WorldWideScience

Sample records for volumetric display system

  1. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  2. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  3. Exploring interaction with 3D volumetric displays

    Science.gov (United States)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  4. System analysis of formation and perception processes of three-dimensional images in volumetric displays

    Science.gov (United States)

    Bolshakov, Alexander; Sgibnev, Arthur

    2018-03-01

    One of the promising devices is currently a volumetric display. Volumetric displays capable to visualize complex three-dimensional information as nearly as possible to its natural – volume form without the use of special glasses. The invention and implementation of volumetric display technology will expand opportunities of information visualization in various spheres of human activity. The article attempts to structure and describe the interrelation of the essential characteristics of objects in the area of volumetric visualization. Also there is proposed a method of calculation of estimate total number of voxels perceived by observers during the 3D demonstration, generated using a volumetric display with a rotating screen. In the future, it is planned to expand the described technique and implement a system for estimation the quality of generated images, depending on the types of biplanes and their initial characteristics.

  5. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  6. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  7. Volumetric, dashboard-mounted augmented display

    Science.gov (United States)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  8. Volumetric display using a roof mirror grid array

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuuki; Ohno, Keisuke; Maekawa, Satoshi

    2010-02-01

    A volumetric display system using a roof mirror grid array (RMGA) is proposed. The RMGA consists of a two-dimensional array of dihedral corner reflectors and forms a real image at a plane-symmetric position. A two-dimensional image formed with a RMGA is moved at thigh speed by a mirror scanner. Cross-sectional images of a three-dimensional object are displayed in accordance with the position of the image plane. A volumetric image can be observed as a stack of the cross-sectional images by high-speed scanning. Image formation by a RMGA is free from aberrations. Moreover, a compact optical system can be constructed because a RMGA doesn't have a focal length. An experimental volumetric display system using a galvanometer mirror and a digital micromirror device was constructed. The formation of a three-dimensional image consisting of 1024 × 768 × 400 voxels is confirmed by the experimental system.

  9. Adaptive controller for volumetric display of neuroimaging studies

    Science.gov (United States)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  10. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  11. Improved Second-Generation 3-D Volumetric Display System. Revision 2

    Science.gov (United States)

    1998-10-01

    computer control, uses infrared lasers to address points within a rare-earth-infused solid glass cube. Already, simple animated computer-generated images...Volumetric Display System permits images to be displayed in a three- dimensional format that can be observed without the use of special glasses . Its...MM 120 nm 60 mm nI POLARIZING I $-"• -’’""BEAMSPLI’i-ER ) 4P40-MHz 50-MHz BW PLRZN i TeO2 MODULATORS TeO2 DEFLECTORS Figure 1-4. NEOS four-channel

  12. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  13. A volumetric three-dimensional digital light photoactivatable dye display

    Science.gov (United States)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  14. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  15. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    Science.gov (United States)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  16. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  17. The analysis of colour uniformity for a volumetric display based on a rotating LED array

    International Nuclear Information System (INIS)

    Wu, Jiang; Liu, Xu; Yan, Caijie; Xia, XinXing; Li, Haifeng

    2011-01-01

    There is a colour nonuniformity zone existing in three-dimensional (3D) volumetric displays which is based on the rotating colour light-emitting diode (LED) array. We analyse the reason for the colour nonuniformity zone by measuring the light intensity distribution and chromaticity coordinates of the LED in the volumetric display. Two boundaries of the colour nonuniformity zone are calculated. We measure the colour uniformities for a single cuboid of 3*3*4 voxels to display red, green, blue and white colour in different horizontal viewing angles, and for 64 cuboids distributed in the whole cylindrical image space with a fixed viewpoint. To evaluate the colour uniformity of a 3D image, we propose three evaluation indices of colour uniformity: the average of colour difference, the maximum colour difference and the variance of colour difference. The measurement results show that the character of colour uniformity is different for the 3D volumetric display and the two-dimensional display

  18. Volumetric 3D display with multi-layered active screens for enhanced the depth perception (Conference Presentation)

    Science.gov (United States)

    Kim, Hak-Rin; Park, Min-Kyu; Choi, Jun-Chan; Park, Ji-Sub; Min, Sung-Wook

    2016-09-01

    Three-dimensional (3D) display technology has been studied actively because it can offer more realistic images compared to the conventional 2D display. Various psychological factors such as accommodation, binocular parallax, convergence and motion parallax are used to recognize a 3D image. For glass-type 3D displays, they use only the binocular disparity in 3D depth cues. However, this method cause visual fatigue and headaches due to accommodation conflict and distorted depth perception. Thus, the hologram and volumetric display are expected to be an ideal 3D display. Holographic displays can represent realistic images satisfying the entire factors of depth perception. But, it require tremendous amount of data and fast signal processing. The volumetric 3D displays can represent images using voxel which is a physical volume. However, it is required for large data to represent the depth information on voxel. In order to simply encode 3D information, the compact type of depth fused 3D (DFD) display, which can create polarization distributed depth map (PDDM) image having both 2D color image and depth image is introduced. In this paper, a new volumetric 3D display system is shown by using PDDM image controlled by polarization controller. In order to introduce PDDM image, polarization states of the light through spatial light modulator (SLM) was analyzed by Stokes parameter depending on the gray level. Based on the analysis, polarization controller is properly designed to convert PDDM image into sectioned depth images. After synchronizing PDDM images with active screens, we can realize reconstructed 3D image. Acknowledgment This work was supported by `The Cross-Ministry Giga KOREA Project' grant from the Ministry of Science, ICT and Future Planning, Korea

  19. Operating scheme for the light-emitting diode array of a volumetric display that exhibits multiple full-color dynamic images

    Science.gov (United States)

    Hirayama, Ryuji; Shiraki, Atsushi; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-07-01

    We designed and developed a control circuit for a three-dimensional (3-D) light-emitting diode (LED) array to be used in volumetric displays exhibiting full-color dynamic 3-D images. The circuit was implemented on a field-programmable gate array; therefore, pulse-width modulation, which requires high-speed processing, could be operated in real time. We experimentally evaluated the developed system by measuring the luminance of an LED with varying input and confirmed that the system works appropriately. In addition, we demonstrated that the volumetric display exhibits different full-color dynamic two-dimensional images in two orthogonal directions. Each of the exhibited images could be obtained only from the prescribed viewpoint. Such directional characteristics of the system are beneficial for applications, including digital signage, security systems, art, and amusement.

  20. Comparison of surface contour and volumetric three-dimensional imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Guilford, W.B.; Ullrich, C.G.; Moore, T.

    1988-01-01

    Both surface contour and volumetric three-dimensional image processing from CT data can provide accurate demonstration of skeletal anatomy. While realistic, surface contour images may obscure fine detail such as nondisplaced fractures, and thin bone may disappear. Volumetric processing can provide high detail, but the transparency effect is unnatural and may yield a confusing image. Comparison of both three-dimensional modes is presented to demonstrate those findings best shown with each and to illustrate helpful techniques to improve volumetric display, such as disarticulation of unnecessary anatomy, short-angle repeating rotation (dithering), and image combination into overlay displays

  1. A Novel Volumetric 3D Display System with Static Screen, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The physical world around us is three-dimensional (3D), yet most existing display systems with flat screens can handle only two-dimensional (2D) flat images that...

  2. A volumetric data system for environmental robotics

    International Nuclear Information System (INIS)

    Tourtellott, J.

    1994-01-01

    A three-dimensional, spatially organized or volumetric data system provides an effective means for integrating and presenting environmental sensor data to robotic systems and operators. Because of the unstructed nature of environmental restoration applications, new robotic control strategies are being developed that include environmental sensors and interactive data interpretation. The volumetric data system provides key features to facilitate these new control strategies including: integrated representation of surface, subsurface and above-surface data; differentiation of mapped and unmapped regions in space; sculpting of regions in space to best exploit data from line-of-sight sensors; integration of diverse sensor data (for example, dimensional, physical/geophysical, chemical, and radiological); incorporation of data provided at different spatial resolutions; efficient access for high-speed visualization and analysis; and geometric modeling tools to update a open-quotes world modelclose quotes of an environment. The applicability to underground storage tank remediation and buried waste site remediation are demonstrated in several examples. By integrating environmental sensor data into robotic control, the volumetric data system will lead to safer, faster, and more cost-effective environmental cleanup

  3. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    International Nuclear Information System (INIS)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho; Woo, Hyun Soo; Jo, Jae Min; Lee, Min Hee

    2015-01-01

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques

  4. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Woo, Hyun Soo [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); Jo, Jae Min [Dept. of Computer Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Lee, Min Hee [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2015-11-15

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques.

  5. Advanced and tendencies in the development of display technologies

    Science.gov (United States)

    Kompanets, I. N.

    2006-06-01

    Advances and key display applications are discussed. Computer, compact mobile, TV and collective large screen displays are mentioned. Flat panel displays step on CRT devices to leave them behind in 2007. Materials, active matricies and applications of bright radiative field emission and organic LED displays are developing successively and pressing other technologies to be used in photo-cameras, cellular phones, auto-cars and avionics. Progress in flexible screens can substantially extend the display design and application soon. 3D display systems are under intensive development, and laser is an important unit in some vaiants of holographic and volumetric 3D displays. Value forecast of different display markets is presented.

  6. 3D display system using monocular multiview displays

    Science.gov (United States)

    Sakamoto, Kunio; Saruta, Kazuki; Takeda, Kazutoki

    2002-05-01

    A 3D head mounted display (HMD) system is useful for constructing a virtual space. The authors have researched the virtual-reality systems connected with computer networks for real-time remote control and developed a low-priced real-time 3D display for building these systems. We developed a 3D HMD system using monocular multi-view displays. The 3D displaying technique of this monocular multi-view display is based on the concept of the super multi-view proposed by Kajiki at TAO (Telecommunications Advancement Organization of Japan) in 1996. Our 3D HMD has two monocular multi-view displays (used as a visual display unit) in order to display a picture to the left eye and the right eye. The left and right images are a pair of stereoscopic images for the left and right eyes, then stereoscopic 3D images are observed.

  7. A prototype table-top inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N. Robert; Mazin, Samuel R.; Solomon, Edward G.; Fahrig, Rebecca; Pelc, Norbert J.

    2006-01-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a ''Defrise'' phantom was scanned on both the prototype IGCT scanner and a micro CT system with a ±5 deg.cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for

  8. Display systems for NPP control

    International Nuclear Information System (INIS)

    Rozov, S.S.

    1988-01-01

    Main trends in development of display systems used as the means for image displaying in NPP control systems are considered. It is shown that colour display devices appear to be the most universal means for concentrated data presentation. Along with digital means the display systems provide for high-speed response, sufficient for operative control of executive mechanisms. A conclusion is drawn that further development of display systems will move towards creation of large colour fields (on reflection base or with multicolour gas-discharge elements)

  9. Latest development of display technologies

    International Nuclear Information System (INIS)

    Gao Hong-Yue; Yao Qiu-Xiang; Liu Pan; Zheng Zhi-Qiang; Liu Ji-Cheng; Zheng Hua-Dong; Zeng Chao; Yu Ying-Jie; Sun Tao; Zeng Zhen-Xiang

    2016-01-01

    In this review we will focus on recent progress in the field of two-dimensional (2D) and three-dimensional (3D) display technologies. We present the current display materials and their applications, including organic light-emitting diodes (OLEDs), flexible OLEDs quantum dot light emitting diodes (QLEDs), active-matrix organic light emitting diodes (AMOLEDs), electronic paper (E-paper), curved displays, stereoscopic 3D displays, volumetric 3D displays, light field 3D displays, and holographic 3D displays. Conventional 2D display devices, such as liquid crystal devices (LCDs) often result in ambiguity in high-dimensional data images because of lacking true depth information. This review thus provides a detailed description of 3D display technologies. (topical review)

  10. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    Science.gov (United States)

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  11. Improved algorithm for surface display from volumetric data

    International Nuclear Information System (INIS)

    Lobregt, S.; Schaars, H.W.G.K.; OpdeBeek, J.C.A.; Zonneveld, F.W.

    1988-01-01

    A high-resolution surface display is produced from three-dimensional datasets (computed tomography or magnetic resonance imaging). Unlike other voxel-based methods, this algorithm does not show a cuberille surface structure, because the surface orientation is calculated from original gray values. The applied surface shading is a function of local orientation and position of the surface and of a virtual light source, giving a realistic impression of the surface of bone and soft tissue. The projection and shading are table driven, combining variable viewpoint and illumination conditions with speed. Other options are cutplane gray-level display and surface transparency. Combined with volume scanning, this algorithm offers powerful application possibilities

  12. Advanced Colorimetry of Display Systems: Tetra-Chroma3 Display Unit

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2005-06-01

    Full Text Available High-fidelity color image reproduction is one of the key issues invisual telecommunication systems, for electronic commerce,telemedicine, digital museum and so on. All colorimetric standards ofdisplay systems are up to the present day trichromatic. But, from theshape of a horseshoe-area of all existing colors in the CIE xychromaticity diagram it follows that with three real reproductivelights, the stated area in the CIE xy chromaticity diagram cannot beoverlaid. The expansion of the color gamut of a display device ispossible in a few ways. In this paper, the way of increasing the numberof primaries is studied. The fourth cyan primary is added to threeconventional ones to enlarge the color gamut of reproduction towardscyans and yellow-oranges. The original method of color management forthis new display unit is introduced. In addition, the color gamut ofthe designed additive-based display is successfully compared with thecolor gamut of a modern subtractive-based system. A display with morethan three primary colors is called a multiprimary color display. Thevery advantageous property of such display is the possibility todisplay metameric colors.

  13. Data display with the Q system

    International Nuclear Information System (INIS)

    Oothoudt, M.A.

    1979-01-01

    The Q data-acquisition system for PDP-11 mini-computers at the Clinton P. Anderson Meson Physics Facility (LAMPF) provides experimenters with basic tools for on-line data display. Tasks are available to plot one- and two-parameter histograms on Tektronix 4000 series storage-tube terminals. The histograms to be displayed and the display format may be selected with simple keyboard commands. A task is also available to create and display live two-parameter scatter plots for any acquired or calculated quantities. Other tasks in the system manage the display data base, list display parameters and histogram contents on hardcopy devices, and save core histograms on disk or tape for off-line analysis. 8 figures

  14. Advanced Transport Operating System (ATOPS) color displays software description microprocessor system

    Science.gov (United States)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  15. Three-dimensional hologram display system

    Science.gov (United States)

    Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)

    2009-01-01

    The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.

  16. A volumetric flow sensor for automotive injection systems

    International Nuclear Information System (INIS)

    Schmid, U; Krötz, G; Schmitt-Landsiedel, D

    2008-01-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature

  17. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  18. New portable FELIX 3D display

    Science.gov (United States)

    Langhans, Knut; Bezecny, Daniel; Homann, Dennis; Bahr, Detlef; Vogt, Carsten; Blohm, Christian; Scharschmidt, Karl-Heinz

    1998-04-01

    An improved generation of our 'FELIX 3D Display' is presented. This system is compact, light, modular and easy to transport. The created volumetric images consist of many voxels, which are generated in a half-sphere display volume. In that way a spatial object can be displayed occupying a physical space with height, width and depth. The new FELIX generation uses a screen rotating with 20 revolutions per second. This target screen is mounted by an easy to change mechanism making it possible to use appropriate screens for the specific purpose of the display. An acousto-optic deflection unit with an integrated small diode pumped laser draws the images on the spinning screen. Images can consist of up to 10,000 voxels at a refresh rate of 20 Hz. Currently two different hardware systems are investigated. The first one is based on a standard PCMCIA digital/analog converter card as an interface and is controlled by a notebook. The developed software is provided with a graphical user interface enabling several animation features. The second, new prototype is designed to display images created by standard CAD applications. It includes the development of a new high speed hardware interface suitable for state-of-the- art fast and high resolution scanning devices, which require high data rates. A true 3D volume display as described will complement the broad range of 3D visualization tools, such as volume rendering packages, stereoscopic and virtual reality techniques, which have become widely available in recent years. Potential applications for the FELIX 3D display include imaging in the field so fair traffic control, medical imaging, computer aided design, science as well as entertainment.

  19. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  20. Image processing. Volumetric analysis with a digital image processing system. [GAMMA]. Bildverarbeitung. Volumetrie mittels eines digitalen Bildverarbeitungssystems

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, M; Radtke, F; Demel, G

    1986-01-01

    The book is arranged in seven sections, describing various applications of volumetric analysis using image processing systems, and various methods of diagnostic evaluation of images obtained by gamma scintigraphy, cardic catheterisation, and echocardiography. A dynamic ventricular phantom is explained that has been developed for checking and calibration for safe examination of patient, the phantom allowing extensive simulation of volumetric and hemodynamic conditions of the human heart: One section discusses the program development for image processing, referring to a number of different computer systems. The equipment described includes a small non-expensive PC system, as well as a standardized nuclear medical diagnostic system, and a computer system especially suited to image processing.

  1. Software for graphic display systems

    International Nuclear Information System (INIS)

    Karlov, A.A.

    1978-01-01

    In this paper some aspects of graphic display systems are discussed. The design of a display subroutine library is described, with an example, and graphic dialogue software is considered primarily from the point of view of the programmer who uses a high-level language. (Auth.)

  2. Visualization and volumetric structures from MR images of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  3. Industrial Personal Computer based Display for Nuclear Safety System

    International Nuclear Information System (INIS)

    Kim, Ji Hyeon; Kim, Aram; Jo, Jung Hee; Kim, Ki Beom; Cheon, Sung Hyun; Cho, Joo Hyun; Sohn, Se Do; Baek, Seung Min

    2014-01-01

    The safety display of nuclear system has been classified as important to safety (SIL:Safety Integrity Level 3). These days the regulatory agencies are imposing more strict safety requirements for digital safety display system. To satisfy these requirements, it is necessary to develop a safety-critical (SIL 4) grade safety display system. This paper proposes industrial personal computer based safety display system with safety grade operating system and safety grade display methods. The description consists of three parts, the background, the safety requirements and the proposed safety display system design. The hardware platform is designed using commercially available off-the-shelf processor board with back plane bus. The operating system is customized for nuclear safety display application. The display unit is designed adopting two improvement features, i.e., one is to provide two separate processors for main computer and display device using serial communication, and the other is to use Digital Visual Interface between main computer and display device. In this case the main computer uses minimized graphic functions for safety display. The display design is at the conceptual phase, and there are several open areas to be concreted for a solid system. The main purpose of this paper is to describe and suggest a methodology to develop a safety-critical display system and the descriptions are focused on the safety requirement point of view

  4. Industrial Personal Computer based Display for Nuclear Safety System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyeon; Kim, Aram; Jo, Jung Hee; Kim, Ki Beom; Cheon, Sung Hyun; Cho, Joo Hyun; Sohn, Se Do; Baek, Seung Min [KEPCO, Youngin (Korea, Republic of)

    2014-08-15

    The safety display of nuclear system has been classified as important to safety (SIL:Safety Integrity Level 3). These days the regulatory agencies are imposing more strict safety requirements for digital safety display system. To satisfy these requirements, it is necessary to develop a safety-critical (SIL 4) grade safety display system. This paper proposes industrial personal computer based safety display system with safety grade operating system and safety grade display methods. The description consists of three parts, the background, the safety requirements and the proposed safety display system design. The hardware platform is designed using commercially available off-the-shelf processor board with back plane bus. The operating system is customized for nuclear safety display application. The display unit is designed adopting two improvement features, i.e., one is to provide two separate processors for main computer and display device using serial communication, and the other is to use Digital Visual Interface between main computer and display device. In this case the main computer uses minimized graphic functions for safety display. The display design is at the conceptual phase, and there are several open areas to be concreted for a solid system. The main purpose of this paper is to describe and suggest a methodology to develop a safety-critical display system and the descriptions are focused on the safety requirement point of view.

  5. Multichannel waveform display system

    International Nuclear Information System (INIS)

    Kolvankar, V.G.

    1989-01-01

    For any multichannel data acquisition system, a multichannel paper chart recorder undoubtedly forms an essential part of the system. When deployed on-line, it instantaneously provides, for visual inspection, hard copies of the signal waveforms on common time base at any desired sensitivity and time resolution. Within the country, only a small range of these strip chart recorder s is available, and under stringent specifications imported recorders are often procured. The cost of such recorders may range from 1 to 5 lakhs of rupees in foreign exchange. A system to provide on the oscilloscope a steady display of multichannel waveforms, refreshed from the digital data stored in the memory is developed. The merits and demerits of the display system are compared with that built around a conventional paper chart recorder. Various illustrations of multichannel seismic event data acquired at Gauribidanur seismic array station are also presented. (author). 2 figs

  6. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    Science.gov (United States)

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  7. Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system

    Science.gov (United States)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  8. Panoramic, large-screen, 3-D flight display system design

    Science.gov (United States)

    Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.

    1995-01-01

    The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.

  9. System Would Generate Virtual Heads-Up Display

    Science.gov (United States)

    Lambert, James L.

    1994-01-01

    Proposed helmet-mounted electronic display system superimposes full-color alphanumerical and/or graphical information onto observer's visual field. Displayed information projected directly onto observer's retinas, giving observer illusion of full-size computer display in foreground or background. Display stereoscopic, holographic, or in form of virtual image. Used by pilots to view navigational information while looking outside or at instruments, by security officers to view information about critical facilities while looking at visitors, or possibly even stock-exchange facilities to view desktop monitors and overhead displays simultaneously. System includes acousto-optical tunable filter (AOTF), which acts as both spectral filter and spatial light modulator.

  10. Improving the efficiency of gas turbine systems with volumetric solar receivers

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Sánchez-Delgado, Sergio; Marugán-Cruz, Carolina; Santana, Domingo

    2017-01-01

    Highlights: • Study of small and large-scale solar-combined cycle plants with volumetric receivers. • Increase of inlet temperature of combustion air using solar energy. • The combustion exergy efficiency starts to decrease over a certain temperature. • Indications obtained from the energy and exergy analyses differ. - Abstract: The combustion process of gas turbine systems is typically associated with the highest thermodynamic inefficiencies among the system components. A method to increase the efficiency of a combustor and, consequently that of the gas turbine, is to increase the temperature of the entering combustion air. This measure reduces the consumption of fuel and improves the environmental performance of the turbine. This paper studies the incorporation of a volumetric solar receiver into existing gas turbines in order to increase the temperature of the inlet combustion air to 800 °C and 1000 °C. For the first time, detailed thermodynamic analyses involving both energy and exergy principles of both small-scale and large-scale hybrid (solar-combined cycle) power plants including volumetric receivers are realized. The plants are based on real gas turbine systems, the base operational characteristics of which are derived and reported in detail. It is found that the indications obtained from the energy and exergy analyses differ. The addition of the solar plant achieves an increase in the exergetic efficiency when the conversion of solar radiation into thermal energy (i.e., solar plant efficiency) is not accounted for in the definition of the overall plant efficiency. On the other hand, it is seen that it does not have a significant effect on the energy efficiency. Nevertheless, when the solar efficiency is included in the definition of the overall efficiency of the plants, the addition of the solar receiver always leads to an efficiency reduction. It is found that the exergy efficiency of the combustion chamber depends on the varying air

  11. Display-management system for MFTF

    International Nuclear Information System (INIS)

    Nelson, D.O.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is controlled by 65 local control microcomputers which are supervised by a local network of nine 32-bit minicomputers. Associated with seven of the nine computers are state-of-the-art graphics devices, each with extensive local processing capability. These devices provide the means for an operator to interact with the control software running on the minicomputers. It is critical that the information the operator views accurately reflects the current state of the experiment. This information is integrated into dynamically changing pictures called displays. The primary organizational component of the display system is the software-addressable segment. The segments created by the display creation software are managed by display managers associated with each graphics device. Each display manager uses sophisticated storage management mechanisms to keep the proper segments resident in the local graphics device storage

  12. Aspects of volumetric efficiency measurement for reciprocating engines

    Directory of Open Access Journals (Sweden)

    Pešić Radivoje B.

    2013-01-01

    Full Text Available The volumetric efficiency significantly influences engine output. Both design and dimensions of an intake and exhaust system have large impact on volumetric efficiency. Experimental equipment for measuring of airflow through the engine, which is placed in the intake system, may affect the results of measurements and distort the real picture of the impact of individual structural factors. This paper deals with the problems of experimental determination of intake airflow using orifice plates and the influence of orifice plate diameter on the results of the measurements. The problems of airflow measurements through a multi-process Otto/Diesel engine were analyzed. An original method for determining volumetric efficiency was developed based on in-cylinder pressure measurement during motored operation, and appropriate calibration of the experimental procedure was performed. Good correlation between the results of application of the original method for determination of volumetric efficiency and the results of theoretical model used in research of influence of the intake pipe length on volumetric efficiency was determined. [Acknowledgments. The paper is the result of the research within the project TR 35041 financed by the Ministry of Science and Technological Development of the Republic of Serbia

  13. Solar active region display system

    Science.gov (United States)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  14. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is of importance for the prediction of mechanical and physical properties, and in particular to assess the best possible (normally the highest) values for these properties. The volumetric model for the composition of (fibrous) composites gives...... guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  15. General multiplex centralized fire-alarm display system

    International Nuclear Information System (INIS)

    Zhu Liqun; Chen Jinming

    2002-01-01

    The fire-alarm display system is developed, which can connect with each type of fire controllers produced in the factory and SIGMASYS controllers. It can display whole alarm information. The display system software gathers communication, database and multimedia, has functions of inspecting fire, showing alarm, storing data, searching information and so on. The drawing software lets the user expediently add, delete, move and modify fire detection or fire fighting facilities on the building floor maps. The graphic transform software lets the display use the vectorgraph produced by popular plotting software such as Auto CAD. The system software provides the administration function, such as log book of changing shift and managing workers etc.. The software executed on Windows 98 platform. The user interface is friendly and reliable in operation

  16. A green-color portable waveguide eyewear display system

    Science.gov (United States)

    Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan

    2013-08-01

    Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.

  17. Solid models for CT/MR image display

    International Nuclear Information System (INIS)

    ManKovich, N.J.; Yue, A.; Kioumehr, F.; Ammirati, M.; Turner, S.

    1991-01-01

    Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. The authors have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the mode with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of >99.6 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents an accuracy study and discusses ways of assessing the quality of neurosurgical plans when 3-D models re made available as planning tools

  18. Information Display: Considerations for Designing Modern Computer-Based Display Systems

    International Nuclear Information System (INIS)

    O'Hara, J.; Pirus, D.; Beltracchi, L.

    2003-01-01

    OAK- B135 To help nuclear utilities and suppliers design and implement plant information management systems and displays that provide accurate and timely information and require minimal navigation and interface management

  19. Display of adenoregulin with a novel Pichia pastoris cell surface display system.

    Science.gov (United States)

    Ren, Ren; Jiang, Zhengbing; Liu, Meiyun; Tao, Xinyi; Ma, Yushu; Wei, Dongzhi

    2007-02-01

    Two Pichia pastoris cell surface display vectors were constructed. The vectors consisted of the flocculation functional domain of Flo1p with its own secretion signal sequence or the alpha-factor secretion signal sequence, a polyhistidine (6xHis) tag for detection, an enterokinase recognition site, and the insertion sites for target proteins. Adenoregulin (ADR) is a 33-amino-acid antimicrobial peptide isolated from Phyllomedusa bicolor skin. The ADR was expressed and displayed on the Pichia pastoris KM71 cell surface with the system reported. The displayed recombinant ADR fusion protein was detected by fluorescence microscopy and confocal laser scanning microscopy (CLSM). The antimicrobial activity of the recombinant adenoregulin was detected after proteolytic cleavage of the fusion protein on cell surface. The validity of the Pichia pastoris cell surface display vectors was proved by the displayed ADR.

  20. An integrated acquisition, display, and analysis system

    International Nuclear Information System (INIS)

    Ahmad, T.; Huckins, R.J.

    1987-01-01

    The design goal of the ND9900/Genuie was to integrate a high performance data acquisition and display subsystem with a state-of-the-art 32-bit supermicrocomputer. This was achieved by integrating a Digital Equipment Corporation MicroVAX II CPU board with acquisition and display controllers via the Q-bus. The result is a tightly coupled processing and analysis system for Pulse Height Analysis and other applications. The system architecture supports distributed processing, so that acquisition and display functions are semi-autonomous, making the VAX concurrently available for applications programs

  1. User interface design in safety parameter display systems

    International Nuclear Information System (INIS)

    Schultz, E.E. Jr.; Johnson, G.L.

    1988-01-01

    The extensive installation of computerized safety Parameter Display Systems (SPDSs) in nuclear power plants since the Three-Mile Island accident has enhanced plant safety. It has also raised new issues of how best to ensure an effective interface between human operators and the plant via computer systems. New developments in interface technologies since the current generation of SPDSs was installed can contribute to improving display interfaces. These technologies include new input devices, three-dimensional displays, delay indicators, and auditory displays. Examples of how they might be applied to improve current SPDSs are given. These examples illustrate how the new use interface technology could be applied to future nuclear plant displays

  2. CANDU 9 operator plant display system

    International Nuclear Information System (INIS)

    Trueman, R.; Webster, A.; MacBeth, M.J.

    1997-01-01

    To meet evolving client and regulatory needs, AECL has adopted an evolutionary approach to the design of the CANDU 9 control centre. That is, the design incorporates feedback from existing stations, reflects the growing diversity in the roles and responsibilities of the operating staff, and reduces costs associated with plant capital and operations, maintenance and administration (OM and A), through the appropriate introduction of new technologies. Underlying this approach is a refined engineering design process that cost-effectively integrates operational feedback and human factors engineering to define the operating staff information and information presentation requirements. Based on this approach, the CANDU 9 control centre will provide utility operating staff with the means to achieve improved operations and reduced OM and A costs. One of the design features that will contribute to the improved operational capabilities of the control centre is a new Plant Display System (PDS) that is separate from the digital control system. The PDS will be used to implement non-safety panel, and console video display systems within the CANDU 9 main control room (MCR). This paper presents a detailed description of the CANDU 9 Plant Display System and features that provide increased operational capabilities. (author)

  3. Data displays for multi-detector monitoring systems

    International Nuclear Information System (INIS)

    Barnes, R.C.M.

    1978-03-01

    Extensive installations of sensors are used for environmental surveillance of radiological hazards, fire, etc. The data from such arrays of detectors can be collected by data processing systems which generate appropriate supervisory displays and records. This paper reviews facilities and physical configurations of computer-based display systems, with particular reference to radiological protection schemes. The general principles are relevant to other fields of application. (author)

  4. Function-oriented display system: background and first prototypes

    International Nuclear Information System (INIS)

    Andresen, Gisle; Friberg, Maarten; Teigen, Arild; Pirus, Dominique

    2004-04-01

    The objective of the function-oriented displays and alarm project is to design, implement and evaluate Human System Interfaces (HSI) based on a function-oriented design philosophy. Function-oriented design is an approach for designing HSIs where the plant's functions, identified through a function analysis, are used for determining the content, organisation, and management of displays. The project has used the 'FITNESS approach', originally developed by EDF in France, as a starting point. FITNESS provides an integrated display system consisting of process operating displays, operating procedures, alarms and trend displays - all based on a functional decomposition of the plant. So far, two prototypes have been implemented on the FRESH PWR simulator in HAMMLAB. The first prototype focused on the condensate pumps. Three process operating displays representing functions at different levels of the functional hierarchy were implemented. Computerised startup and shutdown procedures for the condensate pumps function were also implemented. In the second prototype, the scope was increased to cover the main feedwater system. The displays of the first prototype were redesigned and additional displays were created. In conclusion, the first phase of the project has been completed successfully, and we are now ready to enter the second phase. In the second phase, the scope of the prototype will be increased further to include the steam-generators and function-oriented disturbance operating procedures. The prototype will be evaluated in a user test conducted later in 2004. (Author)

  5. Security alarm communication and display systems development

    International Nuclear Information System (INIS)

    Waddoups, I.G.

    1990-01-01

    Sandia National Laboratories (SNL) has, as lead Department of Energy (DOE) physical security laboratory, developed a variety of alarm communication and display systems for DOE and Department of Defense (DOD) facilities. This paper briefly describes some of the systems developed and concludes with a discussion of technology relevant to those currently designing, developing, implementing, or procuring such a system. Development activities and the rapid evolution of computers over the last decade have resulted in a broad variety of capabilities to support most security system communication and display needs. The major task in selecting a system is becoming familiar with these capabilities and finding the best match to a specific need

  6. An Advanced Diagnostic Display for Core Protection Calculator System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hyeon; Jeong, See-Chae; Sohn, Se-Do [Korea Power Engineering Company, Daejeon (Korea, Republic of)

    2008-10-15

    The main purpose of a Nuclear Power Plant Instrumentation and Control (I and C) Display System is to provide operator's interface for I and C systems. The CPCS display(Shin-Kori 1 and 2) provides operators with 1) plant monitoring values of field input and algorithm variables that reflect the reactor core conditions, 2) operation values that operators can change and 3) CPCS status. It will be an optimal case if operators can understand the plant (including CPCS itself) condition intuitively with the displayed values but it is not easy in CPCS. For example, if the CPCS Channel Trouble light is lit, operators need some amount of time to investigate what caused the trouble light because there are more than hundred causes that can generate the channel trouble. If a Display supports diagnostic information that shows what cause the displayed alarms, it will greatly help operators in easy understanding the CPCS status. To provide these diagnostic information, this paper suggests an active self-explanatory display mechanism. This self-explanatory diagnostic display mechanism utilizes an ontology in XML that describes parent child, sibling relationships of display variables, through which in-depth, in-breadth diagnostic tracking is possible. This paper consists of two parts. First, the key features of CPCS Flat Panel Display System (FPDS) are described. Second, the features of active self explanatory diagnostic display are discussed.

  7. An Advanced Diagnostic Display for Core Protection Calculator System

    International Nuclear Information System (INIS)

    Kim, Ji-Hyeon; Jeong, See-Chae; Sohn, Se-Do

    2008-01-01

    The main purpose of a Nuclear Power Plant Instrumentation and Control (I and C) Display System is to provide operator's interface for I and C systems. The CPCS display(Shin-Kori 1 and 2) provides operators with 1) plant monitoring values of field input and algorithm variables that reflect the reactor core conditions, 2) operation values that operators can change and 3) CPCS status. It will be an optimal case if operators can understand the plant (including CPCS itself) condition intuitively with the displayed values but it is not easy in CPCS. For example, if the CPCS Channel Trouble light is lit, operators need some amount of time to investigate what caused the trouble light because there are more than hundred causes that can generate the channel trouble. If a Display supports diagnostic information that shows what cause the displayed alarms, it will greatly help operators in easy understanding the CPCS status. To provide these diagnostic information, this paper suggests an active self-explanatory display mechanism. This self-explanatory diagnostic display mechanism utilizes an ontology in XML that describes parent child, sibling relationships of display variables, through which in-depth, in-breadth diagnostic tracking is possible. This paper consists of two parts. First, the key features of CPCS Flat Panel Display System (FPDS) are described. Second, the features of active self explanatory diagnostic display are discussed

  8. Influence of fluid-mechanical characteristics of the system on the volumetric mass transfer coefficient and gas dispersion in three-phase system

    Directory of Open Access Journals (Sweden)

    Knežević Milena M.

    2014-01-01

    Full Text Available Distribution of gas bubbles and volumetric mass transfer coefficient, Kla, in a three phase system, with different types of solid particles at different operation conditions were studied in this paper. The ranges of superficial gas and liquid velocities used in this study were 0,03-0,09 m/s and 0-0,1 m/s, respectively. The three different types of solid particles were used as a bed in the column (glass dp=3 mm, dp=6 mm; ceramic dp=6 mm. The experiments were carried out in a 2D plexiglas column, 278 x 20,4 x 500 mm and in a cylindrical plexiglas column, with a diameter of 64 mm and a hight of 2000 mm. The Kla coefficient increased with gas and liquid velocities. Results showed that the volumetric mass transfer coefficient has a higher values in three phase system, with solid particles, compared with two phase system. The particles properties (diameter and density have a major impact on oxygen mass transfer in three phase systems.

  9. Interactive display of molecular models using a microcomputer system

    Science.gov (United States)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  10. Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.

    Science.gov (United States)

    Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei

    2016-10-10

    Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.

  11. A zero-footprint 3D visualization system utilizing mobile display technology for timely evaluation of stroke patients

    Science.gov (United States)

    Park, Young Woo; Guo, Bing; Mogensen, Monique; Wang, Kevin; Law, Meng; Liu, Brent

    2010-03-01

    When a patient is accepted in the emergency room suspected of stroke, time is of the utmost importance. The infarct brain area suffers irreparable damage as soon as three hours after the onset of stroke symptoms. A CT scan is one of standard first line of investigations with imaging and is crucial to identify and properly triage stroke cases. The availability of an expert Radiologist in the emergency environment to diagnose the stroke patient in a timely manner only increases the challenges within the clinical workflow. Therefore, a truly zero-footprint web-based system with powerful advanced visualization tools for volumetric imaging including 2D. MIP/MPR, 3D display can greatly facilitate this dynamic clinical workflow for stroke patients. Together with mobile technology, the proper visualization tools can be delivered at the point of decision anywhere and anytime. We will present a small pilot project to evaluate the use of mobile technologies using devices such as iPhones in evaluating stroke patients. The results of the evaluation as well as any challenges in setting up the system will also be discussed.

  12. A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Fahrig, Rebecca; Pelc, Norbert J.

    2005-01-01

    An inverse-geometry volumetric computed tomography (IGCT) system has been proposed capable of rapidly acquiring sufficient data to reconstruct a thick volume in one circular scan. The system uses a large-area scanned source opposite a smaller detector. The source and detector have the same extent in the axial, or slice, direction, thus providing sufficient volumetric sampling and avoiding cone-beam artifacts. This paper describes a reconstruction algorithm for the IGCT system. The algorithm first rebins the acquired data into two-dimensional (2D) parallel-ray projections at multiple tilt and azimuthal angles, followed by a 3D filtered backprojection. The rebinning step is performed by gridding the data onto a Cartesian grid in a 4D projection space. We present a new method for correcting the gridding error caused by the finite and asymmetric sampling in the neighborhood of each output grid point in the projection space. The reconstruction algorithm was implemented and tested on simulated IGCT data. Results show that the gridding correction reduces the gridding errors to below one Hounsfield unit. With this correction, the reconstruction algorithm does not introduce significant artifacts or blurring when compared to images reconstructed from simulated 2D parallel-ray projections. We also present an investigation of the noise behavior of the method which verifies that the proposed reconstruction algorithm utilizes cross-plane rays as efficiently as in-plane rays and can provide noise comparable to an in-plane parallel-ray geometry for the same number of photons. Simulations of a resolution test pattern and the modulation transfer function demonstrate that the IGCT system, using the proposed algorithm, is capable of 0.4 mm isotropic resolution. The successful implementation of the reconstruction algorithm is an important step in establishing feasibility of the IGCT system

  13. Design and Implementation of a Wireless Message Display System

    Directory of Open Access Journals (Sweden)

    M. U. M. Bakura

    2016-08-01

    Full Text Available The technology of displaying message is an important part of communication and advertisement. In recent times, Wireless communication has announced its arrival on big stage and the world is going with Smartphone technology. This work describes the design and implementation of a microcontroller based messaging display system. The messaging display system will be interfaced with an android application which will then be used to display information from the comfort of one‘s phone to an LCD screen using the Bluetooth application interface. The work employs the use of an ATMEGA328p Microcontroller mounted on an Arduino board, a Bluetooth Module (HC-06 and an LCD screen. Most of these electronic display systems were using wired cable connections, the Bluetooth technology used in this work is aimed at solving the problem of wired cable connections.The microcontroller provides all the functionality of the display notices and wireless control. A desired text message from a mobile phone is sent via android mobile application to the Bluetooth module located at the receiving end. The Mobile Application was created using online software called App Inventor. When the entire system was connected and tested, it functioned as designed without any noticeable problems. The Bluetooth module responded to commands being sent from the android application appropriately and in a timely manner. The system was able to display 80 characters on the 4 x 20 LCD within the range of 10m as designated by the Bluetooth datasheet.

  14. Advanced image display systems in radiology

    International Nuclear Information System (INIS)

    Wendler, T.

    1987-01-01

    Advanced image display systems for the fully digital diagnostic imaging departments of the future will be far more than simple replacements of the traditional film-viewing equipment. The new capabilities of very high resolution and highly dynamic displays offer a userfriendly and problem-oriented way of image interpretation. Advanced harware-, software- and human-machine interaction-concepts have been outlined. A scenario for a future way of handling and displaying images, reflecting a new image viewing paradigm in radiology is sketched which has been realized in an experimental image workstation model in the laboratory which, despite its technical complexity, offers a consistent strategy for fast and convenient interaction with image objects. The perspective of knowledge based techniques for workstation control software with object-oriented programming environments and user- and task-adaptive behavior leads to more advanced display properties and a new quality of userfriendliness. 2 refs.; 5 figs

  15. Spacesuit Data Display and Management System

    Science.gov (United States)

    Hall, David G.; Sells, Aaron; Shah, Hemal

    2009-01-01

    A prototype embedded avionics system has been designed for the next generation of NASA extra-vehicular-activity (EVA) spacesuits. The system performs biomedical and other sensor monitoring, image capture, data display, and data transmission. An existing NASA Phase I and II award winning design for an embedded computing system (ZIN vMetrics - BioWATCH) has been modified. The unit has a reliable, compact form factor with flexible packaging options. These innovations are significant, because current state-of-the-art EVA spacesuits do not provide capability for data displays or embedded data acquisition and management. The Phase 1 effort achieved Technology Readiness Level 4 (high fidelity breadboard demonstration). The breadboard uses a commercial-grade field-programmable gate array (FPGA) with embedded processor core that can be upgraded to a space-rated device for future revisions.

  16. Integrated Display and Environmental Awareness System - System Architecture Definition

    Science.gov (United States)

    Doule, Ondrej; Miranda, David; Hochstadt, Jake

    2017-01-01

    The Integrated Display and Environmental Awareness System (IDEAS) is an interdisciplinary team project focusing on the development of a wearable computer and Head Mounted Display (HMD) based on Commercial-Off-The-Shelf (COTS) components for the specific application and needs of NASA technicians, engineers and astronauts. Wearable computers are on the verge of utilization trials in daily life as well as industrial environments. The first civil and COTS wearable head mounted display systems were introduced just a few years ago and they probed not only technology readiness in terms of performance, endurance, miniaturization, operability and usefulness but also maturity of practice in perspective of a socio-technical context. Although the main technical hurdles such as mass and power were addressed as improvements on the technical side, the usefulness, practicality and social acceptance were often noted on the side of a broad variety of humans' operations. In other words, although the technology made a giant leap, its use and efficiency still looks for the sweet spot. The first IDEAS project started in January 2015 and was concluded in January 2017. The project identified current COTS systems' capability at minimum cost and maximum applicability and brought about important strategic concepts that will serve further IDEAS-like system development.

  17. Qinshan plant display system: experience to date

    International Nuclear Information System (INIS)

    Bin, L.; Jiangdong, Y.; Weili, C.; Haidong, W.; Wangtian, L.; Lockwood, R.; Doucet, R.; Trask, D.; Judd, R.

    2004-01-01

    The two CANDU 6 units operated by the Third Qinshan Nuclear Power Corporation (TQNPC) include, as part of a control centre upgrade, a new plant display system (PDS). The PDS provides plant operators with new display and monitoring functionality designed to compliment the DCC capability. It includes new overview and trend displays (e.g., critical safety parameter monitor and user-defined trends), and enhanced annunciation based on AECL's Computerized Alarm Message List System (CAMLS) including an alarm interrogation capability. This paper presents a review of operating experience gained since the PDS was commissioned more than three years ago. It includes feedback provided by control room operators and trainers, PDS maintainers, and AECL development and support staff. It also includes an overview of improvements implemented since the PDS and suggestions for the future enhancements. (author)

  18. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel; Dumusc, Raphael; Bilgili, Ahmet; Hernando, Juan; Eilemann, Stefan

    2014-01-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  19. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  20. A programmable display layer for virtual reality system architectures

    NARCIS (Netherlands)

    Smit, F.A.; Liere, van R.; Fröhlich, B.

    2010-01-01

    Display systems typically operate at a minimum rate of 60 Hz. However, existing VR-architectures generally produce application updates at a lower rate. Consequently, the display is not updated by the application every display frame. This causes a number of undesirable perceptual artifacts. We

  1. Development of plant status display system for on-site educational training system

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Fujimoto, Junzo; Okamoto, Hisatake; Tsunoda, Ryohei; Watanabe, Takao; Masuko, Jiro.

    1986-01-01

    The purpose of this system is to make easy the comprehension of the facility and dynamics of nuclear power plants. This report describes the tendency and future position of how the educational training system should be, and furthermore describes the experiment. Main results are as follows. 1. The present status and the future tendency of educational training system for nuclear power plant operators. CAI (Computer Assisted Instruction) system has following characteristics. (1) It is easy to introduce plant specific characteristics to the educational training. (2) It is easy to execute the detailed training for the compensation of the full-scale simulator. 2. Plant status display system for on-site educational training system. The fundamental function of the system is as follows. (1) It has 2 CRT displays and voice output devices. (2) It has easy manupulation type of man-machine interface. (3) It has the function for the evaluation of the training results. 3. The effectiveness of this system. The effectiveness evaluation test has been carried out by using this system actually. (1) This system has been proved to be essentially effective and some improvements for the future utilization has been pointed out. (2) It should be faster when the CRT displayes are changed, and it should have the explanation function when the plant transients are displayed. (author)

  2. An expert display system and nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1988-01-01

    An expert display system controls automatically the display of segments on a cathode ray tube's screen to form an image of plant operations. The image consists of an icon of: 1) the process (heat engine cycle), 2) plant control systems, and 3) safety systems. A set of data-driven, forward-chaining computer stored rules control the display of segments. As plant operation changes, measured plant data are processed through the rules, and the results control the deletion and addition of segments to the display format. The icon contains information needed by control rooms operators to monitor plant operations. One example of an expert display is illustrated for the operator's task of monitoring leakage from a safety valve in a steam line of a boiling water reactor (BWR). In another example, the use of an expert display to monitor plant operations during pre-trip, trip, and post-trip operations is discussed as a universal display. The viewpoints and opinions expressed herein are the author's personal ones, and they are not to be interpreted as Nuclear Regulatory Commission criteria, requirements, or guidelines

  3. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography

    Science.gov (United States)

    Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S.; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.

    2016-01-01

    Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes. PMID:27231616

  4. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography.

    Science.gov (United States)

    Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S; Kuo, Anthony N; Toth, Cynthia A; Izatt, Joseph A

    2016-05-01

    Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes.

  5. A new concept of safety parameter display system

    International Nuclear Information System (INIS)

    Martinez, A.S.; Oliveira, L.F.S. de; Schirru, R.; Thome Filho, Z.D.; Silva, R.A. da.

    1986-07-01

    A general description of Angra-1 Parameter Display System (SSPA), a real time and on-line computerized monitoring system for the parameters related to the power plant safety is presented. This system has the main purpose of diminish the load on the Angra-1 power plant operators at an emergency event by supplying them with the additional tools serving as the basis for a prompt identification of the accident. The SSPA is a kind of safety parameter display system whose concept was introduced after Three Mile Island accident in USA. The SSPA comprises two nuclear applications independently considered. They are included into the Parameters Monitoring Integrated System (SIMP) and the safety critical function system (SFCS). (Author) [pt

  6. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun [Drexel Univ., Philadelphia, PA (United States); Harbin Engineering Univ., Harbin (China); Ren, Chang E. [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Hatter, Christine B. [Drexel Univ., Philadelphia, PA (United States); Anasori, Babak [Drexel Univ., Philadelphia, PA (United States); Urbankowski, Patrick [Drexel Univ., Philadelphia, PA (United States); Sarycheva, Asya [Drexel Univ., Philadelphia, PA (United States); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-06-30

    A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm–3 at a scan rate of 2 mV s–1, an impressive rate capability with 61% capacitance retention at 1 V s–1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L–1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.

  7. Information retrieval and display system

    Science.gov (United States)

    Groover, J. L.; King, W. L.

    1977-01-01

    Versatile command-driven data management system offers users, through simplified command language, a means of storing and searching data files, sorting data files into specified orders, performing simple or complex computations, effecting file updates, and printing or displaying output data. Commands are simple to use and flexible enough to meet most data management requirements.

  8. Paradigm for expert display systems in nuclear plant and elsewhere

    International Nuclear Information System (INIS)

    Gabriel, J.R.

    1986-02-01

    Display of relevant data concerning plant operation has been a concern of the nuclear industry from its beginnings. Since the incident at Three Mile Island, this matter has had much careful scrutiny. L. Beltracchi, in particular, has originated a sequence of important steps to improve the operator's ability to recognize plant states and their changes. In the early 1980's, Beltracchi (1983, 1984) proposed a display based on the Rankine cycle for light water reactors. More recently, in an unpublished work (1986b), he described an extension that includes a small, rule-based system in the display program, drawing inferences about plant operation from sensor readings, and displaying those inferences on the Rankine display. Our paper examines Beltracchi's rule-based display from the perspective of knowledge bases. Earlier (Gabriel, 1983) we noted that analytical models of system behavior are just as much a knowledge base as are the rules of a conventional expert system. The problem of finding useful displays for a complex plant is discussed from this perspective. We then present a paradigm for developing designs with properties similar to those in Beltracchi's Rankine cycle display. Finally, to clarify the issue, we give a small example from an imaginary plant

  9. Face detection for interactive tabletop viewscreen system using olfactory display

    Science.gov (United States)

    Sakamoto, Kunio; Kanazawa, Fumihiro

    2009-10-01

    An olfactory display is a device that delivers smells to the nose. It provides us with special effects, for example to emit smell as if you were there or to give a trigger for reminding us of memories. The authors have developed a tabletop display system connected with the olfactory display. For delivering a flavor to user's nose, the system needs to recognition and measure positions of user's face and nose. In this paper, the authors describe an olfactory display which enables to detect the nose position for an effective delivery.

  10. Open control/display system for a telerobotics work station

    Science.gov (United States)

    Keslowitz, Saul

    1987-01-01

    A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.

  11. Cost-effectiveness of volumetric alcohol taxation in Australia.

    Science.gov (United States)

    Byrnes, Joshua M; Cobiac, Linda J; Doran, Christopher M; Vos, Theo; Shakeshaft, Anthony P

    2010-04-19

    To estimate the potential health benefits and cost savings of an alcohol tax rate that applies equally to all alcoholic beverages based on their alcohol content (volumetric tax) and to compare the cost savings with the cost of implementation. Mathematical modelling of three scenarios of volumetric alcohol taxation for the population of Australia: (i) no change in deadweight loss, (ii) no change in tax revenue, and (iii) all alcoholic beverages taxed at the same rate as spirits. Estimated change in alcohol consumption, tax revenue and health benefit. The estimated cost of changing to a volumetric tax rate is $18 million. A volumetric tax that is deadweight loss-neutral would increase the cost of beer and wine and reduce the cost of spirits, resulting in an estimated annual increase in taxation revenue of $492 million and a 2.77% reduction in annual consumption of pure alcohol. The estimated net health gain would be 21 000 disability-adjusted life-years (DALYs), with potential cost offsets of $110 million per annum. A tax revenue-neutral scenario would result in an 0.05% decrease in consumption, and a tax on all alcohol at a spirits rate would reduce consumption by 23.85% and increase revenue by $3094 million [corrected]. All volumetric tax scenarios would provide greater health benefits and cost savings to the health sector than the existing taxation system, based on current understandings of alcohol-related health effects. An equalized volumetric tax that would reduce beer and wine consumption while increasing the consumption of spirits would need to be approached with caution. Further research is required to examine whether alcohol-related health effects vary by type of alcoholic beverage independent of the amount of alcohol consumed to provide a strong evidence platform for alcohol taxation policies.

  12. Safety parameter display system (SPDS) for Russian-designed NPPs

    International Nuclear Information System (INIS)

    Anikanov, S.S.; Catullo, W.J.; Pelusi, J.L.

    1997-01-01

    As part of the programs aimed at improving the safety of Russian-designed reactors, the US DoE has sponsored a project of providing a safety parameter display system (SPDS) for nuclear power plants with such reactors. The present paper is focused mostly on the system architecture design features of SPDS systems for WWER-1000 and RBMK-1000 reactors. The function and the operating modes of the SPDS are outlined, and a description of the display system is given. The system architecture and system design of both an integrated and a stand-alone IandC system is explained. (A.K.)

  13. Virtual vision system with actual flavor by olfactory display

    Science.gov (United States)

    Sakamoto, Kunio; Kanazawa, Fumihiro

    2010-11-01

    The authors have researched multimedia system and support system for nursing studies on and practices of reminiscence therapy and life review therapy. The concept of the life review is presented by Butler in 1963. The process of thinking back on one's life and communicating about one's life to another person is called life review. There is a famous episode concerning the memory. It is called as Proustian effects. This effect is mentioned on the Proust's novel as an episode that a story teller reminds his old memory when he dipped a madeleine in tea. So many scientists research why smells trigger the memory. The authors pay attention to the relation between smells and memory although the reason is not evident yet. Then we have tried to add an olfactory display to the multimedia system so that the smells become a trigger of reminding buried memories. An olfactory display is a device that delivers smells to the nose. It provides us with special effects, for example to emit smell as if you were there or to give a trigger for reminding us of memories. The authors have developed a tabletop display system connected with the olfactory display. For delivering a flavor to user's nose, the system needs to recognition and measure positions of user's face and nose. In this paper, the authors describe an olfactory display which enables to detect the nose position for an effective delivery.

  14. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    Science.gov (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  15. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    Science.gov (United States)

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

  16. Head Worn Display System for Equivalent Visual Operations

    Science.gov (United States)

    Cupero, Frank; Valimont, Brian; Wise, John; Best. Carl; DeMers, Bob

    2009-01-01

    Head-Worn Displays or so-called, near-to-eye displays have potentially significant advantages in terms of cost, overcoming cockpit space constraints, and for the display of spatially-integrated information. However, many technical issues need to be overcome before these technologies can be successfully introduced into commercial aircraft cockpits. The results of three activities are reported. First, the near-to-eye display design, technological, and human factors issues are described and a literature review is presented. Second, the results of a fixed-base piloted simulation, investigating the impact of near to eye displays on both operational and visual performance is reported. Straight-in approaches were flown in simulated visual and instrument conditions while using either a biocular or a monocular display placed on either the dominant or non-dominant eye. The pilot's flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested. The data generally supports a monocular design with minimal impact due to eye dominance. Finally, a method for head tracker system latency measurement is developed and used to compare two different devices.

  17. A programmable display layer for virtual reality system architectures.

    Science.gov (United States)

    Smit, Ferdi Alexander; van Liere, Robert; Froehlich, Bernd

    2010-01-01

    Display systems typically operate at a minimum rate of 60 Hz. However, existing VR-architectures generally produce application updates at a lower rate. Consequently, the display is not updated by the application every display frame. This causes a number of undesirable perceptual artifacts. We describe an architecture that provides a programmable display layer (PDL) in order to generate updated display frames. This replaces the default display behavior of repeating application frames until an update is available. We will show three benefits of the architecture typical to VR. First, smooth motion is provided by generating intermediate display frames by per-pixel depth-image warping using 3D motion fields. Smooth motion eliminates various perceptual artifacts due to judder. Second, we implement fine-grained latency reduction at the display frame level using a synchronized prediction of simulation objects and the viewpoint. This improves the average quality and consistency of latency reduction. Third, a crosstalk reduction algorithm for consecutive display frames is implemented, which improves the quality of stereoscopic images. To evaluate the architecture, we compare image quality and latency to that of a classic level-of-detail approach.

  18. INFORMATION DISPLAY: CONSIDERATIONS FOR DESIGNING COMPUTER-BASED DISPLAY SYSTEMS

    International Nuclear Information System (INIS)

    O'HARA, J.M.; PIRUS, D.; BELTRATCCHI, L.

    2004-01-01

    This paper discussed the presentation of information in computer-based control rooms. Issues associated with the typical displays currently in use are discussed. It is concluded that these displays should be augmented with new displays designed to better meet the information needs of plant personnel and to minimize the need for interface management tasks (the activities personnel have to do to access and organize the information they need). Several approaches to information design are discussed, specifically addressing: (1) monitoring, detection, and situation assessment; (2) routine task performance; and (3) teamwork, crew coordination, collaborative work

  19. Liquid crystal true 3D displays for augmented reality applications

    Science.gov (United States)

    Li, Yan; Liu, Shuxin; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-01

    Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.

  20. Development of design window evaluation and display system. 1. System development and performance confirmation

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Yamaguchi, Akira

    2003-07-01

    Purpose: The work was performed to develop a design window evaluation and display system for the purpose of obtaining the effects of various design parameters on the typical thermal hydraulic issues resulting from a use of various kind of working fluid etc. easily. Method: The function of the system were 'confirmation of design margin' of the present design, 'confirmation of the affected design zone' when a designer changed some design parameter, and search for an design improvement' for design optimization. The system was developed using existing soft wares on PC and the database relating analytical results of typical thermal hydraulic issues provided by separate work. Results: (1) System design: In order to develop a design window evaluation and display system, 'numerical analysis unit', 'statistical analysis unit', 'MMI unit', 'optimization unit' were designed based on the result of selected optimization procedure and display visualization. Further, total system design was performed combining these units. Typical thermal hydraulic issues to be considered are upper plenum thermal hydraulics, thermal stratification, free surface sloshing, flow-induced vibration of a heat exchanger and thermal striping in the T-junction piping systems. (2) Development of prototype system and a functional check: A prototype system of a design window evaluation and display system was developed and the functions were confirmed as was planned. (author)

  1. Flatbed-type 3D display systems using integral imaging method

    Science.gov (United States)

    Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki

    2006-10-01

    We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.

  2. An interactive display system for large-scale 3D models

    Science.gov (United States)

    Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman

    2018-04-01

    With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.

  3. Lighting Control System for Premises with Display Screen Equipment

    Science.gov (United States)

    Kudryashov, A. V.

    2017-11-01

    The use of Display Screen Equipment (DSE) at enterprises allows one to increase the productivity and safety of production, minimize the number of personnel and leads to the simplification of the work of specialists, but on the other side, changes usual working conditions. If the personnel works with displays, visual fatigue develops more quickly which contributes to the emergence of nervous tension, stress and possible erroneous actions. Low interest of the lighting control system developers towards the rooms with displays is dictated by special requirements for coverage by sanitary and hygienic standards (limiting excess workplace illumination). We decided to create a combined lighting system which works considering daylight illumination and artificial light sources. The brightness adjustment of the LED lamps is carried out according to the DALI protocol, adjustment of the natural illumination by means of smart glasses. The technical requirements for a lighting control system, the structural-functional scheme and the algorithm for controlling the operation of the system have been developed. The elements of control units, sensors and actuators have been selected.

  4. LOFT advanced control room operator diagnostic and display system (ODDS)

    International Nuclear Information System (INIS)

    Larsen, D.G.; Robb, T.C.

    1980-01-01

    The Loss-of-Fluid Test (LOFT) Reactor Facility in Idaho includes a highly instrumented nuclear reactor operated by the Department of Energy for the purpose of establishing nuclear safety requirements. The results of the development and installation into LOFT of an Operator Diagnostic and Display System (ODDS) are presented. The ODDS is a computer-based graphics display system centered around a PRIME 550 computer with several RAMTEK color graphic display units located within the control room and available to the reactor operators. Use of computer-based color graphics to aid the reactor operator is discussed. A detailed hardware description of the LOFT data system and the ODDS is presented. Methods and problems of backfitting the ODDS equipment into the LOFT plant are discussed

  5. Prism-based single-camera system for stereo display

    Science.gov (United States)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  6. High color fidelity thin film multilayer systems for head-up display use

    Science.gov (United States)

    Tsou, Yi-Jen D.; Ho, Fang C.

    1996-09-01

    Head-up display is gaining increasing access in automotive vehicles for indication and position/navigation purposes. An optical combiner, which allows the driver to receive image information from outside and inside of the automobile, is the essential part of this display device. Two multilayer thin film combiner coating systems with distinctive polarization selectivity and broad band spectral neutrality are discussed. One of the coating systems was designed to be located at the lower portion of the windshield. The coating reduced the exterior glare by approximately 45% and provided about 70% average see-through transmittance in addition to the interior information display. The other coating system was designed to be integrated with the sunshield located at the upper portion of the windshield. The coating reflected the interior information display while reducing direct sunlight penetration to 25%. Color fidelity for both interior and exterior images were maintained in both systems. This facilitated the display of full-color maps. Both coating systems were absorptionless and environmentally durable. Designs, fabrication, and performance of these coating systems are addressed.

  7. A rule-based expert system for generating control displays at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Coulter, K.J.

    1993-01-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool

  8. A rule-based expert system for generating control displays at the advanced photon source

    International Nuclear Information System (INIS)

    Coulter, K.J.

    1994-01-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool. ((orig.))

  9. Coaxial volumetric velocimetry

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  10. Design characteristics of safety parameter display system for nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Yuangfang

    1992-02-01

    The design features of safety parameter display system (SPDS) developed by Tsinghua University is introduced. Some new features have been added into the system functions and they are: (1) hierarchical display structure; (2) human factor in the display format design; (3)automatic diagnosis of safety status of nuclear power plant; (4) extension of SPDS use scope; (5) flexible hardware structure. The new approaches in the design are: (1)adopting the international design standards; (2) selecting safety parameters strictly; (3) developing software under multitask operating system; (4) using a nuclear power plant simulator to verify the SPDS design

  11. Monocular display unit for 3D display with correct depth perception

    Science.gov (United States)

    Sakamoto, Kunio; Hosomi, Takashi

    2009-11-01

    A study of virtual-reality system has been popular and its technology has been applied to medical engineering, educational engineering, a CAD/CAM system and so on. The 3D imaging display system has two types in the presentation method; one is a 3-D display system using a special glasses and the other is the monitor system requiring no special glasses. A liquid crystal display (LCD) recently comes into common use. It is possible for this display unit to provide the same size of displaying area as the image screen on the panel. A display system requiring no special glasses is useful for a 3D TV monitor, but this system has demerit such that the size of a monitor restricts the visual field for displaying images. Thus the conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. To enlarge the display area, the authors have developed an enlarging method of display area using a mirror. Our extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. In the developed display unit, we made use of an image separating technique using polarized glasses, a parallax barrier or a lenticular lens screen for 3D imaging. The mirror can generate the virtual image plane and it enlarges a screen area twice. Meanwhile the 3D display system using special glasses can also display virtual images over a wide area. In this paper, we present a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  12. Cyber Security Test Strategy for Non-safety Display System

    International Nuclear Information System (INIS)

    Son, Han Seong; Kim, Hee Eun

    2016-01-01

    Cyber security has been a big issue since the instrumentation and control (I and C) system of nuclear power plant (NPP) is digitalized. A cyber-attack on NPP should be dealt with seriously because it might cause not only economic loss but also the radioactive material release. Researches on the consequences of cyber-attack onto NPP from a safety point of view have been conducted. A previous study shows the risk effect brought by initiation of event and deterioration of mitigation function by cyber terror. Although this study made conservative assumptions and simplifications, it gives an insight on the effect of cyber-attack. Another study shows that the error on a non-safety display system could cause wrong actions of operators. According to this previous study, the failure of the operator action caused by a cyber-attack on a display system might threaten the safety of the NPP by limiting appropriate mitigation actions. This study suggests a test strategy focusing on the cyber-attack on the information and display system, which might cause the failure of operator. The test strategy can be suggested to evaluate and complement security measures. Identifying whether a cyber-attack on the information and display system can affect the mitigation actions of operator, the strategy to obtain test scenarios is suggested. The failure of mitigation scenario is identified first. Then, for the test target in the scenario, software failure modes are applied to identify realistic failure scenarios. Testing should be performed for those scenarios to confirm the integrity of data and to assure effectiveness of security measures

  13. Cyber Security Test Strategy for Non-safety Display System

    Energy Technology Data Exchange (ETDEWEB)

    Son, Han Seong [Joongbu University, Geumsan (Korea, Republic of); Kim, Hee Eun [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Cyber security has been a big issue since the instrumentation and control (I and C) system of nuclear power plant (NPP) is digitalized. A cyber-attack on NPP should be dealt with seriously because it might cause not only economic loss but also the radioactive material release. Researches on the consequences of cyber-attack onto NPP from a safety point of view have been conducted. A previous study shows the risk effect brought by initiation of event and deterioration of mitigation function by cyber terror. Although this study made conservative assumptions and simplifications, it gives an insight on the effect of cyber-attack. Another study shows that the error on a non-safety display system could cause wrong actions of operators. According to this previous study, the failure of the operator action caused by a cyber-attack on a display system might threaten the safety of the NPP by limiting appropriate mitigation actions. This study suggests a test strategy focusing on the cyber-attack on the information and display system, which might cause the failure of operator. The test strategy can be suggested to evaluate and complement security measures. Identifying whether a cyber-attack on the information and display system can affect the mitigation actions of operator, the strategy to obtain test scenarios is suggested. The failure of mitigation scenario is identified first. Then, for the test target in the scenario, software failure modes are applied to identify realistic failure scenarios. Testing should be performed for those scenarios to confirm the integrity of data and to assure effectiveness of security measures.

  14. A distributed system of wireless signs using Gyricon electronic paper displays

    Science.gov (United States)

    Sprague, Robert A.

    2006-04-01

    The proliferation of digital information is leading to a wide range of applications which make it desirable to display data easily in many locations, all changeable and updateable. The difficulty in achieving such ubiquitous displays is the cost of signage, the cost of installation, and the software and systems to control the information being sent to each of these signs. In this paper we will talk about a networked system of such signs which are made from gyricon electronic paper. Gyricon electronic paper is a reflective, bistable display which can be made in large web sheets at a reasonable price. Since it does not require a backlight nor does it require power to refresh the display image, such technology is ideal for making signs which can be run on batteries with extremely long battery life, often not needing replacement for years. The display also has a very broad illumination scattering profile which makes it readily viewable from any angle. The basic operating mechanism of the display, its manufacturing technique, and achieved performance will be described, along with the description of a networked solution using many such signs controlled with system software to identify speakers and meetings in conference rooms, hospitality suites, or classrooms in universities. Systems will also be shown which are adapted to retail pricing signage and others which can be used for large format outdoor billboards.

  15. Design and hardware alternatives for a Safety-Parameter Display System

    International Nuclear Information System (INIS)

    Honeycutt, F.; Merten, W.T.; Roy, G.M.; Segraves, E.; Stone, G.P.

    1981-05-01

    The SPDS is a dedicated control room operator aid and is viewed as an important safety improvement within the context of other post-TMI fixes. Hardware configurations and components to implement the NSAC display format of a Safety Parameter Display System (SPDS) are evaluated. The evaluation was made on the basis of five alternative hardware configurations which use commercially available components. Four of the alternatives use computer/video display architecture. The fifth alternative is a simple hardwired system which uses strip chart recorders. SPDS regulatory requirements are defined by NUREG 0696. Overall feasibility of the NSAC concept was evaluated in terms of performance, reliability, cost, licensability, and flexibility. The flexibility evaluation relates to the ability to handle other display formats, the data acquisition needs of the other emergency facilities and the impact of expected future NRC requirements

  16. HTML 5 Displays for On-Board Flight Systems

    Science.gov (United States)

    Silva, Chandika

    2016-01-01

    During my Internship at NASA in the summer of 2016, I was assigned to a project which dealt with developing a web-server that would display telemetry and other system data using HTML 5, JavaScript, and CSS. By doing this, it would be possible to view the data across a variety of screen sizes, and establish a standard that could be used to simplify communication and software development between NASA and other countries. Utilizing a web- approach allowed us to add in more functionality, as well as make the displays more aesthetically pleasing for the users. When I was assigned to this project my main task was to first establish communication with the current display server. This display server would output data from the on-board systems in XML format. Once communication was established I was then asked to create a dynamic telemetry table web page that would update its header and change as new information came in. After this was completed, certain minor functionalities were added to the table such as a hide column and filter by system option. This was more for the purpose of making the table more useful for the users, as they can now filter and view relevant data. Finally my last task was to create a graphical system display for all the systems on the space craft. This was by far the most challenging part of my internship as finding a JavaScript library that was both free and contained useful functions to assist me in my task was difficult. In the end I was able to use the JointJs library and accomplish the task. With the help of my mentor and the HIVE lab team, we were able to establish stable communication with the display server. We also succeeded in creating a fully dynamic telemetry table and in developing a graphical system display for the advanced modular power system. Working in JSC for this internship has taught me a lot about coding in JavaScript and HTML 5. I was also introduced to the concept of developing software as a team, and exposed to the different

  17. Real-time graphic display system for ROSA-V Large Scale Test Facility

    International Nuclear Information System (INIS)

    Kondo, Masaya; Anoda, Yoshinari; Osaki, Hideki; Kukita, Yutaka; Takigawa, Yoshio.

    1993-11-01

    A real-time graphic display system was developed for the ROSA-V Large Scale Test Facility (LSTF) experiments simulating accident management measures for prevention of severe core damage in pressurized water reactors (PWRs). The system works on an IBM workstation (Power Station RS/6000 model 560) and accommodates 512 channels out of about 2500 total measurements in the LSTF. It has three major functions: (a) displaying the coolant inventory distribution in the facility primary and secondary systems; (b) displaying the measured quantities at desired locations in the facility; and (c) displaying the time histories of measured quantities. The coolant inventory distribution is derived from differential pressure measurements along vertical sections and gamma-ray densitometer measurements for horizontal legs. The color display indicates liquid subcooling calculated from pressure and temperature at individual locations. (author)

  18. Computer-generated display system guidelines. Volume 2. Developing an evaluation plan

    International Nuclear Information System (INIS)

    1984-09-01

    Volume 1 of this report provides guidance to utilities on the design of displays and the selection and retrofit of a computer-generated display system in the control room of an operating nuclear power plant. Volume 2 provides guidance on planning and managing empirical evaluation of computer-generated display systems, particularly when these displays are primary elements of computer-based operator aids. The guidance provided is in terms of a multilevel evaluation methodology that enables sequential consideration of three primary issues: (1) compatibility; (2) understandability; and (3) effectiveness. The evaluation process approaches these three issues with a top-down review of system objectives, functions, tasks, and information requirements. The process then moves bottom-up from lower-level to higher-level issues, employing different evaluation methods at each level in order to maximize the efficiency and effectiveness of the evaluation process

  19. Volumetric visualization of anatomy for treatment planning

    International Nuclear Information System (INIS)

    Pelizzari, Charles A.; Grzeszczuk, Robert; Chen, George T. Y.; Heimann, Ruth; Haraf, Daniel J.; Vijayakumar, Srinivasan; Ryan, Martin J.

    1996-01-01

    Purpose: Delineation of volumes of interest for three-dimensional (3D) treatment planning is usually performed by contouring on two-dimensional sections. We explore the usage of segmentation-free volumetric rendering of the three-dimensional image data set for tumor and normal tissue visualization. Methods and Materials: Standard treatment planning computed tomography (CT) studies, with typically 5 to 10 mm slice thickness, and spiral CT studies with 3 mm slice thickness were used. The data were visualized using locally developed volume-rendering software. Similar to the method of Drebin et al., CT voxels are automatically assigned an opacity and other visual properties (e.g., color) based on a probabilistic classification into tissue types. Using volumetric compositing, a projection into the opacity-weighted volume is produced. Depth cueing, perspective, and gradient-based shading are incorporated to achieve realistic images. Unlike surface-rendered displays, no hand segmentation is required to produce detailed renditions of skin, muscle, or bony anatomy. By suitable manipulation of the opacity map, tissue classes can be made transparent, revealing muscle, vessels, or bone, for example. Manually supervised tissue masking allows irrelevant tissues overlying tumors or other structures of interest to be removed. Results: Very high-quality renditions are produced in from 5 s to 1 min on midrange computer workstations. In the pelvis, an anteroposterior (AP) volume rendered view from a typical planning CT scan clearly shows the skin and bony anatomy. A muscle opacity map permits clear visualization of the superficial thigh muscles, femoral veins, and arteries. Lymph nodes are seen in the femoral triangle. When overlying muscle and bone are cut away, the prostate, seminal vessels, bladder, and rectum are seen in 3D perspective. Similar results are obtained for thorax and for head and neck scans. Conclusion: Volumetric visualization of anatomy is useful in treatment

  20. [Current situations and problems of quality control for medical imaging display systems].

    Science.gov (United States)

    Shibutani, Takayuki; Setojima, Tsuyoshi; Ueda, Katsumi; Takada, Katsumi; Okuno, Teiichi; Onoguchi, Masahisa; Nakajima, Tadashi; Fujisawa, Ichiro

    2015-04-01

    Diagnostic imaging has been shifted rapidly from film to monitor diagnostic. Consequently, Japan medical imaging and radiological systems industries association (JIRA) have recommended methods of quality control (QC) for medical imaging display systems. However, in spite of its need by majority of people, executing rate is low. The purpose of this study was to validate the problem including check items about QC for medical imaging display systems. We performed acceptance test of medical imaging display monitors based on Japanese engineering standards of radiological apparatus (JESRA) X-0093*A-2005 to 2009, and performed constancy test based on JESRA X-0093*A-2010 from 2010 to 2012. Furthermore, we investigated the cause of trouble and repaired number. Medical imaging display monitors had 23 inappropriate monitors about visual estimation, and all these monitors were not criteria of JESRA about luminance uniformity. Max luminance was significantly lower year-by-year about measurement estimation, and the 29 monitors did not meet the criteria of JESRA about luminance deviation. Repaired number of medical imaging display monitors had 25, and the cause was failure liquid crystal panel. We suggested the problems about medical imaging display systems.

  1. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    Science.gov (United States)

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  2. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  3. LMDS Lightweight Modular Display System.

    Science.gov (United States)

    1982-02-16

    based on standard functions. This means that the cost to produce a particular display function can be met in the most economical fashion and at the same...not mean that the NTDS interface would be eliminated. What is anticipated is the use of ETHERNET at a low level of system interface, ie internal to...GENERATOR dSYMBOL GEN eCOMMUNICATION 3-2 The architecture of the unit’s (fig 3-4) input circuitry is based on a video table look-up ROM. The function

  4. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  5. Computer system for nuclear power plant parameter display

    International Nuclear Information System (INIS)

    Stritar, A.; Klobuchar, M.

    1990-01-01

    The computer system for efficient, cheap and simple presentation of data on the screen of the personal computer is described. The display is in alphanumerical or graphical form. The system can be used for the man-machine interface in the process monitoring system of the nuclear power plant. It represents the third level of the new process computer system of the Nuclear Power Plant Krsko. (author)

  6. Conjugate transient natural convection in a cylindrical enclosure with internal volumetric heat generation

    International Nuclear Information System (INIS)

    Sharma, Anil Kumar; Velusamy, K.; Balaji, C.

    2008-01-01

    This paper reports the results of a numerical investigation of transient turbulent natural convection heat transfer from a volumetric energy generating source placed inside a cylindrical enclosure filled with low Prandtl number fluid (liquid sodium, Pr = 0.005). Two-dimensional conservation equations of mass, momentum and energy, coupled with the Boussinesq approximation, are solved using a finite volume based discretisation method employing the SIMPLE algorithm for the pressure velocity coupling. Turbulence is modeled using the k-ε model with physical boundary conditions. The study presents the transient features of confined turbulent natural convection, due to time varying generation of heat in the volumetric source. The intensity of heat source exponentially decays with time and the source is placed over circular plates with a central opening. Results obtained from the numerical model compare favorably with those reported in the literature for steady state natural convection. Numerical simulations are carried out to display the sequential evolution of flow and thermal fields and the maximum temperature reached in the source. The advantages of distributing the heat source on multi trays have been quantified

  7. Eye-tracking of nodule detection in lung CT volumetric data

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Ivan; Verdun, Francis R.; Bochud, François O., E-mail: francois.bochud@chuv.ch [Institute of Radiation Physics, Lausanne University Hospital, Lausanne 1004 (Switzerland); Schmidt, Sabine [Department of Radiology, Lausanne University Hospital, Lausanne 1004 (Switzerland)

    2015-06-15

    Purpose: Signal detection on 3D medical images depends on many factors, such as foveal and peripheral vision, the type of signal, and background complexity, and the speed at which the frames are displayed. In this paper, the authors focus on the speed with which radiologists and naïve observers search through medical images. Prior to the study, the authors asked the radiologists to estimate the speed at which they scrolled through CT sets. They gave a subjective estimate of 5 frames per second (fps). The aim of this paper is to measure and analyze the speed with which humans scroll through image stacks, showing a method to visually display the behavior of observers as the search is made as well as measuring the accuracy of the decisions. This information will be useful in the development of model observers, mathematical algorithms that can be used to evaluate diagnostic imaging systems. Methods: The authors performed a series of 3D 4-alternative forced-choice lung nodule detection tasks on volumetric stacks of chest CT images iteratively reconstructed in lung algorithm. The strategy used by three radiologists and three naïve observers was assessed using an eye-tracker in order to establish where their gaze was fixed during the experiment and to verify that when a decision was made, a correct answer was not due only to chance. In a first set of experiments, the observers were restricted to read the images at three fixed speeds of image scrolling and were allowed to see each alternative once. In the second set of experiments, the subjects were allowed to scroll through the image stacks at will with no time or gaze limits. In both static-speed and free-scrolling conditions, the four image stacks were displayed simultaneously. All trials were shown at two different image contrasts. Results: The authors were able to determine a histogram of scrolling speeds in frames per second. The scrolling speed of the naïve observers and the radiologists at the moment the signal

  8. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    Science.gov (United States)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  9. A variable-collimation display system

    Science.gov (United States)

    Batchko, Robert; Robinson, Sam; Schmidt, Jack; Graniela, Benito

    2014-03-01

    Two important human depth cues are accommodation and vergence. Normally, the eyes accommodate and converge or diverge in tandem; changes in viewing distance cause the eyes to simultaneously adjust both focus and orientation. However, ambiguity between accommodation and vergence cues is a well-known limitation in many stereoscopic display technologies. This limitation also arises in state-of-the-art full-flight simulator displays. In current full-flight simulators, the out-the-window (OTW) display (i.e., the front cockpit window display) employs a fixed collimated display technology which allows the pilot and copilot to perceive the OTW training scene without angular errors or distortions; however, accommodation and vergence cues are limited to fixed ranges (e.g., ~ 20 m). While this approach works well for long-range, the ambiguity of depth cues at shorter range hinders the pilot's ability to gauge distances in critical maneuvers such as vertical take-off and landing (VTOL). This is the first in a series of papers on a novel, variable-collimation display (VCD) technology that is being developed under NAVY SBIR Topic N121-041 funding. The proposed VCD will integrate with rotary-wing and vertical take-off and landing simulators and provide accurate accommodation and vergence cues for distances ranging from approximately 3 m outside the chin window to ~ 20 m. A display that offers dynamic accommodation and vergence could improve pilot safety and training, and impact other applications presently limited by lack of these depth cues.

  10. : Light Steering Projection Systems and Attributes for HDR Displays

    KAUST Repository

    Damberg, Gerwin

    2017-06-02

    New light steering projectors in cinema form images by moving light away from dark regions into bright areas of an image. In these systems, the peak luminance of small features can far exceed full screen white luminance. In traditional projectors where light is filtered or blocked in order to give shades of gray (or colors), the peak luminance is fixed. The luminance of chromatic features benefit in the same way as white features, and chromatic image details can be reproduced at high brightness leading to a much wider overall color gamut coverage than previously possible. Projectors of this capability are desired by the creative community to aid in and enhance storytelling. Furthermore, reduced light source power requirements of light steering projectors provide additional economic and environmental benefits. While the dependency of peak luminance level on (bright) image feature size is new in the digital cinema space, display technologies with identical characteristics such as OLED, LED LCD and Plasma TVs are well established in the home. Similarly, direct view LED walls are popular in events, advertising and architectural markets. To enable consistent color reproduction across devices in today’s content production pipelines, models that describe modern projectors and display attributes need to evolve together with HDR standards and available metadata. This paper is a first step towards rethinking legacy display descriptors such as contrast, peak luminance and color primaries in light of new display technology. We first summarize recent progress in the field of light steering projectors in cinema and then, based on new projector and existing display characteristics propose the inclusion of two simple display attributes: Maximum Average Luminance and Peak (Color) Primary Luminance. We show that the proposed attributes allow a better prediction of content reproducibility on HDR displays. To validate this assertion, we test professional content on a commercial HDR

  11. Soft-tissue volumetric changes following monobloc distraction procedure: analysis using digital three-dimensional photogrammetry system (3dMD).

    Science.gov (United States)

    Chan, Fuan Chiang; Kawamoto, Henry K; Federico, Christina; Bradley, James P

    2013-03-01

    We have previously reported that monobloc advancement by distraction osteogenesis resulted in decreased morbidity and greater advancement with less relapse compared with acute monobloc advancement with bone grafting. In this study, we examine the three-dimensional (3D) volumetric soft-tissue changes in monobloc distraction.Patients with syndromic craniosynostosis who underwent monobloc distraction from 2002 to 2010 at University of California-Los Angeles Craniofacial Center were studied (n = 12). We recorded diagnosis, indications for the surgery, and volumetric changes for skeletal and soft-tissue midface structures (preoperative/postoperative [6 weeks]/follow-up [>1 year]). Computed tomography scans and a digital 3D photogrammetry system were used for image analysis.Patients ranged from 6 to 14 years of age (mean, 10.1 years) at the time of the operation (follow-up 2-11 years); mean distraction advancement was 19.4 mm (range, 14-25 mm). There was a mean increase in the 3D volumetric soft-tissue changes: 99.5 ± 4.0 cm(3) (P < 0.05) at 6 weeks and 94.9 ± 3.6 cm(3) (P < 0.05) at 1-year follow-up. When comparing soft-tissue changes at 6 weeks postoperative to 1-year follow-up, there were minimal relapse changes. The overall mean 3D skeletal change was 108.9 ± 4.2 cm. For every 1 cm of skeletal gain, there was 0.78 cm(3) of soft-tissue gain.Monobloc advancement by distraction osteogenesis using internal devices resulted in increased volumetric soft-tissue changes, which remained stable at 1 year. The positive linear correlation between soft-tissue increments and bony advancement can be incorporated during the planning of osteotomies to achieve optimum surgical outcomes with monobloc distraction.

  12. Flat-panel video resolution LED display system

    Science.gov (United States)

    Wareberg, P. G.; Kennedy, D. I.

    The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.

  13. Artificial intelligence enhancements to safety parameter display systems

    International Nuclear Information System (INIS)

    Hajek, B.K.; Hashemi, S.; Sharma, D.; Chandrasekaran, B.; Miller, D.W.

    1986-01-01

    Two prototype knowledge based systems have been developed at The Ohio State University to be the basis of an operator aid that can be attached to an existing nuclear power plant Safety Parameter Display System. The first system uses improved sensor validation techniques to provide input to a fault diagnosis process. The second system would use the diagnostic system output to synthesize corrective procedures to aid the control room licensed operator in plant recovery

  14. Gamma camera display system

    International Nuclear Information System (INIS)

    Stout, K.J.

    1976-01-01

    A gamma camera having an array of photomultipliers coupled via pulse shaping circuitry and a resistor weighting circuit to a display for forming an image of a radioactive subject is described. A linearizing circuit is coupled to the weighting circuit, the linearizing circuit including a nonlinear feedback circuit with diode coupling to the weighting circuit for linearizing the correspondence between points of the display and points of the subject. 4 Claims, 5 Drawing Figures

  15. Techniques for optimizing human-machine information transfer related to real-time interactive display systems

    Science.gov (United States)

    Granaas, Michael M.; Rhea, Donald C.

    1989-01-01

    In recent years the needs of ground-based researcher-analysts to access real-time engineering data in the form of processed information has expanded rapidly. Fortunately, the capacity to deliver that information has also expanded. The development of advanced display systems is essential to the success of a research test activity. Those developed at the National Aeronautics and Space Administration (NASA), Western Aeronautical Test Range (WATR), range from simple alphanumerics to interactive mapping and graphics. These unique display systems are designed not only to meet basic information display requirements of the user, but also to take advantage of techniques for optimizing information display. Future ground-based display systems will rely heavily not only on new technologies, but also on interaction with the human user and the associated productivity with that interaction. The psychological abilities and limitations of the user will become even more important in defining the difference between a usable and a useful display system. This paper reviews the requirements for development of real-time displays; the psychological aspects of design such as the layout, color selection, real-time response rate, and interactivity of displays; and an analysis of some existing WATR displays.

  16. High-resolution laser-projection display system using a grating electromechanical system (GEMS)

    Science.gov (United States)

    Brazas, John C.; Kowarz, Marek W.

    2004-01-01

    Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.

  17. A passive cooling system proposal for multifunction and high-power displays

    Science.gov (United States)

    Tari, Ilker

    2013-03-01

    Flat panel displays are conventionally cooled by internal natural convection, which constrains the possible rate of heat transfer from the panel. On one hand, during the last few years, the power consumption and the related cooling requirement for 1080p displays have decreased mostly due to energy savings by the switch to LED backlighting and more efficient electronics. However, on the other hand, the required cooling rate recently started to increase with new directions in the industry such as 3D displays, and ultra-high-resolution displays (recent 4K announcements and planned introduction of 8K). In addition to these trends in display technology itself, there is also a trend to integrate consumer entertainment products into displays with the ultimate goal of designing a multifunction device replacing the TV, the media player, the PC, the game console and the sound system. Considering the increasing power requirement for higher fidelity in video processing, these multifunction devices tend to generate very high heat fluxes, which are impossible to dissipate with internal natural convection. In order to overcome this obstacle, instead of active cooling with forced convection that comes with drawbacks of noise, additional power consumption, and reduced reliability, a passive cooling system relying on external natural convection and radiation is proposed here. The proposed cooling system consists of a heat spreader flat heat pipe and aluminum plate-finned heat sink with anodized surfaces. For this system, the possible maximum heat dissipation rates from the standard size panels (in 26-70 inch range) are estimated by using our recently obtained heat transfer correlations for the natural convection from aluminum plate-finned heat sinks together with the surface-to-surface radiation. With the use of the proposed passive cooling system, the possibility of dissipating very high heat rates is demonstrated, hinting a promising green alternative to active cooling.

  18. Semi-automated volumetric analysis of artificial lymph nodes in a phantom study

    International Nuclear Information System (INIS)

    Fabel, M.; Biederer, J.; Jochens, A.; Bornemann, L.; Soza, G.; Heller, M.; Bolte, H.

    2011-01-01

    Purpose: Quantification of tumour burden in oncology requires accurate and reproducible image evaluation. The current standard is one-dimensional measurement (e.g. RECIST) with inherent disadvantages. Volumetric analysis is discussed as an alternative for therapy monitoring of lung and liver metastases. The aim of this study was to investigate the accuracy of semi-automated volumetric analysis of artificial lymph node metastases in a phantom study. Materials and methods: Fifty artificial lymph nodes were produced in a size range from 10 to 55 mm; some of them enhanced using iodine contrast media. All nodules were placed in an artificial chest phantom (artiCHEST ® ) within different surrounding tissues. MDCT was performed using different collimations (1–5 mm) at varying reconstruction kernels (B20f, B40f, B60f). Volume and RECIST measurements were performed using Oncology Software (Siemens Healthcare, Forchheim, Germany) and were compared to reference volume and diameter by calculating absolute percentage errors. Results: The software performance allowed a robust volumetric analysis in a phantom setting. Unsatisfying segmentation results were frequently found for native nodules within surrounding muscle. The absolute percentage error (APE) for volumetric analysis varied between 0.01 and 225%. No significant differences were seen between different reconstruction kernels. The most unsatisfactory segmentation results occurred in higher slice thickness (4 and 5 mm). Contrast enhanced lymph nodes showed better segmentation results by trend. Conclusion: The semi-automated 3D-volumetric analysis software tool allows a reliable and convenient segmentation of artificial lymph nodes in a phantom setting. Lymph nodes adjacent to tissue of similar density cause segmentation problems. For volumetric analysis of lymph node metastases in clinical routine a slice thickness of ≤3 mm and a medium soft reconstruction kernel (e.g. B40f for Siemens scan systems) may be a suitable

  19. Critical properties and high-pressure volumetric behavior of the carbon dioxide+propane system at T=308.15 k. Krichevskii function and related thermodynamic properties.

    Science.gov (United States)

    Blanco, Sofía T; Gil, Laura; García-Giménez, Pilar; Artal, Manuela; Otín, Santos; Velasco, Inmaculada

    2009-05-21

    Critical properties and volumetric behavior for the {CO2(1)+C3H8(2)} system have been studied. The critical locus was measured with a flow apparatus and detected by critical opalescence. For the mixtures, repeatabilities in critical temperature and pressure are rTcStructural properties such as direct and total correlation function integrals and cluster size were calculated using the Krichevskii function concept. Both the critical and volumetric behavior have been compared with literature data and with those obtained from the PC-SAFT and Patel-Teja equations of state.

  20. The establishment of the method of three dimension volumetric fusion of emission and transmission images for PET imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang

    2004-01-01

    Objective: To establish the method of three dimension volumetric fusion of emission and transmission images for PET imaging. Methods: The volume data of emission and transmission images acquired with Siemens ECAT HR + PET scanner were transferred to PC computer by local area network. The PET volume data were converted into 8 bit byte type, and scaled to the range of 0-255. The data coordinates of emission and transmission images were normalized by three-dimensional coordinate conversion in the same way. The images were fused with the mode of alpha-blending. The accuracy of image fusion was confirmed by its clinical application in 13 cases. Results: The three dimension volumetric fusion of emission and transmission images clearly displayed the silhouette and anatomic configuration in chest, including chest wall, lung, heart, mediastinum, et al. Forty-eight lesions in chest in 13 cases were accurately located by the image fusion. Conclusions: The volume data of emission and transmission images acquired with Siemens ECAT HR + PET scanner have the same data coordinate. The three dimension fusion software can conveniently used for the three dimension volumetric fusion of emission and transmission images, and also can correctly locate the lesions in chest

  1. Human factors considerations for the use of color in display systems

    Science.gov (United States)

    Demars, S. A.

    1975-01-01

    Identified and assessed are those human factor considerations impacting an operator's ability to perform when information is displayed in color as contrasted to monochrome (black and white only). The findings provide valuable guidelines for the assessment of the advantages (and disadvantages) of using a color display system. The use of color provides an additional sensory channel (color perception) which is not available with black and white. The degree to which one can exploit the use of this channel is highly dependent on available display technology, mission information display requirements, and acceptable operational modes.

  2. A history and overview of the safety parameter display system concept

    International Nuclear Information System (INIS)

    Joyce, J.P.; Lapinsky, G.W.

    1983-01-01

    Inquiries into the accident at the Three Mile Island Nuclear Power Plant Unit 2, on March 28, 1979 brought to public attention the need to improve operators' capabilities to interact with the systems under their control. Recommendations ran the full gamut of human/machine interaction, from improvements in training and procedures to improvements in control and display hardware in the control room. This presentation briefly traces the history and development of a display concept that evolved in the post-TMI era, the Safety Parameter Display System or SPDS. The SPDS is intended to function as a detection aid for control room operators, providing an integrated overview of significant plant parameters. The purpose of this report is to describe the general concept of SPDS, its history, and its current regulatory status. A review of NRC guidance documents is included, as well as a discussion of NRC requirements placed on the SPDS. The presentation concludes with an outline of the NRC staff review process for safety parameter display systems and a synopsis of the results of generic SPDS reviews performed thus far

  3. Soft bilateral filtering volumetric shadows using cube shadow maps.

    Directory of Open Access Journals (Sweden)

    Hatam H Ali

    Full Text Available Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications.

  4. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  5. Laser display system for multi-depth screen projection scenarios.

    Science.gov (United States)

    La Torre, J Pablo; Mayes, Nathan; Riza, Nabeel A

    2017-11-10

    Proposed is a laser projection display system that uses an electronically controlled variable focus lens (ECVFL) to achieve sharp and in-focus image projection over multi-distance three-dimensional (3D) conformal screens. The system also functions as an embedded distance sensor that enables 3D mapping of the multi-level screen platform before the desired laser scanned beam focused/defocused projected spot sizes are matched to the different localized screen distances on the 3D screen. Compared to conventional laser scanning and spatial light modulator (SLM) based projection systems, the proposed design offers in-focus non-distorted projection over a multi-distance screen zone with varying depths. An experimental projection system for a screen depth variation of 65 cm is demonstrated using a 633 nm laser beam, 3 KHz scan speed galvo-scanning mirrors, and a liquid-based ECVFL. As a basic demonstration, an in-house developed MATLAB based graphic user interface is deployed to work along with the laser projection display, enabling user inputs like text strings or predefined image projection. The user can specify projection screen distance, scanned laser linewidth, projected text font size, projected image dimensions, and laser scanning rate. Projected images are shown highlighting the 3D control capabilities of the display, including the production of a non-distorted image onto two-depths versus a distorted image via dominant prior-art projection methods.

  6. Head-worn display-based augmented reality system for manufacturing

    Science.gov (United States)

    Sarwal, Alok; Baker, Chris; Filipovic, Dragan

    2005-05-01

    This system provides real-time guidance for training and problem-solving on production-line machinery. A prototype of a wearable, real-time, video guidance, interactive system for use in manufacturing, has been developed and demonstrated. Anticipated benefits are: relatively inexperienced personnel can provide machine servicing and the dependency on the vendor to repair or maintain equipment is significantly reduced. Additionally, servicing, training or part change-over schedules can be exercised more predictably and with less training. This approach utilizes Head Worn Display or Head Mounted Display (HMD) technology that can be readily adapted for various machines on the factory floor with training steps for a new location. Such a system can support various applications in manufacturing such as direct video guiding or applying scheduled maintenance and training to effectively resolve servicing emergencies and reduce machine downtime. It can also provide training of inexperienced operators and maintenance personnel. The gap between production line complexity and ability of production personnel to effectively maintain equipment is expected to widen in the future and advanced equipment will require complex servicing procedures that are neither well documented nor user-friendly. This system offers benefits in increased manufacturing equipment availability by facilitating effective servicing and training and can interface to a server system for additional computational resources on an as-needed basis. This system utilizes markers to guide the user and enforces a well defined sequence of operations. It performs augmentation of information on the display in order to provide guidance in real-time.

  7. Advanced Transport Operating System (ATOPS) control display unit software description

    Science.gov (United States)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  8. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 4: Graphical status display

    Science.gov (United States)

    Mckee, James W.

    1990-01-01

    This volume (4 of 4) contains the description, structured flow charts, prints of the graphical displays, and source code to generate the displays for the AMPS graphical status system. The function of these displays is to present to the manager of the AMPS system a graphical status display with the hot boxes that allow the manager to get more detailed status on selected portions of the AMPS system. The development of the graphical displays is divided into two processes; the creation of the screen images and storage of them in files on the computer, and the running of the status program which uses the screen images.

  9. An Evaluation of Detect and Avoid (DAA) Displays for Unmanned Aircraft Systems: The Effect of Information Level and Display Location on Pilot Performance

    Science.gov (United States)

    Fern, Lisa; Rorie, R. Conrad; Pack, Jessica S.; Shively, R. Jay; Draper, Mark H.

    2015-01-01

    A consortium of government, industry and academia is currently working to establish minimum operational performance standards for Detect and Avoid (DAA) and Control and Communications (C2) systems in order to enable broader integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). One subset of these performance standards will need to address the DAA display requirements that support an acceptable level of pilot performance. From a pilot's perspective, the DAA task is the maintenance of self separation and collision avoidance from other aircraft, utilizing the available information and controls within the Ground Control Station (GCS), including the DAA display. The pilot-in-the-loop DAA task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots' ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The authors propose an eight-stage pilot-DAA interaction timeline from which several pilot response time metrics can be extracted. These metrics were compared across the four display conditions. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays. Implications of the findings on understanding pilot performance on the DAA task, the

  10. System for recording and displaying two-phase flow topographies

    International Nuclear Information System (INIS)

    Cary, C.N.; Block, J.A.

    1979-01-01

    A system of hardware and software has been developed and used to record and display in various forms details of the countercurrent flow topographies occurring in a scaled Pressurized Water Reactor downcomer annulus. An array of 288 conductivity sensors was mounted in a 1/15 scale PWR annulus. At each moment in time, the state of each probe indicates the presence or absence of water in this immediate vicinity. An electronic data acquisition system records the states of all probes 108 times per second on magnetic tape; software routines retrieve the data and reconstruct visual analogs of the flow topographies. The instantaneous two-phase state of the annulus at each instant can be displayed on a hard copy plotter or on a CRT screen. By synchronizing a camera drive with the CRT display, 16mm films have been made recreating the flow process at full speed and at various slow motion rates. All data obtained are stored in computer files in numerical form and can be subjected to various types of quantitative analysis to assist in advanced code development and verification

  11. The application of autostereoscopic display in smart home system based on mobile devices

    Science.gov (United States)

    Zhang, Yongjun; Ling, Zhi

    2015-03-01

    Smart home is a system to control home devices which are more and more popular in our daily life. Mobile intelligent terminals based on smart homes have been developed, make remote controlling and monitoring possible with smartphones or tablets. On the other hand, 3D stereo display technology developed rapidly in recent years. Therefore, a iPad-based smart home system adopts autostereoscopic display as the control interface is proposed to improve the userfriendliness of using experiences. In consideration of iPad's limited hardware capabilities, we introduced a 3D image synthesizing method based on parallel processing with Graphic Processing Unit (GPU) implemented it with OpenGL ES Application Programming Interface (API) library on IOS platforms for real-time autostereoscopic displaying. Compared to the traditional smart home system, the proposed system applied autostereoscopic display into smart home system's control interface enhanced the reality, user-friendliness and visual comfort of interface.

  12. Change Blindness Phenomena for Virtual Reality Display Systems.

    Science.gov (United States)

    Steinicke, Frank; Bruder, Gerd; Hinrichs, Klaus; Willemsen, Pete

    2011-09-01

    In visual perception, change blindness describes the phenomenon that persons viewing a visual scene may apparently fail to detect significant changes in that scene. These phenomena have been observed in both computer-generated imagery and real-world scenes. Several studies have demonstrated that change blindness effects occur primarily during visual disruptions such as blinks or saccadic eye movements. However, until now the influence of stereoscopic vision on change blindness has not been studied thoroughly in the context of visual perception research. In this paper, we introduce change blindness techniques for stereoscopic virtual reality (VR) systems, providing the ability to substantially modify a virtual scene in a manner that is difficult for observers to perceive. We evaluate techniques for semiimmersive VR systems, i.e., a passive and active stereoscopic projection system as well as an immersive VR system, i.e., a head-mounted display, and compare the results to those of monoscopic viewing conditions. For stereoscopic viewing conditions, we found that change blindness phenomena occur with the same magnitude as in monoscopic viewing conditions. Furthermore, we have evaluated the potential of the presented techniques for allowing abrupt, and yet significant, changes of a stereoscopically displayed virtual reality environment.

  13. Web data display system based on data segment technology of MDSplus

    International Nuclear Information System (INIS)

    Liu Rui; Zhang Ming; Wen Chuqiao; Zheng Wei; Zhuang Ge; Yu Kexun

    2014-01-01

    Long pulse operation is the main character of advanced Tokamak, so the technology of data storage and human-data interaction are vital for dealing with the large data generated in long pulse experiment. The Web data display system was designed. The system is based on the ASP. NET architecture, and it reads segmented-record data from MDSplus database by segmented-record technology and displays the data on Web page by using NI Measurement Studio control library. With the segmented-record technology, long pulse data could be divided into many small units, data segments. Users can read the certain data segments from the long pulse data according to their special needs. Also, the system develops an efficient strategy for reading segmented record data, showing the waveforms required by users accurately and quickly. The data display Web system was tested on J-TEXT Tokamak, and was proved to be reliable and efficient to achieve the initial design goal. (authors)

  14. Producing EGS4 shower displays with the Unified Graphics System

    International Nuclear Information System (INIS)

    Cowan, R.F.

    1990-01-01

    The EGS4 Code System has been coupled with the SLAC Unified Graphics System in such a manner as to provide a means for displaying showers on UGS77-supported devices. This is most easily accomplished by attaching an auxiliary subprogram package (SHOWGRAF) to existing EGS4 User Codes and making use of a graphics display or a post-processor code called EGS4PL. SHOWGRAF may be used to create shower displays directly on interactive IBM 5080 color display devices, supporting three-dimensional rotations, translations, and zoom features, and providing illustration of particle types and energies by color and/or intensity. Alternatively, SHOWGRAF may be used to record a two-dimensional projection of the shower in a device-independent graphics file. The EGS4PL post-processor may then be used to convert this file into device-dependent graphics code for any UGS77-supported device. Options exist within EGS4PL that allow for two-dimensional translations and zoom, for creating line structure to indicate particle types and energies, and for optional display of particles by type. All of this is facilitated by means of the command processor EGS4PL EXEC together with new options (5080 and PDEV) with the standard EGS4IN EXEC routine for running EGS4 interactively under VM/SP. 6 refs

  15. Advanced alarm systems: Display and processing issues

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M. [Brookhaven National Lab., Upton, NY (United States); Wachtel, J.; Perensky, J. [US Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

    1995-05-01

    This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) deficiencies associated with nuclear power plant alarm systems. The overall objective of the study is to develop HFE review guidance for alarm systems. In support of this objective, human performance issues needing additional research were identified. Among the important issues were alarm processing strategies and alarm display techniques. This paper will discuss these issues and briefly describe our current research plan to address them.

  16. Breast Density Estimation with Fully Automated Volumetric Method: Comparison to Radiologists' Assessment by BI-RADS Categories.

    Science.gov (United States)

    Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan

    2016-01-01

    The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  17. The establishment of Saccharomyces boulardii surface display system using a single expression vector.

    Science.gov (United States)

    Wang, Tiantian; Sun, Hui; Zhang, Jie; Liu, Qing; Wang, Longjiang; Chen, Peipei; Wang, Fangkun; Li, Hongmei; Xiao, Yihong; Zhao, Xiaomin

    2014-03-01

    In the present study, an a-agglutinin-based Saccharomyces boulardii surface display system was successfully established using a single expression vector. Based on the two protein co-expression vector pSP-G1 built by Partow et al., a S. boulardii surface display vector-pSDSb containing all the display elements was constructed. The display results of heterologous proteins were confirmed by successfully displaying enhanced green fluorescent protein (EGFP) and chicken Eimeria tenella Microneme-2 proteins (EtMic2) on the S. boulardii cell surface. The DNA sequence of AGA1 gene from S. boulardii (SbAGA1) was determined and used as the cell wall anchor partner. This is the first time heterologous proteins have been displayed on the cell surface of S. boulardii. Because S. boulardii is probiotic and eukaryotic, its surface display system would be very valuable, particularly in the development of a live vaccine against various pathogenic organisms especially eukaryotic pathogens such as protistan parasites. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    Science.gov (United States)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  19. Displays in scintigraphy

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.E.; Pizer, S.M.

    1977-01-01

    Displays have several functions: to transmit images, to permit interaction, to quantitate features and to provide records. The main characteristics of displays used for image transmission are their resolution, dynamic range, signal-to-noise ratio and uniformity. Considerations of visual acuity suggest that the display element size should be much less than the data element size, and in current practice at least 256X256 for a gamma camera image. The dynamic range for image transmission should be such that at least 64 levels of grey (or equivalent) are displayed. Scanner displays are also considered, and in particular, the requirements of a whole-body camera are examined. A number of display systems and devices are presented including a 'new' heated object colour display system. Interaction with displays is considered, including background subtraction, contrast enhancement, position indication and region-of-interest generation. Such systems lead to methods of quantitation, which imply knowledge of the expected distributions. Methods for intercomparing displays are considered. Polaroid displays, which have for so long dominated the field, are in the process of being replaced by stored image displays, now that large cheap memories exist which give an equivalent image quality. The impact of this in nuclear medicine is yet to be seen, but a major effect will be to enable true quantitation. (author)

  20. Characterizing volumetric discontinuities present in NPP heat exchangers with EASY: an eddy current data analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Donizete A.; Silva Junior, Silverio F., E-mail: daa@cdtn.b, E-mail: silvasf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Eddy current is a very important NDT inspection method widely used to perform integrity evaluation of tubes installed in heat exchangers. For nuclear power plants, a classical example is the remote inspection of steam generators and condensers, as well as other ordinary auxiliary equipment. Data evaluation can be performed by means of precise phase and amplitude measurements of complex impedance signals, represented as Lissajous figures plotted on the screen of the inspection systems. This paper presents the software EASY, a computer assisted analysis system developed at CDTN to help the characterization of volumetric discontinuities present in heat exchangers tubes. Data to be analyzed are obtained from commercial eddy current equipment data file, such as ECT MAD8D. Main advantage of that system is its portability and easy use, since it can be executed in ordinary PC, under Microsoft Windows operating system. (author)

  1. Characterizing volumetric discontinuities present in NPP heat exchangers with EASY: an eddy current data analysis system

    International Nuclear Information System (INIS)

    Alencar, Donizete A.; Silva Junior, Silverio F.

    2011-01-01

    Eddy current is a very important NDT inspection method widely used to perform integrity evaluation of tubes installed in heat exchangers. For nuclear power plants, a classical example is the remote inspection of steam generators and condensers, as well as other ordinary auxiliary equipment. Data evaluation can be performed by means of precise phase and amplitude measurements of complex impedance signals, represented as Lissajous figures plotted on the screen of the inspection systems. This paper presents the software EASY, a computer assisted analysis system developed at CDTN to help the characterization of volumetric discontinuities present in heat exchangers tubes. Data to be analyzed are obtained from commercial eddy current equipment data file, such as ECT MAD8D. Main advantage of that system is its portability and easy use, since it can be executed in ordinary PC, under Microsoft Windows operating system. (author)

  2. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data

    OpenAIRE

    Fischer, Felix; Selver, M. Alper; Gezer, Sinem; Dicle, O?uz; Hillen, Walter

    2015-01-01

    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant addi...

  3. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  4. Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.

    Science.gov (United States)

    Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard

    2018-01-01

    The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.

  5. Potential Applications of Flat-Panel Volumetric CT in Morphologic, Functional Small Animal Imaging

    Directory of Open Access Journals (Sweden)

    Susanne Greschus

    2005-08-01

    Full Text Available Noninvasive radiologic imaging has recently gained considerable interest in basic, preclinical research for monitoring disease progression, therapeutic efficacy. In this report, we introduce flat-panel volumetric computed tomography (fpVCT as a powerful new tool for noninvasive imaging of different organ systems in preclinical research. The three-dimensional visualization that is achieved by isotropic high-resolution datasets is illustrated for the skeleton, chest, abdominal organs, brain of mice. The high image quality of chest scans enables the visualization of small lung nodules in an orthotopic lung cancer model, the reliable imaging of therapy side effects such as lung fibrosis. Using contrast-enhanced scans, fpVCT displayed the vascular trees of the brain, liver, kidney down to the subsegmental level. Functional application of fpVCT in dynamic contrast-enhanced scans of the rat brain delivered physiologically reliable data of perfusion, tissue blood volume. Beyond scanning of small animal models as demonstrated here, fpVCT provides the ability to image animals up to the size of primates.

  6. Recent progress in OLED and flexible displays and their potential for application to aerospace and military display systems

    Science.gov (United States)

    Sarma, Kalluri

    2015-05-01

    Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.

  7. High-Definition 3D Stereoscopic Microscope Display System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yoo Kwan-Hee

    2010-01-01

    Full Text Available Biomedical research has been performed by using advanced information techniques, and micro-high-quality stereo images have been used by researchers and/or doctors for various aims in biomedical research and surgery. To visualize the stereo images, many related devices have been developed. However, the devices are difficult to learn for junior doctors and demanding to supervise for experienced surgeons. In this paper, we describe the development of a high-definition (HD three-dimensional (3D stereoscopic imaging display system for operating a microscope or experimenting on animals. The system consists of a stereoscopic camera part, image processing device for stereoscopic video recording, and stereoscopic display. In order to reduce eyestrain and viewer fatigue, we use a preexisting stereo microscope structure and polarized-light stereoscopic display method that does not reduce the quality of the stereo images. The developed system can overcome the discomfort of the eye piece and eyestrain caused by use over a long period of time.

  8. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    Science.gov (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  9. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their ability to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.

  10. Designing and researching of the virtual display system based on the prism elements

    Science.gov (United States)

    Vasilev, V. N.; Grimm, V. A.; Romanova, G. E.; Smirnov, S. A.; Bakholdin, A. V.; Grishina, N. Y.

    2014-05-01

    Problems of designing of systems for virtual display systems for augmented reality placed near the observers eye (so called head worn displays) with the light guide prismatic elements are considered. Systems of augmented reality is the complex consists of the image generator (most often it's the microdisplay with the illumination system if the display is not self-luminous), the objective which forms the display image practically in infinity and the combiner which organizes the light splitting so that an observer could see the information of the microdisplay and the surrounding environment as the background at the same time. This work deals with the system with the combiner based on the composite structure of the prism elements. In the work three cases of the prism combiner design are considered and also the results of the modeling with the optical design software are presented. In the model the question of the large pupil zone was analyzed and also the discontinuous character (mosaic structure) of the angular field in transmission of the information from the microdisplay to the observer's eye with the prismatic structure are discussed.

  11. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    Boubekeur, Rania

    1987-01-01

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author) [fr

  12. Operation aid system upon occurrence of abnormality and display method therefor

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Ueno, Takashi.

    1995-01-01

    The present invention provides an operation aid system for a plant having a large number of systematic equipments upon occurrence of an abnormality and a method of displaying it. Namely, contents of an operation manual upon occurrence of an abnormality is displayed in the form of a flow chart divided into a judging section and an operation section depending on symptoms of plant parameters. Discrimination numbers are provided to a plurality sets of the judging sections and the operation sections respectively. With such procedures, using various measured signals of the plant as inputted data, the discrimination numbers of the judging sections in accordance with the inputted data are stored. Then a flow chart for the judging sections and the operation sections corresponding to the stored discrimination numbers are displayed. Further, an operation manual upon occurrence of abnormalities relevant to the judging sections and the operation sections in the form of writings, and previously determined drawings of relevant systems and trend graphs of the plant are also displayed with reference to the discrimination numbers described above. As a result, both of an appropriate operation manual and relevant information are displayed simultaneously for the occurrence of a plant abnormality and an operator's erroneous operation. (I.S.)

  13. Demonstration of volumetric analysis using the topographical mapping system at Hanford

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Carteret, B.A.; Pardini, A.F.; Samuel, T.J.

    1997-07-01

    During the spring of 1997, the Topographical Mapping System (TMS) for hazardous and radiological environments was used to perform volumetric measurements of simulated waste in the cold test cell in the Fuel Materials and Examination Facility at the Hanford site. The TMS was used to measure the volume of five simulated waste mounds. Custom software designed by Oak Ridge National Laboratory was used to calculate the volume of waste from the surface maps supplied by the TMS. The results of the measurements were analyzed using the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) and were documented. Development of the TMS and ICERVS was initiated by the US Department of Energy (DOE) for the purpose of characterization and remediation of underground storage tanks (USTs) at DOE sites across the country. DOE required a three-dimensional TMS suitable for use in hazardous and radiological environments. The intended application is the mapping of the interior of USTs as part of DOE's waste characterization and remediation efforts to obtain baseline data on the content of storage tank interiors as well as on changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford site, the TMS was designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid, variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention. An appendix contains the source code for calculating the volume from two surface maps

  14. Three Dimensional Spherical Display Systems and McIDAS: Tools for Science, Education and Outreach

    Science.gov (United States)

    Kohrs, R.; Mooney, M. E.

    2010-12-01

    The Space Science and Engineering Center (SSEC) and Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin are now using a 3D spherical display system and their Man computer Data Access System (McIDAS)-X and McIDAS-V as outreach tools to demonstrate how scientists and forecasters utilize satellite imagery to monitor weather and climate. Our outreach program displays orbits and data coverage of geostationary and polar satellites and demonstrates how each is beneficial for the remote sensing of Earth. Global composites of visible, infrared and water vapor images illustrate how satellite instruments collect data from different bands of the electromagnetic spectrum to monitor global weather patterns 24 hours a day. Captivating animations on spherical display systems are proving to be much more intuitive than traditional 2D displays, enabling audiences to view satellites orbiting above real-time weather systems circulating the entire globe. Complimenting the 3D spherical display system are the UNIX-based McIDAS-X and Java-based McIDAS-V software packages. McIDAS is used to composite the real-time global satellite data and create other weather related derived products. Client and server techniques used by these software packages provide the opportunity to continually update the real-time content on our globe. The enhanced functionality of McIDAS-V extends our outreach program by allowing in-depth interactive 4-dimensional views of the imagery previously viewed on the 3D spherical display system. An important goal of our outreach program is the promotion of remote sensing research and technology at SSEC and CIMSS. The 3D spherical display system has quickly become a popular tool to convey societal benefits of these endeavors. Audiences of all ages instinctively relate to recent weather events which keeps them engaged in spherical display presentations. McIDAS facilitates further exploration of the science behind the weather

  15. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    Science.gov (United States)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  16. Volumetric properties of ammonium nitrate in N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Vranes, Milan; Dozic, Sanja; Djeric, Vesna; Gadzuric, Slobodan

    2012-01-01

    Highlights: ► We observed interactions and changes in the solution using volumetric properties. ► The greatest influence on the solvent–solvent interactions has temperature. ► The smallest influence temperature has on the ion–ion interactions. ► Temperature has no influence on concentrated systems and partially solvated melts. - Abstract: The densities of the ammonium nitrate in N,N-dimethylformamide (DMF) mixtures were measured at T = (308.15 to 348.15) K for different ammonium nitrate molalities in the range from (0 to 6.8404) mol·kg −1 . From the obtained density data, volumetric properties (apparent molar volumes and partial molar volumes) have been evaluated and discussed in the term of respective ionic and dipole interactions. From the apparent molar volume, determined at various temperatures, the apparent molar expansibility and the coefficients of thermal expansion were also calculated.

  17. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...... effects are analyzed. The applied consolidation pressure is found to have a marked effect on the volumetric composition. A power-law relationship is found to well describe the found relations between the maximum obtainable fiber volume fraction and the consolidation pressure. The degree of fiber...

  18. A Fluid Membrane-Based Soluble Ligand Display System for Live CellAssays

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jwa-Min; Nair, Pradeep N.; Neve, Richard M.; Gray, Joe W.; Groves, Jay T.

    2005-10-14

    Cell communication modulates numerous biological processes including proliferation, apoptosis, motility, invasion and differentiation. Correspondingly, there has been significant interest in the development of surface display strategies for the presentation of signaling molecules to living cells. This effort has primarily focused on naturally surface-bound ligands, such as extracellular matrix components and cell membranes. Soluble ligands (e.g. growth factors and cytokines) play an important role in intercellular communications, and their display in a surface-bound format would be of great utility in the design of array-based live cell assays. Recently, several cell microarray systems that display cDNA, RNAi, or small molecules in a surface array format were proven to be useful in accelerating high-throughput functional genetic studies and screening therapeutic agents. These surface display methods provide a flexible platform for the systematic, combinatorial investigation of genes and small molecules affecting cellular processes and phenotypes of interest. In an analogous sense, it would be an important advance if one could display soluble signaling ligands in a surface assay format that allows for systematic, patterned presentation of soluble ligands to live cells. Such a technique would make it possible to examine cellular phenotypes of interest in a parallel format with soluble signaling ligands as one of the display parameters. Herein we report a ligand-modified fluid supported lipid bilayer (SLB) assay system that can be used to functionally display soluble ligands to cells in situ (Figure 1A). By displaying soluble ligands on a SLB surface, both solution behavior (the ability to become locally enriched by reaction-diffusion processes) and solid behavior (the ability to control the spatial location of the ligands in an open system) could be combined. The method reported herein benefits from the naturally fluid state of the supported membrane, which allows

  19. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  20. Volumetric fat-water separated T2-weighted MRI

    International Nuclear Information System (INIS)

    Vasanawala, Shreyas S.; Sonik, Arvind; Madhuranthakam, Ananth J.; Venkatesan, Ramesh; Lai, Peng; Brau, Anja C.S.

    2011-01-01

    Pediatric body MRI exams often cover multiple body parts, making the development of broadly applicable protocols and obtaining uniform fat suppression a challenge. Volumetric T2 imaging with Dixon-type fat-water separation might address this challenge, but it is a lengthy process. We develop and evaluate a faster two-echo approach to volumetric T2 imaging with fat-water separation. A volumetric spin-echo sequence was modified to include a second shifted echo so two image sets are acquired. A region-growing reconstruction approach was developed to decompose separate water and fat images. Twenty-six children were recruited with IRB approval and informed consent. Fat-suppression quality was graded by two pediatric radiologists and compared against conventional fat-suppressed fast spin-echo T2-W images. Additionally, the value of in- and opposed-phase images was evaluated. Fat suppression on volumetric images had high quality in 96% of cases (95% confidence interval of 80-100%) and were preferred over or considered equivalent to conventional two-dimensional fat-suppressed FSE T2 imaging in 96% of cases (95% confidence interval of 78-100%). In- and opposed-phase images had definite value in 12% of cases. Volumetric fat-water separated T2-weighted MRI is feasible and is likely to yield improved fat suppression over conventional fat-suppressed T2-weighted imaging. (orig.)

  1. Exploring Parallel Algorithms for Volumetric Mass-Spring-Damper Models in CUDA

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Mosegaard, Jesper; Sørensen, Thomas Sangild

    2008-01-01

    ) from Nvidia. This paper investigates multiple implementations of volumetric Mass-Spring-Damper systems in CUDA. The obtained performance is compared to previous implementations utilizing the GPU through the OpenGL graphics API. We find that both performance and optimization strategies differ widely...

  2. Method for Determining Volumetric Efficiency and Its Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ambrozik Andrzej

    2017-12-01

    Full Text Available Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, in which non-stationary processes occur. To make calculations of thermodynamic parameters of the engine operating cycle, based on the comparison of cycles, it is necessary to know the mean constant value of cylinder pressure throughout this process. Because of the character of in-cylinder pressure pattern and difficulties in pressure experimental determination, in the present paper, a novel method for the determination of this quantity was presented. In the new approach, the iteration method was used. In the method developed for determining the volumetric efficiency, the following equations were employed: the law of conservation of the amount of substance, the first law of thermodynamics for open system, dependences for changes in the cylinder volume vs. the crankshaft rotation angle, and the state equation. The results of calculations performed with this method were validated by means of experimental investigations carried out for a selected engine at the engine test bench. A satisfactory congruence of computational and experimental results as regards determining the volumetric efficiency was obtained. The method for determining the volumetric efficiency presented in the paper can be used to investigate the processes taking place in the cylinder of an IC engine.

  3. Measurement techniques of LC display systems

    Science.gov (United States)

    Kosmowski, Bogdan B.; Becker, Michael E.; Neumeier, Juergen

    1993-10-01

    The strong increase of applications of liquid crystal displays in various areas (measuring, medical equipment, automotive, telecommunication, office, etc.) has forced the demand for the adequate specification of the LCDs performances. The optical, electro-optical and spectral properties of LCDs are strongly dependent on viewing direction, electrical driving conditions, illumination and temperature. All these quantities have to be precisely controlled, when one of them is varied, the resulting optical response of the object is recorded. In this paper we present measuring methods proposed for LCD panels and the computer controlled measuring system (DMS) for their evaluation.

  4. A low-cost multimodal head-mounted display system for neuroendoscopic surgery.

    Science.gov (United States)

    Xu, Xinghua; Zheng, Yi; Yao, Shujing; Sun, Guochen; Xu, Bainan; Chen, Xiaolei

    2018-01-01

    With rapid advances in technology, wearable devices as head-mounted display (HMD) have been adopted for various uses in medical science, ranging from simply aiding in fitness to assisting surgery. We aimed to investigate the feasibility and practicability of a low-cost multimodal HMD system in neuroendoscopic surgery. A multimodal HMD system, mainly consisted of a HMD with two built-in displays, an action camera, and a laptop computer displaying reconstructed medical images, was developed to assist neuroendoscopic surgery. With this intensively integrated system, the neurosurgeon could freely switch between endoscopic image, three-dimensional (3D) reconstructed virtual endoscopy images, and surrounding environment images. Using a leap motion controller, the neurosurgeon could adjust or rotate the 3D virtual endoscopic images at a distance to better understand the positional relation between lesions and normal tissues at will. A total of 21 consecutive patients with ventricular system diseases underwent neuroendoscopic surgery with the aid of this system. All operations were accomplished successfully, and no system-related complications occurred. The HMD was comfortable to wear and easy to operate. Screen resolution of the HMD was high enough for the neurosurgeon to operate carefully. With the system, the neurosurgeon might get a better comprehension on lesions by freely switching among images of different modalities. The system had a steep learning curve, which meant a quick increment of skill with it. Compared with commercially available surgical assistant instruments, this system was relatively low-cost. The multimodal HMD system is feasible, practical, helpful, and relatively cost efficient in neuroendoscopic surgery.

  5. Volumetric Real-Time Imaging Using a CMUT Ring Array

    OpenAIRE

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device.

  6. Design of the control system for full-color LED display based on MSP430 MCU

    Science.gov (United States)

    Li, Xue; Xu, Hui-juan; Qin, Ling-ling; Zheng, Long-jiang

    2013-08-01

    The LED display incorporate the micro electronic technique, computer technology and information processing as a whole, it becomes the most preponderant of a new generation of display media with the advantages of bright in color, high dynamic range, high brightness and long operating life, etc. The LED display has been widely used in the bank, securities trading, highway signs, airport and advertising, etc. According to the display color, the LED display screen is divided into monochrome screen, double color display and full color display. With the diversification of the LED display's color and the ceaseless rise of the display demands, the LED display's drive circuit and control technology also get the corresponding progress and development. The earliest monochrome screen just displaying Chinese characters, simple character or digital, so the requirements of the controller are relatively low. With the widely used of the double color LED display, the performance of its controller will also increase. In recent years, the full color LED display with three primary colors of red, green, blue and grayscale display effect has been highly attention with its rich and colorful display effect. Every true color pixel includes three son pixels of red, green, blue, using the space colour mixture to realize the multicolor. The dynamic scanning control system of LED full-color display is designed based on MSP430 microcontroller technology of the low power consumption. The gray control technology of this system used the new method of pulse width modulation (PWM) and 19 games show principle are combining. This method in meet 256 level grayscale display conditions, improves the efficiency of the LED light device, and enhances the administrative levels feels of the image. Drive circuit used 1/8 scanning constant current drive mode, and make full use of the single chip microcomputer I/O mouth resources to complete the control. The system supports text, pictures display of 256 grayscale

  7. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  8. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  9. Interface of the transport systems research vehicle monochrome display system to the digital autonomous terminal access communication data bus

    Science.gov (United States)

    Easley, W. C.; Tanguy, J. S.

    1986-01-01

    An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described.

  10. An integrated port camera and display system for laparoscopy.

    Science.gov (United States)

    Terry, Benjamin S; Ruppert, Austin D; Steinhaus, Kristen R; Schoen, Jonathan A; Rentschler, Mark E

    2010-05-01

    In this paper, we built and tested the port camera, a novel, inexpensive, portable, and battery-powered laparoscopic tool that integrates the components of a vision system with a cannula port. This new device 1) minimizes the invasiveness of laparoscopic surgery by combining a camera port and tool port; 2) reduces the cost of laparoscopic vision systems by integrating an inexpensive CMOS sensor and LED light source; and 3) enhances laparoscopic surgical procedures by mechanically coupling the camera, tool port, and liquid crystal display (LCD) screen to provide an on-patient visual display. The port camera video system was compared to two laparoscopic video systems: a standard resolution unit from Karl Storz (model 22220130) and a high definition unit from Stryker (model 1188HD). Brightness, contrast, hue, colorfulness, and sharpness were compared. The port camera video is superior to the Storz scope and approximately equivalent to the Stryker scope. An ex vivo study was conducted to measure the operative performance of the port camera. The results suggest that simulated tissue identification and biopsy acquisition with the port camera is as efficient as with a traditional laparoscopic system. The port camera was successfully used by a laparoscopic surgeon for exploratory surgery and liver biopsy during a porcine surgery, demonstrating initial surgical feasibility.

  11. Development of Information Display System for Operator Support in Severe Accident

    International Nuclear Information System (INIS)

    Jeong, Kwang Il; Lee, Joon Ku

    2016-01-01

    When the severe accident occurs, the technical support center (TSC) performs the mitigation strategy with severe accident management guidelines (SAMG) and communicates with main control room (MCR) operators to obtain information of plant's status. In such circumstances, the importance of an information display for severe accident is increased. Therefore an information display system dedicated to severe accident conditions is required to secure the plant information, to provide the necessary information to MCR operators and TSC operators, and to support the decision using these information. We setup the design concept of severe accident information display system (SIDS) in the previous study and defined its requirements of function and performance. This paper describes the process, results of the identification of the severe accident information for MCR operator and the implementation of SIDS. Further implementation on post-accident monitoring function and data validation function for severe accidents will be accomplished in the future

  12. Microprocessor based beam intensity and efficiency display system for the Fermilab accelerator

    International Nuclear Information System (INIS)

    Biwer, R.

    1979-01-01

    The Main Accelerator display system for the Fermilab accelerator gathers charge data and displays it including processed transfer efficiencies of each of the accelerators. To accomplish this, strategically located charge converters monitor the circulating internal beam of each of the Fermilab accelerators. Their outputs are processed via an asynchronously triggered, multiplexed analog-to-digital converter. The data is converted into a digital byte containing address code and data, then stores it into two 16-bit memories. One memory outputs the interleaved data as a data pulse train while the other interfaces directly to a local host computer for further analysis. The microprocessor based display unit synchronizes displayed data during normal operation as well as special storage modes. The display unit outputs data to the fron panel in the form of a numeric value and also makes digital-to-analog conversions of displayed data for external peripheral devices. 5 refs

  13. An application of the process computer and CRT display system in BWR nuclear power station

    International Nuclear Information System (INIS)

    Goto, Seiichiro; Aoki, Retsu; Kawahara, Haruo; Sato, Takahisa

    1975-01-01

    A color CRT display system was combined with a process computer in some BWR nuclear power plants in Japan. Although the present control system uses the CRT display system only as an output device of the process computer, it has various advantages over conventional control panel as an efficient plant-operator interface. Various graphic displays are classified into four categories. The first is operational guide which includes the display of control rod worth minimizer and that of rod block monitor. The second is the display of the results of core performance calculation which include axial and radial distributions of power output, exit quality, channel flow rate, CHFR (critical heat flux ratio), FLPD (fraction of linear power density), etc. The third is the display of process variables and corresponding computational values. The readings of LPRM, control rod position and the process data concerning turbines and feed water system are included in this category. The fourth category includes the differential axial power distribution between base power distribution (obtained from TIP) and the reading of each LPRM detector, and the display of various input parameters being used by the process computer. Many photographs are presented to show examples of those applications. (Aoki, K.)

  14. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

    Science.gov (United States)

    Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher

    2012-08-01

    In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system.

  15. Internet Protocol Display Sharing Solution for Mission Control Center Video System

    Science.gov (United States)

    Brown, Michael A.

    2009-01-01

    With the advent of broadcast television as a constant source of information throughout the NASA manned space flight Mission Control Center (MCC) at the Johnson Space Center (JSC), the current Video Transport System (VTS) characteristics provides the ability to visually enhance real-time applications as a broadcast channel that decision making flight controllers come to rely on, but can be difficult to maintain and costly. The Operations Technology Facility (OTF) of the Mission Operations Facility Division (MOFD) has been tasked to provide insight to new innovative technological solutions for the MCC environment focusing on alternative architectures for a VTS. New technology will be provided to enable sharing of all imagery from one specific computer display, better known as Display Sharing (DS), to other computer displays and display systems such as; large projector systems, flight control rooms, and back supporting rooms throughout the facilities and other offsite centers using IP networks. It has been stated that Internet Protocol (IP) applications are easily readied to substitute for the current visual architecture, but quality and speed may need to be forfeited for reducing cost and maintainability. Although the IP infrastructure can support many technologies, the simple task of sharing ones computer display can be rather clumsy and difficult to configure and manage to the many operators and products. The DS process shall invest in collectively automating the sharing of images while focusing on such characteristics as; managing bandwidth, encrypting security measures, synchronizing disconnections from loss of signal / loss of acquisitions, performance latency, and provide functions like, scalability, multi-sharing, ease of initial integration / sustained configuration, integration with video adjustments packages, collaborative tools, host / recipient controllability, and the utmost paramount priority, an enterprise solution that provides ownership to the whole

  16. European display scene

    Science.gov (United States)

    Bartlett, Christopher T.

    2000-08-01

    The manufacture of Flat Panel Displays (FPDs) is dominated by Far Eastern sources, particularly in Active Matrix Liquid Crystal Displays (AMLCD) and Plasma. The United States has a very powerful capability in micro-displays. It is not well known that Europe has a very active research capability which has lead to many innovations in display technology. In addition there is a capability in display manufacturing of organic technologies as well as the licensed build of Japanese or Korean designs. Finally, Europe has a display systems capability in military products which is world class.

  17. Gravimetric and volumetric approaches adapted for hydrogen sorption measurements with in situ conditioning on small sorbent samples

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Tessier, A.; Bose, T.K.

    2005-01-01

    We present high sensitivity (0 to 1 bar, 295 K) gravimetric and volumetric hydrogen sorption measurement systems adapted for in situ sample conditioning at high temperature and high vacuum. These systems are designed especially for experiments on sorbents available in small masses (mg) and requiring thorough degassing prior to sorption measurements. Uncertainty analysis from instrumental specifications and hydrogen absorption measurements on palladium are presented. The gravimetric and volumetric systems yield cross-checkable results within about 0.05 wt % on samples weighing from (3 to 25) mg. Hydrogen storage capacities of single-walled carbon nanotubes measured at 1 bar and 295 K with both systems are presented

  18. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    Science.gov (United States)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  19. Development of Information Display System for Operator Support in Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Il; Lee, Joon Ku [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    When the severe accident occurs, the technical support center (TSC) performs the mitigation strategy with severe accident management guidelines (SAMG) and communicates with main control room (MCR) operators to obtain information of plant's status. In such circumstances, the importance of an information display for severe accident is increased. Therefore an information display system dedicated to severe accident conditions is required to secure the plant information, to provide the necessary information to MCR operators and TSC operators, and to support the decision using these information. We setup the design concept of severe accident information display system (SIDS) in the previous study and defined its requirements of function and performance. This paper describes the process, results of the identification of the severe accident information for MCR operator and the implementation of SIDS. Further implementation on post-accident monitoring function and data validation function for severe accidents will be accomplished in the future.

  20. Virtual Display Design and Evaluation of Clothing: A Design Process Support System

    Science.gov (United States)

    Zhang, Xue-Fang; Huang, Ren-Qun

    2014-01-01

    This paper proposes a new computer-aided educational system for clothing visual merchandising and display. It aims to provide an operating environment that supports the various stages of display design in a user-friendly and intuitive manner. First, this paper provides a brief introduction to current software applications in the field of…

  1. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  2. DASS: A decision aid integrating the safety parameter display system and emergency functional recovery procedures. Final report

    International Nuclear Information System (INIS)

    Johnson, S.E.

    1984-08-01

    Using a stand-alone developmental test-bed consisting of a minicomputer and a high-resolution color graphics computer, displays and supporting software incorporating advanced on-line decision-aid concepts were developed and evaluated. The advanced concepts embodied in displays designed for the operating crew of a PWR plant include: (1) an integrated display format which supports a top-down approach to problem detection, recovery planning, and control; (2) introduction of nonobservable plant parameters derived from first principles mass and energy balances as part of the displayed information; and (3) systematic processing and display of key success path (plant safety system) attributes. The prototype system, referred to as the PWR-DASS (Disturbance Analysis and Surveillance System), consists of 18 displays targeted for principal use by the control room systems manager. PWR-DASS was conceived to fulfill an operational void not fully supported by safety parameter display systems or reformulated emergency procedure guidelines. The results from the evaluation by licensed operators suggest that organization and display of desired critical safety function and success path information as incorporated in the PWR-DASS prototype can support the systems manager's overview. The results also point to the need for several refinements required for a field grade system, and to the need for a simulator-based evaluation of the prototype or its successor. (author)

  3. Operation status display and monitoring system for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Wakabayashi, Yasuo; Hayakawa, Hiroyasu; Kawamura, Atsuo; Kaneda, Mitsunori.

    1982-01-01

    Lately, the development of the system has been made for BWR plants, which monitors the operating status not only in normal operation but also in abnormal state and also for plant safety. Recently, the improvement of man-machine interface has been tried through the practical use of technique which displays data collectively on a CRT screen relating them mutually. As one of those results, the practical use of an electronic computer and color CRT display for No. 1 unit in the Fukushima No. 2 Nuclear Power Station (2F-1), Tokyo Electric Power Co., is described. Also, new centralized control panels containing such systems were used for the 1100 MWe BWR nuclear power plants now under construction, No. 3 unit of the Fukushima No. 2 Power Station and No. 1 unit of Kashiwazaki-Kariwa Nuclear Power Station (2F-3 and K-1, respectively). The display and monitoring system in 2F-1 plant is the first one in which a computer and color CRTs were practically employed for a BWR plant in Japan, and already in commercial operation. The advanced operating status monitoring system, to which the result of evaluation of the above system was added, was incorporated in the new centralized control panels presently under production for 2F-3 and K-1 plants. The outline of the system, the functions of an electronic computer, plant operating status monitor, surveillance test guide, the automation of plant operation and auxiliary operation guide are reported for these advanced monitoring system. It was confirmed that these systems are useful means to improve the man-machine communication for plant operation minitoring. (Wakatsuki, Y.)

  4. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  5. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Du, Louise Y [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Umoh, Joseph [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Nikolov, Hristo N [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Pollmann, Steven I [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Lee, Ting-Yim [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Holdsworth, David W [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada)

    2007-12-07

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 {mu}m, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm{sup -1} and noise of {+-}35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.

  6. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    International Nuclear Information System (INIS)

    Du, Louise Y; Umoh, Joseph; Nikolov, Hristo N; Pollmann, Steven I; Lee, Ting-Yim; Holdsworth, David W

    2007-01-01

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 μm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm -1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy

  7. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    Science.gov (United States)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  8. Halftone display, particularly for a high resolution radioactivity distribution detection system

    International Nuclear Information System (INIS)

    Grenier, R.P.

    1977-01-01

    A device is described for presenting a halftone pictorial presentation composed of dot picture elements by selectively controlling the number of dot picture elements per unit area at locations on a display. In a high resolution radioactivity distribution detection system, the number of detected radioactive elements at XY locations of an array of sensing devices are fed to a computer and stored at corresponding address locations. The number of radioactive events detected at each address location is normalized into Gray scale coded signals as a function of the greatest number of radioactive events detected at any one address location. The normalized Gray scale coded signals are applied to a display for controlling the number of dot picture elements per unit area presented at corresponding XY locations on the display. The number of radioactive events detected at XY locations of the array are presented on the display as a halftone pictorial representation; the greatest number of picture dot elements per unit are being presented as a brighter image

  9. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addres......The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row...

  10. Development of a visual control and display system for the SMART plant analyzer

    International Nuclear Information System (INIS)

    Kang, Han Ok; Yoon, Ju Hyeon; Seo, Jae Kwang; Lee, Doo Jeong

    2000-01-01

    A Visual Control and Display System (VCDS) for the SMART plant analyzer has been developed using the MMS simulation tools. The SAMRT plant analyzer consists of the VCDS and the MMS SMART model. The MMS SMART model is a numerical simulation model for the SMART plant and is composed of the MMS real-time modules and control blocks. It covers the whole plant including primary, secondary and auxiliary systems. The developed VCDS is Graphical User Interfaces (GUI) that is running in a synchronized way with the SMART model. The VCDS consists of the MMS Simulation tools and seven control and display screens. The VCDS provides easy means for the control and display of the SMART model status. The VCDS allows users to display and change a specified list of model variables and transient scenarios interactively through the MMS simulation tools. The control and display screens are developed with Visual Basic 6.0 and MMI32 ActiveX controls and it can be executed in several TCP/IP networked computers simultaneously. The developed VCDS can be utilized for the engineering simulation of the SMART plant operation, and for control logic and operational procedure developments

  11. A low-cost system for graphical process monitoring with colour video symbol display units

    International Nuclear Information System (INIS)

    Grauer, H.; Jarsch, V.; Mueller, W.

    1977-01-01

    A system for computer controlled graphic process supervision, using color symbol video displays is described. It has the following characteristics: - compact unit: no external memory for image storage - problem oriented simple descriptive cut to the process program - no restriction of the graphical representation of process variables - computer and display independent, by implementation of colours and parameterized code creation for the display. (WB) [de

  12. A volumetric pulmonary CT segmentation method with applications in emphysema assessment

    Science.gov (United States)

    Silva, José Silvestre; Silva, Augusto; Santos, Beatriz S.

    2006-03-01

    A segmentation method is a mandatory pre-processing step in many automated or semi-automated analysis tasks such as region identification and densitometric analysis, or even for 3D visualization purposes. In this work we present a fully automated volumetric pulmonary segmentation algorithm based on intensity discrimination and morphologic procedures. Our method first identifies the trachea as well as primary bronchi and then the pulmonary region is identified by applying a threshold and morphologic operations. When both lungs are in contact, additional procedures are performed to obtain two separated lung volumes. To evaluate the performance of the method, we compared contours extracted from 3D lung surfaces with reference contours, using several figures of merit. Results show that the worst case generally occurs at the middle sections of high resolution CT exams, due the presence of aerial and vascular structures. Nevertheless, the average error is inferior to the average error associated with radiologist inter-observer variability, which suggests that our method produces lung contours similar to those drawn by radiologists. The information created by our segmentation algorithm is used by an identification and representation method in pulmonary emphysema that also classifies emphysema according to its severity degree. Two clinically proved thresholds are applied which identify regions with severe emphysema, and with highly severe emphysema. Based on this thresholding strategy, an application for volumetric emphysema assessment was developed offering new display paradigms concerning the visualization of classification results. This framework is easily extendable to accommodate other classifiers namely those related with texture based segmentation as it is often the case with interstitial diseases.

  13. Integration of Predictive Display and Aircraft Flight Control System

    Directory of Open Access Journals (Sweden)

    Efremov A.V.

    2017-01-01

    Full Text Available The synthesis of predictive display information and direct lift control system are considered for the path control tracking tasks (in particular landing task. The both solutions are based on pilot-vehicle system analysis and requirements to provide the highest accuracy and lowest pilot workload. The investigation was carried out for cases with and without time delay in aircraft dynamics. The efficiency of the both ways for the flying qualities improvement and their integration is tested by ground based simulation.

  14. Volumetric full-range magnetomotive optical coherence tomography

    Science.gov (United States)

    Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.

    2014-01-01

    Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770

  15. Safety parameter display systems' effect on operator performance

    International Nuclear Information System (INIS)

    Cerven, F.; Ford, R.E.; Blackman, H.S.

    1983-01-01

    Computer generated displays are a powerful and flexible tool for presenting data to the operators of nuclear power plants. Such displays are currently being developed in industry for use as safety parameter displays and for use in advanced control rooms. There exists a need for methods to objectively evaluate the effect of these displays, positive or negative, on the performance of control room personnel. Results of developing one such method, noninteractive simulation, and the two experiments that were performed to determine if it can be used as a method for evaluating computer displays are presented. This method is more objective and powerful than pencil and paper methods because it measures human performance rather than opinion or perference, has excellent control of the experimental variables, and has a higher fidelity to the control room environment. The results of these experiments indicates that the present methodology does not differentiate among the display types tested at a statistically significant level. In other words, all display types tested worked equally well in providing operators needed information

  16. Geographic Information Systems: Tools for Displaying In-Library Use Data

    Directory of Open Access Journals (Sweden)

    Lauren H. Mandel

    2010-03-01

    Full Text Available In-library use data is crucial for modern libraries to understand the full spectrum of patron use, including patron self-service activities, circulation, and reference statistics. Rather than using tables and charts to display use data, a geographic information system (GIS facilitates a more visually appealing graphical display of the data in the form of a map. GISs have been used by library and information science (LIS researchers and practitioners to create maps that display analyses of service area populations and demographics, facilities space management issues, spatial distribution of in-library use of materials, planned branch consolidations, and so on. The “seating sweeps” method allows researchers and librarians to collect in-library use data regarding where patrons are locating themselves within the library and what they are doing at those locations, such as sitting and reading, studying in a group, or socializing. This paper proposes a GIS as a tool to visually display in-library use data collected via “seating sweeps” of a library. By using a GIS to store, manage, and display the data, researchers and librarians can create visually appealing maps that show areas of heavy use and evidence of the use and value of the library for a community. Example maps are included to facilitate the reader’s understanding of the possibilities afforded by using GISs in LIS research.

  17. A digital data acquisition and display system for ITU TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Can, B.; Omuz, S.

    2008-01-01

    Full text: In this study, a digital data acquisition and display system realized for ITU TRIGA Mark-II Reactor is described. This system is realized in order to help the reactor operator and to increase reactor console capacity. The system consists of two main units, which are host computers and RTI-815F, analog devices, data acquisition card. RTI-815F is multi-function analog/digital input/output board that plugs into one of the available long expansion slots in the IBM-PC, PC/XT, PC/AT, or equivalent personal computers. It has 16 analog input channels for single-ended input signals or 8 analog input channels for differential input signals. But its channel capacity can be increased to 32 input channels for single-ended input signals or 16 input channels for differential input signals. RTI-815F board contains 2 analog output channels, 8 digital input channels and 8 digital output channels. In the ITD TRIGA Mark-II Reactor, 6 fuel temperature channels, 3 water temperature channels, 3 control rod position channels and 4 power channels are chosen as analog input signals for RTI-815F. Its digital outputs are assigned to cooling tower fan, primary and secondary pump reactor scram, control rod rundown. During operation, data are automatically archived to disk and displayed on screen. The channel selection time and sampling time can be adjusted. The simulated movement and position of control rods in the reactor core can be noted and displayed. The changes of power, fuel temperature and water temperature can be displayed on the screen as a graphic. In this system both period and reactivity are calculated and displayed on the screen. (authors)

  18. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    Science.gov (United States)

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  19. Gradients estimation from random points with volumetric tensor in turbulence

    Science.gov (United States)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  20. Determination of Uncertainty for a One Milli Litre Volumetric Pipette

    International Nuclear Information System (INIS)

    Torowati; Asminar; Rahmiati; Arif-Sasongko-Adi

    2007-01-01

    An observation had been conducted to determine the uncertainty of volumetric pipette. The uncertainty was determined from data obtained from a determine process which used method of gravimetry. Calculation result from an uncertainty of volumetric pipette the confidence level of 95% and k=2. (author)

  1. A system for tracking braille readers using a Wii Remote and a refreshable braille display.

    Science.gov (United States)

    Aranyanak, Inthraporn; Reilly, Ronan G

    2013-03-01

    This article describes a cheap and easy-to-use finger-tracking system for studying braille reading. It provides improved spatial and temporal resolution over the current available solutions and can be used with either a refreshable braille display or braille-embossed paper. In conjunction with a refreshable braille display, the tracking system has the unique capacity to implement display-change paradigms derived from sighted reading research. This will allow researchers to probe skilled braille reading in significantly more depth than has heretofore been possible.

  2. Registration of an on-axis see-through head-mounted display and camera system

    Science.gov (United States)

    Luo, Gang; Rensing, Noa M.; Weststrate, Evan; Peli, Eli

    2005-02-01

    An optical see-through head-mounted display (HMD) system integrating a miniature camera that is aligned with the user's pupil is developed and tested. Such an HMD system has a potential value in many augmented reality applications, in which registration of the virtual display to the real scene is one of the critical aspects. The camera alignment to the user's pupil results in a simple yet accurate calibration and a low registration error across a wide range of depth. In reality, a small camera-eye misalignment may still occur in such a system due to the inevitable variations of HMD wearing position with respect to the eye. The effects of such errors are measured. Calculation further shows that the registration error as a function of viewing distance behaves nearly the same for different virtual image distances, except for a shift. The impact of prismatic effect of the display lens on registration is also discussed.

  3. The Brain of the Black (Diceros bicornis and White (Ceratotherium simum African Rhinoceroses: Morphology and Volumetrics from Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Adhil Bhagwandin

    2017-08-01

    Full Text Available The morphology and volumetrics of the understudied brains of two iconic large terrestrial African mammals: the black (Diceros bicornis and white (Ceratotherium simum rhinoceroses are described. The black rhinoceros is typically solitary whereas the white rhinoceros is social, and both are members of the Perissodactyl order. Here, we provide descriptions of the surface of the brain of each rhinoceros. For both species, we use magnetic resonance images (MRI to develop a description of the internal anatomy of the rhinoceros brain and to calculate the volume of the amygdala, cerebellum, corpus callosum, hippocampus, and ventricular system as well as to determine the gyrencephalic index. The morphology of both black and white rhinoceros brains is very similar to each other, although certain minor differences, seemingly related to diet, were noted, and both brains evince the general anatomy of the mammalian brain. The rhinoceros brains display no obvious neuroanatomical specializations in comparison to other mammals previously studied. In addition, the volumetric analyses indicate that the size of the various regions of the rhinoceros brain measured, as well as the extent of gyrification, are what would be predicted for a mammal with their brain mass when compared allometrically to previously published data. We conclude that the brains of the black and white rhinoceros exhibit a typically mammalian organization at a superficial level, but histological studies may reveal specializations of interest in relation to rhinoceros behavior.

  4. Effects of an ontology display with history representation on organizational memory information systems.

    Science.gov (United States)

    Hwang, Wonil; Salvendy, Gavriel

    2005-06-10

    Ontologies, as a possible element of organizational memory information systems, appear to support organizational learning. Ontology tools can be used to share knowledge among the members of an organization. However, current ontology-viewing user interfaces of ontology tools do not fully support organizational learning, because most of them lack proper history representation in their display. In this study, a conceptual model was developed that emphasized the role of ontology in the organizational learning cycle and explored the integration of history representation in the ontology display. Based on the experimental results from a split-plot design with 30 participants, two conclusions were derived: first, appropriately selected history representations in the ontology display help users to identify changes in the ontologies; and second, compatibility between types of ontology display and history representation is more important than ontology display and history representation in themselves.

  5. On-line data display

    Science.gov (United States)

    Lang, Sherman Y. T.; Brooks, Martin; Gauthier, Marc; Wein, Marceli

    1993-05-01

    A data display system for embedded realtime systems has been developed for use as an operator's user interface and debugging tool. The motivation for development of the On-Line Data Display (ODD) have come from several sources. In particular the design reflects the needs of researchers developing an experimental mobile robot within our laboratory. A proliferation of specialized user interfaces revealed a need for a flexible communications and graphical data display system. At the same time the system had to be readily extensible for arbitrary graphical display formats which would be required for data visualization needs of the researchers. The system defines a communication protocol transmitting 'datagrams' between tasks executing on the realtime system and virtual devices displaying the data in a meaningful way on a graphical workstation. The communication protocol multiplexes logical channels on a single data stream. The current implementation consists of a server for the Harmony realtime operating system and an application written for the Macintosh computer. Flexibility requirements resulted in a highly modular server design, and a layered modular object- oriented design for the Macintosh part of the system. Users assign data types to specific channels at run time. Then devices are instantiated by the user and connected to channels to receive datagrams. The current suite of device types do not provide enough functionality for most users' specialized needs. Instead the system design allows the creation of new device types with modest programming effort. The protocol, design and use of the system are discussed.

  6. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data.

    Science.gov (United States)

    Fischer, Felix; Selver, M Alper; Gezer, Sinem; Dicle, Oğuz; Hillen, Walter

    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant additional data. The Grayscale Softcopy Presentation State extension of the Digital Imaging and Communications in Medicine (DICOM) standard resolves this issue for two-dimensional (2D) data by introducing an extensive set of parameters, namely 2D Presentation States (2DPR), that describe how an image should be displayed. 2DPR allows storing these parameters instead of storing parameter applied images, which cause unnecessary duplication of the image data. Since there is currently no corresponding extension for 3D data, in this study, a DICOM-compliant object called 3D presentation states (3DPR) is proposed for the parameterization and storage of 3D medical volumes. To accomplish this, the 3D medical visualization process is divided into four tasks, namely pre-processing, segmentation, post-processing, and rendering. The important parameters of each task are determined. Special focus is given to the compression of segmented data, parameterization of the rendering process, and DICOM-compliant implementation of the 3DPR object. The use of 3DPR was tested in a radiology department on three clinical cases, which require multiple segmentations and visualizations during the workflow of radiologists. The results show that 3DPR can effectively simplify the workload of physicians by directly regenerating 3D renderings without repeating intermediate tasks, increase efficiency by preserving all user interactions, and provide efficient storage as well as transfer of visualized data.

  7. Vision based flight procedure stereo display system

    Science.gov (United States)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  8. Three-Dimensional Cockpit Display System for Improved Situational Awareness, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Optics Corporation (POC) proposes to develop a 3D cockpit display (3D-COD) system for improved pilot situational awareness and safety in 3D airspace by...

  9. Volumetric breast density affects performance of digital screening mammography

    OpenAIRE

    Wanders, JO; Holland, K; Veldhuis, WB; Mann, RM; Pijnappel, RM; Peeters, PH; Van Gils, CH; Karssemeijer, N

    2016-01-01

    PURPOSE: To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). METHODS: We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the Ameri...

  10. MR volumetric assessment of endolymphatic hydrops

    International Nuclear Information System (INIS)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E.; Dietrich, O.; Flatz, W.; Ertl-Wagner, B.; Keeser, D.

    2015-01-01

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  11. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  12. ACCURACY EVALUATION OF THE OBJECT LOCATION VISUALIZATION FOR GEO-INFORMATION AND DISPLAY SYSTEMS OF MANNED AIRCRAFTS NAVIGATION COMPLEXES

    Directory of Open Access Journals (Sweden)

    M. O. Kostishin

    2014-01-01

    Full Text Available The paper deals with the issue of accuracy estimating for the object location display in the geographic information systems and display systems of manned aircrafts navigation complexes. Application features of liquid crystal screens with a different number of vertical and horizontal pixels are considered at displaying of geographic information data on different scales. Estimation display of navigation parameters values on board the aircraft is done in two ways: a numeric value is directly displayed on the screen of multi-color indicator, and a silhouette of the object is formed on the screen on a substrate background, which is a graphical representation of area map in the flight zone. Various scales of area digital map display currently used in the aviation industry have been considered. Calculation results of one pixel scale interval, depending on the specifications of liquid crystal screen and zoom of the map display area on the multifunction digital display, are given. The paper contains experimental results of the accuracy evaluation for area position display of the aircraft based on the data from the satellite navigation system and inertial navigation system, obtained during the flight program run of the real object. On the basis of these calculations a family of graphs was created for precision error display of the object reference point position using the onboard indicators with liquid crystal screen with different screen resolutions (6 "×8", 7.2 "×9.6", 9"×12" for two map display scales (1:0 , 25 km, 1-2 km. These dependency graphs can be used both to assess the error value of object area position display in existing navigation systems and to calculate the error value in upgrading facilities.

  13. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  14. [Construction of Lactobacillus rhamnosus GG particles surface display system].

    Science.gov (United States)

    Su, Runyu; Nie, Boyao; Yuan, Shengling; Tao, Haoxia; Liu, Chunjie; Yang, Bailiang; Wang, Yanchun

    2017-01-25

    To describe a novel particles surface display system which is consisted of gram-positive enhancer matrix (GEM) particles and anchor proteins for bacteria-like particles vaccines, we treated Lactobacillus rhamnosus GG bacteria with 10% heated-TCA for preparing GEM particles, and then identified the harvested GEM particles by electron microscopy, RT-PCR and SDS-PAGE. Meanwhile, Escherichia coli was induced to express hybrid proteins PA3-EGFP and P60-EGFP, and GEM particles were incubated with them. Then binding of anchor proteins were determined by Western blotting, transmission electron microscopy, fluorescence microscopy and spectrofluorometry. GEM particles preserved original size and shape, and proteins and DNA contents of GEM particles were released substantially. The two anchor proteins both had efficiently immobilized on the surface of GEM. GEM particles that were bounded by anchor proteins were brushy. The fluorescence of GEM particles anchoring PA3 was slightly brighter than P60, but the difference was not significant (P>0.05). GEM particles prepared from L. rhamnosus GG have a good binding efficiency with anchor proteins PA3-EGFP and P60-EGFP. Therefore, this novel foreign protein surface display system could be used for bacteria-like particle vaccines.

  15. New ultraportable display technology and applications

    Science.gov (United States)

    Alvelda, Phillip; Lewis, Nancy D.

    1998-08-01

    MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.

  16. Advances and trends of head-up and head-down display systems in automobiles

    Science.gov (United States)

    Betancur, J. Alejandro; Osorio-Gomez, Gilberto; Agudelo, J. David

    2014-06-01

    Currently, in the automotive industry the interaction between drivers and Augmented Reality (AR) systems is a subject of analysis, especially the identification of advantages and risks that this kind of interaction represents. Consequently, this paper attempts to put in evidence the potential applications of Head-Up (Display (HUD) and Head-Down Display (HDD) systems in automotive vehicles, showing applications and trends under study. In general, automotive advances related to AR devices suggest the partial integration of the HUD and HDD in automobiles; however, the right way to do it is still a moot point.

  17. Nuclear Medicine Image Display. Chapter 14

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, H. [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna (Austria)

    2014-12-15

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  18. Nuclear Medicine Image Display. Chapter 14

    International Nuclear Information System (INIS)

    Bergmann, H.

    2014-01-01

    The final step in a medical imaging procedure is to display the image(s) on a suitable display system where it is presented to the medical specialist for diagnostic interpretation. The display of hard copy images on X ray film or photographic film has largely been replaced today by soft copy image display systems with cathode ray tube (CRT) or liquid crystal display (LCD) monitors as the image rendering device. Soft copy display requires a high quality display monitor and a certain amount of image processing to optimize the image both with respect to the properties of the display device and to some psychophysiological properties of the human visual system. A soft copy display system, therefore, consists of a display workstation providing some basic image processing functions and the display monitor as the intrinsic display device. Display devices of lower quality may be used during intermediate steps of the acquisition and analysis of a patient study. Display monitors with a quality suitable for diagnostic reading by the specialist medical doctor are called primary devices, also known as diagnostic devices. Monitors with lower quality but good enough to be used for positioning, processing of studies, presentation of images in the wards, etc. are referred to as secondary devices or clinical devices. Nuclear medicine images can be adequately displayed even for diagnostic purposes on secondary devices. However, the increasing use of X ray images on which to report jointly with images from nuclear medicine studies, such as those generated by dual modality imaging, notably by positron emission tomography (PET)/computed tomography (CT) and single photon emission computed tomography (SPECT)/CT, requires display devices capable of visualizing high resolution grey scale images at diagnostic quality, i.e. primary display devices. Both grey scale and colour display devices are used, the latter playing an important role in the display of processed nuclear medicine images and

  19. Integrated Display & Environmental Awareness System

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is the development of a head mounted display for use in operations here on Earth and in Space. The technology would provide various means of...

  20. Unit information system operational displays for VVER-1000 reactors

    International Nuclear Information System (INIS)

    Anikanov, S.S.; Carrera, J.P.; Gordon, P.

    1997-01-01

    The role of high level operational displays is explained as well as the principles of the design of such displays. The tasks of WWER operating personnel are described and the support provided by operational displays is highlighted. The architecture of the displays is also dealt with. (A.K.)

  1. Real-time image reconstruction and display system for MRI using a high-speed personal computer.

    Science.gov (United States)

    Haishi, T; Kose, K

    1998-09-01

    A real-time NMR image reconstruction and display system was developed using a high-speed personal computer and optimized for the 32-bit multitasking Microsoft Windows 95 operating system. The system was operated at various CPU clock frequencies by changing the motherboard clock frequency and the processor/bus frequency ratio. When the Pentium CPU was used at the 200 MHz clock frequency, the reconstruction time for one 128 x 128 pixel image was 48 ms and that for the image display on the enlarged 256 x 256 pixel window was about 8 ms. NMR imaging experiments were performed with three fast imaging sequences (FLASH, multishot EPI, and one-shot EPI) to demonstrate the ability of the real-time system. It was concluded that in most cases, high-speed PC would be the best choice for the image reconstruction and display system for real-time MRI. Copyright 1998 Academic Press.

  2. Design of area array CCD image acquisition and display system based on FPGA

    Science.gov (United States)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  3. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Children’s Research Hospital (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  4. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    International Nuclear Information System (INIS)

    Hua, C.

    2016-01-01

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  5. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  6. Central display system of figures in fire alarm

    International Nuclear Information System (INIS)

    Fang Shaohong; Zhu Zicheng; Zhu Liqun; Ren Yi; Yu Hongmei; Du Chengbao; Xie Guoxue

    1997-01-01

    A new type of 'central display system of figures in fire alarm' includes two parts: (1) software package of drawing picture; (2) real time processing and operate system (POS). Main function of the software package is to draw floor plane figures, fire-fighting facility signs and room numbers; and then all pictures are used in POS. Main functions of POS are to process fire alarm, faults and activation of fire fighting control facility, save and print reports, look over floor plane figures, look over concrete condition of fire fighting facilities, and to show appropriate prompt according to different case. This system realizes many functions, such as, control with mouse, operation with push-button, menu operation interface, flip windows to prompt, and chinese character. It have won acclaim for its amazing interface, its convenience to operate, its reliability and flexibility

  7. Integrated System Validation Usability Questionnaire: Information Display Element

    International Nuclear Information System (INIS)

    Garcés, Ma. I.; Torralba, B.

    2015-01-01

    The Research and Development (R&D) project on “Theoretical and Methodological Approaches to Integrated System Validation of Control Rooms, 2014-2015”, in which the research activities described in this report are framed, has two main objectives: to develop the items for an usability methodology conceived as a part of the measurement framework for performance-based control room evaluation that the OECD Halden Reactor Project will test in the experiments planned for 2015; and the statistical analysis of the data generated in the experimental activities of the Halden Man-Machine Laboratory (HAMMLAB) facility, with previous usability questionnaires, in 2010 and 2011. In this report, the procedure designed to meet the first goal of the project is described, in particular, the process followed to identify the items related to information displays, one of the elements to be included in the usability questionnaire. Three phases are performed, in the first one, the approaches developed by the United States Nuclear Regulatory Commission, NRC, are reviewed and the models proposed by the nuclear energy industry and their technical support organizations, mainly, the United States Electric Power Research Institute, EPRI, are analyzed. In the remaining stages, general and specific guidelines for information displays, in particular, display pages, formats, elements and data quality and update rate recommendations are compared and criteria for the preliminary selection of the items that should be incorporated into the usability questionnaire are defined. This proposal will be reviewed and adapted by the Halden Reactor Project to the design of the specific experiments performed in HAMMLAB.

  8. Real-time embedded system for stereo video processing for multiview displays

    Science.gov (United States)

    Berretty, R.-P. M.; Riemens, A. K.; Machado, P. F.

    2007-02-01

    In video systems, the introduction of 3D video might be the next revolution after the introduction of color. Nowadays multiview auto-stereoscopic displays are entering the market. Such displays offer various views at the same time. Depending on its positions, the viewers' eyes see different images. Hence, the viewers' left eye receives a signal that is different from what his right eye gets; this gives, provided the signals have been properly processed, the impression of depth. New auto-stereoscopic products use an image-plus-depth interface. On the other hand, a growing number of 3D productions from the entertainment industry use a stereo format. In this paper, we show how to compute depth from the stereo signal to comply with the display interface format. Furthermore, we present a realisation suitable for a real-time cost-effective implementation on an embedded media processor.

  9. A manned maneuvering unit proximity operations planning and flight guidance display and control system

    Science.gov (United States)

    Gershzohn, Gary R.; Sirko, Robert J.; Zimmerman, K.; Jones, A. D.

    1990-01-01

    This task concerns the design, development, testing, and evaluation of a new proximity operations planning and flight guidance display and control system for manned space operations. A forecast, derivative manned maneuvering unit (MMU) was identified as a candidate for the application of a color, highway-in-the-sky display format for the presentation of flight guidance information. A silicon graphics 4D/20-based simulation is being developed to design and test display formats and operations concepts. The simulation includes the following: (1) real-time color graphics generation to provide realistic, dynamic flight guidance displays and control characteristics; (2) real-time graphics generation of spacecraft trajectories; (3) MMU flight dynamics and control characteristics; (4) control algorithms for rotational and translational hand controllers; (5) orbital mechanics effects for rendezvous and chase spacecraft; (6) inclusion of appropriate navigation aids; and (7) measurement of subject performance. The flight planning system under development provides for: (1) selection of appropriate operational modes, including minimum cost, optimum cost, minimum time, and specified ETA; (2) automatic calculation of rendezvous trajectories, en route times, and fuel requirements; (3) and provisions for manual override. Man/machine function allocations in planning and en route flight segments are being evaluated. Planning and en route data are presented on one screen composed of two windows: (1) a map display presenting a view perpendicular to the orbital plane, depicting flight planning trajectory and time data attitude display presenting attitude and course data for use en route; and (2) an attitude display presenting local vertical-local horizontal attitude data superimposed on a highway-in-the-sky or flight channel representation of the flight planned course. Both display formats are presented while the MMU is en route. In addition to these displays, several original display

  10. Using the Multi-Display Teaching System to Lower Cognitive Load

    Science.gov (United States)

    Cheng, Tsung-Sheng; Lu, Yu-Chun; Yang, Chu-Sing

    2015-01-01

    Multimedia plays a vital role in both learning systems and the actual education process. However, currently used presentation software is often not optimized and generates a great deal of clutter on the screen. Furthermore, there is often insufficient space on a single display, leading to the division of content. These limitations generally…

  11. Repetitive display system of line profiles for Doppler broadening measurement

    International Nuclear Information System (INIS)

    Mohri, A.; Narihara, K.; Haba, K.

    1982-10-01

    Line profiles of impurities in visible and ultraviolet regions are repetitively displayed on a CRT with an interval of 250 mu s or 500 mu s, using a system composed of a Czerny-Turner monochromator with 1 m F.L., a self-resonant optical scanner, a photomultiplier shielded against hard X-rays and electronic circuits. The profile resolution is 0.035 nm FWHM. This system can be used in the environment of strong hard X-rays. (author)

  12. Implementation of safety parameter display system at VVER-440 NPPs

    International Nuclear Information System (INIS)

    Manninen, T.

    1997-01-01

    Furnishing WWER-440 nuclear power plant units with a safety parameter display system (SPDS) fulfilling the requirements of internationally recognized standards and guidelines has been ranked high on the lists of proposed safety improvement projects. Technically such an SPDS system can be implemented either as a separate stand-alone system or as a more or less closely integrated part of a process information system of the plant unit. In the paper examples of these approaches are presented. Functionally all these examples include the well proven SPDS concept developed by IVO Power Engineering Ltd, Finland. The functional design basis, the general requirements for the system platform, experience with implementation and expansion possibilities of the systems are discussed. (author)

  13. Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry.

    Science.gov (United States)

    Masaoka, Kenichiro; Nishida, Yukihiro; Sugawara, Masayuki

    2014-08-11

    The wide-gamut system colorimetry has been standardized for ultra-high definition television (UHDTV). The chromaticities of the primaries are designed to lie on the spectral locus to cover major standard system colorimetries and real object colors. Although monochromatic light sources are required for a display to perfectly fulfill the system colorimetry, highly saturated emission colors using recent quantum dot technology may effectively achieve the wide gamut. This paper presents simulation results on the chromaticities of highly saturated non-monochromatic light sources and gamut coverage of real object colors to be considered in designing wide-gamut displays with color filters for the UHDTV.

  14. Information rich display design

    International Nuclear Information System (INIS)

    Welch, Robin; Braseth, Alf Ove; Veland, Oeystein

    2004-01-01

    This paper presents the concept Information Rich Displays. The purpose of Information Rich Displays (IRDs) is to condensate prevailing information in process displays in such a way that each display format (picture) contains more relevant information for the user. Compared to traditional process control displays, this new concept allows the operator to attain key information at a glance and at the same time allows for improved monitoring of larger portions of the process. This again allows for reduced navigation between both process and trend displays and ease the cognitive demand on the operator. This concept has been created while working on designing display prototypes for the offshore petroleum production facilities of tomorrow. Offshore installations basically consist of wells, separation trains (where oil, gas and water are separated from each other), an oil tax measurement system (where oil quality is measured and the pressure increased to allow for export), gas compression (compression of gas for export) and utility systems (water treatment, chemical systems etc.). This means that an offshore control room operator has to deal with a complex process that comprises several functionally different systems. The need for a new approach to offshore display format design is in particular based on shortcomings in today's designs related to the keyhole effect, where the display format only reveals a fraction of the whole process. Furthermore, the upcoming introduction of larger off- and on-shore operation centres will increase the size and complexity of the operators' work domain. In the light of the increased demands on the operator, the proposed IRDs aim to counter the negative effects this may have on the workload. In this work we have attempted to classify the wide range of different roles an operator can have in different situations. The information content and amount being presented to the operator in a display should be viewed in context of the roles the

  15. The influence of an activity awareness display on distributed multi-team systems

    NARCIS (Netherlands)

    Brons, L.; Greef, T. de; Kleij, R. van der

    2010-01-01

    Motivation - Both multi-team systems and awareness displays have been studied more often in the past years, but there hasn't been much focus on the combination of these two subjects. Apart from doing so, we are particularly interested in the difficulties encountered when multi-team systems are

  16. Method for control-room display design

    International Nuclear Information System (INIS)

    Montmayeul, R.

    1988-01-01

    This document describes a method for control-room displays design. It can be used either for isolated display to add to an existing system either for the design of a full system of operator aids. The method is a top-down design with steps of possible iteration. The emphasis is put on display design rather than on system design; system aspects are just mentioned. Advantages of using a method are described [fr

  17. Upper Limb-Hand 3D Display System for Biomimetic Myoelectric Hand Simulator

    National Research Council Canada - National Science Library

    Jimenez, Gonzalo

    2001-01-01

    A graphics system displaying both upper limb posture and opening-closing of a prosthetic hand was developed for realtime operation of our biomimetic myoelectric hand simulator, Posture of the upper...

  18. Synthesis of graphene oxide and reduced graphene oxide using volumetric method by a novel approach without NaNO2 or NaNO3

    Science.gov (United States)

    Gunda, Rajitha; Madireddy, Buchi Suresh; Dash, Raj Kishora

    2018-02-01

    In the present work, graphite was processed to graphene oxide (GO) using modified Hummer's method by volumetric titration approach, without attaining zero temperature and the addition of toxic chemicals (NaNO2/NaNO3). The complete oxidation of graphite to graphene oxide was obtained by controlled addition (volumetric titration) of KMnO4. The addition of higher KMnO4 resulted in partial oxidation and 2-3 mono-layers with less defects/disordered structure of reduced graphene oxide (RGO) sheets were achieved. Samples were analyzed by XRD, FT-IR, Raman analysis, and TEM analysis. X-ray diffraction displayed the oxidized peak of graphene oxide at 11.9° and reduced graphene oxide at 23.8°. The prolonged stability of the synthesized GO with lower mole ratios of oxidizing agent was confirmed from UV-visible spectroscopy. Based on the results, processed graphene oxide is found to be a candidate material for thermally stable capacitor application.

  19. 76 FR 22726 - Certain Multimedia Display and Navigation Devices and Systems, Components Thereof, and Products...

    Science.gov (United States)

    2011-04-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-694] Certain Multimedia Display and Navigation Devices and Systems, Components Thereof, and Products Containing Same; Notice of Commission... importation, and the sale within the United States after importation of certain multimedia display and...

  20. An introduction to the Marshall information retrieval and display system

    Science.gov (United States)

    1974-01-01

    An on-line terminal oriented data storage and retrieval system is presented which allows a user to extract and process information from stored data bases. The use of on-line terminals for extracting and displaying data from the data bases provides a fast and responsive method for obtaining needed information. The system consists of general purpose computer programs that provide the overall capabilities of the total system. The system can process any number of data files via a Dictionary (one for each file) which describes the data format to the system. New files may be added to the system at any time, and reprogramming is not required. Illustrations of the system are shown, and sample inquiries and responses are given.

  1. Hybrid diffractive-refractive optical system design of head-mounted display for augmented reality

    Science.gov (United States)

    Zhang, Huijuan

    2005-02-01

    An optical see-through head-mounted display for augmented reality is designed in this paper. Considering the factors, such as the optical performance, the utilization ratios of energy of real world and virtual world, the feelings of users when he wears it and etc., a structure of the optical see-through is adopted. With the characteristics of the particular negative dispersive and the power of realizing random-phase modulation, the diffractive surface is helpful for optical system of reducing weight, simplifying structure and etc., and a diffractive surface is introduced in our optical system. The optical system with 25 mm eye relief, 12 mm exit pupil and 20° (H)x15.4° (V) field-of-view is designed. The utilization ratios of energy of real world and virtual world are 1/4 and 1/2, respectively. The angular resolution of display is 0.27 mrad and it less than that of the minimum of human eyes. The diameter of this system is less than 46mm, and it applies the binocular. This diffractive-refractive optical system of see-through head-mounted display not only satisfies the demands of user"s factors in structure, but also with high resolution, very small chromatic aberration and distortion, and satisfies the need of augmented reality. In the end, the parameters of the diffractive surface are discussed.

  2. Microprocessor system for data acquisition processing and display for Auger electrons spectrometer

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Cudny, W.; Hildebrandt, S.; Marzec, J.; Walentek, J.; Zaremba, K.

    1984-01-01

    Data acquisition system for Auger electron spectrometry is developed. The system is used for chemical and structural analysis of materials and consists of a cylindrical mirror analyzer being a measuring spectrometer device, CAMAC unit and control unit. The control unit comprises a microcomputer based on INTEL 8080 microprocessor and display

  3. Real-time analysis and display of reactor system mass inventory

    International Nuclear Information System (INIS)

    Dao, L.T.; Meachum, T.R.

    1982-01-01

    A mass inventory system (MIS) to evaluate, in real-time, the coolant distribution within the primary coolant system of the Loss-of-Fluid Test (LOFT) reactor has been developed. The computer-based system calculates and displays the coolant levels by two methods: using level measurements and performing a mass balance. The MIS is designed to provide up-to-date, intelligible information on the coolant distribution during any LOFT experiment. During LOFT experiments in which the primary coolant pumps are on, the method also provides void fraction information and the anticipated liquid level in the reactor vessel should the pumps be turned off

  4. A faster technique for rendering meshes in multiple display systems

    Science.gov (United States)

    Hand, Randall E.; Moorhead, Robert J., II

    2003-05-01

    Level of detail algorithms have widely been implemented in architectural VR walkthroughs and video games, but have not had widespread use in VR terrain visualization systems. This thesis explains a set of optimizations to allow most current level of detail algorithms run in the types of multiple display systems used in VR. It improves both the visual quality of the system through use of graphics hardware acceleration, and improves the framerate and running time through moifications to the computaitons that drive the algorithms. Using ROAM as a testbed, results show improvements between 10% and 100% on varying machines.

  5. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  6. Displays and simulators

    Science.gov (United States)

    Mohon, N.

    A 'simulator' is defined as a machine which imitates the behavior of a real system in a very precise manner. The major components of a simulator and their interaction are outlined in brief form, taking into account the major components of an aircraft flight simulator. Particular attention is given to the visual display portion of the simulator, the basic components of the display, their interactions, and their characteristics. Real image displays are considered along with virtual image displays, and image generators. Attention is given to an advanced simulator for pilot training, a holographic pancake window, a scan laser image generator, the construction of an infrared target simulator, and the Apollo Command Module Simulator.

  7. System description and analysis. Part 1: Feasibility study for helicopter/VTOL wide-angle simulation image generation display system

    Science.gov (United States)

    1977-01-01

    A preliminary design for a helicopter/VSTOL wide angle simulator image generation display system is studied. The visual system is to become part of a simulator capability to support Army aviation systems research and development within the near term. As required for the Army to simulate a wide range of aircraft characteristics, versatility and ease of changing cockpit configurations were primary considerations of the study. Due to the Army's interest in low altitude flight and descents into and landing in constrained areas, particular emphasis is given to wide field of view, resolution, brightness, contrast, and color. The visual display study includes a preliminary design, demonstrated feasibility of advanced concepts, and a plan for subsequent detail design and development. Analysis and tradeoff considerations for various visual system elements are outlined and discussed.

  8. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  9. The National Shipbuilding Research Program. Development of Electromagnetic Acoustic Transducers (EMATS) for Surface/Volumetric Inspection of Welds

    National Research Council Canada - National Science Library

    Maclauchlan, D. T; Clark, S. P; Perry, M. B; Hancock, J. W

    2000-01-01

    ...) through General Dynamics - Electric Boat (EB) extended the EMAT technology by evaluating shear wave sensors for volumetric weld examination and included system evaluation in the shipyard, comparing the results...

  10. Reference volumetric samples of gamma-spectroscopic sources

    International Nuclear Information System (INIS)

    Taskaev, E.; Taskaeva, M.; Grigorov, T.

    1993-01-01

    The purpose of this investigation is to determine the requirements for matrices of reference volumetric radiation sources necessary for detector calibration. The first stage of this determination consists in analysing some available organic and nonorganic materials. Different sorts of food, grass, plastics, minerals and building materials have been considered, taking into account the various procedures of their processing (grinding, screening, homogenizing) and their properties (hygroscopy, storage life, resistance to oxidation during gamma sterilization). The procedures of source processing, sample preparation, matrix irradiation and homogenization have been determined. A rotation homogenizing device has been elaborated enabling to homogenize the matrix activity irrespective of the vessel geometry. 33 standard volumetric radioactive sources have been prepared: 14 - on organic matrix and 19 - on nonorganic matrix. (author)

  11. Display Sharing: An Alternative Paradigm

    Science.gov (United States)

    Brown, Michael A.

    2010-01-01

    The current Johnson Space Center (JSC) Mission Control Center (MCC) Video Transport System (VTS) provides flight controllers and management the ability to meld raw video from various sources with telemetry to improve situational awareness. However, maintaining a separate infrastructure for video delivery and integration of video content with data adds significant complexity and cost to the system. When considering alternative architectures for a VTS, the current system's ability to share specific computer displays in their entirety to other locations, such as large projector systems, flight control rooms, and back supporting rooms throughout the facilities and centers must be incorporated into any new architecture. Internet Protocol (IP)-based systems also support video delivery and integration. IP-based systems generally have an advantage in terms of cost and maintainability. Although IP-based systems are versatile, the task of sharing a computer display from one workstation to another can be time consuming for an end-user and inconvenient to administer at a system level. The objective of this paper is to present a prototype display sharing enterprise solution. Display sharing is a system which delivers image sharing across the LAN while simultaneously managing bandwidth, supporting encryption, enabling recovery and resynchronization following a loss of signal, and, minimizing latency. Additional critical elements will include image scaling support, multi -sharing, ease of initial integration and configuration, integration with desktop window managers, collaboration tools, host and recipient controls. This goal of this paper is to summarize the various elements of an IP-based display sharing system that can be used in today's control center environment.

  12. Software for Minsk-32 display station

    International Nuclear Information System (INIS)

    Belyaeva, L.M.; Gangrskaya, O.G.; Manno, I.; Fefilov, B.V.; Ehsenski, J.

    1976-01-01

    The mathematical provision is described of the Minsk-32 display station. Described is the application of editing program DOSE, assembler translator SLANG and program display-focal. Program DOSE permits to edit the texts with the aid of a rester display on Minsk-32 magnetic tape. The program system permits to use a disk monitor system

  13. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young

    2009-01-01

    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  14. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    Science.gov (United States)

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  15. P1-32: Response of Human Visual System to Paranormal Stimuli Appearing in Three-Dimensional Display

    Directory of Open Access Journals (Sweden)

    Jisoo Hong

    2012-10-01

    Full Text Available Three-dimensional (3D display became one of indispensable features of commercial TVs in recent years. However, the 3D content displayed by 3D display may contain the abrupt change of depth when the scene changes, which might be considered as a paranormal stimulus. Because the human visual system is not accustomed to such paranormal stimuli in natural conditions, they can cause unexpected responses which usually induce discomfort. Following the change of depth expressed by 3D display, the eyeballs rotate to match the convergence to the new 3D image position. The amount of rotation varies according to the initial longitudinal location and depth displacement of 3D image. Because the change of depth is abrupt, there is delay in human visual system following the change and such delay can be a source of discomfort. To guarantee the safety in watching 3D TV, the acceptable level of displacement in the longitudinal direction should be revealed quantitatively. Additionally, the artificially generated scenes also can provide paranormal stimuli such as periodic depth variations. In the presentation, we investigate the response of human visual system to such paranormal stimuli given by 3D display system. Using the result of investigation, we can give guideline to creating the 3D content to minimize the discomfort coming from the paranormal stimuli.

  16. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  17. Quantitative volumetric Raman imaging of three dimensional cell cultures

    Science.gov (United States)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  18. A ECG Signal Gathering and Displaying System Based on AVR

    Science.gov (United States)

    Ning, Li; Ruilan, Zhang; Jian, Liu; Xiaochen, Wang; Shuying, Chen; Zhuolin, Lang

    2017-12-01

    This article introduces a kind of system which is based on the AVR to acquire the data of ECG. Such system using the A/D function of ATmega8 chip and the lattice graph LCD to design ECG heart acquisition satisfies the demands above. This design gives a composition of hardware and programming of software about the system in detail which has mainly realized the real-time gathering, the amplifier, the filter, the A/D transformation and the LCD display. Since the AVR includes A/D transformation function and support embedded C language programming, it reduces the peripheral circuit, further more it also decreases the time to design and debug this system.

  19. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  20. Increasing the volumetric efficiency of Diesel engines by intake pipes

    Science.gov (United States)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  1. Improvements to the annunciation and display systems at Gentilly 2 NGS - An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, R; Desaulniers, M [Central Nucleaire Gentilly, PQ (Canada)

    1997-09-01

    Since 1990, Gentilly 2 Nuclear Generating Station has revised its overall strategy during upsets and abnormal events and has also completely revised its Emergency Operating Procedures (EOP), its abnormal General Operating Procedures (GOP) and is near completing the revision of its Operating Manuals (OM). This strategy, these new EOPs, abnormal GOPs and the abnormal OMs were validated on our full scale simulator when applicable by a multidisciplinary team composed of authorized staff, technical and safety specialists and also candidates in training for authorization. We have identified significant weakness in the annunciation and display systems impairing the management of these events. To benefit from CANDU Owner`s Group (COG) expertise, we met in some occasions the CRNL`s research team on CAMLS project (CANDU Annunciation Message List System). In order to have more immediate benefits, we chose to improve the actual annunciation and display systems using, in some cases, ideas and/or principles used in the prototype CAMLS. After a brief history, we will present the global approach used at Gentilly 2 for upset and event management and, we will therefore describe in more detail each of the improvements on annunciation and display systems which contributed to reinforce this global approach. Hereafter are some of these improvements: prioritization via color coding of window alarms, re-prioritization (major/minor) of all CRT alarms, coalescence of multi-channel analog and contact CRT alarms, increase in the amount of trends and bar charts for upset management, special alarm summary functions (contextual) for startup after a trip. We did also identify certain needs which are not yet fulfilled with the actual improved system. Finally we will describe some other proposed improvements to the annunciation and display systems that we foresee in the near future. (author). 3 refs, figs.

  2. Improvements to the annunciation and display systems at Gentilly 2 NGS - An integrated approach

    International Nuclear Information System (INIS)

    Dufresne, R.; Desaulniers, M.

    1997-01-01

    Since 1990, Gentilly 2 Nuclear Generating Station has revised its overall strategy during upsets and abnormal events and has also completely revised its Emergency Operating Procedures (EOP), its abnormal General Operating Procedures (GOP) and is near completing the revision of its Operating Manuals (OM). This strategy, these new EOPs, abnormal GOPs and the abnormal OMs were validated on our full scale simulator when applicable by a multidisciplinary team composed of authorized staff, technical and safety specialists and also candidates in training for authorization. We have identified significant weakness in the annunciation and display systems impairing the management of these events. To benefit from CANDU Owner's Group (COG) expertise, we met in some occasions the CRNL's research team on CAMLS project (CANDU Annunciation Message List System). In order to have more immediate benefits, we chose to improve the actual annunciation and display systems using, in some cases, ideas and/or principles used in the prototype CAMLS. After a brief history, we will present the global approach used at Gentilly 2 for upset and event management and, we will therefore describe in more detail each of the improvements on annunciation and display systems which contributed to reinforce this global approach. Hereafter are some of these improvements: prioritization via color coding of window alarms, re-prioritization (major/minor) of all CRT alarms, coalescence of multi-channel analog and contact CRT alarms, increase in the amount of trends and bar charts for upset management, special alarm summary functions (contextual) for startup after a trip. We did also identify certain needs which are not yet fulfilled with the actual improved system. Finally we will describe some other proposed improvements to the annunciation and display systems that we foresee in the near future. (author). 3 refs, figs

  3. An assessment of advanced displays and controls technology applicable to future space transportation systems

    Science.gov (United States)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  4. Agreement of mammographic measures of volumetric breast density to MRI.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2 values ranging from 0.40 (log fibroglandular volume to 0.91 (total breast volume. Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63, but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  5. Agreement of mammographic measures of volumetric breast density to MRI.

    Science.gov (United States)

    Wang, Jeff; Azziz, Ania; Fan, Bo; Malkov, Serghei; Klifa, Catherine; Newitt, David; Yitta, Silaja; Hylton, Nola; Kerlikowske, Karla; Shepherd, John A

    2013-01-01

    Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known. To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population. Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume. Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume. Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  6. Dosimetric analysis of testicular doses in prostate intensity-modulated and volumetric-modulated arc radiation therapy at different energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha; Efe, Esma

    2016-01-01

    The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from the intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.

  7. Volumetric Arterial Wall Shear Stress Calculation Based on Cine Phase Contrast MRI

    NARCIS (Netherlands)

    Potters, Wouter V.; van Ooij, Pim; Marquering, Henk; VanBavel, Ed; Nederveen, Aart J.

    2015-01-01

    PurposeTo assess the accuracy and precision of a volumetric wall shear stress (WSS) calculation method applied to cine phase contrast magnetic resonance imaging (PC-MRI) data. Materials and MethodsVolumetric WSS vectors were calculated in software phantoms. WSS algorithm parameters were optimized

  8. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail: suzuki_tsh@senova.co.jp

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  9. Flat panel display - Impurity doping technology for flat panel displays

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    2005-01-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified

  10. Tandem Gravimetric and Volumetric Apparatus for Methane Sorption Measurements

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald

    Concerns about global climate change have driven the search for alternative fuels. Natural gas (NG, methane) is a cleaner fuel than gasoline and abundantly available due to hydraulic fracturing. One hurdle to the adoption of NG vehicles is the bulky cylindrical storage vessels needed to store the NG at high pressures (3600 psi, 250 bar). The adsorption of methane in microporous materials can store large amounts of methane at low enough pressures for the allowance of conformable, ``flat'' pressure vessels. The measurement of the amount of gas stored in sorbent materials is typically done by measuring pressure differences (volumetric, manometric) or masses (gravimetric). Volumetric instruments of the Sievert type have uncertainties that compound with each additional measurement. Therefore, the highest-pressure measurement has the largest uncertainty. Gravimetric instruments don't have that drawback, but can have issues with buoyancy corrections. An instrument will be presented with which methane adsorption measurements can be performed using both volumetric and gravimetric methods in tandem. The gravimetric method presented has no buoyancy corrections and low uncertainty. Therefore, the gravimetric measurements can be performed throughout an entire isotherm or just at the extrema to verify the results from the volumetric measurements. Results from methane sorption measurements on an activated carbon (MSC-30) and a metal-organic framework (Cu-BTC, HKUST-1, MOF-199) will be shown. New recommendations for calculations of gas uptake and uncertainty measurements will be discussed.

  11. An intelligent system and a relational data base for codifying helmet-mounted display symbology design requirements

    Science.gov (United States)

    Rogers, Steven P.; Hamilton, David B.

    1994-06-01

    To employ the most readily comprehensible presentation methods and symbology with helmet-mounted displays (HMDs), it is critical to identify the information elements needed to perform each pilot function and to analytically determine the attributes of these elements. The extensive analyses of mission requirements currently performed for pilot-vehicle interface design can be aided and improved by the new capabilities of intelligent systems and relational databases. An intelligent system, named ACIDTEST, has been developed specifically for organizing and applying rules to identify the best display modalities, locations, and formats. The primary objectives of the ACIDTEST system are to provide rapid accessibility to pertinent display research data, to integrate guidelines from many disciplines and identify conflicts among these guidelines, to force a consistent display approach among the design team members, and to serve as an 'audit trail' of design decisions and justifications. A powerful relational database called TAWL ORDIR has been developed to document information requirements and attributes for use by ACIDTEST as well as to greatly augment the applicability of mission analysis data. TAWL ORDIR can be used to rapidly reorganize mission analysis data components for study, perform commonality analyses for groups of tasks, determine the information content requirement for tailored display modes, and identify symbology integration opportunities.

  12. Oil defect detection of electrowetting display

    Science.gov (United States)

    Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang

    2015-08-01

    In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.

  13. Designing visual displays and system models for safe reactor operations

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    The material presented in this paper is based on two studies involving the design of visual displays and the user's prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator's perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors

  14. SEMPaC - an expert system prototype associated with safety parameter display system of a nuclear power plant

    International Nuclear Information System (INIS)

    Hirama, K.

    1989-01-01

    This work presents SEMPaC, an expert system prototype: it provides means to support diagnosis and to make decisions during abnormal transients that cause the trip of nuclear power plant. The system operation is associated with Safety Parameter Display System - SPDS that was recommended by U. S. Nuclear Regulatory Commission (NRC) after the Three-Mile Island (TMI) accident analysis. (author)

  15. Ruggedized Full-Color Flexible OLED Display

    National Research Council Canada - National Science Library

    Hack, Michael

    2003-01-01

    .... The team comprised Universal Display Corporation, Princeton University, the University of Southern California, Penn State University, L3 Displays and Vitex Systems, and was led by Universal Display Corporation (PI: Michael Hack...

  16. The Influence of Water and Mineral Oil On Volumetric Losses in a Hydraulic Motor

    Directory of Open Access Journals (Sweden)

    Śliwiński Pawel

    2017-04-01

    Full Text Available In this paper volumetric losses in hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties are described and compared. The experimental tests were conducted using an innovative hydraulic satellite motor, that is dedicated to work with different liquids, including water. The sources of leaks in this motor are also characterized and described. On this basis, a mathematical model of volumetric losses and model of effective rotational speed have been developed and presented. The results of calculation of volumetric losses according to the model are compared with the results of experiment. It was found that the difference is not more than 20%. Furthermore, it has been demonstrated that this model well describes in both the volumetric losses in the motor supplied with water and oil. Experimental studies have shown that the volumetric losses in the motor supplied with water are even three times greater than the volumetric losses in the motor supplied with oil. It has been shown, that in a small constant stream of water the speed of the motor is reduced even by half in comparison of speed of motor supplied with the same stream of oil.

  17. Volumetric B1 (+) mapping of the brain at 7T using DREAM.

    Science.gov (United States)

    Nehrke, Kay; Versluis, Maarten J; Webb, Andrew; Börnert, Peter

    2014-01-01

    To tailor and optimize the Dual Refocusing Echo Acquisition Mode (DREAM) approach for volumetric B1 (+) mapping of the brain at 7T. A new DREAM echo timing scheme based on the virtual stimulated echo was derived to minimize potential effects of transverse relaxation. Furthermore, the DREAM B1 (+) mapping performance was investigated in simulations and experimentally in phantoms and volunteers for volumetric applications, studying and optimizing the accuracy of the sequence with respect to saturation effects, slice profile imperfections, and T1 and T2 relaxation. Volumetric brain protocols were compiled for different isotropic resolutions (5-2.5 mm) and SENSE factors, and were studied in vivo for different RF drive modes (circular/linear polarization) and the application of dielectric pads. Volumetric B1 (+) maps with good SNR at 2.5 mm isotropic resolution were acquired in about 20 s or less. The specific absorption rate was well below the safety limits for all scans. Mild flow artefacts were observed in the large vessels. Moreover, a slight contrast in the ventricle was observed in the B1 (+) maps, which could be attributed to T1 and T2 relaxation effects. DREAM enables safe, very fast, and robust volumetric B1 (+) mapping of the brain at ultrahigh fields. Copyright © 2013 Wiley Periodicals, Inc.

  18. A new method for calculating volumetric sweeps efficiency using streamline simulation concepts

    International Nuclear Information System (INIS)

    Hidrobo, E A

    2000-01-01

    One of the purposes of reservoir engineering is to quantify the volumetric sweep efficiency for optimizing reservoir management decisions. The estimation of this parameter has always been a difficult task. Until now, sweep efficiency correlations and calculations have been limited to mostly homogeneous 2-D cases. Calculating volumetric sweep efficiency in a 3-D heterogeneous reservoir becomes difficult due to inherent complexity of multiple layers and arbitrary well configurations. In this paper, a new method for computing volumetric sweep efficiency for any arbitrary heterogeneity and well configuration is presented. The proposed method is based on Datta-Gupta and King's formulation of streamline time-of-flight (1995). Given the fact that the time-of-flight reflects the fluid front propagation at various times, then the connectivity in the time-of-flight represents a direct measure of the volumetric sweep efficiency. The proposed approach has been applied to synthetic as well as field examples. Synthetic examples are used to validate the volumetric sweep efficiency calculations using the streamline time-of-flight connectivity criterion by comparison with analytic solutions and published correlations. The field example, which illustrates the feasibility of the approach for large-scale field applications, is from the north Robertson unit, a low permeability carbonate reservoir in west Texas

  19. Region-of-interest volumetric visual hull refinement

    KAUST Repository

    Knoblauch, Daniel; Kuester, Falko

    2010-01-01

    This paper introduces a region-of-interest visual hull refinement technique, based on flexible voxel grids for volumetric visual hull reconstructions. Region-of-interest refinement is based on a multipass process, beginning with a focussed visual

  20. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  1. Efficient Algorithms for Real-Time GPU Volumetric Cloud Rendering with Enhanced Geometry

    Directory of Open Access Journals (Sweden)

    Carlos Jiménez de Parga

    2018-04-01

    Full Text Available This paper presents several new techniques for volumetric cloud rendering using efficient algorithms and data structures based on ray-tracing methods for cumulus generation, achieving an optimum balance between realism and performance. These techniques target applications such as flight simulations, computer games, and educational software, even with conventional graphics hardware. The contours of clouds are defined by implicit mathematical expressions or triangulated structures inside which volumetric rendering is performed. Novel techniques are used to reproduce the asymmetrical nature of clouds and the effects of light-scattering, with low computing costs. The work includes a new method to create randomized fractal clouds using a recursive grammar. The graphical results are comparable to those produced by state-of-the-art, hyper-realistic algorithms. These methods provide real-time performance, and are superior to particle-based systems. These outcomes suggest that our methods offer a good balance between realism and performance, and are suitable for use in the standard graphics industry.

  2. SNS online display technologies for EPICS

    International Nuclear Information System (INIS)

    Kasemir, K.U.; Chen, X.; Purcell, J.; Danilova, E.

    2012-01-01

    The ubiquitousness of web clients from personal computers to cell phones results in a growing demand for web-based access to control system data. At the Oak Ridge National Laboratory Spallation Neutron Source (SNS) we have investigated different technical approaches to provide read access to data in the Experimental Physics and Industrial Control System (EPICS) for a wide variety of web client devices. The core web technology, HTTP, is less than ideal for online control system displays. Appropriate use of Ajax, especially the Long Poll paradigm, can alleviate fundamental HTTP limitations. The SNS Status web uses basic Ajax technology to generate generic displays for a wide audience. The Dashboard uses Long Poll and more client-side Java-Script to offer more customization and faster updates for users that need specialized displays. The Web OPI uses RAP for web access to any BOY display, offering utmost flexibility because users can create their own BOY displays in CSS. These three approaches complement each other. Users can access generic status displays with zero effort, invest time in creating their fully customized displays for the Web OPI, or use the Dashboard as an intermediate solution

  3. as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Wang, Ruopeng; Dubb, Jay; Varjabedian, Ani; Tirrell, Lee S; Stevens, Allison; Augustinack, Jean C; Konukoglu, Ender; Aganj, Iman; Frosch, Matthew P; Schmahmann, Jeremy D; Fischl, Bruce; Boas, David A

    2018-01-15

    Polarization sensitive optical coherence tomography (PSOCT) with serial sectioning has enabled the investigation of 3D structures in mouse and human brain tissue samples. By using intrinsic optical properties of back-scattering and birefringence, PSOCT reliably images cytoarchitecture, myeloarchitecture and fiber orientations. In this study, we developed a fully automatic serial sectioning polarization sensitive optical coherence tomography (as-PSOCT) system to enable volumetric reconstruction of human brain samples with unprecedented sample size and resolution. The 3.5 μm in-plane resolution and 50 μm through-plane voxel size allow inspection of cortical layers that are a single-cell in width, as well as small crossing fibers. We show the abilities of as-PSOCT in quantifying layer thicknesses of the cerebellar cortex and creating microscopic tractography of intricate fiber networks in the subcortical nuclei and internal capsule regions, all based on volumetric reconstructions. as-PSOCT provides a viable tool for studying quantitative cytoarchitecture and myeloarchitecture and mapping connectivity with microscopic resolution in the human brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Photosensor-Based Latency Measurement System for Head-Mounted Displays

    Directory of Open Access Journals (Sweden)

    Min-Woo Seo

    2017-05-01

    Full Text Available In this paper, a photosensor-based latency measurement system for head-mounted displays (HMDs is proposed. The motion-to-photon latency is the greatest reason for motion sickness and dizziness felt by users when wearing an HMD system. Therefore, a measurement system is required to accurately measure and analyze the latency to reduce these problems. The existing measurement system does not consider the actual physical movement in humans, and its accuracy is also very low. However, the proposed system considers the physical head movement and is highly accurate. Specifically, it consists of a head position model-based rotary platform, pixel luminance change detector, and signal analysis and calculation modules. Using these modules, the proposed system can exactly measure the latency, which is the time difference between the physical movement for a user and the luminance change of an output image. In the experiment using a commercial HMD, the latency was measured to be up to 47.05 ms. In addition, the measured latency increased up to 381.17 ms when increasing the rendering workload in the HMD.

  5. Designing visual displays and system models for safe reactor operations

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  6. Knowledge based development of graphic display systems

    International Nuclear Information System (INIS)

    Woods, D.D.

    1985-01-01

    Most human factors guidelines on computer display design attempt to ensure that human sensory limits are not strained or that users can potentially access data. While this is a necessary and too often an overlooked step in interface design, it does not address issues about how to use computer displays to aid human performance at domain tasks. This challenge to human factors guidance is particularly acute in complex environments such as nuclear power plants where the goal is more than a useable interface system; the interface must support effective human performance at tasks like situation assessment, fault management, problem solving and planning. Studies of human performance in complex domains reveal that human-machine performance failures can often be linked to problems in information handling - data overload, getting lost, keyhole effects, tunnel vision to name but a few. All of these information handling problems represent manifestations of an inability to find, integrate or interpret the ''right'' data at the ''right'' time, i.e., failures where critical information is not detected among the ambient data load, where critical information is not assembled from data distributed over time or over space; and where critical information is not looked for because of misunderstandings or erroneous assumptions (cf., Woods, 1985). Problems of this kind illustrate that the potential to see, read, or access data does not guarantee successful user information extraction. The result is a need for research and guidance on design for enhanced information extraction in addition to design for data availability

  7. Distributed rendering for multiview parallax displays

    Science.gov (United States)

    Annen, T.; Matusik, W.; Pfister, H.; Seidel, H.-P.; Zwicker, M.

    2006-02-01

    3D display technology holds great promise for the future of television, virtual reality, entertainment, and visualization. Multiview parallax displays deliver stereoscopic views without glasses to arbitrary positions within the viewing zone. These systems must include a high-performance and scalable 3D rendering subsystem in order to generate multiple views at real-time frame rates. This paper describes a distributed rendering system for large-scale multiview parallax displays built with a network of PCs, commodity graphics accelerators, multiple projectors, and multiview screens. The main challenge is to render various perspective views of the scene and assign rendering tasks effectively. In this paper we investigate two different approaches: Optical multiplexing for lenticular screens and software multiplexing for parallax-barrier displays. We describe the construction of large-scale multi-projector 3D display systems using lenticular and parallax-barrier technology. We have developed different distributed rendering algorithms using the Chromium stream-processing framework and evaluate the trade-offs and performance bottlenecks. Our results show that Chromium is well suited for interactive rendering on multiview parallax displays.

  8. Man machine interaction for operator information systems : a general purpose display package on PC/AT

    International Nuclear Information System (INIS)

    Chandra, A.K.; Dubey, B.P.; Deshpande, S.V.; Vaidya, U.W.; Khandekar, A.B.

    1991-01-01

    Several operator information systems for nuclear plants have been developed at Reactor Control Division of BARC and these have involved extensive operator interaction to extract the maximum information from the systems. Each of these systems used a different scheme for operator interaction. A composite package has now been developed on PC/AT with EGA/VGA for use with any system to obviate the necessity to develop new software for each project. This permits information to be displayed in various formats viz. trend and history curves, tabular data, bar graphs and core matrix (both for 235 and 500 MWe cores). It also allows data to be printed and plotted using multi colour plotter. This package thus integrates all the features of the earlier systems. It also integrates the operator interaction scheme. It uses window based pull down menus to select parameters to be fed into a particular display format. Within any display format the operator has significant flexibility to modify the selected parameters using context dependent soft keys. The package also allows data to be retrieved in machine readable form. This report describes the various user friendly functions implemented and also the design of the system software. (author). 1 tab., 10 fig., 3 refs

  9. Augmenting digital displays with computation

    Science.gov (United States)

    Liu, Jing

    As we inevitably step deeper and deeper into a world connected via the Internet, more and more information will be exchanged digitally. Displays are the interface between digital information and each individual. Naturally, one fundamental goal of displays is to reproduce information as realistically as possible since humans still care a lot about what happens in the real world. Human eyes are the receiving end of such information exchange; therefore it is impossible to study displays without studying the human visual system. In fact, the design of displays is rather closely coupled with what human eyes are capable of perceiving. For example, we are less interested in building displays that emit light in the invisible spectrum. This dissertation explores how we can augment displays with computation, which takes both display hardware and the human visual system into consideration. Four novel projects on display technologies are included in this dissertation: First, we propose a software-based approach to driving multiview autostereoscopic displays. Our display algorithm can dynamically assign views to hardware display zones based on multiple observers' current head positions, substantially reducing crosstalk and stereo inversion. Second, we present a dense projector array that creates a seamless 3D viewing experience for multiple viewers. We smoothly interpolate the set of viewer heights and distances on a per-vertex basis across the arrays field of view, reducing image distortion, crosstalk, and artifacts from tracking errors. Third, we propose a method for high dynamic range display calibration that takes into account the variation of the chrominance error over luminance. We propose a data structure for enabling efficient representation and querying of the calibration function, which also allows user-guided balancing between memory consumption and the amount of computation. Fourth, we present user studies that demonstrate that the ˜ 60 Hz critical flicker fusion

  10. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  11. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  12. Process information displays from a computerized nuclear materials control and accounting system

    International Nuclear Information System (INIS)

    Ellis, J.H.

    1981-11-01

    A computerized nuclear materials control and accounting system is being developed for an LWR spent fuel reprocessing facility. This system directly accesses process instrument readings, sample analyses, and outputs of various on-line analytical instruments. In this paper, methods of processing and displaying this information in ways that aid in the efficient, timely, and safe control of the chemical processes of the facility are described

  13. Multicenter assessment of the reproducibility of volumetric radiofrequency-based intravascular ultrasound measurements in coronary lesions that were consecutively stented

    DEFF Research Database (Denmark)

    Huisman, Jennifer; Egede, Rasmus; Rdzanek, Adam

    2012-01-01

    To assess in a multicenter design the between-center reproducibility of volumetric virtual histology intravascular ultrasound (VH-IVUS) measurements with a semi-automated, computer-assisted contour detection system in coronary lesions that were consecutively stented. To evaluate the reproducibility...... of volumetric VH-IVUS measurements, experienced analysts of 4 European IVUS centers performed independent analyses (in total 8,052 cross-sectional analyses) to obtain volumetric data of 40 coronary segments (length 20.0 ± 0.3 mm) from target lesions prior to percutaneous intervention that were performed...... in the setting of stable (65%) or unstable angina pectoris (35%). Geometric and compositional VH-IVUS measurements were highly correlated for the different comparisons. Overall intraclass correlation for vessel, lumen, plaque volume and plaque burden was 0.99, 0.92, 0.96, and 0.83, respectively; for fibrous...

  14. Triaxial extensometer for volumetric strain measurement in a hydro-compression loading test for foam materials

    International Nuclear Information System (INIS)

    Feng, Bo; Xu, Ming-long; Zhao, Tian-fei; Zhang, Zhi-jun; Lu, Tian-jian

    2010-01-01

    A new strain gauge-based triaxial extensometer (radial extensometers x, y and axial extensometer z) is presented to improve the volumetric strain measurement in a hydro-compression loading test for foam materials. By the triaxial extensometer, triaxial deformations of the foam specimen can be measured directly, from which the volumetric strain is determined. Sensitivities of the triaxial extensometer are predicted using a finite-element model, and verified through experimental calibrations. The axial extensometer is validated by conducting a uniaxial compression test in aluminium foam and comparing deformation measured by the axial extensometer to that by the advanced optical 3D deformation analysis system ARAMIS; the result from the axial extensometer agrees well with that from ARAMIS. A new modus of two-wire measurement and transmission in a hydrostatic environment is developed to avoid the punching and lead sealing techniques on the pressure vessel for the hydro-compression test. The effect of hydrostatic pressure on the triaxial extensometer is determined through an experimental test. An application in an aluminium foam hydrostatic compression test shows that the triaxial extensometer is effective for volumetric strain measurement in a hydro-compression loading test for foam materials

  15. 14 CFR 255.4 - Display of information.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS AIRLINE COMPUTER RESERVATIONS SYSTEMS § 255.4 Display of information. (a) All systems shall provide at least one integrated display that includes the schedules, fares, rules, and availability of all... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Display of information. 255.4 Section 255.4...

  16. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    Science.gov (United States)

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  17. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    Science.gov (United States)

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  18. Development of a volumetric projection technique for the digital evaluation of field of view.

    Science.gov (United States)

    Marshall, Russell; Summerskill, Stephen; Cook, Sharon

    2013-01-01

    Current regulations for field of view requirements in road vehicles are defined by 2D areas projected on the ground plane. This paper discusses the development of a new software-based volumetric field of view projection tool and its implementation within an existing digital human modelling system. In addition, the exploitation of this new tool is highlighted through its use in a UK Department for Transport funded research project exploring the current concerns with driver vision. Focusing specifically on rearwards visibility in small and medium passenger vehicles, the volumetric approach is shown to provide a number of distinct advantages. The ability to explore multiple projections of both direct vision (through windows) and indirect vision (through mirrors) provides a greater understanding of the field of view environment afforded to the driver whilst still maintaining compatibility with the 2D projections of the regulatory standards. Field of view requirements for drivers of road vehicles are defined by simplified 2D areas projected onto the ground plane. However, driver vision is a complex 3D problem. This paper presents the development of a new software-based 3D volumetric projection technique and its implementation in the evaluation of driver vision in small- and medium-sized passenger vehicles.

  19. Ribosome display: next-generation display technologies for production of antibodies in vitro.

    Science.gov (United States)

    He, Mingyue; Khan, Farid

    2005-06-01

    Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.

  20. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms.

    Science.gov (United States)

    Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian

    2015-02-09

    A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.

  1. DIFFERENTIAL ANALYSIS OF VOLUMETRIC STRAINS IN POROUS MATERIALS IN TERMS OF WATER FREEZING

    Directory of Open Access Journals (Sweden)

    Rusin Z.

    2013-06-01

    Full Text Available The paper presents the differential analysis of volumetric strain (DAVS. The method allows measurements of volumetric deformations of capillary-porous materials caused by water-ice phase change. The VSE indicator (volumetric strain effect, which under certain conditions can be interpreted as the minimum degree of phase change of water contained in the material pores, is proposed. The test results (DAVS for three materials with diversified microstructure: clinker brick, calcium-silicate brick and Portland cement mortar were compared with the test results for pore characteristics obtained with the mercury intrusion porosimetry.

  2. A head-mounted display system for augmented reality: Initial evaluation for interventional MRI

    International Nuclear Information System (INIS)

    Wendt, M.; Wacker, F.K.

    2003-01-01

    Purpose: To discuss the technical details of a head mounted display with an augmented reality (AR) system and to describe a first pre-clinical evaluation in interventional MRI. Method: The AR system consists of a video-see-through head mounted display (HMD), mounted with a mini video camera for tracking and a stereo pair of mini cameras that capture live images of the scene. The live video view of the phantom/patient is augmented with graphical representations of anatomical structures from MRI image data and is displayed on the HMD. The application of the AR system with interventional MRI was tested using a MRI data set of the head and a head phantom. Results: The HMD enables the user to move around and observe the scene dynamically from various viewpoints. Within a short time the natural hand-eye coordination can easily be adapted to the slightly different view. The 3D perception is based on stereo and kinetic depth cues. A circular target with a diameter of 0.5 square centimeter was hit in 19 of 20 attempts. In a first evaluation the MRI image data augmented reality scene of a head phantom allowed good planning and precise simulation of a puncture. Conclusion: The HMD in combination with AR provides a direct, intuitive guidance for interventional MR procedures. (orig.) [de

  3. Automatic interactive optimization for volumetric modulated arc therapy planning

    International Nuclear Information System (INIS)

    Tol, Jim P; Dahele, Max; Peltola, Jarkko; Nord, Janne; Slotman, Ben J; Verbakel, Wilko FAR

    2015-01-01

    Intensity modulated radiotherapy treatment planning for sites with many different organs-at-risk (OAR) is complex and labor-intensive, making it hard to obtain consistent plan quality. With the aim of addressing this, we developed a program (automatic interactive optimizer, AIO) designed to automate the manual interactive process for the Eclipse treatment planning system. We describe AIO and present initial evaluation data. Our current institutional volumetric modulated arc therapy (RapidArc) planning approach for head and neck tumors places 3-4 adjustable OAR optimization objectives along the dose-volume histogram (DVH) curve that is displayed in the optimization window. AIO scans this window and uses color-coding to differentiate between the DVH-lines, allowing it to automatically adjust the location of the optimization objectives frequently and in a more consistent fashion. We compared RapidArc AIO plans (using 9 optimization objectives per OAR) with the clinical plans of 10 patients, and evaluated optimal AIO settings. AIO consistency was tested by replanning a single patient 5 times. Average V95&V107 of the boost planning target volume (PTV) and V95 of the elective PTV differed by ≤0.5%, while average elective PTV V107 improved by 1.5%. Averaged over all patients, AIO reduced mean doses to individual salivary structures by 0.9-1.6Gy and provided mean dose reductions of 5.6Gy and 3.9Gy to the composite swallowing structures and oral cavity, respectively. Re-running AIO five times, resulted in the aforementioned parameters differing by less than 3%. Using the same planning strategy as manually optimized head and neck plans, AIO can automate the interactive Eclipse treatment planning process and deliver dosimetric improvements over existing clinical plans

  4. Correlation of volumetric mismatch and mismatch of Alberta Stroke program Early CT scores on CT perfusion maps

    International Nuclear Information System (INIS)

    Lin, Ke; Rapalino, Otto; Lee, Benjamin; Do, Kinh G.; Sussmann, Amado R.; Pramanik, Bidyut K.; Law, Meng

    2009-01-01

    We aimed to determine if volumetric mismatch between tissue at risk and tissue destined to infarct on computed tomography perfusion (CTP) can be described by the mismatch of Alberta Stroke Program Early CT Score (ASPECTS). Forty patients with nonlacunar middle cerebral artery infarct 6 s and <2.0 mL per 100 g, respectively. Two other raters assigned ASPECTS to the same MTT and CBV maps while blinded to the volumetric data. Volumetric mismatch was deemed present if ≥20%. ASPECTS mismatch (=CBV ASPECTS - MTT ASPECTS) was deemed present if ≥1. Correlation between the two types of mismatches was assessed by Spearman's coefficient (ρ). ROC curve analyses were performed to determine the optimal ASPECTS mismatch cut point for volumetric mismatch ≥20%, ≥50%, ≥100%, and ≥150%. Median volumetric mismatch was 130% (range 10.9-2,031%) with 31 (77.5%) being ≥20%. Median ASPECTS mismatch was 2 (range 0-6) with 26 (65%) being ≥1. ASPECTS mismatch correlated strongly with volumetric mismatch with ρ = 0.763 [95% CI 0.585-0.870], p < 0.0001. Sensitivity and specificity for volumetric mismatch ≥20% was 83.9% [95% CI 65.5-93.5] and 100% [95% CI 65.9-100], respectively, using ASPECTS mismatch ≥1. Volumetric mismatch ≥50%, ≥100%, and ≥150% were optimally identified using ASPECTS mismatch ≥1, ≥2, and ≥2, respectively. On CTP, ASPECTS mismatch showed strong correlation to volumetric mismatch. ASPECTS mismatch ≥1 was the optimal cut point for volumetric mismatch ≥20%. (orig.)

  5. Improvement of Head-Up Display Standards. Volume 5. Head Up Display ILS (Instrument Landing System) Accuracy Flight Tests.

    Science.gov (United States)

    1987-09-01

    amber system. The front canopy of the NT-33A is cov- ered with an amber plastic sheet; when the front seat pilot low- ers his blue visor, the...tigation of the effect of head-up display symbol dynamic response caracteristics on flying qualities; Task B was an investigation of symbol accuracy...An amber vinyl plastic sheet covered the in- side front half of the NT-33 canopy. Blue snap-on visors were pi ovided to the evaluation pilots. The

  6. Generating Animated Displays of Spacecraft Orbits

    Science.gov (United States)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  7. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  8. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  9. Determination of volumetric gas-liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations.

    Science.gov (United States)

    Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop

    2017-09-01

    A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. JAVA Stereo Display Toolkit

    Science.gov (United States)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  11. Physiologically based indices of volumetric capnography in patients receiving mechanical ventilation.

    Science.gov (United States)

    Romero, P V; Lucangelo, U; Lopez Aguilar, J; Fernandez, R; Blanch, L

    1997-06-01

    Several indices of ventilatory heterogeneity can be identified from the expiratory CO2 partial pressure or CO2 elimination versus volume curves. The aims of this study were: 1) to analyse several computerizable indices of volumetric capnography in order to detect ventilatory disturbances; and 2) to establish the relationship between those indices and respiratory system mechanics in subjects with normal lungs and in patients with acute respiratory distress syndrome (ARDS), both receiving mechanical ventilation. We studied six normal subjects and five patients with early ARDS mechanically ventilated at three levels of tidal volume (VT). Respiratory system mechanics were assessed by end-expiratory and end-inspiratory occlusion methods, respectively. We determined Phase III slopes, Fletcher's efficiency index, Bohr's dead space (VD,Bohr/VT), and the ratio of alveolar ejection volume to tidal volume (VAE/VT) from expiratory capnograms, as a function of expired volume. Differences between normal subjects and ARDS patients were significant both for capnographic and mechanical parameters. Changes in VT significantly altered capnographic indices in normal subjects, but failed to change ventilatory mechanics and VAE/VT in ARDS patients. After adjusting for breathing pattern, VAE/VT exhibited the best correlation with the mechanical parameters. In conclusion, volumetric capnography, and, specifically, the ratio of alveolar ejection volume to tidal volume allows evaluation and monitoring of ventilatory disturbances in patients with adult respiratory distress syndrome.

  12. A head-mounted display-based personal integrated-image monitoring system for transurethral resection of the prostate.

    Science.gov (United States)

    Yoshida, Soichiro; Kihara, Kazunori; Takeshita, Hideki; Fujii, Yasuhisa

    2014-12-01

    The head-mounted display (HMD) is a new image monitoring system. We developed the Personal Integrated-image Monitoring System (PIM System) using the HMD (HMZ-T2, Sony Corporation, Tokyo, Japan) in combination with video splitters and multiplexers as a surgical guide system for transurethral resection of the prostate (TURP). The imaging information obtained from the cystoscope, the transurethral ultrasonography (TRUS), the video camera attached to the HMD, and the patient's vital signs monitor were split and integrated by the PIM System and a composite image was displayed by the HMD using a four-split screen technique. Wearing the HMD, the lead surgeon and the assistant could simultaneously and continuously monitor the same information displayed by the HMD in an ergonomically efficient posture. Each participant could independently rearrange the images comprising the composite image depending on the engaging step. Two benign prostatic hyperplasia (BPH) patients underwent TURP performed by surgeons guided with this system. In both cases, the TURP procedure was successfully performed, and their postoperative clinical courses had no remarkable unfavorable events. During the procedure, none of the participants experienced any HMD-wear related adverse effects or reported any discomfort.

  13. Predicting positional error of MLC using volumetric analysis

    International Nuclear Information System (INIS)

    Hareram, E.S.

    2008-01-01

    IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods

  14. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  15. Endoscopic mode for three-dimensional CT display of normal and pathologic laryngeal structures

    International Nuclear Information System (INIS)

    Sanuki, Tetsuji; Hyodo, Masamitsu; Yumoto, Eiji; Yasuhara, Yoshifumi; Ochi, Takashi

    1997-01-01

    The recent development of helical (spiral) computed tomography allows collection of volumetric data to obtain high quality three-dimensional (3D) reconstructed images. The authors applied the 3D CT endoscopic imaging technique to asses normal and pathologic laryngeal structures. The latter included trauma, vocal fold atrophy, cancer of the larynx and recurrent nerve palsy. This technique was able to show normal laryngeal structures and characteristic findings of each pathology. The 3D CT endoscopic images can be rotated around any axis, allowing optimal depiction of pathologic lesion. The use of 3D CT endoscopic technique provides the display of the location and extent of pathology and affords accurate therapeutic planning. (author)

  16. Air Traffic Control: Status of FAA's Implementation of the Display System Replacement Project

    National Research Council Canada - National Science Library

    1999-01-01

    ...) implementation of the Display System Replacement (DSR) project. DSR, which replaces the controllers' workstations and other equipment in the nation's en route centers, is one of FAA's major projects under the air traffic control modernization program...

  17. Spatial and volumetric changes of retroperitoneal sarcomas during pre-operative radiotherapy

    International Nuclear Information System (INIS)

    Wong, Philip; Dickie, Colleen; Lee, David; Chung, Peter; O’Sullivan, Brian; Letourneau, Daniel; Xu, Wei; Swallow, Carol; Gladdy, Rebecca; Catton, Charles

    2014-01-01

    Purpose: To determine the positional and volumetric changes of retroperitoneal sarcomas (RPS) during pre-operative external beam radiotherapy (PreRT). Material and methods: After excluding 2 patients who received chemotherapy prior to PreRT and 15 RPS that were larger than the field-of-view of cone-beam CT (CBCT), the positional and volumetric changes of RPS throughout PreRT were characterized in 19 patients treated with IMRT using CBCT image guidance. Analysis was performed on 118 CBCT images representing one image per week of those acquired daily during treatment. Intra-fraction breathing motions of the gross tumor volume (GTV) and kidneys were measured in 22 RPS patients simulated using 4D-CT. Fifteen other patients were excluded whose tumors were incompletely imaged on CBCT or who received pre-RT chemotherapy. Results: A GTV volumetric increase (mean: 6.6%, p = 0.035) during the first 2 weeks (CBCT1 vs. CBCT2) of treatment was followed by GTV volumetric decrease (mean: 4%, p = 0.009) by completion of radiotherapy (CBCT1 vs. CBCT6). Internal margins of 8.6, 15 and 15 mm in the lateral, anterior/posterior and superior/inferior directions would be required to account for inter-fraction displacements. The extent of GTV respiratory motion was significantly (p < 0.0001) correlated with more superiorly positioned tumors. Conclusion: Inter-fraction CBCT provides important volumetric and positional information of RPS which may improve PreRT quality and prompt re-planning. Planning target volume may be reduced using online soft-tissue matching to account for interfractional displacements of GTVs. Important breathing motion occurred in superiorly placed RPS supporting the utility of 4D-CT planning

  18. Rapid volumetric imaging with Bessel-Beam three-photon microscopy

    Science.gov (United States)

    Chen, Bingying; Huang, Xiaoshuai; Gou, Dongzhou; Zeng, Jianzhi; Chen, Guoqing; Pang, Meijun; Hu, Yanhui; Zhao, Zhe; Zhang, Yunfeng; Zhou, Zhuan; Wu, Haitao; Cheng, Heping; Zhang, Zhigang; Xu, Chris; Li, Yulong; Chen, Liangyi; Wang, Aimin

    2018-01-01

    Owing to its tissue-penetration ability, multi-photon fluorescence microscopy allows for the high-resolution, non-invasive imaging of deep tissue in vivo; the recently developed three-photon microscopy (3PM) has extended the depth of high-resolution, non-invasive functional imaging of mouse brains to beyond 1.0 mm. However, the low repetition rate of femtosecond lasers that are normally used in 3PM limits the temporal resolution of point-scanning three-photon microscopy. To increase the volumetric imaging speed of 3PM, we propose a combination of an axially elongated needle-like Bessel-beam with three-photon excitation (3PE) to image biological samples with an extended depth of focus. We demonstrate the higher signal-to-background ratio (SBR) of the Bessel-beam 3PM compared to the two-photon version both theoretically and experimentally. Finally, we perform simultaneous calcium imaging of brain regions at different axial locations in live fruit flies and rapid volumetric imaging of neuronal structures in live mouse brains. These results highlight the unique advantage of conducting rapid volumetric imaging with a high SBR in the deep brain in vivo using scanning Bessel-3PM.

  19. LOFT data acquisition and visual display system (DAVDS) presentation program

    International Nuclear Information System (INIS)

    Bullock, M.G.; Miyasaki, F.S.

    1976-03-01

    The Data Acquisition and Visual Display System (DAVDS) at the Loss-of-Fluid Test Facility (LOFT) has 742 data channel recording capability of which 576 are recorded digitally. The purpose of this computer program is to graphically present the data acquired and/or processed by the LOFT DAVDS. This program takes specially created plot data buffers of up to 1024 words and generates time history plots on the system electrostatic printer-plotter. The data can be extracted from two system input devices: Magnetic disk or digital magnetic tape. Versatility has been designed in the program by providing the user three methods of scaling plots: Automatic, control record, and manual. Time required to produce a plot on the system electrostatic printer-plotter varies from 30 to 90 seconds depending on the options selected. The basic computer and program details are described

  20. Data concentrator requirements for a safety parameter display system

    International Nuclear Information System (INIS)

    Brewer, C.R.

    1983-01-01

    To comply with NUREG 0696 several nuclear plants are being fitted with new facilities and data systems; specifically a Technical Support Center (TSC), Operational Support Center (OSC), Emergency Operational Facility (EOF), and Backup Safety Parameter Display System (SPDS), Emergency Response Computer System (ERCS) and Nuclear Data Link (NDL). The TSC, OSC, and EOF are physical locations while the SPDS, ERCS, and NDL are Systems. The SPDS and ERCS are usually separate and independent systems, however, they may share a common front end data acquisition system that acquires and sends SPDS related data to both the SPDS and to the ERCS. In the situation just described an SPDS system must depend upon input data from a source that is SPDS host computer independent. To achieve this independence the front end data acquisition system may employ a concept of intelligent distributed processing. This concept essentially takes functional capabilities that were once found only in realtime host computers and distributes it to front end data acquisition systems. Thus by expanding the functionality of the data acquisition system in a manner that provides more capability, independence from the computer vendor, links to multiple computer systems, processing power and redundancy, the concept of a data concentrator evolved. This paper will define this new distributed functionality, and its related requirements. It will also examine different system configuration approaches

  1. 40 CFR 80.170 - Volumetric additive reconciliation (VAR), equipment calibration, and recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Volumetric additive reconciliation... ADDITIVES Detergent Gasoline § 80.170 Volumetric additive reconciliation (VAR), equipment calibration, and...) For a facility which uses a gauge to measure the inventory of the detergent storage tank, the total...

  2. Lesion removal and lesion addition algorithms in lung volumetric data sets for perception studies

    Science.gov (United States)

    Madsen, Mark T.; Berbaum, Kevin S.; Ellingson, Andrew; Thompson, Brad H.; Mullan, Brian F.

    2006-03-01

    Image perception studies of medical images provide important information about how radiologists interpret images and insights for reducing reading errors. In the past, perception studies have been difficult to perform using clinical imaging studies because of the problems associated with obtaining images demonstrating proven abnormalities and appropriate normal control images. We developed and evaluated interactive software that allows the seamless removal of abnormal areas from CT lung image sets. We have also developed interactive software for capturing lung lesions in a database where they can be added to lung CT studies. The efficacy of the software to remove abnormal areas of lung CT studies was evaluated psychophysically by having radiologists select the one altered image from a display of four. The software for adding lesions was evaluated by having radiologists classify displayed CT slices with lesions as real or artificial scaled to 3 levels of confidence. The results of these experiments demonstrated that the radiologist had difficulty in distinguishing the raw clinical images from those that had been altered. We conclude that this software can be used to create experimental normal control and "proven" lesion data sets for volumetric CT of the lung fields. We also note that this software can be easily adapted to work with other tissue besides lung and that it can be adapted to other digital imaging modalities.

  3. In vitro Fab display: a cell-free system for IgG discovery

    Science.gov (United States)

    Stafford, Ryan L.; Matsumoto, Marissa L.; Yin, Gang; Cai, Qi; Fung, Juan Jose; Stephenson, Heather; Gill, Avinash; You, Monica; Lin, Shwu-Hwa; Wang, Willie D.; Masikat, Mary Rose; Li, Xiaofan; Penta, Kalyani; Steiner, Alex R.; Baliga, Ramesh; Murray, Christopher J.; Thanos, Christopher D.; Hallam, Trevor J.; Sato, Aaron K.

    2014-01-01

    Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF. PMID:24586053

  4. Automated volumetric breast density estimation: A comparison with visual assessment

    International Nuclear Information System (INIS)

    Seo, J.M.; Ko, E.S.; Han, B.-K.; Ko, E.Y.; Shin, J.H.; Hahn, S.Y.

    2013-01-01

    Aim: To compare automated volumetric breast density (VBD) measurement with visual assessment according to Breast Imaging Reporting and Data System (BI-RADS), and to determine the factors influencing the agreement between them. Materials and methods: One hundred and ninety-three consecutive screening mammograms reported as negative were included in the study. Three radiologists assigned qualitative BI-RADS density categories to the mammograms. An automated volumetric breast-density method was used to measure VBD (% breast density) and density grade (VDG). Each case was classified into an agreement or disagreement group according to the comparison between visual assessment and VDG. The correlation between visual assessment and VDG was obtained. Various physical factors were compared between the two groups. Results: Agreement between visual assessment by the radiologists and VDG was good (ICC value = 0.757). VBD showed a highly significant positive correlation with visual assessment (Spearman's ρ = 0.754, p < 0.001). VBD and the x-ray tube target was significantly different between the agreement group and the disagreement groups (p = 0.02 and 0.04, respectively). Conclusion: Automated VBD is a reliable objective method to measure breast density. The agreement between VDG and visual assessment by radiologist might be influenced by physical factors

  5. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    Science.gov (United States)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  6. The virtual environment display system

    Science.gov (United States)

    Mcgreevy, Michael W.

    1991-01-01

    Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition.

  7. Experience in the review of utility control room design review and safety parameter display system programs

    International Nuclear Information System (INIS)

    Moore, V.A.

    1985-01-01

    The Detailed Control Room Design Review (DCRDR) and the Safety Parameter Display System (SPDS) had their origins in the studies and investigations conducted as the result of the TMI-2 accident. The President's Commission (Kemeny Commission) critized NRC for not examining the man-machine interface, over-emphasizing equipment, ignoring human beings, and tolerating outdated technology in control rooms. The Commission's Special Inquiry Group (Rogovin Report) recommended greater application of human factors engineering including better instrumentation displays and improved control room design. The NRC Lessons Learned Task Force concluded that licensees should review and improve control rooms using NRC Human engineering guidelines, and install safety parameter display systems (then called the safety staff vector). The TMI Action Plan Item I.D.1 and I.D.2 were based on these recommendations

  8. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma

    International Nuclear Information System (INIS)

    Grossmann, Patrick; Gutman, David A.; Dunn, William D. Jr; Holder, Chad A.; Aerts, Hugo J. W. L.

    2016-01-01

    Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified using magnetic resonance imaging (MRI), but the underlying biological drivers of these imaging phenotypes remain largely unknown. An Imaging-Genomics analysis was performed to reveal the mechanistic associations between MRI derived quantitative volumetric tumor phenotype features and molecular pathways. One hundred fourty one patients with presurgery MRI and survival data were included in our analysis. Volumetric features were defined, including the necrotic core (NE), contrast-enhancement (CE), abnormal tumor volume assessed by post-contrast T1w (tumor bulk or TB), tumor-associated edema based on T2-FLAIR (ED), and total tumor volume (TV), as well as ratios of these tumor components. Based on gene expression where available (n = 91), pathway associations were assessed using a preranked gene set enrichment analysis. These results were put into context of molecular subtypes in GBM and prognostication. Volumetric features were significantly associated with diverse sets of biological processes (FDR < 0.05). While NE and TB were enriched for immune response pathways and apoptosis, CE was associated with signal transduction and protein folding processes. ED was mainly enriched for homeostasis and cell cycling pathways. ED was also the strongest predictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall survival (C-index = 0.6; Noether test, p = 4x10 −4 ). GBM volumetric features extracted from MRI are significantly enriched for information about the biological state of a tumor that impacts patient outcomes. Clinical decision-support systems could exploit this information to develop personalized treatment strategies on the basis of noninvasive imaging. The online version of this article (doi:10.1186/s12885-016-2659-5) contains supplementary material, which is available to authorized users

  9. Verification and validation of the safety parameter display system for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Yuanfang

    1993-05-01

    During the design and development phase of the safety parameter display system for nuclear power plant, a verification and validation (V and V) plan has been implemented to improve the quality of system design. The V and V activities are briefly introduced, which were executed in four stages of feasibility research, system design, code development and system integration and regulation. The evaluation plan and the process of implementation as well as the evaluation conclusion of the final technical validation for this system are also presented in detail

  10. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.

    Science.gov (United States)

    Wendel, Sofie; Fischer, Emil C; Martínez, Virginia; Seppälä, Susanna; Nørholm, Morten H H

    2016-05-03

    Bacterial surface display is an attractive technique for the production of cell-anchored, functional proteins and engineering of whole-cell catalysts. Although various outer membrane proteins have been used for surface display, an easy and versatile high-throughput-compatible assay for evaluating and developing surface display systems is missing. Using a single domain antibody (also called nanobody) with high affinity for green fluorescent protein (GFP), we constructed a system that allows for fast, fluorescence-based detection of displayed proteins. The outer membrane hybrid protein LppOmpA and the autotransporter C-IgAP exposed the nanobody on the surface of Escherichia coli with very different efficiency. Both anchors were capable of functionally displaying the enzyme Chitinase A as a fusion with the nanobody, and this considerably increased expression levels compared to displaying the nanobody alone. We used flow cytometry to analyse display capability on single-cell versus population level and found that the signal peptide of the anchor has great effect on display efficiency. We have developed an inexpensive and easy read-out assay for surface display using nanobody:GFP interactions. The assay is compatible with the most common fluorescence detection methods, including multi-well plate whole-cell fluorescence detection, SDS-PAGE in-gel fluorescence, microscopy and flow cytometry. We anticipate that the platform will facilitate future in-depth studies on the mechanism of protein transport to the surface of living cells, as well as the optimisation of applications in industrial biotech.

  11. A display to support knowledge based behavior

    International Nuclear Information System (INIS)

    Lindsay, R.W.

    1990-01-01

    A computerized display has been created for the Experimental Breeder Reactor II (EBR-II) that incorporates information from plant sensors in a thermodynamic model display. The display is designed to provide an operator with an overall view of the plant process as a heat engine. The thermodynamics of the plant are depicted through the use of ionic figures, animated by plant signals, that are related to the major plant components and systems such as the reactor, intermediate heat exchanger, secondary system, evaporators, superheaters, steam system, steam drum, and turbine-generator. This display supports knowledge based reasoning for the operator as well as providing the traditional rule and skill based behavior, and includes side benefits such a inherent signal validation

  12. Volumetric dispenser for small particles from plural sources

    International Nuclear Information System (INIS)

    Bradley, R.A.; Miller, W.H.; Sease, J.D.

    1975-01-01

    Apparatus is described for rapidly and accurately dispensing measured volumes of small particles from a supply hopper. The apparatus includes an adjustable, vertically oriented measuring tube and orifice member defining the volume to be dispensed, a ball plug valve for selectively closing the bottom end of the orifice member, and a compression valve for selectively closing the top end of the measuring tube. A supply hopper is disposed above and in gravity flow communication with the measuring tube. Properly sequenced opening and closing of the two valves provides accurate volumetric discharge through the ball plug valve. A dispensing system is described wherein several appropriately sized measuring tubes, orifice members, and associated valves are arranged to operate contemporaneously to facilitate blending of different particles

  13. Using Auditory Cues to Perceptually Extract Visual Data in Collaborative, Immersive Big-Data Display Systems

    Science.gov (United States)

    Lee, Wendy

    The advent of multisensory display systems, such as virtual and augmented reality, has fostered a new relationship between humans and space. Not only can these systems mimic real-world environments, they have the ability to create a new space typology made solely of data. In these spaces, two-dimensional information is displayed in three dimensions, requiring human senses to be used to understand virtual, attention-based elements. Studies in the field of big data have predominately focused on visual representations and extractions of information with little focus on sounds. The goal of this research is to evaluate the most efficient methods of perceptually extracting visual data using auditory stimuli in immersive environments. Using Rensselaer's CRAIVE-Lab, a virtual reality space with 360-degree panorama visuals and an array of 128 loudspeakers, participants were asked questions based on complex visual displays using a variety of auditory cues ranging from sine tones to camera shutter sounds. Analysis of the speed and accuracy of participant responses revealed that auditory cues that were more favorable for localization and were positively perceived were best for data extraction and could help create more user-friendly systems in the future.

  14. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  15. Latency requirements for head-worn display S/EVS applications

    Science.gov (United States)

    Bailey, Randall E.; Arthur, Jarvis J., III; Williams, Steven P.

    2004-08-01

    NASA's Aviation Safety Program, Synthetic Vision Systems Project is conducting research in advanced flight deck concepts, such as Synthetic/Enhanced Vision Systems (S/EVS), for commercial and business aircraft. An emerging thrust in this activity is the development of spatially-integrated, large field-of-regard information display systems. Head-worn or helmet-mounted display systems are being proposed as one method in which to meet this objective. System delays or latencies inherent to spatially-integrated, head-worn displays critically influence the display utility, usability, and acceptability. Research results from three different, yet similar technical areas - flight control, flight simulation, and virtual reality - are collectively assembled in this paper to create a global perspective of delay or latency effects in head-worn or helmet-mounted display systems. Consistent definitions and measurement techniques are proposed herein for universal application and latency requirements for Head-Worn Display S/EVS applications are drafted. Future research areas are defined.

  16. Safety parameter display system for Kalinin NPP

    International Nuclear Information System (INIS)

    Andreev, V.I.; Videneev, E.N.; Tissot, J.C.; Joonekindt, D.; Davidenko, N.N.; Shaftan, G.I.; Dounaev, V.G.; Neboyan, V.T.

    1995-01-01

    The paper discusses the safety parameter display system (SPDS), which is being designed for Kalinin NPP. The assessment of the safety status of the plant is done by the continuous monitoring of six critical safety functions and the corresponding status trees. Besides, a number of additional functions are realized within the scope of KlnNPP, aimed at providing the operator and the safety engineer in the main control room with more detailed information in accidental situation as well as during the normal operation. In particular, these functions are: archiving, data logs and alarm handling, safety actions monitoring, mnemonic diagrams indicating the state of main technological equipment and basic plant parameters, reference data, etc. As compared with the traditional scope of functions of this kind of systems, the functionality of KlnNPP SPDS is significantly expanded due to the inclusion in it the operator support function ''computerized procedures''. The basic SPDS implementation platform is ADACS of SEMA GROUP design. The system architecture includes two workstations in the main control room: one is for reactor operator and the other one for safety engineer. Every station has two CRT screens which ensures computerized procedures implementation and provides for extra services for the operator. Also, the information from the SPDS is transmitted to the local crisis center and to the crisis center of the State utility organization concern ''Rosenergoatom''. (author). 3 refs, 6 figs, 1 tab

  17. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods

    Directory of Open Access Journals (Sweden)

    A Zareei

    2017-05-01

    Full Text Available Introduction Spiral conveyors effectively carry solid masses as free or partly free flow of materials. They create good throughput and they are the perfect solution to solve the problems of transport, due to their simple structure, high efficiency and low maintenance costs. This study aims to investigate the performance characteristics of conveyors as function of auger diameter, rotational speed and handling inclination angle. The performance characteristic was investigated according to volumetric efficiency. In another words, the purpose of this study was obtaining a suitable model for volumetric efficiency changes of steep auger to transfer agricultural products. Three different diameters of auger, five levels of rotational speed and three slope angles were used to investigate the effects of changes in these parameters on volumetric efficiency of auger. The used method is novel in this area and the results show that performance by ANFIS models is much better than common statistical models. Materials and Methods The experiments were conducted in Department of Mechanical Engineering of Agricultural Machinery in Urmia University. In this study, SAYOS cultivar of wheat was used. This cultivar of wheat had hard seeds and the humidity was 12% (based on wet. Before testing, all foreign material was separated from the wheat such as stone, dust, plant residues and green seeds. Bulk density of wheat was 790 kg m-3. The auger shaft of the spiral conveyor was received its rotational force through belt and electric motor and its rotation leading to transfer the product to the output. In this study, three conveyors at diameters of 13, 17.5, and 22.5 cm, five levels of rotational speed at 100, 200, 300, 400, and 500 rpm and three handling angles of 10, 20, and 30º were tested. Adaptive Nero-fuzzy inference system (ANFIS is the combination of fuzzy systems and artificial neural network, so it has both benefits. This system is useful to solve the complex non

  18. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  19. Volumetric image-guidance: Does routine usage prompt adaptive re-planning? An institutional review

    International Nuclear Information System (INIS)

    Tanyi, James A.; Fuss, Martin H.

    2008-01-01

    Purpose. To investigate how the use of volumetric image-guidance using an on-board cone-beam computed tomography (CBCT) system impacts on the frequency of adaptive re-planning. Material and methods. Treatment courses of 146 patients who have undergone a course of external beam radiation therapy (EBRT) using volumetric CBCT image-guidance were analyzed. Target locations included the brain, head and neck, chest, abdomen, as well as prostate and non-prostate pelvis. The majority of patients (57.5%) were treated with hypo-fractionated treatment regimens (three to 15 fraction courses). The frequency of image-guidance ranged from daily (87.7%) to weekly or twice weekly. The underlying medical necessity for adaptive re-planning as well as frequency and consequences of plan adaptation to dose-volume parameters was assessed. Results. Radiation plans of 34 patients (23.3%) were adapted at least once (up to six time) during their course of EBRT as a result of image-guidance CBCT review. Most common causes for adaptive planning were: tumor change (mostly shrinkage: 10 patients; four patients more than one re-plan), change in abdominal girth (systematic change in hollow organ filling; n=7, two patients more than one re-plan), weight loss (n=5), and systematic target setup deviation from simulation (n=5). Adaptive re-plan was required mostly for conventionally fractionated courses; only 5 patient plans undergoing hypo-fractionated treatment were adjusted. In over 91% of adapted plans, the dose-volume parameters did deviate from the prescribed plan parameters by more than 5% for at least 10% of the target volume, or organs-at-risk in close proximity to the target volume. Discussion. Routine use of volumetric image-guidance has in our practice increased the demand for adaptive re-planning. Volumetric CBCT image-guidance provides sufficient imaging information to reliably predict the need for dose adjustment. In the vast majority of cases evaluated, the initial and adapted dose

  20. Safety parameter display system functions are integrated parts of the KWU KONVOI process information system (SPDS functions are parts of the KWU-PRINS)

    International Nuclear Information System (INIS)

    Aleite, W.; Geyer, K.H.

    1984-01-01

    The desirability of having flexible overview as well as extended detail information with pictorial and abstraction features and easy and quick access throughout the large-size control rooms in German plants has been recognized. Developments over the last years now make it possible to add on extensive computer driven VDU-systems to the three German KONVOI NPPs (Isar II, Emsland and Neckarwestheim II) thereby creating the Process Information System ''PRINS''. The new system is driven by multiple computers at different locations controlling about 30 full-graphic, high resolution Video Display Units. They are arranged singly and in three ''mxn - Information Panels'' distributed about the control room and present all thinkable kinds of display formats with more than 1000 separate pictures. The display of only single ''Safety Parameters'' or even complete ''Safety Goal Information'' on single or multiple VDUs in parallel is only one aspect of this computerized part of the entire integrated Information System. (orig./HP)

  1. Efficient production of D-tagatose using a food-grade surface display system.

    Science.gov (United States)

    Liu, Yi; Li, Sha; Xu, Hong; Wu, Lingtian; Xu, Zheng; Liu, Jing; Feng, Xiaohai

    2014-07-16

    D-tagatose, a functional sweetener, is commonly transformed from D-galactose by L-arabinose isomerase (L-AI). In this study, a novel type of biocatalyst, L-AI from Lactobacillus fermentum CGMCC2921 displayed on the spore surface of Bacillus subtilis 168, was developed for producing D-tagatose. The anchored L-AI, exhibiting the relatively high bioactivity, suggested that the surface display system using CotX as the anchoring protein was successfully constructed. The stability of the anchored L-AI was significantly improved. Specifically, the consolidation of thermal stability representing 87% of relative activity was retained even at 80 °C for 30 min, which remarkably favored the production of D-tagatose. Under the optimal conditions, the robust spores can convert 75% D-galactose (100 g/L) into D-tagatose after 24 h, and the conversion rate remained at 56% at the third cycle. Therefore, this biocatalysis system, which could express the target enzyme on the food-grade vector, was an alternative method for the value-added production of D-tagatose.

  2. A display to support knowledge based behavior

    International Nuclear Information System (INIS)

    Lindsay, R.W.

    1990-01-01

    This paper reports on a computerized display that has been created for the Experimental Breeder Reactor II that incorporates information from plant sensors in a thermodynamic model display. The display is designed to provide an operator with an overall view of the plant process as a heat engine. The thermodynamics of the plant are depicted through the use of iconic figures, animated by plant signals, that are related to the major plant components and systems such as the reactor, intermediate heat exchanger, secondary system, evaporators, superheaters, steam system, steam drum, and turbine-generator. This display supports knowledge based reasoning for the operator as well as providing data for the traditional rule and skill based behavior, and includes side benefits such as inherent signal validation

  3. Model of a thermal driven volumetric pump for energy harvesting in an underwater glider

    International Nuclear Information System (INIS)

    Falcão Carneiro, J.; Gomes de Almeida, F.

    2016-01-01

    Underwater gliders are one of the most promising approaches to achieve an increase of human presence in the oceans. Among existing solutions, thermal driven gliders present long range and endurance capabilities, offering the possibility of remaining years beneath water collecting and transmitting data to shore. A key component in thermal gliders lies in the process used to collect ocean's thermal energy. In this paper a new quasi-static model of a thermal driven volumetric pump, for use in underwater gliders, is presented. The study also encompasses an analysis of the influence different hydraulic system parameters have on the thermodynamic cycle efficiency. Finally, the paper proposes a simple dynamic model of a heat exchanger that uses commercially available materials for the Phase Change Material (PCM) container. Simulation results validate the models developed. - Highlights: • A new model of a thermal driven volumetric pump for underwater gliders is proposed. • The effect hydraulic system parameters have on the cycle efficiency is analyzed. • The energy efficiency may be increased tenfold using adequate hydraulic parameters. • It's shown that the PCM PVT transition surface may not alter the cycle efficiency.

  4. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  5. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)

    Science.gov (United States)

    Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.

    2017-01-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111

  6. Non-uniform volumetric structures in Richtmyer-Meshkov flows

    NARCIS (Netherlands)

    Staniç, M.; McFarland, J.; Stellingwerf, R.F.; Cassibry, J.T.; Ranjan, D.; Bonazza, R.; Greenough, J.A.; Abarzhi, S.I.

    2013-01-01

    We perform an integrated study of volumetric structures in Richtmyer-Meshkov (RM) flows induced by moderate shocks. Experiments, theoretical analyses, Smoothed Particle Hydrodynamics simulations, and ARES Arbitrary Lagrange Eulerian simulations are employed to analyze RM evolution for fluids with

  7. Clarification of the volumetric properties of the (tetrahydrofuran + water) systems [J. Chem. Thermodyn. 41 (2009) 1382–1386]: Author’s statement

    International Nuclear Information System (INIS)

    Belandria, Veronica; Pimentel-Rodas, Alfredo; Mohammadi, Amir H.; Galicia-Luna, Luis A.; Richon, Dominique

    2013-01-01

    Highlights: ► New experimental density data are reported for the (THF + water) systems. ► A vibrating tube densimeter has been used to perform the measurements. ► A discussion is made on the reliability of the generated data and other questions raised in the literature. - Abstract: Although reliable and consistent volumetric data can be derived from density measurements, the greatest experimental difficulty and largest measurement errors often occur in the very dilute regions of concentration. Such data are of great interest in separation processes where a high degree of purity is required. In this communication, the densities of the (tetrahydrofuran + water) systems have been carefully investigated in dilute regions. A vibrating tube densimeter has been used to perform the measurements. A discussion is made on the reliability of the generated experimental data and the questions raised in the literature.

  8. Advanced display concepts in nuclear control rooms

    International Nuclear Information System (INIS)

    Clark, M.T.; Banks, W.W.; Blackman, H.S.; Gertman, D.I.

    1982-01-01

    Precursors necessary for the development of a full-scale predictor display/control system have been under development since the mid 1940's. The predictor display itself has been available for use in manual control systems since 1958. However, the nuclear industry has not yet explored the uses and benefits of predictor systems. The purpose of this paper is to provide information on the application of this technology to the nuclear industry. The possibility of employing a simulation-based control system for nuclear plant systems that currently use conventional auto/manual schemes is discussed. By employing simulation-based systems, a predictor display could be made available to the operator during manual operations, thus facilitating control without outwardly affecting the overall control scheme

  9. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    International Nuclear Information System (INIS)

    Wulff, A.M.; Fabel, M.; Freitag-Wolf, S.; Tepper, M.; Knabe, H.M.; Schäfer, J.P.; Jansen, O.; Bolte, H.

    2013-01-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future

  10. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, A.M., E-mail: a.wulff@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Fabel, M. [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Freitag-Wolf, S., E-mail: freitag@medinfo.uni-kiel.de [Institut für Medizinische Informatik und Statistik, Brunswiker Str. 10, 24105 Kiel (Germany); Tepper, M., E-mail: m.tepper@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Knabe, H.M., E-mail: h.knabe@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Schäfer, J.P., E-mail: jp.schaefer@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Jansen, O., E-mail: o.jansen@neurorad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Bolte, H., E-mail: hendrik.bolte@ukmuenster.de [Klinik für Nuklearmedizin, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster (Germany)

    2013-10-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future.

  11. Next generation smart window display using transparent organic display and light blocking screen.

    Science.gov (United States)

    Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk

    2018-04-02

    Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

  12. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    Energy Technology Data Exchange (ETDEWEB)

    De Pretto, Lucas R., E-mail: lucas.de.pretto@usp.br; Nogueira, Gesse E. C.; Freitas, Anderson Z. [Instituto de Pesquisas Energéticas e Nucleares, IPEN–CNEN/SP, Avenida Lineu Prestes, 2242, 05508-000 São Paulo (Brazil)

    2016-04-28

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  13. Investigating the effect of clamping force on the fatigue life of bolted plates using volumetric approach

    International Nuclear Information System (INIS)

    Esmaeili, F.; Chakherlou, T. N.; Zehsaz, M.; Hasanifard, S.

    2013-01-01

    In this paper, the effects of bolt clamping force on the fatigue life for bolted plates made from Al7075-T6 have been studied on the values of notch strength reduction factor obtained by volumetric approach. To attain stress distribution around the notch (hole) which is required for volumetric approach, nonlinear finite element simulations were carried out. To estimate the fatigue life, the available smooth S-N curve of Al7075-T6 and the notch strength reduction factor obtained from volumetric method were used. The estimated fatigue life was compared with the available experimental test results. The investigation shows that there is a good agreement between the life predicted by the volumetric approach and the experimental results for various specimens with different amount of clamping forces. Volumetric approach and experimental results showed that the fatigue life of bolted plates improves because of the compressive stresses created around the plate hole due to clamping force.

  14. Prototype volumetric ultrasound tomography image guidance system for prone stereotactic partial breast irradiation: proof-of-concept

    Science.gov (United States)

    Chiu, Tsuicheng D.; Parsons, David; Zhang, Yue; Hrycushko, Brian; Zhao, Bo; Chopra, Rajiv; Kim, Nathan; Spangler, Ann; Rahimi, Asal; Timmerman, Robert; Jiang, Steve B.; Lu, Weiguo; Gu, Xuejun

    2018-03-01

    Accurate dose delivery in stereotactic partial breast irradiation (S-PBI) is challenging because of the target position uncertainty caused by breast deformation, the target volume changes caused by lumpectomy cavity shrinkage, and the target delineation uncertainty on simulation computed tomography (CT) images caused by poor soft tissue contrast. We have developed a volumetric ultrasound tomography (UST) image guidance system for prone position S-PBI. The system is composed of a novel 3D printed rotation water tank, a patient-specific resin breast immobilization cup, and a 1D array ultrasound transducer. Coronal 2D US images were acquired in 5° increments over a 360° range, and planes were acquired every 2 mm in elevation. A super-compounding technique was used to reconstruct the image volume. The image quality of UST was evaluated with a BB-1 breast phantom and BioZorb surgical marker, and the results revealed that UST offered better soft tissue contrast than CT and similar image quality to MR. In the evaluated plane, the size and location of five embedded objects were measured and compared to MR, which is considered as the ground truth. Objects’ diameters and the distances between objects in UST differ by approximately 1 to 2 mm from those in MR, which showed that UST offers the image quality required for S-PBI. In future work we will develop a robotic system that will be ultimately implemented in the clinic.

  15. Application of verification and validation on safety parameter display systems

    International Nuclear Information System (INIS)

    Thomas, N.C.

    1983-01-01

    Offers some explanation of how verification and validation (VandV) can support development and licensing of the Safety Parameter Display Systems (SPDS). Advocates that VandV can be more readily accepted within the nuclear industry if a better understanding exists of what the objectives of VandV are and should be. Includes a discussion regarding a reasonable balance of costs and benefits of VandV as applied to the SPDS and to other digital systems. Represents the author's perception of the regulator's perspective based on background information and experience, and discussions with regulators about their current concerns and objectives. Suggests that the introduction of the SPDS into the Control Room is a first step towards growing dependency on use of computers

  16. Systems and methods for displaying data in split dimension levels

    Science.gov (United States)

    Stolte, Chris; Hanrahan, Patrick

    2015-07-28

    Systems and methods for displaying data in split dimension levels are disclosed. In some implementations, a method includes: at a computer, obtaining a dimensional hierarchy associated with a dataset, wherein the dimensional hierarchy includes at least one dimension and a sub-dimension of the at least one dimension; and populating information representing data included in the dataset into a visual table having a first axis and a second axis, wherein the first axis corresponds to the at least one dimension and the second axis corresponds to the sub-dimension of the at least one dimension.

  17. Workshop on data-acquisition and -display systems: directions after TMI

    International Nuclear Information System (INIS)

    1980-11-01

    The accident at Three Mile Island Unit-2 raised questions as to the adequacy of data acquisition and display systems in commercial nuclear power plants. A series of recommendations have developed from the various groups that have analyzed the accident in order to improve the oprator's overview of the plant safety conditions and to facilitate information transfer to technical support centers in emergency situations. This report is the result of an NSAC-sponsored workshop, where the various recommendations and emerging regulatory requirements were reviewed in an attempt to provide an integrated basis for their implementation

  18. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    International Nuclear Information System (INIS)

    Vos, C.G.; Paul, M.A.; Dahele, M.; Soernsen de Koste, J.R. van; Senan, S.; Bahce, I.; Smit, E.F.; Thunnissen, E.; Hartemink, K.J.

    2014-01-01

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R 2 = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  19. 40 CFR 80.157 - Volumetric additive reconciliation (“VAR”), equipment calibration, and recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Volumetric additive reconciliation (â... ADDITIVES Detergent Gasoline § 80.157 Volumetric additive reconciliation (“VAR”), equipment calibration, and... other comparable VAR supporting documentation. (ii) For a facility which uses a gauge to measure the...

  20. Color Analysis in Air Traffic Control Displays, Part II. Auxiliary Displays

    National Research Council Canada - National Science Library

    Xing, Jing

    2007-01-01

    ...), Traffic Management Advisor (TMA), and Integrated Terminal Weather System (ITWS). For each display, we documented the background and default colors, color-coding, color usage, associated purposes of color use, and color complexity...

  1. Determination of uranium by a gravimetric-volumetric titration method

    International Nuclear Information System (INIS)

    Krtil, J.

    1998-01-01

    A volumetric-gravimetric modification of a method for the determination of uranium based on the reduction of uranium to U (IV) in a phosphoric acid medium and titration with a standard potassium dichromate solution is described. More than 99% of the stoichiometric amount of the titrating solution is weighed and the remainder is added volumetrically by using the Mettler DL 40 RC Memotitrator. Computer interconnected with analytical balances collects continually the data on the analyzed samples and evaluates the results of determination. The method allows to determine uranium in samples of uranium metal, alloys, oxides, and ammonium diuranate by using aliquot portions containing 30 - 100 mg of uranium with the error of determination, expressed as the relative standard deviation, of 0.02 - 0.05%. (author)

  2. Pervasive displays understanding the future of digital signage

    CERN Document Server

    Davies, Nigel; Alt, Florian

    2014-01-01

    Fueled by falling display hardware costs and rising demand, digital signage and pervasive displays are becoming ever more ubiquitous. Such systems have traditionally been used for advertising and information dissemination, with digital signage commonplace in shopping malls, airports and public spaces. While advertising and broadcasting announcements remain important applications, developments in sensing and interaction technologies are enabling entirely new classes of display applications that tailor content to the situation and audience of the display. As a result, signage systems are beginni

  3. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    Science.gov (United States)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  4. IMDISP - INTERACTIVE IMAGE DISPLAY PROGRAM

    Science.gov (United States)

    Martin, M. D.

    1994-01-01

    The Interactive Image Display Program (IMDISP) is an interactive image display utility for the IBM Personal Computer (PC, XT and AT) and compatibles. Until recently, efforts to utilize small computer systems for display and analysis of scientific data have been hampered by the lack of sufficient data storage capacity to accomodate large image arrays. Most planetary images, for example, require nearly a megabyte of storage. The recent development of the "CDROM" (Compact Disk Read-Only Memory) storage technology makes possible the storage of up to 680 megabytes of data on a single 4.72-inch disk. IMDISP was developed for use with the CDROM storage system which is currently being evaluated by the Planetary Data System. The latest disks to be produced by the Planetary Data System are a set of three disks containing all of the images of Uranus acquired by the Voyager spacecraft. The images are in both compressed and uncompressed format. IMDISP can read the uncompressed images directly, but special software is provided to decompress the compressed images, which can not be processed directly. IMDISP can also display images stored on floppy or hard disks. A digital image is a picture converted to numerical form so that it can be stored and used in a computer. The image is divided into a matrix of small regions called picture elements, or pixels. The rows and columns of pixels are called "lines" and "samples", respectively. Each pixel has a numerical value, or DN (data number) value, quantifying the darkness or brightness of the image at that spot. In total, each pixel has an address (line number, sample number) and a DN value, which is all that the computer needs for processing. DISPLAY commands allow the IMDISP user to display all or part of an image at various positions on the display screen. The user may also zoom in and out from a point on the image defined by the cursor, and may pan around the image. To enable more or all of the original image to be displayed on the

  5. Effect of cup inclination on predicted contact stress-induced volumetric wear in total hip replacement.

    Science.gov (United States)

    Rijavec, B; Košak, R; Daniel, M; Kralj-Iglič, V; Dolinar, D

    2015-01-01

    In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ϑA) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ϑA. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.

  6. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses

    International Nuclear Information System (INIS)

    Gunbey, Hediye Pinar; Bilgici, Meltem Ceyhan; Aslan, Kerim; Incesu, Lutfi; Has, Arzu Ceylan; Ogur, Methiye Gonul; Alhan, Aslihan

    2017-01-01

    To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. (orig.)

  7. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    Science.gov (United States)

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  8. Manufacturing considerations for AMLCD cockpit displays

    Science.gov (United States)

    Luo, Fang-Chen

    1995-06-01

    AMLCD cockpit displays need to meet more stringent requirements compared with AMLCD commercial displays in areas such as environmental conditions, optical performance and device reliability. Special considerations are required for the manufacturing of AMLCD cockpit displays in each process step to address these issues. Some examples are: UV stable polarizers, wide-temperature LC material, strong LC glue seal, ESS test system, gray scale voltage EEPROM, etc.

  9. Displaying DIII-D plasma data using DEC's X window system

    International Nuclear Information System (INIS)

    Greene, K.L.

    1991-11-01

    The D3-D tokamak program, funded by the Department of Energy, carries out plasma physics and fusion energy research experiments. The machine began operation in February 1986; at that time, approximately 7 Mbytes of data was collected for shot. Since that time, the shot size has steadily increased to over 50 Mbytes with the average shot size between 35 and 45 Mbytes. Shots are fired every 12 to 15 minutes and last approximately 5 to 10 seconds. Between 30 and 40 shots are fired each day when plasma experiments are scheduled. In 1987 MFITD and MFITPLAY were written/modified. These two programs provide graphical output that allows the users to see, before the next shot, the plasma shape and the locations of the plasma and magnetic flux lines within the tokamak. MFITD performs the computations which calculate the shape and location of the plasma; it also graphically displays a small subset of timeslice data. MFITPLAY graphically displays the full set of timeslice data. Through interactive commands, MFITPLAY also allows the user to control the various aspects of how the data is displayed. In 1990, both programs were converted from User Interface Services (UIS) routines, which are part of the MicroVMS workstation graphics software, to DEC's X Window System using the DECWindows window manager. These modifications were required because of a move by Digital Equipment Corporation (DEC) to support X windows and phase out UIS. Due to the nature and purpose of each program, MFITD needed only simple graphics conversion while MFITPLAY was completely rewritten. The DECWindows version of MFITPLAY offers a number of improvements, such as a more intuitive user interface

  10. Multicenter assessment of the reproducibility of volumetric radiofrequency-based intravascular ultrasound measurements in coronary lesions that were consecutively stented

    NARCIS (Netherlands)

    Huisman, Jeroen; Egede, R.; Rdzanek, A.; Böse, D.; Erbel, R.; van der Palen, Jacobus Adrianus Maria; von Birgelen, Clemens

    2012-01-01

    To assess in a multicenter design the between-center reproducibility of volumetric virtual histology intravascular ultrasound (VH-IVUS) measurements with a semi-automated, computer-assisted contour detection system in coronary lesions that were consecutively stented. To evaluate the reproducibility

  11. GPLS VME Module: A Diagnostic and Display Tool for NSLS Micro Systems

    International Nuclear Information System (INIS)

    Ramamoorthy, S.; Smith, J. D.

    1999-01-01

    The General Purpose Light Source VME module is an integral part of every front-end micro in the NSLS control system. The board incorporates features such as a video character generator, clock signals, time-of-day clock, a VME bus interrupter and general-purpose digital inputs and outputs. This module serves as a valuable diagnostic and real-time display tool for the micro development as well as for the find operational systems. This paper describes the functions provided by the board for the NSLS micro control monitor software

  12. Synthetic vision display evaluation studies

    Science.gov (United States)

    Regal, David M.; Whittington, David H.

    1994-01-01

    The goal of this research was to help us understand the display requirements for a synthetic vision system for the High Speed Civil Transport (HSCT). Four experiments were conducted to examine the effects of different levels of perceptual cue complexity in displays used by pilots in a flare and landing task. Increased levels of texture mapping of terrain and runway produced mixed results, including harder but shorter landings and a lower flare initiation altitude. Under higher workload conditions, increased texture resulted in an improvement in performance. An increase in familiar size cues did not result in improved performance. Only a small difference was found between displays using two patterns of high resolution texture mapping. The effects of increased perceptual cue complexity on performance was not as strong as would be predicted from the pilot's subjective reports or from related literature. A description of the role of a synthetic vision system in the High Speed Civil Transport is provide along with a literature review covering applied research related to perceptual cue usage in aircraft displays.

  13. Transparent 3D display for augmented reality

    Science.gov (United States)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  14. Safety parameter display system: an operator support system for enhancement of safety in Indian PHWRs

    International Nuclear Information System (INIS)

    Subramaniam, K.; Biswas, T.

    1994-01-01

    Ensuring operational safety in nuclear power plants is important as operator errors are observed to contribute significantly to the occurrence of accidents. Computerized operator support systems, which process and structure information, can help operators during both normal and transient conditions, and thereby enhance safety and aid effective response to emergency conditions. An important operator aid being developed and described in this paper, is the safety parameter display system (SPDS). The SPDS is an event-independent, symptom-based operator aid for safety monitoring. Knowledge-based systems can provide operators with an improved quality of information. An information processing model of a knowledge based operator support system (KBOSS) developed for emergency conditions using an expert system shell is also presented. The paper concludes with a discussion of the design issues involved in the use of a knowledge based systems for real time safety monitoring and fault diagnosis. (author). 8 refs., 4 figs., 1 tab

  15. Analysis of air return alternatives for CRS-type open volumetric receiver

    International Nuclear Information System (INIS)

    Marcos, Ma. Jesus; Romero, Manuel; Palero, Silvia

    2004-01-01

    Even though air-cooled receivers provide substantial benefits, such as low inertia and quick sun-following dispatchability, and the volumetric effect leads to designs with aperture areas similar to those used in molten salt or water/steam receivers, some concern persists regarding absorber durability, reduction of radiation losses and improvement of the air return ratio (ARR). The paper focuses on this last issue, since the ARR is a source of significant receiver losses in current designs. Today's scaled-up receivers claim values between 45 and 70% for ARR, which means, in terms of energy loss, between 5 and 15%. As a consequence of ARR and the radiation loss stemming from high working temperatures, open volumetric receivers efficiencies below 75% are reported at temperatures usable by the power block. Those values may be acceptable for a first demonstration plant, but are categorically not competitive for commercial schemes in which receiver efficiency should approach 90%. This paper discusses the impact of several geometrical properties of the absorber and air injection system used. The study was performed by CFD with the FLUENT code. The assessment considered such alternatives as modularity of the air return system (HITREC receiver concept), outer ring injection with air curtain effect or cavity aperture (with and without secondary concentrator). A detailed analysis reveals that some parts of the receiver aperture achieve an ARR above 90% at well-selected operating conditions, but average values hardly surpass 70%. Therefore, a careful design should keep in mind important variables such as the effects of receiver edge and lateral wind, as well as air injection angle

  16. Yeast arming systems: pros and cons of different protein anchors and other elements required for display.

    Science.gov (United States)

    Andreu, Cecilia; Del Olmo, Marcel Lí

    2018-03-01

    Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.

  17. Volumetric determination of tumor size abdominal masses. Problems -feasabilities

    International Nuclear Information System (INIS)

    Helmberger, H.; Bautz, W.; Sendler, A.; Fink, U.; Gerhardt, P.

    1995-01-01

    The most important indication for clinically reliable volumetric determination of tumor size in the abdominal region is monitoring liver metastases during chemotherapy. Determination of volume can be effectively realized using 3D reconstruction. Therefore, the primary data set must be complete and contiguous. The mass should be depicted strongly enhanced and free of artifacts. At present, this prerequisite can only be complied with using thin-slice spiral CT. Phantom studies have proven that a semiautomatic reconstruction algorithm is recommendable. The basic difficulties involved in volumetric determination of tumor size are the problems in differentiating active malignant mass and changes in the surrounding tissue, as well as the lack of histomorphological correlation. Possible indications for volumetry of gastrointestinal masses in the assessment of neoadjuvant therapeutic concepts are under scientific evaluation. (orig./MG) [de

  18. Plant automation and CRT display system for nuclear power plants

    International Nuclear Information System (INIS)

    Tekiguchi, S.; Sukai, K.; Watanabe, N.; Yamasaki, M.

    1987-01-01

    The reliability of plant operation is greatly improved by utilizing selected data for display in real-time on the screens of 12 color CRTs in the Central Control Room and voice information. The load on operators is reduced by automated operation of plant equipment and an operation guide. Information from the power station is transmitted to an off-site location via an optical fiber data way which makes it possible to display in real-time the same CRT screens displayed in the Central Control Room

  19. Conceptual Design of Industrial Process Displays

    DEFF Research Database (Denmark)

    Pedersen, C.R.; Lind, Morten

    1999-01-01

    discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display......Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper...... by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad...

  20. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  1. Drag and drop display & builder

    Energy Technology Data Exchange (ETDEWEB)

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  2. Volumetric and chemical control auxiliary circuit for a PWR primary circuit

    International Nuclear Information System (INIS)

    Costes, D.

    1990-01-01

    The volumetric and chemical control circuit has an expansion tank with at least one water-steam chamber connected to the primary circuit by a sampling pipe and a reinjection pipe. The sampling pipe feeds jet pumps controlled by valves. An action on these valves and pumps regulates the volume of the water in the primary circuit. A safety pipe controlled by a flap automatically injects water from the chamber into the primary circuit in case of ruptures. The auxiliary circuit has also systems for purifying the water and controlling the boric acid and hydrogen content [fr

  3. Volumetrics relate to the development of depression after traumatic brain injury.

    Science.gov (United States)

    Maller, Jerome J; Thomson, Richard H S; Pannek, Kerstin; Bailey, Neil; Lewis, Philip M; Fitzgerald, Paul B

    2014-09-01

    Previous research suggests that many people who sustain a traumatic brain injury (TBI), even of the mild form, will develop major depression (MD). We previously reported white matter integrity differences between those who did and did not develop MD after mild TBI. In this current paper, we aimed to investigate whether there were also volumetric differences between these groups, as suggested by previous volumetric studies in mild TBI populations. A sample of TBI-with-MD subjects (N=14), TBI-without-MD subjects (N=12), MD-without-TBI (N=26) and control subjects (no TBI or MD, N=23), received structural MRI brain scans. T1-weighted data were analysed using the Freesurfer software package which produces automated volumetric results. The findings of this study indicate that (1) TBI patients who develop MD have reduced volume in temporal, parietal and lingual regions compared to TBI patients who do not develop MD, and (2) MD patients with a history of TBI have decreased volume in the temporal region compared to those who had MD but without a history of TBI. We also found that more severe MD in those with TBI-with-MD significantly correlated with reduced volume in anterior cingulate, temporal lobe and insula. These findings suggest that volumetric reduction to specific regions, including parietal, temporal and occipital lobes, after a mild TBI may underlie the susceptibility of these patients developing major depression, in addition to altered white matter integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Circular displays: control/display arrangements and stereotype strength with eight different display locations.

    Science.gov (United States)

    Chan, Alan H S; Hoffmann, Errol R

    2015-01-01

    Two experiments are reported that were designed to investigate control/display arrangements having high stereotype strengths when using circular displays. Eight display locations relative to the operator and control were tested with rotational and translational controls situated on different planes according to the Frame of Reference Transformation Tool (FORT) model of Wickens et al. (2010). (Left. No, Right! Development of the Frame of Reference Transformation Tool (FORT), Proceedings of the Human Factors and Ergonomics Society 54th Annual Meeting, 54: 1022-1026). In many cases, there was little effect of display locations, indicating the importance of the Worringham and Beringer (1998. Directional stimulus-response compatibility: a test of three alternative principles. Ergonomics, 41(6), 864-880) Visual Field principle and an extension of this principle for rotary controls (Hoffmann and Chan (2013). The Worringham and Beringer 'visual field' principle for rotary controls. Ergonomics, 56(10), 1620-1624). The initial indicator position (12, 3, 6 and 9 o'clock) had a major effect on control/display stereotype strength for many of the six controls tested. Best display/control arrangements are listed for each of the different control types (rotational and translational) and for the planes on which they are mounted. Data have application where a circular display is used due to limited display panel space and applies to space-craft, robotics operators, hospital equipment and home appliances. Practitioner Summary: Circular displays are often used when there is limited space available on a control panel. Display/control arrangements having high stereotype strength are listed for four initial indicator positions. These arrangements are best for design purposes.

  5. A feasibility study of digital tomosynthesis for volumetric dental imaging

    International Nuclear Information System (INIS)

    Cho, M K; Kim, H K; Youn, H; Kim, S S

    2012-01-01

    We present a volumetric dental tomography method that compensates for insufficient projection views obtained from limited-angle scans. The reconstruction algorithm is based on the backprojection filtering method which employs apodizing filters that reduce out-of-plane blur artifacts and suppress high-frequency noise. In order to accompolish this volumetric imaging two volume-reconstructed datasets are synthesized. These individual datasets provide two different limited-angle scans performed at orthogonal angles. The obtained reconstructed images, using less than 15% of the number of projection views needed for a full skull phantom scan, demonstrate the potential use of the proposed method in dental imaging applications. This method enables a much smaller radiation dose for the patient compared to conventional dental tomography.

  6. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang; Nilsen, Roy A; Dutta, Sandeep; Samsonov, Dmitry; Hagiwara, Akira

    2006-01-01

    Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 deg.) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK

  7. Digital Display Integration Project Project Online 2.0

    CERN Document Server

    Bardsley, J N

    1999-01-01

    The electronic display industry is changing in three important ways. First, the dominance of the cathode ray tube (CRT) is being challenged by the development of flat panel displays (FPDs). This will lead to the availability of displays of higher performance, albeit at greater cost. Secondly, the analog interfaces between displays that show data and the computers that generate the data are being replaced by digital connections. Finally, a high-resolution display is becoming the most expensive component in computer system for homes and small offices. It is therefore desirable that the useful lifetime of the display extend over several years and that the electronics allows the display to be used with many different image sources. Hopefully, the necessity of having three or four large CRTs in one office to accommodate different computer operating systems or communication protocols will soon disappear. Instead, we hope to see a set of flat panels that can be switched to show several independent images from multip...

  8. Sizing the height of discontinuities, their characterisation in planar/ volumetric by phased array technique based on diffracted echoes

    International Nuclear Information System (INIS)

    Nardoni, G.; Certo, M.; Nardoni, P.; Feroldi, M.; Nardoni, D.; Possenti, L.; Filosi, A.; Quetti, S.

    2009-01-01

    This report demonstrate and discuss the result of experimental works carried out with the scope to study a procedure for improving the characterization (planar volumetric) and sizing the height of discontinuities detected by ultrasonic computerized systems like TOFD, PHASED ARRAY, C-B SCAN. To comply with code case 2235.9 the acceptance criteria illustrated in Tab 1,2,3 shall be applied. For TOFD the procedure for the calculation of the height is well determined and it is the most accurate with respect to any other ultrasonic technique. For PHASED ARRAY the procedures are on developing path. The aim of the present experimental test is to found criteria for the calculation of the height where Phased Array Technique is used. In addition the research has the scope to identify procedure for the characterization of discontinuities in planar and volumetric. The results of the experimental tests has been demonstrated two important achievements:1) The distance between the diffracted echoes is proportional to the height of the discontinuity;2) The ratio between the amplitude of the diffracted echoes could be considered a good criteria for the characterization of discontinuities in planar or volumetric. (author)

  9. Operational characteristics of pediatric radiology: Image display stations

    International Nuclear Information System (INIS)

    Taira, R.K.

    1987-01-01

    The display of diagnostic images is accomplished in the UCLA Pediatric Radiology Clinical Radiology Imaging System (CRIS) using 3 different types of digital viewing stations. These include a low resolution station with six 512 x 512 monitors, a high resolution station with three 1024 x 1024 monitors, and a very high resolution workstation with two 2048 x 2048 monitors. The display stations provide very basic image processing manipulations including zoom and scroll, contrast enhancement, and contrast reversal. The display stations are driven by a computer system which is dedicated for clinical use. During times when the clinical computer is unavailable (maintenance or system malfunction), the 512 x 512 workstation can be switched to operate from a research PACS system in the UCLA Image Processing Laboratory via a broadband communication network. Our initial clinical implementation involves digital viewing for pediatric radiology conferences. Presentation of inpatient cases use the six monitor 512 x 512 multiple viewing station. Later stages of the clinical implementation involve the use of higher resolution displays for the purpose of primary diagnosis from video displays

  10. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  11. Vortex information display system program description manual. [data acquisition from laser Doppler velocimeters and real time operation

    Science.gov (United States)

    Conway, R.; Matuck, G. N.; Roe, J. M.; Taylor, J.; Turner, A.

    1975-01-01

    A vortex information display system is described which provides flexible control through system-user interaction for collecting wing-tip-trailing vortex data, processing this data in real time, displaying the processed data, storing raw data on magnetic tape, and post processing raw data. The data is received from two asynchronous laser Doppler velocimeters (LDV's) and includes position, velocity, and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to locate vortices and plot their positions as a function of time. The interactive capability enables the user to make real time adjustments in processing data and provides a better definition of vortex behavior. Displaying the vortex information in real time produces a feedback capability to the LDV system operator allowing adjustments to be made in the collection of raw data. Both raw data and processing can be continually upgraded during flyby testing to improve vortex behavior studies. The post-analysis capability permits the analyst to perform in-depth studies of test data and to modify vortex behavior models to improve transport predictions.

  12. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    Science.gov (United States)

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  13. A Novel Methodology to Validate the Accuracy of Extraoral Dental Scanners and Digital Articulation Systems.

    Science.gov (United States)

    Ellakwa, A; Elnajar, S; Littlefair, D; Sara, G

    2018-05-03

    The aim of the current study is to develop a novel method to investigate the accuracy of 3D scanners and digital articulation systems. An upper and a lower poured stone model were created by taking impression of fully dentate male (fifty years old) participant. Titanium spheres were added to the models to allow for an easily recognisable geometric shape for measurement after scanning and digital articulation. Measurements were obtained using a Coordinate Measuring Machine to record volumetric error, articulation error and clinical effect error. Three scanners were compared, including the Imetric 3D iScan d104i, Shining 3D AutoScan-DS100 and 3Shape D800, as well as their respective digital articulation software packages. Stoneglass Industries PDC digital articulation system was also applied to the Imetric scans for comparison with the CMM measurements. All the scans displayed low volumetric error (p⟩0.05), indicating that the scanners themselves had a minor contribution to the articulation and clinical effect errors. The PDC digital articulation system was found to deliver the lowest average errors, with good repeatability of results. The new measuring technique in the current study was able to assess the scanning and articulation accuracy of the four systems investigated. The PDC digital articulation system using Imetric scans was recommended as it displayed the lowest articulation error and clinical effect error with good repeatability. The low errors from the PDC system may have been due to its use of a 3D axis for alignment rather than the use of a best fit. Copyright© 2018 Dennis Barber Ltd.

  14. SU-D-BRE-06: Modeling the Dosimetric Effects of Volumetric and Layer-Based Repainting Strategies in Spot Scanning Proton Treatment Plans

    International Nuclear Information System (INIS)

    Johnson, J E; Beltran, C; Herman, M G; Kruse, J J

    2014-01-01

    Purpose: To compare multiple repainting techniques as strategies for mitigating the interplay effect in free-breathing, spot scanning proton plans. Methods: An analytic routine modeled three-dimensional dose distributions of pencil-beam proton plans delivered to a moving target. The interplay effect was studied in subsequent calculations by modeling proton delivery from a clinical synchrotron based spot scanning system and respiratory target motion, patterned from surrogate breathing traces from clinical 4DCT scans and normalized to nominal 0.5 and 1 cm amplitudes. Two distinct repainting strategies were modeled. In idealized volumetric repainting, the plan is divided up and delivered multiple times successively, with each instance only delivering a fraction of the total MU. Maximum-MU repainting involves delivering a fixed number of MU per spot and repeating a given energy layer until the prescribed MU are reached. For each of 13 patient breathing traces, the dose was computed for up to four volumetric repaints and an array of maximum-MU values. Delivery strategies were inter-compared based on target coverage, dose homogeneity, and delivery time. Results: Increasing levels of repainting generally improved plan quality and reduced dosimetric variability at the expense of longer delivery time. Motion orthogonal to the scan direction yielded substantially greater dose deviations than motion parallel to the scan direction. For a fixed delivery time, maximum-MU repainting was most effective relative to idealized volumetric repainting at small maximum-MU values. For 1 cm amplitude motion orthogonal to the scan direction, the average homogeneity metric (D5 – D95)[%] of 23.4% was reduced to 7.6% with a 168 s delivery using volumetric repainting compared with 8.7% in 157.2 s for maximum-MU repainting. The associated static target homogeneity metric was 2.5%. Conclusion: Maximum-MU repainting can provide a reasonably effective alternative to volumetric repainting for

  15. Reducing uncertainties in volumetric image based deformable organ registration

    International Nuclear Information System (INIS)

    Liang, J.; Yan, D.

    2003-01-01

    Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable--thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation

  16. To 'display' or not to 'display'- that is the peptide

    CSIR Research Space (South Africa)

    Crampton, Michael C

    2008-11-01

    Full Text Available eukaryotic and prokaryotic systems but has mainly focused around phages (Etz et al, 2001), yeast (Kondo and Ueda, 2004) and bacteria (Lee et al 2003). The central variable domain of the FliC protein is dispensable and can be used for the insertion and display...

  17. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A; Toga, Arthur W; Thompson, Paul M

    2011-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic "Demons" algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future.

  18. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    Science.gov (United States)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  19. A status report regarding industry implementation of safety parameter display systems

    International Nuclear Information System (INIS)

    Lapinsky, G.W. Jr.; Eckenrode, R.J.; Goodman, P.C.; Correia, R.P.

    1989-04-01

    This report provides a summary of the results of the US Nuclear Regulatory Commission staff's review of installed safety parameter display systems (SPDS) at 57 nuclear units. The staff describes its rationale and practice for determining acceptability of some of the methods for satisfying the various requirements for SPDS as well as some methods that the staff has not accepted. The staff's discussion of identified strengths and weaknesses should aid licensees in solving some of the problems they may be experiencing with their SPDS

  20. Pins and posters: Paradigms for content publication on situated displays.

    Science.gov (United States)

    José, Rui; Pinto, Hélder; Silva, Bruno; Melro, Ana

    2013-01-01

    Public-display systems are still far from being a medium for meeting people's diverse communication goals. Moving toward open displays will require publication paradigms that can overcome the challenges of meaningful engagement and enable users to fully understand and control the publication process. The metaphors of pins and posters have inspired two complementary paradigms for public displays. Researchers implemented these paradigms in the Instant Places system, which they deployed on 10 displays in diverse urban locations for six months. They collected user and system data regarding the users' practices. The findings improve the understanding of what might drive user-generated content in networks of urban displays. Such knowledge can inform the design of tools and procedures for situated publication in public displays.

  1. Performance of NCAP projection displays

    Science.gov (United States)

    Jones, Philip J.; Tomita, Akira; Wartenberg, Mark

    1991-08-01

    Prototypes of projection displays based on dispersions of liquid crystal in polymer matrices are beginning to appear. The principle of operation depends on electrically switchable light scattering. They are potentially much brighter than current cathode ray tube (CRT) or twisted nematic liquid crystal (TN LC) cell based displays. Comparisons of efficacy and efficiency show this. The contrast and brightness of such displays depend on a combination of the f- number of the projection system and the scattering characteristics of the light valve. Simplified equations can be derived to show these effects. The degree of scattering of current NCAP formulations is sufficient to produce good contrast projection displays, at convenient voltages, that are around three times brighter than TN LC projectors because of the lack of polarizers in the former.

  2. On the use of volumetric strain meters to infer additional characteristics of short-period seismic radiation

    Science.gov (United States)

    Borcherdt, R.D.; Johnston, M.J.S.; Glassmoyer, G.

    1989-01-01

    Volumetric strain meters (Sacks-Evertson design) are installed at 15 sites along the San Andreas fault system, to monitor long-term strain changes for earthquake prediction. Deployment of portable broadband, high-resolution digital recorders (GEOS) at several of the sites extends the detection band for volumetric strain to periods shorter than 5 ?? 10-2 sec and permits the simultaneous observation of seismic radiation fields using conventional short-period pendulum seismometers. Recordings of local and regional earthquakes indicate that dilatometers respond to P energy but not direct shear energy and that straingrams can be used to resolve superimposed reflect P and S waves for inference of wave characteristics not permitted by either sensor alone. Simultaneous measurements of incident P- and S-wave amplitudes are used to introduce a technique for single-station estimates of wave field inhomogeneity, free-surface reflection coefficients and local material P velocity. -from Authors

  3. Digital Display Integration Project Project Online 2.0

    International Nuclear Information System (INIS)

    Bardsley, J. N.

    1999-01-01

    The electronic display industry is changing in three important ways. First, the dominance of the cathode ray tube (CRT) is being challenged by the development of flat panel displays (FPDs). This will lead to the availability of displays of higher performance, albeit at greater cost. Secondly, the analog interfaces between displays that show data and the computers that generate the data are being replaced by digital connections. Finally, a high-resolution display is becoming the most expensive component in computer system for homes and small offices. It is therefore desirable that the useful lifetime of the display extend over several years and that the electronics allows the display to be used with many different image sources. Hopefully, the necessity of having three or four large CRTs in one office to accommodate different computer operating systems or communication protocols will soon disappear. Instead, we hope to see a set of flat panels that can be switched to show several independent images from multiple sources or a composite image from a single source. The more rapid rate of technological improvements and the higher cost of flat panel displays raise the incentive for greater planning and guidance in the acquisition and integration of high performance displays into large organizations, such as LLNL. The goal of the Digital Display Integration Project (DDIP) is to provide such support. This will be achieved through collaboration with leading suppliers of displays, communications equipment and image-processing products, and by greater exchange of information within the Laboratory. The project will start in October 1999. During the first two years (FY2000-1), the primary focus of the program will be upon: introducing displays with high information content (over 5M pixels); facilitating the transition from analog to digital interfaces; enabling data transfer from key computer platforms; incorporating optical communications to remove length restrictions on data

  4. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.; Martin, Tobias; Grosset, A. V Pascal; Brownlee, Carson; Hollt, Thomas; Brown, Benjamin P.; Smith, Sean T.; Hansen, Charles D.

    2012-01-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  5. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.

    2012-02-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  6. Surface Immobilization of Human Arginase-1 with an Engineered Ice Nucleation Protein Display System in E. coli.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available Ice nucleation protein (INP is frequently used as a surface anchor for protein display in gram-negative bacteria. Here, MalE and TorA signal peptides, and three charged polypeptides, 6×Lys, 6×Glu and 6×Asp, were anchored to the N-terminus of truncated INP (InaK-N to improve its surface display efficiency for human Arginase1 (ARG1. Our results indicated that the TorA signal peptide increased the surface translocation of non-protein fused InaK-N and human ARG1 fused InaK-N (InaK-N/ARG1 by 80.7% and 122.4%, respectively. Comparably, the MalE signal peptide decreased the display efficiencies of both the non-protein fused InaK-N and InaK-N/ARG1. Our results also suggested that the 6×Lys polypeptide significantly increased the surface display efficiency of K6-InaK-N/ARG1 by almost 2-fold, while also practically abolishing the surface translocation of non-protein fused InaK-N, indicating the interesting roles of charged polypeptides in bacteria surface display systems. Cell surface-immobilized K6-InaK-N/ARG1 presented an arginase activity of 10.7 U/OD600 under the optimized conditions of 40°C, pH 10.0 and 1 mM Mn2+, which could convert more than 95% of L-Arginine (L-Arg to L-Ornithine (L-Orn in 16 hours. The engineered InaK-Ns expanded the INP surface display system, which aided in the surface immobilization of human ARG1 in E. coli cells.

  7. What are the potential advantages and disadvantages of volumetric CT scanning?

    Science.gov (United States)

    Voros, Szilard

    2009-01-01

    After the introduction and dissemination of 64-slice multislice computed tomography systems, cardiovascular CT has arrived at a crossroad, and different philosophies lead down different paths of technologic development. Increased number of detector rows in the z-axis led to the introduction of dynamic, volumetric scanning of the heart and allows for whole-organ imaging. Dynamic, volumetric "whole-organ" scanning significantly reduces image acquisition time; "single-beat whole-heart imaging" results in improved image quality and reduced radiation exposure and reduced contrast dose. It eliminates helical and pitch artifacts and allows for simultaneous imaging of the base and apex of the heart. Beyond coronary arterial luminal imaging, such innovations open up the opportunity for myocardial perfusion and viability imaging and coronary arterial plaque imaging. Dual-source technology with 2 x-ray tubes placed at 90-degree angles provides heart rate-independent temporal resolution and has the potential for tissue characterization on the basis of different attenuation values at different energy levels. Refined detector technology allows for improved low-contrast resolution and may be beneficial for more detailed evaluation of coronary arterial plaque composition. The clinical benefit of each of these technologies will have to be evaluated in carefully designed clinical trials and in everyday clinical practice. Such combined experience will probably show the relative benefit of each of these philosophies in different patient populations and in different clinical scenarios.

  8. The effect of display movement angle, indicator type and display location on control/display stereotype strength.

    Science.gov (United States)

    Hoffmann, Errol R; Chan, Alan H S

    2017-08-01

    Much research on stereotype strength relating display and control movements for displays moving in the vertical or horizontal directions has been reported. Here we report effects of display movement angle, where the display moves at angles (relative to the vertical) of between 0° and 180°. The experiment used six different controls, four display locations relative to the operator and three types of indicator. Indicator types were included because of the strong effects of the 'scale-side principle' that are variable with display angle. A directional indicator had higher stereotype strength than a neutral indicator, and showed an apparent reversal in control/display stereotype direction beyond an angle of 90°. However, with a neutral indicator this control reversal was not present. Practitioner Summary: The effects of display moving at angles other than the four cardinal directions, types of control, location of display and types of indicator are investigated. Indicator types (directional and neutral) have an effect on stereotype strength and may cause an apparent control reversal with change of display movement angle.

  9. Display analysis with the optimal control model of the human operator. [pilot-vehicle display interface and information processing

    Science.gov (United States)

    Baron, S.; Levison, W. H.

    1977-01-01

    Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.

  10. A novel apparatus for testing binocular function using the 'CyberDome' three-dimensional hemispherical visual display system.

    Science.gov (United States)

    Handa, T; Ishikawa, H; Shimizu, K; Kawamura, R; Nakayama, H; Sawada, K

    2009-11-01

    Virtual reality has recently been highlighted as a promising medium for visual presentation and entertainment. A novel apparatus for testing binocular visual function using a hemispherical visual display system, 'CyberDome', has been developed and tested. Subjects comprised 40 volunteers (mean age, 21.63 years) with corrected visual acuity of -0.08 (LogMAR) or better, and stereoacuity better than 100 s of arc on the Titmus stereo test. Subjects were able to experience visual perception like being surrounded by visual images, a feature of the 'CyberDome' hemispherical visual display system. Visual images to the right and left eyes were projected and superimposed on the dome screen, allowing test images to be seen independently by each eye using polarizing glasses. The hemispherical visual display was 1.4 m in diameter. Three test parameters were evaluated: simultaneous perception (subjective angle of strabismus), motor fusion amplitude (convergence and divergence), and stereopsis (binocular disparity at 1260, 840, and 420 s of arc). Testing was performed in volunteer subjects with normal binocular vision, and results were compared with those using a major amblyoscope. Subjective angle of strabismus and motor fusion amplitude showed a significant correlation between our test and the major amblyoscope. All subjects could perceive the stereoscopic target with a binocular disparity of 480 s of arc. Our novel apparatus using the CyberDome, a hemispherical visual display system, was able to quantitatively evaluate binocular function. This apparatus offers clinical promise in the evaluation of binocular function.

  11. Designing visual displays and system models for safe reactor operations based on the user's perspective of the system

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.

    1995-01-01

    Most designers are not schooled in the area of human-interaction psychology and therefore tend to rely on the traditional ergonomic aspects of human factors when designing complex human-interactive workstations related to reactor operations. They do not take into account the differences in user information processing behavior and how these behaviors may affect individual and team performance when accessing visual displays or utilizing system models in process and control room areas. Unfortunately, by ignoring the importance of the integration of the user interface at the information process level, the result can be sub-optimization and inherently error- and failure-prone systems. Therefore, to minimize or eliminate failures in human-interactive systems, it is essential that the designers understand how each user's processing characteristics affects how the user gathers information, and how the user communicates the information to the designer and other users. A different type of approach in achieving this understanding is Neuro Linguistic Programming (NLP). The material presented in this paper is based on two studies involving the design of visual displays, NLP, and the user's perspective model of a reactor system. The studies involve the methodology known as NLP, and its use in expanding design choices from the user's ''model of the world,'' in the areas of virtual reality, workstation design, team structure, decision and learning style patterns, safety operations, pattern recognition, and much, much more

  12. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    Science.gov (United States)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the

  13. Designing low cost LED display for the billboard

    Science.gov (United States)

    Hong, Yi-Jian; Uang, Chii-Maw; Wang, Ping-Chieh; Ho, Zu-Sheng

    2011-10-01

    With quickly advance of the computer, microelectronics and photonics technologies, LED display panel becomes a new electronic advertising media. It can be used to show any information whatever characters or graphics. Most LED display panels are built of many Light-Emitting Diodes arranged in a matrix form. The display has many advantages such as low power, low cost, long life and high definition. Because the display panel is asked to show rich color, the LED display panel's driving system becomes very complex. The design methodology of LED display panel's driver becomes more and more important to meet the market requirements. Cost is always the most important issue in public market domain. In this paper, we report a design methodology of LED display panel's driver based on the microprocessor control unit (MCU) system and LED display controller IC, HT1632C, to control three colors, RGB, color LED display panel and the modular panel size is 24*16 in matrix form. The HT1632C is a memory mapping LED display controller, it can be used on many applications, such as digital clock, thermometer, counter, voltmeter or other instrumentation readouts. Three pieces of HT1632C are used to drive a 24*16 RGB LED display panel, in our design case. Each HT163C chip is used to control one of the R, G and B color. As the drive mode is driven in DC mode, the RGB display panel can create and totally of seven colors under the control of MCU. The MCU generates the control signal to drive HT1632C. In this study, the software design methodology is adopted with dynamic display principle. When the scan frequency is 60Hz, LED display panel will get the clear picture and be able to display seven colors.

  14. Development and evaluation of a function-oriented display system

    International Nuclear Information System (INIS)

    Andresen, G.; Broberg, H.; Kvalem, J.

    2006-01-01

    Although no clear design philosophy for screen-based HSIs exist, Screen-based Human System Interfaces (HSI) are gradually replacing the conventional panel-based HSIs. The current paper presents a comprehensive design philosophy where a function-analysis of the plant forms the backbone of the information requirements, information presentation and display organization. The main characteristics of the concept are described as well as the development process behind the first prototype. Findings from the first usability test of the prototype are reported and potential benefits of the HSI are discussed. Ideas and problem areas for a future improved prototype are also described in the paper. The work is part of OECD Halden Reactor Project's ongoing research on innovative design for advanced NPP control-rooms and is conducted in close co-operation with Electricite de France. (authors)

  15. GPU-based Scalable Volumetric Reconstruction for Multi-view Stereo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Duchaineau, M; Max, N

    2011-09-21

    We present a new scalable volumetric reconstruction algorithm for multi-view stereo using a graphics processing unit (GPU). It is an effectively parallelized GPU algorithm that simultaneously uses a large number of GPU threads, each of which performs voxel carving, in order to integrate depth maps with images from multiple views. Each depth map, triangulated from pair-wise semi-dense correspondences, represents a view-dependent surface of the scene. This algorithm also provides scalability for large-scale scene reconstruction in a high resolution voxel grid by utilizing streaming and parallel computation. The output is a photo-realistic 3D scene model in a volumetric or point-based representation. We demonstrate the effectiveness and the speed of our algorithm with a synthetic scene and real urban/outdoor scenes. Our method can also be integrated with existing multi-view stereo algorithms such as PMVS2 to fill holes or gaps in textureless regions.

  16. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas.

    Science.gov (United States)

    Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping

    2015-01-01

    Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.

  17. Integrated light-guide plates that can control the illumination angle for liquid crystal display backlight system

    Science.gov (United States)

    Feng, Di; Yang, Xingpeng; Jin, Guofan; Yan, Yingbai; Fan, Shoushan

    2006-01-01

    Liquid crystal displays (LCDs) with edge-lit backlight systems offer several advantages, such as low energy consuming, low weight, and high uniformity of intensity, over traditional cathode-ray tube displays, and make them ideal for many applications including monitors in notebook personal computers, screens for TV, and many portable information terminals, such as mobile phones, personal digital assistants, etc. To satisfy market requirements for mobile and personal display panels, it is more and more necessary to modify the backlight system and make it thinner, lighter, and brighter all at once. In this paper, we have proposed a new integrated LGP based on periodic and aperiodic microprism structures by using polymethyl methacrylate material, which can be designed to control the illumination angle, and to get high uniformity of intensity. So the backlight system will be simplified to use only light sources and one LGP without using other optical sheets, such as reflection sheet, diffusion sheet and prism sheets. By using optimizing program and ray tracing method, the designed LGPs can achieve a uniformity of intensity better than 86%, and get a peak illumination angle from +400 to -200, without requiring other optical sheets. We have designed a backlight system with only one LED light source and one LGP, and other LGP design examples with different sizes (1.8 inches and 14.1 inches) and different light source (LED or CCFL), are performed also.

  18. Evaluation of technical design of advanced information display

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2003-03-15

    The performance of human machine system such as nuclear power plant is highly dependent on the suitability of the interface design of the system. As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on CRT or CBP (Computer Based Procedure). This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues as much as possible. The design Issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices.

  19. Evaluation of technical design of advanced information display

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae

    2003-03-01

    The performance of human machine system such as nuclear power plant is highly dependent on the suitability of the interface design of the system. As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on CRT or CBP (Computer Based Procedure). This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues as much as possible. The design Issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices

  20. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  1. Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.

    Science.gov (United States)

    Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth

    2015-04-01

    The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.

  2. Development of scanning holographic display using MEMS SLM

    Science.gov (United States)

    Takaki, Yasuhiro

    2016-10-01

    Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.

  3. Dimensions of Situatedness for Digital Public Displays

    Directory of Open Access Journals (Sweden)

    Rui José

    2014-01-01

    Full Text Available Public displays are often strongly situated signs deeply embedded in their physical, social, and cultural setting. Understanding how the display is coupled with on-going situations, its level of situatedness, provides a key element for the interpretation of the displays themselves but is also an element for the interpretation of place, its situated practices, and its social context. Most digital displays, however, do not achieve the same sense of situatedness that seems so natural in their nondigital counterparts. This paper investigates people’s perception of situatedness when considering the connection between public displays and their context. We have collected over 300 photos of displays and conducted a set of analysis tasks involving focus groups and structured interviews with 15 participants. The contribution is a consolidated list of situatedness dimensions that should provide a valuable resource for reasoning about situatedness in digital displays and informing the design and development of display systems.

  4. Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures.

    Directory of Open Access Journals (Sweden)

    Luping Zhou

    Full Text Available Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging has been extensively studied in the past decades for prediction of Alzheimer's disease (AD and mild cognitive impairment (MCI. The volumes of gray matter (GM, white matter (WM and cerebrospinal fluid (CSF are the most commonly used measurements, resulting in many successful applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI and each edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality problem resulting from the large number of network features, a supervised dimensionality reduction method is further employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison with some other commonly used approaches. In addition, although the proposed method can be easily generalized to incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by the experimental

  5. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  6. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    Today, in water and wastewater industry a lot of mechanical-volumetric flow meters are used for the navigation of the produced water and the data of these flow meters, due to use in a wide geographical range, is done physically and by in person presence. All this makes reading the data costly and, in some cases, due to ...

  7. Vacuum status-display and sector-conditioning programs

    International Nuclear Information System (INIS)

    Skelly, J.; Yen, S.

    1989-01-01

    Two programs have been developed for observation and control of the AGS vacuum system, which include these notable features: they incorporate a graphical user interface, and they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The Status Display Program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks, and posts a graphical display of their status. The Sector Conditioning Program likewise invites sector selection, produces the same status display, and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending for several hours. As additional devices are installed in the vacuum system, the devices are likewise added to the relational database; these programs then automatically include the new devices. 2 refs., 1 fig

  8. The Effect of Elevation on Volumetric Measurements of the Lower Extremity

    Directory of Open Access Journals (Sweden)

    Cordial M. Gillette

    2017-07-01

    Full Text Available Background: The empirical evidence for the use of RICE (rest, ice, compression, elevation has been questioned regarding its   clinical effectiveness. The component of RICE that has the least literature regarding its effectiveness is elevation. Objective: The objective of this study was to determine if various positions of elevation result in volumetric changes of the lower extremity. Methodology: A randomized crossover design was used to determine the effects of the four following conditions on volumetric changes of the lower extremity: seated at the end of a table (seated, lying supine (flat, lying supine with the foot elevated 12 inches off the table (elevated, and lying prone with the knees bent to 90 degrees (prone. The conditions were randomized using a Latin Square. Each subject completed all conditions with at least 24 hours between each session. Pre and post volumetric measurements were taken using a volumetric tank. The subject was placed in one of the four described testing positions for 30 minutes. The change in weight of the displaced water was the main outcome measure. The data was analyzed using an ANOVA of the pre and post measurements with a Bonferroni post hoc analysis. The level of significance was set at P<.05 for all analyses. Results: The only statistically significant difference was between the gravity dependent position (seated and all other positions (p <.001. There was no significant difference between lying supine (flat, on a bolster (elevated, or prone with the knees flexed to 90 degrees (prone. Conclusions: From these results, the extent of elevation does not appear to have an effect on changes in low leg volume. Elevation above the heart did not significantly improve reduction in limb volume, but removing the limb from a gravity dependent position might be beneficial.

  9. Dyes for displays

    Science.gov (United States)

    Claussen, U.

    1984-01-01

    The improvement of contrast and visibility of LCD by two different means was undertaken. The two methods are: (1) development of fluorescent dyes to increase the visibility of fluorescent activated displays (FLAD); and (2) development of dichroic dyes to increase the contrast of displays. This work was done in close cooperation with the electronic industry, where the newly synthesized dyes were tested. The targets for the chemical synthesis were selected with the help of computer model calculations. A marketable range of dyes was developed. Since the interest of the electronic industries concerning FLAD was low, the investigations were stopped. Dichroic dyes, especially black mixtures with good light fastness, order parameter, and solubility in nematic phases were developed. The application of these dyes is restricted to indoor use because of an increase of viscosity below -10 C. Applications on a technical scale, e.g., for the automotive industry, will be possible if the displays work at temperatures down to -40 C. This problem requires a complex optimization of the dye/nematic phase system.

  10. Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer.

    Directory of Open Access Journals (Sweden)

    Abbas Cheddad

    Full Text Available INTRODUCTION: Mammographic density, the white radiolucent part of a mammogram, is a marker of breast cancer risk and mammographic sensitivity. There are several means of measuring mammographic density, among which are area-based and volumetric-based approaches. Current volumetric methods use only unprocessed, raw mammograms, which is a problematic restriction since such raw mammograms are normally not stored. We describe fully automated methods for measuring both area and volumetric mammographic density from processed images. METHODS: The data set used in this study comprises raw and processed images of the same view from 1462 women. We developed two algorithms for processed images, an automated area-based approach (CASAM-Area and a volumetric-based approach (CASAM-Vol. The latter method was based on training a random forest prediction model with image statistical features as predictors, against a volumetric measure, Volpara, for corresponding raw images. We contrast the three methods, CASAM-Area, CASAM-Vol and Volpara directly and in terms of association with breast cancer risk and a known genetic variant for mammographic density and breast cancer, rs10995190 in the gene ZNF365. Associations with breast cancer risk were evaluated using images from 47 breast cancer cases and 1011 control subjects. The genetic association analysis was based on 1011 control subjects. RESULTS: All three measures of mammographic density were associated with breast cancer risk and rs10995190 (p0.10 for risk, p>0.03 for rs10995190. CONCLUSIONS: Our results show that it is possible to obtain reliable automated measures of volumetric and area mammographic density from processed digital images. Area and volumetric measures of density on processed digital images performed similar in terms of risk and genetic association.

  11. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    Science.gov (United States)

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  12. Structural brain alterations of Down's syndrome in early childhood evaluation by DTI and volumetric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Gunbey, Hediye Pinar; Bilgici, Meltem Ceyhan; Aslan, Kerim; Incesu, Lutfi [Ondokuz Mayis University, Faculty of Medicine, Department of Radiology, Kurupelit, Samsun (Turkey); Has, Arzu Ceylan [Bilkent University, National Magnetic Resonance Research Center, Ankara (Turkey); Ogur, Methiye Gonul [Ondokuz Mayis University, Department of Genetics, Samsun (Turkey); Alhan, Aslihan [Ufuk University, Department of Statistics, Ankara (Turkey)

    2017-07-15

    To provide an initial assessment of white matter (WM) integrity with diffusion tensor imaging (DTI) and the accompanying volumetric changes in WM and grey matter (GM) through volumetric analyses of young children with Down's syndrome (DS). Ten children with DS and eight healthy control subjects were included in the study. Tract-based spatial statistics (TBSS) were used in the DTI study for whole-brain voxelwise analysis of fractional anisotropy (FA) and mean diffusivity (MD) of WM. Volumetric analyses were performed with an automated segmentation method to obtain regional measurements of cortical volumes. Children with DS showed significantly reduced FA in association tracts of the fronto-temporo-occipital regions as well as the corpus callosum (CC) and anterior limb of the internal capsule (p < 0.05). Volumetric reductions included total cortical GM, cerebellar GM and WM volume, basal ganglia, thalamus, brainstem and CC in DS compared with controls (p < 0.05). These preliminary results suggest that DTI and volumetric analyses may reflect the earliest complementary changes of the neurodevelopmental delay in children with DS and can serve as surrogate biomarkers of the specific elements of WM and GM integrity for cognitive development. (orig.)

  13. In vivo evaluation of biosensors volumetric bio-distribution for measurement of metabolic activity by X-ray correlation, fluorescence, Cerenkov image and radioisotope

    International Nuclear Information System (INIS)

    Ramirez N, G. J.

    2016-01-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence and radioisotopic imaging) through the development of a tri dimensional (3D) image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (Mars), was used to acquire bidimensional (2D) images, which were processed to obtain the 3D reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered backprojection and inverse Radon transformation were used as main image-processing techniques. In the first instance, the algorithm developed in Mat lab was able to reconstruct in the 3D form the skeleton of the mice under study. Subsequently, the algorithm was able to get the volumetric profiles of "9"9"mTc-Folate-Bombesin (radioisotopic image), "1"7"7Lu-Folate-Bombesin (Cerenkov image), and FolateRSense 680 (fluorescence image) in the tumors and kidneys of the mice. No significant differences were detected between the volumetric quantifications using the standard measurement techniques and the quantifications obtained with the proposal made in this study, nor between the volumetric uptakes in the structures of interest. With the structures reconstructed in the 3D form, the fusion of anatomical (as the skeleton) and functional structures derived from the images of the biosensors uptake was achieved The imaging 3D reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is an advantage in comparison to similar reconstruction methods. (Author)

  14. 100KE/KW fuel storage basin surface volumetric factors

    International Nuclear Information System (INIS)

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin

  15. Liquid crystal displays with plastic substrates

    Science.gov (United States)

    Lueder, Ernst H.

    1998-04-01

    Plastic substrates for the cells of displays exhibit only 1/6 of the weight of glass substrates; they are virtually unbreakable; their flexibility allows the designer to give them a shape suppressing reflections, to realize a display board on a curved surface or meeting the requirements for an appealing styling; displays with plastics are thinner which provides a wider viewing angle. These features render them attractive for displays in portable systems such as mobile phones, pagers, smart cards, personal digital assistants (PDAs) and portable computers. Reflective displays are especially attractive as they don't need a back light. The most important requirements are the protection of plastics against gas permeation and chemical agents, the prevention of layers on plastics to crack or peel off when the plastic is bent and the development of low temperature thin film processes because the plastics, as a rule, only tolerate temperatures below 150 degrees Celsius. Bistable reflective FLC- and PSCT-displays with plastic substrates will be introduced. Special sputtered SiO2-orientation layers preserve the displayed information even if pressure or torsion is applied. MIM-addressed PDLC-displays require additional Al- or Ti-layers which provide the necessary ductility. Sputtered or PECVD-generated TFTs can be fabricated on plastics at temperatures below 150 degrees Celsius.

  16. The human factors of CRT displays for nuclear power plant control

    International Nuclear Information System (INIS)

    Danchak, M.M.

    1984-01-01

    This chapter attempts to show how the Cathode Ray Tube (CRT) can be used to effectively present information to the operator rather than just data. The capabilities of the human as a sensing and information processing subsystem are discussed with CRT displays in mind. The display system is described in terms of its hardware and functioning. The interface between the two is examined by providing substantive guidelines for the effective design of CRT displays for nuclear power plant control. Alphanumeric displays, graphic displays, and representational displays are treated. The design of CRT displays for nuclear power plant control requires an extensive knowledge of cognitive psychology, computer display systems and the process being controlled

  17. Volumetric and superficial characterization of carbon activated

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T.

    2000-01-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  18. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  19. Volumetrically-Derived Global Navigation Satellite System Performance Assessment from the Earths Surface through the Terrestrial Service Volume and the Space Service Volume

    Science.gov (United States)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user from the Earth's surface through the Terrestrial Service Volume (TSV) to the edge of the Space Service Volume (SSV), when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative was recently expanded to compare nadir-facing and zenith-facing user hemispherical antenna coverage with omnidirectional antenna coverage at different distances of 8,000 km altitude and 36,000 km altitude. This report summarizes the performance using these antenna coverage techniques at distances ranging from 100 km altitude to 36,000 km to be all encompassing, as well as the volumetrically-derived system availability metrics.

  20. Versatile microbial surface-display for environmental remediation and biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  1. Volumetric water control in a large-scale open canal irrigation system with many smallholders: The case of Chancay-Lambayeque in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.; Vincent, L.F.

    2011-01-01

    Volumetric water control (VWC) is widely seen as a means to increase productivity through flexible scheduling and user incentives to apply just enough water. However, the technical and social requirements for VWC are poorly understood. Also, many experts assert that VWC in large-scale open canals

  2. The integration of novel EAP-based Braille cells for use in a refreshable tactile display

    Science.gov (United States)

    Di Spigna, N.; Chakraborti, P.; Winick, D.; Yang, P.; Ghosh, T.; Franzon, P.

    2010-04-01

    Structures demonstrating the viability of both the hydraulic and latching Braille dot, and the dielectric elastomer fiber Braille dot have been fabricated and characterized. A hydraulic proof-of-concept structure has achieved the necessary volumetric change required to lift a Braille dot over 0.5mm at voltages under 1000V and at speeds under 100ms. Long bimorphs have been fabricated that demonstrate large tip displacements over 2mm that could be used to mechanically latch the Braille rod in the 'up' position to achieve the force requirement. The addition of radial prestrain in dielectric elastomer tubes has reduced the wall thickness and directed the strain in the axial direction which has had a dramatic impact on their resulting characteristics. The required bias voltage for the dielectric elastomer fiber Braille dot has been reduced from 15.5kV to 8.75kV while the Braille head tip displacement of a fabricated prototype has almost tripled on average and now also exceeds the required displacement for a refreshable Braille display. Finally, potential solutions to the current shortcomings of both designs in meeting all of the requirements for such a display are discussed.

  3. Influence of Cobb Angle and ISIS2 Surface Topography Volumetric Asymmetry on Scoliosis Research Society-22 Outcome Scores in Scoliosis.

    Science.gov (United States)

    Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian

    2013-11-01

    Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright

  4. Effects of Viewing Displays from Different Distances on Human Visual System

    Directory of Open Access Journals (Sweden)

    Mohamed Z. Ramadan

    2017-11-01

    Full Text Available The current stereoscopic 3D displays have several human-factor issues including visual-fatigue symptoms such as eyestrain, headache, fatigue, nausea, and malaise. The viewing time and viewing distance are factors that considerably affect the visual fatigue associated with 3D displays. Hence, this study analyzes the effects of display type (2D vs. 3D and viewing distance on visual fatigue during a 60-min viewing session based on electroencephalogram (EEG relative beta power, and alpha/beta power ratio. In this study, twenty male participants watched four videos. The EEGs were recorded at two occipital lobes (O1 and O2 of each participant in the pre-session (3 min, post-session (3 min, and during a 60-min viewing session. The results showed that the decrease in relative beta power of the EEG and the increase in the alpha/beta ratio from the start until the end of the viewing session were significantly higher when watching the 3D display. When the viewing distance was increased from 1.95 m to 3.90 m, the visual fatigue was decreased in the case of the 3D-display, whereas the fatigue was increased in the case of the 2D-display. Moreover, there was approximately the same level of visual fatigue when watching videos in 2D or 3D from a long viewing distance (3.90 m.

  5. [Microcomputer control of a LED stimulus display device].

    Science.gov (United States)

    Ohmoto, S; Kikuchi, T; Kumada, T

    1987-02-01

    A visual stimulus display system controlled by a microcomputer was constructed at low cost. The system consists of a LED stimulus display device, a microcomputer, two interface boards, a pointing device (a "mouse") and two kinds of software. The first software package is written in BASIC. Its functions are: to construct stimulus patterns using the mouse, to construct letter patterns (alphabet, digit, symbols and Japanese letters--kanji, hiragana, katakana), to modify the patterns, to store the patterns on a floppy disc, to translate the patterns into integer data which are used to display the patterns in the second software. The second software package, written in BASIC and machine language, controls display of a sequence of stimulus patterns in predetermined time schedules in visual experiments.

  6. Characterizing volumetric deformation behavior of naturally occuring bituminous sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2009-05-01

    Full Text Available newly proposed hydrostatic compression test procedure. The test procedure applies field loading conditions of off-road construction and mining equipment to closely simulate the volumetric deformation and stiffness behaviour of oil sand materials. Based...

  7. The integrated workstation, a realtime data acquisition, analysis and display system

    International Nuclear Information System (INIS)

    Treadway, T.R. III.

    1991-05-01

    The Integrated Workstation was developed at Lawrence Livermore National Laboratory to consolidate the data from many widely dispersed systems in order to provide an overall indication of the enrichment performance of the Atomic Vapor Laser Isotope Separation experiments. In order to accomplish this task a Hewlett Packard 9000/835 turboSRX was employed to acquire over 150 analog input signals. Following the data acquisition, a spreadsheet-type analysis package and interpreter was used to derive 300 additional values. These values were the results of applying physics models to the raw data. Following the calculations were plotted and archived for post-run analysis and report generation. Both the modeling calculations, and real-time plot configurations can be dynamically reconfigured as needed. Typical sustained data acquisition and display rates of the system was 1 Hz. However rates exceeding 2.5 Hz have been obtained. This paper will discuss the instrumentation, architecture, implementation, usage, and results of this system in a set of experiments that occurred in 1989. 2 figs

  8. Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Hasman, Henrik; Schembri, Mark

    2002-01-01

    bridges does not interfere with surface display, and Ag43 chimeras are correctly processed into alpha- and beta-modules, offering optional and easy release of the chimeric alpha-subunits. Furthermore, Ag43 can be displayed in many gram-negative bacteria. This feature is exploited for display of our...... chimeras in an attenuated Salmonella strain....

  9. Interactive editing program using display

    International Nuclear Information System (INIS)

    Lang, I.; Ehsenski, J.; Namsraj, Yu.; Fefilov, B.V.

    1976-01-01

    A general description is given as well as principal functions are considered of 'DOSE' interactive editor program with a display involved. The program has been elaborated for TRA/1-1001 computer. This program enables one to edit and correct texts in algorithmical languages on a raster display screen as well as to provide perforated tapes for their further usage. 'DOSE' program is regarded as a basic program system for a set of TRA/1 and MINSK-32 computers

  10. Continuous assessment of carotid intima-media thickness applied to estimate a volumetric compliance using B-mode ultrasound sequences

    International Nuclear Information System (INIS)

    Pascaner, A F; Craiem, D; Casciaro, M E; Graf, S; Danielo, R; Guevara, E

    2015-01-01

    Recent reports have shown that the carotid artery wall had significant movements not only in the radial but also in the longitudinal direction during the cardiac cycle. Accordingly, the idea that longitudinal elongations could be systematically neglected for compliance estimations became controversial. Assuming a dynamic change in vessel length, the standard measurement of cross-sectional compliance can be revised. In this work, we propose to estimate a volumetric compliance based on continuous measurements of carotid diameter and intima-media thickness (IMT) from B-mode ultrasound sequences. Assuming the principle of conservation of the mass of wall volume (compressibility equals zero), a temporal longitudinal elongation can be calculated to estimate a volumetric compliance. Moreover, elongations can also be estimated allowing small compressibility factors to model some wall leakage. The cross-sectional and the volumetric compliance were estimated in 45 healthy volunteers and 19 asymptomatic patients. The standard measurement underestimated the volumetric compliance by 25% for young volunteers (p < 0.01) and 17% for patients (p < 0.05). When compressibility factors different from zero were allowed, volunteers and patients reached values of 9% and 4%, respectively. We conclude that a simultaneous assessment of carotid diameter and IMT can be employed to estimate a volumetric compliance incorporating a longitudinal elongation. The cross-sectional compliance, that neglects the change in vessel length, underestimates the volumetric compliance. (paper)

  11. An Investigation of Interval Management Displays

    Science.gov (United States)

    Swieringa, Kurt A.; Wilson, Sara R.; Shay, Rick

    2015-01-01

    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to transition the most mature ATM technologies from the laboratory to the National Airspace System. One selected technology is Interval Management (IM), which uses onboard aircraft automation to compute speeds that help the flight crew achieve and maintain precise spacing behind a preceding aircraft. Since ATD-1 focuses on a near-term environment, the ATD-1 flight demonstration prototype requires radio voice communication to issue an IM clearance. Retrofit IM displays will enable pilots to both enter information into the IM avionics and monitor IM operation. These displays could consist of an interface to enter data from an IM clearance and also an auxiliary display that presents critical information in the primary field-of-view. A human-in-the-loop experiment was conducted to examine usability and acceptability of retrofit IM displays, which flight crews found acceptable. Results also indicate the need for salient alerting when new speeds are generated and the desire to have a primary field of view display available that can display text and graphic trend indicators.

  12. Interactive computer enhanced remote viewing system

    International Nuclear Information System (INIS)

    Smith, D.A.; Tourtellott, J.A.

    1994-01-01

    The Interactive, Computer Enhanced, Remote Viewing System (ICERVSA) is a volumetric data system designed to help the Department of Energy (DOE) improve remote operations in hazardous sites by providing reliable and accurate maps of task spaces where robots will clean up nuclear wastes. The ICERVS mission is to acquire, store, integrate and manage all the sensor data for a site and to provide the necessary tools to facilitate its visualization and interpretation. Empirical sensor data enters through the Common Interface for Sensors and after initial processing, is stored in the Volumetric Database. The data can be analyzed and displayed via a Graphic User Interface with a variety of visualization tools. Other tools permit the construction of geometric objects, such as wire frame models, to represent objects which the operator may recognize in the live TV image. A computer image can be generated that matches the viewpoint of the live TV camera at the remote site, facilitating access to site data. Lastly, the data can be gathered, processed, and transmitted in acceptable form to a robotic controller. Descriptions are given of all these components. The final phase of the ICERVS project, which has just begun, will produce a full scale system and demonstrate it at a DOE site to be selected. A task added to this Phase will adapt the ICERVS to meet the needs of the Dismantlement and Decommissioning (D and D) work at the Oak Ridge National Laboratory (ORNL)

  13. Nuclear image display controller

    International Nuclear Information System (INIS)

    Roth, D.A.

    1985-01-01

    In a nuclear imaging system the digitized x and y coordinates of gamma ray photon emission events address memory locations corresponding to the coordinates. The respective locations are incremented each time they are addressed so at the end of a selected time or event count period the locations contain digital values or raw data corresponding to the intensity of pixels comprising an image frame. The raw data for a frame is coupled to one input of an arithmetic logic unit (ALU) whose output is coupled to a display controller memory. The output of the controller memory is coupled to another ALU input with a feedback bus and is also coupled to a further signal processing circuit which includes means for converting processed data to analog video signals for television display. The ALU is selectively controlled to let raw image data pass through to the display controllor memory or alternately to add (or subtract) raw data for the last image frame developed to the raw data for preceding frames held in the display controller to thereby produce the visual effect on the television screen of an isotope flowing through anatomy

  14. Alternative Paths to Hearing (A Conjecture. Photonic and Tactile Hearing Systems Displaying the Frequency Spectrum of Sound

    Directory of Open Access Journals (Sweden)

    E. H. Hara

    2006-01-01

    Full Text Available In this article, the hearing process is considered from a system engineering perspective. For those with total hearing loss, a cochlear implant is the only direct remedy. It first acts as a spectrum analyser and then electronically stimulates the neurons in the cochlea with a number of electrodes. Each electrode carries information on the separate frequency bands (i.e., spectrum of the original sound signal. The neurons then relay the signals in a parallel manner to the section of the brain where sound signals are processed. Photonic and tactile hearing systems displaying the spectrum of sound are proposed as alternative paths to the section of the brain that processes sound. In view of the plasticity of the brain, which can rewire itself, the following conjectures are offered. After a certain period of training, a person without the ability to hear should be able to decipher the patterns of photonic or tactile displays of the sound spectrum and learn to ‘hear’. This is very similar to the case of a blind person learning to ‘read’ by recognizing the patterns created by the series of bumps as their fingers scan the Braille writing. The conjectures are yet to be tested. Designs of photonic and tactile systems displaying the sound spectrum are outlined.

  15. A comparison of semi-automated volumetric vs linear measurement of small vestibular schwannomas.

    Science.gov (United States)

    MacKeith, Samuel; Das, Tilak; Graves, Martin; Patterson, Andrew; Donnelly, Neil; Mannion, Richard; Axon, Patrick; Tysome, James

    2018-04-01

    Accurate and precise measurement of vestibular schwannoma (VS) size is key to clinical management decisions. Linear measurements are used in routine clinical practice but are prone to measurement error. This study aims to compare a semi-automated volume segmentation tool against standard linear method for measuring small VS. This study also examines whether oblique tumour orientation can contribute to linear measurement error. Experimental comparison of observer agreement using two measurement techniques. Tertiary skull base unit. Twenty-four patients with unilateral sporadic small (linear dimension following reformatting to correct for oblique orientation of VS. Intra-observer ICC was higher for semi-automated volumetric when compared with linear measurements, 0.998 (95% CI 0.994-0.999) vs 0.936 (95% CI 0.856-0.972), p linear measurements, 0.989 (95% CI 0.975-0.995) vs 0.946 (95% CI 0.880-0.976), p = 0.0045. The intra-observer %SDD was similar for volumetric and linear measurements, 9.9% vs 11.8%. However, the inter-observer %SDD was greater for volumetric than linear measurements, 20.1% vs 10.6%. Following oblique reformatting to correct tumour angulation, the mean increase in size was 1.14 mm (p = 0.04). Semi-automated volumetric measurements are more repeatable than linear measurements when measuring small VS and should be considered for use in clinical practice. Oblique orientation of VS may contribute to linear measurement error.

  16. Sistim Tampilan Jadwal Pesawat Udara Dengan Mode Dual Display Di Bandara Ahmad Yani Semarang

    Directory of Open Access Journals (Sweden)

    Hari Suseno

    2014-02-01

    Full Text Available Schedule for airline passengers is important information that is provided by the airport manager. Airport flight information on the display screen using a media schedule called flight information display system (FIDS. FIDS system comes from two processes that display arrival and departure information. The device comes from the appearance of two separate computer with information for each. The use of two computers that are used to the old system at the airport FIDS devices. This research aims to create an integrated FIDS system device to combine the information into one unified display in dual display mode pattern display (dual view. Design systems using software programming VB6 and hardware modifications applied to design a system FIDS new on view flight schedules. With a centralized system obtained an interactive display schedules for flight schedule. Keywords : FIDS system; Flight schedule; Display  information

  17. Evaluation of technical design of advanced information display(III)

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Jung, Sung Hae; Park, Joon Yong; Kim, Nam Cheol; Park, Soon Hyuk

    2005-02-01

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing digitalized information display by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices. The Design Review Supporting System for Advanced Information Display(DReSS-AID) was developed for the practical usage of evaluators-in-field, which was implemented with Hangul version guidelines

  18. Evaluation of technical design of advanced information display(III)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Jung, Sung Hae; Park, Joon Yong; Kim, Nam Cheol [Kumoh National Institute of Technology, Gumi (Korea, Republic of); Park, Soon Hyuk [DNT Inc., Daejeon (Korea, Republic of)

    2005-02-15

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing digitalized information display by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices. The Design Review Supporting System for Advanced Information Display(DReSS-AID) was developed for the practical usage of evaluators-in-field, which was implemented with Hangul version guidelines.

  19. Varifocal mirror display of organ surfaces from CT scans

    International Nuclear Information System (INIS)

    Pizer, S.M.; Fuchs, H.; Bloomberg, S.H.; Li Ching Tsai; Heinz, E.R.

    1982-01-01

    A means will be presented of constructing a powerful varifocal mirror 3D display system with limited cost based on an ordinary color video digital display system. The importance of dynamic interactive control of the display of these images will be discussed; in particular, the design and usefulness of a method allowing real-time user-controlled motion of the 3D object being displayed will be discussed. Also, an effective method will be described of presenting images made of surfaces by the straightforward, automatic calculation of 3D edge strength, the ordering of the resulting voxels by edge strength, and the 3D grey-scale display of the top voxels on this ordered list. The application of these ideas to the 3D display of the intimal wall of the region of bifurcation of the carotid artery from 12-24 CT scans of the neck will be discussed

  20. Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods.

    Science.gov (United States)

    Georgiadis, Pantelis; Cavouras, Dionisis; Kalatzis, Ioannis; Glotsos, Dimitris; Athanasiadis, Emmanouil; Kostopoulos, Spiros; Sifaki, Koralia; Malamas, Menelaos; Nikiforidis, George; Solomou, Ekaterini

    2009-01-01

    Three-dimensional (3D) texture analysis of volumetric brain magnetic resonance (MR) images has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to evaluate the efficiency of 3D textural features using a pattern recognition system in the task of discriminating benign, malignant and metastatic brain tissues on T1 postcontrast MR imaging (MRI) series. The dataset consisted of 67 brain MRI series obtained from patients with verified and untreated intracranial tumors. The pattern recognition system was designed as an ensemble classification scheme employing a support vector machine classifier, specially modified in order to integrate the least squares features transformation logic in its kernel function. The latter, in conjunction with using 3D textural features, enabled boosting up the performance of the system in discriminating metastatic, malignant and benign brain tumors with 77.14%, 89.19% and 93.33% accuracy, respectively. The method was evaluated using an external cross-validation process; thus, results might be considered indicative of the generalization performance of the system to "unseen" cases. The proposed system might be used as an assisting tool for brain tumor characterization on volumetric MRI series.

  1. Evaluation of tactual displays for flight control

    Science.gov (United States)

    Levison, W. H.; Tanner, R. B.; Triggs, T. J.

    1973-01-01

    Manual tracking experiments were conducted to determine the suitability of tactual displays for presenting flight-control information in multitask situations. Although tracking error scores are considerably greater than scores obtained with a continuous visual display, preliminary results indicate that inter-task interference effects are substantially less with the tactual display in situations that impose high visual scanning workloads. The single-task performance degradation found with the tactual display appears to be a result of the coding scheme rather than the use of the tactual sensory mode per se. Analysis with the state-variable pilot/vehicle model shows that reliable predictions of tracking errors can be obtained for wide-band tracking systems once the pilot-related model parameters have been adjusted to reflect the pilot-display interaction.

  2. Coupling Retinal Scanning Displays to the Human Visual System: Visual System Response and Engineering Considerations

    National Research Council Canada - National Science Library

    Turner, Stuart

    2002-01-01

    A retinal scanning display (RSD) is a visual display that presents an image to an observer via a modulated beam of light that is directed through the eye's pupil and rapidly scanned in a raster-like pattern across the retina...

  3. Strategy-oriented display concept to assist severe accident management

    International Nuclear Information System (INIS)

    Jeong, Kwangsub; Ha, Jaejoo

    2000-01-01

    The Critical Function Monitoring System (CFMS) is a typical Safety Parameter Display System (SPDS) to assist the operation of Korean Standard Nuclear Power Plants during normal and emergency operation, and SPDS for severe accident is being developed in Korea. When the existing CFMS is used under a severe accident situation, some problems are expected from: (1) different design basis, i.e. prevention of core melt vs. protection of radiation release to environment, (2) different parameters for decision-making, and (3) different domain and depth of information to restore the plant. To resolve the above problems, a concept, 'Strategy-Oriented Information Display' concept, for displaying information for severe accident management is developed in this paper. Whereas the existing SPDS structure is based on the critical safety function, the developed concept is based on the severe accident management strategy. The display for each strategy includes the plant parameters to check the status of plant and component with the logical or graphical views necessary for executing the strategy. As the application of the proposed concept, KAERI is developing a display system, the prototype severe accident SPDS, Severe Accident Management Display System (SAMDIS), to assist plant personnel for executing Korean Severe Accident Management Guidelines. CFMS is developed for a general display suitable to all situations with various displays. On the contrary, SAMDIS provides all the relevant information on one screen based on the proposed concept. The SAMDIS screen shows more extensive area than CFMS and thus plant personnel can recognize the overall plant status at a glance. This concept is quite effective when used with severe accident management guidelines because of the relatively macroscopic characteristics of a severe accident management strategy. (author)

  4. A Photo Storm Report Mobile Application, Processing/Distribution System, and AWIPS-II Display Concept

    Science.gov (United States)

    Longmore, S. P.; Bikos, D.; Szoke, E.; Miller, S. D.; Brummer, R.; Lindsey, D. T.; Hillger, D.

    2014-12-01

    The increasing use of mobile phones equipped with digital cameras and the ability to post images and information to the Internet in real-time has significantly improved the ability to report events almost instantaneously. In the context of severe weather reports, a representative digital image conveys significantly more information than a simple text or phone relayed report to a weather forecaster issuing severe weather warnings. It also allows the forecaster to reasonably discern the validity and quality of a storm report. Posting geo-located, time stamped storm report photographs utilizing a mobile phone application to NWS social media weather forecast office pages has generated recent positive feedback from forecasters. Building upon this feedback, this discussion advances the concept, development, and implementation of a formalized Photo Storm Report (PSR) mobile application, processing and distribution system and Advanced Weather Interactive Processing System II (AWIPS-II) plug-in display software.The PSR system would be composed of three core components: i) a mobile phone application, ii) a processing and distribution software and hardware system, and iii) AWIPS-II data, exchange and visualization plug-in software. i) The mobile phone application would allow web-registered users to send geo-location, view direction, and time stamped PSRs along with severe weather type and comments to the processing and distribution servers. ii) The servers would receive PSRs, convert images and information to NWS network bandwidth manageable sizes in an AWIPS-II data format, distribute them on the NWS data communications network, and archive the original PSRs for possible future research datasets. iii) The AWIPS-II data and exchange plug-ins would archive PSRs, and the visualization plug-in would display PSR locations, times and directions by hour, similar to surface observations. Hovering on individual PSRs would reveal photo thumbnails and clicking on them would display the

  5. Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zheng [Hospital for Sick Children, Research Institute, Toronto (Canada); Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Xiang, Jing [Hospital for Sick Children, Research Institute, Toronto (Canada); Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Holowka, Stephanie; Chuang, Sylvester [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Hunjan, Amrita; Sharma, Rohit; Otsubo, Hiroshi [Hospital for Sick Children, Division of Neurology, Toronto (Canada)

    2006-01-01

    Magnetoencephalography (MEG) is a novel noninvasive technique for localizing epileptic zones. Tuberous sclerosis complex (TSC) is often associated with medically refractory epilepsy with multiple epileptic zones. Surgical treatment of TSC requires accurate localization of epileptogenic tubers. The objective of this study was to introduce a new MEG technique, synthetic aperture magnetometry (SAM), to volumetrically localize irritable zones and clarify the correlations between SAM, dipole modeling and anatomical tubers. Eight pediatric patients with TSC confirmed by clinical and neuroimaging findings were retrospectively studied. MEG data were recorded using a whole-cortex CTF OMEGA system. Sleep deprivation was employed to provoke epileptiform activity. Irritable zones were localized using both dipole modeling and SAM. MRI detected 42 tubers in the eight patients. Dipole modeling localized 28 irritable zones, and 19 out of the 28 zones were near tubers (19/42, 45%). SAM found 51 irritable zones, and 31 out of the 51 zones were near tubers (31/42, 74%). Among the 51 irritable zones determined by SAM, thirty-five zones were in 1-35 Hz, nine zones were in 35-60 Hz, and seven zones were in 60-120 Hz. The new method, SAM, yielded very plausible equivalent sources for patients who showed anatomical tubers on MRI. Compared to conventional dipole modeling, SAM appeared to offer increased detection of irritable zones and beneficial volumetric and frequency descriptions. (orig.)

  6. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density

    Science.gov (United States)

    Cai, Weihua; Lai, Ting; Lai, Jianwei; Xie, Haoting; Ouyang, Liuzhang; Ye, Jianshan; Yu, Chengzhong

    2016-06-01

    Fiber shaped supercapacitors are promising candidates for wearable electronics because they are flexible and light-weight. However, a critical challenge of the widespread application of these energy storage devices is their low cell voltages and low energy densities, resulting in limited run-time of the electronics. Here, we demonstrate a 1.5 V high cell voltage and high volumetric energy density asymmetric fiber supercapacitor in aqueous electrolyte. The lightweight (0.24 g cm-3), highly conductive (39 S cm-1), and mechanically robust (221 MPa) graphene fibers were firstly fabricated and then coated by NiCo2S4 nanoparticles (GF/NiCo2S4) via the solvothermal deposition method. The GF/NiCo2S4 display high volumetric capacitance up to 388 F cm-3 at 2 mV s-1 in a three-electrode cell and 300 F cm-3 at 175.7 mA cm-3 (568 mF cm-2 at 0.5 mA cm-2) in a two-electrode cell. The electrochemical characterizations show 1000% higher capacitance of the GF/NiCo2S4 as compared to that of neat graphene fibers. The fabricated device achieves high energy density up to 12.3 mWh cm-3 with a maximum power density of 1600 mW cm-3, outperforming the thin-film lithium battery. Therefore, these supercapacitors are promising for the next generation flexible and wearable electronic devices.

  7. Software Development for Remote Control and Firing Room Displays

    Science.gov (United States)

    Zambrano Pena, Jessica

    2014-01-01

    The Launch Control System (LCS) developed at NASA's Kennedy Space Center (KSC) will be used to launch future spacecraft. Two of the many components of this system are the Application Control Language (ACL) and remote displays. ACL is a high level domain specific language that is used to write remote control applications for LCS. Remote displays are graphical user interfaces (GUIs) developed to display vehicle and Ground Support Equipment (GSE) data, they also provide the ability to send commands to control GSE and the vehicle. The remote displays and the control applications have many facets and this internship experience dealt with several of them.

  8. Millisecond accuracy video display using OpenGL under Linux.

    Science.gov (United States)

    Stewart, Neil

    2006-02-01

    To measure people's reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time.

  9. Effects of Different Reconstruction Parameters on CT Volumetric Measurement 
of Pulmonary Nodules

    Directory of Open Access Journals (Sweden)

    Rongrong YANG

    2012-02-01

    Full Text Available Background and objective It has been proven that volumetric measurements could detect subtle changes in small pulmonary nodules in serial CT scans, and thus may play an important role in the follow-up of indeterminate pulmonary nodules and in differentiating malignant nodules from benign nodules. The current study aims to evaluate the effects of different reconstruction parameters on the volumetric measurements of pulmonary nodules in chest CT scans. Methods Thirty subjects who underwent chest CT scan because of indeterminate pulmonary nodules in General Hospital of Tianjin Medical University from December 2009 to August 2011 were retrospectively analyzed. A total of 52 pulmonary nodules were included, and all CT data were reconstructed using three reconstruction algorithms and three slice thicknesses. The volumetric measurements of the nodules were performed using the advanced lung analysis (ALA software. The effects of the reconstruction algorithms, slice thicknesses, and nodule diameters on the volumetric measurements were assessed using the multivariate analysis of variance for repeated measures, the correlation analysis, and the Bland-Altman method. Results The reconstruction algorithms (F=13.6, P<0.001 and slice thicknesses (F=4.4, P=0.02 had significant effects on the measured volume of pulmonary nodules. In addition, the coefficients of variation of nine measurements were inversely related with nodule diameter (r=-0.814, P<0.001. The volume measured at the 2.5 mm slice thickness had poor agreement with the volumes measured at 1.25 mm and 0.625 mm, respectively. Moreover, the best agreement was achieved between the slice thicknesses of 1.25 mm and 0.625 mm using the bone algorithm. Conclusion Reconstruction algorithms and slice thicknesses have significant impacts on the volumetric measurements of lung nodules, especially for the small nodules. Therefore, the reconstruction setting in serial CT scans should be consistent in the follow

  10. Proposed evaluation framework for assessing operator performance with multisensor displays

    Science.gov (United States)

    Foyle, David C.

    1992-01-01

    Despite aggressive work on the development of sensor fusion algorithms and techniques, no formal evaluation procedures have been proposed. Based on existing integration models in the literature, an evaluation framework is developed to assess an operator's ability to use multisensor, or sensor fusion, displays. The proposed evaluation framework for evaluating the operator's ability to use such systems is a normative approach: The operator's performance with the sensor fusion display can be compared to the models' predictions based on the operator's performance when viewing the original sensor displays prior to fusion. This allows for the determination as to when a sensor fusion system leads to: 1) poorer performance than one of the original sensor displays (clearly an undesirable system in which the fused sensor system causes some distortion or interference); 2) better performance than with either single sensor system alone, but at a sub-optimal (compared to the model predictions) level; 3) optimal performance (compared to model predictions); or, 4) super-optimal performance, which may occur if the operator were able to use some highly diagnostic 'emergent features' in the sensor fusion display, which were unavailable in the original sensor displays. An experiment demonstrating the usefulness of the proposed evaluation framework is discussed.

  11. Review of defense display research programs

    Science.gov (United States)

    Tulis, Robert W.; Hopper, Darrel G.; Morton, David C.; Shashidhar, Ranganathan

    2001-09-01

    Display research has comprised a substantial portion of the defense investment in new technology for national security for the past 13 years. These investments have been made by the separate service departments and, especially, via several Defense Research Projects Agency (DARPA) programs, known collectively as the High Definition Systems (HDS) Program (which ended in 2001) and via the Office of the Secretary of Defense (OSD) Defense Production Act (DPA) Title III Program (efforts ended in 2000). Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These completed DARPA and DPA research and infrastructure programs are reviewed. Service investments have been and are being made to transition display technology; examples are described. Display science and technology (S&T) visions are documented for each service to assist the identification of areas meriting consideration for future defense research.

  12. Patient-Specific Quality Assurance Using Monte Carlo Dose Calculation and Elekta Log Files for Prostate Volumetric-Modulated Arc Therapy.

    Science.gov (United States)

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Sawada, Kinya; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2017-12-01

    Log file-based methods are attracting increasing interest owing to their ability to validate volumetric-modulated arc therapy outputs with high resolution in the leaf and gantry positions and in delivered dose. Cross-validation of these methods for comparison with measurement-based methods using the ionization chamber/ArcCHECK-3DVH software (version 3.2.0) under the same conditions of treatment anatomy and plan enables an efficient evaluation of this method. In this study, with the purpose of cross-validation, we evaluate the accuracy of a log file-based method using Elekta log files and an X-ray voxel Monte Carlo dose calculation technique in the case of leaf misalignment during prostate volumetric-modulated arc therapy. In this study, 10 prostate volumetric-modulated arc therapy plans were used. Systematic multileaf collimator leaf positional errors (±0.4 and ±0.8 mm for each single bank) were deliberately introduced into the optimized plans. Then, the delivered 3-dimensional doses to a phantom with a certain patient anatomy were estimated by our system. These doses were compared with the ionization chamber dose and the ArcCHECK-3DVH dose. For the given phantom and patient anatomy, the estimated dose strongly coincided with the ionization chamber/ArcCHECK-3DVH dose ( P < .01). In addition, good agreement between the estimated dose and the ionization chamber/ArcCHECK-3DVH dose was observed. The dose estimation accuracy of our system, which combines Elekta log files and X-ray voxel Monte Carlo dose calculation, was evaluated.

  13. Lessons learned while implementing a safety parameter display system at the Comanche Peak steam electric station

    International Nuclear Information System (INIS)

    Hagar, B.

    1987-01-01

    With the completion of site Verification and Validation tests, the Safety Parameter Display System (SPDS) will be fully operational at the Comanche Peak Steam Electric Station. Implementation of the SPDS, which began in 1982, included: modifying generic Safety Assessment System Software; developing site-specific displays and features; installing and integrating system equipment into the plant; modifying station heating, ventilation, and air conditioning systems to provide necessary cooling; installing an additional uninterruptible power supply system to provide necessary power; and training station personnel in the operation and use of the system. Lessons learned during this project can be discussed in terms of an ideal SPDS implementation project. Such a project would design and implement an SPDS for a plant that is already under construction or operating, and would progress through a sequence of activities that includes: (1) developing and documenting the system design bases, and including all major design influences; (2) developing a database description and system functional specifications to clarify specific system requirements; (3) developing detailed system hardware and software design specifications to fully describe the system, and to enable identification of necessary site design changes early in the project; (4) implementing the system design; (5) configuring and extensively testing the system prior to routine system operation; and (6) tuning the system after the completion of system installation. The ideal project would include future system users in design development and system testing, and would use Verification and Validation techniques throughout the project to ensure that each sequential step is appropriate and correct

  14. Real-time transfer and display of radiography image

    International Nuclear Information System (INIS)

    Liu Ximing; Wu Zhifang; Miao Jicheng

    2000-01-01

    The information process network of cobalt-60 container inspection system is a local area network based on PC. The system requires reliable transfer of radiography image between collection station and process station and the real-time display of radiography image on process station. Due to the very high data acquisition rate, in order to realize the real-time transfer and display of radiography image, 100 M Ethernet technology and network process communication technology are adopted in the system. Windows Sockets is the most common process communication technology up to now. Several kinds of process communication way under Windows Sockets technology are compared and tested. Finally the author realized 1 Mbyte/s' inerrant image transfer and real-time display with blocked datagram transfer technology

  15. A Smart Spoofing Face Detector by Display Features Analysis

    Directory of Open Access Journals (Sweden)

    ChinLun Lai

    2016-07-01

    Full Text Available In this paper, a smart face liveness detector is proposed to prevent the biometric system from being “deceived” by the video or picture of a valid user that the counterfeiter took with a high definition handheld device (e.g., iPad with retina display. By analyzing the characteristics of the display platform and using an expert decision-making core, we can effectively detect whether a spoofing action comes from a fake face displayed in the high definition display by verifying the chromaticity regions in the captured face. That is, a live or spoof face can be distinguished precisely by the designed optical image sensor. To sum up, by the proposed method/system, a normal optical image sensor can be upgraded to a powerful version to detect the spoofing actions. The experimental results prove that the proposed detection system can achieve very high detection rate compared to the existing methods and thus be practical to implement directly in the authentication systems.

  16. A Smart Spoofing Face Detector by Display Features Analysis.

    Science.gov (United States)

    Lai, ChinLun; Tai, ChiuYuan

    2016-07-21

    In this paper, a smart face liveness detector is proposed to prevent the biometric system from being "deceived" by the video or picture of a valid user that the counterfeiter took with a high definition handheld device (e.g., iPad with retina display). By analyzing the characteristics of the display platform and using an expert decision-making core, we can effectively detect whether a spoofing action comes from a fake face displayed in the high definition display by verifying the chromaticity regions in the captured face. That is, a live or spoof face can be distinguished precisely by the designed optical image sensor. To sum up, by the proposed method/system, a normal optical image sensor can be upgraded to a powerful version to detect the spoofing actions. The experimental results prove that the proposed detection system can achieve very high detection rate compared to the existing methods and thus be practical to implement directly in the authentication systems.

  17. The Real Time Interactive Display Environment (RTIDE), a display building tool developed by Space Shuttle flight controllers

    Science.gov (United States)

    Kalvelage, Thomas A.

    1989-01-01

    NASA's Mission Control Center, located at Johnson Space Center, is incrementally moving from a centralized architecture to a distributed architecture. Starting with STS-29, some host-driven console screens will be replaced with graphics terminals driven by workstations. These workstations will be supplied realtime data first by the Real Time Data System (RTDS), a system developed inhouse, and then months later (in parallel with RTDS) by interim and subsequently operational versions of the Mission Control Center Upgrade (MCCU) software package. The Real Time Interactive Display Environment (RTIDE) was built by Space Shuttle flight controllers to support the rapid development of multiple new displays to support Shuttle flights. RTIDE is a display building tool that allows non-programmers to define object-oriented, event-driven, mouseable displays. Particular emphasis was placed on upward compatibility between RTIDE versions, ability to acquire data from different data sources, realtime performance, ability to modularly upgrade RTIDE, machine portability, and a clean, powerful user interface. The operational and organizational factors that drove RTIDE to its present form, the actual design itself, simulation and flight performance, and lessons learned in the process are discussed.

  18. Volumetric property of glycine, L-serine, L-alanine and L-proline in aqueous solutions of 1-phenylpiperazinium tetrafluoroborate

    International Nuclear Information System (INIS)

    Xie, Hujun; Zhao, Lijiang; Liu, Chengcheng; Cao, Yifan; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun

    2016-01-01

    Highlights: • Volumetric property of four amino acids in aqueous solutions of [Phpi][BF_4] were measured. • The standard partial molar volume, transparent partial molar volume and hydration number were calculated. • [Phpi][BF_4] interacts strongly with four kinds of amino acids. • Hydrophilic–hydrophobic and hydrophobic–hydrophobic interactions play the dominant roles in ternary systems. • The ternary systems are generated via multiple hydrogen bond interactions. - Abstract: The densities of aqueous solutions of glycine, L-serine, L-alanine, L-proline with the ionic liquid (IL), 1-phenylpiperazinium tetrafluoroborate ([Phpi][BF_4]) at the IL concentrations of (0.025, 0.055 and 0.100) mol·kg"−"1 have been measured at the temperatures of (298.15, 303.15 and 308.15) K. On the basis of the experimental results, the apparent molar volume (V_Φ), standard partial molar volume (V_Φ"0), transfer partial molar volume (Δ_t_rV_Φ"0) and hydration number (n_H) have been calculated. The hydrophilic–hydrophilic, hydrophobic–hydrophilic and hydrophobic–hydrophobic interactions are involved in the studied systems of {[Phpi][BF_4] + amino acids + H_2O. These volumetric parameters can help to understand the mixing effects and other complex biological processes between amino acids and ionic liquid aqueous solution.

  19. GROPE-1: a computer display to the sense of feel

    Energy Technology Data Exchange (ETDEWEB)

    Batter, J J; Brooks, Jr, F P

    1972-01-01

    A computer display system was built and programmed that exerts programmable forces on the fingers as one moves a knob in a plane. The system includes a movable carriage, position sensors, mechanisms for converting computer outputs to forces, a visual graphic display, and, most important, the programs. A controlled experiment measured the utility of force output. Two groups were taught topics in elementary field theory and exercised with the computer displays. One group had force displayed to the hand as well as to the eye. The other had visual display only. The experiment was repeated with three different sets of students. The force-display groups performed significantly better in two of the three cases; in the third case, interest in the subject was low and this seems to account for low performance.

  20. OLED Display For Real Time Vision System

    Directory of Open Access Journals (Sweden)

    Sandhyalakshmi Narayanan

    2015-08-01

    Full Text Available This innovative glass design will carry an OLED based display controlled via nano Ardiuno board having Bluetooth connectivity with a Smartphone to exchange information along with onboard accelerometer. We are using a tilt angle sensor for detecting if the driver is feeling drowsy. An alcohol sensor has been used to promote the safe driving habit. The glasses will be getting latest updates about the current speed of the vehicle navigation directions nearby or approaching sign broads or services like petrol pumps. Itll also display information like incoming calls or received messages. All this information will be obtained through a Smartphone connected via Bluetooth. Also the car mileage can be monitored with help of fuel sensor as the consumption of fuel is directly related to it. Abnormalities if detected will be immediately notified in the glasses. Also the angle of the tilt angle sensor can be defined and set by the user according to his needs. Also the main idea of using OLED glasses is that it is organic thereby helps in reducing the carbon footprint and is quite slim. Therefore it can be easily mounted on the specs without making it heavy. Also they higher level of flexibility and have low power drain and energy consumption