WorldWideScience

Sample records for vortices

  1. Fluid vortices

    National Research Council Canada - National Science Library

    Green, Sheldon I

    1995-01-01

    ... . . . . . . . . . . . . . . . Vorticity Kinematics and Dynamics - Physical Principles The Vorticity Equation with Examples . . . . Summary . . . . . . . . . . . . . . . . . Vorticity in Orthogonal...

  2. Vortical flows

    International Nuclear Information System (INIS)

    Wu, Jie-Zhi; Ma, Hui-Yang; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  3. Vortical flows

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie-Zhi [Peking Univ., Beijing (China). College of Engineering; Ma, Hui-Yang [Univ. of Chinese Academy of Sciences, Beijing (China). Dept. of Physics; Zhou, Ming-De [Arizona Univ., Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering

    2015-11-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  4. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  5. Solitary magnetohydrodynamic vortices

    International Nuclear Information System (INIS)

    Silaev, I.I.; Skvortsov, A.T.

    1990-01-01

    This paper reports on the analytical description of fluid flow by means of localized vortices which is traditional for hydrodynamics, oceanology, plasma physics. Recently it has been widely applied to different structure turbulence models. Considerable results involved have been presented where it was shown that in magnetohydrodynamics alongside with the well-known kinds of localized vortices (e.g. Hill's vortex), which are characterized by quite a weak decrease of disturbed velocity or magnetic field (as a power of the inverse distance from vortex center), the vortices with screening (or solitary vortices) may exist. All disturbed parameters either exponentially vanish or become identically zero in outer region in the latter case. (In a number of papers numerical simulations of such the vortices are presented). Solutions in a form of solitary vortices are of particular interest due to their uniformity and solitonlike behavior. On the basis of these properties one can believe for such structures to occur in real turbulent flows

  6. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  7. Interferometry with Vortices

    Directory of Open Access Journals (Sweden)

    P. Senthilkumaran

    2012-01-01

    Full Text Available Interference of optical beams with optical vortices is often encountered in singular optics. Since interferometry makes the phase observable by intensity measurement, it brings out a host of applications and helps to understand the optical vortex. In this article we present an optical vortex interferometer that can be used in optical testing and has the potential to increase the accuracy of measurements. In an optical vortex interferometer (OVI, a lattice of vortices is formed, and the movement of the cores of these vortices is tracked when one of the interfering beams is deformed. Instead of multiple vortices in an OVI, an isolated single vortex also finds applications in optical testing. Finally, singularity in scalar and vector fields is presented, and the relation between them is illustrated by the superposition of these beams.

  8. Modeling of oceanic vortices

    Science.gov (United States)

    Cushman-Roisin, B.

    Following on a tradition of biannual meetings, the 5th Colloquium on the Modeling of Oceanic Vortices was held May 21-23, 1990, at the Thayer School of Engineering at Dartmouth College, Hanover, N.H. The colloquium series, sponsored by the Office of Naval Research, is intended to gather oceanographers who contribute to our understanding of oceanic mesoscale vortices via analytical, numerical and experimental modeling techniques.

  9. Finiteness of corner vortices

    Science.gov (United States)

    Kalita, Jiten C.; Biswas, Sougata; Panda, Swapnendu

    2018-04-01

    Till date, the sequence of vortices present in the solid corners of steady internal viscous incompressible flows was thought to be infinite. However, the already existing and most recent geometric theories on incompressible viscous flows that express vortical structures in terms of critical points in bounded domains indicate a strong opposition to this notion of infiniteness. In this study, we endeavor to bridge the gap between the two opposing stream of thoughts by diagnosing the assumptions of the existing theorems on such vortices. We provide our own set of proofs for establishing the finiteness of the sequence of corner vortices by making use of the continuum hypothesis and Kolmogorov scale, which guarantee a nonzero scale for the smallest vortex structure possible in incompressible viscous flows. We point out that the notion of infiniteness resulting from discrete self-similarity of the vortex structures is not physically feasible. Making use of some elementary concepts of mathematical analysis and our own construction of diametric disks, we conclude that the sequence of corner vortices is finite.

  10. Vortices on hyperbolic surfaces

    International Nuclear Information System (INIS)

    Manton, Nicholas S; Rink, Norman A

    2010-01-01

    It is shown that Abelian Higgs vortices on a hyperbolic surface M can be constructed geometrically from holomorphic maps f: M → N, where N is also a hyperbolic surface. The fields depend on f and on the metrics of M and N. The vortex centres are the ramification points, where the derivative of f vanishes. The magnitude of the Higgs field measures the extent to which f is locally an isometry. Witten's construction of vortices on the hyperbolic plane is rederived, and new examples of vortices on compact surfaces and on hyperbolic surfaces of revolution are obtained. The interpretation of these solutions as SO(3)-invariant, self-dual SU(2) Yang-Mills fields on R 4 is also given.

  11. Vortices wiggled and dragged

    International Nuclear Information System (INIS)

    Reichardt, Charles

    2008-01-01

    When a sufficiently strong magnetic field is applied to a superconductor, some of the field can pierce it through the generation of magnetic vortices, each of which contains a quantized amount of magnetic flux. Although the superconducting state of the material outside each vortex is maintained (and destroyed within each vortex), the interaction of vortices with a current passing through the material can cause them to move, dissipating energy and thereby generating a source of electrical resistance. The ability to manipulate an individual superconducting vortex represents a powerful tool for studying the dynamics of vortices and the superconductors that support them. It could also lead to the development of a new class of fluxon-based electronics.

  12. Theory of Concentrated Vortices

    DEFF Research Database (Denmark)

    Alekseenko, Sergey; Kuibin, Pavel; Okulov, Valery

    This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have describ...... models of vortex structures used for interpretation of experimental data which serve as a ground for development of theoretical and numerical approaches to vortex investigation. Achievements in the fields of stability analysis, waves on vortices and vortex breakdown are also presented....

  13. Vitality of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available Optical vortices are always created or annihilated in pairs with opposite topological charges. However, the presence of such a vortex dipole does not directly indicate whether they are associated with a creation or an annihilation event. Here we...

  14. Theory of Concentrated Vortices

    DEFF Research Database (Denmark)

    Alekseenko, Sergey; Kuibin, Pavel; Okulov, Valery

    This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have describ...

  15. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  16. Dynamics of nonstationary dipole vortices

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.

    1993-01-01

    The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to eithe...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....

  17. Monopoles, vortices, and confinement

    International Nuclear Information System (INIS)

    Mack, G.; Pietarinen, E.

    1981-10-01

    An exact relation is established between an SO(3) lattice gauge theory model without monopoles, and a corresponding SU(2) model. Elimination of the monopoles (and their strings) leads to a substantial lowering of the entropy of thin vortices and a corresponding decrease of the string tension for low γ. This is revealed by approximate calculations of the vortex free energy and is confirmed by Monte Carlo data. The value of the physical transition temperature to 'hot gluon soup' is also lowered considerably. (orig.)

  18. Ginzburg-Landau vortices

    CERN Document Server

    Bethuel, Fabrice; Helein, Frederic

    2017-01-01

    This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimiz...

  19. Dynamics of vortices in superconductors

    International Nuclear Information System (INIS)

    Weinan, E.

    1992-01-01

    We study the dynamics of vortices in type-II superconductors from the point of view of time-dependent Ginzburg-Landau equations. We outline a proof of existence, uniqueness and regularity of strong solutions for these equations. We then derive reduced systems of ODEs governing the motion of the vortices in the asymptotic limit of large Ginzburg-Landau parameter

  20. Vortices, semi-local vortices in gauged linear sigma model

    International Nuclear Information System (INIS)

    Kim, Namkwon

    1998-11-01

    We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)

  1. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  2. Coulomb energy, vortices, and confinement

    International Nuclear Information System (INIS)

    Greensite, Jeff; Olejnik, Stefan

    2003-01-01

    We estimate the Coulomb energy of static quarks from a Monte Carlo calculation of the correlator of timelike link variables in the Coulomb gauge. We find, in agreement with Cucchieri and Zwanziger, that this energy grows linearly with distance at large quark separations. The corresponding string tension, however, is several times greater than the accepted asymptotic string tension, indicating that a state containing only static sources, with no constituent gluons, is not the lowest energy flux tube state. The Coulomb energy is also measured on thermalized lattices with center vortices removed by the de Forcrand-D'Elia procedure. We find that when vortices are removed, the Coulomb string tension vanishes

  3. Moving vortex matter with coexisting vortices and anti-vortices

    International Nuclear Information System (INIS)

    Carneiro, Gilson

    2009-01-01

    Moving vortex matter, driven by transport currents independent of time, in which vortices and anti-vortices coexist is investigated theoretically in thin superconducting films with nanostructured defects. A simple London model is proposed for the vortex dynamics in films with periodic arrays of nanomagnets or cylindrical holes (antidots). Common to these films is that vortex anti-vortex pairs may be created in the vicinity of the defects by relatively small transport currents, because it adds to the current generated by the defects - the nanomagnets screening current, or the antidots backflow current - and may exceed locally the critical value for vortex anti-vortex pair creation. The model assumes that vortex matter dynamics is governed by Langevin equations, modified to account for creation and annihilation of vortex anti-vortex pairs. For pair creation, it is assumed that whenever the total current at some location exceeds a critical value, equal to that needed to separate a vortex from an anti-vortex by a vortex core diameter, a pair is created instantaneously around this location. Pair annihilation occurs by vortex anti-vortex collisions. The model is applied to films at zero external magnetic field and low temperatures. It is found that several moving vortex matter steady-states with equal numbers of vortices and anti-vortices are possible.

  4. Electrochemical Analysis of Taylor Vortices.

    Czech Academy of Sciences Publication Activity Database

    Wouahbi, F.; Allaf, K.; Sobolík, Václav

    2007-01-01

    Roč. 37, 1 (2007) , s. 57-62 ISSN 0021-891X Institutional research plan: CEZ:AV0Z40720504 Keywords : electrodiffusion method * taylor vortices * three-segment electrode Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.417, year: 2007

  5. Review of vortices in wildland fire

    Science.gov (United States)

    Jason M. Forthofer; Scott L. Goodrick

    2011-01-01

    Vortices are almost always present in the wildland fire environment and can sometimes interact with the fire in unpredictable ways, causing extreme fire behavior and safety concerns. In this paper, the current state of knowledge of the interaction of wildland fire and vortices is examined and reviewed. A basic introduction to vorticity is given, and the two common...

  6. Vortical flows in technical applications

    OpenAIRE

    Krause, Egon; Krause, Egon

    2006-01-01

    Two examples of flows dominated by vortical structures are discussed: In the first interaction and decay of vortex structures in in-cylinder flows of automotive engines are described. Numerical studies revealed clearly identifiable vortex rings, generated during the intake stroke. The influence of compressibility on the vortex formation was studied by using Mach-Zehnder interferometry in a specially designed test stand of a towed one-cylinder engine, and with numerical solutions of the Navier...

  7. Dynamics of vortices in polariton quantum fluids : From full vortices, to half vortices and vortex pairs

    Science.gov (United States)

    Deveaud-Plédran, Benoit

    2012-02-01

    Polariton quantum fluids may be created both spontaneously through a standard phase transition towards a Bose Einstein condensate, or may be resonantly driven with a well-defined speed. Thanks to the photonic component of polaritons, the properties of the quantum fluid may be accessed rather directly with in particular the possibility of detained interferometric studies. Here, I will detail the dynamics of vortices, obtained with a picosecond time resolution, in different configurations, with in particular their phase dynamics. I will show in particular the dynamics the dynamics of spontaneous creation of a vortex, the dissociation of a full vortex into two half vortices as well as the dynamics of the dissociation of a dark soliton line into a street of pairs of vortices. Work done at EPFL by a dream team of Postdocs PhD students and collaborators: K. Lagoudakis, G. Nardin, T. Paraiso, G. Grosso, F. Manni, Y L'eger, M. Portella Oberli, F. Morier-Genoud and the help of our friend theorists V, Savona, M. Vouters and T. Liew.

  8. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–P...... results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge....

  9. Vitality of optical vortices (Presentation)

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available stream_source_info Roux3_2014.pdf.txt stream_content_type text/plain stream_size 3018 Content-Encoding UTF-8 stream_name Roux3_2014.pdf.txt Content-Type text/plain; charset=UTF-8 Title Vitality of optical vortices F Stef... Roux Presented at Complex Light and Optical Force VIII SPIE Photonics West 2014 Moscone Center, San Francisco, California USA 5 February 2014 CSIR National Laser Centre, Pretoria, South Africa – p. 1/11 Speckle Amplitude Phase – p. 2/11 Vortex...

  10. Making sound vortices by metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang; Tang, Kun; Ke, Manzhu; Peng, Shasha [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jia, Han [State Key Laboratory of Acoustics and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2016-08-15

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  11. Travelling water waves with compactly supported vorticity

    International Nuclear Information System (INIS)

    Shatah, Jalal; Walsh, Samuel; Zeng, Chongchun

    2013-01-01

    In this paper, we prove the existence of two-dimensional, travelling, capillary-gravity, water waves with compactly supported vorticity. Specifically, we consider the cases where the vorticity is a δ-function (a point vortex), or has small compact support (a vortex patch). Using a global bifurcation theoretic argument, we construct a continuum of finite-amplitude, finite-vorticity solutions for the periodic point vortex problem. For the non-periodic case, with either a vortex point or patch, we prove the existence of a continuum of small-amplitude, small-vorticity solutions. (paper)

  12. Nonquasineutral electron vortices in nonuniform plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)

    2014-11-15

    Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.

  13. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  14. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H

    2015-09-23

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  15. Why does gravitational radiation produce vorticity?

    International Nuclear Information System (INIS)

    Herrera, L; Barreto, W; Carot, J; Prisco, A Di

    2007-01-01

    We calculate the vorticity of worldlines of observers at rest in a Bondi-Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super-Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacuum spacetimes

  16. On trailing vortices: A short review

    International Nuclear Information System (INIS)

    Jacquin, Laurent

    2005-01-01

    This paper reviews some mechanisms involved in the dynamics of vortices in fluid flows. The topic is first introduced by pointing out its importance in aerodynamics. Several basic notions useful to appraise experimental observations are then surveyed, namely: centrifugal instabilities, inertial waves, cooperative instabilities, vortex merger, vortex breakdown and turbulence in vortices. Each topic is illustrated with experimental or numerical results

  17. Stability of relative equilibria of three vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2009-01-01

    Three point vortices on the unbounded plane have relative equilibria wherein the vortices either form an equilateral triangle or are collinear. While the stability analysis of the equilateral triangle configurations is straightforward, that of the collinear relative equilibria is considerably mor...

  18. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  19. On generating counter-rotating streamwise vortices

    KAUST Repository

    Winoto, S H; Mitsudharmadi, Hatsari; Budiman, A C; Hasheminejad, S M; Nadesan, T; Tandiono; Low, H T; Lee, T S

    2015-01-01

    Counter-rotating streamwise vortices are known to enhance the heat transfer rate from a surface and also to improve the aerodynamic performance of an aerofoil. In this paper, some methods to generate such counter-rotating vortices using different methods or physical conditions will be briefly considered and discussed.

  20. Theory of concentrated vortices an introduction

    CERN Document Server

    Alekseenko, S V; Okulov, V L

    2007-01-01

    Vortex motion is one of the basic states of a flowing continuum. Intere- ingly, in many cases vorticity is space-localized, generating concentrated vortices. Vortex filaments having extremely diverse dynamics are the most characteristic examples of such vortices. Notable examples, in particular, include such phenomena as self-inducted motion, various instabilities, wave generation, and vortex breakdown. These effects are typically ma- fested as a spiral (or helical) configuration of a vortex axis. Many publications in the field of hydrodynamics are focused on vortex motion and vortex effects. Only a few books are devoted entirely to v- tices, and even fewer to concentrated vortices. This work aims to highlight the key problems of vortex formation and behavior. The experimental - servations of the authors, the impressive visualizations of concentrated vortices (including helical and spiral) and pictures of vortex breakdown primarily motivated the authors to begin this work. Later, the approach based on the hel...

  1. Topological vortices in gauge models of graphene

    Science.gov (United States)

    Zhang, Xin-Hui; Li, Xueqin; Hao, Jin-Bo

    2018-06-01

    Graphene-like structure possessing the topological vortices and knots, and the magnetic flux of the vortices configuration quantized, are proposed in this paper. The topological charges of the vortices are characterized by Hopf indices and Brower degrees. The Abelian background field action (BF action) is a topological invariant for the knot family, which is just the total sum of all the self-linking numbers and all the linking numbers. Flux quantization opens the possibility of having Aharonov-Bohm-type effects in graphene without external electromagnetic field.

  2. Doppler Velocity Signatures of Idealized Elliptical Vortices

    Directory of Open Access Journals (Sweden)

    Wen-Chau Lee

    2006-01-01

    Full Text Available Doppler radar observations have revealed a class of atmospheric vortices (tropical cyclones, tornadoes, dust devils that possess elliptical radar reflectivity signatures. One famous example is Typhoon Herb (1996 that maintained its elliptical reflectivity structure over a 40-hour period. Theoretical work and dual-Doppler analyses of observed tropical cyclones have suggested two physical mechanisms that can explain the formation of two types of elliptical vortices observed in nature, namely, the combination of a circular vortex with either a wavenumber two vortex Rossby wave or a deformation field. The characteristics of these two types of elliptical vortices and their corresponding Doppler velocity signatures have not been previously examined.

  3. Correlations between Abelian monopoles and center vortices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Nejad, Seyed Mohsen, E-mail: smhosseininejad@ut.ac.ir; Deldar, Sedigheh, E-mail: sdeldar@ut.ac.ir

    2017-04-15

    We study the correlations between center vortices and Abelian monopoles for SU(3) gauge group. Combining fractional fluxes of monopoles, center vortex fluxes are constructed in the thick center vortex model. Calculating the potentials induced by fractional fluxes constructing the center vortex flux in a thick center vortex-like model and comparing with the potential induced by center vortices, we observe an attraction between fractional fluxes of monopoles constructing the center vortex flux. We conclude that the center vortex flux is stable, as expected. In addition, we show that adding a contribution of the monopole-antimonopole pairs in the potentials induced by center vortices ruins the Casimir scaling at intermediate regime.

  4. Tunneling decay of self-gravitating vortices

    Directory of Open Access Journals (Sweden)

    Dupuis Éric

    2018-01-01

    Full Text Available We investigate tunneling decay of false vortices in the presence of gravity, in which vortices are trapped in the false vacuum of a theory of scalar electrodynamics in three dimensions. The core of the vortex contains magnetic flux in the true vacuum, while outside the vortex is the appropriate topologically nontrivial false vacuum. We numerically obtain vortex solutions which are classically stable; however, they could decay via tunneling. To show this phenomenon, we construct the proper junction conditions in curved spacetime. We find that the tunneling exponent for the vortices is half that for Coleman-de Luccia bubbles and discuss possible future applications.

  5. The Theory of Vortical Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-04-01

    Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.

  6. Quantized vortices in superfluids and superconductors

    International Nuclear Information System (INIS)

    Thoulessi, D.J.; Wexler, C.; Ping Ao, Ping; Niu, Qian; Geller, M.R.

    1998-01-01

    We give a general review of recent developments in the theory of vortices in superfluids and superconductors, discussing why the dynamics of vortices is important, and why some key results are still controversial. We discuss work that we have done on the dynamics of quantized vortices in a superfluid. Despite the fact that this problem has been recognized as important for forty years, there is still a lot of controversy about the forces on and masses of quantized vortices. We think that one can get unambiguous answers by considering a broken symmetry state that consists of one vortex in an infinite ideal system. We argue for a Magnus force that is proportional to the superfluid density, and we find that the effective mass density of a vortex in a neutral superfluid is divergent at low frequencies. We have generalized some of the results for a neutral superfluid to a charged system. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  7. Dynamics of Chern-Simons vortices

    International Nuclear Information System (INIS)

    Collie, Benjamin; Tong, David

    2008-01-01

    We study vortex dynamics in three-dimensional theories with Chern-Simons interactions. The dynamics is governed by motion on the moduli space M in the presence of a magnetic field. For Abelian vortices, the magnetic field is shown to be the Ricci form over M; for non-Abelian vortices, it is the first Chern character of a suitable index bundle. We derive these results by integrating out massive fermions and following the fate of their zero modes.

  8. On the motion of multiple helical vortices

    Science.gov (United States)

    Wood, D. H.; Boersma, J.

    2001-11-01

    The analysis of the self-induced velocity of a single helical vortex (Boersma & Wood 1999) is extended to include equally spaced multiple vortices. This arrangement approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers, or rotors in ascending, descending, or hovering flight. The problem is reduced to finding, from the Biot Savart law, the additional velocity of a helix due to an identical helix displaced azimuthally. The resulting Biot Savart integral is further reduced to a Mellin Barnes integral representation which allows the asymptotic expansions to be determined for small and for large pitch. The Biot Savart integral is also evaluated numerically for a total of two, three and four vortices over a range of pitch values. The previous finding that the self-induced velocity at small pitch is dominated by a term inversely proportional to the pitch carries over to multiple vortices. It is shown that a far wake dominated by helical tip vortices is consistent with the one-dimensional representation that leads to the Betz limit on the power output of wind turbines. The small-pitch approximation then allows the determination of the blade&s bound vorticity for optimum power extraction. The present analysis is shown to give reasonable estimates for the vortex circulation in experiments using a single hovering rotor and a four-bladed propeller.

  9. Vortices and vortex lattices in quantum ferrofluids

    International Nuclear Information System (INIS)

    Martin, A M; Marchant, N G; Parker, N G; O’Dell, D H J

    2017-01-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition. (topical review)

  10. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  11. Interaction of vortices with flexible piezoelectric beams

    Science.gov (United States)

    Goushcha, Oleg; Akaydin, Huseyin Dogus; Elvin, Niell; Andreopoulos, Yiannis

    2012-11-01

    A cantilever piezoelectric beam immersed in a flow is used to harvest fluidic energy. Pressure distribution induced by naturally present vortices in a turbulent fluid flow can force the beam to oscillate producing electrical output. Maximizing the power output of such an electromechanical fluidic system is a challenge. In order to understand the behavior of the beam in a fluid flow where vortices of different scales are present, an experimental facility was set up to study the interaction of individual vortices with the beam. In our set up, vortex rings produced by an audio speaker travel at specific distances from the beam or impinge on it, with a frequency varied up to the natural frequency of the beam. Depending on this frequency both constructive and destructive interactions between the vortices and the beam are observed. Vortices traveling over the beam with a frequency multiple of the natural frequency of the beam cause the beam to resonate and larger deflection amplitudes are observed compared to excitation from a single vortex. PIV is used to compute the flow field and circulation of each vortex and estimate the effect of pressure distribution on the beam deflection. Sponsored by NSF Grant: CBET #1033117.

  12. Dynamics of quantised vortices in superfluids

    CERN Document Server

    Sonin, Edouard B

    2016-01-01

    A comprehensive overview of the basic principles of vortex dynamics in superfluids, this book addresses the problems of vortex dynamics in all three superfluids available in laboratories (4He, 3He, and BEC of cold atoms) alongside discussions of the elasticity of vortices, forces on vortices, and vortex mass. Beginning with a summary of classical hydrodynamics, the book guides the reader through examinations of vortex dynamics from large scales to the microscopic scale. Topics such as vortex arrays in rotating superfluids, bound states in vortex cores and interaction of vortices with quasiparticles are discussed. The final chapter of the book considers implications of vortex dynamics to superfluid turbulence using simple scaling and symmetry arguments. Written from a unified point of view that avoids complicated mathematical approaches, this text is ideal for students and researchers working with vortex dynamics in superfluids, superconductors, magnetically ordered materials, neutron stars and cosmological mo...

  13. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  14. Physical properties corresponding to vortical flow geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, K, E-mail: nakayama@aitech.ac.jp [Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan)

    2014-10-01

    We examine a vortical flow geometry specified by the velocity gradient tensor ∇v, and derive properties representing the symmetry (axisymmetry or skewness) of the vortical flow in the swirl plane and a property specifying inflowing (outflowing) motion in all directions around the point. We focus on the radial and azimuthal velocities in a plane nonparallel to the eigenvector corresponding to the real eigenvalue of ∇v and show that these components are expressed as specific quadratic forms. The real and imaginary parts of the complex eigenvalues of ∇v represent averages of these eigenvalues of the quadratic forms, and are inadequate to specify the detailed flow geometry uniquely. The new properties complement specifying the precise flow geometry of the vortical flow.

  15. Aerodynamics and vortical structures in hovering fruitflies

    Science.gov (United States)

    Meng, Xue Guang; Sun, Mao

    2015-03-01

    We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.

  16. Electrohydrodynamic (EHD) vortices in helical turbulence

    International Nuclear Information System (INIS)

    Kikuchi, H.

    1996-01-01

    The study of large-scale coherent hydrodynamic (HD) vortex generation has been extended to electrified charged dusty vortices to be termed as electrohydrodynamic (EHD) vortices, incorporating helical turbulence in electric and magnetic fields into that in fluid velocity, which are all created by an external DC electric field on the background. A new equation of EHD vortices is introduced on the basis of a set of EHD or electromagnetohydrodynamic (EMHD) equations, including equations of state and a full set of Maxwell's equations by using functional techniques for estimating equations for an ensemble average, turbulent background, and additional random field. In fact, EHD vortices for a charged dusty fluid can be more explosive with larger instabilities than HD vortices. In addition, it is inferred that an external DC electric field could provide the origin of additional self-organization to a coalescence of fluid vortex and electric field lines as a manifestation of a new frozen-in field concept for electric fields when the electric Reynolds number is sufficiently high. This is discussed on the basis of a set of general transport equations for fluid vorticity, magnetic and electric fields that are rederived concisely. In particular, a novel concept of electric field line merging-reconnection is developed in close relation to fluid vortex line merging, indicating a coalescence of fluid vortex breakdown or merging point and electric field line reconnection point, X-type or O-type with possible application to tornadic thunderstorms. In fact, a thundercloud charge distribution so as to provide a coalescence of fluid vortex and electric field lines is quite possible without theoretical inconsistency, and is thought most likely to occur from observations available so far. (orig.)

  17. Percolating cluster of center vortices and confinement

    International Nuclear Information System (INIS)

    Gliozzi, Ferdinando; Panero, Marco; Provero, Paolo

    2003-01-01

    We study the role of percolating clusters of center vortices in configurations of an Ising gauge theory in 3D. It is known that low energy features of gauge theories can be described in terms of an 'effective string picture', and that confinement properties are associated with topologically non-trivial configurations. We focus our attention upon percolating clusters of center vortices, and present numerical evidence for the fact that these objects play a preminent role in confinement phenomenon, since their removal sweeps off confinement altogether. Moreover, numerical simulations show that the string fluctuations, and in particular the Mischer term, are completely encoded in the percolating cluster

  18. Interaction of plasma vortices with resonant particles

    DEFF Research Database (Denmark)

    Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.

    1990-01-01

    Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....... they possess localized solutions in the form of dipolar vortices, which can efficiently interact with resonant electrons. In the adiabatic limit, evolution equations are derived for the vortex parameters, describing exchange of the energy, enstrophy, and of the Poynting vector between the vortex and resonant...

  19. Vortices in a rotating dark matter condensate

    International Nuclear Information System (INIS)

    Yu, Rotha P; Morgan, Michael J

    2002-01-01

    We examine vortices in a self-gravitating dark matter Bose-Einstein condensate (BEC), consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase transition. Rotation of the dark matter BEC imprints a background phase gradient on the condensate, which establishes a harmonic trap potential for vortices. A numerical simulation of vortex dynamics shows that the vortex number density, n v ∝ r -1 , resulting in a flat velocity profile for the dark matter condensate. (letter to the editor)

  20. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  1. Longitudinal vortices in a transitioning boundary layer

    International Nuclear Information System (INIS)

    Anders, J.B.; Backwelder, R.F.

    1980-01-01

    Naturally occurring spanwise variations of the streamwise velocity component, characteristic of longitudinal vortices embedded in a transitioning boundary layer were explored using hot-wire anemometers. A vibrating ribbon introduced stable or unstable Tollmien-Schlichting waves into the laminar boundary layer. These damped or growing disturbances always developed a strong three-dimensional pattern even though no spanwise perturbations were artificially induced. Changing the radius of the leading edge and other modifications to the flat plate, wind tunnel and boundary layer did not alter the spanwise wavelength of the vortices. (orig.)

  2. Laboratory experiments on multipolar vortices in a rotating fluid

    NARCIS (Netherlands)

    Trieling, R.R.; Heijst, van G.J.F.; Kizner, Ziv

    2010-01-01

    The instability properties of isolated monopolar vortices have been investigated experimentally and the corresponding multipolar quasisteady states have been compared with semianalytical vorticity-distributed solutions to the Euler equations in two dimensions. A novel experimental technique was

  3. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  4. Crosswind Shear Gradient Affect on Wake Vortices

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  5. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  6. Hairpin vortices in turbulent boundary layers

    International Nuclear Information System (INIS)

    Eitel-Amor, G; Schlatter, P; Flores, O

    2014-01-01

    The present work addresses the question whether hairpin vortices are a dominant feature of near-wall turbulence and which role they play during transition. First, the parent-offspring mechanism is investigated in temporal simulations of a single hairpin vortex introduced in a mean shear flow corresponding to turbulent channels and boundary layers up to Re τ = 590. Using an eddy viscosity computed from resolved simulations, the effect of a turbulent background is also considered. Tracking the vortical structure downstream, it is found that secondary hairpins are created shortly after initialization. Thereafter, all rotational structures decay, whereas this effect is enforced in the presence of an eddy viscosity. In a second approach, a laminar boundary layer is tripped to transition by insertion of a regular pattern of hairpins by means of defined volumetric forces representing an ejection event. The idea is to create a synthetic turbulent boundary layer dominated by hairpin-like vortices. The flow for Re τ < 250 is analysed with respect to the lifetime of individual hairpin-like vortices. Both the temporal and spatial simulations demonstrate that the regeneration process is rather short-lived and may not sustain once a turbulent background has formed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former DNS studies is an outer layer phenomenon not being connected to the onset of near-wall turbulence.

  7. Vorticity budget of a tornado-like vortex

    Energy Technology Data Exchange (ETDEWEB)

    Sassa, Koji; Takemura, Saki, E-mail: sassa@kochi-u.ac.jp [Department of Applied Science, Kochi University (Japan)

    2011-12-22

    We evaluated the vorticity budget of a tornado-like vortex by measuring vertical and horizontal circulations of it. Though spiral horizontal vortices are clearly observed to converge and tilted into the tornado-like vortex, their circulation is quite small. The conversion of the vertical vorticity concentrated at the side of the spiral horizontal vortices was found to mainly contribute to the maintenance of the tornado-like vortex.

  8. VORTICAL MODEL OF THE WING COVERED WITH CONTINUOUSLY DISTRIBUTED CIRCULATION OF THE VORTICAL LAYER

    Directory of Open Access Journals (Sweden)

    B. L. Artamonov

    2014-01-01

    Full Text Available The linear vortical model ot the final scope of a wing is exsamined. It representis the flat rectangular spatial veil covered with continuously distributed vortical layer. Elements of digitization of a veil are the quadrangular panels laying on its surface. Method, algorithms and the program of calculation of three making vectors of inductive speed from any guided rectangular platform covered with a vortical layer are created. Its intensity linearly changes on the surface of a platform. The decision is received in elementary functions. The numerical way solves the task of a definition of the law of circulation of the attached whirlwinds in scope of a wing and calculation of its aerodynamic characteristics, being based on the accepted vortical model and a hypothesis of flat sections.

  9. Controlled Manipulation of Individual Vortices in a Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Straver, E.W.J.

    2010-04-05

    We report controlled local manipulation of single vortices by low temperature magnetic force microscope (MFM) in a thin film of superconducting Nb. We are able to position the vortices in arbitrary configurations and to measure the distribution of local depinning forces. This technique opens up new possibilities for the characterization and use of vortices in superconductors.

  10. Sources of CAM3 vorticity bias during northern winter from diagnostic study of the vorticity equation

    Energy Technology Data Exchange (ETDEWEB)

    Grotjahn, Richard [University of California, Department of Land, Air and Water Resources, Davis, CA (United States); Pan, Lin-Lin; Tribbia, Joseph [National Center for Atmospheric Research, Boulder, CO (United States)

    2011-06-15

    CAM3 (Community Atmosphere Model version 3) simulation bias is diagnosed using the vorticity equation. The study compares CAM3 output with ECMWF (European Centre for Medium-Range Weather Forecasts) 40 year reanalysis (ERA-40) data. A time mean vorticity bias equation is also formulated and the terms are grouped into categories: linear terms, nonlinear terms, transient contributions, and friction (calculated as a residual). Frontal cyclone storms have much weaker band passed kinetic energy and enstrophy in CAM3. The downstream end of the North Atlantic storm track (NAST) has large location error. While the vorticity equation terms have similar amplitude ranking in CAM3 and ERA-40 at upper levels, the ranking differs notably in the lower troposphere. The linear and friction terms dominate the vorticity bias equation. The transient terms contribute along the storm track, but the nonlinear terms are generally much smaller, with the primary exception being over the Iberian peninsula. Friction is much stronger in CAM3. As evidence, nearly all wavelengths (including the longest planetary waves) have smaller amplitude in CAM3 than in ERA-40 vorticity data. Negative near surface vorticity tendency bias on the European side of the Arctic is linked to the NAST track error (evident in the divergence term). CAM3 misses the Beaufort high in sea level pressure (SLP) due to low level warm temperature bias, too little vortex compression, and to too little horizontal advection of negative vorticity compared with ERA-40. Generally lower SLP values in CAM3 over the entire Arctic follow from lower level warm bias in CAM3. (orig.)

  11. Coherent Vortices in Strongly Coupled Liquids

    International Nuclear Information System (INIS)

    Ashwin, J.; Ganesh, R.

    2011-01-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using ''first principles'' molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  12. Coherent Vortices in Strongly Coupled Liquids

    Science.gov (United States)

    Ashwin, J.; Ganesh, R.

    2011-04-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  13. Propagation and diffraction of optical vortices

    International Nuclear Information System (INIS)

    Fischer, Pascal; Skelton, Susan E.; Leburn, Christopher G.; Streuber, Casey T.; Wright, Ewan M.; Dholakia, Kishan

    2008-01-01

    We explore the propagation and diffraction of optical vortices (Laguerre-Gaussian beams) of varying azimuthal index past a circular obstacle and Young's double slits. When the beam and obstacle centers are aligned the famous spot of Arago, which arises for zero azimuthal index, is replaced for non-zero azimuthal indices by a dark spot of Arago, a simple consequence of the conserved phase singularity at the beam center. We explore how for larger azimuthal indices, as the beam and obstacle centers are progressively misaligned, the central dark spot breaks up into several dark spots of Arago. Using Young's double slits we can easily measure the azimuthal index of the vortex beam, even for polychromatic vortices generated by broadband supercontinuum radiation

  14. Trailing vortices from low speed flyers

    Science.gov (United States)

    Waldman, Rye; Kudo, Jun; Breuer, Kenneth

    2009-11-01

    The structure and strength of the vortex wake behind a airplane or animal flying with a fixed or flapping wing contains valuable information about the aerodynamic load history. However, the amount of vorticity measured in the trailing vortex is not always in agreement with the known lift generated, and the behavior of these vortices at relatively low Reynolds numbers is also not well-understood. We present the results from a series of wind tunnel PIV experiments conducted behind a low-aspect ratio rectangular wing at a chord-Reynolds numbers of 30,000. In addition to wake PIV measurements measured in the cross-stream (Trefftz) plane, we measure the lift and drag directly using a six-axis force-torque transducer. We discuss how vortex size, shape, strength and position vary in time and downstream location, as well as the challenges associated with the use of PIV wake measurements to accurate determine aerodynamic forces.

  15. Intrinsic electromagnetic solitary vortices in magnetized plasma

    International Nuclear Information System (INIS)

    Liu, J.; Horton, W.

    1986-01-01

    Several Rossby type vortex solutions constructed for electromagnetic perturbations in magnetized plasma encounter the difficulty that the perturbed magnetic field and the parallel current are not continuous on the boundary between two regions. We find that fourth order differential equations must be solved to remove this discontinuity. Special solutions for two types of boundary value problems for the fourth order partial differential equations are presented. By applying these solutions to different nonlinear equations in magnetized plasma, the intrinsic electromagnetic solitary drift-Alfven vortex (along with solitary Alfven vortex) and the intrinsic electromagnetic solitary electron vortex (along with short-wavelength drift vortex) are constructed. While still keeping a localized dipole structure, these new vortices have more complicated radial structures in the inner and outer regions than the usual Rossby wave vortex. The new type of vortices guarantees the continuity of the perturbed magnetic field deltaB/sub perpendicular/ and the parallel current j/sub parallel/ on the boundary between inner and outer regions of the vortex. The allowed regions of propagation speeds for these vortices are analyzed, and we find that the complementary relation between the vortex propagating speeds and the corresponding phase velocities of the linear modes no longer exists

  16. Superconducting vortices in Weinberg - Salam theory

    International Nuclear Information System (INIS)

    Garaud, J.

    2010-09-01

    In this dissertation, we analyze in detail the properties of new string-like solutions of the bosonic sector of the electroweak theory. The new solutions are current carrying generalizations of embedded Abrikosov-Nielsen-Olesen vortices. We were also able to reproduce all previously known features of vortices in the electroweak theory. Generically vortices are current carrying. They are made of a compact conducting core of charged W bosons surrounded by a nonlinear superposition of Z and Higgs field. Far away from the core, the solution is described by purely electromagnetic Biot and Savart field. Solutions exist for generic parameter values including experimental values of the coupling constants. We show that the current whose typical scale is the billion of Amperes can be arbitrarily large. In the second part the linear stability with respect to generic perturbations is studied. The fluctuation spectrum is qualitatively investigated. When negative modes are detected, they are explicitly constructed and their dispersion relation is determined. Most of the unstable modes can be eliminated by imposing periodic boundary conditions along the vortex. However there remains a unique negative mode which is homogeneous. This mode can probably be eliminated by curvature effects if a small piece of vortex is bent into a loop, stabilized against contraction by the electric current. (author)

  17. Driven motion of vortices in superconductors

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Leaf, G.K.; Kaper, H.G.; Vinokur, V.M.; Koshelev, A.E.; Braun, D.W.; Levine, D.M.

    1995-09-01

    The driven motion of vortices in the solid vortex state is analyzed with the time-dependent Ginzburg-Landau equations. In large-scale numerical simulations, carried out on the IBM Scalable POWERparallel (SP) system at Argonne National Laboratory, many hundreds of vortices are followed as they move under the influence of a Lorentz force induced by a transport current in the presence of a planar defect (similar to a twin boundary in YBa 2 CU 3 O 7 ). Correlations in the positions and velocities of the vortices in plastic and elastic motion are identified and compared. Two types of plastic motion are observed. Organized plastic motion displaying long-range orientational correlation and shorter-range velocity correlation occurs when the driving forces are small compared to the pinning forces in the twin boundary. Disorganized plastic motion displaying no significant correlation in either the velocities or orientation of the vortex system occurs when the driving and pinning forces axe of the same order

  18. Localized vortices in ηi-modes

    International Nuclear Information System (INIS)

    Nycander, J.; Lynov, J.P.; Juul Rasmussen, J.

    1992-01-01

    For a wide variety of nonlinear wave equations necessary conditions for the existence of localized, stationary structures can be found by applying a simple procedure, involving two steps: First the linear dispersion relation is obtained and the regions of the phase velocity of linear waves found. Secondly, assuming that localized solutions exist, their velocities are determined by using integral relations. The obtained velocity takes the form of a ''center of mass velocity''. If this velocity falls outside the regions of phase velocities for linear waves then nonlinear localized vortices may exist. Otherwise, the structure will couple to the linear waves and gradually disperse. Applying this method we have shown that monopole vortex solutions exist for drift waves driven by the ion temperature gradient in a magnetized plasma, the so-called η i -modes. Numerical solutions show that such vortices are steadily propagating and stable and they generally emerge from localized initial conditions. Our study is motivated by recent high resolution simulations of η i -turbulence, where it was observed that coherent vortices developed spontaneously. These had a dominating influence on the evolution of the turbulence, and the associated anomalous transport was found to be significantly reduced as compared with the predictions from quasilinear theory. (author) 8 refs., 3 figs

  19. Polarization in heavy-ion collisions: magnetic field and vorticity

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  20. Vorticity and Λ polarization in baryon rich matter

    Science.gov (United States)

    Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin

    2018-02-01

    The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of ¯ has the same sihn and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  1. Collision dynamics of two-dimensional non-Abelian vortices

    Science.gov (United States)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  2. Magnetic monopoles, center vortices, confinement and topology of gauge fields

    International Nuclear Information System (INIS)

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Schaefke, A.

    2000-01-01

    The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed

  3. Magnetic Monopoles, Center Vortices, Confinement and Topology of Gauge Fields

    OpenAIRE

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Sch"afke, A.

    1999-01-01

    The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed.

  4. Thick vortices in SU(2) lattice gauge theory

    OpenAIRE

    Cheluvaraja, Srinath

    2004-01-01

    Three dimensional SU(2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher beta) than t...

  5. Dipole vortices in the Great Australian Bight

    DEFF Research Database (Denmark)

    Cresswell, George R.; Lund-Hansen, Lars C.; Nielsen, Morten Holtegaard

    2015-01-01

    Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm mushroom' dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB...... denser than the cooler offshore waters. The field of dipoles evolved and distorted, but appeared to drift westwards at 5km day-1 over two weeks, and one new mushroom carried GAB water southwards at 7km day(-1). Other features encountered between Cape Leeuwin and Tasmania included the Leeuwin Current...

  6. Maxwell-Higgs vortices with internal structure

    Science.gov (United States)

    Bazeia, D.; Marques, M. A.; Menezes, R.

    2018-05-01

    Vortices are considered in relativistic Maxwell-Higgs systems in interaction with a neutral scalar field. The gauge field interacts with the neutral field via the presence of generalized permeability, and the charged and neutral scalar fields interact in a way dictated by the presence of first order differential equations that solve the equations of motion. The neutral field may be seen as the source field of the vortex, and we study some possibilities, which modify the standard Maxwell-Higgs solution and include internal structure to the vortex.

  7. Point vortex description of drift wave vortices: Dynamics and transport

    International Nuclear Information System (INIS)

    Kono, M.; Horton, W.

    1991-05-01

    Point-vortex description for drift wave vortices is formulated based on the Hasegawa-Mima equation to study elementary processes for the interactions of vortices as well as statistical properties like vortex diffusion. Dynamical properties of drift wave vortices known by numerical experiments are recovered. Furthermore a vortex diffusion model discussed by Horton based on numerical simulations is shown to be analytically obtained. A variety of phenomena arising from the short-range nature of the interaction force of point vortices are suggested. 12 refs., 10 figs

  8. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker

    2015-01-01

    . The equation is relevant for transport barriers in magnetically confined plasmas because particle density, ion temperature and the radial electric field are mutually coupled through the potential vorticity. The potential vorticity equation is derived from an energy conserving, four-field, electrostatic, full......An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density...

  9. On the stability of shear-Alfven vortices

    International Nuclear Information System (INIS)

    Jovanovic, D.; Horton, W.

    1993-08-01

    Linear stability of shear-Alfven vortices is studied analytically using the Lyapunov method. Instability is demonstrated for vortices belonging to the drift mode, which is a generalization of the standard Hasegawa-Mima vortex to the case of large parallel phase velocities. In the case of the convective-cell mode, short perpendicular-wavelength perturbations are stable for a broad class of vortices. Eventually, instability of convective-cell vortices may occur on the perpendicular scale comparable with the vortex size, but it is followed by a simultaneous excitation of coherent structures with better localization than the original vortex

  10. Aharonov-Bohm effect with many vortices

    International Nuclear Information System (INIS)

    Franchini, Fabio; Scharff Goldhaber, Alfred

    2008-01-01

    The Aharonov-Bohm (A-B) effect is the prime example of a zero-field-strength configuration where a nontrivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction, we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.

  11. Aharonov-Bohm effect with many vortices

    Science.gov (United States)

    Franchini, Fabio; Scharff Goldhaber, Alfred

    2008-12-01

    The Aharonov-Bohm (A-B) effect is the prime example of a zero-field-strength configuration where a nontrivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction, we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.

  12. Toroidal vortices in resistive magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Montgomery, D.; Bates, J.W.; Li, S.

    1997-01-01

    When a time-independent electric current flows toroidally in a uniform ring of electrically conducting fluid, a Lorentz force results, jxB, where j is the local electric current density, and B is the magnetic field it generates. Because of purely geometric effects, the curl of jxB is nonvanishing, and so jxB cannot be balanced by the gradient of any scalar pressure. Taking the curl of the fluid close-quote s equation of motion shows that the net effect of the jxB force is to generate toroidal vorticity. Allowed steady states necessarily contain toroidal vortices, with flows in the poloidal directions. The flow pattern is a characteristic open-quotes double smoke ringclose quotes configuration. The effect seems quite general, although it is analytically simple only in special limits. One limit described here is that of high viscosity (low Reynolds number), with stress-free wall boundary conditions on the velocity field, although it is apparent that similar mechanical motions will result for no-slip boundaries and higher Reynolds numbers. A rather ubiquitous connection between current-carrying toroids and vortex rings seems to be implied, one that disappears in the open-quotes straight cylinderclose quotes limit. copyright 1997 American Institute of Physics

  13. Effects of outer perturbances on dynamics of wake vortices

    International Nuclear Information System (INIS)

    Baranov, N.A.; Belotserkovsky, A.S.; Turchak, L.I.

    2004-01-01

    One of the problems in aircraft flight safety is reduction of the risk related with aircraft encounter with wake vortices generated by other aircraft. An efficient approach to this problem is design of systems providing information on areas of potential danger of wake vortices to pilots in real time. The main components of such a system are a unit for calculations of wake vortices behind aircraft and a unit for calculations of areas of potential danger. A promising way to development of real time algorithms for calculation of wake vortices is the use of vortex methods in CFD based on the hypothesis of quasi-3D flow in the area of wake vorticity. The mathematical model developed by our team calculates positions and intensity of wake vortices past aircraft taking account of such effects as viscous dissipation of vortices, effects of ambient turbulence, wind shear, as well as viscous interaction between wake vortices and the underlying surface. The necessity of including the last factor could be stems from the fact that in the case where wake vortices are in close proximity of the rigid surface, the viscous interaction between the wake vortices and the surface boundary layer results in the boundary layer separation changing the overall intensity and dynamics of the wake vortices. To evaluate the boundaries of the danger areas the authors use an approach based on calculation of additional aerodynamic forces and moments acting on the aircraft encountering wake vortices by means of evaluation of the aircraft additional velocities and angular rates corresponding to distribution of disturbed velocities on the aircraft surface. These criteria could be based on local characteristics of the vorticity areas or on characteristics related to the perturbation effects on the aircraft. The latter characteristics include the actual aerodynamic roll moment, the maximum angular rate or the maximum roll of the aircraft under perturbations in the wake vortices. To estimate the accuracy

  14. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    We have investigated the vortex dynamics for the `ratchet' operation in a niobium superconductor via a direct imaging of Lorentz microscopy. We directly observe one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from the rectification of vortices in a spatially asymmetric ...

  15. Decay or collapse: Aircraft wake vortices in grid turbulence

    NARCIS (Netherlands)

    Ren, M.; Elsenaar, A.; van Heijst, G.J.F.; Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2006-01-01

    Trailing vortices are naturally shed by airplanes and they typically evolve into a counter-rotating vortex pair. Downstream of the aircraft, these vortices can persist for a very long time and extend for several kilometers. This poses a potential hazard to following aircraft, particularly during

  16. Compressible dynamic stall vorticity flux control using a dynamic ...

    Indian Academy of Sciences (India)

    systems, such as a wind turbine, are prevented from ever entering dynamic stall, essentially disregarding potential ... future generations of such systems, an overwhelming need has developed to avail this benefit safely. ... approach must diffuse the vorticity prior to its coalescence, but keep the vorticity over the airfoil up to ...

  17. Dynamics of fractional vortices in long Josephson junctions

    International Nuclear Information System (INIS)

    Gaber, Tobias

    2007-01-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  18. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of lowMach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using theWiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  19. Hard wall - soft wall - vorticity scattering in shear flow

    NARCIS (Netherlands)

    Rienstra, S.W.; Singh, D.K.

    2014-01-01

    An analytically exact solution, for the problem of low Mach number incident vorticity scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by using the Wiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear flow are scattered at the wall

  20. Scaling properties of Wilson loops pierced by P-vortices

    DEFF Research Database (Denmark)

    Dunn, Patrick; Greensite, Jeffrey Paul

    2012-01-01

    P-vortices, in an SU(N) lattice gauge theory, are excitations on the center-projected Z(N) lattice. We study the ratio of expectation values of SU(2) Wilson loops, on the unprojected lattice, linked to a single P-vortex, to that of Wilson loops which are not linked to any P-vortices. When...

  1. On hairpin vortices in a transitional boundary layer

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2012-04-01

    Full Text Available In the presented paper the results of experiments on transitional boundary layer are presented. The boundary layer was generated on smooth flat wall with zero pressure gradient forming one side of the channel of rectangular cross section. The hairpin vortices, packets of hairpin vortices, turbulent spots and calmed regions were experimentally investigated using time-resolved PIV technique.

  2. Potential vorticity field in the Bay of Bengal during southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.

    theta), potential vorticity distribution is complex due to wind and freshwater forcings. The beta -effect dominates the potential vorticity field on 26.9 sigma theta isopycnal. The field of potential vorticity closely follows that of circulation...

  3. Dynamical properties of vortical structures on the beta-plane

    DEFF Research Database (Denmark)

    Sutyrin, G.G.; Hesthaven, J.S.; Lynov, Jens-Peter

    1994-01-01

    The long-time evolution of monopolar and dipolar vortices influenced by the large-scale gradient of the ambient potential vorticity (the beta-effect) is studied by direct numerical solutions of the equivalent barotropic quasi-geostrophic equation. Translation and reorganization of vortical...... structures are shown to depend strongly on their intensity. Transport of trapped fluid by vortical structures is illustrated by calculating particle trajectories and by considering closed isolines of potential vorticity and the streamfunction in a co-moving reference frame. The initial behaviour of strong...... monopoles is found to be well described by a recent approximate theory for the evolution of azimuthal mode one, even for times longer than the linear Rossby wave period. In the long-time limit, strong monopoles transport particles mainly westward, although the meridional displacement is several times larger...

  4. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  5. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Science.gov (United States)

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  6. Vortices in nonuniform upper-hybrid field

    International Nuclear Information System (INIS)

    Davydova, T.A.; Vranjes, J.

    1992-01-01

    The equations describing the interaction of an upper-hybrid pump wave with small low-frequency density perturbations are discussed under assumption that the pump is spatially nonuniform. The conditions for the modulational instability are investigated. Instead of a dispersion relation, describing the growth of perturbations in the case of an uniform pump, in our case of nonuniform pump a differential equation is obtained and from its eigenvalues are found the instability criteria. Taking into account the slow-frequency self-interaction terms some localized solutions similar to dipole vortices are found, but described by analytic functions in all space. It is shown that their characteristic size and speed are determined by the pump intensity and its spatial structure. (au)

  7. Bilinear Relative Equilibria of Identical Point Vortices

    DEFF Research Database (Denmark)

    Aref, H.; Beelen, Peter; Brøns, Morten

    2012-01-01

    , obtained using Sturm’s comparison theorem, is that if p(z) satisfies the ODE for a given q(z) with its imaginary zeros symmetric relative to the x-axis, then it must have at least n−m+2 simple, real zeros. For m=2 this provides a complete characterization of all zeros, and we study this case in some detail....... In particular, we show that, given q(z)=z 2+η 2, where η is real, there is a unique p(z) of degree n, and a unique value of η 2=A n , such that the zeros of q(z) and p(z) form a relative equilibrium of n+2 point vortices. We show that $A_{n} \\approx\\frac{2}{3}n + \\frac{1}{2}$, as n→∞, where the coefficient of n...

  8. Statistical balance of vorticity and a new scale for vortical structures in turbulence

    International Nuclear Information System (INIS)

    Novikov, E.A.

    1993-01-01

    The balance of one-point and two-point statistical characterics of vorticity, is considered on the basis of the Navier-Stokes equations. It is shown that within the inertial range of scales (L Re -3/4 much-lt r much-lt L, L external scale, Re Reynolds number) there is a physically distinguished scale l s ∼L Re -3/10 . The balance of vortical correlations with scales r≥l s is directly affected by the large-scale motion. l s is a natural length scale for the ''vortex strings,'' observed experimentally and numerically in three-dimensional turbulent flows. The twist of vortex lines in the internal structure of vortex strings is also briefly discussed

  9. Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals

    International Nuclear Information System (INIS)

    Hoffmann, Ch; Altmeyer, S; Pinter, A; Luecke, M

    2009-01-01

    We present numerical simulations of closed wavy Taylor vortices and of helicoidal wavy spirals in the Taylor-Couette system. These wavy structures appearing via a secondary bifurcation out of Taylor vortex flow and out of spiral vortex flow, respectively, mediate transitions between Taylor and spiral vortices and vice versa. Structure, dynamics, stability and bifurcation behaviour are investigated in quantitative detail as a function of Reynolds numbers and wave numbers for counter-rotating as well as corotating cylinders. These results are obtained by solving the Navier-Stokes equations subject to axial periodicity for a radius ratio η=0.5 with a combination of a finite differences method and a Galerkin method.

  10. On the link between martian total ozone and potential vorticity

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  11. Lattice vortices in the two-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Grunewald, S.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    1986-01-01

    Multi-vortices of the 2D Abelian Higgs model on a finite lattice by relaxation of Monte-Carlo equilibrium configurations are generated and identified. The lattice vortices have action and a uniquely defined topological charge corresponding to the continuum ones. They exhibit the expected exponential decay behaviour and satisfy approximately the classical equations of motion. Vortex-antivortex superpositions are seen as well, supporting the dilute gas picture. Single vortices finally relax into ''dislocations'' and dissapear. A background charge construction turns out nearly insensitive with respect to dislocations

  12. Vorticity and particle polarization in heavy ion collisions (experimental perspective

    Directory of Open Access Journals (Sweden)

    Voloshin Sergei A.

    2018-01-01

    Full Text Available The recent measurements of the global polarization and vector meson spin alignment along the system orbital momentum in heavy ion collisions are briefly reviewed. A possible connection between the global polarization and the chiral anomalous effects is discussed along with possible experimental checks. Future directions, in particular those aimed on the detailed mapping of the vorticity fields, are outlined. The Blast Wave model is used for an estimate of the anisotropic flow effect on the vorticity component along the beam direction. We also point to a possibility of a circular pattern in the vorticity field in asymmetric, e.g. Cu+Au, central collisions.

  13. Potential vorticity dynamics for global scale circulations

    International Nuclear Information System (INIS)

    Lu, C.; Schubert, W.

    1994-01-01

    One of the most notable advances in extratropical dynamics this decade has been the understanding of large-scale atmospheric and oceanic processes by using potential vorticity dynamics, the so called open-quotes IPV thinking.close quotes This analysis method has also been successfully extended to some tropical atmospheric circulation systems such as hurricanes and the Hadley circulation. The fundamental idea behind such a dynamic system rests with the fact that PV is a tracer-like quantity since it is conserved (in the absence of friction and diabatic heating) following a fluid particle and carries both significant dynamic and thermodynamic information regarding fluid motion. Thus, the prediction and inversion of PV form the most succinct dynamic view of atmospheric and oceanic motions. Furthermore, PV dynamics provides access to many insightful dynamic analyses such as: Propagation of Rossby waves, barotropic and baroclinic instabilities for shear flows, and wave-mean flow interactions. All these features make IPV analysis a very attractive tool for studying geophysical fluid systems

  14. Dipolar and tripolar vortices in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, D. [Institute of Physics, Belgrade (Yugoslavia); International Centre for Theoretical Physics, Trieste (Italy); Shukla, P.K. [Bochum Univ. (Germany). Inst. fuer Theoretische Physik IV

    2001-07-01

    The nonlinear dynamics is studied of a plasma that consists of hot electrons, cold ions and macroscopic dust particles, in the characteristic frequency range below the ion cyclotron and magnetosonic frequencies. The plasma is immersed in a sheared magnetic field and there exists a sheared plasma flow, in the direction perpendicular to the background magnetic field. In the frequency range above the dust-acoustic and dust charging frequencies, regarding the dust grains as immobile and with constant charges, the plasma is described by the first two moments of the drift-kinetic equation, accounting for the contributions of the stress-tensor and finite mass to the electron dynamics. In the strongly nonlinear regime, the plasma dynamics is governed by the vector nonlinearities arising from the E x B convection and the magnetic field lines' bending. For a linear density profiles a coherent localized nonlinear solution is constructed in the form of a tripole, since stable simple monopolar vortices do not exist. Due to the presence of dust grains, the electron and ion diamagnetic currents do not cancel out, which limits the energy of these structures, provides their good spatial localization and increases the stability, compared to their ordinary-plasma counterparts. (orig.)

  15. Vorticity confinement technique for drag prediction

    Science.gov (United States)

    Povitsky, Alex; Snyder, Troy

    2011-11-01

    This work couples wake-integral drag prediction and vorticity confinement technique (VC) for the improved prediction of drag from CFD simulations. Induced drag computations of a thin wing are shown to be more accurate than the more widespread method of surface pressure integration when compared to theoretical lifting-line value. Furthermore, the VC method improves trailing vortex preservation and counteracts the shift from induced drag to numerical entropy drag with increasing distance of Trefftz plane downstream of the wing. Accurate induced drag prediction via the surface integration of pressure barring a sufficiently refined surface grid and increased computation time. Furthermore, the alternative wake-integral technique for drag prediction suffers from numerical dissipation. VC is shown to control the numerical dissipation with very modest computational overhead. The 2-D research code is used to test specific formulations of the VC body force terms and illustrate the computational efficiency of the method compared to a ``brute force'' reduction in spatial step size. For the 3-D wing simulation, ANSYS FLUENT is employed with the VC body force terms added to the solver with user-defined functions (UDFs). VC is successfully implemented to highly unsteady flows typical for Micro Air Vehicles (MAV) producing oscillative drag force either by natural vortex shedding at high angles of attack or by flapping wing motion.

  16. Analytical BPS Maxwell-Higgs Vortices

    International Nuclear Information System (INIS)

    Hora, E. da; Ferreira, M. M. Jr.; Santos, C. dos; Casana, R.

    2014-01-01

    We have established a prescription for the calculation of analytical vortex solutions in the context of generalized Maxwell-Higgs models whose overall dynamics is controlled by two positive functions of the scalar field, namely, f(|ϕ|) and w(|ϕ|). We have also determined a natural constraint between these functions and the Higgs potential U(|ϕ|), allowing the existence of axially symmetric Bogomol'nyi-Prasad-Sommerfield (BPS) solutions possessing finite energy. Furthermore, when the generalizing functions are chosen suitably, the nonstandard BPS equations can be solved exactly. We have studied some examples, comparing them with the usual Abrikosov-Nielsen-Olesen (ANO) solution. The overall conclusion is that the analytical self-dual vortices are well-behaved in all relevant sectors, strongly supporting the consistency of the respective generalized models. In particular, our results mimic well-known properties of the usual (numerical) configurations, as localized energy density, while contributing to the understanding of topological solitons and their description by means of analytical methods.

  17. Equivariant Verlinde Formula from Fivebranes and Vortices

    Science.gov (United States)

    Gukov, Sergei; Pei, Du

    2017-10-01

    We study complex Chern-Simons theory on a Seifert manifold M 3 by embedding it into string theory. We show that complex Chern-Simons theory on M 3 is equivalent to a topologically twisted supersymmetric theory and its partition function can be naturally regularized by turning on a mass parameter. We find that the dimensional reduction of this theory to 2d gives the low energy dynamics of vortices in four-dimensional gauge theory, the fact apparently overlooked in the vortex literature. We also generalize the relations between (1) the Verlinde algebra, (2) quantum cohomology of the Grassmannian, (3) Chern-Simons theory on {Σ× S^1} and (4) index of a spin c Dirac operator on the moduli space of flat connections to a new set of relations between (1) the "equivariant Verlinde algebra" for a complex group, (2) the equivariant quantum K-theory of the vortex moduli space, (3) complex Chern-Simons theory on {Σ × S^1} and (4) the equivariant index of a spin c Dirac operator on the moduli space of Higgs bundles.

  18. Fractional Josephson vortices: oscillating macroscopic spins

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, T.; Buckenmaier, K.; Koelle, D.; Kleiner, R.; Goldobin, E. [Universitaet Tuebingen, Physikalisches Institut - Experimentalphysik II, Tuebingen (Germany)

    2007-11-15

    Fractional Josephson vortices carry a magnetic flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. We consider a fractional vortex which spontaneously appears at a phase discontinuity. Its properties are very different from the properties of the usual integer fluxon. In particular, a fractional vortex is pinned and may have one of two possible polarities - just like a usual spin 1/2 particle. The fractional vortex may also oscillate around its equilibrium position with an eigenfrequency which is expected to be within the Josephson plasma gap. Using microwave spectroscopy, we investigate the dependence of the eigenfrequency of a fractional Josephson vortex on its magnetic flux {phi} and on the bias current. The experimental results are in good agreement with theoretical predictions. Positive result of this experiment is a cornerstone for further investigation of more complex fractional vortex systems such as fractional vortex molecules and tunable bandgap materials. (orig.)

  19. Electromagnetic solitary vortices in rotating plasma

    International Nuclear Information System (INIS)

    Liu, J.; Horton, W.

    1985-12-01

    The nonlinear equations describing drift-Alfven solitary vortices in a low β, rotating plasma are derived. Two types of solitary vortex solutions along with their corresponding nonlinear dispersion relations are obtained. Both solutions have the localized coherent dilopar structure. The first type of solution belongs to the family of the usual Rossby or drift wave vortex, while the second type of solution is intrinsic to the electromagnetic perturbation in a magnetized plasma and is a complicated structure. While the first type of vortex is a solution to a second order differential equation the second one is the solution of a fourth order differential equation intrinsic to the electromagnetic problem. The fourth order vortex solution has two intrinsic space scales in contrast to the single space scale of the previous drift vortex solution. With the second short scale length the parallel current density at the vortex interface becomes continuous. As special cases the rotational electron drift vortex and the rotational ballooning vortex also are given. 10 refs

  20. Drift wave vortices and anomalous transport

    International Nuclear Information System (INIS)

    Horton, W.

    1990-01-01

    Many plasma equations for drift waves and other modes possess vortex solutions, so it is important to consider the transport associated with vortex structures and their mutual interactions. Vortex structures occur when the amplitude of the fluctuation is sufficient to trap and circulate plasma around the vortex in one wave period. The vortex contribution of the diffusion of the passively convected scalar field was calculated. It was found that the field can be represented by the superposition of vortices and wave fluctuation components. For transport the computer solutions for the vortex-vortex collisions with various impact parameters while carrying along the passively convected scalar thermodynamic field were used. As the result, the inelastic collisions with b≅r 0 ≅1/k x cross-section σ(b)≅b exp(-b/r 0 )≅r 0 give the strongest transport. An example is shown in figure. As the final result, the anomalous diffusion D was derived in dimensional form. (M.T.)

  1. Magnetic vortices in nanocaps induced by curvature

    Science.gov (United States)

    Abdelgawad, Ahmed M.; Nambiar, Nikhil; Bapna, Mukund; Chen, Hao; Majetich, Sara A.

    2018-05-01

    Magnetic nanoparticles with room temperature remanent magnetic vortices stabilized by their curvature are very intriguing due to their potential use in biomedicine. In the present study, we investigate room temperature magnetic chirality in 100 nm diameter permalloy spherical caps with 10 nm and 30 nm thicknesses. Micromagnetic OOMMF simulations predict the equilibrium spin structure for these caps to form a vortex state. We fabricate the permalloy caps by sputtering permalloy on both close-packed and sparse arrays of polystyrene nanoparticles. Magnetic force microscopy scans show a clear signature of a vortex state in close-packed caps of both 10 nm and 30 nm thicknesses. Alternating gradient magnetometry measurements of the caps are consistent with a remnant vortex state in 30 nm thick caps and a transition to an onion state followed by a vortex state in 10 nm thick caps. Out-of-plane measurements supported by micromagnetic simulations shows that an out-of-plane field can stabilize a vortex state down to a diameter of 15 nm.

  2. A study on assimilating potential vorticity data

    Science.gov (United States)

    Li, Yong; Ménard, Richard; Riishøjgaard, Lars Peter; Cohn, Stephen E.; Rood, Richard B.

    1998-08-01

    The correlation that exists between the potential vorticity (PV) field and the distribution of chemical tracers such as ozone suggests the possibility of using tracer observations as proxy PV data in atmospheric data assimilation systems. Especially in the stratosphere, there are plentiful tracer observations but a general lack of reliable wind observations, and the correlation is most pronounced. The issue investigated in this study is how model dynamics would respond to the assimilation of PV data. First, numerical experiments of identical-twin type were conducted with a simple univariate nuding algorithm and a global shallow water model based on PV and divergence (PV-D model). All model fields are successfully reconstructed through the insertion of complete PV data alone if an appropriate value for the nudging coefficient is used. A simple linear analysis suggests that slow modes are recovered rapidly, at a rate nearly independent of spatial scale. In a more realistic experiment, appropriately scaled total ozone data from the NIMBUS-7 TOMS instrument were assimilated as proxy PV data into the PV-D model over a 10-day period. The resulting model PV field matches the observed total ozone field relatively well on large spatial scales, and the PV, geopotential and divergence fields are dynamically consistent. These results indicate the potential usefulness that tracer observations, as proxy PV data, may offer in a data assimilation system.

  3. Magnetic Monopoles, Center Vortices and Topology of Gauge Fields

    OpenAIRE

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Schafke, A.

    1999-01-01

    The topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills Theory. For this purpose the continuum analog of the maximum center gauge is constructed.

  4. Magnetic monopoles, center vortices and topology of gauge fields

    International Nuclear Information System (INIS)

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Schaefke, A.

    2000-01-01

    The topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills Theory. For this purpose the continuum analog of the maximum center gauge is constructed

  5. Robust Prediction of High Lift Using Surface Vorticity, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — FlightStream has been developed a fast, accurate, aerodynamic prediction code based on vorticity computations on the surface of an aircraft. The code, though still a...

  6. A numerical study of vorticity-enhanced heat transfer

    Science.gov (United States)

    Wang, Xiaolin; Alben, Silas

    2012-11-01

    The Glezer lab at Georgia Tech has found that vorticity produced by vibrated reeds can improve heat transfer in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we simulate the heat transfer process in a 3-dimensional plate-fin heat sink. We propose a simplified model by considering flow and temperature in a 2-D channel, and extend the model to the third dimension using a 1-D heat fin model. We simulate periodically steady-state solutions. We determine how the global Nusselt number is increased, depending on the vortices' strengths and spacings, in the parameter space of Reynolds and Peclet numbers. We find a surprising spatial oscillation of the local Nusselt number due to the vortices. Support from NSF-DMS grant 1022619 is acknowledged.

  7. Nonlinear effects in low-dimensional magnetism: Solitons and vortices

    International Nuclear Information System (INIS)

    Bishop, A.R.; Kawabata, C.; Mertens, F.G.; Wysin, G.M.

    1987-07-01

    The report outlines recent results on the dynamics of easy-plane classical ferromagnetic spin in two spatial dimensions emphasising possible signatures of unbound vortices above the Kosterlitz-Thouless topological phase transition. 18 refs, 1 fig

  8. Why superconducting vortices follow to moving hot sport?

    Science.gov (United States)

    Sergeev, Andrei; Michael, Reizer

    Recent experiments reported in Nature Comm. 7, 12801, 2016 show that superconducting vortices follow to the moving hot sport created by a focused laser beam, i.e. vortices move from the cold area to the moving hot area. This behavior is opposite to the vortex motion observed in numerous measurements of the vortex Nernst effect, where vortices always move against the temperature gradient. Taking into account that superconducting magnetization currents do not transfer entropy, we analyze the balance of forces acting on a vortex in stationary and dynamic temperature gradients. We show that the dynamic measurements may be described by a single vortex approximation, while in stationary measurements interaction between vortices is critical. Supported by NRC.

  9. Adiabatic effective action for vortices in neutral and charged superfluids

    International Nuclear Information System (INIS)

    Hatsuda, M.; Sato, M.; Yahikozawa, S.; Hatsuda, T.

    1996-01-01

    Adiabatic effective action for vortices in neutral and charged superfluids at zero temperature are calculated using the topological Landau-Ginzburg theory recently proposed by Hatsuda, Yahikozawa, Ao and Thouless, and vortex dynamics are examined. The Berry phase term arising in the effective action naturally yields the Magnus force in both neutral and charged superfluids. It is shown that in neutral superfluid there is only one degree of freedom, namely the center of vorticities, and the vortex energy is proportional to the sum of all vorticities so that it is finite only for the vanishing total vorticity of the system. On the other hand the effective mass and the vortex energy for a vortex in charged superfluids are defined individually as expected. The effects of the vortex core on these quantities are also estimated. The possible depinning scenario which is governed by the Magnus force and the inertial mass is also discussed

  10. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    Science.gov (United States)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  11. Vorticity perturbations and isotropy of the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Anile, A M [Catania Univ. (Italy). Seminario di Matematica; Motta, S

    1976-06-01

    We investigate the effect of vorticity perturbations of an arbitrary Robertson-Walker universe on the isotropy of the cosmic microwave background. The predicted temperature variations are then compared with the upper limits recently found by Parijskij (1974). In this way we obtain an upper limit on the present vorticity on scales L approximately 10 Mpc which is only marginally consistent with the value suggested by de Vaucouleurs (1971), de Vaucouleurs and Peters (1968).

  12. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics.

    Science.gov (United States)

    Zheng, Yue; Chen, W J

    2017-08-01

    Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects-vortices-have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.

  13. The role of vortices in animal locomotion in fluids

    Directory of Open Access Journals (Sweden)

    Dvořák R.

    2014-12-01

    Full Text Available The aim of this paper is to show the significance of vortices in animal locomotion in fluids on two deliberately chosen examples. The first example concerns lift generation by bird and insect wings, the second example briefly mentiones swimming and walking on water. In all the examples, the vortices generated by the moving animal impart the necessary momentum to the surrounding fluid, the reaction to which is the force moving or lifting the animal.

  14. A Laboratory Study of Vortical Structures in Rotating Convection Plumes

    Science.gov (United States)

    Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team

    2015-11-01

    A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).

  15. Airfoil Drag Reduction using Controlled Trapped Vorticity Concentrations

    Science.gov (United States)

    Desalvo, Michael; Glezer, Ari

    2017-11-01

    The aerodynamic performance of a lifting surface at low angles of attack (when the base flow is fully attached) is improved through fluidic modification of its ``apparent'' shape by superposition of near-surface trapped vorticity concentrations. In the present wind tunnel investigations, a controlled trapped vorticity concentration is formed on the pressure surface of an airfoil (NACA 4415) using a hybrid actuator comprising a passive obstruction of scale O(0.01c) and an integral synthetic jet actuator. The jet actuation frequency [Stact O(10)] is selected to be at least an order of magnitude higher than the characteristic unstable frequency of the airfoil wake, thereby decoupling the actuation from the global instabilities of the base flow. Regulation of vorticity accumulation in the vicinity of the actuator by the jet effects changes in the local pressure, leading in turn to changes in the airfoil's drag and lift. Trapped vorticity can lead to a significant reduction in drag and reduced lift (owing to the sense of the vorticity), e.g. at α =4° and Re = 6.7 .105 the drag and lift reductions are 14% and 2%, respectively. PIV measurements show the spatial variation in the distribution of vorticity concentrations and yield estimates of the corresponding changes in circulation.

  16. Vortices in trapped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jackson, B.

    2000-09-01

    In this thesis we solve the Gross-Pitaevskii equation numerically in order to model the response of trapped Bose-Einstein condensed gases to perturbations by electromagnetic fields. First, we simulate output coupling of pulses from the condensate and compare our results to experiments. The excitation and separation of eigenmodes on flow through a constriction is also studied. We then move on to the main theme of this thesis: the important subject of quantised vortices in Bose condensates, and the relation between Bose-Einstein condensation and superfluidity. We propose methods of producing vortex pairs and rings by controlled motion of objects. Full three-dimensional simulations under realistic experimental conditions are performed in order to test the validity of these ideas. We link vortex formation to drag forces on the object, which in turn is connected with energy transfer to the condensate. We therefore argue that vortex formation by moving objects is intimately related to the onset of dissipation in superfluids. We discuss this idea in the context of a recent experiment, using simulations to provide evidence of vortex formation in the experimental scenario. Superfluidity is also manifest in the property of persistent currents, which is linked to vortex stability and dynamics. We simulate vortex line and ring motion, and find in both cases precessional motion and thermodynamic instability to dissipation. Strictly speaking, the Gross-Pitaevskii equation is valid only for temperatures far below the BEC transition. We end the thesis by describing a simple finite-temperature model to describe mean-field coupling between condensed and non-condensed components of the gas. We show that our hybrid Monte-Carlo/FFT technique can describe damping of the lowest energy excitations of the system. Extensions to this model and future research directions are discussed in the conclusion. (author)

  17. Quantum information processing with optical vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)

  18. Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus).

    Science.gov (United States)

    Maia, Anabela; Sheltzer, Alex P; Tytell, Eric D

    2015-03-01

    In their natural environment, fish must swim stably through unsteady flows and vortices, including vertical vortices, typically shed by posts in a flow, horizontal cross-flow vortices, often produced by a step or a waterfall in a stream, and streamwise vortices, where the axis of rotation is aligned with the direction of the flow. Streamwise vortices are commonly shed by bluff bodies in streams and by ships' propellers and axial turbines, but we know little about their effects on fish. Here, we describe how bluegill sunfish use more energy and are destabilized more often in flow with strong streamwise vorticity. The vortices were created inside a sealed flow tank by an array of four turbines with similar diameter to the experimental fish. We measured oxygen consumption for seven sunfish swimming at 1.5 body lengths (BL) s(-1) with the turbines rotating at 2 Hz and with the turbines off (control). Simultaneously, we filmed the fish ventrally and recorded the fraction of time spent maneuvering side-to-side and accelerating forward. Separately, we also recorded lateral and ventral video for a combination of swimming speeds (0.5, 1.5 and 2.5 BL s(-1)) and turbine speeds (0, 1, 2 and 3 Hz), immediately after turning the turbines on and 10 min later to test for accommodation. Bluegill sunfish are negatively affected by streamwise vorticity. Spills (loss of heading), maneuvers and accelerations were more frequent when the turbines were on than in the control treatment. These unsteady behaviors, particularly acceleration, correlated with an increase in oxygen consumption in the vortex flow. Bluegill sunfish are generally fast to recover from roll perturbations and do so by moving their pectoral fins. The frequency of spills decreased after the turbines had run for 10 min, but was still markedly higher than in the control, showing that fish partially adapt to streamwise vorticity, but not completely. Coping with streamwise vorticity may be an important energetic

  19. Thermodynamics of vortices in disordered superconductors

    International Nuclear Information System (INIS)

    Van der Beek, Cornelis Jacominus

    2009-01-01

    The emergence of the High Temperature Superconductors (HTSC) has not only profoundly affected solid state physics, it has also provoked a revolution in the understanding of the behaviour of quantified vortex lines that traverse the superconducting material when this is placed in a magnetic field. Owing to the conspiracy of extreme parameter values characterizing High Temperature Superconductors, all physical properties of flux vortices, their dynamics, and their phase diagram in the (B,T) plane could now be studied in hitherto inaccessible detail. Thus, it was established that the true phase transition to the superconducting state occurs nt at the upper critical field Bc2, but at the melting transition of the vortex ensemble. In disordered superconductors, an entirely new phenomenology, linked to flux line pinning by material defects, appeared. New thermodynamic vortex phases have been postulated, and sometimes found. The aim of this document is to take a critical look at the mechanism leading to the melting transition of the vortex ensemble in HTSC, as well as at the role played by material disorder on vortex physics. First and foremost, the materials under study are characterized. that is, not only are their fundamental parameters such as the critical temperature, critical fields, and penetration depth established, but also their purity and the nature of the disorder they contain. In this, the present work finds all its meaning in having been performed at the Laboratoire des Solides Irradies, whose primary goal is to investigate the role of material disorder introduced by irradiation on materials and physics. We then study the vortex melting transition in Bi 2 Sr 2 CaCu 2 O 8 by a method that is peculiar to layered superconductors: the Josephson Plasma Resonance. This technique will allow us to evaluate the average thermal displacements of the vortex lines in the vicinity of the transition, in as-grown as well as in irradiated crystals. The role of crystalline

  20. A Family of Vortices to Study Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    A new analytic model describing a family of vortices has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. The family of vortices incorporates a wide range of prescribed initial vorticity distributions -- including single or dual-core vorticity distributions. The result is analytical solutions for the vorticity and velocities for each member of the family of vortices. This model is of sufficient generality to further illustrate the dependence of vortex reconnection and breakdown on initial vorticity distribution as was suggested by earlier analytical work. This family of vortices, though laminar in nature, is anticipated to provide valuable insight into the vortical evolution of large-scale rotor and propeller wakes.

  1. Efficient collective swimming by harnessing vortices through deep reinforcement learning.

    Science.gov (United States)

    Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros

    2018-06-05

    Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.

  2. Vorticity and divergence in the high-latitude upper thermosphere

    International Nuclear Information System (INIS)

    Thayer, J.P.; Killeen, T.L.

    1991-01-01

    Measurements made from the Dynamics Explorer-2 satellite in November 1981 through January 1982 and November 1982 through January 1983 have been analyzed to determine the divergence and vertical component of vorticity of the high-latitude neutral wind field in the upper thermosphere for quiet (kp≤6) geomagnetic conditions and for both northern (winter) and southern (summer) hemispheres in the polar thermosphere and provides insight into the relative strengths of the different sources of momentum and energy responsible for driving the winds. The principal findings from this work include the following: The mean neutral wind pattern is dominated by rotational flow rather than by divergent flow, with a typical vorticity: divergence ratio of ∼ 2:1 for active conditions and ∼ 4:1 for quiet conditions. Comparison of the divergence and vorticity patterns for quiet and active conditions indicates that the divergent component of the neutral flow intensifies more significantly with increasing geomagnetic activity than does the rotational component

  3. Vortices and domain walls: 'Wormholes' in unconventional superconductors

    International Nuclear Information System (INIS)

    Bessarab, P F; Radievsky, A V

    2010-01-01

    In the framework of the 2D and 3D time-dependent Ginzburg-Landau model we study superconductors with multicomponent order parameter (d-pairing). We argue that topological defects inside the sample do affect its thermodynamic properties such as hysteresis loop, susceptibility, etc. Along with earlier known topological defects such as Abrikosov vortices, domain walls (DWs) which separate different magnetic phases and even vortices inside the DW, we found an interesting combination of DWs and vortices. Namely we show that equivalent magnetic phases may be linked together with a vortex going through the other magnetic phase. This configuration may correspond to a stable state even in a zero external magnetic field. We also mention that this configuration is topologically similar to the 'wormholes' in the quantum gravity.

  4. 4D-flat compactifications with brane vorticities

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Rubakov, V.

    2004-07-01

    We present solutions in six-dimensional gravity coupled to a sigma model, in the presence of three-brane sources. The space transverse to the branes is a compact non-singular manifold. The example of O(3) sigma model in the presence of two three-branes is worked out in detail. We show that the four-dimensional flatness is obtained with a single condition involving the brane tensions, which are in general different and may be both positive, and another characteristic of the branes, vorticity. We speculate that the adjustment of the effective four- dimensional cosmological constant may occur through the exchange of vorticity between the branes. We then give exact instanton type solutions for sigma models targeted on a general Kaehler manifold, and elaborate in this framework on multi-instantons of the O(3) sigma model. The latter have branes, possibly with vorticities, at the instanton positions, thus generalizing our two-brane solution. (author)

  5. Pair interactions of heavy vortices in quantum fluids

    Science.gov (United States)

    Pshenichnyuk, Ivan A.

    2018-02-01

    The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.

  6. Role of centre vortices in dynamical mass generation

    International Nuclear Information System (INIS)

    Leinweber, Derek B.; Bowman, Patrick O.; Heller, Urs M.; Kusterer, Daniel-Jens; Langfeld, Kurt; Williams, Anthony G.

    2006-01-01

    The mass and renormalization functions of the nonperturbative quark propagator are studied in SU(3) gauge field theory with a Symanzik-improved gluon action and the AsqTad fermion action. Centre vortices in the gauge field are identified by fixing to maximal centre gauge. The role of centre vortices in dynamical mass generation is explored by removing centre vortices from the gauge fields and studying the associated changes in the quark propagator. We find that dynamical mass generation survives in the vortex-removed SU(3) gauge field theory despite the vanishing of the string tension and suppression of the gluon propagator in the infrared suggesting the possibility of decoupling dynamical mass generation from confinement

  7. 4d-flat compactifications with brane vorticities

    International Nuclear Information System (INIS)

    Randjbar-Daemi, Seif; Rubakov, Valery

    2004-01-01

    We present solutions in six-dimensional gravity coupled to a sigma model, in the presence of three-brane sources. The space transverse to the branes is a compact non-singular manifold. The example of O(3) sigma model in the presence of two three-branes is worked out in detail. We show that the four-dimensional flatness is obtained with a single condition involving the brane tensions, which are in general different and may be both positive, and another characteristic of the branes, vorticity. We speculate that the adjustment of the effective four-dimensional cosmological constant may occur through the exchange of vorticity between the branes. We then give exact instanton type solutions for sigma models targeted on a general Kaehler manifold, and elaborate in this framework on multi-instantons of the O(3) sigma model. The latter have branes, possibly with vorticities, at the instanton positions, thus generalizing our two-brane solution. (author)

  8. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  9. Approach and separation of quantum vortices with balanced cores

    Science.gov (United States)

    Kerr, Robert M.; Rorai, C.; Skipper, J.; Sreenivasan, K. R.

    2014-11-01

    Using two innovations, smooth but different, scaling laws for the reconnection of pairs of initially orthogonal and anti-parallel quantum vortices are obtained using the three-dimensional Gross-Pitaevskii equations. For the anti-parallel case, the scaling laws just before and after reconnection obey the dimensional δ ~ | t - tr| 1 / 2 prediction with temporal symmetry about the reconnection time tr and physical space symmetry about xr, the mid-point between the vortices, with extensions forming the edges of an equilateral pyramid. For all of the orthogonal cases, before reconnection δin ~(t -tr) 1 / 3 and after reconnection δout ~(tr - t) 2 / 3 , which are respectively slower and faster than the dimensional prediction. In these cases, the reconnection takes place in a plane defined by the directions of the curvature and vorticity. Robert.Kerr@warwick.ac.uk.

  10. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhzada, Ahmad [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.

  11. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    Science.gov (United States)

    Sheikhzada, Ahmad K.

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.

  12. Voltage quantization by ballistic vortices in two-dimensional superconductors

    International Nuclear Information System (INIS)

    Orlando, T.P.; Delin, K.A.

    1991-01-01

    The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions

  13. Transverse ratchet effect and superconducting vortices: simulation and experiment

    International Nuclear Information System (INIS)

    Dinis, L; Parrondo, J M R; Perez de Lara, D; Gonzalez, E M; Vicent, J L; Anguita, J V

    2009-01-01

    A transverse ratchet effect has been measured in magnetic/superconducting hybrid films fabricated by electron beam lithography and magnetron sputtering techniques. The samples are Nb films grown on top of an array of Ni nanotriangles. Injecting an ac current parallel to the triangle reflection symmetry axis yields an output dc voltage perpendicular to the current, due to a net motion of flux vortices in the superconductor. The effect is reproduced by numerical simulations of vortices as Langevin particles with realistic parameters. Simulations provide an intuitive picture of the ratchet mechanism, revealing the fundamental role played by the random intrinsic pinning of the superconductor.

  14. Layer-Mean Quantities, Local Conservation Laws, and Vorticity

    International Nuclear Information System (INIS)

    Camassa, R.; Levermore, C.D.

    1997-01-01

    We derive local conservation laws for layer-mean quantities in two general settings. When applied to Euler flows, the first of these settings yields well-known local conservation laws for quantities averaged between material surfaces. The second, however, leads to new local conservation laws for quantities involving the vorticity that are averaged between arbitrary surfaces. These produce the crucial vorticity conservation laws in shallow water models that admit nonhydrostatic and noncolumnar motion. Moreover, they seem to lie outside the Hamiltonian paradigm of fluid dynamics. The formalism generalizes to skew-symmetric matrix fields; applications to electromagnetism are suggested. copyright 1997 The American Physical Society

  15. Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices

    KAUST Repository

    Akosa, Collins Ashu; Ndiaye, Papa Birame; Manchon, Aurelien

    2017-01-01

    We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.

  16. Interaction of ultrasound with vortices in type-II superconductors

    International Nuclear Information System (INIS)

    Sonin, E.B.

    1996-01-01

    The theory of ultrasound in the mixed state of type-II superconductors is suggested which takes into account the Magnus force on vortices, the anti-Magnus force on ions, and diamagnetism of the mixed state. The acoustic Faraday effect (rotation of polarization of the transverse ultrasonic wave propagating along vortices) is linear in the Magnus force in any regime of the flux flow for wavelengths now used in the ultrasound experiments. Therefore, in contrast to previous predictions, the Faraday effect should be looked for only in clean superconductors with a strong Magnus force. copyright 1996 The American Physical Society

  17. Unfolding of Vortices into Topological Stripes in a Multiferroic Material

    Science.gov (United States)

    Wang, X.; Mostovoy, M.; Han, M. G.; Horibe, Y.; Aoki, T.; Zhu, Y.; Cheong, S.-W.

    2014-06-01

    Multiferroic hexagonal RMnO3 (R =rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state. We discuss the analogy between this effect and the current-driven dynamics of vortices in superconductors and superfluids.

  18. Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices

    KAUST Repository

    Akosa, Collins Ashu

    2017-03-01

    We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.

  19. A (Dis)continuous finite element model for generalized 2D vorticity dynamics

    NARCIS (Netherlands)

    Bernsen, E.; Bokhove, Onno; van der Vegt, Jacobus J.W.

    2005-01-01

    A mixed continuous and discontinuous Galerkin finite element discretization is constructed for a generalized vorticity streamfunction formulation in two spatial dimensions. This formulation consists of a hyperbolic (potential) vorticity equation and a linear elliptic equation for a (transport)

  20. Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ziyang [Department of Physics, Zhejiang University, Hangzhou 310027 (China); College of Information Science and Engineering, Institute of Optics and Photonics, Huaqiao University, Xiamen, Fujian 361021 (China); Pu, Jixiong [College of Information Science and Engineering, Institute of Optics and Photonics, Huaqiao University, Xiamen, Fujian 361021 (China); Zhao, Daomu, E-mail: zhaodaomu@yahoo.com [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2011-07-25

    The properties of a pair of vortices embedded in a Gaussian beam focused by a high numerical-aperture are studied on the basis of vector Debye integral. The vortices move and rotate in the vicinity of the focal plane for a pair of vortices with equal topological charges. For incident beam with a pair of vortices with opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane. -- Highlights: → The properties of a pair of vortices focused by a high numerical-aperture are studied. → It is shown that the focusing vortices with equal topological charges move toward and rotate. → It is shown that the focusing vortices with opposite topological charges move toward each other, annihilate and revive.

  1. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  2. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  3. Numerical and Experimental Study of Electromagnetically Driven Vortical Flows

    NARCIS (Netherlands)

    Kenjeres, S.; Verdoold, J.; Tummers, M.J.; Hanjalic, K.; Kleijn, C.R.

    2009-01-01

    The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is

  4. Direct observation of rectified motion of vortices by Lorentz microscopy

    Indian Academy of Sciences (India)

    one-directional selective motion of field-gradient-driven vortices along fabricated channels. This results from ... was irradiated around etched holes to fabricate the asymmetric potential [19]. Fig- ures 1a .... The dotted line is a guide to the eye.

  5. Ionospheric travelling convection vortices observed by the Greenland magnetometer chain

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Stolle, Claudia; Friis-Christensen, Eigil

    2013-01-01

    The Greenland magnetometer array continuously provides geomagnetic variometer data since the early eighties. With the polar cusp passing over it almost every day, the array is suitable to detect ionospheric traveling convection vortices (TCVs), which were rst detected by Friis-Christensen et al...

  6. Spin motive forces due to magnetic vortices and domain walls

    NARCIS (Netherlands)

    Lucassen, M.E.; Kruis, G.C.F.L.; Lavrijsen, R.; Swagten, H.J.M.; Koopmans, B.; Duine, R.A.

    2011-01-01

    We study spin motive forces, that is, spin-dependent forces and voltages induced by time-dependent magnetization textures, for moving magnetic vortices and domain walls. First, we consider the voltage generated by a one-dimensional field-driven domain wall. Next, we perform detailed calculations on

  7. Aircraft Wake Vortices: An Annotated Bibliography (1923-1990)

    Science.gov (United States)

    1991-01-01

    leading-edge vortex when set at incidence. The engine noise was simulated by a Hartmann whistle mounted above the engine intake. The results are...Tilmann, P., "PROPAGATION OF SOUND RADIATION THROUGH VORTICES: A CONTRIBUTION TO THE THEORY OF FLOW MEASUREMENT WITH ULTRASOUND ," Report 6/1972, 1972, Max

  8. Vortices on the string and superstring world sheets

    International Nuclear Information System (INIS)

    Abrikosov, A.A.; Kogan, Ya.I.

    1989-01-01

    The world-sheet dynamics of the first quantized string propagating in non-simply connected space is considered. Presence of the vortices on the world sheet lead to Berezinsky-Kosterlitz-Thouless(BKT) phase transition. Bosonic and superstring cases are discussed. 20 refs.; 2 figs

  9. Streaming vorticity flux from oscillating walls with finite amplitude

    Science.gov (United States)

    Wu, J. Z.; Wu, X. H.; Wu, J. M.

    1993-01-01

    How to describe vorticity creation from a moving wall is a long standing problem. This paper discusses relevant issues at the fundamental level. First, it is shown that the concept of 'vorticity flux due to wall acceleration' can be best understood by following fluid particles on the wall rather than observing the flow at fixed spatial points. This is of crucial importance when the time-averaged flux is to be considered. The averaged flux has to be estimated in a wall-fixed frame of reference (in which there is no flux due to wall acceleration at all); or, if an inertial frame of reference is used, the generalized Lagrangian mean (GLM) also gives the same result. Then, for some simple but typical configurations, the time-averaged vorticity flux from a harmonically oscillating wall with finite amplitude is analyzed, without appealing to small perturbation. The main conclusion is that the wall oscillation will produce an additional mean vorticity flux (a fully nonlinear streaming effect), which is partially responsible for the mechanism of vortex flow control by waves. The results provide qualitative explanation for some experimentally and/or computationally observed phenomena.

  10. Close pairs of relative equilibria for identical point vortices

    DEFF Research Database (Denmark)

    Dirksen, Tobias; Aref, Hassan

    2011-01-01

    Numerical solution of the classical problem of relative equilibria for identical point vortices on the unbounded plane reveals configurations that are very close to the analytically known, centered, symmetrically arranged, nested equilateral triangles. New numerical solutions of this kind are fou...

  11. Self-similar motion of three point vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2010-01-01

    One of the counter-intuitive results in the three-vortex problem is that the vortices can converge on and meet at a point in a finite time for certain sets of vortex circulations and for certain initial conditions. This result was already included in Groumlbli's thesis of 1877 and has since been ...

  12. Comparing the dynamics of skyrmions and superconducting vortices

    International Nuclear Information System (INIS)

    Olson Reichhardt, C.J.; Lin, S.Z.; Ray, D.; Reichhardt, C.

    2014-01-01

    Highlights: • We describe similarities and differences between skyrmion and vortex dynamics. • The Magnus force can dramatically alter skyrmion transport. • The pinning becomes very weak when the Magnus force is strong. - Abstract: Vortices in type-II superconductors have attracted enormous attention as ideal systems in which to study nonequilibrium collective phenomena, since the self-ordering of the vortices competes with quenched disorder and thermal effects. Dynamic effects found in vortex systems include depinning, nonequilibrium phase transitions, creep, structural order–disorder transitions, and melting. Understanding vortex dynamics is also important for applications of superconductors which require the vortices either to remain pinned or to move in a controlled fashion. Recently, topological defects called skyrmions have been realized experimentally in chiral magnets. Here we highlight similarities and differences between skyrmion dynamics and vortex dynamics. Many of the previous ideas and experimental setups that have been applied to superconducting vortices can also be used to study skyrmions. We also discuss some of the differences between the two systems, such as the potentially large contribution of the Magnus force in the skyrmion system that can dramatically alter the dynamics and transport properties

  13. Magnus force on quantum Hall skyrmions and vortices

    International Nuclear Information System (INIS)

    Dhar, S.; Basu, B.; Bandyopadhyay, P.

    2003-01-01

    We have discussed here the Magnus force acting on the vortices and skyrmions in the quantum Hall systems. We have found that it is generated by the chirality of the system which is associated with the Berry phase and is same for both the cases

  14. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    Science.gov (United States)

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  15. Numerical investigation of Dean vortices in a curved pipe

    Science.gov (United States)

    Bernad, S. I.; Totorean, A.; Bosioc, A.; Stanciu, R.; Bernad, E. S.

    2013-10-01

    This study is devoted to the three-dimensional numerical simulation of developing secondary flows of Newtonian fluid through a curved circular duct. The numerical simulations produced for different Dean numbers show clearly the presence of two steady Dean vortices. Therefore, results confirm that helical flow constitutes an important flow signature in vessels, and its strength as a fluid dynamic index.

  16. Lagrangian investigations of vorticity dynamics in compressible turbulence

    Science.gov (United States)

    Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji

    2017-10-01

    In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.

  17. Internal and vorticity waves in decaying stratified flows

    Science.gov (United States)

    Matulka, A.; Cano, D.

    2009-04-01

    Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.

  18. On the evolution of vortices in massive protoplanetary discs

    Science.gov (United States)

    Pierens, Arnaud; Lin, Min-Kai

    2018-05-01

    It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.

  19. Numerical analysis of propeller induced ground vortices by actuator disk model

    NARCIS (Netherlands)

    Yang, Y.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the

  20. Spatial-temporal and modal analysis of propeller induced ground vortices by particle image velocimetry

    NARCIS (Netherlands)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    During the ground operation of aircraft, there is potentially a system of vortices generated from the ground toward the propulsor, commonly denoted as ground vortices. Although extensive research has been conducted on ground vortices induced by turbofans which were simplified by suction tubes, these

  1. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    Science.gov (United States)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus

  2. Motions of quantized vortices attached to a boundary in alternating currents of superfluid 4He

    International Nuclear Information System (INIS)

    Yano, H.; Hashimoto, N.; Handa, A.; Obara, K.; Ishikawa, O.; Hata, T.; Nakagawa, M.

    2007-01-01

    The motions of superfluid vortices attached to a boundary are investigated in alternating currents by using a vibrating wire. The attached vortices appear to form a layer on the wire and enhance the mass of the wire, even for low velocity currents. In turbulence, chaotic motions of vortices such as entanglement and reconnection reduce the thickness of the layer in spite of the fact that the vortices unstably expand. When turbulence subsides, the attached vortices appear to shrink, with the degree of shrinking influenced by thermal excitations in the superfluid

  3. Interlayer vortices and edge dislocations in high-temperature superconductors

    International Nuclear Information System (INIS)

    Kuklov, A.B.; Krakovsky, A.; Birman, J.L.

    1995-01-01

    The interaction of an edge dislocation made of half the superconducting plane with a magnetic interlayer vortex is considered within the framework of the Lawrence-Doniach model with negative as well as positive Josephson interlayer coupling. In the first case the binding energy of the vortex and the dislocation has been calculated by employing a variational procedure. The current distribution around the bound vortex turns out to be asymmetric. In the second case the dislocation carries a spontaneous magnetic half vortex, whose binding energy with the dislocation turns out to be infinite. The half-vortex energy has been calculated by the same variational procedure. Implications of the possible presence of such half vortices for the properties of high-temperature sueprconductors are discussed. We suggest employing artificially made superconductor-ferromagnet superlattices with the half plane removed to observe fractional vortices

  4. Helicity conservation and twisted Seifert surfaces for superfluid vortices.

    Science.gov (United States)

    Salman, Hayder

    2017-04-01

    Starting from the continuum definition of helicity, we derive from first principles its different contributions for superfluid vortices. Our analysis shows that an internal twist contribution emerges naturally from the mathematical derivation. This reveals that the spanwise vector that is used to characterize the twist contribution must point in the direction of a surface of constant velocity potential. An immediate consequence of the Seifert framing is that the continuum definition of helicity for a superfluid is trivially zero at all times. It follows that the Gauss-linking number is a more appropriate definition of helicity for superfluids. Despite this, we explain how a quasi-classical limit can arise in a superfluid in which the continuum definition for helicity can be used. This provides a clear connection between a microscopic and a macroscopic description of a superfluid as provided by the Hall-Vinen-Bekarevich-Khalatnikov equations. This leads to consistency with the definition of helicity used for classical vortices.

  5. Mass deformed world-sheet action of semi local vortices

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunguo [School of Space Science and Physics, Shandong University at Weihai,264209 Weihai (China); Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment,264209 Weihai (China)

    2014-02-10

    The mass deformed effective world-sheet theory of semi local vortices was constructed via the field theoretical method. By Euler-Lagrangian equations, the Ansatze for both the gauge field and the adjoint scalar were solved, this ensures that zero modes of vortices are minimal excitations of the system. Up to the 1/g{sup 2} order, all profiles are solved. The mass deformed effective action was obtained by integrating out the transverse plane of the vortex string. The effective theory interpolates between the local vortex and the lump. Respecting certain normalization conditions, the effective theory shows a Seiberg-like duality, which agrees with the result of the Kähler quotient construction.

  6. Generation of optical vortices with an adaptive helical mirror.

    Science.gov (United States)

    Ghai, Devinder Pal

    2011-04-01

    Generation of optical vortices using a new design of adaptive helical mirror (AHM) is reported. The new AHM is a reflective device that can generate an optical vortex of any desired topological charge, both positive and negative, within its breakdown limits. The most fascinating feature of the AHM is that the topological charge of the optical vortex generated with it can be changed in real time by varying the excitation voltage. Generation of optical vortices up to topological charge 4 has been demonstrated. The presence of a vortex in the optical field generated with the AHM is confirmed by producing both fork and spiral fringes in an interferometric setup. Various design improvements to further enhance the performance of the reported AHM are discussed. Some of the important applications of AHM are also listed. © 2011 Optical Society of America

  7. Three dimensional vortices and interfaces in Hele-Shaw cells

    International Nuclear Information System (INIS)

    Pumir, A.

    1987-06-01

    A model of nonviscous flow, based on the Biot-Savart equations is used to examine the existence of singularities in three dimensional, incompressible, hydrodynamic equations. The results suggest a fairly simple physical mechanism, which could lead to the formation of singularities in the nonviscous case: two vortex tubes with opposite circulations pair up and stretch each other, until the radii of the vortex cores become extremely small, causing a divergence of the vorticity. The cases of a perfect and a slightly viscous fluid are considered. The results are unclear as to whether the vorticity of a slightly viscous fluid can become infinite or not, and whether singularities exist. The dynamics of hydrodynamic interfaces are also investigated. The propagation of bubbles in a slightly viscous fluid, in a Hele-Shaw cell are described [fr

  8. Dynamics of vortices in planar and tubular microstructured superconductors

    International Nuclear Information System (INIS)

    Fomin, V. M.

    2011-01-01

    Full text: Nucleation and denucleation of vortices as well as their guided motion between antidots are key issues to design methods for controlling the vortex manipulation in micro patterned thin films and self-assembled micro tubes. The vortex dynamics in micro structured superconductors is modelled using an adaptive numerical approach on the basis of the time dependent Ginzburg-Landau equations. Evolution of the order parameter and the current density is analyzed for superconducting YBCO films with different patterns of antidots. The resulting picture of the accumulated vortex trajectories clearly reveals a guided motion between the antidots. Dynamics of correlated vortices in superconductor tubes in a magnetic field, which is perpendicular to their axes, is governed by the curvature. I acknowledge fruitful collaboration with R. Woerdenweber and O. G. Schmidt. (author)

  9. Vortices in superconducting films: Statistics and fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Dziarmaga, J.

    1996-01-01

    We present a derivation of the Berry phase picked up during exchange of parallel vortices. This derivation is based on the Bogolubov endash de Gennes formalism. The origin of the Magnus force is also critically reanalyzed. The Magnus force can be interpreted as an interaction with the effective magnetic field. The effective magnetic field may be even of the order 10 6 T/A. We discuss a possibility of the fractional quantum Hall effect (FQHE) in vortex systems. As the real magnetic field is varied to drive changes in vortex density, the vortex density will prefer to stay at some quantized values. The mere existence of the FQHE does not depend on vortex quantum statistics, although the pattern of the plateaux does. We also discuss how the density of anyonic vortices can lower the effective strengh of the Magnus force, what might be observable in measurements of Hall resistivity. copyright 1996 The American Physical Society

  10. Vortices and quark confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1976-01-01

    Non-Abelian vortices of the type proposed by Nielsen and Olesen are discussed. It is shown that the vortices must contain a single unit of quantized flux absorbed by a Dirac monopole at each end. The monopoles satisfy a confinement condition; if quark numbers are assigned to the monopoles, is is found that the model contains a natural explanation of quark confinement. The I-spin variables associated with the non-Abelian gauge field correspond to the colour degree freedom. An alternative model in which (colour) charges and monopoles are interchanged is also suggested. The Higgs field which breaks the degeneracy of the vacuum is replaced by an operator which creates monopoles of the type suggested by 't Hooft. In such a model colour might be confined. The investigations are at a very preliminary stage, but the model appears to offer a natural explanation of confinement without the explicit introduction of monopole fields. (Auth.)

  11. Neutrino induced vorticity, Alfven waves and the normal modes

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Jitesh R. [Theory Division, Physical Research Laboratory, Ahmedabad (India); George, Manu [Theory Division, Physical Research Laboratory, Ahmedabad (India); Indian Institute of Technology, Department of Physics, Ahmedabad (India)

    2017-08-15

    We consider a plasma consisting of electrons and ions in the presence of a background neutrino gas and develop the magnetohydrodynamic equations for the system. We show that the electron neutrino interaction can induce vorticity in the plasma even in the absence of any electromagnetic perturbations if the background neutrino density is left-right asymmetric. This induced vorticity supports a new kind of Alfven wave whose velocity depends on both the external magnetic field and on the neutrino asymmetry. The normal mode analysis show that in the presence of neutrino background the Alfven waves can have different velocities. We also discuss our results in the context of dense astrophysical plasma such as magnetars and show that the difference in the Alfven velocities can be used to explain the observed pulsar kick. We discuss also the relativistic generalisation of the electron fluid in presence of an asymmetric neutrino background. (orig.)

  12. Electron acoustic vortices in the presence of inhomogeneous current

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Q; Masood, W; Saleem, H [Theoretical Plasma Physics Division, PINSTECH, P O Nilore, Islamabad (Pakistan)], E-mail: qamar@pinstech.org.pk

    2008-03-15

    Linear and nonlinear dynamics of an electron acoustic wave in an inhomogeneous magnetized plasma are studied in the presence of non-uniform background current. The modified Rayleigh instability condition is found due to shear in the magnetic field and the current. A nonlinear stationary solution is also obtained in the form of tripolar vortices. The relevance of the present study to auroral and magnetotail plasmas is pointed out.

  13. Nonlinear magnetic electron tripolar vortices in streaming plasmas.

    Science.gov (United States)

    Vranjes, J; Marić, G; Shukla, P K

    2000-06-01

    Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with characteristic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized plasma) or self-generated (for the unmagnetized plasma case) magnetic field, and the temperature, are solved in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.

  14. EFT for vortices with dilaton-dependent localized flux

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [Physics & Astronomy, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5 (Canada); Division PH -TH, CERN, CH-1211, Genève 23 (Switzerland); Diener, Ross [Physics & Astronomy, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5 (Canada); Williams, M. [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, B-3001 Leuven (Belgium)

    2015-11-09

    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical ‘fat brane’ solution, and in the effective theory of ‘point branes’ appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper http://arxiv.org/abs/1506.08095 to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and whether) the vortex causes supersymmetry to break in the bulk. We track how both tension and localized flux determine the curvature of the space-filling dimensions. Our calculations provide the tools required for computing how scale-breaking vortex interactions can stabilize the extra-dimensional size by lifting the dilaton’s flat direction. For small vortices we derive a simple relation between the near-vortex boundary conditions of bulk fields as a function of the tension and localized flux in the vortex action that provides the most efficient means for calculating how physical vortices mutually interact without requiring a complete construction of their internal structure. In passing we show why a common procedure for doing so using a δ-function can lead to incorrect results. Our procedures generalize straightforwardly to general co-dimension objects.

  15. Coherent structures amidst chaos: Solitons, fronts, and vortices

    International Nuclear Information System (INIS)

    Campbell, D.K.

    1996-01-01

    I introduce the concept of open-quote open-quote coherent structures close-quote close-quote emdash localized, persistent, propagating nonlinear waves emdash and argue that they are ubiquitous in spatially extended nonlinear systems. I discuss various specific forms of coherent structures emdash solitons, wave fronts, vortices emdash and illustrate how they arise in physics, chemistry, biology, and physiology. copyright 1996 American Institute of Physics

  16. EFT for vortices with dilaton-dependent localized flux

    International Nuclear Information System (INIS)

    Burgess, C.P.; Diener, Ross; Williams, M.

    2015-01-01

    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical ‘fat brane’ solution, and in the effective theory of ‘point branes’ appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper http://arxiv.org/abs/1506.08095 to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and whether) the vortex causes supersymmetry to break in the bulk. We track how both tension and localized flux determine the curvature of the space-filling dimensions. Our calculations provide the tools required for computing how scale-breaking vortex interactions can stabilize the extra-dimensional size by lifting the dilaton’s flat direction. For small vortices we derive a simple relation between the near-vortex boundary conditions of bulk fields as a function of the tension and localized flux in the vortex action that provides the most efficient means for calculating how physical vortices mutually interact without requiring a complete construction of their internal structure. In passing we show why a common procedure for doing so using a δ-function can lead to incorrect results. Our procedures generalize straightforwardly to general co-dimension objects.

  17. Theory and simulations of electron vortices generated by magnetic pushing

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, A. S.; Angus, J. R.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Ottinger, P. F. [An Independent Consultant through ENGILITY, Chantilly, Virginia 20151 (United States)

    2013-08-15

    Vortex formation and propagation are observed in kinetic particle-in-cell (PIC) simulations of magnetic pushing in the plasma opening switch. These vortices are studied here within the electron-magnetohydrodynamic (EMHD) approximation using detailed analytical modeling. PIC simulations of these vortices have also been performed. Strong v×B forces in the vortices give rise to significant charge separation, which necessitates the use of the EMHD approximation in which ions are fixed and the electrons are treated as a fluid. A semi-analytic model of the vortex structure is derived, and then used as an initial condition for PIC simulations. Density-gradient-dependent vortex propagation is then examined using a series of PIC simulations. It is found that the vortex propagation speed is proportional to the Hall speed v{sub Hall}≡cB{sub 0}/4πn{sub e}eL{sub n}. When ions are allowed to move, PIC simulations show that the electric field in the vortex can accelerate plasma ions, which leads to dissipation of the vortex. This electric field contributes to the separation of ion species that has been observed to occur in pulsed-power experiments with a plasma-opening switch.

  18. Jovian Vortices and Barges: HST observations 1994-1998

    Science.gov (United States)

    Morales, R.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.

    2000-10-01

    We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 to study the zonal and meridional distributions, long-term motions, lifetimes, interactions and other properties of the vortices larger than 2 degrees. The latitude range covered spans from +75 to -75 degrees. High-resolution images obtained with the 890nm, 410nm and 953nm wavelength filters allowed us to make a morphological classification based on their appearance in each filter. The vortices are anticyclones, and their long-term motions have been completed with ground-based images and are compared to the mean Jovian zonal wind profile. Significant differences are found between the vortex velocities and the mean zonal winds. Some vortices exhibited important drift changes in short period times. We analyze a possible correlation between their size and zonal wind velocity. On the other hand, the "barges" lie in the cyclone domains of the wind-profile and have been identified in several latitudes. Their latitudinal size is similar in all of them (typically 1.6 degrees) but their longitudinal size ranges from 1 to 32 degrees. We discuss the temporal evolution of some of these cyclonic regions. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." RM acknowledges a fellowship from Universidad Pais Vasco.

  19. Reconstruction of propagating Kelvin-Helmholtz vortices at Mercury's magnetopause

    Science.gov (United States)

    Sundberg, Torbjörn; Boardsen, Scott A.; Slavin, James A.; Blomberg, Lars G.; Cumnock, Judy A.; Solomon, Sean C.; Anderson, Brian J.; Korth, Haje

    2011-12-01

    A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin-Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER's rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft's magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.

  20. Extreme-Ultraviolet Vortices from a Free-Electron Laser

    Directory of Open Access Journals (Sweden)

    Primož Rebernik Ribič

    2017-08-01

    Full Text Available Extreme-ultraviolet vortices may be exploited to steer the magnetic properties of nanoparticles, increase the resolution in microscopy, and gain insight into local symmetry and chirality of a material; they might even be used to increase the bandwidth in long-distance space communications. However, in contrast to the generation of vortex beams in the infrared and visible spectral regions, production of intense, extreme-ultraviolet and x-ray optical vortices still remains a challenge. Here, we present an in-situ and an ex-situ technique for generating intense, femtosecond, coherent optical vortices at a free-electron laser in the extreme ultraviolet. The first method takes advantage of nonlinear harmonic generation in a helical undulator, producing vortex beams at the second harmonic without the need for additional optical elements, while the latter one relies on the use of a spiral zone plate to generate a focused, micron-size optical vortex with a peak intensity approaching 10^{14}  W/cm^{2}, paving the way to nonlinear optical experiments with vortex beams at short wavelengths.

  1. Helicity and potential vorticity in the surface boundary layer turbulence

    Science.gov (United States)

    Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor

    2016-04-01

    An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).

  2. Machine learning vortices at the Kosterlitz-Thouless transition

    Science.gov (United States)

    Beach, Matthew J. S.; Golubeva, Anna; Melko, Roger G.

    2018-01-01

    Efficient and automated classification of phases from minimally processed data is one goal of machine learning in condensed-matter and statistical physics. Supervised algorithms trained on raw samples of microstates can successfully detect conventional phase transitions via learning a bulk feature such as an order parameter. In this paper, we investigate whether neural networks can learn to classify phases based on topological defects. We address this question on the two-dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We find significant feature engineering of the raw spin states is required to convincingly claim that features of the vortex configurations are responsible for learning the transition temperature. We further show a single-layer network does not correctly classify the phases of the XY model, while a convolutional network easily performs classification by learning the global magnetization. Finally, we design a deep network capable of learning vortices without feature engineering. We demonstrate the detection of vortices does not necessarily result in the best classification accuracy, especially for lattices of less than approximately 1000 spins. For larger systems, it remains a difficult task to learn vortices.

  3. Generation of optical vortices in an integrated optical circuit

    Science.gov (United States)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  4. The impact of intraglottal vortices on vocal fold dynamics

    Science.gov (United States)

    Erath, Byron; Pirnia, Alireza; Peterson, Sean

    2016-11-01

    During voiced speech a critical pressure is produced in the lungs that separates the vocal folds and creates a passage (the glottis) for airflow. As air passes through the vocal folds the resulting aerodynamic loading, coupled with the tissue properties of the vocal folds, produces self-sustained oscillations. Throughout each cycle a complex flow field develops, characterized by a plethora of viscous flow phenomena. Air passing through the glottis creates a jet, with periodically-shed vortices developing due to flow separation and the Kelvin-Helmholtz instability in the shear layer. These vortices have been hypothesized to be a crucial mechanism for producing vocal fold vibrations. In this study the effect of vortices on the vocal fold dynamics is investigated experimentally by passing a vortex ring over a flexible beam with the same non-dimensional mechanical properties as the vocal folds. Synchronized particle image velocimetry data are acquired in tandem with the beam dynamics. The resulting impact of the vortex ring loading on vocal fold dynamics is discussed in detail. This work was supported by the National Science Foundation Grant CBET #1511761.

  5. Lagrangian structures in time-periodic vortical flows

    Directory of Open Access Journals (Sweden)

    S. V. Kostrykin

    2006-01-01

    Full Text Available The Lagrangian trajectories of fluid particles are experimentally studied in an oscillating four-vortex velocity field. The oscillations occur due to a loss of stability of a steady flow and result in a regular reclosure of streamlines between the vortices of the same sign. The Eulerian velocity field is visualized by tracer displacements over a short time period. The obtained data on tracer motions during a number of oscillation periods show that the Lagrangian trajectories form quasi-regular structures. The destruction of these structures is determined by two characteristic time scales: the tracers are redistributed sufficiently fast between the vortices of the same sign and much more slowly transported into the vortices of opposite sign. The observed behavior of the Lagrangian trajectories is quantitatively reproduced in a new numerical experiment with two-dimensional model of the velocity field with a small number of spatial harmonics. A qualitative interpretation of phenomena observed on the basis of the theory of adiabatic chaos in the Hamiltonian systems is given. The Lagrangian trajectories are numerically simulated under varying flow parameters. It is shown that the spatial-temporal characteristics of the Lagrangian structures depend on the properties of temporal change in the streamlines topology and on the adiabatic parameter corresponding to the flow. The condition for the occurrence of traps (the regions where the Lagrangian particles reside for a long time is obtained.

  6. MMS Observations of Vorticity Near Sites of Magnetic Reconnection

    Science.gov (United States)

    Paterson, W. R.; Giles, B. L.; Avanov, L. A.; Boardsen, S. A.; Dorelli, J.; Gershman, D. J.; Mackler, D. A.; Moore, T. E.; Pollock, C. J.; Schiff, C.; Shuster, J. R.; Viñas, A. F.; Russell, C. T.; Strangeway, R. J.; Burch, J. L.; Torbert, R. B.

    2017-12-01

    With highly capable plasma instruments on four spacecraft flown in tetrahedral formation, it is possible for MMS investigators to approximate spatial derivatives of the plasma parameters observed. Here, we examine vorticity of the electron and ion components of the plasma computed from the curl of velocity as measured by the Fast Plasma Investigation (FPI). Vorticity of magnetospheric plasma has not previously been studied on scales of tens-of-km to less than 10 km, which are the typical inter-spacecraft separations for MMS. Nor has it been explored on time scales of 30 ms for electrons and 150 ms for ions, which are the burst data rates for the FPI spectrometers. Review of observations from the magnetopause and magnetotail phases of the mission finds increases in vorticity associated with near encounters with the electron diffusion region, with nearby regions of measurable current, and with elevated electron and ion temperatures. These are suggestive of a possible role for turbulence in magnetic reconnection. In this presentation we provide an assessment of the quality of these measurements and discuss their potential significance.

  7. A study of vorticity formation in high energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Becattini, F. [Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto F.no (Firenze) (Italy); INFN, Sezione di Firenze, Sesto F.no (Firenze) (Italy); Inghirami, G. [Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto F.no (Firenze) (Italy); Johann Wolfgang Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany); Rolando, V.; Pagliara, G. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); INFN, Sezione di Ferrara, Ferrara (Italy); Beraudo, A.; De Pace, A.; Nardi, M. [INFN, Sezione di Torino, Turin (Italy); Del Zanna, L. [Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto F.no (Firenze) (Italy); INFN, Sezione di Firenze, Sesto F.no (Firenze) (Italy); INAF, Osservatorio Astrofisico di Arcetri, Florence (Italy); Chandra, V. [Indian Institute of Technology Gandhinagar, Ahmedabad, Gujrat (India)

    2015-09-15

    We present a quantitative study of vorticity formation in peripheral ultrarelativistic heavy-ion collisions at √(s{sub NN}) = 200 GeV by using the ECHO-QGP numerical code, implementing relativistic dissipative hydrodynamics in the causal Israel-Stewart framework in 3 + 1 dimensions with an initial Bjorken flow profile. We consider different definitions of vorticity which are relevant in relativistic hydrodynamics. After demonstrating the excellent capabilities of our code, which proves to be able to reproduce Gubser flow up to 8 fm/c, we show that, with the initial conditions needed to reproduce the measured directed flow in peripheral collisions corresponding to an average impact parameter b = 11.6 fm and with the Bjorken flow profile for a viscous Quark Gluon Plasma with η/s = 0.1 fixed, a vorticity of the order of some 10{sup -2} c/fm can develop at freeze-out. The ensuing polarization of Λ baryons does not exceed 1.4 % at midrapidity. We show that the amount of developed directed flow is sensitive to both the initial angular momentum of the plasma and its viscosity. (orig.)

  8. STRUCTURES OF TURBULENT VORTICES AND THEIR INFLUENCE ON FLOW PROPERTIES

    Directory of Open Access Journals (Sweden)

    Alfonsas Rimkus

    2015-03-01

    Full Text Available In spite of the many investigations that have been conducted on turbulent flows, the generation and development of turbulent vortices has not been investigated sufficiently yet. This prevents to understand well the processes involved in the flow. That is unfavorable for the further investigations. The developing vortex structures are interacting, and this needs to be estimated. Physical summing of velocities, formed by all structures, can be unfavorable for investigations, therefore they must be separated; otherwise bias errors can occur. The difficulty for investigations is that the widely employed Particle Image Velocity (PIV method, when a detailed picture of velocity field picture is necessary, can provide photos covering only a short interval of flow, which can’t include the largest flow structures, i.e. macro whirlpools. Consequently, action of these structures could not be investigated. Therefore, in this study it is tried to obtain the necessary data about the flow structure by analyzing the instantaneous velocity measurements by 3D means, which lasts for several minutes, therefore the existence and interaction of these structures become visible in measurement data. The investigations conducted in this way have been already discussed in the article, published earlier. Mostly the generation and development of bottom vortices was analyzed. In this article, the analysis of these turbulent velocity measurements is continued and the additional data about the structure of turbulent vortices is obtained.

  9. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    Science.gov (United States)

    Basu, Saikat

    The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the

  10. Flow structure and vorticity transport on a plunging wing

    Science.gov (United States)

    Eslam Panah, Azar

    The structure and dynamics of the flow field created by a plunging flat plate airfoil are investigated at a chord Reynolds number of 10,000 while varying plunge amplitude and Strouhal number. Digital particle image velocimetry measurements are used to characterize the shedding patterns and the interactions between the leading and trailing edge vortex structures (LEV and TEV), resulting in the development of a wake classification system based on the nature and timing of interactions between the leading- and trailing-edge vortices. The convection speed of the LEV and its resulting interaction with the TEV is primarily dependent on reduced frequency; however, at Strouhal numbers above approximately 0.4, a significant influence of Strouhal number (or plunge amplitude) is observed in which LEV convection is retarded, and the contribution of the LEV to the wake is diminished. It is shown that this effect is caused by an enhanced interaction between the LEV and the airfoil surface, due to a significant increase in the strength of the vortices in this Strouhal number range, for all plunge amplitudes investigated. Comparison with low-Reynolds-number studies of plunging airfoil aerodynamics reveals a high degree of consistency and suggests applicability of the classification system beyond the range examined in the present work. Some important differences are also observed. The three-dimensional flow field was characterized for a plunging two-dimensional flat-plate airfoil using three-dimensional reconstructions of planar PIV data. Whereas the phase-averaged description of the flow field shows the secondary vortex penetrating the leading-edge shear layer to terminate LEV formation on the airfoil, time-resolved, instantaneous PIV measurements show a continuous and growing entrainment of secondary vorticity into the shear layer and LEV. A planar control volume analysis on the airfoil indicated that the generation of secondary vorticity produced approximately one half the

  11. An experimental investigation of wind pressures on square pillars in tornado-like vortices

    International Nuclear Information System (INIS)

    Iwatani, Yoshiharu; Maruta, Eizou; Kanda, Makoto; Hattori, Yousuke; Hamano, Naoki; Matsuura, Takeshi

    1992-01-01

    This report describes a laboratory simulation of tornado-like vortices and laboratory measurements of steady wind loads on model structures in tornado-like vortices. The variations of wind direction and wind speed of tornado-like vortices and ground surface pressure under tornado-like vortices with the swirl ratio, Reynolds number and the surface roughness were investigated. Wind pressure distributions on square pillars were measured in tornado-like vortices. It was observed in the experiment that the negative pressures on the roof faces of square pillars were high and distributed rather uniformly but these on the side faces differed greatly from place to place and locally became high. The high pressure regions on the side faces were close to ground surface in the case where the model structures stood in the center of tornado-like vortex, and became higher as the increase of distance between the model structures and the center of tornado-like vortices. (author)

  12. Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2008-12-01

    Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.

  13. Fast Trailed Vorticity Modeling for Wind Turbine Aerodynamics and its Influence on Aeroelastic Stability

    DEFF Research Database (Denmark)

    Pirrung, Georg

    In this work, an aerodynamic model for the use in aeroelastic wind turbine codes is presented. It consists of a simplified lifting line model covering the induction due to the trailed vorticity in the near wake, a 2D shed vorticity model and a far wake model using the well known blade element...... to earlier implementations, the model has been improved in several ways: Among other things, the need for model-specific user input has been removed, the effect of downwind convection of the trailed vorticity is modeled, the near wake induction is iterated to stabilize the computations and the numerical......-of-plane vibrations agrees much better with high fidelity models. Further, the trailed vorticity effects on the aerodynamic work are found to be of the same order of magnitude as the shed vorticity effects. The trailed vorticity effects are, however, mainly important close to the tip in the investigated cases, which...

  14. Error Propagation dynamics: from PIV-based pressure reconstruction to vorticity field calculation

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Richards, Geordie; Truscott, Tadd; USU Team; BYU Team

    2017-11-01

    Noninvasive data from velocimetry experiments (e.g., PIV) have been used to calculate vorticity and pressure fields. However, the noise, error, or uncertainties in the PIV measurements would eventually propagate to the calculated pressure or vorticity field through reconstruction schemes. Despite the vast applications of pressure and/or vorticity field calculated from PIV measurements, studies on the error propagation from the velocity field to the reconstructed fields (PIV-pressure and PIV-vorticity are few. In the current study, we break down the inherent connections between PIV-based pressure reconstruction and PIV-based vorticity calculation. The similar error propagation dynamics, which involve competition between physical properties of the flow and numerical errors from reconstruction schemes, are found in both PIV-pressure and PIV-vorticity reconstructions.

  15. A numerical study of the stabilitiy of helical vortices using vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Walther, J H [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Guenot, M [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Machefaux, E [Enginering College in Industrial Systems, FR-17041, La Rochelle (France); Rasmussen, J T [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Chatelain, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Okulov, V L [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Soerensen, J N [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Bergdorf, M [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland); Koumoutsakos, P [Computational Laboratory, ETH Zurich, CH-8092 Zurich (Switzerland)

    2007-07-15

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity.

  16. A numerical study of the stabilitiy of helical vortices using vortex methods

    International Nuclear Information System (INIS)

    Walther, J H; Guenot, M; Machefaux, E; Rasmussen, J T; Chatelain, P; Okulov, V L; Soerensen, J N; Bergdorf, M; Koumoutsakos, P

    2007-01-01

    We present large-scale parallel direct numerical simulations using particle vortex methods of the instability of the helical vortices. We study the instability of a single helical vortex and find good agreement with inviscid theory. We outline equilibrium configurations for three double helical vortices-similar to those produced by three blade wind turbines. The simulations confirm the stability of the inviscid model, but predict a breakdown of the vortical system due to viscosity

  17. The Interaction of Two Surface Vortices Near a Topographic Slope in a Stratified Ocean

    Directory of Open Access Journals (Sweden)

    Charly de Marez

    2017-10-01

    Full Text Available We study the influence of bottom topography on the interaction of two identical vortices in a two-layer, quasi-geostrophic model. The two vortices have piecewise-uniform potential vorticity and are lying in the upper layer of the model. The topography is a smooth bottom slope. For two cyclones, topography modifies the merger critical distance and the merger efficiency: the topographic wave and vortices can advect the two cyclones along the shelf when they are initially far from it or towards the shelf when they are initially closer to it. They can also advect the two cyclones towards each other and thus favour merger. The cyclones deform, and the potential vorticity field undergoes filamentation. Regimes of partial vortex merger or of vortex splitting are then observed. The interaction of the vorticity poles in the two layers are analysed to explain the evolution of the two upper layer cyclones. For taller topography, two new regimes appear: vortex drift and splitting; and filamentation and asymmetric merger. They are due to the hetonic coupling of lower layer vorticity with the upper layer vortices (a heton is a baroclinic vortex dipole, carrying heat and momentum and propagating horizontally in the fluid, or to the strong shear that the former exerts on the latter. The interaction of two anticyclones shows regimes of co-rotation or merger, but specifically, it leads to the drift of the two vortices away from the slope, via a hetonic coupling with oppositely-signed vorticity in the lower layer. This vorticity originates in the breaking of the topographic wave. The analysis of passive tracer evolution confirms the inshore or offshore drift of the fluid, the formation of tracer fronts along filaments and its stirring in regions of vortex merger. The trajectories of particles indicate how the fluid initially in the vortices is finally partitioned.

  18. Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices.

    Science.gov (United States)

    Mehmood, M Q; Mei, Shengtao; Hussain, Sajid; Huang, Kun; Siew, S Y; Zhang, Lei; Zhang, Tianhang; Ling, Xiaohui; Liu, Hong; Teng, Jinghua; Danner, Aaron; Zhang, Shuang; Qiu, Cheng-Wei

    2016-04-06

    A multifocus optical vortex metalens, with enhanced signal-to-noise ratio, is presented, which focuses three longitudinal vortices with distinct topological charges at different focal planes. The design largely extends the flexibility of tuning the number of vortices and their focal positions for circularly polarized light in a compact device, which provides the convenience for the nanomanipulation of optical vortices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics

    Science.gov (United States)

    Webb, G. M.; Anco, S. C.

    2016-02-01

    The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.

  20. Images of interlayer Josephson vortices in single-layer cuprates

    International Nuclear Information System (INIS)

    Moler, K. A.; Kirtley, J. R.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Williams, J. M.; Schlueter, J. A.; Hinks, D.; Villard, G.; Maignan, A.; Nohara, M.; Takagi, H.

    2000-01-01

    The interlayer penetration depth in layered superconductors may be determined from scanning Superconducting QUantum Interference Device (SQUID) microscope images of interlayer Josephson vortices. The authors compare their findings at 4 K for single crystals of the organic superconductor κ-(BEDT-TTF) 2 Cu(NCS) 2 and three near-optimally doped cuprate superconductors: La 2-x Sr x CuO 4 , (Hg, Cu)Ba 2 CuO 4+δ , and Tl 2 Ba 2 CuO 6+δ

  1. Topological charge algebra of optical vortices in nonlinear interactions.

    Science.gov (United States)

    Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V

    2015-12-28

    We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.

  2. A hydrodynamic model for superfluid helium with vortices

    International Nuclear Information System (INIS)

    Lhuillier, D.; Francois, M.

    1975-01-01

    Although their existence is experimentally well verified, the so-called mutual friction force Fsub(sn) and superfluid friction force Fsub(s) cannot emerge from the Landau irrotational model of superfluidity. Up to now these forces have merely been added to the Landau equations but this is untenable since, as a consequence, one destroys the irrotationality condition with which the equations have expressly been built. It is shown that these friction forces appear in a natural way in a model where superfluid helium with vortices is compared to a fluid with a conserved intrinsic momentum. (Auth.)

  3. Spins in the vortices of a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Aeppli, G.; Clausen, K.N.

    2001-01-01

    Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La2-xSrxCuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, Low-frequency spin fluctuations first disappear with the loss of vortex mobility......, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces...

  4. Quantum fluctuations of vortices in Josephson-coupled superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L.N.; Maley, M.P.

    1994-01-01

    The effect of quantum fluctuations of vortices on the low temperature specific heat and reversible magnetization in the mixed state in highly anisotropic layered superconductors is discussed. For reversible magnetization, M, the change of slope in the dependence of M vs ln B, observed in Bi(2:2:1:2), is explained. In the mean, field approach this slope should be almost B independent. The specific heat due to the vortex fluctuation contribution is predicted to be linear in T at low T

  5. Formation of plasma and gaseous toroidal vortices in air

    International Nuclear Information System (INIS)

    Yusupaliev, U.; Yusupaliev, P. U.; Shuteev, S. A.

    2007-01-01

    The mechanism for the formation of high-temperature (plasma) vortices and low-temperature vortex rings produced by ejecting pulsed subsonic plasma/gas jets into air was investigated experimentally. A toroidal vortex forms due to the interaction between a pulsed jet with the flow induced by this jet in the ambient medium. By analyzing the experimental data and conservation laws, an equation is derived that allows one to determine the initial propagation velocity of the vortex as a function of the characteristics of the vortex generator and the ambient medium. The results obtained by solving this equation agree well with the experimental data

  6. Center vortices at strong couplings and all couplings

    International Nuclear Information System (INIS)

    Greensite, J.

    2001-01-01

    Motivations for the center vortex theory of confinement are discussed. In particular, it is noted that the abelian dual Meissner effect, which is the signature of dual superconductivity, cannot adequately describe the confining force at large distance scales. A long-range effective action is derived from strong-coupling lattice gauge theory in D=3 dimensions, and it is shown that center vortices emerge as the stable saddlepoints of this action. Thus, in the case of strong couplings, the vortex picture is arrived at analytically. I also respond briefly to a recent criticism regarding maximal center gauge. (author)

  7. Nonlinear modes in the hollow-cores of liquid vortices

    KAUST Repository

    Amaouche, Mustapha; Ait Abderrahmane, Hamid; Vatistas, Georgios H.

    2013-01-01

    In this paper we show that the wave patterns observed on the interfacial contours of hollow-core vortices, produced within a shallow layer of fluid contained in stationary cylinder and driven by a rotating disk at the bottom [G.H. Vatistas, H.A. Abderrahmane, M.H. Kamran Siddiqui, Experimental confirmation of Kelvin's equilibria, Phys. Rev. Lett. 100 (2008) 174503-174504], can be described as travelling cnoidal waves. These rotating stationary waves are obtained as solutions of a Korteweg-de Vries type equation, in accordance with the geometrical and kinematic characteristics of the observed polygonal patterns. © 2013 Elsevier Masson SAS. All rights reserved.

  8. Nonlinear modes in the hollow-cores of liquid vortices

    KAUST Repository

    Amaouche, Mustapha

    2013-09-01

    In this paper we show that the wave patterns observed on the interfacial contours of hollow-core vortices, produced within a shallow layer of fluid contained in stationary cylinder and driven by a rotating disk at the bottom [G.H. Vatistas, H.A. Abderrahmane, M.H. Kamran Siddiqui, Experimental confirmation of Kelvin\\'s equilibria, Phys. Rev. Lett. 100 (2008) 174503-174504], can be described as travelling cnoidal waves. These rotating stationary waves are obtained as solutions of a Korteweg-de Vries type equation, in accordance with the geometrical and kinematic characteristics of the observed polygonal patterns. © 2013 Elsevier Masson SAS. All rights reserved.

  9. Circulation of electrolyte in an electrochemical cell, using Taylor vortices

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, J D

    1990-05-30

    In an electrochemical cell for decomposition of organic waste liquids having an anode compartment and a cathode compartment separated by a porous pot, the anode is driven by a shaft having an axial passage extending from an upper inlet in the vicinity of the liquid level to a lower outlet adjacent a turbine. The rotating anode produces Taylor vortices in annular space and liquid is drawn from layer through passage and emerges to contact the anode. In one use, organic solvent such as tributyl phosphate/odourless kerosene is destroyed. Fresh solvent is added through an inlet. A helical cooler may also be provided. (author).

  10. Topology of streamlines and vorticity contours for two - dimensional flows

    DEFF Research Database (Denmark)

    Andersen, Morten

    on the vortex filament by the localised induction approximation the stream function is slightly modified and an extra parameter is introduced. In this setting two new flow topologies arise, but not more than two critical points occur for any combination of the parameters. The analysis of the closed form show...... by a point vortex above a wall in inviscid fluid. There is no reason to a priori expect equivalent results of the three vortex definitions. However, the study is mainly motivated by the findings of Kudela & Malecha (Fluid Dyn. Res. 41, 2009) who find good agreement between the vorticity and streamlines...

  11. Sharp vorticity gradients in two-dimensional turbulence and the energy spectrum

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2010-01-01

    Formation of sharp vorticity gradients in two-dimensional (2D) hydrodynamic turbulence and their influence on the turbulent spectra are considered. The analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the di-vorticity lines...... is developed and compressibility of this mapping appears as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. In the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k −3 at large k, which appear to take the same form...

  12. Influence of artificial tip perturbation on asymmetric vortices flow over a chined fuselage

    Directory of Open Access Journals (Sweden)

    Shi Wei

    2015-08-01

    Full Text Available An experimental study was conducted with the aim of understanding behavior of asymmetric vortices flow over a chined fuselage. The tests were carried out in a wind tunnel at Reynolds number of 1.87 × 105 under the conditions of high angles of attack and zero angle of sideslip. The results show that leeward vortices flow becomes asymmetric vortices flow when angle of attack increases over 20°. The asymmetric vortices flow is asymmetry of two forebody vortices owing to the increase of angle of attack but not asymmetry of vortex breakdown which appears when angle of attack is above 35°. Asymmetric vortices flow is sensitive to tip perturbation and is non-deterministic due to randomly distributed natural minute geometrical irregularities on the nose tip within machining tolerance. Deterministic asymmetric vortices flow can be obtained by attaching artificial tip perturbation which can trigger asymmetric vortices flow and decide asymmetric vortices flow pattern. Triggered by artificial tip perturbation, the vortex on the same side with perturbation is in a higher position, and the other vortex on the opposite side is in a lower position. Vortex suction on the lower vortex side is larger, which corresponds to a side force pointing to the lower vortex side.

  13. Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles

    Science.gov (United States)

    Marzo, Asier; Caleap, Mihai; Drinkwater, Bruce W.

    2018-01-01

    Acoustic vortices can transfer angular momentum and trap particles. Here, we show that particles trapped in airborne acoustic vortices orbit at high speeds, leading to dynamic instability and ejection. We demonstrate stable trapping inside acoustic vortices by generating sequences of short-pulsed vortices of equal helicity but opposite chirality. This produces a "virtual vortex" with an orbital angular momentum that can be tuned independently of the trapping force. We use this method to adjust the rotational speed of particles inside a vortex beam and, for the first time, create three-dimensional acoustics traps for particles of wavelength order (i.e., Mie particles).

  14. Stationary drift-Rossby vortices in shear flows

    International Nuclear Information System (INIS)

    Horihata, Satoshi; Irie, Haruyuki; Sato, Masatomo

    1990-01-01

    Starting from Hasegawa-Mima equation with the generalized vorticity q which describes both electrostatic drift waves in plasmas and Rossby waves in the atmosphere of rotating planets, the stationary solutions of this equation in the (x, y) plane were considered assuming that the equilibrium density no depends on x and the electron temperature T 0 is constant. The arbitrary function F(φ) yielded from integration of transformed Hasegawa-Mima equation was taken either linear or nonlinear in φ, where φ is the stream function. When F is linear, vortex solutions were obtained by dividing the entire plane into internal and external regions by a closed boundary curve. Imposing the boundary conditions at the boundary curve, the constants in the solutions φ ex and φ in were determined. 4 examples are figured. When F is nonlinear, isolated (localized) vortex was considered. Deriving the equation to determine F, the equation for ψ, the internal vortical motion beyond the boundary was given. 2 examples are shown. (M.T.)

  15. Borneo Vortices: A case study and its relation to climatology

    Science.gov (United States)

    Braesicke, P.; Ooi, S. H.; Samah, A. A.

    2012-04-01

    Borneo vortices (BVs) develop over the South China Sea and are main drivers for the formation of deep convection and heavy rainfall in East Malaysia. We present a case study of a cold-surge-induced BV during January 2010 in which the export of potential energy lead to a strengthening of the subtropical jet. Potential vorticity (PV) and water vapour analyses confirm a significant impact of the BV on upper tropospheric composition. Dry, high PV air is found far below 100 hPa in the vicinty of the vortex. Using a PV threshold analysis of ERA-Interim data we construct a climatological composite of similar events and characterise the thermal, dynamical and composition structure of a 'typical' BV. We note the preferential formation of BVs during ENSO cold conditions and show that two effects contribute to the formation of the dry upper layer above a BV: Air is vertically transported upwards in the BV whilst precipitating and the large scale flow in which the BV is embedded advect dry, ozone rich air from the equatorial TTL over the BV. Thus the occurence frequency of BVs is important for the regional variability of upper tropospheric/lower stratospheric composition.

  16. Conservation properties and potential systems of vorticity-type equations

    International Nuclear Information System (INIS)

    Cheviakov, Alexei F.

    2014-01-01

    Partial differential equations of the form divN=0, N t +curl M=0 involving two vector functions in R 3 depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R 4 (t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations, it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented

  17. EFT for Vortices with Dilaton-dependent Localized Flux

    CERN Document Server

    Burgess, C P; Williams, M

    2015-01-01

    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical `fat brane' solution, and in the effective theory of `point branes' appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and...

  18. Fundamental vortices, wall-crossing, and particle-vortex duality

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chiung; Yi, Piljin [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Yoshida, Yutaka [Research Institute for Mathematical Sciences, Kyoto University,Kyoto 606-8502 (Japan)

    2017-05-18

    We explore 1d vortex dynamics of 3d supersymmetric Yang-Mills theories, as inferred from factorization of exact partition functions. Under Seiberg-like dualities, the 3d partition function must remain invariant, yet it is not a priori clear what should happen to the vortex dynamics. We observe that the 1d quivers for the vortices remain the same, and the net effect of the 3d duality map manifests as 1d Wall-Crossing phenomenon; although the vortex number can shift along such duality maps, the ranks of the 1d quiver theory are unaffected, leading to a notion of fundamental vortices as basic building blocks for topological sectors. For Aharony-type duality, in particular, where one must supply extra chiral fields to couple with monopole operators on the dual side, 1d wall-crossings of an infinite number of vortex quiver theories are neatly and collectively encoded by 3d determinant of such extra chiral fields. As such, 1d wall-crossing of the vortex theory encodes the particle-vortex duality embedded in the 3d Seiberg-like duality. For N=4, the D-brane picture is used to motivate this 3d/1d connection, while, for N=2, this 3d/1d connection is used to fine-tune otherwise ambiguous vortex dynamics. We also prove some identities of 3d supersymmetric partition functions for the Aharony duality using this vortex wall-crossing interpretation.

  19. Vorticity dynamics after the shock-turbulence interaction

    Science.gov (United States)

    Livescu, D.; Ryu, J.

    2016-05-01

    The interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756:R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviate the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, Ms, up to Ms=10. It is shown that, as Ms increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.

  20. The influence of trailed vorticity on flutter speed estimations

    International Nuclear Information System (INIS)

    Pirrung, Georg R; Madsen, Helge Aa; Kim, Taeseong

    2014-01-01

    This paper briefly describes the implementation of a coupled near and far wake model for wind turbine rotor induction in the aeroelastic code HAWC2 and its application for flutter analysis of the NREL 5 MW wind turbine. The model consists of a far wake part based on Blade Element Momentum (BEM) theory, which is coupled with Beddoes' near wake model for trailed vorticity. The first part of this work outlines the implementation in HAWC2, with a focus on the interaction of the induction from the blade based near wake model with the induction from the polar grid based BEM model in HAWC2. The influence of the near wake model on the aeroelastic stability of the blades of the NREL 5 MW turbine in overspeed conditions is investigated in the second part of the paper. The analysis is based on a runaway case in which the turbine is free to speed up without generator torque and vibrations start building up at a critical rotor speed. Blades with modified torsional and flapwise stiffness are also investigated. A flutter analysis is often part of the stability investigations for new blades but is normally carried out with engineering models that do not include the influence of unsteady trailed vorticity. Including this influence results in a slightly increased safety margin against classical flutter in all simulated cases

  1. QED3 formulation of vortices in boson condensates and metafluid

    International Nuclear Information System (INIS)

    Soares, Thales Costa; Spalenza, Wesley; Helayel Neto, Jose Abdalla

    2002-01-01

    Full text: One consider a system of many non-relativistic particles as a fluid, going from the discrete set of space-time coordinates of each particle to a continuous field. With an interparticle potential that satisfies a number of physically reasonable assumptions, one shows how the Lagrangian describing the motion of the fluid displays an exact local gauge invariance governed by a scalar parameter. The conserved quantity associated to this local symmetry is derived and discussed in the light of planar Electrodynamics, with photons identified as sound waves in the fluid and point-like charges corresponding to vortices with azimuthal circulation. On the other hand, exploiting further the field configurations of planar Electrodynamics, one finds a peculiar source for the electrostatic sector with azimuthal electric field and a string-like scalar potential. This work sets out to attempt at establishing a parallel between this vortex-like electric field configurations in fluid dynamics. Vortices in boson condensates and the fluid dynamics of the condensates are reassessed and translated into electromagnetic fields of planar (Chern-Simons massive) QED. On The other hand, the metafluid equations, once suitable reduced from 3 to 2 space dimensions, are also seen to match field configurations of Maxwell (massless photons) planar QED. (author)

  2. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    Directory of Open Access Journals (Sweden)

    R. Huth

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  3. Manipulating Josephson junctions in thin-films by nearby vortices

    International Nuclear Information System (INIS)

    Kogan, V.G.; Mints, R.G.

    2014-01-01

    Highlights: • Vortex located in a bank of a planar Josephson junction changes its character. • Vortex located at some discreet positions in thin strip bank suppresses to zero the zero-field current. • The number of these positions is equal to the number of vortices trapped. • Critical current-field patterns are strongly affected by the vortex position. - Abstract: It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I c (H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I c (H) has zero at H=0 instead of the traditional maximum of ‘0-type’ junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction–vortex separation exceeds ∼W, the strip width, I c (H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges

  4. Management of Vortices Trailing Flapped Wings via Separation Control

    Science.gov (United States)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  5. Twist effects in quantum vortices and phase defects

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L.

    2018-02-01

    In this paper we show that twist, defined in terms of rotation of the phase associated with quantum vortices and other physical defects effectively deprived of internal structure, is a property that has observable effects in terms of induced axial flow. For this we consider quantum vortices governed by the Gross-Pitaevskii equation (GPE) and perform a number of test cases to investigate and compare the effects of twist in two different contexts: (i) when this is artificially superimposed on an initially untwisted vortex ring; (ii) when it is naturally produced on the ring by the simultaneous presence of a central straight vortex. In the first case large amplitude perturbations quickly develop, generated by the unnatural setting of the initial condition that is not an analytical solution of the GPE. In the second case much milder perturbations emerge, signature of a genuine physical process. This scenario is confirmed by other test cases performed at higher twist values. Since the second setting corresponds to essential linking, these results provide new evidence of the influence of topology on physics.

  6. Imparting small vorticity to a Bianchi type-VIh empty spacetime

    Science.gov (United States)

    Batakis, Nikos A.

    1981-04-01

    We present and briefly discuss a Bianchi type-VIh empty spacetime. The field equations have been solved after being linearized with respect to a parameter which imparts vorticity to the model. The limit of zero vorticity is an already known solution.

  7. A numerical study of the role of the vertical structure of vorticity during tropical cyclone genesis

    International Nuclear Information System (INIS)

    Venkatesh, T N; Mathew, Joseph

    2010-01-01

    An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.

  8. Tripolar vortices of dust-drift waves in dusty plasma with shear flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge

    2002-01-01

    Nonlinear equations governing dust-drift waves in magnetized dusty plasma with transverse shear flow are derived. For the specific profiles of flow and the plasma equilibrium density, a new type of solution in the form of tripolar vortices is found. The results show that the peak magnitude of tripolar vortices increases with increasing shear intensity and dust content

  9. Influence of the least-squares phase on optical vortices in strongly scintillated beams

    CSIR Research Space (South Africa)

    Chen, M

    2009-06-01

    Full Text Available , the average total number of vortices is reduced further. However, the reduction becomes smaller for each succes- sive step. This indicates that the ability of getting rid of optical vortices by removing the least-squares phase becomes progressively less...

  10. Dynamics of fractional vortices in long Josephson junctions; Dynamik fraktionaler Flusswirbel in langen Josephsonkontakten

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, Tobias

    2007-07-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-{kappa} junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-{kappa} junctions and fractional vortices are generalizations of the well-known 0-{pi} junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-{kappa} junctions that are based on standard Nb-AlO{sub x}-Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  11. Analysis of propeller-induced ground vortices by particle image velocimetry

    NARCIS (Netherlands)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2017-01-01

    Abstract: The interaction between a propeller and its self-induced vortices originating on the ground is investigated in a scaled experiment. The velocity distribution in the flow field in two different planes containing the self-induced vortices is measured by particle image velocimetry (PIV).

  12. Potential Vorticity Evolution in the Co-orbital Region of Embedded Protoplanets

    International Nuclear Information System (INIS)

    Koller, J.

    2004-01-01

    This thesis presents two-dimensional hydrodynamic disk simulations with embedded protoplanets, emphasizing the non-linear dynamics in the co-orbital region. In particular, it demonstrates how a protoplanetary disk responds to embedded low mass planets at the inviscid limit. Since the potential vorticity (PV) flow is not conserved, due to the spiral shocks and possibly boundary layer effects emanating from the planet, the PV profile develops inflection points which eventually render the flow unstable. Vortices are produced in association with the potential vorticity minima. Born in the separatrix region, these vortices experience close encounters with the planet, consequently exerting strong torques on the planet. The existence of these vortices, if confirmed, have important implications on planetary migration rates. The formation of vortices is discussed in more detail and a key parameter is found which depends solely on planet mass and sound speed. With this key parameter, one can predict the disk evolution, PV growth rates, and threshold conditions for forming vortices in the co-orbital region. An analytical estimate for the change of PV due to shocks is compared to the actual change in PV in the hydrodynamic simulations. They match well except in the inner region where vortices form. In addition, extensive resolution tests were carried out but uncertainties remain about the physics of this particular region

  13. Matter in the form of toroidal electromagnetic vortices

    Science.gov (United States)

    Hagen, Wilhelm F.

    2015-09-01

    The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact

  14. Numerical simulation using vorticity-vector potential formulation

    Science.gov (United States)

    Tokunaga, Hiroshi

    1993-01-01

    An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the

  15. Diagnostic study on the relation between ozone and vorticity potential

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Basset, H. [Department of Astronomy and Meteorology, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt); Gahein, A. [Egyptian Meteorological Authority, Cairo (Egypt)

    2003-04-01

    A diagnostic analysis of a Mediterranean system and the associated tropopause folding for the period 27 February to 10 March, 1987 is presented. Geopotential height, potential vorticity (PV) and relative humidity distributions were diagnosed. The analysis indicates clear correlation between the development of the cut-off low and the tropopause folding. A series of vertical cross-sections at the ends of the jet streaks demonstrated that a fold could be captured using potential vorticity and relative humidity. Q-vectors were employed to investigate vertical motion in the vicinity of the fold and showed the exact positions of descent corresponding to the fold along the entire length of the jet streak. The analysis also shows that the strong correlation between total ozone and column integrated vorticity potential holds well for all levels. As both quantities are integrals through the atmosphere, this result is consistent with, but does not prove, a high independent linear dependence between ozone and PV. More case studies are needed to assure the high linear dependence between ozone and PV. The maximum transport of ozone from the stratosphere to the troposphere is coinciding with the maximum developing system, and also with the maximum values of PV. [Spanish] Se presenta un analisis diagnostico de un Sistema mediterraneo y del pliegue de la tropopausa asociado durante el periodo del 27 de febrero al 10 de marzo de 1987. Se diagnosticaron la altitud neopotencial, el potencial de vorticidad y la distribucion de la humedad relativa. El analisis indica una correlacion clara entre el desarrollo de la baja segregada y el pliegue de la tropopausa. Una serie de cortes verticales en los extremos de las trazas del chorro demostraron que el pliegue puede ser capturado utilizando el potencial de vorticidad y la humedad relativa. Para investigar la movilidad vertical en la vecindad del pliegue se utilizaron vectores Q, y se demostraron las posiciones exactas de descenso

  16. Late-Stage Vortical Structures and Eddy Motions in a Transitional Boundary Layer

    International Nuclear Information System (INIS)

    Xiao-Bing, Liu; Zheng-Qing, Chen; Chao-Qun, Liu

    2010-01-01

    A high-order direct numerical simulation of flow transition over a flat-plate at a free stream Mach number 0.5 is carried out. Formation and development of three-dimensional vortical structures, typically shown as A-vortices, hairpin vortices and ring-like vortices, are observed. Numerical results show that there is a strong downdraft motion of fluid excited by every ring-like vortex in the late-stage of the transition process. At two sides of the vortical structure centerline, the downdraft motions induced by the ring-like vortex and the rotating legs superimpose. This is responsible for the appearance of a high-speed streak associated with the positive spike observed in a previous investigation and the appearance of a high-shear layer in the near wall region. (fundamental areas of phenomenology(including applications))

  17. Influence of Initial Vorticity Distribution on Axisymmetric Vortex Breakdown and Reconnection

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    An analytical treatment has been developed to study some of the axisymmetric vortex breakdown and reconnection fluid dynamic processes underlying body-vortex interactions that are frequently manifested in rotorcraft and propeller-driven fixed-wing aircraft wakes. In particular, the presence of negative vorticity in the inner core of a vortex filament (one example of which is examined in this paper) subsequent to "cutting" by a solid body has a profound influence on the vortex reconnection, leading to analog flow behavior similar to vortex breakdown phenomena described in the literature. Initial vorticity distributions (three specific examples which are examined) without an inner core of negative vorticity do not exhibit vortex breakdown and instead manifest diffusion-like properties while undergoing vortex reconnection. Though this work focuses on laminar vortical flow, this work is anticipated to provide valuable insight into rotary-wing aerodynamics as well as other types of vortical flow phenomena.

  18. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan

    2015-07-26

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed particles in a fuel stream using continuous-wave (CW) Argon-ion laser. Velocity fields were also quantified with particle mage velocimetry (PIV) system having kHz repetition rate. The results showed that the dynamic motion of negative buoyance induced vortices near the nozzle exit was coupled strongly with a flame flickering instability. Typically during the flame flickering, the negative buoyant vortices oscillated at the flickering frequency. The vortices were distorted by the flickering motion and exhibited complicated transient vortical patterns, such as tilting and stretching. Numerical simulations were also implemented based on an open source C++ package, LaminarSMOKE, for further validations.

  19. Indirect Combustion Noise: Noise Generation by Accelerated Vorticity in a Nozzle Flow

    Directory of Open Access Journals (Sweden)

    Nancy Kings

    2010-09-01

    Full Text Available The noise generation by accelerated vorticity waves in a nozzle flow was investigated in a model experiment. This noise generation mechanism belongs, besides entropy noise, to the indirect combustion noise phenomena. Vorticity as well as entropy fluctuations, originating from the highly turbulent combustion zone, are convected with the flow and produce noise during their acceleration in the outlet nozzle of the combustion chamber. In the model experiment, noise generation of accelerated vorticity fluctuations was achieved. The vorticity fluctuations in the tube flow were produced by injecting temporally additional air into the mean flow. As the next step, a parametric study was conducted to determine the major dependencies of the so called vortex noise. A quadratic dependency of the vortex noise on the injected air amount was found. In order to visualise and classify the artificially generated vorticity structures, planar velocity measurements have been conducted applying Particle Image Velocimetry (PIV.

  20. Vorticity Dynamics in Single and Multiple Swirling Reacting Jets

    Science.gov (United States)

    Smith, Travis; Aguilar, Michael; Emerson, Benjamin; Noble, David; Lieuwen, Tim

    2015-11-01

    This presentation describes an analysis of the unsteady flow structures in two multinozzle swirling jet configurations. This work is motivated by the problem of combustion instabilities in premixed flames, a major concern in the development of modern low NOx combustors. The objective is to compare the unsteady flow structures in these two configurations for two separate geometries and determine how certain parameters, primarily distance between jets, influence the flow dynamics. The analysis aims to differentiate between the flow dynamics of single nozzle and triple nozzle configurations. This study looks at how the vorticity in the shear layers of one reacting swirling jet can affect the dynamics of a nearby similar jet. The distance between the swirling jets is found to have an effect on the flow field in determining where swirling jets merge and on the dynamics upstream of the merging location. Graduate Student, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.

  1. ALFVÉN WAVES IN SIMULATIONS OF SOLAR PHOTOSPHERIC VORTICES

    Energy Technology Data Exchange (ETDEWEB)

    Shelyag, S.; Cally, P. S. [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria 3800 (Australia); Reid, A.; Mathioudakis, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2013-10-10

    Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit 'tornado'-like behavior or a 'bath-tub' effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.

  2. Topological vortices in generalized Born-Infeld-Higgs electrodynamics

    International Nuclear Information System (INIS)

    Casana, R.; Hora, E. da; Rubiera-Garcia, D.; Santos, C. dos

    2015-01-01

    A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely,G(vertical stroke φ vertical stroke), w(vertical stroke φ vertical stroke), and V (vertical stroke φ vertical stroke). A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampere law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory. (orig.)

  3. Study of nano-scale friction using vortices in superconductors

    International Nuclear Information System (INIS)

    Maeda, A.; Nakamura, D.; Kitano, H.; Matsumura, H.

    2007-01-01

    Toward the microscopic understanding of physics of friction at the solid interface, we use the dynamics of driven vortices of superconductor as a new model system. We measured the static friction as a function of the aging time, and compared with the kinetic friction as a function of velocity for the driven vortex lattice of La 1.85 Sr 0.15 CuO 4 . No definite relationship, such as the one proposed for the friction of thick papers, was observed. This supports our previous proposal of the critical phenomena view that the non-Amontons-Coulomb-like behavior of the kinetic friction is a broadened dynamic transition between the static and kinetic regimes

  4. Improvement of a near wake model for trailing vorticity

    DEFF Research Database (Denmark)

    Pirrung, Georg; Hansen, Morten Hartvig; Aagaard Madsen, Helge

    2014-01-01

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly...... the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model...... to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup...

  5. Climate science in the tropics: waves, vortices and PDEs

    Science.gov (United States)

    Khouider, Boualem; Majda, Andrew J.; Stechmann, Samuel N.

    2013-01-01

    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area.

  6. Experimental observation of azimuthal shock waves on nonlinear acoustical vortices

    International Nuclear Information System (INIS)

    Brunet, Thomas; Thomas, Jean-Louis; Marchiano, Regis; Coulouvrat, Francois

    2009-01-01

    Thanks to a new focused array of piezoelectric transducers, experimental results are reported here to evidence helical acoustical shock waves resulting from the nonlinear propagation of acoustical vortices (AVs). These shock waves have a three-dimensional spiral shape, from which both the longitudinal and azimuthal components are studied. The inverse filter technique used to synthesize AVs allows various parameters to be varied, especially the topological charge which is the key parameter describing screw dislocations. Firstly, an analysis of the longitudinal modes in the frequency domain reveals a wide cascade of harmonics (up to the 60th order) leading to the formation of the shock waves. Then, an original measurement in the transverse plane exhibits azimuthal behaviour which has never been observed until now for acoustical shock waves. Finally, these new experimental results suggest interesting potential applications of nonlinear effects in terms of acoustics spanners in order to manipulate small objects.

  7. Flux flow of Abrikosov vortices in type-II superconductors

    International Nuclear Information System (INIS)

    Chen, J.L.; Yang, T.J.

    1994-01-01

    The theory of flux flow developed by Bardeen and Stephen (BS) is modified and extended to the high-field case. The Clem model and Wigner-Seitz circle-cell approximation for vortices are used in our approach. The distinct boundary of the normal core of a vortex in BS theory is removed and treated naturally. Several interesting results come out as a consequence. The Lorentz force is determined by the normal current rather than the supercurrent. But the supercurrent can sustain the magnetic-field distribution of flux quanta. From energy dissipation considerations, the Lorentz force is equal to viscosity force automatically without assumption as made in BS theory. An expression for the viscosity is also obtained

  8. Microalga propels along vorticity direction in a shear flow

    Science.gov (United States)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  9. Climate science in the tropics: waves, vortices and PDEs

    International Nuclear Information System (INIS)

    Khouider, Boualem; Majda, Andrew J; Stechmann, Samuel N

    2013-01-01

    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area. (invited article)

  10. Effects of external influences in subsonic delta wing vortices

    Science.gov (United States)

    Washburn, Anthony E.

    1992-01-01

    An experimental investigation was conducted to examine inconsistencies in reported studies for the vortical flow over highly-swept delta wings. A 76-deg swept delta wing was tested in three facilities with open and closed test sections and different model-support systems. The results obtained include surface oil-flow patterns, off-body laser-light-sheet flow visualization, and aerodynamic load measurements. Parameters such as the wall boundaries and model-support systems can drastically alter the loads. The effect of a high level of free-stream turbulence on the delta-wing flowfield was also examined and found to be significant. The increase in free-stream turbulence caused boundary-layer transition, unsteadiness in the vortex core positions, and altered the loads and moments.

  11. Deep Coherent Vortices and Their Sea Surface Expressions

    Science.gov (United States)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface

  12. An extended self-organisation principle for modelling and calculating the dissipation of 2D confined vortices

    NARCIS (Netherlands)

    Eydeland, A.; van Groesen, Embrecht W.C.

    1989-01-01

    Steady Euler flows in a periodic square that, for positive vorticity distributions, minimise the entropy at given values of the energy and the circulations are non-confined vortices for optimal values of the circulation, and are confined vortices for certain non-optimal values. An extension of the

  13. The generation of two-dimensional vortices by transverse oscillation of a soap film

    International Nuclear Information System (INIS)

    Afenchenko, V.O.; Ezersky, A.B.; Kiyashko, S.V.; Rabinovich, M.I.; Weidman, P.D.

    1998-01-01

    An experimental investigation of the dynamics of horizontal soap films stretched over circular or square boundaries undergoing periodic transverse oscillations at frequencies in the range 20 - 200 Hz is reported. Concomitant with modes of transverse flexural oscillations, it was observed that two-dimensional vortices in the plane of the film are excited. The vortices may be either (i) large, scaling with the size of the cavity or (ii) small, localized at a wavelength or half-wavelength of the membrane modes. In the experiments a stable generation of one, two, hor-ellipsis, ten pairs of counter-rotating vortices were observed in finite regions of amplitude-frequency parameter space. The circulation strength of vortices in a given vortex pattern increases with increasing external forcing and with decreasing soap film thickness. A theoretical model based on the wave-boundary interaction of excited Marangoni waves reveals a vorticity generation mechanism active in vibrating soap films. This model shows that vorticity is generated throughout the entire liquid volume by viscous diffusion, and qualitatively reproduces many steady vortex patterns observed in the experiment. However, the model cannot explain the existence of the sometimes intense vortices observed far from the film boundary that do not appear to be generated by diffusive processes. copyright 1998 American Institute of Physics

  14. Four-Spacecraft Magnetic Curvature and Vorticity Analyses on Kelvin-Helmholtz Waves in MHD Simulations

    Science.gov (United States)

    Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit

    2018-01-01

    Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.

  15. Towards laboratory detection of topological vortices in superfluid phases of QCD

    Science.gov (United States)

    Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.

    2017-10-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.

  16. Continuous control of asymmetric forebody vortices in a bi-stable state

    Science.gov (United States)

    Wang, Qi-te; Cheng, Ke-ming; Gu, Yun-song; Li, Zhuo-qi

    2018-02-01

    Aiming at the problem of continuous control of asymmetric forebody vortices at a high angle of attack in a bi-stable regime, a dual synthetic jet actuator embedded in an ogive forebody was designed. Alternating unsteady disturbance with varying degree asymmetrical flow fields near the nozzles is generated by adjusting the duty cycle of the drive signal of the actuator, specifically embodying the asymmetric time-averaged pattern of jet velocity, vorticity, and turbulent kinetic energy. Experimental results show that within the range of relatively high angles of attack, including the angle-of-attack region in a bi-stable state, the lateral force of the ogive forebody is continuously controlled by adjusting the duty cycle of the drive signal; the position of the forebody vortices in space, the vorticity magnitude, the total pressure coefficient near the vortex core, and the vortex breakdown location are continuously changed with the duty cycle increased observed from the time-averaged flow field. Instantaneous flow field results indicate that although the forebody vortices are in an unsteady oscillation state, a continuous change in the forebody vortices' oscillation balance position as the duty cycle increases leads to a continuous change in the model's surface pressure distribution and time-averaged lateral force. Different from the traditional control principle, in this study, other different degree asymmetrical states of the forebody vortices except the bi-stable state are obtained using the dual synthetic jet control technology.

  17. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses.

    Science.gov (United States)

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  18. Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model

    Science.gov (United States)

    Sutyrin Georgi, G.

    2004-07-01

    A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.

  19. Core sizes and dynamical instabilities of giant vortices in dilute Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Kuopanportti, Pekko; Lundh, Emil; Huhtamaeki, Jukka A. M.; Pietilae, Ville; Moettoenen, Mikko

    2010-01-01

    Motivated by a recent demonstration of cyclic addition of quantized vorticity into a Bose-Einstein condensate, the vortex pump, we study dynamical instabilities and core sizes of giant vortices. The core size is found to increase roughly as a square-root function of the quantum number of the vortex, whereas the strength of the dynamical instability either saturates to a fairly low value or increases extremely slowly for large quantum numbers. Our studies suggest that giant vortices of very high angular momenta may be achieved by gradually increasing the operation frequency of the vortex pump.

  20. First measurements of electron vorticity in the foreshock and solar wind

    International Nuclear Information System (INIS)

    Gurgiolo, C.; Goldstein, M.L.; Vinas, A.F.; Fazakerley, A.N.

    2010-01-01

    We describe the methodology used to set up and compute spatial derivatives of the electron moments using data acquired by the Plasma Electron And Current Experiment (PEACE) from the four Cluster spacecraft. The results are used to investigate electron vorticity in the foreshock. We find that much of the measured vorticity, under nominal conditions, appears to be caused by changes in the flow direction of the return (either reflected or leakage from the magnetosheath) and strahl electron populations as they couple to changes in the magnetic field orientation. This in turn results in deflections in the total bulk velocity producing the measured vorticity. (orig.)

  1. First measurements of electron vorticity in the foreshock and solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Gurgiolo, C. [Bitterroot Basic Research, Hamilton, MT (United States); Goldstein, M.L.; Vinas, A.F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Geospace Science Lab.; Fazakerley, A.N. [University College London (United Kingdom). Mullard Space Science Lab.

    2010-07-01

    We describe the methodology used to set up and compute spatial derivatives of the electron moments using data acquired by the Plasma Electron And Current Experiment (PEACE) from the four Cluster spacecraft. The results are used to investigate electron vorticity in the foreshock. We find that much of the measured vorticity, under nominal conditions, appears to be caused by changes in the flow direction of the return (either reflected or leakage from the magnetosheath) and strahl electron populations as they couple to changes in the magnetic field orientation. This in turn results in deflections in the total bulk velocity producing the measured vorticity. (orig.)

  2. First measurements of electron vorticity in the foreshock and solar wind

    Directory of Open Access Journals (Sweden)

    C. Gurgiolo

    2010-12-01

    Full Text Available We describe the methodology used to set up and compute spatial derivatives of the electron moments using data acquired by the Plasma Electron And Current Experiment (PEACE from the four Cluster spacecraft. The results are used to investigate electron vorticity in the foreshock. We find that much of the measured vorticity, under nominal conditions, appears to be caused by changes in the flow direction of the return (either reflected or leakage from the magnetosheath and strahl electron populations as they couple to changes in the magnetic field orientation. This in turn results in deflections in the total bulk velocity producing the measured vorticity.

  3. How to distinguish between the annihilation and the creation of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2013-10-01

    Full Text Available , the term ‘optical vortex.’ The handedness of the phase circulation around the phase singularities allows optical vortices to be sep- arated into either positive or negative vortices. The sign is associated with the topological charge of the optical vortices... through a turbulent atmosphere. If the resulting scintillation is weak, the distortion can be represented by a single random phase modulation, which can be corrected in an adaptive optics system. On the other hand, if the scintillation is strong, the phase...

  4. Nuclear vorticity and the low-energy nuclear response. Towards the neutron drip line

    International Nuclear Information System (INIS)

    Papakonstantinou, P.; Athens Univ.; Wambach, J.; Ponomarev, V.Y.; Mavrommatis, E.

    2004-01-01

    The transition density and current provide valuable insight into the nature of nuclear vibrations. Nuclear vorticity is a quantity related to the transverse transition current. In this work, we study the evolution of the strength distribution, related to density fluctuations, and the vorticity strength distribution, as the neutron drip line is approached. Our results on the isoscalar, natural-parity multipole response of Ni isotopes, obtained by using a self-consistent Skyrme-Hartree-Fock+continuum RPA model, indicate that, close to the drip line, the low-energy response is dominated by L > 1 vortical transitions. (orig.)

  5. Vortical structures for nanomagnetic memory induced by dipole-dipole interaction in monolayer disks

    Science.gov (United States)

    Liu, Zhaosen; Ciftja, Orion; Zhang, Xichao; Zhou, Yan; Ian, Hou

    2018-05-01

    It is well known that magnetic domains in nanodisks can be used as storage units for computer memory. Using two quantum simulation approaches, we show here that spin vortices on magnetic monolayer nanodisks, which are chirality-free, can be induced by dipole-dipole interaction (DDI) on the disk-plane. When DDI is sufficiently strong, vortical and anti-vortical multi-domain textures can be generated simultaneously. Especially, a spin vortex can be easily created and deleted through either external magnetic or electrical signals, making them ideal to be used in nanomagnetic memory and logical devices. We demonstrate these properties in our simulations.

  6. Piecewise Potential Vorticity Inversion for Intense Extratropical Cyclones

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.

    2017-12-01

    Global climate models (GCMs) tend to simulate too few intense extratropical cyclones (ETCs) in the Northern Hemisphere (NH) under historic climate conditions. This bias may arise from the interactions of multiple drivers, including surface temperature gradients, latent heating in the lower troposphere, and the upper-level jet stream. Previous attempts to quantify the importance of these drivers include idealized model experiments or statistical approaches. The first method however cannot easily be implemented for a multi-GCM ensemble, and the second approach does not disentangle the interactions among drivers, nor does it prove causality. An alternative method that overcomes these limitations is piecewise potential vorticity inversion (PPVI). PPVI derives the wind and geopotential height fields by inverting potential vorticity (PV) for discrete atmospheric levels. Despite being a powerful diagnostic tool, PPVI has primarily been used to study the dynamics of individual events only. This study presents the first PPVI climatology for the 5% most intense NH ETCs that occurred from 1980 to 2016. Conducting PPVI to 3273 ETC tracks identified in ERA-Interim reanalysis, we quantified the contributions from 3 atmospheric layers to ETC intensity. The respective layers are the surface (1000 hPa), a lower atmospheric level (700-850 hPa) and an upper atmospheric level (100-500 hPa) that are associated with the contributions from surface temperature gradients, latent heating, and the jet stream, respectively. Results show that contributions are dominated by the lower level (40%), followed by the upper level (20%) and the surface (17%), while the remaining 23% are associated with the background flow. Contributions from the surface and the lower level are stronger in the western ocean basins owed to the presence of the warm ocean currents, while contributions from the upper level are stronger in the eastern basins. Vertical cross sections of ETC-centered composites show an

  7. Retroflection from slanted coastlines-circumventing the "vorticity paradox"

    Directory of Open Access Journals (Sweden)

    V. Zharkov

    2008-12-01

    Full Text Available The balance of long-shore momentum flux requires that the solution of zonally retroflecting currents involve ring shedding on the western side. An important aspect of the ring dynamics is the ring intensity α (analogous to the Rossby number, which reaches its maximum value of unity when the upstream potential vorticity (PV is zero. Friction leads to a slow-down and a decrease in α. The main difficulty is that the solution of the system of equations for conservation of mass and momentum of zonal currents leads to the conclusion that the ratio (Φ of the mass flux going into the rings and the total incoming mass flux is approximately 4α/(1+2α. This yields the "vorticity paradox" – only relatively weak rings (α≤1/2 could satisfy the necessary condition Φ≤1. Physically, this means, for example, that the momentum-flux of zero PV currents upstream is so high that, no matter how many rings are produced and, no matter what size they are, they cannot compensate for it.

    To avoid this paradox, we develop a nonlinear analytical model of retroflection from a slanted non-zonal coastline. We show that when the slant of coastline (γ exceeds merely 150, Φ does not reach unity regardless of the value of α. Namely, the paradox disappears even for small slants. Our slowly varying nonlinear solution does not only let us circumvent the paradox. It also gives a detailed description of the rings growth rate and the mass flux going into the rings as a function of time. For example, in the case of zero PV and zero thickness of the upper layer along the coastline, the maximal values of Φ can be approximately expressed as, 1.012+0.32exp(−γ/3.41−γ/225. Interestingly, for significant slants γ≥300, the rings reach a terminal size corresponding to a balance between the β-force and both the upstream and downstream momentum fluxes. This terminal size is unrelated to the ultimate

  8. Spontaneous formation of quantized vortices in Bose-Einstein condensates

    Science.gov (United States)

    Weiler, Chad Nathan

    Phase transitions abound in the physical world, from the subatomic length scales of quark condensation to the decoupling forces in the early universe. In the Bose-Einstein condensation phase transition, a gas of trapped bosonic atoms is cooled to a critical temperature. Below this temperature, a macroscopic number of atoms suddenly starts to occupy a single quantum state; these atoms comprise the Bose-Einstein condensate (BEC). The dynamics of the BEC phase transition are the focus of this dissertation and the experiments described here have provided new information on the details of BEC formation. New theoretical developments are proving to be valuable tools for describing BEC phase transition dynamics and interpreting new experimental results. With their amenability to optical manipulation and probing along with the advent of new microscopic theories, BECs provide an important new avenue for gaining insight into the universal dynamics of phase transitions in general. Spontaneous symmetry breaking in the system's order parameter may be one result of cooling through a phase transition. A potential consequence of this is the spontaneous formation of topological defects, which in a BEC appear as vortices. We experimentally observed and characterized the spontaneous formation of vortices during BEC growth. We attribute vortex creation to coherence length limitations during the initial stages of the phase transition. Parallel to these experimental observations, theory collaborators have used the Stochastic Gross-Pitaevski Equation formalism to simulate the growth of a condensate from a thermal cloud. The experimental and theoretical statistical results of the spontaneous formation of vortex cores during the growth of the condensate are in good quantitative agreement with one another, supporting our understanding of the dynamics of the phase transition. We believe that our results are also qualitatively consistent with the Kibble-Zurek mechanism, a universal model for

  9. Vorticity and energy diagnostics from the 2000 Cassini Jupiter flyby

    Science.gov (United States)

    Young, R. M. B.; Read, P. L.; Armstrong, D.; Lancaster, A.

    2011-10-01

    The Cassini spacecraft flew by Jupiter in December 2000, returning hundreds of images near closest approach [1]. We have been analysing the images spanning four Jupiter rotation periods at closest approach using automated cloud tracking software to obtain horizontal velocity fields. Our method has some advantages over other methods used for this purpose in that it accounts for both cloud deformation and rotation in addition to the standard translation. We shall present detailed horizontal velocity vectors and related vorticity and energy fields over four Jupiter rotation periods. We also intend to produce derived energy and turbulence diagnostics that will help us to understand the interplay between processes acting on different length scales. It may also be possible to relate these diagnostics to 'zonostrophic' jets and small-scale turbulence studied in the laboratory using the Coriolis rotating tank, work itself motivated by jets in giant planet atmospheres [2]. In the future we intend to combine velocity fields with temperature data to produce fully-3D velocity and potential vorticity fields for Jupiter's troposphere and stratosphere. The cloud tracking method is based on correlation image velocimetry (CIV) and was originally developed by the Coriolis facility team at LEGI, Université de Grenoble [3], where it is used to extract velocity fields from data obtained in their 13m diameter rotating tank experiment. The method has two stages. First, velocity vectors are calculated using translation only, where the velocity is defined by the highest correlation between two images taken 63 minutes apart of a small pixel patch moving within a larger search box. In the second stage the correlation analysis is repeated, but instead of just translation of the pixel patch, rotation and deformation (shearing, stretching) are taken into account. We use the first stage velocity field as an estimate of the velocity vector and search within a small window around this, including

  10. Nuclear intrinsic vorticity and its coupling to global rotations

    International Nuclear Information System (INIS)

    Mikhailov, I.N.; Quentin, P.; Samsoen, D.

    1997-01-01

    Important collective modes which are generally neglected within current descriptions of nuclear excitations in terms of fluid dynamics, are studied here. The intrinsic vortical modes are defined in a general way from which a specific mode, both simple and versatile enough, is particularly discussed. In this paper the main emphasis is made on the coupling of the chosen intrinsic mode to the rotation of the nuclear principal axes frame with respect to the laboratory system. A semi-quantal description of such excitations is proposed which is a generalization of the so-called routhian approach of global rotations. The results of a semiclassical treatment of the corresponding variational problem are presented. A simple mean field approach where the one-body potential is mocked up by a harmonic oscillator is discussed in a somewhat detailed fashion. The broad range of validity of a quadratic approximation for the collective energy in terms of the relevant angular velocities, is hinted from the previous simple model approach. Some general consequences of the latter are then drawn which have bearing on some possible fingerprints for the existence of such excitations, as the staggering phenomenon observed in gamma transition energies in some superdeformed states and the occurrence of identical rotational bands in neighbouring nuclei. (orig.)

  11. Nucleation and creep of vortices in superfluids and clean superconductors

    International Nuclear Information System (INIS)

    Sonin, E.B.

    1995-01-01

    The paper is devoted to vortex nucleation in uniform and nonuniform superflows in superfluids, and to creep of vortices trapped by twin boundaries and columnar defects in isotropic and anisotropic superconductors. The shape of a nuclated loop which yields the maximal nucleation rate is defined from the balance of the Lorentz and the line-tension forces. If the trapping energy is small, the contact angle at which the vortex line meets the plane of the twin-boundary or the axis of the columnar defect is also small. This may strongly enhance the rate of thermal nucleation and especially of quantum nucleation. In the analysis of quantum tunnelling it was assumed that the vortex has no mass and its motion is governed by the Magnus force, as expected for superfluids and very pure superconductors. Quantum nucleation rate from the traditional quasiclassical theory of macroscopic tunnelling is compared with the nucleation rate derived from the Gross-Pitaevskii theory of a weakly nonideal Bose-gas. (orig.)

  12. Hawkmoth flight performance in tornado-like whirlwind vortices.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L

    2014-06-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.

  13. Role of electric discharges in the generation of atmospheric vortices

    Energy Technology Data Exchange (ETDEWEB)

    Sinkevich, O. A., E-mail: oleg.sinkevich@itf.mpei.ac.ru [National Research University “MPEI,” (Russian Federation); Maslov, S. A., E-mail: sergm90@mail.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Gusein-zade, N. G., E-mail: ngus@mail.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2017-02-15

    The existing thermohydrodynamic and hydroelectromagnetic models of tornado are considered. The potentialities of the humid atmosphere as a heat engine generating air vortices are analyzed in detail. The ability of long-term atmospheric electric discharges to form a tornado funnel and create an initial twist of up to 10{sup –3}–10{sup –2} s{sup –1} in it are estimated. The possible effect of a lightning discharge on the initiation and evolution of the tornado is discussed. It is shown that the electric current flowing along the lightning channel can lead to helical instability and generation of a weak primary vortex. The channel formed in the atmosphere by a lightning discharge and the vortex motion of the parent thundercloud can enhance the primary vortex and promote its transformation into a tornado. Possible mechanisms of enhancement of the primary vortex created by a lightning discharge and the possibility of its transformation into a tornado in the postdischarge stage are discussed.

  14. Vortices generation in the reactive flow on the evaporative surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cha Ryeom; Lee, Chang Jin [Konkuk University, Seoul (Korea, Republic of)

    2015-02-15

    Vortices generation and flow dynamics are investigated by a numerical calculation with LES methodology on the evaporative surface including chemical reactions. For simplicity, fuel is radially injected from the surface in order to decouple pyrolysis of solid fuel from the governing equation and consideration of heat transfer balance. Nevertheless its simple treatment of chemical reactions and fuel pyrolysis, numerical results captured very fundamental understandings in terms of averaged temperature, velocity profile, and mixture fraction distribution. Results showed that a well-defined turbulent velocity profile at the inlet becomes twisted and highly wrinkled in the downstream reaching the maximum velocity at far above the surface, where the flame is located. And the thickness of boundary layer increases in the downstream due to the enhanced interaction of axial flow and mass injection from the surface. Also, chemical reaction appears highly active and partially concentrated along the plane where flow condition is in stoichiometric. In particular, flame front locates at the surface where mixture fraction Z equals to 0.07. Flame front severely wrinkles in the downstream by the interaction with turbulences in the flow. Partial reactions on the flame front contribute to produce hot spots periodically in the downstream attaining the max temperature at the center of each spot. This may take the role of additional unsteady heat generations and pressure perturbations in the downstream. Future study will focus on the evolution of hot spots and pressure perturbations in the post chamber of lab scale hybrid rocket motors.

  15. Assessing atmospheric bias correction for dynamical consistency using potential vorticity

    International Nuclear Information System (INIS)

    Rocheta, Eytan; Sharma, Ashish; Evans, Jason P

    2014-01-01

    Correcting biases in atmospheric variables prior to impact studies or dynamical downscaling can lead to new biases as dynamical consistency between the ‘corrected’ fields is not maintained. Use of these bias corrected fields for subsequent impact studies and dynamical downscaling provides input conditions that do not appropriately represent intervariable relationships in atmospheric fields. Here we investigate the consequences of the lack of dynamical consistency in bias correction using a measure of model consistency—the potential vorticity (PV). This paper presents an assessment of the biases present in PV using two alternative correction techniques—an approach where bias correction is performed individually on each atmospheric variable, thereby ignoring the physical relationships that exists between the multiple variables that are corrected, and a second approach where bias correction is performed directly on the PV field, thereby keeping the system dynamically coherent throughout the correction process. In this paper we show that bias correcting variables independently results in increased errors above the tropopause in the mean and standard deviation of the PV field, which are improved when using the alternative proposed. Furthermore, patterns of spatial variability are improved over nearly all vertical levels when applying the alternative approach. Results point to a need for a dynamically consistent atmospheric bias correction technique which results in fields that can be used as dynamically consistent lateral boundaries in follow-up downscaling applications. (letter)

  16. Improvement of a near wake model for trailing vorticity

    International Nuclear Information System (INIS)

    Pirrung, G R; Hansen, M H; Madsen, H A

    2014-01-01

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup of both lift and circulation in the attached flow region. The near wake model is validated against the test case of a finite wing with constant elliptical bound circulation. An unsteady simulation of the NREL 5 MW rotor shows the functionality of the coupled model

  17. Boundary effects and the onset of Taylor vortices

    Science.gov (United States)

    Rucklidge, A. M.; Champneys, A. R.

    2004-05-01

    It is well established that the onset of spatially periodic vortex states in the Taylor-Couette flow between rotating cylinders occurs at the value of Reynolds number predicted by local bifurcation theory. However, the symmetry breaking induced by the top and bottom plates means that the true situation should be a disconnected pitchfork. Indeed, experiments have shown that the fold on the disconnected branch can occur at more than double the Reynolds number of onset. This leads to an apparent contradiction: why should Taylor vortices set in so sharply at the Reynolds number predicted by the symmetric theory, given such large symmetry-breaking effects caused by the boundary conditions? This paper offers a generic explanation. The details are worked out using a Swift-Hohenberg pattern formation model that shares the same qualitative features as the Taylor-Couette flow. Onset occurs via a wall mode whose exponential tail penetrates further into the bulk of the domain as the driving parameter increases. In a large domain of length L, we show that the wall mode creates significant amplitude in the centre at parameter values that are O( L-2) away from the value of onset in the problem with ideal boundary conditions. We explain this as being due to a Hamiltonian Hopf bifurcation in space, which occurs at the same parameter value as the pitchfork bifurcation of the temporal dynamics. The disconnected anomalous branch remains O(1) away from the onset parameter since it does not arise as a bifurcation from the wall mode.

  18. Separation of cancer cells using vortical microfluidic flows.

    Science.gov (United States)

    Haddadi, Hamed; Naghsh-Nilchi, Hamed; Di Carlo, Dino

    2018-01-01

    Label-free separation of viable cancer cells using vortical microfluidic flows has been introduced as a feasible cell collection method in oncological studies. Besides the clinical importance, the physics of particle interactions with the vortex that forms in a wall-confined geometry of a microchannel is a relatively new area of fluid dynamics. In our previous work [Haddadi and Di Carlo, J. Fluid. Mech. 811 , 436-467 (2017)], we have introduced distinct aspects of inertial flow of dilute suspensions over cavities in a microchannel such as breakdown of the separatrix and formation of stable limit cycle orbits for finite size polystyrene particles. In this work, we extend our experiments to address the engineering-physics of cancer cell entrapment in microfluidic cavities. We begin by studying the effects of the channel width and device height on the morphology of the vortex, which has not been discussed in our previous work. The stable limit cycle orbits of finite size cancer cells are then presented. We demonstrate effects of the separatrix breakdown and the limit cycle formation on the operation of the cancer cell separation platform. By studying the flow of dilute cell suspensions over the cavities, we further develop the notion of the cavity capacity and the relative rate of cell accumulation as optimization criteria which connect the device geometry with the flow. Finally, we discuss the proper placement of multiple cavities inside a microchannel for improved cell entrapment.

  19. Kinematical vortices in double photoionization of helium by attosecond pulses

    Science.gov (United States)

    Djiokap, J. M. Ngoko; Meremianin, A. V.; Manakov, N. L.; Hu, S. X.; Madsen, L. B.; Starace, Anthony F.

    2017-07-01

    Two-armed helical vortex structures are predicted in the two-electron momentum distributions produced in double photoionization (DPI) of the He atom by a pair of time-delayed elliptically polarized attosecond pulses with opposite helicities. These predictions are based upon both a first-order perturbation theory analysis and numerical solutions of the two-electron, time-dependent Schrödinger equation in six spatial dimensions. The helical vortex structures originate from Ramsey interference of a pair of ionized two-electron wave packets, each having a total angular momentum of unity, and appear in the sixfold differential DPI probability distribution for any energy partitioning between the two electrons. The vortex structures are exquisitely sensitive to the time delay between the two pulses, their relative phase, their ellipticity, and their handedness; moreover, they occur in a variety of electron detection geometries. However, the vortex structures only occur when the angular separation β =cos-1(p̂1.p̂2) between the electron momenta p1 and p2 is held fixed. The vortex structures can also be observed in the fourfold differential DPI probability distribution obtained by averaging the sixfold differential probability over the emission angles of one electron. Such kinematical vortices are a general phenomenon that may occur in any ionization process, initiated by two time-delayed short pulses with opposite ellipticities, for particular detection geometries.

  20. Dust Concentration and Emission in Protoplanetary Disks Vortices

    Science.gov (United States)

    Sierra, Anibal; Lizano, Susana; Barge, Pierre

    2017-12-01

    We study the dust concentration and emission in protoplanetary disks vortices. We extend the Lyra-Lin solution for the dust concentration of a single grain size to a power-law distribution of grain sizes n(a)\\propto {a}-p. Assuming dust conservation in the disk, we find an analytic dust surface density as a function of the grain radius. We calculate the increase of the dust-to-gas mass ratio ɛ and the slope p of the dust size distribution due to grain segregation within the vortex. We apply this model to a numerical simulation of a disk containing a persistent vortex. Due to the accumulation of large grains toward the vortex center, ɛ increases by a factor of 10 from the background disk value, and p decreases from 3.5 to 3.0. We find the disk emission at millimeter wavelengths corresponding to synthetic observations with ALMA and VLA. The simulated maps at 7 mm and 1 cm show a strong azimuthal asymmetry. This happens because, at these wavelengths, the disk becomes optically thin while the vortex remains optically thick. The large vortex opacity is mainly due to an increase in the dust-to-gas mass ratio. In addition, the change in the slope of the dust size distribution increases the opacity by a factor of two. We also show that the inclusion of the dust scattering opacity substantially changes the disks images.

  1. Hawkmoth flight performance in tornado-like whirlwind vortices

    International Nuclear Information System (INIS)

    Ortega-Jimenez, Victor Manuel; Hedrick, Tyson L; Mittal, Rajat

    2014-01-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s −1 , respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack. (papers)

  2. Vortical flow structure of thermoacoustic oscillations in a closed tube

    International Nuclear Information System (INIS)

    Ishii, Katsuya; Kitagawa, Shyun; Ishigaki, Masahiro; Adachi, Shizuko

    2014-01-01

    Spontaneous thermoacoustic oscillations of a gas in a closed cylindrical tube are studied. Numerical simulations of the flow field in the tube on which a temperature gradient along the axis is imposed are performed by solving the axisymmetric compressible Navier–Stokes equations. The wall temperature of the hot part near both ends (300 K) and that of the cold part near the center (20 K) are fixed. The computations are done for various values of the length ratio ξ of the hot part to the cold part between 0.3 and 1.0, and steady oscillatory states are obtained. These states are divided into three groups according to the magnitude of the pressure amplitude. The state in each group has distinguished features of the flow field. We analyze the effect of vortices on the structure of the temperature distribution. The difference of the boundary layer thickness between the hot part and the cold part is shown to play an important role. (paper)

  3. Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian

    2016-01-01

    Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.

  4. Vortical flow structure of thermoacoustic oscillations in a closed tube

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Katsuya [Information Technology Center, Nagoya University, Furou-chou, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Kitagawa, Shyun [Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Furou-chou, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Ishigaki, Masahiro [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Adachi, Shizuko, E-mail: ishii@cc.nagoya-u.ac.jp [School of Business and Commerce, Tokyo International University, Matoba-kita, Kawagoe-shi, Saitama 350-1197 (Japan)

    2014-12-01

    Spontaneous thermoacoustic oscillations of a gas in a closed cylindrical tube are studied. Numerical simulations of the flow field in the tube on which a temperature gradient along the axis is imposed are performed by solving the axisymmetric compressible Navier–Stokes equations. The wall temperature of the hot part near both ends (300 K) and that of the cold part near the center (20 K) are fixed. The computations are done for various values of the length ratio ξ of the hot part to the cold part between 0.3 and 1.0, and steady oscillatory states are obtained. These states are divided into three groups according to the magnitude of the pressure amplitude. The state in each group has distinguished features of the flow field. We analyze the effect of vortices on the structure of the temperature distribution. The difference of the boundary layer thickness between the hot part and the cold part is shown to play an important role. (paper)

  5. Vortices in spin-orbit-coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.

    2011-01-01

    Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.

  6. Gauge theory vortices and their role in cosmology

    International Nuclear Information System (INIS)

    Yajnik, U.A.

    1986-01-01

    The Nielsen-Olesen model of strings is generalized to theories with spontaneously broken nonabelian gauge groups. Two new phenomena not possible in the abelian case are pointed out. One is that some of the symmetry generators of the original group may not have a global meaning. This can also happen for the generators of the unbroken subgroup. Another phenomenon is that the entire group of symmetries may not get restored in the core of the vortex. The vortices occurring in a realistic SO(10) Grand Unified Theory (GUT) are discussed in detail. The above mentioned phenomena are exemplified. The Weinberg-Salam symmetry generators are shown to be globally undefinable in some of the vortex sectors. The ansatz for a sector in which a scalar field is nonvanishing in the core of the Vortex is constructed. The subgroup of symmetries remaining unbroken in the core is determined. Fermionic zero-modes are found to occur in some of the vortex sectors of the SO(10) GUT model. The induced fermionic charge is computed using the accepted interpretation, and it is found to change from half integral during the Weinberg-Salam phase transition. It is argued that in this realistic example, an integral spectrum for the fermion number is intuitively more appealing. In the last chapter it is shown that strings could have played the important role of inducing a phase transition in the early universe. Their behavior is analogous to that of seeds in a supercooled medium

  7. Toroidal visco-resistive magnetohydrodynamic steady states contain vortices

    International Nuclear Information System (INIS)

    Bates, J.W.; Montgomery, D.C.

    1998-01-01

    Poloidal velocity fields seem to be a fundamental feature of resistive toroidal magnetohydrodynamic (MHD) steady states. They are a consequence of force balance in toroidal geometry, do not require any kind of instability, and disappear in the open-quotes straight cylinderclose quotes (infinite aspect ratio) limit. If a current density j results from an axisymmetric toroidal electric field that is irrotational inside a torus, it leads to a magnetic field B such that ∇x(jxB) is nonvanishing, so that the Lorentz force cannot be balanced by the gradient of any scalar pressure in the equation of motion. In a steady state, finite poloidal velocity fields and toroidal vorticity must exist. Their calculation is difficult, but explicit solutions can be found in the limit of low Reynolds number. Here, existing calculations are generalized to the more realistic case of no-slip boundary conditions on the velocity field and a circular toroidal cross section. The results of this paper strongly suggest that discussions of confined steady states in toroidal MHD must include flows from the outset. copyright 1998 American Institute of Physics

  8. Non-Abelian vortices in N=1* gauge theory

    International Nuclear Information System (INIS)

    Markov, V.; Marshakov, A.; Yung, A.

    2005-01-01

    We consider the N=1* supersymmetric SU(2) gauge theory and demonstrate that the Z2 vortices in this theory acquire orientational zero modes, associated with the rotation of magnetic flux inside SU(2) group, and turn into the non-Abelian strings, when the masses of all chiral fields become equal. These non-Abelian strings are not BPS-saturated. We study the effective theory on the string world sheet and show that it is given by two-dimensional non-supersymmetric O(3) sigma model. The confined 't Hooft-Polyakov monopole is seen as a junction of the Z2-string and anti-string, and as a kink in the effective world sheet sigma model. We calculate its mass and show that besides the four-dimensional confinement of monopoles, they are also confined in the two-dimensional theory: the monopoles stick to anti-monopoles to form the meson-like configurations on the strings they are attached to

  9. Potential vorticity dynamics in the Canadian Climate Centre GCM

    International Nuclear Information System (INIS)

    Koshyk, J.N.; McFarlane, N.

    1994-01-01

    The global distribution of Ertel potential vorticity (PV), simulated by the Canadian Climate Centre general circulation model (CCC GCM) is examined. An expression for PV in terms of an arbitrary vertical coordinate is formulated. This expression is used to calculate temporally averaged PV from the model temperature and wind fields. It is shown that a good approximation to the temporally averaged PV can be obtained from temporally averaged temperature and wind fields. An equation governing the time evolution of PV in the model vertical coordinate system is also derived. This equation is written in flux form and the associated flux is examined in a lower stratographic region of enhanced gravity-wave drag, above the Tibetan plateau. In this region, the southward transport of PV effected by gravity-wave drag is balanced to a large degree by the advection of PV northward. Finally, results from a recent experimental version of the CCC GCM, with an uppermost level at 1 mb, are used to examine PV dynamics associated with a spontaneous model stratospheric sudden warming. The warming is preceded by 2 successive large amplitude wavenumber 1 disturbances in the lower stratosphere. The second of these leads to splitting of the mid-stratospheric vortex into a double vortex pattern, as is clearly evident on maps of the 850K PV field during the warming period

  10. Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2007-01-01

    The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...

  11. The Born-Infeld vortices induced from a generalized Higgs mechanism.

    Science.gov (United States)

    Han, Xiaosen

    2016-04-01

    We construct self-dual Born-Infeld vortices induced from a generalized Higgs mechanism. Two specific models of the theory are of focused interest where the Higgs potential is either of a | ϕ | 4 - or | ϕ | 6 -type. For the | ϕ | 4 -model, we obtain a sharp existence and uniqueness theorem for doubly periodic and planar vortices. For doubly periodic solutions, a necessary and sufficient condition for the existence is explicitly derived in terms of the vortex number, the Born-Infeld parameter, and the size of the periodic lattice domain. For the | ϕ | 6 -model, we show that both topological and non-topological vortices are present. This new phenomenon distinguishes the model from the classical Born-Infeld-Higgs theory studied earlier in the literature. A series of results regarding doubly periodic, topological, and non-topological vortices in the | ϕ | 6 -model are also established.

  12. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    Science.gov (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  13. Automatic tracking of wake vortices using ground-wind sensor data

    Science.gov (United States)

    1977-01-03

    Algorithms for automatic tracking of wake vortices using ground-wind anemometer : data are developed. Methods of bad-data suppression, track initiation, and : track termination are included. An effective sensor-failure detection-and identification : ...

  14. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.

    Science.gov (United States)

    George, Joseph; Sujith, R I

    2009-10-01

    Chagelishvili et al. [Phys. Rev. Lett. 79, 3178 (1997)] discovered a linear mechanism of acoustic wave emergence from vorticity fluctuations in shear flows. This paper illustrates how this "nonresonant" phenomenon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is proposed in this paper. The correct "acoustic source" is identified and the reason for the abrupt nature of wave emergence is explained. The impact of viscous damping is also discussed.

  15. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics

    International Nuclear Information System (INIS)

    Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.

    2004-01-01

    We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed

  16. Nonautonomous Vortices in (2+1)-Dimensional Graded-Index Waveguide

    International Nuclear Information System (INIS)

    Lai Xian-Jing; Zhang Jie-Fang; Cai Xiao-Ou

    2015-01-01

    With the help of self-similarity transformation, we construct and study the nonautonomous vortices with different topological charges inside a planar graded-index nonlinear waveguide, analytically, and numerically. Although these vortices are approximate, they can reflect the real properties of self-similar optical beam during a short-term propagation. Existence of these autonomous vortices require delicate balances between the system parameters such as diffraction, nonlinearity, gain, and external potential. We are concerned with some special but interesting situations, and discussing the changes of the height, width, energy, and central position of the vortices as the increase of propagation distance. Moreover, we are also interested in the azimuthal modulational instability of the system, and comparing our prediction for the modulational instability growth rates to numerical results. (paper)

  17. Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory

    Science.gov (United States)

    Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George

    2018-04-01

    We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.

  18. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.; Mitsudharmadi, Hatsari; Winoto, S. H.; Lua, K. B.; Low, H. T.

    2016-01-01

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out

  19. Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation

    International Nuclear Information System (INIS)

    Demina, Maria V; Kudryashov, Nikolai A

    2012-01-01

    Stationary and translating relative equilibria of point vortices in the plane are studied. It is shown that stationary equilibria of any system containing point vortices with arbitrary choice of circulations can be described with the help of the Tkachenko equation. It is also obtained that translating relative equilibria of point vortices with arbitrary circulations can be constructed using a generalization of the Tkachenko equation. Roots of any pair of polynomials solving the Tkachenko equation and the generalized Tkachenko equation are proved to give positions of point vortices in stationary and translating relative equilibria accordingly. These results are valid even if the polynomials in a pair have multiple or common roots. It is obtained that the Adler–Moser polynomial provides non-unique polynomial solutions of the Tkachenko equation. It is shown that the generalized Tkachenko equation possesses polynomial solutions with degrees that are not triangular numbers. (paper)

  20. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2015-01-01

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed

  1. Time Accurate Euler Calculations of Vortical Flow over a Delta Wing in Rolling Motion

    National Research Council Canada - National Science Library

    Fritz, W

    2003-01-01

    .... An important component of the program were the Common Exercises (CE), which promoted the exchange of knowledge between the participating nations and aided the development of computational methods to predict vortical flows...

  2. Generation of the vorticity mode by sound in a Bingham plastic

    Science.gov (United States)

    Perelomova, Anna; Wojda, Pawel

    2011-10-01

    This study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode, in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describing interaction between different modes are derived. The attention is paid to the nonlinear effects in the field of intense sound. The resulting equations which describe dynamics of both sound and the vorticity mode apply to both periodic and aperiodic sound of any waveform. They use only instantaneous quantities and do not imply averaging over the sound period. The theory is illustrated by an example of acoustic force of vorticity induced in the field of a Gaussian sound beam. Some unusual peculiarities in both sound and the vorticity induced in its field as compared to a newtonian fluid, are discovered.

  3. Vortices in dam reservoir: A case study of Karun III dam

    Indian Academy of Sciences (India)

    Formation of vortices at power intakes is a challenging problem for hydraulic engineers. ... at a distance equal to the radius of the intake from the axis of rotation. ... demand for irrigation and drinking purposes and also power generation, Karun.

  4. Topologically Allowed Nonsixfold Vortices in a Sixfold Multiferroic Material: Observation and Classification

    KAUST Repository

    Cheng, Shaobo; Li, Jun; Han, Myung-Geun; Deng, Shiqing; Tan, Guotai; Zhang, Xixiang; Zhu, Jing; Zhu, Yimei

    2017-01-01

    We report structural transformation of sixfold vortex domains into two-, four-, and eightfold vortices via a different type of topological defect in hexagonal manganites. Combining high-resolution electron microscopy and Landau

  5. Blowup with vorticity control for a 2D model of the Boussinesq equations

    Science.gov (United States)

    Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H.

    2018-06-01

    We propose a system of equations with nonlocal flux in two space dimensions which is closely modeled after the 2D Boussinesq equations in a hyperbolic flow scenario. Our equations involve a vorticity stretching term and a non-local Biot-Savart law and provide insight into the underlying intrinsic mechanisms of singularity formation. We prove stable, controlled finite time blowup involving upper and lower bounds on the vorticity up to the time of blowup for a wide class of initial data.

  6. Dissecting zero modes and bound states on BPS vortices in Ginzburg-Landau superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, A. Alonso [Departamento de Matematica Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales,Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. Garcia [Departamento de Fisica, Universidad de Oviedo, Facultad de Ciencias,Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Fisica Fundamental, Universidad de Salamanca, Facultad de Ciencias,Plaza de la Merced, E-37008 Salamanca (Spain)

    2016-05-12

    In this paper the zero modes of fluctuation of cylindrically symmetric self-dual vortices are analyzed and described in full detail. These BPS topological defects arise at the critical point between Type II and Type I superconductors, or, equivalently, when the masses of the Higgs particle and the vector boson in the Abelian Higgs model are equal. In addition, novel bound states of Higss and vector bosons trapped by the self-dual vortices at their core are found and investigated.

  7. Physical modeling of vortical cross-step flow in the American paddlefish, Polyodon spathula

    Science.gov (United States)

    Brooks, Hannah; Haines, Grant E.; Lin, M. Carly

    2018-01-01

    Vortical cross-step filtration in suspension-feeding fish has been reported recently as a novel mechanism, distinct from other biological and industrial filtration processes. Although crossflow passing over backward-facing steps generates vortices that can suspend, concentrate, and transport particles, the morphological factors affecting this vortical flow have not been identified previously. In our 3D-printed models of the oral cavity for ram suspension-feeding fish, the angle of the backward-facing step with respect to the model’s dorsal midline affected vortex parameters significantly, including rotational, tangential, and axial speed. These vortices were comparable to those quantified downstream of the backward-facing steps that were formed by the branchial arches of preserved American paddlefish in a recirculating flow tank. Our data indicate that vortices in cross-step filtration have the characteristics of forced vortices, as the flow of water inside the oral cavity provides the external torque required to sustain forced vortices. Additionally, we quantified a new variable for ram suspension feeding termed the fluid exit ratio. This is defined as the ratio of the total open pore area for water leaving the oral cavity via spaces between branchial arches that are not blocked by gill rakers, divided by the total area for water entering through the gape during ram suspension feeding. Our experiments demonstrated that the fluid exit ratio in preserved paddlefish was a significant predictor of the flow speeds that were quantified anterior of the rostrum, at the gape, directly dorsal of the first ceratobranchial, and in the forced vortex generated by the first ceratobranchial. Physical modeling of vortical cross-step filtration offers future opportunities to explore the complex interactions between structural features of the oral cavity, vortex parameters, motile particle behavior, and particle morphology that determine the suspension, concentration, and

  8. Hydrodynamic response of fuel rod with longitudinal fins to upstream generated vortices

    International Nuclear Information System (INIS)

    Naot, D.; Oron, A.; Technion-Israel Inst. of Tech., Haifa. Dept. of Mechanical Engineering)

    1984-01-01

    The hydrodynamic response of turbulent channel flow to upstream generated vortices was numerically simulated for fuel element with longitudinal cooling fins. Turbulence is modelled by an algebraic stress model and an energy-dissipation model. The developing flow is solved using a parabolic pressure correction algorithm. The decay of the initial vortices in non-circular sub-channel in the presence of geometry driven secondary currents is described and the uncertainty in the local turbulent shear stresses is discussed. (orig.)

  9. A synergetic treatment of the vortices behaviour of a plasma with viscosity

    International Nuclear Information System (INIS)

    Vo Hong Anh; Nguyen Tien Dung.

    1992-09-01

    The known system of nonlinear partial differential equations (PDE) describing vortical motions of an ideal electron-ion plasma with viscosity in the presence of a slightly inhomogeneous magnetic field is reduced to a Lorentz type system of 3 ordinary differential equations (ODE) the numerical solution of which with a set of a values for real plasma physical parameters shows the occurrence of a state with strange attractors that means the beginning of the vortices formation as an essential nonlinearity effect. (author)

  10. Fractional Josephson vortices at YBa$_2$Cu$_3$O$_{7-x}$ grain boundaries

    OpenAIRE

    Mints, R. G.; Papiashvili, Ilya

    2001-01-01

    We report numerical simulations of magnetic flux patterns in asymmetric 45$^{\\circ}$ [001]-tilt grain boundaries in YBa$_2$Cu$_3$O$_{7-x}$ superconducting films. The grain boundaries are treated as Josephson junctions with the critical current density $j_c(x)$ alternating along the junctions. We demonstrate the existence of Josephson vortices with fractional flux quanta for both periodic and random $j_c(x)$. A method is proposed to extract fractional vortices from experimental flux patterns.

  11. Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth

    International Nuclear Information System (INIS)

    Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R.

    2011-01-01

    The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.

  12. The influence of streamwise vortices on turbulent heat transfer in rectangular ducts with various aspect ratios

    International Nuclear Information System (INIS)

    Choi, Hang Seok; Park, Tae Seon

    2013-01-01

    Highlights: ► With changing aspect ratio, the effect of secondary flows on the turbulent heat transfer is scrutinized by a LES. ► The conditional sampling technique of instantaneous near-wall streamwise vortices is developed. ► Clockwise and counter-clockwise rotating streamwise vortices are sampled and discussed with the wall heat transfer. ► The hot-sweep motions of CW and CCW vortices clearly appear with increasing aspect ratio. -- Abstract: The effect of aspect ratio of rectangular duct on the turbulent flow and heat transfer is very important for its engineering applications. But the turbulent thermal fields have not been fundamentally scrutinized in spite of its engineering significance especially for cooling device. Hence, in the present study, large eddy simulation is applied to the turbulent flow and heat transfer in rectangular ducts with varying aspect ratio. The turbulent statistics of the flow and thermal quantities are calculated and the characteristics of wall Nusselt number are investigated for each rectangular duct. Especially, to scrutinize near-wall streamwise vortices, a conditional sampling technique is developed and adopted. Clockwise and counter-clockwise rotating streamwise vortices are sampled and the probability density function of the vortex circulation Reynolds number and wall Nusselt number are calculated. From the results, the time-averaged secondary flow caused by instantaneous vortical motions has a great effect on the heat and momentum transport of the flow in the rectangular ducts. Hence, the wall Nusselt number is enhanced near the downwash flow region of the secondary flow. However, with increasing the aspect ratio, the effects of the hot-sweep flow of the clockwise and counter-clockwise rotating vortices become equally dominant near the wall normal bisector of the ducts. During time averaging process, these two counter-rotating vortices are canceled out each other diminishing a secondary flow but they still enhance the

  13. Geostrophic tripolar vortices in a two-layer fluid: Linear stability and nonlinear evolution of equilibria

    Science.gov (United States)

    Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.

    2017-03-01

    We investigate equilibrium solutions for tripolar vortices in a two-layer quasi-geostrophic flow. Two of the vortices are like-signed and lie in one layer. An opposite-signed vortex lies in the other layer. The families of equilibria can be spanned by the distance (called separation) between the two like-signed vortices. Two equilibrium configurations are possible when the opposite-signed vortex lies between the two other vortices. In the first configuration (called ordinary roundabout), the opposite signed vortex is equidistant to the two other vortices. In the second configuration (eccentric roundabouts), the distances are unequal. We determine the equilibria numerically and describe their characteristics for various internal deformation radii. The two branches of equilibria can co-exist and intersect for small deformation radii. Then, the eccentric roundabouts are stable while unstable ordinary roundabouts can be found. Indeed, ordinary roundabouts exist at smaller separations than eccentric roundabouts do, thus inducing stronger vortex interactions. However, for larger deformation radii, eccentric roundabouts can also be unstable. Then, the two branches of equilibria do not cross. The branch of eccentric roundabouts only exists for large separations. Near the end of the branch of eccentric roundabouts (at the smallest separation), one of the like-signed vortices exhibits a sharp inner corner where instabilities can be triggered. Finally, we investigate the nonlinear evolution of a few selected cases of tripoles.

  14. LONG-TERM EVOLUTION OF PLANET-INDUCED VORTICES IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Fu, Wen; Li, Hui; Li, Shengtai; Lubow, Stephen

    2014-01-01

    Recent observations of large-scale asymmetric features in protoplanetary disks suggest that large-scale vortices exist in such disks. Massive planets are known to be able to produce deep gaps in protoplanetary disks. The gap edges could become hydrodynamically unstable to the Rossby wave/vortex instability and form large-scale vortices. In this study we examine the long-term evolution of these vortices by carrying out high-resolution two-dimensional hydrodynamic simulations that last more than 10 4 orbits (measured at the planet's orbit). We find that the disk viscosity has a strong influence on both the emergence and lifetime of vortices. In the outer disk region where asymmetric features are observed, our simulation results suggest that the disk viscous α needs to be low, ∼10 –5 -10 –4 , to sustain vortices to thousands and up to 10 4 orbits in certain cases. The chance of finding a vortex feature in a disk then decreases with smaller planet orbital radius. For α ∼ 10 –3 or larger, even planets with masses of 5 M J will have difficulty either producing or sustaining vortices. We have also studied the effects of different disk temperatures and planet masses. We discuss the implications of our findings on current and future protoplanetary disk observations

  15. An efficient and general numerical method to compute steady uniform vortices

    Science.gov (United States)

    Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.

    2011-07-01

    Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced "IVI diagram" stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.

  16. "Submesoscale Soup" Vorticity and Tracer Statistics During the Lateral Mixing Experiment

    Science.gov (United States)

    Shcherbina, A.; D'Asaro, E. A.; Lee, C. M.; Molemaker, J.; McWilliams, J. C.

    2012-12-01

    A detailed view of upper-ocean velocity, vorticity, and tracer statistics was obtained by a unique synchronized two-vessel survey in the North Atlantic in winter 2012. In winter, North Atlantic Mode water region south of the Gulf Stream is filled with an energetic, homogeneous, and well-developed submesoscale turbulence field - the "submesoscale soup". Turbulence in the soup is produced by frontogenesis and the surface layer instability of mesoscale eddy flows in the vicinity of the Gulf Stream. This region is a convenient representation of the inertial range of the geophysical turbulence forward cascade spanning scales of o(1-100km). During the Lateral Mixing Experiment in February-March 2012, R/Vs Atlantis and Knorr were run on parallel tracks 1 km apart for 500 km in the submesoscale soup region. Synchronous ADCP sampling provided the first in-situ estimates of full 3-D vorticity and divergence without the usual mix of spatial and temporal aliasing. Tracer distributions were also simultaneously sampled by both vessels using the underway and towed instrumentation. Observed vorticity distribution in the mixed layer was markedly asymmetric, with sparse strands of strong anticyclonic vorticity embedded in a weak, predominantly cyclonic background. While the mean vorticity was close to zero, distribution skewness exceeded 2. These observations confirm theoretical and numerical model predictions for an active submesoscale turbulence field. Submesoscale vorticity spectra also agreed well with the model prediction.

  17. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    International Nuclear Information System (INIS)

    Olson Reichhardt, C. J.; Wang, Y. L.; Argonne National Laboratory; Xiao, Z. L.; Northern Illinois University, DeKalb, IL

    2016-01-01

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction of the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.

  18. Analysis of vorticity dynamics for hump characteristics of a pump turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyou; Gong, Ruzhi; Wang, Hongjie; Han, Lei; Wei, Xianzhu; Qin, Daqing [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China)

    2016-08-15

    Conventional parameters based on CFD methodology for the investigation on hump characteristics of a pump turbine cannot reflect the dynamic interaction mechanism between the runner and the fluid. This research presents a dynamic interaction mechanism of a pump turbine operating in the hump region. First, vorticity dynamic parameters were obtained based on the theory of vorticity dynamics. Second, 3-D unsteady flow simulations were performed in a full pump turbine model using the SST k-ω turbulence model, and numerical results have a good agreement with the experiments. Then, analysis was carried out to determine the relation between the vorticity dynamic parameters and hump characteristics. The results indicate that the theory of vorticity dynamics has an advantage in evaluating the dynamic performance of a pump turbine. The energy transfer between the runner and the fluid is through vorticity dynamic parameters-pressure and friction terms, in which the pressure term accounts for the most. Furthermore, vortex generation mainly results from the skin friction. Combining vorticity dynamic analysis with the method of Q-criterion indicates that hump characteristics are related to the reduction of the surface normal pressure work and vortex motion on the suction surfaces close to the leading edges in the runner, and the increase of skin friction work in the stay-guide vanes.

  19. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

    Science.gov (United States)

    Zhao, Liang; Deng, Xinyan; Sane, Sanjay P

    2011-09-01

    In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

  20. The characterisation of blood rotation in a human heart chamber based on statistical analysis of vorticity maps

    Science.gov (United States)

    Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Stephen G.; Sanders, Prashanthan; Mazumdar, Jagannath; Abbott, Derek

    2008-12-01

    Modelling of non-stationary cardiac structures is complicated by the complexity of their intrinsic and extrinsic motion. The first known study of haemodynamics due to the beating of heart was made by Leonardo Da Vinci, giving the idea of fluid-solid interaction by describing how vortices develop during cardiac structural interaction with the blood. Heart morphology affects in changes of cardio dynamics during the systolic and diastolic phrases. In a chamber of the heart, vortices are discovered to exist as the result of the unique morphological changes of the cardiac chamber wall by using flow-imaging techniques such as phase contrast magnetic resonance imaging. The first part of this paper attempts to quantify vortex characteristics by means of calculating vorticity numerically and devising two dimensional vortical flow maps. The technique relies on determining the properties of vorticity using a statistical quantification of the flow maps and comparison of these quantities based on different scenarios. As the characteristics of our vorticity maps vary depending on the phase of a cardiac cycle, there is a need for robust quantification method to analyse vorticity. In the second part of the paper, the approach is then utilised for examining vortices within the human right atrium. Our study has shown that a proper quantification of vorticity for the flow field can indicate the strength and number of vortices within a heart chamber.

  1. Magnetic studies of vortices in YBaCuO crystals

    Science.gov (United States)

    Obaidat, Ihab M.

    1998-10-01

    Rotational Magnetization-vector (RMV) measurements (where a fixed field H is applied parallel to the sample disk plane which was rotated about the perpendicular to the plane in steps to 360o) revealed that there is a rotational steady state that is achieved after an initial sample rotation of about 180o. The vortex flux density vector B inside the superconductor typically was found to consist of two different components: a rotational component B R, that rotates rigidly with the sample, and frictional component B F, which stays at a fixed angle (θ F) relative H, thus tuming frictionally relative to the sample. Moreover, B R diminishes while B F grows gradually in size with increasing H, which evidences a broad distribution in the strength of pinning torques on different vortices. The pinning torque per vortex (τ P) in the ab plane is found to have a broad distribution in strength, similar to previous findings for polycrystalline samples of YBCO and (Ba0.57K0.43BiO3) BKBO. Simple modeling shows that the τ P distribution function rises linearly with increasing τ P and then drops rapidly to zero. The peak value of τ P//mu (μ being the vortex moment) defines H P, a characteristic pinning field per vortex, and it was found to decrease with increasing temperature (T) in a distinctly two-component manner. The strongly temperature dependent H P component in YBCO is suggested to derive from vortex pinning by oxygen vacancies. Magnetization-vector measurements were also made on a YBCO crystal, initially cooled to 4.2 K in an external field H e parallel to the c axis. With H e fixed, the crystal was then tilted, such that the angle θ between the c axis and H e was gradually raised to 90o and lowered back to zero (the TILT experiment). Our results revealed that all the vortex flux remains parallel to the c axis until θ reaches a threshold value (close to 15o for H e /le 500 Oe). As θ exceeds this value, the vortex flux in the ab plane rises rapidly from zero, and it

  2. Spino ether and its vortices: leptons and hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, R [College of Engineering, Univ. of Alabama, Alabama (USA)

    1977-03-01

    According to the theory advanced by the author, space is occupied by a spino ether lattice. Where no spino lattice exists, there are black holes. The spino is a kind of massive neutrino with a rest mass of about 7.39x10/sup -47/g and a diameter of 4.56x10/sup -34/cm. The distance between spinos in the spino lattice is about 2x10/sup -10/cm. Spino ether is ubiquitous in all matter, pervades atoms and their nuclei and penetrates matter with no resistance. In fact, hadrons and leptons are shown to be vortices of the spino ether. About one km/sup 3/ of space contains spino ether having a mass equal to 10/sup 80/ baryons, equivalent to the total mass of our universe. If the distances between spinos equaled their diameters, 4.56x10/sup -34/cm instead of 2x10/sup -10/cm, then the diameter of the mass equivalent to our universe would be about 2cm. This is in agreement with the size of the premordial universe, before its explosion, as calculated earlier by other theories. It is conjectured that explosions of energy and mass in space are more frequent on a smaller scale than those in the universe, for example novas, or even on a still smaller scale usually associated with the birth of different nuclei. The abundance of iron in the solar corona, on the surface of Mars, and in the Martin sky appears to be due to hadron formation from space itself.

  3. Diabatic modification of potential vorticity in extratropical cyclones

    Science.gov (United States)

    Chagnon, J.

    2012-12-01

    Representation of diabatic processes and their impact on extratropical cyclones is a likely source of skill degradation in operational numerical weather prediction systems. This investigation examines the source, structure, and magnitude of diabatic potential vorticity (PV) anomalies generated by small-scale and parameterized processes in both mesoscale and global model simulations of extratropical cyclones in the North Atlantic. Simulations of several cold season extratropical storms have been performed using the Met Office Unified Model. Several cases simulated were drawn from the DIAbatic influences on Mesoscale structures in ExTratropical cyclones (DIAMET) observational campaign during which the National Environmental Research Council (NERC) Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft was deployed. The influence of specific modelled processes was quantified using a set of tracers, each of which represents a history of the PV contributed by a specific segment of the model (e.g., boundary-layer scheme, cloud microphysics, convection scheme , radiation, etc.). This presentation will highlight several differences and similarities in high and low resolution simulations. For example, in high resolution simulations, tropopause folds are sharpened by a tripolar PV anomaly arising from the convection, boundary-layer, and microphysics schemes; this structure is not present in coarser global model simulations. However, a dipole of PV straddling the tropopause is diagnosed in both coarse- and fine-resolution simulations. The PV dipole, which is strongly influenced by long-wave radiative cooling, increases the gradient of PV near the tropopause and therefore modifies the characteristics Rossby wave propagation and moist baroclinic wave growth.

  4. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  5. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    Science.gov (United States)

    Lentink, David; Dickinson, Michael H

    2009-08-01

    . We calculated the Rossby number from single-wing aspect ratios of over 300 insects, birds, bats, autorotating seeds, and pectoral fins of fish. We found that, on average, wings and fins have a Rossby number close to that of flies (Ro=3). Theoretically, many of these animals should therefore be able to generate a stable LEV, a prediction that is supported by recent findings for several insects, one bat, one bird and one fish. This suggests that force augmentation through stably attached (leading edge) vortices could represent a convergent solution for the generation of high fluid forces over a quite large range in size.

  6. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann; Mitsudharmadi, Hatsari; Budiman, Alexander C.; Winoto, Sonny H.

    2016-01-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  7. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann

    2016-11-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  8. Experimental Analysis of the Vorticity and Turbulent Flow Dynamics of a Pitching Airfoil at Realistic Flight Conditions

    National Research Council Canada - National Science Library

    Bowersox, Rodney D; Sahoo, Dipankar

    2007-01-01

    The primary objective of this research proposal was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions...

  9. Effect of electrical field on the quantized vortices in He II

    International Nuclear Information System (INIS)

    Natsik, V.D.

    2007-01-01

    Electrical polarization and interaction of quantized vortices with electrical field in superfluid Bose fluid are studied. Two types of the vortices polarization are considered; both of them are caused by action of centrifugal forces upon the fluid atoms at their azimuthal motion around the vortex line. Firstly, atoms obtain dipole moments (internal polarization when external polarization when external field is absent) and a nonuniform symmetrical distribution of the polarization density arises; at that, a vortex has no integral dipole moment but each element of the vortex line bears a quadrupole moment. Secondly, action of the centrifugal forces leads to a nonuniform distribution of the atomic density around the vortex line; therefore, the polarization density of the fluid in the external electrical field is also nonuniform in the vicinity of this line and each isolated element of the vortex line obtains dipole moment proportional to the field magnitude (inductive polarization). Analytical expressions for the polarization density around the straight and circular vortex lines are obtained and the effective dipole and quadrupole moments of the vortices are determined. A distribution of the ponderomotive forces acting on the superfluid fluid with quantized vortices in the external electrical field has been analyzed and the caused by field additives to the energy of the straight and circular vortices are found. Numerical estimations of the effects considered are given for He II

  10. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.

    2016-01-05

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ = 2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the “mushroom-like” vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.

  11. Further determination of the characteristics of magnetospheric plasma vortices with Isee 1 and 2

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Birn, J.; Bame, S.J.; Asbridge, J.R.; Paschmann, G.; Sckopke, N.; Haerendel, G.

    1981-01-01

    Further studies of the vortices in magnetospheric plasma flow with the Los Alamos Scientific Laboratory/Max-Planck-Institut (LASL/MPI) fast plasma experiment on Isee 1 and 2 have revealed that the pattern of vortical flow has a wavelength of approx.20-40 R/sub E/ and moves tailward through the magnetosphere at speed of several hundred kilometers per second. The tendency toward vorticity pervades the total breadth of the plasma sheet tailward of the dawn-dusk meridian. The sense of rotation of the plasma flow (as viewed from above the ecliptic plane) is clockwise in the morningside of the plasma sheet and counterclockwise in the eveningside. The sense of rotation in the morning and evening boundary layers is reversed from that in the contiguous regions of the plasma sheet. The occurrence of vortical flow is independent of the level of geomagnetic activity but is associated with long-period geomagnetic pulsations. We believe that the source of the vortical motion is a Kelvin-Helmholtz instability of the plasma boundary layer's inner surface (i.e., the interface between the plasma sheet and the boundary layer) that has recently been proposed by Sonnerup [1980

  12. Global reconnection topology as inferred from plasma observations inside Kelvin-Helmholtz vortices

    Directory of Open Access Journals (Sweden)

    M. B. Bavassano Cattaneo

    2010-04-01

    Full Text Available During a long lasting period of northward interplanetary magnetic field and high solar wind speed (above 700 km/s, the Cluster spacecraft go across a number of very large rolled-up Kelvin-Helmholtz (KH vortices at the dusk magnetopause, close to the terminator. The peculiarity of the present event is a particular sequence of ions and electrons distribution functions observed repeatedly inside each vortex. In particular, whenever Cluster crosses the current layer inside the vortices, multiple field-aligned ion populations appear, suggesting the occurrence of reconnection. In addition, the ion data display a clear velocity filter effect both at the leading and at the trailing edge of each vortex. This effect is not present in the simultaneous electron data. Unlike other KH studies reported in the literature in which reconnection occurs within the vortices, in the present event the observations are not compatible with local reconnection, but are accounted for by lobe reconnection occurring along an extended X-line at the terminator in the Southern Hemisphere. The reconnected field lines "sink" across the magnetopause and then convect tailward-duskward where they become embedded in the vortices. Another observational evidence is the detected presence of solar wind plasma on the magnetospheric side of the vortices, which confirms unambiguously the occurrence of mass transport across the magnetopause already reported in the literature. The proposed reconnection scenario accounts for all the observational aspects, regarding both the transport process and the kinetic signatures.

  13. Multi-dimensional upwinding-based implicit LES for the vorticity transport equations

    Science.gov (United States)

    Foti, Daniel; Duraisamy, Karthik

    2017-11-01

    Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.

  14. Vorticity amplification and its effects on flow separation from simplified landing gear wheels

    Science.gov (United States)

    McCarthy, Philip; Feltham, Graham; Ekmekci, Alis

    2015-11-01

    In the presence of weak streams of inbound vorticity, the stagnation region of bluff bodies have been shown to support mechanisms for the collection and amplification of said vorticity into large-scale, discrete vortex structures. For extremely low aspect ratio cylinders, such as those which represent simplified aircraft landing gear wheels, these discrete vortex structures tilt around the sides of the geometry, orientating their axes in the streamwise direction. Once the oncoming vorticity is collected and amplified into discrete vortices, they are shed from the stagnation region and this cycle repeats itself periodically. The present work investigates the effect of the vortex tilting and subsequent shedding on the behaviour of the outboard side flow separation region present on simplified landing gear wheels. Experiments were conducted in a recirculating-type water tunnel on a two-wheel landing gear model, with the upstream vorticity source being a 100 µm platinum wire. Hydrogen bubble visualisations were first used for qualitative understanding of the flow, accompanied by 2D-PIV for vortex identification and tracking of the growth and movement of the observed structures. Finally, the side separation bubble has been characterised using 3D velocity measurements (using V3V). The authors would like to thank Bombardier, Messier-Bugatti-Dowty and NSERC for their support for this project.

  15. On simulation of no-slip condition in the method of discrete vortices

    Science.gov (United States)

    Shmagunov, O. A.

    2017-10-01

    When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.

  16. Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

  17. Composite optical vortices in noncollinear Laguerre–Gaussian beams and their propagation in free space

    International Nuclear Information System (INIS)

    Chen Ke; Liu Pusheng; Lü Baida

    2008-01-01

    Taking two Laguerre—Gaussian beams with topological charge l = ± 1 as an example, this paper studies the composite optical vortices formed by two noncollinear Laguerre—Gaussian beams with different phases, amplitudes, waist widths, off-axis distances, and their propagation in free space. It is shown by detailed numerical illustrative examples that the number and location of composite vortices at the waist plane are variable by varying the relative phase β, amplitude ratio η, waist width ratio ζ, or off-axis distance ratio μ. The net topological charge l net is not always equal to the sum l sum of charges of the two component beams. The motion, creation and annihilation of composite vortices take place in the free-space propagation, and the net charge during the propagation remains unchanged and equals to the net charge at the waist plane

  18. Numerical solutions of the linearized Euler equations for unsteady vortical flows around lifting airfoils

    Science.gov (United States)

    Scott, James R.; Atassi, Hafiz M.

    1990-01-01

    A linearized unsteady aerodynamic analysis is presented for unsteady, subsonic vortical flows around lifting airfoils. The analysis fully accounts for the distortion effects of the nonuniform mean flow on the imposed vortical disturbances. A frequency domain numerical scheme which implements this linearized approach is described, and numerical results are presented for a large variety of flow configurations. The results demonstrate the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. The results show that mean flow distortion can have a very strong effect on the airfoil unsteady response, and that the effect depends strongly upon the reduced frequency, Mach number, and gust wave numbers.

  19. Vortices and domain walls: 'Wormholes' in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bessarab, P F [St. Petersburg State University, Universitetskaya nab. 7/9, 199164 St. Petersburg (Russian Federation); Radievsky, A V, E-mail: van_der_paul@yahoo.co.u [Immanuel Kant State University of Russia, Nevskogo str. 14, 236016 Kaliningrad (Russian Federation)

    2010-01-15

    In the framework of the 2D and 3D time-dependent Ginzburg-Landau model we study superconductors with multicomponent order parameter (d-pairing). We argue that topological defects inside the sample do affect its thermodynamic properties such as hysteresis loop, susceptibility, etc. Along with earlier known topological defects such as Abrikosov vortices, domain walls (DWs) which separate different magnetic phases and even vortices inside the DW, we found an interesting combination of DWs and vortices. Namely we show that equivalent magnetic phases may be linked together with a vortex going through the other magnetic phase. This configuration may correspond to a stable state even in a zero external magnetic field. We also mention that this configuration is topologically similar to the 'wormholes' in the quantum gravity.

  20. Chiral vortical effect from the compactified D4-branes with smeared D0-brane charge

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao; Chen, Yidian [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); University of Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China)

    2017-03-15

    By using the boundary derivative expansion formalism of fluid/gravity correspondence, we study the chiral vortical effect from the compactified D4-branes with smeared D0-brane charge. This background corresponds to a strongly coupled, nonconformal relativistic fluid with a conserved vector current. The presence of the chiral vortical effect is induced by the addition of a Chern-Simons term in the bulk action. Except that the non-dissipative anomalous viscous coefficient and the sound speed rely only on the chemical potential, most of the other thermal and hydrodynamical quantities of the first order depend both on the temperature and the chemical potential. According to our result, the way that the chiral vortical effect coefficient depends on the chemical potential seems irrelevant with whether the relativistic fluid is conformal or not. Stability analysis shows that this anomalous relativistic fluid is stable and the doping of the smeared D0-brane charge will slow down the sound speed.

  1. Phase locking of moving magnetic vortices in bridge-coupled nanodisks

    International Nuclear Information System (INIS)

    Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Liu, Qingfang; Wang, Jianbo

    2015-01-01

    In this paper, phase locking dynamics of vortices induced by spin transfer torque in bridge-coupled nanodisks are studied by micromagnetic simulations. In the presence of the bridge coupling, the required time for the phase locking is dramatically reduced, and the phase difference between the two vortices keeps at a nonzero value after the phase locking. Moreover, the phase difference is affected significantly by bridge coupling, Oersted field distribution, nanodisk size, as well as in-plane bias magnetic field. In addition, the coupled gyrotropic frequency of vortices depends linearly on the perpendicular magnetic field. This systematic study of phase locking parameters, especially the phase difference, is important for the applications of vortex-based spin-torque nano-oscillators

  2. Phase locking of moving magnetic vortices in bridge-coupled nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Jianbo [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2015-05-07

    In this paper, phase locking dynamics of vortices induced by spin transfer torque in bridge-coupled nanodisks are studied by micromagnetic simulations. In the presence of the bridge coupling, the required time for the phase locking is dramatically reduced, and the phase difference between the two vortices keeps at a nonzero value after the phase locking. Moreover, the phase difference is affected significantly by bridge coupling, Oersted field distribution, nanodisk size, as well as in-plane bias magnetic field. In addition, the coupled gyrotropic frequency of vortices depends linearly on the perpendicular magnetic field. This systematic study of phase locking parameters, especially the phase difference, is important for the applications of vortex-based spin-torque nano-oscillators.

  3. Imaging the Statics and Dynamics of Superconducting Vortices and Antivortices Induced by Magnetic Microdisks

    Directory of Open Access Journals (Sweden)

    R. B. G. Kramer

    2011-10-01

    Full Text Available If a magnet of microscopic dimensions is brought in close proximity to a superconductor, the quantized nature of their interaction due to the creation of flux quanta in the superconducting system becomes noticeable. Herein, we directly image, via scanning Hall microscopy, the vortex-antivortex pairs in a superconducting film created by micromagnets. The number of antivortices at equilibrium conditions can be changed either by tuning the magnetic moment of the magnets or by annihilation with externally induced vortices. We demonstrate that small ac field excitations shake the antivortices sitting next to the micromagnets whereas no sizable motion is observed for the vortices sitting on top of the magnets, clearly revealing the different mobility of these two vortex species. A metastable state, which is obtained by applying a field after the system has been cooled down below the superconducting transition, shows a complex graded distribution of coexisting vortices and antivortices forming an intertwined critical state.

  4. Shear flow driven counter rotating vortices in an inhomogeneous dusty magnetoplasma

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.; Ijaz, Aisha; Haque, Q.

    2014-02-01

    The coupling of Shukla-Varma (SV) and convective cell modes is discussed in the presence of non-Boltzmannian electron response and parallel equilibrium shear flow. In the linear case, a new dispersion relation is derived and analyzed. It is found that the coupled SV and convective cell modes destabilize in the presence of electron shear flow. On the other hand, in the nonlinear regime, it is shown that Shukla-Varma mode driven counter rotating vortices can be formed for the system under consideration. It is found that these vortices move slowly by comparison with the ion acoustic or electron drift-wave driven counter rotating vortices. The relevance of the present investigation with regard to space plasmas is also pointed out.

  5. Vorticity generation and wake transition for a translating circular cylinder: Wall proximity and rotation effects

    DEFF Research Database (Denmark)

    Hourigan, K.; Rao, A.; Brøns, Morten

    2013-01-01

    The wake transitions of generic bluff bodies, such as a circular cylinder, near a wall are important because they provide understanding of different transition paths towards turbulence, and give some insight into the effect of surface modifications on the flow past larger downstream structures......-annihilate with opposite-signed vorticity, and can be stored at a free surface, thus conserving the total vorticity, or circulation. Vorticity generation, diffusion and storage are demonstrated for a cylinder translating and rotating near a wall. The wake characteristics and the wake transitions are shown to change...... dramatically under the influence of cylinder rotation and wall proximity. At gaps between the cylinder and the wall of less than approximately 0.25 cylinder diameter, the wake becomes three dimensional prior to becoming unsteady, while for larger gaps the initial transition is to an unsteady two...

  6. Two dimensional electron transport in disordered and ordered distributions of magnetic flux vortices

    International Nuclear Information System (INIS)

    Nielsen, M.; Hedegaard, P.

    1994-04-01

    We have considered the conductivity properties of a two dimensional electron gas (2DEG) in two different kinds of inhomogeneous magnetic fields, i.e. a disordered distribution of magnetic flux vortices, and a periodic array of magnetic flux vortices. The work falls in two parts. In the first part we show how the phase shifts for an electron scattering on an isolated vortex, can be calculated analytically, and related to the transport properties through the differential cross section. In the second part we present numerical results for the Hall conductivity of the 2DEG in a periodic array of flux vortices found by exact diagonalization. We find characteristic spikes in the Hall conductance, when it is plotted against the filling fraction. It is argued that the spikes can be interpreted in terms of ''topological charge'' piling up across local and global gaps in the energy spectrum. (au) (23 refs.)

  7. Quantification of topological changes of vorticity contours in two-dimensional Navier-Stokes flow.

    Science.gov (United States)

    Ohkitani, Koji; Al Sulti, Fayeza

    2010-06-01

    A characterization of reconnection of vorticity contours is made by direct numerical simulations of the two-dimensional Navier-Stokes flow at a relatively low Reynolds number. We identify all the critical points of the vorticity field and classify them by solving an eigenvalue problem of its Hessian matrix on the basis of critical-point theory. The numbers of hyperbolic (saddles) and elliptic (minima and maxima) points are confirmed to satisfy Euler's index theorem numerically. Time evolution of these indices is studied for a simple initial condition. Generally speaking, we have found that the indices are found to decrease in number with time. This result is discussed in connection with related works on streamline topology, in particular, the relationship between stagnation points and the dissipation. Associated elementary procedures in physical space, the merging of vortices, are studied in detail for a number of snapshots. A similar analysis is also done using the stream function.

  8. On the theory of superfluid liquid rotation in pulsars taking into account relativistic effects in vortices

    International Nuclear Information System (INIS)

    Chernobaj, V.A.; Andronik, V.V.

    1978-01-01

    The necessity of taking into account the relativistic effects in quantized vortices of pulsar superfluid nuclei is shown. The full energy of a single vortex for special relativity theory approximation is determined. The single vortex full energy asymptotics for quantized numbers n, which are much greater than the ratio of vortex exterior radius to Compton's length of the nucleon, wave is linear with respect to n while in the nonrelativistic case the kinetic energy is proportional to n 2 . This suggests the possibility of existence of quasistable vortices with great quantized numbers n. It is revealed that for small quantized numbers the taking into account of the relativistic effects in the vortices does not lead to qualitative changes of the general condition of superfluid liquid rotation as compared to non-relativistic theory

  9. Calculation of large Reynolds number two-dimensional flow using discrete vortices with random walk

    International Nuclear Information System (INIS)

    Milinazzo, F.; Saffman, P.G.

    1977-01-01

    The numerical calculation of two-dimensional rotational flow at large Reynolds number is considered. The method of replacing a continuous distribution of vorticity by a finite number, N, of discrete vortices is examined, where the vortices move under their mutually induced velocities plus a random component to simulate effects of viscosity. The accuracy of the method is studied by comparison with the exact solution for the decay of a circular vortex. It is found, and analytical arguments are produced in support, that the quantitative error is significant unless N is large compared with a characteristic Reynolds number. The mutually induced velocities are calculated by both direct summation and by the ''cloud in cell'' technique. The latter method is found to produce comparable error and to be much faster

  10. Can symmetry transitions of complex fields enable 3-d control of fluid vorticity?

    Energy Technology Data Exchange (ETDEWEB)

    Martin, James E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Solis, Kyle Jameson [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, all of which compromise system reliability. Unfortunately, traditional noncontact flow methods are few, and have limitations of their own. We have discovered two classes of fields that can induce fluid vorticity without requiring either gravity or a thermal gradient. The first class we call Symmetry-Breaking Rational Fields. These are triaxial fields comprised of three orthogonal components, two ac and one dc. The second class is Rational Triad Fields, which differ in that all three components are alternating. In this report we quantify the induced vorticity for a wide variety of fields and consider symmetry transitions between these field types. These transitions give rise to orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.

  11. Two species of vortices in massive gauged non-linear sigma models

    International Nuclear Information System (INIS)

    Alonso-Izquierdo, A.; Fuertes, W. García; Guilarte, J. Mateos

    2015-01-01

    Non-linear sigma models with scalar fields taking values on ℂℙ"n complex manifolds are addressed. In the simplest n=1 case, where the target manifold is the S"2 sphere, we describe the scalar fields by means of stereographic maps. In this case when the U(1) symmetry is gauged and Maxwell and mass terms are allowed, the model accommodates stable self-dual vortices of two kinds with different energies per unit length and where the Higgs field winds at the cores around the two opposite poles of the sphere. Allowing for dielectric functions in the magnetic field, similar and richer self-dual vortices of different species in the south and north charts can be found by slightly modifying the potential. Two different situations are envisaged: either the vacuum orbit lies on a parallel in the sphere, or one pole and the same parallel form the vacuum orbit. Besides the self-dual vortices of two species, there exist BPS domain walls in the second case. Replacing the Maxwell contribution of the gauge field to the action by the second Chern-Simons secondary class, only possible in (2+1)-dimensional Minkowski space-time, new BPS topological defects of two species appear. Namely, both BPS vortices and domain ribbons in the south and the north charts exist because the vacuum orbit consits of the two poles and one parallel. Formulation of the gauged ℂℙ"2 model in a reference chart shows a self-dual structure such that BPS semi-local vortices exist. The transition functions to the second or third charts break the U(1)×SU(2) semi-local symmetry, but there is still room for standard self-dual vortices of the second species. The same structures encompassing N complex scalar fields are easily generalized to gauged ℂℙ"N models.

  12. Two species of vortices in massive gauged non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A. [Departamento de Matemática Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales, Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. García [Departamento de Física, Universidad de Oviedo, Facultad de Ciencias, Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Física Fundamental, Universidad de Salamanca, Facultad de Ciencias, Plaza de la Merced, E-37008 Salamanca (Spain)

    2015-02-23

    Non-linear sigma models with scalar fields taking values on ℂℙ{sup n} complex manifolds are addressed. In the simplest n=1 case, where the target manifold is the S{sup 2} sphere, we describe the scalar fields by means of stereographic maps. In this case when the U(1) symmetry is gauged and Maxwell and mass terms are allowed, the model accommodates stable self-dual vortices of two kinds with different energies per unit length and where the Higgs field winds at the cores around the two opposite poles of the sphere. Allowing for dielectric functions in the magnetic field, similar and richer self-dual vortices of different species in the south and north charts can be found by slightly modifying the potential. Two different situations are envisaged: either the vacuum orbit lies on a parallel in the sphere, or one pole and the same parallel form the vacuum orbit. Besides the self-dual vortices of two species, there exist BPS domain walls in the second case. Replacing the Maxwell contribution of the gauge field to the action by the second Chern-Simons secondary class, only possible in (2+1)-dimensional Minkowski space-time, new BPS topological defects of two species appear. Namely, both BPS vortices and domain ribbons in the south and the north charts exist because the vacuum orbit consits of the two poles and one parallel. Formulation of the gauged ℂℙ{sup 2} model in a reference chart shows a self-dual structure such that BPS semi-local vortices exist. The transition functions to the second or third charts break the U(1)×SU(2) semi-local symmetry, but there is still room for standard self-dual vortices of the second species. The same structures encompassing N complex scalar fields are easily generalized to gauged ℂℙ{sup N} models.

  13. Vortices in the SU(N) x SU(N) spin systems in two dimensions

    International Nuclear Information System (INIS)

    Kares, R.J.D.

    1982-01-01

    The SU(N) x SU(N) or chiral spin systems in two dimensions with spin variables in both the fundamental and the adjoint representations of SU(N) are considered. In the adjoint representation the chiral models are found to possess topologically stable, classical vortex solutions which carry a Z(N) topological charge. A relationship is established between the chiral models and massive Yang-Mills theory in two dimensions. This relationship is exploited to prove the asymptotic freedom of the chiral models and to find their weak coupling mass gap. The connection between the vortices of the chiral models and those of the massive Yang-Mills theory is discussed. The behavior of a gas of vortices in the SU(2) chiral model is considered. This gas is converted to an equivalent field theory and studied using the renormalization group. It is shown that the SU(2) vortex gas does not undergo a Kosterlitz-Thouless phase transition. This behavior probably persists for the higher SU(N) groups as well. Finally, using the massive Yang-Mills theory the effect of the coupling of vortices to spin wave fluctuations is investigated. It is argued that as a result of the vortex-spin wave interaction the vortices acquire a mass scale dynamically. A self consistency condition is derived for the vortex scale and used to compute the mass gap for the chiral models in the presence of vortices. The mass gap obtained in this way is found to be in agreement with the weak coupling result suggesting that vortices may be responsible for generating the mass gap in the chiral models near T = 0

  14. Auralization of CFD Vorticity Using an Auditory Illusion

    Science.gov (United States)

    Volpe, C. R.

    2005-12-01

    One way in which scientists and engineers interpret large quantities of data is through a process called visualization, i.e. generating graphical images that capture essential characteristics and highlight interesting relationships. Another approach, which has received far less attention, is to present complex information with sound. This approach, called ``auralization" or ``sonification", is the auditory analog of visualization. Early work in data auralization frequently involved directly mapping some variable in the data to a sound parameter, such as pitch or volume. Multi-variate data could be auralized by mapping several variables to several sound parameters simultaneously. A clear drawback of this approach is the limited practical range of sound parameters that can be presented to human listeners without exceeding their range of perception or comfort. A software auralization system built upon an existing visualization system is briefly described. This system incorporates an aural presentation synchronously and interactively with an animated scientific visualization, so that alternate auralization techniques can be investigated. One such alternate technique involves auditory illusions: sounds which trick the listener into perceiving something other than what is actually being presented. This software system will be used to present an auditory illusion, known for decades among cognitive psychologists, which produces a sound that seems to ascend or descend endlessly in pitch. The applicability of this illusion for presenting Computational Fluid Dynamics data will be demonstrated. CFD data is frequently visualized with thin stream-lines, but thicker stream-ribbons and stream-tubes can also be used, which rotate to convey fluid vorticity. But a purely graphical presentation can yield drawbacks of its own. Thicker stream-tubes can be self-obscuring, and can obscure other scene elements as well, thus motivating a different approach, such as using sound. Naturally

  15. Field-Free Nucleation of Antivortices and Giant Vortices in Nonsuperconducting Materials

    Science.gov (United States)

    Amundsen, Morten; Ouassou, Jabir Ali; Linder, Jacob

    2018-05-01

    Giant vortices with higher phase winding than 2 π are usually energetically unfavorable, but geometric symmetry constraints on a superconductor in a magnetic field are known to stabilize such objects. Here, we show via microscopic calculations that giant vortices can appear in intrinsically nonsuperconducting materials, even without any applied magnetic field. The enabling mechanism is the proximity effect to a host superconductor where a current flows, and we also demonstrate that antivortices can appear in this setup. Our results open the possibility to study electrically controllable topological defects in unusual environments, which do not have to be exposed to magnetic fields or intrinsically superconducting, but instead display other types of order.

  16. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    Science.gov (United States)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  17. Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation

    Energy Technology Data Exchange (ETDEWEB)

    Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel

    2009-06-15

    A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)

  18. Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation

    International Nuclear Information System (INIS)

    Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel

    2009-01-01

    A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)

  19. Multiple scattering of electromagnetic waves by a collection of plasma drift turbulent vortices

    International Nuclear Information System (INIS)

    Resendes, D.

    1995-01-01

    An application of the self-consistent multiple-scattering theory of electro-magnetic waves to drift turbulent vortices is presented. Using the known single-vortex solution, the integral equation describing the scattering from a finite density of drift turbulent vortices is obtained. Rather than solving this equation and then averaging, the averaging operation is taken first to obtain statistical moment equations, from which the coherent and incoherent scattering follow. These results are expressed in a Fourier basis, and the cross-section is evaluated. Limiting forms of the theory and straightforward generalizations are discussed. (Author)

  20. Topologically Allowed Nonsixfold Vortices in a Sixfold Multiferroic Material: Observation and Classification

    KAUST Repository

    Cheng, Shaobo

    2017-04-06

    We report structural transformation of sixfold vortex domains into two-, four-, and eightfold vortices via a different type of topological defect in hexagonal manganites. Combining high-resolution electron microscopy and Landau-theory-based numerical simulations, we investigate the remarkable atomic arrangement and the intertwined relationship between the vortex structures and the topological defects. The roles of their displacement field, formation temperature, and nucleation sites are revealed. All conceivable vortices in the system are topologically classified using homotopy group theory, and their origins are identified.

  1. Stream function-vorticity finite elements and the resolution of the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Almeida, R.C.C. de.

    1987-07-01

    A stream function-vorticity finite element formulation for the solution of the Navier-Stokes equations is proposed. The present work shows a procedure to solve the problem posed by the no-slip conditions on solid frontiers which can also be applied to flow problems in a multi-connected domain. Moreover, a methodology to solve the pressure is developed using the stream function-vorticity approximate solution. Numerical experiments were conducted for some steady and unsteady problems and the performance of the proposed methods is discussed. (author) [pt

  2. Relativistic quantum vorticity of the quadratic form of the Dirac equation

    International Nuclear Information System (INIS)

    Asenjo, Felipe A; Mahajan, Swadesh M

    2015-01-01

    We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the Feynman–Gell-Mann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and non-relativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system. (paper)

  3. Evolution of the vorticity-area density during the formation of coherent structures in two-dimensional flows

    NARCIS (Netherlands)

    Capel, H.W.; Pasmanter, R.A.

    2000-01-01

    It is shown: (1) that in two-dimensional, incompressible, viscous flows the vorticity-area distribution evolves according to an advection-diffusion equation with a negative, time dependent diffusion coefficient and (2) how to use the vorticity-stream function relations, i.e., the so-called

  4. Analysis of wake vortices of a medium range twin-propeller military cargo aircraft using statistically designed experiments

    Science.gov (United States)

    Sahin, Burhan

    An experimental study was initiated to analyze the trajectories of the streamwise vortices behind the wing tip and flap of a medium range and propeller driven twin-engine military cargo aircraft. The model used for the experimental study was a generic, high wing and half model of a propeller driven aircraft and mounted within Old Dominion University's Low Speed Wind Tunnel where the wind tunnel flow speed was set to constant value of 9 m/sec. The main purpose of the study was to reach regression models for the motion and vorticity strength of both vortices under varying factors such as angle of attack, flap angle, propeller pitch angle and downstream distance. Velocity measurements of the flow fields were accomplished using both Particle Image Velocimetry (PIV) and Hotwire Anemometry (HWA) to yield average velocities, turbulence levels, vorticity strengths and Reynolds shear stresses in the wake of the model. The results of measurements showed that the vertical motions, horizontal motions, and vorticity strengths of both vortices as well as the shortest distance between both vortices depend on the aforementioned factors and the interactions of some factors. It can be concluded that propeller pitch angle mainly affects the behaviors of the vortices as much as angle of attack to the extent that their second order terms take place in some of the regression models.

  5. Interaction of superconducting vortices: lectures presented at the Canadian Mathematical Society Summer Research Institute on gauge theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1979-09-01

    Results recently obtained on multi-vortex configurations are described. After a brief review of the model, a numerical analysis, performed by variational methods, of the interaction between two vortices is illustrated. The study, done in collaboration with Laurence Jacobs, shows that two vortices attract or repel each other according to whether a dimensionless coupling constant lambda, characterizing the relative strength of the matter self-coupling versus the gauge coupling, takes a value smaller or greater than one. This agrees with results previously obtained for asymptotic separations of the vortices. For lambda = 1, in particular, the vortices appear in equilibrium at any separation, hinting to the existence of a much wider class of solutions to the field equations. In the second lecture, the case lambda = 1 is considered in detail, illustrating analytical results which demonstrate that for this special value of the coupling constant solutions with any number of vortices at arbitrary positions do indeed exist

  6. Theoretical confirmation of Feynman's hypothesis on the creation of circular vortices in Bose-Einstein condensates: II

    Energy Technology Data Exchange (ETDEWEB)

    Senatorski, A; Infeld, E [Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2004-09-15

    In a recent paper (Infeld and Senatorski 2003 J. Phys.: Condens. Matter 15 5865) we confirmed Feynman's hypothesis on how circular vortices can be created from an oppositely polarized linear pair in a Bose-Einstein condensate. This was done by perturbing the original pair numerically, so that a circular vortex (or array of identical circular vortices) was created as a result of reconnection. These circular vortices were then checked against known theoretical relations binding velocities and radii. Agreement to a high degree of accuracy was found. Here in part II, we give examples of the creation of several different vortices from one linear pair. All are checked as above. We also confirm the limit of separation of the line vortices below which mutual attraction, followed by annihilation, prevents the Feynman metamorphosis. Other possible modes of behaviour are illustrated.

  7. Near field vorticity distributions from a sharp-edged rectangular jet

    International Nuclear Information System (INIS)

    Vouros, Alexandros P.; Panidis, Thrassos; Pollard, Andrew; Schwab, Rainer R.

    2015-01-01

    Highlights: • Axial mean vorticity equation terms are calculated from experimental data. • Appearance of ridges, dumbbell shape and saddleback velocity profiles is highlighted. • Explanations are provided using terms from the vorticity equation. - Abstract: Experimental results on the near field development of a free rectangular jet with aspect ratio 10 are presented. The jet issues from a sharp-edged orifice attached to a rectangular settling chamber at Re h ∼ 23,000, based on slot width, h. Measurements on cross plane grids were obtained with a two-component hot wire anemometry probe, which provided information on the three dimensional characteristics of the flow field. Two key features of this type of jet are mean axial velocity profiles presenting two off axis peaks, commonly mentioned as saddleback profiles, and a predominant dumbbell shape as described by, for example, a contour of the axial mean velocity. The saddleback shape is found to be significantly influenced by the vorticity distribution in the transverse plane of the jet, while the dumbbell is traced to two terms in the axial mean vorticity transport equation that diffuse fluid from the centre of the jet towards its periphery. At the farthest location where measurements were taken, 30 slot widths from the jet exit, the flow field resembles that of an axisymmetric jet

  8. Vortical Structures and Turbulent Bursts Behind Magnetic Obstacles in Transitional Flow Regimes

    NARCIS (Netherlands)

    Kenjeres, S.; Ten Cate, S.; Voesenek, C.J.

    2011-01-01

    The present paper reports on numerical investigations of vortical structures in transient flow regimes generated by the local action of the Lorentz force on an electrically conductive fluid. The locally imposed non-uniform magnetic field generates similar effects as observed for flows over submerged

  9. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.

    2015-10-23

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  10. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  11. Creation and annihilation operators for Nielsen-Olesen vortices in the coherent state approximation

    International Nuclear Information System (INIS)

    Pottinger, D.E.L.

    1978-01-01

    Using the standard techniques of canonical quantization, the author constructs approximate expressions for the creation and annihilation operators for Nielsen-Olesen vortices. The forms for the creation and annihilation operators are appropriate to situations where large-scale vortex condensation takes place. In particular, a phenomenon such as this is basic in the quark confinement schemes of Mandelstam and 't Hooft. (Auth.)

  12. Experimental research on free-surface vortices as transport mechanism in wastewater sumps

    NARCIS (Netherlands)

    Clemens, F.H.L.R.; Duinmeijer, S.P.A.

    2016-01-01

    Sumps of wastewater pumping station can experience problems due the formation of (solid) floating layers of fat and scum as a result of insufficient current guidelines for sump design with respect to transport of floating debris. To complimentary the guidelines, the use of free-surface vortices is

  13. Pauli paramagnetic effects on vortices in superconducting TmNi2B2C

    DEFF Research Database (Denmark)

    DeBeer-Schmitt, L.; Eskildsen, Morten Ring; Ichioka, M.

    2007-01-01

    The magnetic field distribution around the vortices in TmNi2B2C in the paramagnetic phase was studied experimentally as well as theoretically. The vortex form factor, measured by small-angle neutron scattering, is found to be field independent up to 0.6H(c2) followed by a sharp decrease at higher...

  14. On stability of vortices in three-dimensional self-attractive Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Malomed, Boris A.; Lederer, Falk; Mazilu, Dumitru; Mihalache, Dumitru

    2007-01-01

    Results of accurate analysis of stability are reported for localized vortices in the Bose-Einstein condensate (BEC) with the negative scattering length, trapped in an anisotropic potential with the aspect ratio Ω. The cases of Ω-bar 1 and Ω-bar 1 correspond to the 'pancake' (nearly-2D) and 'cigar-shaped' (nearly-1D) configurations, respectively (in the latter limit, the vortices become 'tubular' solitons). The analysis is based on the 3D Gross-Pitaevskii equation. The family of solutions with vorticity S=1 is accurately predicted by the variational approximation. The relative size of the stability area for the vortices with S=1 (which was studied, in a part, before) increases with the decrease of Ω in terms of the number of atoms, but decreases in terms of the chemical potential. All states with S>=2 are unstable, while the stability of the ordinary solitons (S=0) obeys the Vakhitov-Kolokolov criterion. The stability predictions are verified by direct simulations of the full 3D equation

  15. Self-focusing instability of two-dimensional solitons and vortices

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Juul Rasmussen, J.

    1995-01-01

    The instability of two-dimensional solitons and vortices is demonstrated in the framework of the three-dimensional nonlinear Schrodinger equation (NLSE). The instability can be regarded as the analog of the Kadomtsev-Petviashvili instability [B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl...

  16. Recent progress in the relative equilibria of point vortices — In memoriam Hassan Aref

    DEFF Research Database (Denmark)

    Beelen, Peter; Brøns, Morten; Krishnamurthy, Vikas S.

    2013-01-01

    Hassan Aref, who sadly passed away in 2011, was one of the world's leading researchers in the dynamics and equilibria of point vortices. We review two problems on the subject of point vortex relative equilibria in which he was engaged at the time of his death: bilinear relative equilibria...

  17. Interaction of vortices with ultrasound and the acoustic Faraday effect in type-II superconductors

    International Nuclear Information System (INIS)

    Dominguez, D.; Bulaevskii, L.; Ivlev, B.; Maley, M.; Bishop, A.R.

    1996-01-01

    We study the interaction of sound waves with vortices in type-II superconductors, taking into account pinning and electrodynamic forces between vortices and crystal displacements. We propose ultrasound techniques as a method for obtaining information about vortex dynamics. This is particularly appropiate at low temperatures where transport measurements are ineffective. The changes in sound velocity and attenuation due to vortices, can provide information on the elastic constants of the vortex system and on vortex dissipation, respectively. At low temperatures the Magnus force acting on vortices leads to the acoustic Faraday effect: there is a rotation of the polarization plane of tranverse sound waves propagating along the magnetic field. This effect is linear in the Magnus force and magnetic field in crystals with equivalent a and b axes for a field parallel to the c axis. We discuss how this effect can be measured by means of either pulse-echo techniques or standing sound waves. Also, we show that an ac electromagnetic field acting on the vortex system can generate ultrasound. We calculate the amplitude of the generated sound waves in the linear regime and compare with recent experiments. copyright 1996 The American Physical Society

  18. Steady state drift vortices in plasmas with shear flow in equilibrium

    DEFF Research Database (Denmark)

    Chakrabarti, N.

    1999-01-01

    The Hasegawa-Mima equation in the presence of sheared poloidal flow is solved for two-dimensional steady state vortex. It is shown that when the phase velocity of the vortex is the same as the diamagnetic drift velocity, an exact solution in the form of counter-rotating vortices may appear...

  19. A note on the energy of relative equilibria of point vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2007-01-01

    Analytical formulas are derived for the energy of simple relative equilibria of identical point vortices such as the regular polygons, both open and centered, and the various known configurations consisting of nested regular polygons with or without a vortex at the center. ©2007 American Institute...

  20. Large-scale vortices in compressible turbulent medium with the magnetic field

    Science.gov (United States)

    Gvaramadze, V. V.; Dimitrov, B. G.

    1990-08-01

    An averaged equation which describes the large scale vortices and Alfven waves generation in a compressible helical turbulent medium with a constant magnetic field is presented. The presence of the magnetic field leads to anisotropization of the vortex generation. Possible applications of the anisotropic vortex dynamo effect are accretion disks of compact objects.

  1. Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence

    Science.gov (United States)

    Grebenev, V. N.; Wacławczyk, M.; Oberlack, M.

    2017-10-01

    We study the statistical properties of the vorticity field in two-dimensional turbulence. The field is described in terms of the infinite Lundgren-Monin-Novikov (LMN) chain of equations for multi-point probability density functions (pdf’s) of vorticity. We perform a Lie group analysis of the first equation in this chain using the direct method based on the canonical Lie-Bäcklund transformations devised for integro-differential equations. We analytically show that the conformal group is broken for the first LMN equation i.e. for the 1-point pdf at least for the inviscid case but the equation is still conformally invariant on the associated characteristic with zero-vorticity. Then, we demonstrate that this characteristic is conformally transformed. We find this outcome coincides with the numerical results about the conformal invariance of the statistics of zero-vorticity isolines, see e.g. Falkovich (2007 Russian Math. Surv. 63 497-510). The conformal symmetry can be understood as a ‘local scaling’ and its traces in two-dimensional turbulence were already discussed in the literature, i.e. it was conjectured more than twenty years ago in Polyakov (1993 Nucl. Phys. B 396 367-85) and clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124-8).

  2. Once more on the interrelation between Abelian monopoles and P-vortices in SU(2) LGT

    International Nuclear Information System (INIS)

    Boyko, P.Yu.; Bornyakov, V.G.; Ilgenfritz, E.-M.; Kovalenko, A.V.; Martemyanov, B.V.; Mueller-Preussker, M.; Polikarpov, M.I.; Veselov, A.I.

    2006-01-01

    We study the properties of configurations from which P-vortices on one hand or Abelian monopoles on the other hand have been removed. We confirm the loss of confinement in both cases and investigate in what respect the modified ensembles differ from the confining ones from the point of view of the complementary confinement scenario

  3. Eulerian velocity reconstruction in ideal atmospheric dynamics using potential vorticity and potential temperature

    Science.gov (United States)

    Blender, R.

    2009-04-01

    An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.

  4. Vorticity and circulation aspects of twin jets in cross-flow for an oblique nozzle arrangement

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav; Savory, E.; Takao, H.; Todoroki, T.; Okamoto, S.; Toy, N.

    2006-01-01

    Roč. 220, č. 4 (2006), s. 247-252 ISSN 0954-4100 R&D Projects: GA AV ČR IAA2060302 Institutional research plan: CEZ:AV0Z20600510 Keywords : twin jets in cross-flow * vorticity * circulation Subject RIV: BK - Fluid Dynamics Impact factor: 0.143, year: 2006

  5. Structure-Preserving Variational Multiscale Modeling of Turbulent Incompressible Flow with Subgrid Vortices

    Science.gov (United States)

    Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey

    2017-11-01

    In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.

  6. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.; Mitsudharmadi, Hatsari; Bouremel, Y.; Winoto, S.H.; Low, H.T.

    2015-01-01

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  7. Experimental investigation of local properties and statistics of optical vortices in random wave fields

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner; Miyamoto, Y.

    2005-01-01

    We present the first direct experimental evidence of the local properties of optical vortices in a random laser speckle field. We have observed the Berry anisotropy ellipse describing the anisotropic squeezing of phase lines close to vortex cores and quantitatively verified the Dennis angular mom...

  8. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  9. Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

    Science.gov (United States)

    Langfellner, J.; Gizon, L.; Birch, A. C.

    2015-09-01

    Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m s-1 in the clockwise direction at 40° latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anticlockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m s-1 for the average outflow and 200 m s-1 for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between -60° and 60°. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g., 4 × 10-6 s-1 clockwise compared to 8 × 10-6 s-1 anticlockwise at 40° latitude). Results from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) obtained in 2010 are biased compared to the HMI/SDO results for the same period

  10. Abe homotopy classification of topological excitations under the topological influence of vortices

    International Nuclear Information System (INIS)

    Kobayashi, Shingo; Kobayashi, Michikazu; Kawaguchi, Yuki; Nitta, Muneto; Ueda, Masahito

    2012-01-01

    Topological excitations are usually classified by the nth homotopy group π n . However, for topological excitations that coexist with vortices, there are cases in which an element of π n cannot properly describe the charge of a topological excitation due to the influence of the vortices. This is because an element of π n corresponding to the charge of a topological excitation may change when the topological excitation circumnavigates a vortex. This phenomenon is referred to as the action of π 1 on π n . In this paper, we show that topological excitations coexisting with vortices are classified by the Abe homotopy group κ n . The nth Abe homotopy group κ n is defined as a semi-direct product of π 1 and π n . In this framework, the action of π 1 on π n is understood as originating from noncommutativity between π 1 and π n . We show that a physical charge of a topological excitation can be described in terms of the conjugacy class of the Abe homotopy group. Moreover, the Abe homotopy group naturally describes vortex-pair creation and annihilation processes, which also influence topological excitations. We calculate the influence of vortices on topological excitations for the case in which the order parameter manifold is S n /K, where S n is an n-dimensional sphere and K is a discrete subgroup of SO(n+1). We show that the influence of vortices on a topological excitation exists only if n is even and K includes a nontrivial element of O(n)/SO(n).

  11. Spindles and active vortices in a model of confined filament-motor mixtures.

    Science.gov (United States)

    Head, David A; Briels, Wj; Gompper, Gerhard

    2011-11-16

    Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic

  12. Spindles and active vortices in a model of confined filament-motor mixtures

    Directory of Open Access Journals (Sweden)

    Head David A

    2011-11-01

    Full Text Available Abstract Background Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Results Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. Conclusions We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue

  13. Compressible flows with periodic vortical disturbances around lifting airfoils. Ph.D. Thesis - Notre Dame Univ.

    Science.gov (United States)

    Scott, James R.

    1991-01-01

    A numerical method is developed for solving periodic, three-dimensional, vortical flows around lifting airfoils in subsonic flow. The first-order method that is presented fully accounts for the distortion effects of the nonuniform mean flow on the convected upstream vortical disturbances. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Using an elliptic coordinate transformation, the unsteady boundary value problem is solved in the frequency domain on grids which are determined as a function of the Mach number and reduced frequency. The numerical scheme is validated through extensive comparisons with known solutions to unsteady vortical flow problems. In general, it is seen that the agreement between the numerical and analytical results is very good for reduced frequencies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8. Numerical results are also presented for a wide variety of flow configurations for the purpose of determining the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. It is seen that each of these parameters can have a significant effect on the unsteady airfoil response to the incident disturbances, and that the effect depends strongly upon the reduced frequency and the dimensionality of the gust. For a one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust, the results indicate that airfoil thickness increases the unsteady lift and moment at the low reduced frequencies but decreases it at the high reduced frequencies. The results show that an increase in airfoil Mach number leads to a significant increase in the unsteady lift and moment for the low reduced frequencies, but a

  14. VISUALIZATION METHODS OF VORTICAL FLOWS IN COMPUTATIONAL FLUID DYNAMICS AND THEIR APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K. N. Volkov

    2014-05-01

    Full Text Available The paper deals with conceptions and methods for visual representation of research numerical results in the problems of fluid mechanics and gas. The three-dimensional nature of unsteady flow being simulated creates significant difficulties for the visual representation of results. It complicates control and understanding of numerical data, and exchange and processing of obtained information about the flow field. Approaches to vortical flows visualization with the usage of gradients of primary and secondary scalar and vector fields are discussed. An overview of visualization techniques for vortical flows using different definitions of the vortex and its identification criteria is given. Visualization examples for some solutions of gas dynamics problems related to calculations of jets and cavity flows are presented. Ideas of the vortical structure of the free non-isothermal jet and the formation of coherent vortex structures in the mixing layer are developed. Analysis of formation patterns for spatial flows inside large-scale vortical structures within the enclosed space of the cubic lid-driven cavity is performed. The singular points of the vortex flow in a cubic lid-driven cavity are found based on the results of numerical simulation; their type and location are identified depending on the Reynolds number. Calculations are performed with fine meshes and modern approaches to the simulation of vortical flows (direct numerical simulation and large-eddy simulation. Paradigm of graphical programming and COVISE virtual environment are used for the visual representation of computational results. Application that implements the visualization of the problem is represented as a network which links are modules and each of them is designed to solve a case-specific problem. Interaction between modules is carried out by the input and output ports (data receipt and data transfer giving the possibility to use various input and output devices.

  15. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    Science.gov (United States)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  16. ARE PROTOPLANETARY DISKS BORN WITH VORTICES? ROSSBY WAVE INSTABILITY DRIVEN BY PROTOSTELLAR INFALL

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Deptartment of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Zhu, Zhaohuan, E-mail: jaehbae@umich.edu, E-mail: lhartm@umich.edu, E-mail: zhuzh@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States)

    2015-05-20

    We carry out two-fluid, two-dimensional global hydrodynamic simulations to test whether protostellar infall can trigger the Rossby wave instability (RWI) in protoplanetry disks. Our results show that infall can trigger the RWI and generate vortices near the outer edge of the mass landing on the disk (i.e., centrifugal radius). We find that the RWI is triggered under a variety of conditions, although the details depend on the disk parameters and the infall pattern. The common key feature of triggering the RWI is the steep radial gradient of the azimuthal velocity induced by the local increase in density at the outer edge of the infall region. Vortices form when the instability enters the nonlinear regime. In our standard model where self-gravity is neglected, vortices merge together to a single vortex within ∼20 local orbital times, and the merged vortex survives for the remaining duration of the calculation (>170 local orbital times). The vortex takes part in outward angular momentum transport, with a Reynolds stress of ≲10{sup −2}. Our two-fluid calculations show that vortices efficiently trap dust particles with stopping times of the order of the orbital time, locally enhancing the dust to gas ratio for particles of the appropriate size by a factor of ∼40 in our standard model. When self-gravity is considered, however, vortices tend to be impeded from merging and may eventually dissipate. We conclude it may well be that protoplanetary disks have favorable conditions for vortex formation during the protostellar infall phase, which might enhance early planetary core formation.

  17. ARE PROTOPLANETARY DISKS BORN WITH VORTICES? ROSSBY WAVE INSTABILITY DRIVEN BY PROTOSTELLAR INFALL

    International Nuclear Information System (INIS)

    Bae, Jaehan; Hartmann, Lee; Zhu, Zhaohuan

    2015-01-01

    We carry out two-fluid, two-dimensional global hydrodynamic simulations to test whether protostellar infall can trigger the Rossby wave instability (RWI) in protoplanetry disks. Our results show that infall can trigger the RWI and generate vortices near the outer edge of the mass landing on the disk (i.e., centrifugal radius). We find that the RWI is triggered under a variety of conditions, although the details depend on the disk parameters and the infall pattern. The common key feature of triggering the RWI is the steep radial gradient of the azimuthal velocity induced by the local increase in density at the outer edge of the infall region. Vortices form when the instability enters the nonlinear regime. In our standard model where self-gravity is neglected, vortices merge together to a single vortex within ∼20 local orbital times, and the merged vortex survives for the remaining duration of the calculation (>170 local orbital times). The vortex takes part in outward angular momentum transport, with a Reynolds stress of ≲10 −2 . Our two-fluid calculations show that vortices efficiently trap dust particles with stopping times of the order of the orbital time, locally enhancing the dust to gas ratio for particles of the appropriate size by a factor of ∼40 in our standard model. When self-gravity is considered, however, vortices tend to be impeded from merging and may eventually dissipate. We conclude it may well be that protoplanetary disks have favorable conditions for vortex formation during the protostellar infall phase, which might enhance early planetary core formation

  18. Control of a three-dimensional turbulent shear layer by means of oblique vortices

    Science.gov (United States)

    Jürgens, Werner; Kaltenbach, Hans-Jakob

    2018-04-01

    The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.

  19. The dynamics of magnetic vortices in type II superconductors with pinning sites studied by the time dependent Ginzburg–Landau model

    Energy Technology Data Exchange (ETDEWEB)

    Sørensen, Mads Peter, E-mail: mpso@dtu.dk [Department of Applied Mathematics and Computer Science, Richard Petersens Plads, Bldg. 324, Technical University of Denmark, Kongens Lyngby DK-2800 (Denmark); Pedersen, Niels Falsig [Department of Applied Mathematics and Computer Science, Richard Petersens Plads, Bldg. 324, Technical University of Denmark, Kongens Lyngby DK-2800 (Denmark); Ögren, Magnus [School of Science and Technology, Örebro University, Örebro SE-70182 (Sweden)

    2017-02-15

    We investigate the dynamics of magnetic vortices in type II superconductors with normal state pinning sites using the Ginzburg–Landau equations. Simulation results demonstrate hopping of vortices between pinning sites, influenced by external magnetic fields and external currents. The system is highly nonlinear and the vortices show complex nonlinear dynamical behaviour.

  20. RELATIONSHIPS BETWEEN FLUID VORTICITY, KINETIC HELICITY, AND MAGNETIC FIELD ON SMALL-SCALES (QUIET-NETWORK) ON THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in [Indian Institute of Astrophysics, Bangalore-34 (India)

    2016-06-20

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar to that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.

  1. Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes.

    Science.gov (United States)

    Bartol, Ian K; Gharib, Morteza; Webb, Paul W; Weihs, Daniel; Gordon, Malcolm S

    2005-01-01

    Boxfishes (Teleostei: Ostraciidae) are marine fishes having rigid carapaces that vary significantly among taxa in their shapes and structural ornamentation. We showed previously that the keels of the carapace of one species of tropical boxfish, the smooth trunkfish, produce leading edge vortices (LEVs) capable of generating self-correcting trimming forces during swimming. In this paper we show that other tropical boxfishes with different carapace shapes have similar capabilities. We conducted a quantitative study of flows around the carapaces of three morphologically distinct boxfishes (spotted boxfish, scrawled cowfish and buffalo trunkfish) using stereolithographic models and three separate but interrelated analytical approaches: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. The ventral keels of all three forms produced LEVs that grew in circulation along the bodies, resembling the LEVs produced around delta-winged aircraft. These spiral vortices formed above the keels and increased in circulation as pitch angle became more positive, and formed below the keels and increased in circulation as pitch angle became more negative. Vortices also formed along the eye ridges of all boxfishes. In the spotted boxfish, which is largely trapezoidal in cross section, consistent dorsal vortex growth posterior to the eye ridge was also present. When all three boxfishes were positioned at various yaw angles, regions of strongest concentrated vorticity formed in far-field locations of the carapace compared with near-field areas, and vortex circulation was greatest posterior to the center of mass. In general, regions of localized low pressure correlated well with regions of attached, concentrated vorticity, especially around the ventral keels. Although other features of the carapace also affect flow patterns and pressure distributions in different ways, the integrated effects of the flows were consistent for all forms

  2. Control of secondary instability of the crossflow and Görtler-like vortices (Success and problems)

    Science.gov (United States)

    Kozlov, Viktor V.; Grek, Genrich R.

    The secondary instability on a group of crossflow vortices developing in a swept wing boundary layer is described. It is shown that, for travelling waves, there is a region of linear development, and the growth rate of disturbances appreciably depends on the separation between the vortices. Methods of controlling the secondary instability of the vortices by a controlled wave and local suction are proposed and substantiated. The stability of a flat plate boundary layer modulated by G&ou ml;rtler-like stationary vortices is described. Vortices were generated inside the boundary layer by means of roughness elements arranged in a regular array along the spanwise (z) direction. Transition is not caused directly by these structures, but by the growth of small amplitude travelling waves riding on top of the steady vortices. This situation is analogous to the transition process in Görtler and cross-flows. The waves were found to amplify up to a stage where higher harmonics are gener ated, leading to turbulent breakdown and disintegration of the spanwise boundary layer structure. For strong modulations, the observed instability is quite powerful, and can be excited "naturally" by small uncontrollable background disturbances. Controlled oscillations were then introduced by means of a vibrating ribbon, allowing a detailed investigation of the wave characteristics. The instability seems to be associated with the spanwise gradients of the mean flow, , and at all z-positions, the maximum wave amplitude was found at a wall-normal position where the mean velocity is equal to the phase velocity of the wave, U(y)=c, i.e., at the local critical layer. Unstable waves were observed at frequency well above those for which Tollmien-Schlichting (TS) waves amplify in the Blasius boundary layer. Excitation at lower frequencies and milder basic flow modulation showed that TS-type waves may a lso develop. Study of the transition control in that flow by means of riblets shows that the effect

  3. The supernova-regulated ISM. III. Generation of vorticity, helicity, and mean flows

    Science.gov (United States)

    Käpylä, M. J.; Gent, F. A.; Väisälä, M. S.; Sarson, G. R.

    2018-03-01

    Context. The forcing of interstellar turbulence, driven mainly by supernova (SN) explosions, is irrotational in nature, but the development of significant amounts of vorticity and helicity, accompanied by large-scale dynamo action, has been reported. Aim. Several earlier investigations examined vorticity production in simpler systems; here all the relevant processes can be considered simultaneously. We also investigate the mechanisms for the generation of net helicity and large-scale flow in the system. Methods: We use a three-dimensional, stratified, rotating and shearing local simulation domain of the size 1 × 1 × 2 kpc3, forced with SN explosions occurring at a rate typical of the solar neighbourhood in the Milky Way. In addition to the nominal simulation run with realistic Milky Way parameters, we vary the rotation and shear rates, but keep the absolute value of their ratio fixed. Reversing the sign of shear vs. rotation allows us to separate the rotation- and shear-generated contributions. Results: As in earlier studies, we find the generation of significant amounts of vorticity, the rotational flow comprising on average 65% of the total flow. The vorticity production can be related to the baroclinicity of the flow, especially in the regions of hot, dilute clustered supernova bubbles. In these regions, the vortex stretching acts as a sink of vorticity. In denser, compressed regions, the vortex stretching amplifies vorticity, but remains sub-dominant to baroclinicity. The net helicities produced by rotation and shear are of opposite signs for physically motivated rotation laws, with the solar neighbourhood parameters resulting in the near cancellation of the total net helicity. We also find the excitation of oscillatory mean flows, the strength and oscillation period of which depend on the Coriolis and shear parameters; we interpret these as signatures of the anisotropic-kinetic-α (AKA) effect. We use the method of moments to fit for the turbulent transport

  4. Role of vortices in cavitation formation in the flow across a mechanical heart valve.

    Science.gov (United States)

    Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H

    2008-07-01

    Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous

  5. A vorticity based approach to handle the fluid-structure interaction problems

    Energy Technology Data Exchange (ETDEWEB)

    Farahbakhsh, Iman; Ghassemi, Hassan [Department of Ocean Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sabetghadam, Fereidoun, E-mail: i.farahbakhsh@aut.ac.ir [Mechanical and Aerospace Engineering Department, Science and Research Branch, Islamic Azad University (IAU), Tehran (Iran, Islamic Republic of)

    2016-02-15

    A vorticity based approach for the numerical solution of the fluid-structure interaction problems is introduced in which the fluid and structure(s) can be viewed as a continuum. Retrieving the vorticity field and recalculating a solenoidal velocity field, specially at the fluid-structure interface, are the kernel of the proposed algorithm. In the suggested method, a variety of constitutive equations as a function of left Cauchy–Green deformation tensor can be applied for modeling the structure domain. A nonlinear Mooney–Rivlin and Saint Venant–Kirchhoff model are expressed in terms of the left Cauchy–Green deformation tensor and the presented method is able to model the behavior of a visco-hyperelastic structure in the incompressible flow. Some numerical experiments, with considering the neo-Hookean model for structure domain, are executed and the results are validated via the available results from literature. (paper)

  6. Understanding dynamics of large-scale atmospheric vortices with moist-convective shallow water model

    International Nuclear Information System (INIS)

    Rostami, M.; Zeitlin, V.

    2016-01-01

    Atmospheric jets and vortices which, together with inertia-gravity waves, constitute the principal dynamical entities of large-scale atmospheric motions, are well described in the framework of one- or multi-layer rotating shallow water models, which are obtained by vertically averaging of full “primitive” equations. There is a simple and physically consistent way to include moist convection in these models by adding a relaxational parameterization of precipitation and coupling precipitation with convective fluxes with the help of moist enthalpy conservation. We recall the construction of moist-convective rotating shallow water model (mcRSW) model and give an example of application to upper-layer atmospheric vortices. (paper)

  7. Process development of starch hydrolysis using mixing characteristics of Taylor vortices.

    Science.gov (United States)

    Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto

    2017-04-01

    In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.

  8. Experiments with a Regional Vector-Vorticity Model, and Comparison with Other Models

    Science.gov (United States)

    Konor, C. S.; Dazlich, D. A.; Jung, J.; Randall, D. A.

    2017-12-01

    The Vector-Vorticity Model (VVM) is an anelastic model with a unique dynamical core that predicts the three-dimensional vorticity instead of the three-dimensional momentum. The VVM is used in the CRMs of the Global Quasi-3D Multiscale Modeling Framework, which is discussed by Joon-Hee Jung and collaborators elsewhere in this session. We are updating the physics package of the VVM, replacing it with the physics package of the System for Atmosphere Modeling (SAM). The new physics package includes a double-moment microphysics, Mellor-Yamada turbulence, Monin-Obukov surface fluxes, and the RRTMG radiation parameterization. We briefly describe the VVM and show results from standard test cases, including TWP-ICE. We compare the results with those obtained using the earlier physics. We also show results from experiments on convection aggregation in radiative-convective equilibrium, and compare with those obtained using both SAM and the Regional Atmospheric Modeling System (RAMS).

  9. Fish mouths as engineering structures for vortical cross-step filtration

    Science.gov (United States)

    Sanderson, S. Laurie; Roberts, Erin; Lineburg, Jillian; Brooks, Hannah

    2016-03-01

    Suspension-feeding fishes such as goldfish and whale sharks retain prey without clogging their oral filters, whereas clogging is a major expense in industrial crossflow filtration of beer, dairy foods and biotechnology products. Fishes' abilities to retain particles that are smaller than the pore size of the gill-raker filter, including extraction of particles despite large holes in the filter, also remain unexplained. Here we show that unexplored combinations of engineering structures (backward-facing steps forming d-type ribs on the porous surface of a cone) cause fluid dynamic phenomena distinct from current biological and industrial filter operations. This vortical cross-step filtration model prevents clogging and explains the transport of tiny concentrated particles to the oesophagus using a hydrodynamic tongue. Mass transfer caused by vortices along d-type ribs in crossflow is applicable to filter-feeding duck beak lamellae and whale baleen plates, as well as the fluid mechanics of ventilation at fish gill filaments.

  10. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    International Nuclear Information System (INIS)

    Chernodub, M.N.

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  11. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.

    Science.gov (United States)

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-11-28

    We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.

  12. Vortical flows over delta wings and numerical prediction of vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    Navier-Stokes solutions of subsonic vortical flow over a 75 deg sweep delta wing with a sharp leading edge are presented. The sensitivity of the solution to the numerical scheme is examined using both a partially upwind scheme and a scheme with central differencing in all directions. At moderate angles of attack, no vortex breakdown is observed, whereas the higher angle-of-attack cases exhibit breakdown. The effect of numerical grid density is investigated, and solutions that are obtained with various grid densities are compared with experimental data. An embedded grid approach is implemented to enable higher resolution in selected isolated flow regions, such as the leeward-side surface, the leading-edge vortical flow, and the vortex breakdown region.

  13. Maxwell-Chern-Simons vortices in a CPT-odd Lorentz-violating Higgs electrodynamics

    International Nuclear Information System (INIS)

    Casana, R.; Ferreira, M.M.; Hora, E. da; Neves, A.B.F.

    2014-01-01

    We study BPS vortices in a CPT-odd and Lorentz-violating Maxwell-Chern-Simons-Higgs (MCSH) electrodynamics attained from the dimensional reduction of the Carroll-Field-Jackiw-Higgs model. The Lorentz-violating parameter induces a pronounced behavior at origin (for the magnetic/electric fields and energy density) which is absent in the MCSH vortices. For some combination of the Lorentz-violating coefficients there always exists a sufficiently large winding number n 0 such that for all vertical stroke n vertical stroke ≥ vertical stroke n 0 vertical stroke the magnetic field flips sign, yielding two well-defined regions with opposite magnetic flux. However, the total magnetic flux remains quantized and proportional to the winding number. (orig.)

  14. Effect of single Abrikosov vortices on the properties of Josephson tunnel junctions

    International Nuclear Information System (INIS)

    Golubov, A.A.; Kupriyanov, M.Yu.

    1987-01-01

    The effect of single Abrikosov vortices, trapped in the electrodes of a Josephson tunnel junction perpendicularly to the junction surface, on the tunnel current through the junction is studied within the framework of the microscopic theory. The current-voltage characteristic and the critical junction current I c are calculated for temperatures 0 c . It is shown that if the vortices at the junction are misaligned, singularities on the current-voltage characteristic appear at eV Δ (T), and in some cases the magnitude of suppression of I c may be of the order of magnitude of I c itself. The temperature dependence of the critical current is calculated for the case of one of the electrodes being a two-dimensional superconducting film in which the creation of opposite sign vortex pairs is significant

  15. Pinning of superconducting vortices in MoGe/Au Thin nano–squares

    Energy Technology Data Exchange (ETDEWEB)

    Serrier-Garcia, Lise, E-mail: serriergarcia.lise@fys.kuleuven.be; Timmermans, Matias; Van de Vondel, Joris; Moshchalkov, Victor V.

    2017-02-15

    Highlights: • A scanning tunneling spectroscopy study of vortex patterns in mesoscopic superconducting squares is reported. • The impact of defects and corrugations inherently present in nanofabricated structures is explored. • Hillocks at the edge can attract and repulse vortices. • The small surface corrugation creates metastable states. • Vortex rotations during dynamical vortex penetrations are visualized. - Abstract: In this work, we report a scanning tunneling spectroscopy study of vortex patterns in mesoscopic superconducting squares and explore the impact of defects and corrugations inherently present in nanofabricated structures. We find that a hillock at the edge can function as an attractive or repulsive pinning center for vortices deforming the, theoretically predicted, symmetry-induced vortex configurations. In addition, we exploit the inherently present imperfections, creating metastable states, to visualize the dynamics of vortex penetration during magnetic field sweeps.

  16. Vorticity generation and jetting caused by a laser-induced optical breakdown

    Science.gov (United States)

    Wang, Jonathan; Buchta, David; Freund, Jonathan

    2017-11-01

    A focused laser can cause optical breakdown of a gas that absorbs energy and can seed ignition. The local hydrodynamics are complex. The breakdown is observed to produce vorticity that subsequently collects into a jetting flow towards the laser source. The strength and the very direction of the jet is observed to be sensitive to the plasma kernel geometry. We use detailed numerical simulations to examine the short-time (inverse Bremsstrahlung, and 11 charged and neutral species for air. We quantify the early-time contributions of different thermodynamic and gas-dynamic effects to the baroclinic torque. It is found that the breakdown produces compression waves within the plasma kernel, and that the mismatch in their strengths precipitates the involution of the plasma remnants and yields the net vorticity that ultimately develops into the jet. We also quantify the temperature distribution and local strain rates and demonstrate their importance in seeding ignition in non-homogeneous hydrogen/air mixtures.

  17. Dynamics of two-dimensional solitary vortices in a low-β plasma with convective motion

    International Nuclear Information System (INIS)

    Makino, Mitsuhiro; Kamimura, Tetsuo; Taniuti, Tosiya.

    1980-12-01

    Numerical studies of the Hasegawa-Mima equation, derived in the context of drift waves but equivalent to the quasigeostrophic vortex potential equation for Rossby waves, show the stable properties of solitary vortices which are two dimensional, localized, steady and translating solutions of this same equation. A solitary vortex can propagate only in the direction (x-direction) perpendicular to the density gradient. When this solitary vortex solution is inclined at some angle with respect to the x-axis, its propagation direction oscillates in the x and y plane. In two dimensional collisions, i.e. head-on collision and overtaking, solitary vortices interact two-dimensionally and recover their initial shapes at the end of both types of collisions. (author)

  18. Numerical simulation of solitary waves on deep water with constant vorticity

    Science.gov (United States)

    Dosaev, A. S.; Shishina, M. I.; Troitskaya, Yu I.

    2018-01-01

    Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.

  19. Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.

    1999-01-01

    The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions...... and ultimately lead to a dominating monopolar form. The effects of magnetic shear indicate it may destroy these structures. (C) 1999 American Institute of Physics....

  20. Generalized approach to modifying optical vortices with suppressed sidelobes using Bessel-like functions.

    Science.gov (United States)

    Chen, J; Yuan, X-C; Zhao, X; Fang, Z L; Zhu, S W

    2009-11-01

    We propose a generalized approach to producing optical vortices with suppressed sidelobes using a variable Bessel-like function added to the conventional spiral phase plate. Experimental verifications are implemented by a phase-only spatial light modulator. It is demonstrated that the method is valid for optical vortex beams with arbitrary topological charges and without changing the primary ring size as a unique property among the existing techniques.

  1. Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1996-01-01

    We analyze the evolution of (1+1) dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate....... Experimental results show the complete sequence of events starting from self-focusing of the stripe, its bending due to the snake instability, and subsequent decay into a set of optical vortices....

  2. The near wake structure and the development of vorticity behind a model horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, P.; Wood, D. [The Univ. of Newcastle, Dept. of Mechanical Engineering, Callaghan (Australia)

    1997-08-01

    The wake of a two bladed model HAWT operating at zero yaw angle and in a steady flow in a wind tunnel was measured using hot wire probes. By phase locked averaging and moving the probe axially and radially the full three dimensional mean flow file was determined. All measurements were within two chord lengths of the blades and at tip speed ratios giving high turbine power output, a condition approaching runaway, and a stalled condition. For all tip speed ratios the wakes were significantly three dimensional. Large velocity variations were associated with vortex structures in the wakes, and irrotational fluctuations caused by the blade bound circulation. The vorticity clearly defined the hub and tip vortices that traced helical paths downstream, with the constant tip vortex pitch inversely proportional to tip speed ratio. Close to the blades the flow was complicated, though vortex roll-up was completed within one chord length. Considerable changes in wake structure occurred with tip speed ratio. At high power output the wake showed tip and hub vortices connected by a diffuse vortex sheet of mostly radial vorticity from the blade boundary layers; blade bound circulation was almost constant. The structure approaching runaway was similar though the hub vortex was not well defined and formed a vortex sheet around the hub which lifted away and diffused. The stalled condition was more complicated, with evidence of incomplete tip and hub vortex formation. The stream-wise velocity of the tip vortex core decreased with increasing tip speed ratio, but this was never aligned with local streamlines. The core of the tip vortex was not circular but more elliptical. A phase locked averaged angular momentum analysis was undertaken, the extra terms introduced through phase locked averaging were small. (Abstract Truncated)

  3. Optical vortices and singularities due to interference in atomic radiation near a mirror.

    Science.gov (United States)

    Li, Xin; Shu, Jie; Arnoldus, Henk F

    2009-11-15

    We consider radiation emitted by an electric dipole close to a mirror. We have studied the field lines of the Poynting vector, representing the flow lines of the electromagnetic energy, and we show that numerous singularities and subwavelength optical vortices appear in this energy flow pattern. We also show that the field line pattern in the plane of the mirror contains a singular circle across which the field lines change direction.

  4. A Comparison of the Scalar and Vorticity Criterion defining the T/NT Interface

    Science.gov (United States)

    Boschung, Jonas; Hennig, Fabian; Peters, Norbert

    2013-11-01

    Free shear flows are characterized by a turbulent core region, a non-turbulent outer flow and a turbulent/non-turbulent interface separating the two zones. While there exist different approaches to identify this transitional region, the interface position is mostly defined to coincide with the isoscalar surfaces of either a passive scalar or the magnitude of the vorticity. Both criteria are examined and compared using a shear layer DNS.

  5. Quantized vortices in the ideal bose gas: a physical realization of random polynomials.

    Science.gov (United States)

    Castin, Yvan; Hadzibabic, Zoran; Stock, Sabine; Dalibard, Jean; Stringari, Sandro

    2006-02-03

    We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed in the density profile of the gas.

  6. Global solutions to random 3D vorticity equations for small initial data

    Science.gov (United States)

    Barbu, Viorel; Röckner, Michael

    2017-11-01

    One proves the existence and uniqueness in (Lp (R3)) 3, 3/2 4p - 6)3 with respect to the time variable. Furthermore, we obtain the pathwise continuous dependence of solutions with respect to the initial data. In particular, one gets a locally unique solution of 3D stochastic Navier-Stokes equation in vorticity form up to some explosion stopping time τ adapted to the Brownian motion.

  7. Study of ultrasonic propagation through vortices for acoustic monitoring of high-temperature and turbulent fluid

    International Nuclear Information System (INIS)

    Massacret, Nicolas; Moysan, Joseph; Ploix, Marie-Aude; Chaouch, Naim; Jeannot, Jean-Philippe

    2016-01-01

    Ultrasonic monitoring in high temperature fluids with turbulences requires the knowledge of wave propagation in such media and the development of simulation tools. Applications could be the monitoring of sodium-cooled fast reactors. The objectives are mainly acoustic telemetry and thermometry, which involve the propagation of ultrasounds in turbulent and heated sodium flows. We developed a ray-tracing model to simulate the wave propagation and to determine wave deviations and delays due to an inhomogeneous medium. In previous work we demonstrated the sensitivity of ultrasounds to temperature gradients in liquid sodium. To complete that study, we need to investigate the sensitivity of ultrasounds to vortices created in a moving fluid. We designed a specific experimental setup called IKHAR (Instabilities of Kelvin-Helmholtz for Acoustic Research) in order to assess the validity of the ray-tracing model and the potential of ultrasounds for monitoring such fluid. In this experiment, Von Karman instabilities were created in a flow of water. Fluid temperature was homogeneous in our experimental setup. Through a careful choice of the parameters, periodic vortices were generated. The experiment was also simulated using Comsol registered to allow discussion about repeatability. The throughtransmission method was used to measure wave delays due to the vortices. Arrays of transducers were used to measure time of flight variations of several nanoseconds with a high spatial resolution. Results were similar to simulation results. They demonstrate that beam delays due to vortices can be measured and confirm the potential of ultrasounds in monitoring very inhomogeneous fluid media such as liquid sodium used as coolant fluid in nuclear fast reactors.

  8. Kinematic vorticity number – a tool for estimating vortex sizes and circulations

    Directory of Open Access Journals (Sweden)

    Lisa Schielicke

    2016-02-01

    Full Text Available The influence of extratropical vortices on a global scale is mainly characterised by their size and by the magnitude of their circulation. However, the determination of these properties is still a great challenge since a vortex has no clear delimitations but is part of the flow field itself. In this work, we introduce a kinematic vortex size determination method based on the kinematic vorticity number Wk to atmospheric flows. Wk relates the local rate-of-rotation to the local rate-of-deformation at every point in the field and a vortex core is identified as a simply connected region where the rotation prevails over the deformation. Additionally, considering the sign of vorticity in the extended Wk-method allows to identify highs and lows in different vertical layers of the atmosphere and to study vertical as well as horizontal vortex interactions. We will test the Wk-method in different idealised -D (superposition of two lows/low and jet and real -D flow situations (winter storm affecting Europe and compare the results with traditional methods based on the pressure and the vorticity fields. In comparison to these traditional methods, the Wk-method is able to extract vortex core sizes even in shear-dominated regions that occur frequently in the upper troposphere. Furthermore, statistics of the size and circulation distributions of cyclones will be given. Since the Wk-method identifies vortex cores, the identified radii are subsynoptic with a broad peak around 300–500 km at the 1000 hPa level. However, the total circulating area is not only restricted to the core. In general, circulations are in the order of 107 m2/s with only a few cyclones in the order of 108 m2/s.

  9. Towards unification of the Vorticity Confinement and Shock Capturing (TVD and ENO/WENO) methods

    Science.gov (United States)

    Sidilkover, David

    2018-04-01

    New multidimensional extensions of the TVD and finite difference ENO/WENO methods for the compressible flow equations are proposed. The novelty of the approach is in the discretization schemes that acquire by means of a single mechanism both shock-capturing and vorticity confinement capabilities. Thus, the new method can be interpreted as a unification of the two methodologies, intended initially for different purposes.

  10. Transverse vorticity measurements using an array of four hot-wire probes

    Science.gov (United States)

    Foss, J. F.; Klewickc, C. L.; Disimile, P. J.

    1986-01-01

    A comprehensive description of the technique used to obtain a time series of the quasi-instantaneous transverse vorticity from a four wire array of probes is presented. The algorithmic structure which supports the technique is described in detail and demonstration data, from a large plane shear layer, are presented to provide a specific utilization of the technique. Sensitivity calculations are provided which allow one contribution to the inherent uncertainty of the technique to be evaluated.

  11. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity

    Science.gov (United States)

    Thomas, Leif N.

    2008-08-01

    A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.

  12. Rotating shallow water modeling of planetary,astrophysical and plasma vortical structures (plasma transport across a magnetic field,model of the jupiter's GRS, prediction of existence of giant vortices in spiral galaxies

    Directory of Open Access Journals (Sweden)

    M. V. Nezlin

    1999-01-01

    Full Text Available Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridman et al. (Astrophysics and Space Science, 1997, 252, 115.

  13. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.; Mitsudharmadi, Hatsari; Winoto, S.H.; Low, H.T.; Lua, K.B.

    2017-01-01

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns

  14. Aircraft wake vortices : a state-of-the-art review of the United States R&D program

    Science.gov (United States)

    1977-02-28

    The report summarizes the current state-of-the-art understanding : of the aircraft wake vortex phenomenon and the results of the United : States program to minimize the restrictions caused by aircraft wake : vortices in the terminal environment. The ...

  15. Problems of simulation of large, long-lived vortices in the atmospheres of the giant planets (jupiter, saturn, neptune)

    Science.gov (United States)

    Nezlin, Michael V.; Sutyrin, Georgi G.

    1994-01-01

    Large, long-lived vortices are abundant in the atmospheres of the giant planets. Some of them survive a few orders of magnitude longer than the dispersive linear Rossby wave packets, e.g. the Great Red Spot (GRS), Little Red Spot (LRS) and White Ovals (WO) of Jupiter, Big Bertha, Brown Spot and Anne's Spot of Saturn, the Great Dark Spot (GDS) of Neptune, etc. Nonlinear effects which prevent their dispersion spreading are the main subject of our consideration. Particular emphasis is placed on determining the dynamical processes which may explain the remarkable properties of observed vortices such as anticyclonic rotation in preference to cyclonic one and the uniqueness of the GRS, the largest coherent vortex, along the perimeter of Jupiter at corresponding latitude. We review recent experimental and theoretical studies of steadily translating solitary Rossby vortices (anticyclones) in a rotating shallow fluid. Two-dimensional monopolar solitary vortices trap fluid which is transported westward. These dualistic structures appear to be vortices, on the one hand, and solitary “waves”, on the other hand. Owing to the presence of the trapped fluid, such solitary structures collide inelastically and have a memory of the initial disturbance which is responsible for the formation of the structure. As a consequence, they have no definite relationship between the amplitude and characteristic size. Their vortical properties are connected with geostrophic advection of local vorticity. Their solitary properties (nonspreading and stationary translation) are due to a balance between Rossby wave dispersion and nonlinear effects which allow the anticyclones, with an elevation of a free surface, to propagate faster than the linear waves, without a resonance with linear waves, i.e. without wave radiation. On the other hand, cyclones, with a depression of a free surface, are dispersive and nonstationary features. This asymmetry in dispersion-nonlinear properties of cyclones and

  16. Spanwise vorticity and wall normal velocity structure in the inertial region of turbulent boundary layers

    Science.gov (United States)

    Cuevas Bautista, Juan Carlos; Morrill-Winter, Caleb; White, Christopher; Chini, Gregory; Klewicki, Joseph

    2017-11-01

    The Reynolds shear stress gradient is a leading order mechanism on the inertial domain of turbulent wall-flows. This quantity can be described relative to the sum of two velocity-vorticity correlations, vωz and wωy . Recent studies suggest that the first of these correlates with the step-like structure of the instantaneous streamwise velocity profile on the inertial layer. This structure is comprised of large zones of uniform momentum segregated by slender regions of concentrated vorticity. In this talk we study the contributions of the v and ωz motions to the vorticity transport (vωz) mechanism through the use of experimental data at large friction Reynolds numbers, δ+. The primary contributions to v and ωz were estimated by identifying the peak wavelengths of their streamwise spectra. The magnitudes of these peaks are of the same order, and are shown to exhibit a weak δ+ dependence. The peak wavelengths of v, however, exhibit a strong wall-distance (y) dependence, while the peak wavelengths of ωz show only a weak y dependence, and remain almost O (√{δ+}) in size throughout the inertial domain. This research was partially supported by the National Science Foundation and partially supported by the Australian Research Council.

  17. Probing dynamics and pinning of single vortices in superconductors at nanometer scales

    Science.gov (United States)

    Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E.

    2015-01-01

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

  18. Turbulent flow over craters on Mars: Vorticity dynamics reveal aeolian excavation mechanism

    Science.gov (United States)

    Anderson, William; Day, Mackenzie

    2017-10-01

    Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)], 10.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)], 10.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.

  19. Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Bin; Wang, Jiong; Xiao, L. Z.; Long, X. [Wuhan University, Hubei (China); Luo, X. [Tsinghua University, Beijing (China); Miyagawa, K. [Waseda University, Tokyo (Japan); Tsujimoto, Yoshinobu [Osaka University, Osaka (Japan)

    2016-06-15

    The strong swirling flow at the exit of the runner of a Francis turbine at part load causes flow instabilities and cavitation surges in the draft tube, deteriorating the performance of the hydraulic power system. The unsteady cavitating turbulent flow in the draft tube is simplified and modeled by a diffuser with swirling flow using the Scale-adaptive simulation method. Unsteady characteristics of the vortex rope structure and the underlying mechanisms for the interactions between the cavitation and the vortices are both revealed. The generation and evolution of the vortex rope structures are demonstrated with the help of the iso-surfaces of the vapor volume fraction and the Qcriterion. Analysis based on the vorticity transport equation suggests that the vortex dilatation term is much larger along the cavity interface in the diffuser inlet and modifies the vorticity field in regions with high density and pressure gradients. The present work is validated by comparing two types of cavitation surges observed experimentally in the literature with further interpretations based on simulations.

  20. Magneto-optical observation of twisted vortices in type-II superconductors

    Science.gov (United States)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Benoit, W.; D'Anna, G.; Erb, A.; Walker, E.; Flükiger, R.

    1997-02-01

    When magnetic flux penetrates a type-II superconductor, it does so as quantized flux lines or vortex lines, so called because each is surrounded by a supercurrent vortex. Interactions between such vortices lead to a very rich and well characterized phenomenology for this 'mixed state'. But an outstanding question remains: are individual vortex lines 'strong', or can they easily be cut and made to pass through one another? The concept of vortex cutting was originally proposed to account for dissipation observed in superconducting wires oriented parallel to an applied magnetic field, where the vortex lines and transport current should be in a force-free configuration1-6. Previous experiments, however, have been unable to establish the vortex topology in the force-free configuration or the size of the energy barrier for vortex cutting. Here we report magneto-optical images of YBa2Cu3O7-δ samples in the force-free configuration which show that thousands of vortex lines can twist together to form highly stable structures. In some cases, these 'vortex twisters' interact with one another to produce wave-like dynamics. Our measurements also determine directly the current required to initiate vortex cutting, and show that it is much higher than that needed to overcome the pinning of vortices by material defects. This implies that thermodynamic phases of entangled vortices7-10 are intrinsically stable and may occupy a significant portion of the mixed-state phase diagram for type-II superconductors.

  1. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)

    2017-06-15

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  2. Fragmentation of Fast Josephson Vortices and Breakdown of Ordered States by Moving Topological Defects.

    Science.gov (United States)

    Sheikhzada, Ahmad; Gurevich, Alex

    2015-12-07

    Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result, vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. Our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.

  3. Breaking down the delta wing vortex: The role of vorticity in the breakdown process

    Science.gov (United States)

    Nelson, R. C.; Visser, Kenneth Dale

    1991-01-01

    Experimental x-wire measurements of the flowfield above a 70 degree and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 degrees and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown region and the amount of vorticity present appears to reach a maximum immediately preceding breakdown. The axial velocity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wing sweep or angle of attack, in direct contrast to the visible components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced to a single curve.

  4. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran; Murchikova, Elena

    2017-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium "3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  5. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2017-06-01

    Full Text Available In certain circumstances, chiral (parity-violating medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves and transverse velocity (chiral Alfvén wave. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  6. Turbulent flow over craters on Mars: Vorticity dynamics reveal aeolian excavation mechanism.

    Science.gov (United States)

    Anderson, William; Day, Mackenzie

    2017-10-01

    Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)]ICRSA50019-103510.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)]GPRLAJ0094-827610.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.

  7. Global solubility of the three-dimensional Navier-Stokes equations with uniformly large initial vorticity

    International Nuclear Information System (INIS)

    Makhalov, A S; Nikolaenko, V P

    2003-01-01

    This paper is a survey of results concerning the three-dimensional Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. The existence of regular solutions of the three-dimensional Navier-Stokes equations on an unbounded time interval is proved for large initial data both in R 3 and in bounded cylindrical domains. Moreover, the existence of smooth solutions on large finite time intervals is established for the three-dimensional Euler equations. These results are obtained without additional assumptions on the behaviour of solutions for t>0. Any smooth solution is not close to any two-dimensional manifold. Our approach is based on the computation of singular limits of rapidly oscillating operators, non-linear averaging, and a consideration of the mutual absorption of non-linear oscillations of the vorticity field. The use of resonance conditions, methods from the theory of small divisors, and non-linear averaging of almost periodic functions leads to the limit resonant Navier-Stokes equations. Global solubility of these equations is proved without any conditions on the three-dimensional initial data. The global regularity of weak solutions of three-dimensional Navier-Stokes equations with uniformly large vorticity at t=0 is proved by using the regularity of weak solutions and the strong convergence

  8. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3 is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  9. Secondary Instability of Stationary Crossflow Vortices in Mach 6 Boundary Layer Over a Circular Cone

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.; Paredes-Gonzalez, Pedro; Duan, Lian

    2015-01-01

    Hypersonic boundary layer flows over a circular cone at moderate incidence can support strong crossflow instability. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7-degree half-angle circular cone in a Mach 6 free stream. Depending on the local amplitude of the stationary crossflow mode, the most unstable secondary disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of dominant secondary disturbances are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany.

  10. A comparative analysis on the shed vortices from the wake of finned, foam-wrapped cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Khashehchi, Morteza [Department of Agro-Technology, College of Aburaihan, University of Tehran, Tehran (Iran, Islamic Republic of); Ashtiani Abdi, Iman; Hooman, Kamel, E-mail: m.khashehchi@ut.ac.ir [School of Mechanical and mining Engineering, University of Queensland, Brisbane (Australia)

    2017-08-15

    The wake characteristics behind a finned and a foam-wrapped circular cylinder has been compared in a study (Khashehchi et al 2014 Exp. Therm. Fluid Sci. 52 328–38) done by the Authors. In this paper, the shed vortices from the wake of the same cylinders have been studied. Shedding in a bluff body has an important effect on increasing the pressure drop downstream of the object. Here, we have used particle image velocimetry to investigate the detached vortices from the wake behind a foam-wrapped and a finned cylinder. The standard case of cross-flow over a bare cylinder, i.e. no surface extension, has also been tested as a benchmark. The experiments have been performed for Reynolds numbers 2000 based on the mean air velocity and the cylinder’s outer diameter. To identify the features of each aforementioned case, linear stochastic estimation has been applied to the velocity fields. Results show that unlike the fin, adding foam to the cylinder surface increases the size of detached vortices and amplifies the core strength. Moreover, foam-wrapped cylinder in contrast to the finned one produces strong three-dimensionality. Interestingly, finned cylinder’s results show less three-dimensionality compared to the bare cylinder. (paper)

  11. Effect of boundary conditions on downstream vorticity from counter-rotating swirlers

    Directory of Open Access Journals (Sweden)

    Weiye Huo

    2015-02-01

    Full Text Available Particle image velocimetry (PIV is utilized to measure the non-reacting flow field in a reflow combustor with multiple and single swirlers. The velocity field, vortex structure and total vorticity levels are experimentally obtained using two different boundary conditions, representing a single confined swirler and multiple swirlers in an annular combustor. The influence of the boundary conditions on the flow field at several locations downstream of the swirlers is experimentally investigated, showing that the central vortex in the multi-swirler case is more concentrated than in the single-swirler case. The vorticity of the central vortex and average cross-sectional vorticity are relatively low at the swirler outlet in both cases. Both of these statistics gradually increase to the maximum values near 20 mm downstream of the swirler outlet, and subsequently decrease. It is also found that the central vortex in the multi-swirler case is consistently greater than the single-swirler case. These results demonstrate the critical influence of boundary conditions on flow characteristic of swirling flow, providing insight into the difference of the experiments on test-bed combustor and the full-scale annular combustors.

  12. Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF

    Directory of Open Access Journals (Sweden)

    Young-Sil Kwak

    2008-12-01

    Full Text Available To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ultimately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive B_y shows positive and negative, respectively, at higher magnetic latitudes than -70°. For negative B_z, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive B_z have opposite sign. Negative IMF B_z has a stronger effect on the vorticity than does positive B_z.

  13. On the appearance of vorticity and gradient shear bands in wormlike micellar solutions of different CPCl/salt systems

    Energy Technology Data Exchange (ETDEWEB)

    Mütze, Annekathrin, E-mail: muetzea@ethz.ch; Heunemann, Peggy; Fischer, Peter [ETH Zürich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)

    2014-11-01

    Wormlike micellar salt/surfactant solutions (X-salicylate, cetylpyridinium chloride) are studied with respect to the applied shear stress, concentration, temperature, and composition of the counterions (X = lithium, sodium, potassium, magnesium, and calcium) of the salicylate salt solute to determine vorticity and gradient shear bands. A combination of rheological measurements, laser technique, video analysis, and rheo-small-angle neutron scattering allow for a detailed exploration of number and types of shear bands. Typical flow curves of the solutions show Newtonian, shear-thinning, and shear-thickening flow behavior. In the shear-thickening regime, the solutions show vorticity and gradient shear bands simultaneously, in which vorticity shear bands dominate the visual effect, while gradient shear bands always coexist and predominate the rheological response. It is shown that gradient shear bands change their phases (turbid, clear) with the same frequency as the shear rate oscillates, whereas vorticity shear bands change their phases with half the frequency of the shear rate. Furthermore, we show that with increasing molecular mass of the counterions the number of gradient shear bands increases, while the number of vorticity shear bands remains constant. The variation of temperature, shear stress, concentration, and counterions results in a predictable change in the rheological behavior and therefore allows adjustment of the number of vorticity shear bands in the shear band regime.

  14. Goertler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage

    Science.gov (United States)

    Hall, Philip

    1989-01-01

    Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.

  15. Statistical mechanics and correlation properties of a rotating two-dimensional flow of like-sign vortices

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1993-01-01

    The Hamiltonian flow of a set of point vortices of like sign and strength has a low-temperature phase consisting of a rotating triangular lattice of vortices, and a normal temperature turbulent phase consisting of random clusters of vorticity that orbit about a common center along random tracks. The mean-field flow in the normal temperature phase has similarities with turbulent quasi-two-dimensional rotating laboratory and geophysical flows, whereas the low-temperature phase displays effects associated with quantum fluids. In the normal temperature phase the vortices follow power-law clustering distributions, while in the time domain random interval modulation of the vortex orbit radii fluctuations produces singular fractional exponent power-law low-frequency spectra corresponding to time autocorrelation functions with fractional exponent power-law tails. Enhanced diffusion is present in the turbulent state, whereas in the solid-body rotation state vortices thermally diffuse across the lattice. Over the entire temperature range the interaction energy of a single vortex in the field of the rest of the vortices follows positive temperature Fermi--Dirac statistics, with the zero temperature limit corresponding to the rotating crystal phase, and the infinite temperature limit corresponding to a Maxwellian distribution. Analyses of weather records dependent on the large-scale quasi-two-dimensional atmospheric circulation suggest the presence of singular fractional exponent power-law spectra and fractional exponent power-law autocorrelation tails, consistent with the theory

  16. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  17. Activation energy of fractional vortices and spectroscopy of a vortex molecule in long Josephson junction

    International Nuclear Information System (INIS)

    Buckenmaier, Kai

    2010-01-01

    This thesis is divided into two parts, the measurement of the activation energy of a fractional vortex and the spectroscopy of a vortex-molecule. Fractional vortices can be studied in long 0-κ Josephson junctions, where a jump of the Josephson phase is created artificially with a pair of tiny current injectors. To compensate for this phase discontinuity, a ρ vortex is formed. Here, ρ describes the vortex's so called topological charge. The ρ vortices are pinned at the discontinuity and they carry the fraction (ρ/2).Φ 0 of magnetic flux, with the magnetic flux quantum Φ 0 2.07.10 -15 . Two stable vortex configurations are possible, a direct Vortex and a complementary one. ρ depends on the injector current. When the bias current of the junction exceeds a characteristic threshold, which dependents on ρ, the Lorentz force is bigger than the pinning force of the vortex and a fluxon is pulled away. In this case a complementary (ρ-2π) vortex is left behind. This switching of the ρ vortex and the resulting emission of a fluxon can be described as a Kramers like escape of a particle out of a tilted washboard potential. The washboard potential is tilted to the point where the barrier is small enough, so that the particle can escape via thermal or quantum fluctuations. In the case of thermal fluctuations the barrier height is called activation energy. The activation energy can be determined by measuring the junction's switching current statistics. In this thesis, the activation energy, necessary for the vortex escape, was measured as a function of ρ and a homogenous external magnetic field perpendicular to the junction. The main focus was the investigation of 0-π junctions. The temperature dependence of the activation energy was investigated, too. It turns out, that the transition-state-theory is convenient to describe the switching probability of the standard Nb-AlO x -Nb junctions at 4.2 K. For the measurements at 0.5 K a model of low to intermediate damping

  18. Spatial and Time Dynamics of Non-Linear Vortices in Plasma Lens for High-Current Ion Beam Focusing

    Science.gov (United States)

    Goncharov, Alexei A.; Maslov, Vasyl I.; Onishchenko, Ivan N.; Tretyakov, Vitalij N.

    2002-11-01

    It is known from numerical simulation (see, for example, [1]) and from experiments (see, for example, [2]), that an electron density bunches as discrete vortices are long - living structures in vacuum. However, in laboratory experiments [2] it has been shown that the vortices are changed faster, when they are submersed in electrons, distributed around them. The charged plasma lens intended for a focussing of high-current ion beams, has the same crossed configuration of a radial electrical and longitudinal magnetic field [3], as only electron plasma. In this lens the vortical turbulence is excited [3]. The vortex - bunch and vortex - hole are rotated in the inverse directions in system of their rest. The instability development in initially homogeneous plasma causes that the vortices are excited by pairs. Namely, if the vortex - bunch of electrons is generated, near the vortex - hole of electrons is also generated. It is shown, that in nonuniform plasma the vortices behave is various in time. Namely, the vortex - bunch goes to area of larger electron density, and the vortex - hole goes to area of smaller electron density. The speed of the vortex - hole is less than speed of the vortex - bunch. It is shown, that the electron vortices, generated in the plasma lens, can result in to formation of spiral distribution of electron density. The physical mechanism of coalescence of electron vortices - bunches is proposed. 1.Driscoll C.F. et al. Plasma Phys. Contr. Fus. Res. 3 (1989) 507. 2.Kiwamoto Y. et al. Non-neutral plasma physics. Princeton. 1999. P. 99-105. 3.Goncharov A. et al. Plasma Phys. Rep. 20 (1994) 499.

  19. Estimation of perspective errors in 2D2C-PIV measurements for 3D concentrated vortices

    Science.gov (United States)

    Ma, Bao-Feng; Jiang, Hong-Gang

    2018-06-01

    Two-dimensional planar PIV (2D2C) is still extensively employed in flow measurement owing to its availability and reliability, although more advanced PIVs have been developed. It has long been recognized that there exist perspective errors in velocity fields when employing the 2D2C PIV to measure three-dimensional (3D) flows, the magnitude of which depends on out-of-plane velocity and geometric layouts of the PIV. For a variety of vortex flows, however, the results are commonly represented by vorticity fields, instead of velocity fields. The present study indicates that the perspective error in vorticity fields relies on gradients of the out-of-plane velocity along a measurement plane, instead of the out-of-plane velocity itself. More importantly, an estimation approach to the perspective error in 3D vortex measurements was proposed based on a theoretical vortex model and an analysis on physical characteristics of the vortices, in which the gradient of out-of-plane velocity is uniquely determined by the ratio of the maximum out-of-plane velocity to maximum swirling velocity of the vortex; meanwhile, the ratio has upper limits for naturally formed vortices. Therefore, if the ratio is imposed with the upper limits, the perspective error will only rely on the geometric layouts of PIV that are known in practical measurements. Using this approach, the upper limits of perspective errors of a concentrated vortex can be estimated for vorticity and other characteristic quantities of the vortex. In addition, the study indicates that the perspective errors in vortex location, vortex strength, and vortex radius can be all zero for axisymmetric vortices if they are calculated by proper methods. The dynamic mode decomposition on an oscillatory vortex indicates that the perspective errors of each DMD mode are also only dependent on the gradient of out-of-plane velocity if the modes are represented by vorticity.

  20. Taylor vortices in the flow between two coaxial cylinders one of which has a step change in radius

    International Nuclear Information System (INIS)

    Raju, V R K

    2014-01-01

    A numerical study of the flow between two coaxial cylinders, where one of the cylinders has a step change in radius, is carried out. The inner cylinder rotates and the outer cylinder is stationary. Computation is restricted to axisymmetric motion since instability in flow between coaxial cylinders is found to first occur in the form of axisymmetric Taylor vortices. In the presence of a step, Taylor vortices are found to appear first in the region where the gap between the cylinders is larger and approximately when the local Taylor number in this region reaches the critical Taylor number for onset of instability. Subsequently, Taylor vortices appear in the region where the gap is narrower, and when the local Taylor number in that region exceeds the critical Taylor number. The Taylor vortices have inward flow at a stationary end plate, and outward flow at an end plate which rotates with the same angular velocity as the inner cylinder. Similar results were obtained by Sprague et al (2008 Phys. Fluids 20 014102) for a step on inner cylinder configuration. The step functions as another end plate, if the step size is large. Whereas, it has no effect, if the step size is small. In most situations, these determine whether the number of Taylor vortices in the wide and narrow gap regions is even or odd. When the end plates rotate synchronously, but at a different speed from the inner cylinder, a change from even to odd or odd to even number of vortices in each region occurs at certain rotation rates of the end plates by sudden appearance or disappearance of a vortex at the end of the column. For a certain range of rotation rates of the end plates, the total number of vortices in the entire fluid column is odd, although the end conditions are symmetrical. (paper)

  1. Vortical and acoustical mode coupling inside a porous tube with uniform wall suction.

    Science.gov (United States)

    Jankowskia, T A; Majdalani, J

    2005-06-01

    This paper considers the oscillatory motion of gases inside a long porous tube of the closed-open type. In particular, the focus is placed on describing an analytical solution for the internal acoustico-vortical coupling that arises in the presence of appreciable wall suction. This unsteady field is driven by longitudinal oscillatory waves that are triggered by small unavoidable fluctuations in the wall suction speed. Under the assumption of small amplitude oscillations, the time-dependent governing equations are linearized through a regular perturbation of the dependent variables. Further application of the Helmholtz vector decomposition theorem enables us to discriminate between acoustical and vortical equations. After solving the wave equation for the acoustical contribution, the boundary-driven vortical field is considered. The method of matched-asymptotic expansions is then used to obtain a closed-form solution for the unsteady momentum equation developing from flow decomposition. An exact series expansion is also derived and shown to coincide with the numerical solution for the problem. The numerically verified end results suggest that the asymptotic scheme is capable of providing a sufficiently accurate solution. This is due to the error associated with the matched-asymptotic expansion being smaller than the error introduced in the Navier-Stokes linearization. A basis for comparison is established by examining the evolution of the oscillatory field in both space and time. The corresponding boundary-layer behavior is also characterized over a range of oscillation frequencies and wall suction velocities. In general, the current solution is found to exhibit features that are consistent with the laminar theory of periodic flows. By comparison to the Sexl profile in nonporous tubes, the critically damped solution obtained here exhibits a slightly smaller overshoot and depth of penetration. These features may be attributed to the suction effect that tends to

  2. A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation

    Science.gov (United States)

    Chapelier, J.-B.; Wasistho, B.; Scalo, C.

    2018-04-01

    This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ activated in developed turbulence characterized by σ ≤σeq, where the value σeq is derived assuming a Kolmogorov spectrum. The proposed approach can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. LES of Taylor-Green vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.

  3. BPS Center Vortices in Nonrelativistic SU(N) Gauge Models with Adjoint Higgs Fields

    International Nuclear Information System (INIS)

    Oxman, L. E.

    2015-01-01

    We propose a class of SU(N) Yang-Mills models, with adjoint Higgs fields, that accept BPS center vortex equations. The lack of a local magnetic flux that could serve as an energy bound is circumvented by including a new term in the energy functional. This term tends to align, in the Lie algebra, the magnetic field and one of the adjoint Higgs fields. Finally, a reduced set of equations for the center vortex profile functions is obtained (for N=2,3). In particular, Z(3) BPS vortices come in three colours and three anticolours, obtained from an ansatz based on the defining representation and its conjugate.

  4. Linearized potential vorticity mode and its role in transition to baroclinic instability

    International Nuclear Information System (INIS)

    Pieri, Alexandre; Salhi, Aziz; Cambon, Claude; Godeferd, Fabien

    2011-01-01

    Stratified shear flows have been studied using Rapid Distortion Theory (RDT) and DNS. If this flow is in addition subjected to vertical rotation, a slaved horizontal stratification is forced and baroclinic instability can occur. In this context, the RDT analysis shows an extention of the unstable domain up to a Richardson number Ri of 1. This work is completed here with new results on transition to baroclinic instability. Especially, the role of k x ≈ 0 modes (small streamwise wavenumbers) and the importance of coupling with the potential vorticity mode u (Ω pot ) is shown to be determinant for dramatic transient growth at intermediate times.

  5. Efficiency of coherent vortices to trap dust particles in the solar nebula

    Directory of Open Access Journals (Sweden)

    Chavanis Pierre-Henri

    2013-04-01

    Full Text Available We develop the idea proposed by Barge & Sommeria (1995 that large-scale vortices present in the solar nebula can concentrate dust particles and facilitate the formation of planetesimals and planets. We introduce an exact vortex solution of the incompressible 2D Euler equation (Kida vortex and study the motion of dust particles in that vortex. In particular, we derive an analytical expression of the capture time as a function of the friction coefficient and determine the parameters leading to an optimal capture.

  6. Kawada's Contribution to Induced Velocity by Helical Vortices with Application to Propeller Theory

    OpenAIRE

    Fukumoto, Y.; Okulov, Valery; Wood, D. H.

    2016-01-01

    The analytical form of the velocity field induced by a helical vortex filament is well known as Hardin’s solution (1982). But the essentially same result had been obtained by a Japanese scientist Kawada in 1936, which predates Hardin by 46 years. This talk exposes Kawada’s paper (1939) which provides a comprehensive treatment of induced velocity by helical vortices with application to the propeller theory.Sandi Kawada was a pioneer of aeronautics engineering in Japan, and played a leading rol...

  7. Numerical investigations on interactions between tangles of quantized vortices and second sound

    International Nuclear Information System (INIS)

    Penz, H.; Aarts, R.; de Waele, F.

    1995-01-01

    The reconnecting vortex-tangle model is used to investigate the interaction of tangles of quantized vortices with second sound. This interaction can be expressed in terms of an effective line-length density, which depends on the direction of the second-sound wave. By comparing the effective line-length densities in various directions the tangle structure can be examined. Simulations were done for flow channels with square and circular cross sections as well as for slits. The results show that in all these cases the tangles are inhomogeneous in direction as well as in space. The calculated inhomogeneities are in agreement with experiment

  8. Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Okulov, Valery

    2009-01-01

    Embedded vortices in turbulent wall-bounded flow over a flat plate, generated by a passive rectangular vane-type vortex generator with variable angle \\beta to the incoming flow in a low-Reynolds number flow (Re = 2600 based on the inlet grid mesh size L = 0:039 m and free stream velocity U....... This is important for flow control, since one thereby can determine the axial velocity induced by the helical vortex as well as the swirl redistributing the axial velocity component for a given device angle \\beta. This also simplifies theoretical studies, e.g. to understand and predict the stability of the vortex...

  9. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel [Plasma Physics Group, Faculty of Sciences-Physics, Theoretical Physics Laboratory, University of Bab-Ezzouar, USTHB BP 32, El Alia, Algiers 16111 (Algeria)], E-mail: mtribeche@usthb.dz

    2009-09-15

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  10. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel

    2009-01-01

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  11. Checkerboard local density of states in striped domains pinned by vortices

    DEFF Research Database (Denmark)

    Andersen, B.M.; Hedegård, P.; Bruus, Henrik

    2003-01-01

    We discuss recent elastic neutron scattering and scanning tunneling experiments on high-T-c cuprates exposed to an applied magnetic field. Antiferromagnetic vortex cores operating as pinning centers for surrounding stripes is qualitatively consistent with the neutron data provided the stripes have...... the antiphase modulation. Within a Green's function formalism we study the low energy electronic structure around the vortices and find that besides the dispersive quantum interference there exists a non-dispersive checkerboard interference pattern consistent with recent scanning tunneling measurements. Thus...

  12. Propagation of optical vortices with fractional topological charge in free space

    Science.gov (United States)

    Ali, Tamelia; Kreminska, Liubov; Golovin, Andrii B.; Crouse, David T.

    2014-10-01

    The behavior of the optical vortices with fractional topological charges in the far-field is assessed through numerical modeling and confirmed by experimental results. The generation of fractional topological charge variations of the phase within a Gaussian beam was achieved by using a liquid crystal spatial light modulator (LCoS SLM). It is shown that a laser beam carrying an optical vortex with a fractional topological charge evolves into a beam with a topological charge of integer value, specifically an integer value closer to the fractional number in the far field. A potential application of this work is for data transmission within optical telecommunication systems.

  13. Mutual inductance instability of the tip vortices behind a wind turbine

    DEFF Research Database (Denmark)

    Sarmast, Sasan; Dadfar, Reza; Mikkelsen, Robert Flemming

    2014-01-01

    Two modal decomposition techniques are employed to analyse the stability of wind turbine wakes. A numerical study on a single wind turbine wake is carried out focusing on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large......-eddy simulations (LES) of the Navier–Stokes equations using the actuator line (ACL) method to simulate the wake behind the Tjæreborg wind turbine. The wake is perturbed by low-amplitude excitation sources located in the neighbourhood of the tip spirals. The amplification of the waves travelling along the spiral...

  14. Berry's phase, Josephson's equation, and the dynamics of weak link superconductors and their vortices

    International Nuclear Information System (INIS)

    Gaitan, F.; Shenoy, S.R.

    1995-05-01

    We examine the dynamical consequences of Berry's phase for Josephson junctions, junction arrays, and their vortices. Josephson's equation and the related phase slip voltages are shown to be unaffected by Berry's phase. In an annular Josephson junction, Berry's phase is seen to generate a new current drive on a vortex. In the continuum limit, vortex is expected in a 2D array is shown to map onto that of a 2D film. A Hall sing anomaly is expected arrays; and the merits of arrays for studies of disorder on vortex motion is discussed. (author). 12 refs

  15. Drift waves and counter rotating vortices in pair-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Q., E-mail: qamar_haque@hotmail.co [Theoretical Plasma Physics Division, PINSTECH P.O. Nilore, Islamabad (Pakistan)

    2010-07-19

    Linear dispersion relation has been found for drift and acoustic waves in pair-ion-electron plasmas. The stationary solution in the form of counter rotating vortices has been obtained in the presence of equilibrium potential profile. It is noticed that the speed of nonlinear structures is reduced with the increase of electrons concentration in pair-ion plasmas. Linear instability condition has also been found in the presence of shear flow. It is pointed out that the present results can be useful for future pair-ion plasma experiments.

  16. Modelling of the nonlinear evolution of 2D waves and vortices in plasmas

    International Nuclear Information System (INIS)

    Taranov, V.B.

    1998-01-01

    In this report an antisymmetric lattice formed by standing waves of vorticity is considered. For small but finite amplitudes multiple-time-scale analysis is performed, higher harmonics generation and frequency shifts are evaluated analytically and critical amplitude for perturbation theory is determined. For amplitudes bigger than critical numerical simulations are carried out taking into account vortex nonlinearity, drift and dispersion effects. Numerical code is developed which allows to study long-term evolution of two-dimensional spatially periodic waves and vortex structures

  17. Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves.

    Science.gov (United States)

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2013-05-10

    We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].

  18. Stripes and honeycomb lattice of quantized vortices in rotating two-component Bose-Einstein condensates

    Science.gov (United States)

    Kasamatsu, Kenichi; Sakashita, Kouhei

    2018-05-01

    We study numerically the structure of a vortex lattice in rotating two-component Bose-Einstein condensates with equal atomic masses and equal intra- and intercomponent coupling strengths. The numerical simulations of the Gross-Pitaevskii equation show that the quantized vortices in this situation form lattice configuration accompanying vortex stripes, honeycomb lattices, and their complexes. This is a result of the degeneracy of the system for the SU(2) symmetric operation, which causes a continuous transformation between the above structures. In terms of the pseudospin representation, the complex lattice structures are identified as a hexagonal lattice of doubly winding half skyrmions.

  19. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations.

    Science.gov (United States)

    Sotelo, Julio; Urbina, Jesús; Valverde, Israel; Mura, Joaquín; Tejos, Cristián; Irarrazaval, Pablo; Andia, Marcelo E; Hurtado, Daniel E; Uribe, Sergio

    2018-01-01

    We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med 79:541-553, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Analysis of optical vortices with suppressed sidelobes using modified Bessel-like function and trapezoid annulus modulation structures.

    Science.gov (United States)

    Guo, Jian; Wei, Zhongchao; Liu, Yuebo; Huang, Aili

    2015-02-01

    Two amplitude modulation methods, including modified Bessel-like function modulation structure and trapezoid annulus structure, for suppressing sidelobes of optical vortices are studied. In the former approach, we propose that the order of the Bessel-like function can be an additional parameter to modulate diffraction patterns of optical vortices motivated by the idea of conventional annulus structures. Furthermore, new Bessel-like modulation functions are introduced to solve the problem of low diffraction efficiency of the original one. Trapezoid annulus structure is proposed as a compromise structure between the modified Bessel-like modulation structure and the conventional annulus one, and has advantages of both. It is demonstrated that these two approaches can achieve high-quality optical vortices with suppressed sidelobes effectively, and the relative structures behave as more flexible and applicable structures for producing optical vortices with large coverage of topological charges, which suggests great potential in simplifying the structure designing procedure. These reliable and generalized structures for generating high-quality optical vortices will help to promote the development of future optical communication and optical manipulation significantly.