence demonstrates that AVT pathways might play a pivotal role in the regulation of interspecific cooperative behaviour and conspecific social behaviour among stabilized pairs of cleaner fish. Moreover, our results suggest that the role of AVT as a neurochemical regulator of social behaviour may have been co-opted in the evolution of

  20. AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin.

    Science.gov (United States)

    Teng, Yun; Girvan, Allicia C; Casson, Lavona K; Pierce, William M; Qian, Mingwei; Thomas, Shelia D; Bates, Paula J

    2007-11-01

    AS1411 is a quadruplex-forming oligonucleotide aptamer that targets nucleolin. It is currently in clinical trials as a treatment for various cancers. We have proposed that AS1411 inhibits cancer cell proliferation by affecting the activities of certain nucleolin-containing complexes. Here, we report that protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes the formation of symmetrical dimethylarginine (sDMA), is a nucleolin-associated protein whose localization and activity are altered by AS1411. Levels of PRMT5 were found to be decreased in the nucleus of AS1411-treated DU145 human prostate cancer cells, but increased in the cytoplasm. These changes were dependent on nucleolin and were not observed in cells pretreated with nucleolin-specific small interfering RNA. Treatment with AS1411 altered levels of PRMT5 activity (assessed by sDMA levels) in accord with changes in its localization. In addition, our data indicate that nucleolin itself is a substrate for PRMT5 and that distribution of sDMA-modified nucleolin is altered by AS1411. Because histone arginine methylation by PRMT5 causes transcriptional repression, we also examined expression of selected PRMT5 target genes in AS1411-treated cells. For some genes, including cyclin E2 and tumor suppressor ST7, a significant up-regulation was noted, which corresponded with decreased PRMT5 association with the gene promoter. We conclude that nucleolin is a novel binding partner and substrate for PRMT5, and that AS1411 causes relocalization of the nucleolin-PRMT5 complex from the nucleus to the cytoplasm. Consequently, the nuclear activity of PRMT5 is decreased, leading to derepression of some PRMT5 target genes, which may contribute to the biological effects of AS1411.

  1. Pharmacological PPARα activation markedly alters plasma turnover of the amino acids glycine, serine and arginine in the rat.

    Directory of Open Access Journals (Sweden)

    Anette Ericsson

    Full Text Available The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%, largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra for glycine (45.5 ± 5.8 versus 17.4 ± 2.7 µmol/kg/min and serine (21.0 ± 1.4 versus 12.0 ± 1.0 in WY 14,643 versus control. Arginine was substantially decreased (-62% in plasma with estimated Ra reduced from 3.1 ± 0.3 to 1.2 ± 0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis.

  2. The phosphoarginine energy-buffering system of trypanosoma brucei involves multiple arginine kinase isoforms with different subcellular locations.

    Directory of Open Access Journals (Sweden)

    Frank Voncken

    Full Text Available Phosphagen energy-buffering systems play an essential role in regulating the cellular energy homeostasis in periods of high-energy demand or energy supply fluctuations. Here we describe the phosphoarginine/arginine kinase system of the kinetoplastid parasite Trypanosoma brucei, consisting of three highly similar arginine kinase isoforms (TbAK1-3. Immunofluorescence microscopy using myc-tagged protein versions revealed that each isoform is located in a specific subcellular compartment: TbAK1 is exclusively found in the flagellum, TbAK2 in the glycosome, and TbAK3 in the cytosol of T. brucei. The flagellar location of TbAK1 is dependent on a 22 amino acid long N-terminal sequence, which is sufficient for targeting a GFP-fusion protein to the trypanosome flagellum. The glycosomal location of TbAK2 is in agreement with the presence of a conserved peroxisomal targeting signal, the C-terminal tripeptide 'SNL'. TbAK3 lacks any apparent targeting sequences and is accordingly located in the cytosol of the parasite. Northern blot analysis indicated that each TbAK isoform is differentially expressed in bloodstream and procyclic forms of T. brucei, while the total cellular arginine kinase activity was 3-fold higher in bloodstream form trypanosomes. These results suggest a substantial change in the temporal and spatial energy requirements during parasite differentiation. Increased arginine kinase activity improved growth of procyclic form T. brucei during oxidative challenges with hydrogen peroxide. Elimination of the total cellular arginine kinase activity by RNA interference significantly decreased growth (>90% of procyclic form T. brucei under standard culture conditions and was lethal for this life cycle stage in the presence of hydrogen peroxide. The putative physiological roles of the different TbAK isoforms in T. brucei are further discussed.

  3. The Phosphoarginine Energy-Buffering System of Trypanosoma brucei Involves Multiple Arginine Kinase Isoforms with Different Subcellular Locations

    Science.gov (United States)

    Wadforth, Cath; Harley, Maggie; Colasante, Claudia

    2013-01-01

    Phosphagen energy-buffering systems play an essential role in regulating the cellular energy homeostasis in periods of high-energy demand or energy supply fluctuations. Here we describe the phosphoarginine/arginine kinase system of the kinetoplastid parasite Trypanosoma brucei, consisting of three highly similar arginine kinase isoforms (TbAK1-3). Immunofluorescence microscopy using myc-tagged protein versions revealed that each isoform is located in a specific subcellular compartment: TbAK1 is exclusively found in the flagellum, TbAK2 in the glycosome, and TbAK3 in the cytosol of T. brucei. The flagellar location of TbAK1 is dependent on a 22 amino acid long N-terminal sequence, which is sufficient for targeting a GFP-fusion protein to the trypanosome flagellum. The glycosomal location of TbAK2 is in agreement with the presence of a conserved peroxisomal targeting signal, the C-terminal tripeptide ‘SNL’. TbAK3 lacks any apparent targeting sequences and is accordingly located in the cytosol of the parasite. Northern blot analysis indicated that each TbAK isoform is differentially expressed in bloodstream and procyclic forms of T. brucei, while the total cellular arginine kinase activity was 3-fold higher in bloodstream form trypanosomes. These results suggest a substantial change in the temporal and spatial energy requirements during parasite differentiation. Increased arginine kinase activity improved growth of procyclic form T. brucei during oxidative challenges with hydrogen peroxide. Elimination of the total cellular arginine kinase activity by RNA interference significantly decreased growth (>90%) of procyclic form T. brucei under standard culture conditions and was lethal for this life cycle stage in the presence of hydrogen peroxide. The putative physiological roles of the different TbAK isoforms in T. brucei are further discussed. PMID:23776565

  4. Further studies of the effects of aging on arginine metabolites in the rat vestibular nucleus and cerebellum.

    Science.gov (United States)

    Liu, P; Gupta, N; Jing, Y; Collie, N D; Zhang, H; Smith, P F

    2017-04-21

    Some studies have demonstrated that aging is associated with impaired vestibular reflexes, especially otolithic reflexes, resulting in postural instability. However, the neurochemical basis of these age-related changes is still poorly understood. The l-arginine metabolic system has been implicated in changes in the brain associated with aging. In the current study, we examined the levels of l-arginine and its metabolizing enzymes and downstream metabolites in the vestibular nucleus complex (VNC) and cerebellum (CE) of rats with and without behavioral testing which were young (4months old), middle-aged (12months old) or aged (24months old). We found that aging was associated with lower nitric oxide synthase activity in the CE of animals with testing and increased arginase in the VNC and CE of animals with testing. l-citrulline and l-ornithine were lower in the VNC of aged animals irrespective of testing, while l-arginine and l-citrulline were lower in the CE with and without testing, respectively. In the VNC and CE, aging was associated with lower levels of glutamate in the VNC, irrespective of testing. In the VNC it was associated with higher levels of agmatine and putrescine, irrespective of testing. In the CE, aging was associated with higher levels of putrescine in animals without testing and with higher levels of spermine in animals with testing, and spermidine, irrespective of testing. Multivariate analyses indicated significant predictive relationships between the different variables, and there were correlations between some of the neurochemical variables and behavioral measurements. Cluster analyses revealed that aging altered the relationships between l-arginine and its metabolites. The results of this study demonstrate that there are major changes occurring in l-arginine metabolism in the VNC and CE as a result of age, as well as behavioral activity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. L-Arginine treatment for severe vascular fetal intrauterine growth restriction: a randomized double-bind controlled trial.

    Science.gov (United States)

    Winer, Norbert; Branger, Bernard; Azria, Elie; Tsatsaris, Vassilis; Philippe, Henri-Jean; Rozé, Jean Christophe; Descamps, Philippe; Boog, Georges; Cynober, Luc; Darmaun, Dominique

    2009-06-01

    Infants born with severe IUGR are exposed to higher neonatal mortality and morbidity rates, as compared with appropriate-for-gestational-age. They are exposed to a higher risk of developing chronic disease such as hypertension, coronary artery disease, obesity, and type 2 diabetes in adulthood. L-Arginine is a precursor of nitric oxide (NO) and may play a role in placental vascular mediation or local vasodilatation. The current study was designed to determine whether oral supplementation of gravid patients suffering from severe intrauterine growth restriction (IUGR) with L-arginine, would enhance birth weight and/or decrease neonatal morbidity. Forty-four patients with a singleton pregnancy who had been referred for IUGR detected by ultrasonic examination were included. Vascular IUGR was defined by fetal abdominal circumference less than or equal to the 3rd percentile, associated with abnormal uterine Doppler. After double-blind randomization, patients received either 14 g/day of L-arginine, or a placebo. The characteristics of the two groups of patients (IUGR with L-arginine vs IUGR with placebo) were similar upon randomization. There was no significant difference between the two groups concerning birth weight (1042+/-476 vs. 1068+/-452 g). At delivery, maternal and neonatal characteristics were similar in the two groups. There was no difference in the Clinical Risk Index for Babies (CRIB) score, the duration of ventilatory assistance, nor the delay between birth and full enteral feeding between the two groups. In this study which is, at the best of our knowledge, the first double-bind, multicenter, randomized trial in this condition, L-arginine is not an effective treatment for severe vascular growth restriction.

  6. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation.

    Science.gov (United States)

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo

    2016-11-01

    Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.

  7. Chronic l-arginine treatment improves metabolic, cardiovascular and liver complications in diet-induced obesity in rats.

    Science.gov (United States)

    Alam, Md Ashraful; Kauter, Kathleen; Withers, Kerry; Sernia, Conrad; Brown, Lindsay

    2013-01-01

    l-Arginine is an important dietary amino acid in both health and disease, especially of the cardiovascular system. This study has determined whether dietary supplementation with l-arginine attenuates cardiovascular, metabolic, pancreatic and liver changes in a rat model of the human metabolic syndrome. Male Wistar rats (8-9 weeks old) were divided into four groups. Two groups of rats were fed a corn starch-rich diet (C) whereas the other two groups were given a high carbohydrate, high fat diet (H) with 25% fructose in the drinking water, for 16 weeks. One group fed each diet was supplemented with 5% l-arginine in the food for the final 8 weeks of this protocol. The corn starch diet (C) contained ∼68% carbohydrates mainly as polysaccharides, while the high-carbohydrate, high-fat diet contained ∼68% carbohydrates mainly as fructose and sucrose together with 24% fat mainly as saturated and monounsaturated fats from beef tallow. The high-carbohydrate, high-fat diet-fed rats showed the symptoms of metabolic syndrome including obesity and hypertension with heart and liver damage. Supplementation with l-arginine attenuated impairment in left ventricular and liver structure and function, glucose tolerance, and decreased blood pressure, abdominal fat pads, inflammatory cell infiltration, pancreatic cell hypertrophy and oxidative stress. This study indicates that oral supplementation with l-arginine attenuated or normalised obesity-related changes in the heart, liver and pancreas by reducing inflammation and oxidative stress associated with high carbohydrate, high fat feeding in rats.

  8. Stereological Analysis of Colon Under Exposure of L-Arginine and L-NAME in Female Wistar Rats

    Directory of Open Access Journals (Sweden)

    Keywan Mortezaee

    2016-02-01

    Full Text Available Background Nitric oxide (NO as a signaling molecule plays a predominant role in different physiological and pathological processes in a variety of organs such as the gastrointestinal (GI tract. It is produced from L-arginine by nitric oxide synthase (NOS, which in turn is inhibited by L-NG-nitroarginine methyl ester (L-NAME. Objectives This study aimed to stereologically analyze colon under exposure of L-arginine and L-NAME in female Wistar rats. Materials and Methods In this experimental study, 40 female rats (200 - 250 g, 8 weeks age were divided into 5 groups (N = 8. Normal saline (2 mL/kg, L-arginine (200 mg/kg, L-NAME (20 mg/kg and L-arginine + L-NAME (with the same doses were administered i.p. for 3 days. After 2 weeks, the colon was removed, stained with hematoxylin and eosin (H and E and evaluated under light microscopy. Colonic mucosal thickness, gland height and diameter, and total thickness of the wall were measured using optical software and analyzed by one-way ANOVA followed by Tukey’s post hoc test using SPSS-16. P < 0.05 was considered statistically significant. Results The data of the present work revealed relatively narrow ranges of decrease in mean variables compared to the control group, which was not significant. Conclusions Despite the remarkable role of NO in GI tract, the results demonstrated no significant effect of L-arginine and L-NAME on colon parameters.

  9. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    Science.gov (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  10. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Åmand, Helene L.

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide\\'s ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. © 2012 Elsevier B.V.

  11. Selective side-chain modification of cysteine and arginine residues blocks pathogenic activity of HIV-1-Tat functional peptides.

    Science.gov (United States)

    Devadas, Krishnakumar; Boykins, Robert A; Hardegen, Neil J; Philp, Deborah; Kleinman, Hynda K; Osa, Etin-Osa; Wang, Jiun; Clouse, Kathleen A; Wahl, Larry M; Hewlett, Indira K; Rappaport, Jay; Yamada, Kenneth M; Dhawan, Subhash

    2006-04-01

    Extracellular Tat protein of HIV-1 activates virus replication in HIV-infected cells and induces a variety of host factors in the uninfected cells, some of which play a critical role in the progression of HIV infection. The cysteine-rich and arginine-rich basic domains represent key components of the HIV-Tat protein for pathogenic effects of the full-length Tat protein and, therefore, could be ideal candidates for the development of a therapeutic AIDS vaccine. The present study describes selective modifications of the side-chain functional groups of cysteine and arginine amino acids of these HIV-Tat peptides to minimize the pathogenic effects of these peptides while maintaining natural peptide linkages. Modification of cysteine by introducing either a methyl or t-butyl group in the free sulfhydryl group and replacing the guanidine group with a urea linkage in the side chain of arginine in the cysteine-rich and arginine-rich Tat peptide sequences completely blocked the ability of these peptides to induce HIV replication, chemokine receptor CCR-5 expression, and NF-kappaB activity in monocytes. Such modifications also inhibited angiogenesis and migration of Kaposi's sarcoma cells normally induced by Tat peptides. Such chemical modifications of the cysteine-rich and arginine-rich peptides did not affect their reactivity with antibodies against the full-length Tat protein. With an estimated 40 million HIV-positive individuals worldwide and approximately 4 million new infections emerging every year, a synthetic subunit HIV-Tat vaccine comprised of functionally inactive Tat domains could provide a safe, effective, and economical therapeutic vaccine to reduce the progression of HIV disease.

  12. L-arginine stimulates CAT-1-mediated arginine uptake and regulation of inducible nitric oxide synthase for the growth of chick intestinal epithelial cells.

    Science.gov (United States)

    Yuan, Chao; Zhang, Xiaoyun; He, Qiang; Li, Junming; Lu, Jianjun; Zou, Xiaoting

    2015-01-01

    L-arginine (L-Arg) uptake is mediated by members of cationic amino acid transporter (CAT) family and may coincide with the induction of nitric oxide synthases (NOS). The present study was conducted to investigate the extracellular concentrations of L-Arg regulating the CAT-1, CAT-4 and inducible NOS (iNOS) in chick intestinal epithelial cells. The cells were cultured for 4 days in Arg-free Dulbecco's modified Eagle's medium containing 10, 100, 200, 400, or 600 μM L-Arg. Cell viability, nitric oxide (NO) concentrations, uptake and metabolism of L-[3H]-Arg as well as expression of CAT-1, CAT-4, and iNOS were determined. Our results showed that L-Arg enhances cell growth with a maximal response at 10-400 μM. Addition of 100, 200, or 400 μM L-Arg increased the L-[3H]-Arg uptake, which was associated with greater conversion of L-[3H]-citrulline and NO production in comparison with 10 μM L-Arg group. Increasing extracellular concentrations of L-Arg from 10 to 400 μM dose dependently increased the levels of CAT-1 mRNA and protein, while no effect on CAT-4 mRNA abundance was found. Furthermore, supplementation of 100, 200, or 400 μM L-Arg upregulated the expression of iNOS mRNA, and the relative protein levels for iNOS in 200 and 400 μM L-Arg groups were higher than those in 10 and 100 μM L-Arg groups. Collectively, we conclude that the CAT-1 isoform plays a role in L-Arg uptake, and L-Arg-mediated elevation of NO via iNOS promotes the growth of chick intestinal epithelial cells.

  13. Overexpression of arginine transporter CAT-1 is associated with accumulation of L-arginine and cell growth in human colorectal cancer tissue.

    Directory of Open Access Journals (Sweden)

    Ying Lu

    Full Text Available We previously showed that L-arginine (Arg accumulates in colorectal cancer tissues. The aim of this study was to investigate the mechanism by which Arg accumulates and determine its biological significance. The concentration of Arg and Citrulline (Cit in sera and tumor tissues from colorectal cancer (CRC patients was analyzed by high-performance liquid chromatography (HPLC. The expression of Arg transporters was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR and immunohistochemical analysis of tissue microarray. We also transfected the colon cancer cell line HCT-116 with siRNA specific for the Arg transporter CAT-1 and measured the induction of apoptosis by flow cytometry and cell proliferation by MTT assay. Consistent with our previous results, serum Arg and Cit concentrations in colorectal cancer patients were significantly lower than those in normal volunteers, while Arg and Cit concentrations in colorectal cancer tissues were significantly higher than in matched adjacent normal colon tissues. Quantitative RT-PCR showed that the CAT-1 gene was highly overexpressed in 70.5% of colorectal cancer tissue samples relative to adjacent normal colon tissues in all 122 patients with colorectal cancer. Immunohistochemical analysis of tissue microarray confirmed that the expression of CAT-1 was higher in all 25 colorectal cancer tissues tested. CAT-1 siRNA significantly induced apoptosis of HCT-116 cells and subsequently inhibited cell growth by 20-50%. Our findings indicate that accumulation of L-Arg and Cit and cell growth in colorectal cancer tissues is associated with over-expression of the Arg transporter gene CAT-1. Our results may be useful for the development of molecular diagnostic tools and targeted therapy for colorectal cancer.

  14. Association of Variants of Arginine Vasopressin and Arginine Vasopressin Receptor 1A With Severe Acetaminophen Liver InjurySummary

    Directory of Open Access Journals (Sweden)

    Matthew Randesi

    2017-05-01

    Full Text Available Background & Aims: Acetaminophen-related acute liver injury and liver failure (ALF result from ingestion of supratherapeutic quantities of this analgesic, frequently in association with other forms of substance abuse including alcohol, opioids, and cocaine. Thus, overdosing represents a unique high-risk behavior associated with other forms of drug use disorder. Methods: We examined a series of 21 single nucleotide polymorphisms (SNPs in 9 genes related to impulsivity and/or stress responsivity that may modify response to stress. Study subjects were 229 white patients admitted to tertiary care liver centers for ALF that was determined to be due to acetaminophen toxicity after careful review of historical and biochemical data. Identification of relevant SNPs used Sanger sequencing, TaqMan, or custom microarray. Association tests were carried out to compare genotype frequencies between patients and healthy white controls. Results: The mean age was 37 years, and 75.6% were female, with similar numbers classified as intentional overdose or unintentional (without suicidal intent, occurring for a period of several days, usually due to pain. There was concomitant alcohol abuse in 30%, opioid use in 33.6%, and use of other drugs of abuse in 30.6%. The genotype frequencies of 2 SNPs were found to be significantly different between the cases and controls, specifically SNP rs2282018 in the arginine vasopressin gene (AVP, odds ratio 1.64 and SNP rs11174811 in the AVP receptor 1A gene (AVPR1A, odds ratio 1.89, both of which have been previously linked to a drug use disorder diagnosis. Conclusions: Patients who develop acetaminophen-related ALF have increased frequency of gene variants that may cause altered stress responsivity, which has been shown to be associated with other unrelated substance use disorders. Keywords: Impulsivity, Stress Responsivity, Pituitary-Adrenal Axis, Overdose

  15. Lack of a synergistic effect of arginine-glutamic acid on the physical stability of spray-dried bovine serum albumin.

    Science.gov (United States)

    Reslan, Mouhamad; Demir, Yusuf K; Trout, Bernhardt L; Chan, Hak-Kim; Kayser, Veysel

    2017-09-01

    Improving the physical stability of spray-dried proteins is essential for enabling pulmonary delivery of biotherapeutics as a noninvasive alternative to injections. Recently, a novel combination of two amino acids - l-arginine (l-Arg) and l-glutamic acid (l-Glu), has been reported to have synergistic protein-stabilizing effects on various protein solutions. Using spray-dried bovine serum albumin (BSA) reconstituted in solution as a model protein, we investigated the synergistic effect of these amino acids on the physical stability of proteins. Five BSA solutions were prepared: (1) BSA with no amino acids (control); (2) with 50 mM l-Arg; (3) with 200 mM l-Arg, (4) with 50 mM l-Glu and (5) with 25:25 mM of Arg:Glu. All solutions were spray-dried and accelerated studies at high temperatures were performed. Following accelerated studies, monomer BSA loss was measured using SE-HPLC. We found that l-Arg significantly improved the physical stability of spray-dried BSA even at low concentrations, however, when combined with l-Glu, was ineffective at reducing monomer BSA loss. Our findings demonstrate the limitations in using Arg-Glu for the stabilization of spray-dried BSA. Furthermore, we found that a low concentration of l-Glu enhanced monomer BSA loss. These findings may have significant implications on the design of future biotherapeutic formulations.

  16. Do the accelerating actions of tianeptine and l-arginine on cortical spreading depression interact? An electrophysiological analysis in young and adult rats.

    Science.gov (United States)

    Maia, Luciana Maria Silva de Seixas; Amancio-Dos-Santos, Angela; Germano, Paula Catirina Pereira da Silva; Falcão, Anna Carolina Santos Marinho; Duda-de-Oliveira, Desirré; Guedes, Rubem Carlos Araújo

    2017-05-22

    In the rat, we previously demonstrated that serotonin-enhancing drugs impair cortical spreading depression (CSD) and that l-arginine (arginine) treatment enhances CSD. Here, we investigated the interaction between topical application of the serotonin uptake enhancer tianeptine and systemic arginine administration on CSD. From postnatal day 7-28, female Wistar rats (n=40) received by gavage 300mg/Kg/day arginine (n=20) or water (n=20). Half of the arginine- or water-treated rats underwent CSD recording at 30-40days of age (young), while the other half was recorded at 90-120days (adult). Following baseline recording (four episodes of CSD), we applied tianeptine solution (10mg/ml) to a rectangular portion of the intact dura mater for 10-min and then elicited CSD. This procedure was repeated three times. Compared to baseline values, CSD velocities and amplitudes following tianeptine application increased, and CSD duration decreased significantly (p<0.05) in both young and adult rats, regardless of treatment group. CSD acceleration caused by systemic treatment with arginine is in agreement with previous findings. Topical cortical application of tianeptine replicated the effect of systemic application, suggesting a cortically based mechanism for tianeptine's action. However, the absence of interaction between arginine and tianeptine treatments suggests that they probably act through separate mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enteral L-arginine supplementation for prevention of necrotizing enterocolitis in very low birth weight neonates: a double-blind randomized pilot study of efficacy and safety.

    Science.gov (United States)

    Polycarpou, Elena; Zachaki, Sophia; Tsolia, Maria; Papaevangelou, Vasiliki; Polycarpou, Nicodemos; Briana, Despina D; Gavrili, Stavroula; Kostalos, Christos; Kafetzis, Dimitrios

    2013-09-01

    Necrotizing enterocolitis (NEC) is the most common acquired gastrointestinal disease in premature infants and has high mortality and morbidity. Endothelial nitric oxide is an important regulator of vascular perfusion and is synthetized from the amino acid L-arginine. Hypoargininemia is frequently observed in preterm neonates and may predispose them to NEC. Our objective was to determine the effect of enteral L-arginine supplementation on the incidence and severity of NEC in very low birth weight (VLBW) neonates. We conducted a parallel blind randomized pilot study, comprising VLBW neonates with birth weight ≤1500 g and gestational age ≤34 weeks. VLBW neonates were randomly assigned to receive enteral L-arginine supplementation (1.5 mmol/kg/d bid) between the 3rd and 28th day of life or placebo. Diagnosis and classification of NEC were done according to modified Bell's criteria. Eighty-three neonates were randomized to the arginine (n = 40) or placebo (n = 43) group. No adverse effects were observed in neonates receiving L-arginine supplementation. The incidence of NEC stage III was significantly lower in the arginine-supplemented group (2.5% vs 18.6%, P = .030). Enteral L-arginine supplementation of 1.5 mmol/kg/d bid can be safely administered in VLBW neonates from the 3rd to the 28th day of life. Enteral L-arginine supplementation appears to reduce the incidence of stage III NEC in VLBW infants. Larger studies are needed to further evaluate the effect of L-arginine supplementation in preventing NEC in VLBW infants.

  18. Dietary L-Arginine Intakes and the Risk of Metabolic Syndrome: A 6-Year Follow-Up in Tehran Lipid and Glucose Study.

    Science.gov (United States)

    Mirmiran, Parvin; Moghadam, Sajjad Khalili; Bahadoran, Zahra; Ghasemi, Asghar; Azizi, Fereidoun

    2017-12-01

    This study was conducted to investigate whether regular dietary intake of L-arginine could affect the occurrence of metabolic syndrome (MetS). Eligible adult men and women (n=1,237), who participated in the Tehran Lipid and Glucose Study, were followed for a median of 6.3 years. Dietary intakes of L-arginine and serum nitrate and nitrite (NOx) concentration were assessed at baseline (2006~2008), and demographics, anthropometrics, and biochemical variables were evaluated at baseline and follow-up examinations. The occurrence of MetS was assessed in relation to total L-arginine, intakes of L-arginine from animal and plant sources, with adjustment of potential confounding variables. Participants who had higher intake of L-arginine also had higher serum NOx at baseline (35.0 vs. 30.5 μmol/L, P L-arginine from animal sources were accompanied with increased risk of MetS [odd ratios (OR)=1.49, 95% confidence interval (95% CI)=1.02~2.18]. Compared to the lowest, the highest intakes of L-arginine from plant sources were related to significantly reduced risk of MetS (OR=0.58, 95% CI=0.32~0.99). In conclusion, our findings suggest a potentially protective effect of plant derived L-arginine intakes against development of MetS and its phenotypes; moreover, higher intakes of L-arginine from animal sources could be a dietary risk factor for development of metabolic disorders.

  19. Top-dressing 1% arginine supplementation in the lactation diet of sows does not affect the litter performance and milk composition

    OpenAIRE

    Djane Dallanora; Marina Patricia Walter; Jéssica Marcon; Camila Saremba; Mari Lourdes Bernardi; Ivo Wentz; Fernando Pandolfo Bortolozzo

    2016-01-01

    ABSTRACT: The study aimed to evaluate the effects of arginine supplementation in the lactation diet of sows on their milk composition, litter performance and piglet survival. Sixty-four lactating Landrace x Large White sows, parity 1 to 7, were randomly assigned to two treatments: 1) Control - a corn/soybean meal based diet with 1.10% standardized ileal digestible (SID) lysine and 3,475kcal of metabolizable energy (ME) kg-1, and 2) arginine - the control diet top-dressed daily with arginine a...

  20. Combination vaccines

    Directory of Open Access Journals (Sweden)

    David AG Skibinski

    2011-01-01

    Full Text Available The combination of diphtheria, tetanus, and pertussis vaccines into a single product has been central to the protection of the pediatric population over the past 50 years. The addition of inactivated polio, Haemophilus influenzae, and hepatitis B vaccines into the combination has facilitated the introduction of these vaccines into recommended immunization schedules by reducing the number of injections required and has therefore increased immunization compliance. However, the development of these combinations encountered numerous challenges, including the reduced response to Haemophilus influenzae vaccine when given in combination; the need to consolidate the differences in the immunization schedule (hepatitis B; and the need to improve the safety profile of the diphtheria, tetanus, and pertussis combination. Here, we review these challenges and also discuss future prospects for combination vaccines.

  1. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R.; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey (Case Western); (Colorado)

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  2. VO2max and ventilatory threshold of trained cyclists are not affected by 28-day L-arginine supplementation.

    Science.gov (United States)

    Sunderland, Kyle L; Greer, Felicia; Morales, Jacobo

    2011-03-01

    The ergogenic effect of L-arginine on an endurance-trained population is not well studied. The few studies that have investigated L-arginine on this population have not been conducted in a laboratory setting or measured aerobic variables. The purpose of the current study is to determine if 28 days of L-arginine supplementation in trained male cyclists affects VO2max and ventilatory threshold (VT). Eighteen (18) endurance-trained male cyclists (mean ± SD, age: 36.3 ± 7.9 years; height: 182.4 ± 4.6 cm; and body mass: 79.5 ± 4.7 kg) performed a graded exercise test (GXT; 50 W + 25 W·min) before and after 28 days of supplementation with L-arginine (ARG; 2 × 6 g·d) or placebo (PLA; cornstarch). The GXT was conducted on the subject's own bicycle using the RacerMate CompuTrainer (Seattle, WA, USA). VO2 was continuously recorded using the ParvoMedics TrueOne 2400 metabolic cart (Salt Lake City, UT, USA) and VT was established by plotting the ventilatory equivalent for O2 (VE/VO2) and the ventilatory equivalent for CO2 (VE/VCO2) and identifying the point at which VE/VO2 increases with no substantial changes in VE/VCO2. L-arginine supplementation had no effect from initial VO2max (PL, 58.7 ± 7.1 ml·kg·min; ARG, 63.5 ± 7.3 ml·kg·min) to postsupplement VO2max (PL, 58.9 ± 6.0 ml·kg·min; ARG, 63.2 ± 7.2 ml·kg·min). Also, no effect was seen from initial VT (PL, 75.7 ± 4.6% VO2max; ARG, 76.0 ± 5.3% VO2max) to postsupplement VT (PL, 74.3 ± 8.1% VO2max; ARG, 74.2 ± 6.4% VO2max). These results indicate that L-arginine does not impact VO2max or VT in trained male cyclists.

  3. Complementation of Arginine Auxotrophy for Genetic Transformation of Coxiella burnetii by Use of a Defined Axenic Medium.

    Science.gov (United States)

    Sandoz, Kelsi M; Beare, Paul A; Cockrell, Diane C; Heinzen, Robert A

    2016-05-15

    Host cell-free (axenic) culture of Coxiella burnetii in acidified citrate cysteine medium-2 (ACCM-2) has provided important opportunities for investigating the biology of this naturally obligate intracellular pathogen and enabled the development of tools for genetic manipulation. However, ACCM-2 has complex nutrient sources that preclude a detailed study of nutritional factors required for C. burnetii growth. Metabolic reconstruction of C. burnetii predicts that the bacterium cannot synthesize all amino acids and therefore must sequester some from the host. To examine C. burnetii amino acid auxotrophies, we developed a nutritionally defined medium with known amino acid concentrations, termed ACCM-D. Compared to ACCM-2, ACCM-D supported longer logarithmic growth, a more gradual transition to stationary phase, and approximately 5- to 10-fold greater overall replication. Small-cell-variant morphological forms generated in ACCM-D also showed increased viability relative to that generated in ACCM-2. Lack of growth in amino acid-deficient formulations of ACCM-D revealed C. burnetii auxotrophy for 11 amino acids, including arginine. Heterologous expression of Legionella pneumophila argGH in C. burnetii permitted growth in ACCM-D missing arginine and supplemented with citrulline, thereby providing a nonantibiotic means of selection of C. burnetii genetic transformants. Consistent with bioinformatic predictions, the elimination of glucose did not impair C. burnetii replication. Together, these results highlight the advantages of a nutritionally defined medium in investigations of C. burnetii metabolism and the development of genetic tools. Host cell-free growth and genetic manipulation of Coxiella burnetii have revolutionized research of this intracellular bacterial pathogen. Nonetheless, undefined components of growth medium have made studies of C. burnetii physiology difficult and have precluded the development of selectable markers for genetic transformation based on

  4. Citrulline protects Streptococcus pyogenes from acid stress using the arginine deiminase pathway and the F1Fo-ATPase.

    Science.gov (United States)

    Cusumano, Zachary T; Caparon, Michael G

    2015-04-01

    A common stress encountered by both pathogenic and environmental bacteria is exposure to a low-pH environment, which can inhibit cell growth and lead to cell death. One major defense mechanism against this stress is the arginine deiminase (ADI) pathway, which catabolizes arginine to generate two ammonia molecules and one molecule of ATP. While this pathway typically relies on the utilization of arginine, citrulline has also been shown to enter into the pathway and contribute to protection against acid stress. In the pathogenic bacterium Streptococcus pyogenes, the utilization of citrulline has been demonstrated to contribute to pathogenesis in a murine model of soft tissue infection, although the mechanism underlying its role in infection is unknown. To gain insight into this question, we analyzed a panel of mutants defective in different steps in the ADI pathway to dissect how arginine and citrulline protect S. pyogenes in a low-pH environment. While protection provided by arginine utilization occurred through the buffering of the extracellular environment, citrulline catabolism protection was pH independent, requiring the generation of ATP via the ADI pathway and a functional F1Fo-ATP synthase. This work demonstrates that arginine and citrulline catabolism protect against acid stress through distinct mechanisms and have unique contributions to virulence during an infection. An important aspect of bacterial pathogenesis is the utilization of host-derived nutrients during an infection for growth and virulence. Previously published work from our lab identified a unique role for citrulline catabolism in Streptococcus pyogenes during a soft tissue infection. The present article probes the role of citrulline utilization during this infection and its contribution to protection against acid stress. This work reveals a unique and concerted action between the catabolism of citrulline and the F1Fo-ATPase that function together to provide protection for bacteria in a low

  5. Dynamic distribution of histone H4 arginine 3 methylation marks in the developing murine cortex.

    Directory of Open Access Journals (Sweden)

    Alexandra Chittka

    2010-11-01

    Full Text Available Epigenetic modifications regulate key transitions in cell fate during development of the central nervous system (CNS. During cortical development the initial population of proliferative neuroepithelial precursor cells give rise to neurons and then glia in a strict temporal order. Neurogenesis and gliogenesis are accompanied by a switch from symmetric to asymmetric divisions of the neural precursor cells generating another precursor and a differentiated progeny. To investigate whether specific post-translational histone modifications define specific stages of neural precursor differentiation during cortical development I focussed on the appearance of two different types of histone arginine methylation, the dimethyl symmetric H4R3 (H4R3me2s and dimethyl asymmetric H4R3 (H4R3me2a in the developing mouse cortex.An immunohistochemical study of the developing cortex at different developmental stages was performed to detect the distribution of H4R3me2s and H4R3me2a modifications. I analysed the distribution of these modifications in: 1 undifferentiated neural precursors, 2 post-mitotic neurons and 3 developing oligodendrocyte precursors (OLPs using lineage-specific and histone modification-specific antibodies to co-label the cells. I found that the proliferative neuroepithelium during the stage of mainly symmetric expansive divisions is characterised by the prevalence of H4R3me2s modification and almost no detectable H4R3me2a modification. However, at a later stage, when the cortical layers with post-mitotic neurons have begun forming, both H4R3me2a and H4R3me2s modifications are detected in the post-mitotic neurons and in the developing OLPs.I propose that the H4R3me2s modification forms part of the "histone code" of undifferentiated neural precursors. The later appearance of the H4R3me2a modifications specifies the onset of neurogenesis and gliogenesis and the commitment of the NSCs to differentiate. Thus, the sequential appearance of the two