WorldWideScience

Sample records for volumetric air flow

  1. Ignition of hydrocarbon-air supersonic flow by volumetric ionization

    Science.gov (United States)

    Goldfeld, Marat A.; Pozdnyakov, George A.

    2015-11-01

    The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen, natural gas or kerosene vapors with air. Electron beam characteristics were studied in closed volume with immobile gas. The researches included definition of an integrated current of an electronic beam, distribution of a current density and an estimation of average energy of electrons. Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated. Experiments were carried out at Mach numbers of 4 and 5. Process of ignition and combustion under electron beam action was researched. It was revealed that ignition of mixture occurs after completion of electron gun operation. Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas. The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ω turbulence model. For combustion modeling, a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry. Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.

  2. Volumetric velocimetry for fluid flows

    Science.gov (United States)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  3. Non-uniform volumetric structures in Richtmyer-Meshkov flows

    NARCIS (Netherlands)

    Staniç, M.; McFarland, J.; Stellingwerf, R.F.; Cassibry, J.T.; Ranjan, D.; Bonazza, R.; Greenough, J.A.; Abarzhi, S.I.

    2013-01-01

    We perform an integrated study of volumetric structures in Richtmyer-Meshkov (RM) flows induced by moderate shocks. Experiments, theoretical analyses, Smoothed Particle Hydrodynamics simulations, and ARES Arbitrary Lagrange Eulerian simulations are employed to analyze RM evolution for fluids with

  4. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    Today, in water and wastewater industry a lot of mechanical-volumetric flow meters are used for the navigation of the produced water and the data of these flow meters, due to use in a wide geographical range, is done physically and by in person presence. All this makes reading the data costly and, in some cases, due to ...

  5. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.

  6. A volumetric flow sensor for automotive injection systems

    International Nuclear Information System (INIS)

    Schmid, U; Krötz, G; Schmitt-Landsiedel, D

    2008-01-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature

  7. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  8. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation

    NARCIS (Netherlands)

    van 't Veer, M.; Adjedj, J.; Wijnbergen, I.; Tóth, G.G.; Rutten, M.C.M.; Barbato, E.; van Nunen, L.X.; Pijls, N.H.J.; de Bruyne, B.

    2016-01-01

    AIMS: The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. METHODS AND RESULTS: Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline

  9. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    Science.gov (United States)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  10. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  11. Correlation of volumetric flow rate and skin blood flow with cold intolerance in digital replantation.

    Science.gov (United States)

    Zhao, Gang; Mi, Jingyi; Rui, Yongjun; Pan, Xiaoyun; Yao, Qun; Qiu, Yang

    2017-12-01

    Cold intolerance is a common complication of digital replantation. The exact etiology is unclear, but it is considered to be multifactorial, including nonsurgical characteristics, vascular, and neurologic conditions. Blood flow may play a significant role in cold intolerance. This study was designed to evaluate the correlation of digital blood flow, including volumetric flow rate (VFR) and skin blood flow (SkBF), with cold intolerance in replanted fingers.A retrospective study was conducted among patients who underwent digital replantation between 2010 and 2013. Patients were selected into study cohort based on the inclusion criteria. Surgical data was collected on each patient, including age, sex, injury mechanism, amputation level, ischemia time, number of arteries repaired, and whether or not vascular crisis occurred. Patients were included as study cohort with both nerves repaired and without chronic disease. Cold intolerance was defined as a Cold Intolerance Symptom Severity (CISS) score over 30. The arterial flow velocity and caliber were measured by Color Doppler Ultrasound and the digital VFR was calculated. The SkBF was measured by Laser Speckle Imager. Both VFR and SkBF were calculated as a percentage of the contralateral fingers. Comparative study of surgical data and blood flow was performed between the patient with and without cold intolerance. Correlation between VFR and SkBF was also analyzed.A total of 93 patients met inclusion criteria for the study. Approximately, 42 patients were identified as having cold intolerance. Fingers that survived vascular crisis had a higher incidence of cold intolerance with a lower VFR and SkBF. The VFR was higher in 2-artery replantation, but the SkBF and incidence of cold intolerance did not differ significantly. No differences were found in age, sex, injury mechanism, amputation level, or ischemia time. Furthermore, no correlation was found between VFR and SkBF.Cold intolerance of digital replantation is associated

  12. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.; Albert, Istvan U.; Regan, John M.

    2013-01-01

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected

  13. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    Energy Technology Data Exchange (ETDEWEB)

    De Pretto, Lucas R., E-mail: lucas.de.pretto@usp.br; Nogueira, Gesse E. C.; Freitas, Anderson Z. [Instituto de Pesquisas Energéticas e Nucleares, IPEN–CNEN/SP, Avenida Lineu Prestes, 2242, 05508-000 São Paulo (Brazil)

    2016-04-28

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  14. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  15. Analysis of air return alternatives for CRS-type open volumetric receiver

    International Nuclear Information System (INIS)

    Marcos, Ma. Jesus; Romero, Manuel; Palero, Silvia

    2004-01-01

    Even though air-cooled receivers provide substantial benefits, such as low inertia and quick sun-following dispatchability, and the volumetric effect leads to designs with aperture areas similar to those used in molten salt or water/steam receivers, some concern persists regarding absorber durability, reduction of radiation losses and improvement of the air return ratio (ARR). The paper focuses on this last issue, since the ARR is a source of significant receiver losses in current designs. Today's scaled-up receivers claim values between 45 and 70% for ARR, which means, in terms of energy loss, between 5 and 15%. As a consequence of ARR and the radiation loss stemming from high working temperatures, open volumetric receivers efficiencies below 75% are reported at temperatures usable by the power block. Those values may be acceptable for a first demonstration plant, but are categorically not competitive for commercial schemes in which receiver efficiency should approach 90%. This paper discusses the impact of several geometrical properties of the absorber and air injection system used. The study was performed by CFD with the FLUENT code. The assessment considered such alternatives as modularity of the air return system (HITREC receiver concept), outer ring injection with air curtain effect or cavity aperture (with and without secondary concentrator). A detailed analysis reveals that some parts of the receiver aperture achieve an ARR above 90% at well-selected operating conditions, but average values hardly surpass 70%. Therefore, a careful design should keep in mind important variables such as the effects of receiver edge and lateral wind, as well as air injection angle

  16. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  17. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    Science.gov (United States)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  18. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation.

    Science.gov (United States)

    van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard

    2016-08-20

    The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.

  19. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  20. Quantification of smoothing requirement for 3D optic flow calculation of volumetric images

    DEFF Research Database (Denmark)

    Bab-Hadiashar, Alireza; Tennakoon, Ruwan B.; de Bruijne, Marleen

    2013-01-01

    Complexities of dynamic volumetric imaging challenge the available computer vision techniques on a number of different fronts. This paper examines the relationship between the estimation accuracy and required amount of smoothness for a general solution from a robust statistics perspective. We show...... that a (surprisingly) small amount of local smoothing is required to satisfy both the necessary and sufficient conditions for accurate optic flow estimation. This notion is called 'just enough' smoothing, and its proper implementation has a profound effect on the preservation of local information in processing 3D...... dynamic scans. To demonstrate the effect of 'just enough' smoothing, a robust 3D optic flow method with quantized local smoothing is presented, and the effect of local smoothing on the accuracy of motion estimation in dynamic lung CT images is examined using both synthetic and real image sequences...

  1. Volumetric 3-component velocimetry measurements of the flow field on the rear window of a generic car model

    Directory of Open Access Journals (Sweden)

    Tounsi Nabil

    2012-01-01

    Full Text Available Volumetric 3-component Velocimetry measurements are carried out in the flow field around the rear window of a generic car model, the so-called Ahmed body. This particular flow field is known to be highly unsteady, three dimensional and characterized by strong vortices. The volumetric velocity measurements from the present experiments provide the most comprehensive data for this flow field to date. The present study focuses on the wake flow modifications which result from using a simple flow control device, such as the one recently employed by Fourrié et al. [1]. The mean data clearly show the structure of this complex flow and confirm the drag reduction mechanism suggested by Fourrié et al. The results show that strengthening the separated flow leads to weakening the longitudinal vortices and vice versa. The present paper shows that the Volumetric 3-component Velocimetry technique is a powerful tool used for a better understanding of a threedimensional unsteady complex flow such that developing around a bluffbody.

  2. Hypersonic Air Flow with Finite Rate Chemistry

    National Research Council Canada - National Science Library

    Boyd, Ian

    1997-01-01

    ... describe the effects of non-equilibrium flow chemistry, shock interaction, and turbulent mixing and combustion on the performance of vehicles and air breathing engines designed to fly in the hypersonic flow...

  3. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults

    International Nuclear Information System (INIS)

    Hoi, Yiemeng; Xie, Yuanyuan J; Steinman, David A; Wasserman, Bruce A; Najjar, Samer S; Lakatta, Edward G; Ferruci, Luigi; Gerstenblith, Gary

    2010-01-01

    While it is widely appreciated that volumetric blood flow rate (VFR) dynamics change with age, there has been no detailed characterization of the typical shape of carotid bifurcation VFR waveforms of older adults. Toward this end, retrospectively gated phase contrast magnetic resonance imaging was used to measure time-resolved VFR waveforms proximal and distal to the carotid bifurcations of 94 older adults (age 68 ± 8 years) with little or no carotid artery disease, recruited from the BLSA cohort of the VALIDATE study of factors in vascular aging. Timings and amplitudes of well-defined feature points from these waveforms were extracted automatically and averaged to produce representative common, internal and external carotid artery (CCA, ICA and ECA) waveform shapes. Relative to young adults, waveforms from older adults were found to exhibit a significantly augmented secondary peak during late systole, resulting in significantly higher resistance index (RI) and flow augmentation index (FAI). Cycle-averaged VFR at the CCA, ICA and ECA were 389 ± 74, 245 ± 61 and 125 ± 49 mL min −1 , respectively, reflecting a significant cycle-averaged outflow deficit of 5%, which peaked at around 10% during systole. A small but significant mean delay of 13 ms between arrivals of ICA versus CCA/ECA peak VFR suggested differential compliance of these vessels. Sex and age differences in waveform shape were also noted. The characteristic waveforms presented here may serve as a convenient baseline for studies of VFR waveform dynamics or as suitable boundary conditions for models of blood flow in the carotid arteries of older adults

  4. Hot-film anemometry in air-water flow

    International Nuclear Information System (INIS)

    Delahaye, J.M.; Galaup, J.P.

    1975-01-01

    Local measurements of void fraction and liquid velocity in a steady-state air-water bubbly flow at atmospheric pressure are presented. Use was made of a constant temperature anemometer and of a conical hot-film probe. The signal was processed with a multi-channel analyzer. Void fraction and liquid velocities are determined from the amplitude histogram of the signal. The integrated void fraction over a diameter is compared with the average void fraction along the same diameter obtained with a γ-ray absorption method. The liquid volumetric flow-rate is calculated from the void fraction and liquid velocity profiles and compared with the indication given by a turbine flowmeter [fr

  5. Thermal Performance Evaluation of the 200 kWth Sol Air Volumetric Solar Receiver

    International Nuclear Information System (INIS)

    Tellez Sufrategui, F. M.

    2003-01-01

    The goal of the Solair project is the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safely operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW HitRec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MW t h receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fluffy accomplished: Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 (±6)% for configuration 1 and 83 (±6) % for configuration 2 of the absorber. (Author) 20 refs

  6. Thermal Performance Evaluation of the 200kWth SolAir Volumetric Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Tellez Sufrategui, F. M.

    2003-07-01

    The goal of the Solair project the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safety operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW Hitrec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MWth receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fully accomplished. Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 ({+-}6)% for configuration 1 and 83({+-}6)% for configuration 2 of the absorber. (Author). 20 refs.

  7. Three-dimensional three-component particle velocimetry for microscale flows using volumetric scanning

    International Nuclear Information System (INIS)

    Klein, S A; Moran, J L; Posner, J D; Frakes, D H

    2012-01-01

    We present a diagnostic platform for measuring three-dimensional three-component (3D3C) velocity fields in microscopic volumes. The imaging system uses high-speed Nipkow spinning disk confocal microscopy. Confocal microscopy provides optical sectioning using pinhole spatial filtering which rejects light originating from out-of-focus objects. The system accomplishes volumetric scanning by rapid translation of the high numerical aperture objective using a piezo objective positioner. The motion of fluorescent microspheres is quantified using 3D3C super resolution particle-imaging velocimetry with instantaneous spatial resolutions of the order of 5 µm or less in all three dimensions. We examine 3D3C flow in a PDMS microchannel with an expanding section at 3D acquisition rates of 30 Hz, and find strong agreement with a computational model. Equations from the PIV and PTV literature adapted for a scanning objective provide estimates of maximum measurable velocity. The technique allows for isosurface visualization of 3D particle motion and robust high spatial resolution velocity measurements without requiring a calibration step or reconstruction algorithms. (paper)

  8. Sensitivity to draught in turbulent air flows

    Energy Technology Data Exchange (ETDEWEB)

    Todde, V

    1998-09-01

    Even though the ventilation system is designed to supply air flows at constant low velocity and controlled temperature, the resulting air movement in rooms is strongly characterised by random fluctuations. When an air flow is supplied from an inlet, a shear layer forms between the incoming and the standstill air in the room, and large scale vortices develops by coalescence of the vorticity shed at the inlet of the air supply. After a characteristically downstream distance, large scale vortices loose their identity because of the development of cascading eddies and transition to turbulence. The interaction of these vortical structures will rise a complicated three dimensional air movement affected by fluctuations whose frequencies could vary from fractions of Hz to several KHz. The perception and sensitivity to the cooling effect enhanced by these air movements depend on a number of factors interacting with each other: physical properties of the air flow, part and extension of the skin surface exposed to the air flow, exposure duration, global thermal condition, gender and posture of the person. Earlier studies were concerned with the percentage of dissatisfied subjects as a function of air velocity and temperature. Recently, experimental observations have shown that also the fluctuations, the turbulence intensity and the direction of air velocity have an important impact on draught discomfort. Two experimental investigations have been developed to observe the human reaction to horizontal air movements on bared skin surfaces, hands and neck. Attention was concentrated on the effects of relative turbulence intensity of air velocity and exposure duration on perception and sensitivity to the air movement. The air jet flows, adopted for the draught experiment in the neck, were also the object of an experimental study. This experiment was designed to observe the centre-line velocity of an isothermal circular air jet, as a function of the velocity properties at the outlet

  9. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  10. The effects of a flow obstacle on liquid film flowing concurrently with air in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Fukano, Tohru; Tominaga, Akira; Morikawa, Kengo.

    1986-01-01

    The aspect of a liquid film flowing near a flat plate type obstacle was observed, and the liquid film thickness and the entrainment were measured under a wide range of gas and liquid flow rates. The results are summarized as follows: (1) The configurations of film flows near the obstacle are classified according to whether (a) the liquid film climbs over the obstacle or not, (b) the air flows under the obstacle or not, or (c) the liquid film swells or sinks just upstream or downstream of the obstacle. (2) The lower the liquid flow rate, the larger the effect of the obstacle on the film thickness. (3) The generation of entrainment is regulated by the obstacle when the air volumetric flux is high and by the disturbance wave when it is low. (author)

  11. 40 CFR 89.414 - Air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in understated...

  12. Air flow around suspended cables

    Directory of Open Access Journals (Sweden)

    Gołębiowska Irena

    2017-01-01

    Full Text Available The impact of wind on construction structures is essential issue in design and operation. In particular, the wind can cause the dengerous vibrations of slender structures with low rigidity, eg. vibrations of cables of suspension and cable-stayed bridges or high voltage transmision lines, thus understanding of wind flow around such constructions is significant. In the paper the results of the analysis of wind flow around the cables for different Reynolds number is presented. The analysed flow meets the Navier-Stokes and continuity equations. The circle and elipse section of the cable is analysed. The discusion of vorticity, drag and lift coefficients and cases due to different angle of wind flow action is presented. The boundary layer and its infuence on total flow is analysed.

  13. Biventricular MR volumetric analysis and MR flow quantification in the ascending aorta and pulmonary trunk for quantification of valvular regurgitation

    International Nuclear Information System (INIS)

    Rominger, M.B.

    2004-01-01

    Purpose: To test the value of biventricular volumetric analysis and the combination of biventricular volumetric analysis with flow quantification in the ascending aorta (Ao) and pulmonary trunk (Pu) for quantification of regurgitation volume and cardiac function in valvular regurgitation (VR) according to location and presence of single or multivalvular disease. Materials and Methods: In 106 patients, the stroke volumes were assessed by measuring the biventricular volumes and the forward-stroke volumes in the great and small circulation by measuring the flow in the Ao and Pu. Valve regurgitation volumes and quotients were calculated for single and multivalvular disease and correlated with semiquantitative 2D-echocardiography (grade I-IV). For the assessment of the cardiac function in VR, the volumetric parameters of ejection fraction and end-diastolic (EDV) and end-systolic (ESV) volumes were determined. Results: The detection rate was 49% for left ventricular (LV) VR and 42% for right ventricular (RV) VR. Low LV VR and RV VR usually could not be detected quantitatively, with the detection rate improving with echocardiographically higher insufficiency grades. Quantitative MRI could detect a higher grade solitary aortic valve insufficiency (≥2) in 11 of 12 patients and higher grade mitral valve insufficiency in 4 of 10 patients. A significant increase in RV and LV ventricular EDV and ESV was seen more often with increased MR regurgitation volumes. Aortic stenosis did not interfere with flow measurements in the Ao. Conclusions: Biventricular volumetry combined with flow measurements in Ao and Pu is a robust, applicable and simple method to assess higher grade regurgitation volumes and the cardiac function in single and multivalvular regurgitation at different locations. It is an important application for the diagnosis of VR by MRI [de

  14. Characteristics of Air Flow through Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Dam, Henrik; Sørensen, Lars C.

    This paper describes the first results of a series of laboratory investigations that is performed to characterise three different window types. The results show the air flow conditions for different ventilation strategies and temperature differences. For one of the windows values of the discharge...... coefficient are shown for both isothermal and non-isothermal flow conditions and the thermal comfort conditions are evaluated by measurements of velocity and temperature levels in the air flow in the occupied zone.......This paper describes the first results of a series of laboratory investigations that is performed to characterise three different window types. The results show the air flow conditions for different ventilation strategies and temperature differences. For one of the windows values of the discharge...

  15. Characteristics of coal mine ventilation air flows.

    Science.gov (United States)

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  16. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    Science.gov (United States)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  17. 40 CFR 91.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  18. Dynamic methods of air traffic flow management

    Directory of Open Access Journals (Sweden)

    Jacek SKORUPSKI

    2011-01-01

    Full Text Available Air traffic management is a complex hierarchical system. Hierarchy levels can be defined according to decision making time horizon or to analyze area volume. For medium time horizon and wide analysis area, the air traffic flow management services were established. Their main task is to properly co-ordinate air traffic in European airspace, so as to minimize delays arising in congested sectors. Those services have to assure high safety level at the same time. Thus it is a very complex task, with many goals, many decision variables and many constraints.In the paper review of the methods developed for aiding air traffic flow management services is presented. More detailed description of a dynamic method is given. This method is based on stochastic capacity and scenario analysis. Some problems in utilization of presented methods are also pointed out, so are the next research possibilities.

  19. Compressed-air flow control system.

    Science.gov (United States)

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  20. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  1. Influence of georeference for saturated excess overland flow modelling using 3D volumetric soft geo-objects

    Science.gov (United States)

    Izham, Mohamad Yusoff; Muhamad Uznir, Ujang; Alias, Abdul Rahman; Ayob, Katimon; Wan Ruslan, Ismail

    2011-04-01

    Existing 2D data structures are often insufficient for analysing the dynamism of saturation excess overland flow (SEOF) within a basin. Moreover, all stream networks and soil surface structures in GIS must be preserved within appropriate projection plane fitting techniques known as georeferencing. Inclusion of 3D volumetric structure of the current soft geo-objects simulation model would offer a substantial effort towards representing 3D soft geo-objects of SEOF dynamically within a basin by visualising saturated flow and overland flow volume. This research attempts to visualise the influence of a georeference system towards the dynamism of overland flow coverage and total overland flow volume generated from the SEOF process using VSG data structure. The data structure is driven by Green-Ampt methods and the Topographic Wetness Index (TWI). VSGs are analysed by focusing on spatial object preservation techniques of the conformal-based Malaysian Rectified Skew Orthomorphic (MRSO) and the equidistant-based Cassini-Soldner projection plane under the existing geodetic Malaysian Revised Triangulation 1948 (MRT48) and the newly implemented Geocentric Datum for Malaysia (GDM2000) datum. The simulated result visualises deformation of SEOF coverage under different georeference systems via its projection planes, which delineate dissimilar computation of SEOF areas and overland flow volumes. The integration of Georeference, 3D GIS and the saturation excess mechanism provides unifying evidence towards successful landslide and flood disaster management through envisioning the streamflow generating process (mainly SEOF) in a 3D environment.

  2. Evaluation of Accordance of Magnetic Resonance Volumetric and Flow Measurements in Determining Ventricular Stroke Volume in Cardiac Patients

    International Nuclear Information System (INIS)

    Jeltsch, M.; Ranft, S.; Klass, O.; Aschoff, A.J.; Hoffmann, M.H.K.

    2008-01-01

    Background: Cardiovascular magnetic resonance imaging (CMR) has become an established noninvasive method for evaluating ventricular function utilizing three-dimensional volumetry. Postprocessing of volumetric measurements is still tedious and time consuming. Stroke volumes obtained by flow quantification across the aortic root or pulmonary trunk could be utilized to increase both speed of workflow and accuracy. Purpose: To assess accuracy of stroke volume quantification using MR volumetric imaging compared to flow quantification in patients with various cardiac diseases. Strategies for the augmentation of accuracy in clinical routine were deduced. Material and Methods: 78 patients with various cardiac diseases -excluding intra- or extracardiac shunts, regurgitant valvular defects, or heart rhythm disturbance -underwent cardiac function analysis with flow measurements across the aortic root and cine imaging of the left ventricle. Forty-six patients additionally underwent flow measurements in the pulmonary trunk and cine imaging of the right ventricle. Results: Left ventricular stroke volume (LVSV) and stroke volume of the aortic root (SVAo) correlated with r=0.97, and Bland-Altman analysis showed a mean difference of 0.11 ml and a standard error of estimation (SEE) of 4.31 ml. Ninety-two percent of the data were within the 95% limits of agreement. Right ventricular stroke volume (RVSV) and stroke volume of the pulmonary trunk (SVP) correlated with a factor of r=0.86, and mean difference in the Bland-Altman analysis was fixed at -2.62 ml (SEE 8.47 ml). For RVSV and SVP, we calculated r=0.82, and Bland-Altman analysis revealed a mean difference of 1.27 ml (SEE 9.89 ml). LVSV and RVSV correlated closely, with r=0.91 and a mean difference of 2.79 ml (SEE 7.17 ml). SVAo and SVP correlated with r=0.95 and a mean difference of 0.50 ml (SEE 5.56 ml). Conclusion: Flow quantification can be used as a guidance tool, providing accurate and reproducible stroke volumes of both

  3. Visualization study of helium-air counter flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    2007-01-01

    Buoyancy-driven counter flows of helium-air were investigated through horizontal and inclined small openings. Counter flows may occur following a window opening as ventilation, fire in the room as well as a pipe rupture accident in a high temperature gas-cooled nuclear reactor. The experiment has carried out by a test chamber filled with helium and flow was visualized by the smoke wire method. The flow behavior has recorded by a high-speed camera with a computer system. The image of the flow was transferred to the digital data, thus the flow velocity was measured by PTV software. The mass fraction in the test chamber was measured by electronic balance. The detected data was arranged by the densimetric Floude number of the counter flow rate that derived from the dimensional analysis. The method of mass increment was developed and applied to measure the counter flow rate. By removing the cover plate placed on the top of the opening, the counter flow initiated. Air enters the test chamber and the mass of the gas mixture in the test chamber increased. The volumetric counter flow rate was evaluated from the mass increment data. In the case of inclination openings, the results of both methods were compared. The inclination angle for maximum densimetric Floude number decreased with increasing length-to-diameter ratio of the opening. For a horizontal opening, the results from the method of mass increment agreed with those obtained by other authors for a water-brine system. (author)

  4. Catalyst volumetric fraction simulation in a riser of a cold flow pilot unit with aid of transmission gamma technique

    International Nuclear Information System (INIS)

    Santos, Kamylla A.L. dos; Lima Filho, Hilario J.B. de; Benachour, Mohand; Dantas, Carlos C.; Santos, Valdemir A. dos

    2013-01-01

    Was obtained the radial profile of the catalyst volume fraction in a riser of the cold flow pilot unit of the Fluid Catalytic Cracking (FCC) unit, which was used for adjustment of the entrance conditions of the catalyst in a simulation program by Computational Fluid Dynamics (CFD). The height of the riser of the Cold Flow Pilot Unity (CFPU) utilized is 6.0m and its inner diameter is 0.097 m. A radiation-γ source of Am-241 and a NaI (Tl) detector, with shielding made of lead, have been installed on a steel backing that maintains the geometry of the source-detector-riser and allows to vary the distance from the source to the detector and the radial position in a given cross section of the riser. The data associated with the simulation of volume fraction radial profile of the catalyst were: Fluent software, version 12.0; preprocessor GAMBIT, version 2.3.16; Eulerian approach; structured mesh, cell number of 60000; turbulence model used was k-ε and kinetic theory of granular flow (KTGF) was implemented to describe the solid phase. Comparison of radial profiles simulated and experimental of the catalyst volumetric fraction in the CFPU riser allowed the identification of needs adjustments in the simulation for the input of catalyst, with consequent validation for the proposed model simulation. (author)

  5. Compositional and volumetric development of a monogenetic lava flow field: The historical case of Paricutin (Michoacán, Mexico)

    Science.gov (United States)

    Larrea, Patricia; Salinas, Sergio; Widom, Elisabeth; Siebe, Claus; Abbitt, Robbyn J. F.

    2017-12-01

    Paricutin volcano is the youngest and most studied monogenetic volcano in the Michoacán-Guanajuato volcanic field (Mexico), with an excellent historical record of its nine years (February 1943 to March 1952) of eruptive activity. This eruption offered a unique opportunity to observe the birth of a new volcano and document its entire eruption. Geologists surveyed all of the eruptive phases in progress, providing maps depicting the volcano's sequential growth. We have combined all of those previous results and present a new methodological approach, which utilizes state of the art GIS mapping tools to outline and identify the 23 different eruptive phases as originally defined by Luhr and Simkin (1993). Using these detailed lava flow distribution maps, the volume of each of the flows was estimated with the aid of pre- and post-eruption digital elevation models. Our procedure yielded a total lava flow volume ranging between 1.59 and 1.68 km3 DRE, which is larger than previous estimates based on simpler methods. In addition, compositional data allowed us to estimate magma effusion rates and to determine variations in the relative proportions of the different magma compositions issued during the eruption. These results represent the first comprehensive documentation of the combined chemical, temporal, and volumetric evolution of the Paricutin lava field and provide key constraints for petrological interpretations of the nature of the magmatic plumbing system that fed the eruption.

  6. Studies of simulations of two-phase water-air flows using ANSYS CFX

    Energy Technology Data Exchange (ETDEWEB)

    Garrido Filho, Anizio M.; Moreira, Maria de Lourdes; Faccini, José L.H., E-mail: anizio@ien.gov.br, E-mail: malu@ien.gov.br, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Normally in all simulations of flows in computational fluid dynamics, CFD, it is common to use characteristic planes to visualize the profiles of the parameters of interest, mainly in 3D simulations. The present work proposes a standard form of visualization that shows, mainly in two-phase flows, in a more realistic way, the dynamics of the development of the phase flow. This visualization is present within the CFX program in the post-processing module, in the option of representing volumes using sub option, isovolumes. Through this representation, the program highlights the volumes of the finite element mesh corresponding to the selected values of the parameter to be analyzed such as pressure, velocity, volumetric fraction, etc. By means of the volume-isovolume representation, a well representative effect of the current flow pattern is obtained, especially when the volumetric fraction of the air or the gas phase of the flow is emphasized. This form of visualization is being applied to the study of inclined two-phase flows, which will be tested in a new experiment currently under construction at the Laboratory of Experimental Thermal-Hydraulics - LTE of the Institute of Nuclear Engineering - IEN in Rio de Janeiro. (author)

  7. 40 CFR 90.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the...

  8. Air Flow and Gassing Potential in Micro-injection Moulding

    DEFF Research Database (Denmark)

    Griffithsa, C.A.; Dimova, S.S.; Scholz, S.

    2011-01-01

    valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental set-up is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a MEMS gas sensor mounted inside the mould...

  9. Evaluation of the effect of temperature, concentration and volumetric flow in the hydrolysis of sucrose by an immobilized invertase in a spherical reactor

    International Nuclear Information System (INIS)

    Zamora Leiton, Maria Monserrath; Molina Cordoba, Manuel; Chacon Valle, Gerardo

    2011-01-01

    The effect of the volumetric flow, the temperature and the initial concentration of sucrose in the reaction of hydrolysis of sucrose by immobilized invertase were evaluated in the laboratory. Invertase was immobilized in 20 g of support of mesh size between 120 and 140. The maximum quantity of immobilized invertase obtained has been 0,130 mg/g of support at 220 min. The first experimental stage has consisted in the evaluation of the effect of the initial concentration of sucrose (1,0 and 1,5 mol/L), the volumetric flow (3,0 mL/min and 4,0 mL/min) and the temperature (45 degrees C and 50 degrees C). The effect of the above three variable has been statistically significant. The conversion has been favorable for a concentration of sucrose 1,0 mol/L, a volumetric flow of 3 mL/min and a temperature of 50 degrees C. The maximum conversion obtained has been 95,4 %. The second experimental stage has analyzed the effect of the initial concentration of sucrose (0,75 and 1,0 mol/L), the volumetric flow (2,5 mL/min and 3,0 mL/min) and the temperature (50 degrees C and 55 degrees C). The variable of volumetric flow and the interaction concentration of sucrose - temperature are found statistically significant. The conversion has been favorable for a volumetric flow of 2,5 mL/min, and it has been preferable to work at a temperature of 50 degrees C with an initial concentration of sucrose of 1,0 mol/L. The maximum conversion has been 94,8 %. The effect of the concentration was analyzed in the last experimental stage, it was found that the maximum conversion percentage was 95,0 % for a concentration of 1,1 mol/L, for a temperature of 50 degrees C and for a volumetric flow of 2,5 mL/min. (author) [es

  10. Preliminary performance analysis of a transverse flow spectrally selective two-slab packed bed volumetric receiver

    CSIR Research Space (South Africa)

    Roos, TH

    2016-05-01

    Full Text Available for the transparent slab 1 and SiC for the opaque slab 2 – which are ordered in a hexagonally close-packed bed. The flow direction has been changed from parallel to the incident radiation and perpendicular to the window, to parallel to the window and perpendicular...

  11. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Soo [Department of Radiology, Chungnam National University Hospital, Chungnam National University School of Medicine (Korea, Republic of); Seo, Joon Beom, E-mail: seojb@amc.seoul.kr [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Kim, Namkug; Chae, Eun Jin [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Lee, Young Kyung [Department of Radiology, Kyung Hee University Hospital at Gangdong (Korea, Republic of); Oh, Yeon Mok; Lee, Sang Do [Division of Pulmonology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of)

    2014-01-15

    Objectives: To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Methods: Seventy-eight CT scans of COPD patients (GOLD II–IV, smoking history 39.2 ± 25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, −1000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV{sub 1} and FEV{sub 1}/FVC were compared (age- and sex adjusted partial correlation analysis). Results: Measured densities (HU) of tracheal- and external air differed significantly (−990 ± 14, −1016 ± 9, P < 0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: −874.9 ± 27.6 vs. −882.3 ± 24.9 vs. −860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P < 0.001). The correlation coefficients between CT quantification indices and FEV{sub 1}, and FEV{sub 1}/FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Conclusion: Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT.

  12. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density

    International Nuclear Information System (INIS)

    Kim, Song Soo; Seo, Joon Beom; Kim, Namkug; Chae, Eun Jin; Lee, Young Kyung; Oh, Yeon Mok; Lee, Sang Do

    2014-01-01

    Objectives: To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Methods: Seventy-eight CT scans of COPD patients (GOLD II–IV, smoking history 39.2 ± 25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, −1000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV 1 and FEV 1 /FVC were compared (age- and sex adjusted partial correlation analysis). Results: Measured densities (HU) of tracheal- and external air differed significantly (−990 ± 14, −1016 ± 9, P < 0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: −874.9 ± 27.6 vs. −882.3 ± 24.9 vs. −860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P < 0.001). The correlation coefficients between CT quantification indices and FEV 1 , and FEV 1 /FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Conclusion: Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT

  13. Augmentation of forced flow boiling heat transfer by introducing air flow into subcooled water flow

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ohtake, H.; Yuasa, T.; Matsushita, N.

    2001-01-01

    The effect of air injection into a subcooled water flow on boiling heat transfer and a critical heat flux (CHF) was examined experimentally. Experiments were conducted in the range of subcooling of 50 K, a superficial velocity of water and air Ul = 0.17 ∼ 3.4 and Ug = 0 ∼ 15 m/s, respectively. A test heat transfer surface was a 5 mm wide, 40 mm long and 0.5 mm thick stainless steel sheet embedded on the bottom wall of a 10 mm high and 20 mm wide rectangular flow channel. Nine times enhancement of the heat transfer coefficient in the non-boiling region was attained at the most by introducing an air flow into a water single-phase flow. The heat transfer improvement was prominent when the water flow rate was low and the air introduction was large. The present results of the non-boiling heat transfer were well correlated with the Lockhart-Martinelli parameter X tt ; h TP /h L0 = 5.0(1/ X tt ) 0.5 . The air introduction has some effect on the augmentation of heat transfer in the boiling region, however, the two-phase flow effect was little and the boiling was dominant in the fully developed boiling region. The CHF was improved a little by the air introduction in the high water flow region. However, that was rather greatly reduced in the low flow region. Even so, the general trend by the air introduction was that qCHF increased as the air introduction was increased. The heat transfer augmentation in the non-boiling region was attained by less power increase than that in the case that only the water flow rate was increased. From the aspect of the power consumption and the heat transfer enhancement, the small air introduction in the low water flow rate region seemed more profitable, although the air introduction in the high water flow rate region and also the large air introduction were still effective in the augmentation of the heat transfer in the non-boiling region. (author)

  14. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  15. Air flow management in raised floor data centers

    CERN Document Server

    Arghode, Vaibhav K

    2016-01-01

    The Brief discuss primarily two aspects of air flow management in raised floor data centers. Firstly, cooling air delivery through perforated tiles will be examined and influence of the tile geometry on flow field development and hot air entrainment above perforated tiles will be discussed. Secondly, the use of cold aisle containment to physically separate hot and cold regions, and minimize hot and cold air mixing will be presented. Both experimental investigations and computational efforts are discussed and development of computational fluid dynamics (CFD) based models for simulating air flow in data centers is included. In addition, metrology tools for facility scale air velocity and temperature measurement, and air flow rate measurement through perforated floor tiles and server racks are examined and the authors present thermodynamics-based models to gauge the effectiveness and importance of air flow management schemes in data centers.

  16. Dynamic Flow Management Problems in Air Transportation

    Science.gov (United States)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  17. Modeling of air flow through a narrow crack

    International Nuclear Information System (INIS)

    Trojek, T.; Cechak, T.; Moucka, L.; Fronka, A.

    2004-01-01

    Radon transport in dwellings is governed to a significant extent by pressure differences and properties of transport pathways. A model of air flow through narrow cracks was created in order to facilitate prediction of air velocity and air flow. Theoretical calculations, based on numerical solution of a system of differential equations, were compared with measurements carried out on a window crack. (P.A.)

  18. Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first.

    Science.gov (United States)

    Bartol, Ian K; Krueger, Paul S; Jastrebsky, Rachel A; Williams, Sheila; Thompson, Joseph T

    2016-02-01

    Squids use a pulsed jet and fin movements to swim both arms-first (forward) and tail-first (backward). Given the complexity of the squid multi-propulsor system, 3D velocimetry techniques are required for the comprehensive study of wake dynamics. Defocusing digital particle tracking velocimetry, a volumetric velocimetry technique, and high-speed videography were used to study arms-first and tail-first swimming of brief squid Lolliguncula brevis over a broad range of speeds [0-10 dorsal mantle lengths (DML) s(-1)] in a swim tunnel. Although there was considerable complexity in the wakes of these multi-propulsor swimmers, 3D vortex rings and their derivatives were prominent reoccurring features during both tail-first and arms-first swimming, with the greatest jet and fin flow complexity occurring at intermediate speeds (1.5-3.0 DML s(-1)). The jet generally produced the majority of thrust during rectilinear swimming, increasing in relative importance with speed, and the fins provided no thrust at speeds >4.5 DML s(-1). For both swimming orientations, the fins sometimes acted as stabilizers, producing negative thrust (drag), and consistently provided lift at low/intermediate speeds (swimming orientation, and η for swimming sequences with clear isolated jet vortex rings was significantly greater (η=78.6±7.6%, mean±s.d.) than that for swimming sequences with clear elongated regions of concentrated jet vorticity (η=67.9±19.2%). This study reveals the complexity of 3D vortex wake flows produced by nekton with hydrodynamically distinct propulsors. © 2016. Published by The Company of Biologists Ltd.

  19. STUDY OF FLOW IN AIR-INTAKE SYSTEM FOR A SINGLE-CYLINDER GO-KART ENGINE

    Directory of Open Access Journals (Sweden)

    S. A. Sulaiman

    2010-06-01

    Full Text Available Intake-air manifolds have a major effect on a vehicle’s engine performance and emission of noise and pollutants. Differences in engine outputs and applications require different designs of intake-air manifolds in order to achieve the best volumetric efficiency and thus the best engine performance. In the present work, the flow characteristics of air flowing in various designs of air-intake manifold of a 200-cc four-stroke Go-Kart engine are studied. The study is done by three dimensional simulations of the flow of air within six designs of air-intake manifold into the combustion chamber by using commercial CFD software, Fluent version 6.2. The simulation results are validated by an experimental study performed using a flow bench. The study reveals that the variations in the geometry of the air-intake system can result in a difference of up to 20% in the mass flow rate of air entering the combustion chamber.

  20. Experimental Setup For Study of Drop Deformation In Air Flow

    Directory of Open Access Journals (Sweden)

    Basalaev Sergey

    2017-01-01

    Full Text Available Experimental study for study of deformation of drops in air flow is considered. Experimental setup includes a module for obtaining the drops, an air flow system and measuring system. Module for formation of drops is in the form of vertically arranged dropper with capillary with the possibility of formation of fixed drops. Air flow supply system comprises an air pump coupled conduit through a regulating valve with a cylindrical pipe, installed coaxially with dropper. The measuring system includes the video camera located with possibility of visualization of drop and the Pitot gage for measurement of flow rate of air located in the output section of branch pipe. This experimental setup allows to provide reliable and informative results of the investigation of deformation of drops in the air flow.

  1. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  2. Interaction of Air Flow in Complex Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Zhorzh G. Levitskiy

    2013-01-01

    Full Text Available The article presents the results of study of interaction of air flow in complex ventilation systems. The study used Taylor and Maclaurin’s series and Lagrange formula to create the functional connections on estimation of the impact of changing aerodynamic parameters of one or several simultaneously working regulators on the air flow distribution in mines

  3. 40 CFR 1065.225 - Intake-air flow meter.

    Science.gov (United States)

    2010-07-01

    ... as described in § 1065.650, as follows: (1) Use the actual value of calculated raw exhaust in the..., you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  4. Simulation of the air flows in many industrial pleated filters

    International Nuclear Information System (INIS)

    Del Fabbro, L.; Brun, P.; Laborde, J.C.; Lacan, J.; Ricciardi, L.; Renoux, A.

    2000-01-01

    The study presents results concerning the characterization of the charge loss and the air flow in nuclear and automobile type pleated filters. The experimental studies in correlation with the numerical models showed an homogenous distribution of the air flows in a THE nuclear type filter, whereas the distribution is heterogenous in the case of an automobile filter. (A.L.B.)

  5. Cavity air flow behavior during filling in microinjection molding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.

    2011-01-01

    Process monitoring of microinjection molding (μ-IM) is of crucial importance in understanding the effects of different parameter settings on the process, especially on its performance and consistency with regard to parts' quality. Quality factors related to mold cavity air evacuation can provide...... valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental setup is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a microelectromechanical system gas sensor...... the effects of process parameters on cavity air evacuation, and the influence of air evacuation on the part flow length. © 2011 American Society of Mechanical Engineers....

  6. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    International Nuclear Information System (INIS)

    Paul, J.D.

    1993-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements, the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper presents the results of air flow uniformity testing for six different filter housing/ductwork configurations and discusses if any of those variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases

  7. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  8. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    Science.gov (United States)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  9. Discharge characteristics in inhomogeneous fields under air flow

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim

    2017-01-01

    the frequency and magnitude of partial discharges in the vicinity of the electrode due to an increased rate of space charge removal around the tip of the needle and in the gap. The positive polarity shows higher dependency on air flow compared to the negative polarity. It is shown that positive breakdown......This research investigates the impact of high velocity air flow on Partial Discharge (PD) patterns generated in strongly inhomogeneous fields. In the laboratory, a needle plane electrode configuration was exposed to a high electrical DC-field and a laminar air flow up to 22 ms. The needle...

  10. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Tsukada, A; Haas, O; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  11. Kilohertz VLIF (volumetric laser induced fluorescence) measurements in a seeded free gas-phase jet in the transitionally turbulent flow regime

    Science.gov (United States)

    Wu, Yue; Xu, Wenjiang; Ma, Lin

    2018-03-01

    This paper reports the demonstration of instantaneous three-dimension (3D) measurements in turbulent flows at repetition rates up to 10 kHz using VLIF (volumetric laser induced fluorescence). The measurements were performed based on the LIF signal of iodine (I2) vapor seeded in the flow. The LIF signals of I2 vapor were generated volumetrically by a thick laser slab and then simultaneously captured by a total of seven cameras from different perspectives, based on which a 3D tomographic reconstruction was performed to obtain the 3D distribution of I2 vapor concentration. Single-shot measurements obtained in a duration of hundreds of nanoseconds (limited by the pulse duration of the excitation laser) were demonstrated in a 50 × 50 × 50 mm3 at a repetition rate up to 10 kHz. These measurements demonstrated the feasibility and potential of VLIF for resolving the 4D spatiotemporal dynamics of turbulent flows. Based on the experimental results obtained, this work also studied the VLIF signal level and its effects on the reconstruction accuracy under different the measurement conditions, illustrating the capabilities and limitations of performing high speed VLIF measurements.

  12. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  13. Effect of air flow on tubular solar still efficiency.

    Science.gov (United States)

    Thirugnanasambantham, Arunkumar; Rajan, Jayaprakash; Ahsan, Amimul; Kandasamy, Vinothkumar

    2013-01-01

    An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. THE EXPERIMENTAL STUDY WAS OPERATED WITH TWO MODES: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively.

  14. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels

    Directory of Open Access Journals (Sweden)

    X. Y. Ji

    2010-12-01

    Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.

  15. Numerical Modelling Of Humid Air Flow Around A Porous Body

    Directory of Open Access Journals (Sweden)

    Bohojło-Wiśniewska Aneta

    2015-09-01

    Full Text Available This paper presents an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat transfer. This kind of numerical simulation allows us to create a heat and humidity transfer model between the Chinese cabbage and the flowing humid air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between the solid (vegetable tissue and fluid (air phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 software.

  16. Calculation of the dynamic air flow resistivity of fibre materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1997-01-01

    The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self...

  17. Visualization of the air flow behind the automotive benchmark vent

    Science.gov (United States)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  18. Visualization of the air flow behind the automotive benchmark vent

    Directory of Open Access Journals (Sweden)

    Pech Ondrej

    2015-01-01

    Full Text Available Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  19. Sodium flow distribution test of the air cooler tubes

    International Nuclear Information System (INIS)

    Uchida, Hiroyuki; Ohta, Hidehisa; Shimazu, Hisashi

    1980-01-01

    In the heat transfer tubes of the air cooler which is installed in the auxiliary core cooling system of the fast breeder prototype plant reactor ''Monju'', sodium freezing may be caused by undercooling the sodium induced by an extremely unbalanced sodium flow in the tubes. Thus, the sodium flow distribution test of the air cooler tubes was performed to examine the flow distribution of the tubes and to estimate the possibility of sodium freezing in the tubes. This test was performed by using a one fourth air cooler model installed in the water flow test facility. As the test results show, the flow distribution from the inlet header to each tube is almost equal at any operating condition, that is, the velocity deviation from normalized mean velocity is less than 6% and sodium freezing does not occur up to 250% air velocity deviation at stand-by condition. It was clear that the proposed air cooler design for the ''Monju'' will have a good sodium flow distribution at any operating condition. (author)

  20. Bridging PIV spatial and temporal resolution using governing equations and development of the coaxial volumetric velocimeter

    NARCIS (Netherlands)

    Schneiders, J.F.G.

    2017-01-01

    A series of techniques is proposed for volumetric air flow measurements that are based upon the principles of particle image velocimetry (PIV). The proposed techniques fall in two categories; part 1 of this dissertation considers measurement data processing using constitutive laws and part 2 focuses

  1. Visualization of the air flow behind the automotive benchmark vent

    OpenAIRE

    Pech, Ondřej; Jedelský, Jan; Caletka, Petr; Jícha, Miroslav

    2015-01-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of ...

  2. The use of air flow through water for water evaporation

    International Nuclear Information System (INIS)

    Lashin, A.A.

    1996-01-01

    In water desalination system the productivity rate is improved by increasing the rate of eater evaporation either by heating the water or by forcing air to carry more vapor before condensation. This paper describe an experimental investigation into the effect of forcing the air to flow through a hot water contained in a closed tank through a perforated end of inlet tube. When the air bubbles pass through the water, it increases the rate of vaporization. The effect of some operating parameters are investigated and the results are presented and discussed. 6 figs

  3. Transient Air-Water Flow and Air Demand following an Opening Outlet Gate

    Directory of Open Access Journals (Sweden)

    James Yang

    2018-01-01

    Full Text Available In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.

  4. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  5. Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber

    OpenAIRE

    S. P. Sharma; Som Nath Saha

    2017-01-01

    This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heate...

  6. A constant flow filter air sampler for workplace environments

    International Nuclear Information System (INIS)

    Parulian, A.; Rodgers, J.C.; McFarland, A.R.

    1996-01-01

    A filter air sampler has been developed for sampling radionuclide aerosol particles form the workplace environment. It provides easy filter changing, constant flow sampling, and a visual display to indicate proper operation. An experimental study was conducted to characterize the collection efficiency of the sampler as affected by variations in room air velocity, particle size, sampling flow rate, inlet geometry, and inlet orientation to the free stream. Tests were carried out in a wing tunnel at velocities between 0.3 m s -1 and 2.0 m s -1 , which is a range that covers anticipated velocities in the typical highly ventilated workplace environment of a nuclear facility. Nearly monodisperse aerosols with sizes between 5 and 20 μm aerodynamic diameter were sampled at flow rates between 28.3 and 84.9 L min -1 . Inlet orientations of 0 degree, 90 degree, and 180 degree from the horizontal were selected for evaluation. When the sampler was oriented at 0 degree over various ranges of free stream velocities, sampling flow rates and particle sizes, the transmission efficiency of aerosol was typically greater than 95%. The transmission efficiencies varied form 80% to 106% for 10-μm aerodynamic diameter particles over the previously noted range of free stream velocities and inlet orientations. Uniformity of deposits of 10 μm aerodynamic diameter particles on collection filters was examined for a sampling rate of 57 L min -1 , a sampler orientation of 90 degree into the wind and wind speeds of 0.3-2 m s -1 . The coefficients of variation for the areal density of the deposits ranged from 6.1% to 37.2%. A miniature critical flow venturi with a constant sampling flow rate of 57 L min -1 was developed for application to the new filter air sampler. It was demonstrated that the performance of the new filter air sampler is quite acceptable over a wide range of conditions. 31 refs., 8 figs., 1 tab

  7. Slug flooding in air-water countercurrent vertical flow

    International Nuclear Information System (INIS)

    Lee, Jae Young; Raman, Roger; Chang, Jen-Shih

    2000-01-01

    This paper is to study slug flooding in the vertical air-water countercurrent flow loop with a porous liquid injector in the upper plenum. More water penetration into the bottom plenum in slug flooding is observed than the annular flooding because the flow regime changes from the slug flow regime or periodic slug/annular flow regime to annular flow regime due to the hysteresis between the onset of flooding and the bridging film. Experiments were made tubes of 0.995 cm, 2.07 cm, and 5.08 cm in diameter. A mechanistic model for the slug flooding with the solitary wave whose height is four time of the mean film thickness is developed to produce relations of the critical liquid flow rate and the mean film thickness. After fitting the critical liquid flow rate with the experimental data as a function of the Bond number, the gas flow rate for the slug flooding is obtained by substituting the critical liquid flow rate to the annular flooding criteria. The present experimental data evaluate the slug flooding condition developed here by substituting the correlations for mean film thickness models in the literature. The best prediction was made by the correlation for the mean film thickness of the present study which is same as Feind's correlation multiplied by 1.35. (author)

  8. Helium-air counter flow in rectangular channels

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Tanaka, Gaku; Zhao, Hong; Hishida, Makoto; Shiina, Yasuaki

    2004-01-01

    This paper deals with numerical analysis of helium-air counter flow in a rectangular channel with an aspect ratio of 10. The channel has a cross sectional area of 5-50 mm and a length of 200 mm. The inclination angle was varied from 0 to 90 degree. The velocity profiles and concentration profiles were analyzed with a computer program [FLUENT]. Following main features of the counter flow are discussed based on the calculated results. (1) Time required for establishing a quasi-steady state counter flow. (2) The relationship between the inclination angle and the flow patterns of the counter flow. (3) The developing process of velocity profiles and concentration profiles. (4) The relationship between the inclination angle of the channel and the velocity profiles of upward flow and the downward flow. (5) The relationship between the concentration profile and the inclination angle. (6) The relationship between the net in-flow rate and the inclination angle. We compared the computed velocity profile and the net in-flow rate with experimental data. A good agreement was obtained between the calculation results and the experimental results. (author)

  9. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  10. Flow regime classification in air-magnetic fluid two-phase flow.

    Science.gov (United States)

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  11. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2009-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  12. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  13. On air-chemistry reduction for hypersonic external flow applications

    International Nuclear Information System (INIS)

    Ibrahim, Ashraf; Suman, Sawan; Girimaji, Sharath S.

    2015-01-01

    Highlights: • The existence of the slow manifold for the air-mixture system is shown. • The QSSA estimate of the slow manifold is fairly accurate. • For mid-temperature range the reduction mechanisms could be useful. - Abstract: In external hypersonic flows, viscous and compressibility effects generate very high temperatures leading to significant chemical reactions among air constituents. Therefore, hypersonic flow computations require coupled calculations of flow and chemistry. Accurate and efficient computations of air-chemistry kinetics are of much importance for many practical applications but calculations accounting for detailed chemical kinetics can be prohibitively expensive. In this paper, we investigate the possibility of applying chemical kinetics reduction schemes for hypersonic air-chemistry. We consider two chemical kinetics sets appropriate for three different temperature ranges: 2500 K to 4500 K; 4500 K to 9000 K; and above 9000 K. By demonstrating the existence of the so-called the slow manifold in each of the chemistry sets, we show that judicious chemical kinetics reduction leading to significant computational savings is possible without much loss in accuracy

  14. Air Flow and Pressure Drop Measurements Across Porous Oxides

    Science.gov (United States)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  15. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  16. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...... algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control...

  17. Coaxial volumetric velocimetry

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  18. Horizontal Air-Water Flow Analysis with Wire Mesh Sensor

    International Nuclear Information System (INIS)

    De Salve, M; Monni, G; Panella, B

    2012-01-01

    A Wire Mesh Sensor, based on the measurement of the local instantaneous conductivity of the two-phase mixture, has been used to characterize the fluid dynamics of the gas–liquid interface in a horizontal pipe flow. Experiments with a pipe of a nominal diameter of 19.5 mm and total length of 6 m, have been performed with air/water mixtures, at ambient conditions. The flow quality ranges from 0.00016 to 0.22 and the superficial velocities range from 0.1 to 10.5 m/s for air and from 0.02 to 1.7 m/s for water; the flow pattern is stratified, slug/plug and annular. A sensor (WMS200) with an inner diameter of 19.5 mm and a measuring matrix of 16×16 points equally distributed over the cross-section has been chosen for the measurements. From the analysis of the Wire Mesh Sensor digital signals the average and the local void fraction are evaluated and the flow patterns are identified with reference to space, time and flow rate boundary conditions.

  19. Transition from slug to annular flow in horizontal air-water flow

    International Nuclear Information System (INIS)

    Reismann, J.; John, H.; Seeger, W.

    1981-11-01

    The transition from slug to annular flow in horizontal air-water and steam-water flow was investigated. Test sections of 50; 66.6 and 80 mm ID were used. The system pressure was 0.2 and 0.5 MPa in the air-water experiments and 2.5; 5; 7.5 and 10 MPa in the steam-water experiments. For flow pattern detection local impedance probes were used. This method was compared in a part of the experiments with differential pressure and gamma-beam measurements. The flow regime boundary is shifting strongly to smaller values of the superficial gas velocity with increasing pressure. Correlations from literature fit unsatisfactorily the experimental results. A new correlation is presented. (orig.) [de

  20. Methods of Visually Determining the Air Flow Around Airplanes

    Science.gov (United States)

    Gough, Melvin N; Johnson, Ernest

    1932-01-01

    This report describes methods used by the National Advisory Committee for Aeronautics to study visually the air flow around airplanes. The use of streamers, oil and exhaust gas streaks, lampblack and kerosene, powdered materials, and kerosene smoke is briefly described. The generation and distribution of smoke from candles and from titanium tetrachloride are described in greater detail because they appear most advantageous for general application. Examples are included showing results of the various methods.

  1. STUDY OF THE AIR FLOWS AROUND AN AIRPLANE

    Directory of Open Access Journals (Sweden)

    Diaconescu Olivian

    2013-06-01

    Full Text Available This material presents a stage of the designing of an airplane capable to work with low capacity engines of 2.5 and 4 cmc namely the simulation of the air flow around the fuselage and the wings. The study proves the correctness of the choice made in the wing’s positioning and of the horizontal stabilizer of the airplane’s axis,for the chosen airplane type namely acrobat.

  2. STUDY OF THE AIR FLOWS AROUND AN AIRPLANE

    OpenAIRE

    Diaconescu Olivian

    2013-01-01

    This material presents a stage of the designing of an airplane capable to work with low capacity engines of 2.5 and 4 cmc namely the simulation of the air flow around the fuselage and the wings. The study proves the correctness of the choice made in the wing’s positioning and of the horizontal stabilizer of the airplane’s axis,for the chosen airplane type namely acrobat.

  3. Thermistor based, low velocity isothermal, air flow sensor

    International Nuclear Information System (INIS)

    Cabrita, Admésio A C M; Mendes, Ricardo; Quintela, Divo A

    2016-01-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms −1 ). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms −1 to 2 ms −1 with a standard uncertainty error less than 4%. (paper)

  4. Energy recovery from air flow in underground railway systems

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, B.; Mariani, A. [Seconda Univ. degli studi di Napoli, Aversa (Italy). Dept. of Aerospace and Mechanical Engineering; Costanzo, M.L. [Tecnosistem spa, Napoli (Italy)

    2010-07-01

    The 20-20-20 energy policy of the European Union commits members to reduce carbon dioxide (CO{sub 2}) emissions by 20 per cent by 2020, and stipulates that 20 per cent of final-use energy is to be supplied by renewable energy sources. This paper proposed the concept of recovering energy from underground trains by using the air flow inside tunnels to drive energy conversion systems such as turbines to generate electricity. Underground trains use much of their power to overcome the aerodynamic resistance moving the air in front of the train, creating a piston effect when travelling inside tunnels at relatively low speed. Numerical simulations were used in this study to determine how much electricity could be produced. A one-dimensional numerical analysis of a specific subway train track was used to evaluate the air flow magnitude inside the tunnel. Once the air flow features were detected, the potential electricity production was evaluated by considering the characteristics of a Wells turbine. Two types of 3-dimensional models of the tunnel and train were presented. One considered a long straight tunnel with a train running in it, and a small portion of a bypass tunnel. The other considered a large part of an opposite tunnel connected to the main one through the by-pass tunnel. Both the 3D models revealed a maximum flow rate of 2.5 x 105 m{sup 3}/h, while the 1D model showed an air flow of 1.5 x 105 m{sup 3}/h. The difference was due primarily to the presence of fans in the 1D Model and different modelling assumptions. It was concluded that one single Wells type turbine placed in a by-pass tunnel can produce 32.6 kWh per day, or about 10 MWh per year, resulting in a CO{sub 2} savings of about 5.5 tons per year. 8 refs., 1 tab., 11 figs.

  5. Air flow quality analysis of modenas engine exhaust system

    Science.gov (United States)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  6. Characteristics Air Flow in Room Chamber Test Refrigerator Household Energy Consumption with Inlet Flow Variation

    Science.gov (United States)

    Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo

    2018-03-01

    Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.

  7. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  8. Canyon air flow measurement utilizing ASME standard pitot tube arrays

    International Nuclear Information System (INIS)

    Moncrief, B.R.

    1990-01-01

    The Savannah River Site produces nuclear materials for national defense. In addition to nuclear reactors, the site has separation facilities for reprocessing irradiated nuclear fuel. The chemical separation of highly radioactive materials takes place by remote control in large buildings called canyons. Personnel in these buildings are shielded from radiation by thick concrete walls. Contaminated air is exhausted from the canyons and contaminants are removed by sand filters prior to release to the atmosphere through a stack. When these facilities were built on a crash basis in the early 1950's, inadequate means were provided for pressure and air flow measurement. This presentation describes the challenge we faced in retrofitting a highly radioactive, heavily shielded facility with instrumentation to provide this capability

  9. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  10. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  11. Numerical simulation of air hypersonic flows with equilibrium chemical reactions

    Science.gov (United States)

    Emelyanov, Vladislav; Karpenko, Anton; Volkov, Konstantin

    2018-05-01

    The finite volume method is applied to solve unsteady three-dimensional compressible Navier-Stokes equations on unstructured meshes. High-temperature gas effects altering the aerodynamics of vehicles are taken into account. Possibilities of the use of graphics processor units (GPUs) for the simulation of hypersonic flows are demonstrated. Solutions of some test cases on GPUs are reported, and a comparison between computational results of equilibrium chemically reacting and perfect air flowfields is performed. Speedup of solution on GPUs with respect to the solution on central processor units (CPUs) is compared. The results obtained provide promising perspective for designing a GPU-based software framework for practical applications.

  12. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    International Nuclear Information System (INIS)

    Compton, J.A.

    1994-01-01

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another's estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended

  13. Modelling the air flow in symmetric and asymmetric street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L.; Martin, F. [Research Center for Energy, Environment and Technology (CIEMAT), Madrid (Spain). Fossil Fuels Dept., Numerical Simulation and Modelling Program

    2004-07-01

    In recent years a large amount of research has been conducted on urban scale and street canyon. Control of air quality inside cities is important for human health. To achieve this objective, street canyon modelling plays a significant role. Pollutant dispersion inside canyons are determined by wind flow around this complex geometry. Experimental investigations have been made by means of field measurements such as Vachon, G. et al. or wind tunnel experiences as Meroney, R.N. et al. or Kastner-Klein, P. and E.J. Plate. In many of these researches, they have used CFD models in several configurations, for instance Assimakopoulos, V.D. et al. or Sini, J.-F. et al. These models are based on a numerical resolution of Navier-Stokes equations with a turbulence closure. In this study, the aim is contribute to the understanding of air circulation inside street canyons. In order to achieve this purpose, several configurations of canyons are investigated. Two-dimensional sequences of real-scale street canyons (order to obstacles height is meters) with different features (symmetric canyons and asymmetric canyons forming step-up and step-down notch configurations) are simulated. These general configurations are modified to investigate some parameters such as aspect ratio, W/H, where W is the width of street and H is the height of buildings. Flows with high Reynolds numbers are modelling. FLUENT CFD software is used. (orig.)

  14. Graphical User Interface Development for Representing Air Flow Patterns

    Science.gov (United States)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  15. Performance and Internal Flow of a Dental Air Turbine Handpiece

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2018-01-01

    Full Text Available An air turbine handpiece is a dental abrasive device that rotates at high speed and uses compressed air as the driving force. It is characterized by its small size, light weight, and painless abrading due to its high-speed rotation, but its torque is small and noise level is high. Thus, to improve the performance of the air turbine handpiece, we conducted a performance test of an actual handpiece and a numerical analysis that modeled the whole handpiece; we also analyzed the internal flow of the handpiece. Results show that experimental and calculated values were consistent for a constant speed load method with the descending speed of 1 mm/min for torque and turbine output. When the tip of the blade was at the center of the nozzle, the torque was at its highest. This is likely because the jet from the nozzle entered the tip of the blade from a close distance that would not reduce the speed and exited along the blade.

  16. Flow and air conditioning simulations of computer turbinectomized nose models.

    Science.gov (United States)

    Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J

    2018-04-16

    Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.

  17. An evolutionary outlook of air traffic flow management techniques

    Science.gov (United States)

    Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga

    2017-01-01

    In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.

  18. New sensor for measurement of low air flow velocity. Phase I final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II

  19. Pressure loss of the annular air-liquid flow in vertical tufes

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Cantalino, A [Rio de Janeiro Univ. (Brazil). Dept. de Engenharia Quimica

    1976-01-01

    In this work the pressure loss of the annular air-liquid flow in vertical tubes has been determined. Correlations are presented for the frictional pressure drop. The dimensional analysis and the following fluid systems were used for this determination: air-water, air-alcohol solutions and air-water and surfactants.

  20. An experimental investigation of natural circulated air flow in the passive containment cooling system

    International Nuclear Information System (INIS)

    Ryu, S.H.; Oh, S.M.; Park, G.C.

    2004-01-01

    The objective of this study is to investigate the effects of air inlet position and external conditions on the natural circulated air flow rate in a passive containment cooling system of the advanced passive reactor. Experiments have been performed with 1/36 scaled segment type passive containment test facility. The air velocities and temperatures are measured through the air flow path. Also, the experimental results are compared with numerical calculations and show good agreement. (author)

  1. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    Science.gov (United States)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  2. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    Science.gov (United States)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  3. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some......-scale outdoor test facility with a naturally ventilated double skin façade. Although both methods are difficult to use under such dynamic air flow conditions, they show reasonable agreement and can be used for experimental validation of numerical models of natural ventilation air flow in DSF. Simulations...

  4. Patterns of a slow air-water flow in a semispherical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2016-01-01

    This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom int......This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis...... on the air flow. In contrast to flows in cylindrical and conical containers, there is no interaction with Moffatt corner vortices here....

  5. Numerical study of the air-flow in an oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Paixao Conde, J.M. [Department of Mechanical and Industrial Engineering, Faculty of Sciences and Technology, New University of Lisbon, Monte de Caparica, 2829-516 Caparica (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal)

    2008-12-15

    The paper presents a numerical study of the air-flow in a typical pneumatic chamber geometry of an oscillating water column (OWC)-type wave energy converter (WEC), equipped with two vertical-axis air turbines, asymmetrically placed on the top of the chamber. Outwards and inwards, steady and periodic, air-flow calculations were performed to investigate the flow distribution at the turbines' inlet sections, as well as the properties of the air-jet impinging on the water free-surface. The original design of the OWC chamber is likely to be harmful for the operation of the turbines due to the possible air-jet-produced water-spray at the water free-surface subsequently ingested by the turbine. A geometry modification of the air chamber, using a horizontal baffle-plate to deflect the air from the turbines, is proposed and proved to be very effective in reducing the risk of water-spray production from the inwards flow. The flow distribution at the turbines' inlet sections for the outwards flow was found to be fairly uniform for the geometries considered, providing good inlet flow conditions for the turbines. Steady flow was found to be an acceptable model to study the air-flow inside the pneumatic chamber of an OWC-WEC. (author)

  6. CFD model of air movement in ventilated facade: comparison between natural and forced air flow

    Energy Technology Data Exchange (ETDEWEB)

    Mora Perez, Miguel; Lopez Patino, Gonzalo; Lopez Jimenez, P. Amparo [Hydraulic and Environmental Engineering Department, Universitat Politècnica de Valencia (Spain)

    2013-07-01

    This study describes computational fluid dynamics (CFD) modeling of ventilated facade. Ventilated facades are normal facade but it has an extra channel between the concrete wall and the (double skin) facade. Several studies found in the literature are carried out with CFD simulations about the behavior of the thermodynamic phenomena of the double skin facades systems. These studies conclude that the presence of the air gap in the ventilated facade affects the temperature in the building skin, causing a cooling effect, at least in low-rise buildings. One of the most important factors affecting the thermal effects of ventilated facades is the wind velocity. In this contribution, a CFD analysis applied on two different velocity assumptions for air movement in the air gap of a ventilated facade is presented. A comparison is proposed considering natural wind induced velocity with forced fan induced velocity in the gap. Finally, comparing temperatures in the building skin, the differences between both solutions are described determining that, related to the considered boundary conditions, there is a maximum height in which the thermal effect of the induced flow is significantly observed.

  7. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann-Vocke, Jonas, E-mail: jh63@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Neale, James, E-mail: jamesn@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Walmsley, Michael, E-mail: walmsley@waikato.ac.nz [University of Waikato, Department of Engineering, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand)

    2011-08-15

    Highlights: > Measured the effects of air heater inlet header geometry on hydraulic performance. > Measured the effects of inlet header flow maldistribution on hydraulic performance. > Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  8. Quasi-steady-state model of a counter flow air-to-air heat exchanger with phase change

    DEFF Research Database (Denmark)

    Rose, Jørgen; Nielsen, Toke Rammer; Kragh, Jesper

    2008-01-01

    -exchanger. Developing highly efficient heat-exchangers and strategies to avoid/remove frost formation implies the use of detailed models to predict and evaluate different heat-exchanger designs and strategies. This paper presents a quasi-steady-state model of a counter-flow air-to-air heat-exchanger that takes...

  9. Air flow distribution in and around a single-sided naturally ventilated room

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, M.M.; Marjanovic, L.D.; Pinnock, D.J. [Loughborough University (United Kingdom). Dept. of Civil and Building Engineering

    2002-03-01

    The objective of this research is to compare calculated and measured air flow distributions inside a test room which is naturally ventilated. The test room is situated in a relatively sheltered location and to visualise the resultant local wind pattern around the room for all prevailing wind directions, wind tunnel trials were carried out. Both the wind tunnel and full-scale measurements show that the wind direction at the test cell was generally restricted to either a westerly or an easterly direction. To investigate air flow inside the room, the air pressures and velocities across the openings together with indoor air temperature and velocity at four locations and six different levels are measured. The experimental results demonstrate that for both winter and summer the air was entering the test room at bottom and leaving at the top louvre. Separate air flow and thermal modelling programs are used to predict the spatial distribution of the air flow and thermal comfort. The air flow distribution was predicted using a network air flow program. The predicted flow showed similar trends and the simulation results were in agreement with the measured data. An explicit finite-difference thermal modeling simulation package was used to predict the thermal comfort indices.(author)

  10. Study on flow rate measurement and visualization of helium-air exchange flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1992-01-01

    This paper deals with an experimental investigation on buoyancy-driven exchange flows through horizontal and inclined openings. The method of the mass increment was developed to measure the flow rate in helium-air system and a displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the flow. As the result, the followings were obtained: Flow visualization results indicate that the upward and downward plumes of helium and air break through the opening intermittently, and they swing in the lateral direction through the horizontal opening. It is clearly visualized that the exchange flows through the inclined openings take place smoothly and stably in the separated passages. The inclination angle for the maximum Froude number decreases with increasing length-to-diameter ratio in the helium-air system, on the contrary to Mercer's experimental results in the water-brine system indicating that the angle remains almost constant. (author)

  11. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  12. The fabrication of plastic cages for suspension in mass air flow racks.

    Science.gov (United States)

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  13. Experimental study for flow regime of downward air-water two-phase flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)

    2015-05-15

    Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.

  14. Comparison of Descemet stripping under continuous air flow, manual air injection and balanced salt solution for DMEK: a pilot study.

    Science.gov (United States)

    Gabbay, I E; Bahar, I; Nahum, Y; Livny, E

    2017-08-01

    Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p air in the AC contributes to better visualization and an efficient surgery.

  15. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  16. KINEMATIC STUDY OF THE AIR FLOW PRODUCED BY SOME SPRAYERS USED IN “TENDONE” VINEYARDS

    Directory of Open Access Journals (Sweden)

    Simone Pascuzzi

    2008-09-01

    Full Text Available A computerized measuring system to analyse the vector field of the air velocities in a volume surrounding the fan of air assisted sprayers usually used in tendone vineyards was designed and built. The performance of three different sprayers was tested: the first, a traditional air-convection sprayer, the other two, suitably designed for treatments in tendone vineyards. The air flow which exited through the discharge diffusers and moving towards the target sucked air from the surrounding environment that enlarged the flow rate on the target. The available flow was that which reached the vegetative and productive area, placed in a horizontal position respectively at 1.8 m and 2.0 m from the ground plane. The pneumatic sprayer produced an air flow clearly directed towards the top of the vines.

  17. A test section design to simulate horizontal two-phase air-water flow

    International Nuclear Information System (INIS)

    Faccini, Jose Luiz H.; Cesar, Silvia B.G.; Coutinho, Jorge A.; Freitas, Sergio Carlos; Addor, Pedro N.

    2002-01-01

    In this work an air-water two-phase flow horizontal test section assembling at Nuclear Engineering Institute (IEN) is presented. The test section was designed to allow four-phase flow patterns to be simulated: bubble flow, stratified flow, wave flow and slug flow. These flow patterns will be identified by non-conventional ultrasonic techniques which have been developed to meet this particular application. Based on the separated flow and drift-flux models the test section design steps are shown. A description of the test section and its instrumentation and data acquisition system is also provided. (author)

  18. Effects of air flow maldistribution on refrigeration system dynamics of air source heat pump chiller under frosting conditions

    International Nuclear Information System (INIS)

    Gong Jianying; Gao Tieyu; Yuan Xiuling; Huang Dong

    2008-01-01

    The effects of air flow maldistribution on the performance of an air source heat pump chiller under frosting conditions were investigated experimentally. The results indicated that air flow maldistribution was the dominant factor leading to hunting of the thermostatic expansion valve for medium and/or large size finned tube evaporators. With air flow maldistribution degree (AMD) increasing, frost occurred earlier, and the frost layer grew faster. The operating characteristics became lower when AMD was increased. We found such phenomenon seemed to be related to both the difference of refrigerant outlet superheat and the frosting velocity. In the hunting stage, the frost block effect became the main factor degrading the refrigeration system performance. With AMD increasing, the heat pump system pertinent performance data (suction pressure, evaporation temperature, discharge pressure, refrigerant outlet temperature, etc.) were degraded more dramatically

  19. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  20. Flow development through HP & LP turbines, Part II: Effects of the hub endwall secondary sealing air flow on the turbine's mainstream flow

    Science.gov (United States)

    Hu, Jialin; Du, Qiang; Liu, Jun; Wang, Pei; Liu, Guang; Liu, Hongrui; Du, Meimei

    2017-08-01

    Although many literatures have been focused on the underneath flow and loss mechanism, very few experiments and simulations have been done under the engines' representative working conditions or considering the real cavity structure as a whole. This paper aims at realizing the goal of design of efficient turbine and scrutinizing the velocity distribution in the vicinity of the rim seal. With the aid of numerical method, a numerical model describing the flow pattern both in the purge flow spot and within the mainstream flow path is established, fluid migration and its accompanied flow mechanism within the realistic cavity structure (with rim seal structure and considering mainstream & secondary air flow's interaction) is used to evaluate both the flow pattern and the underneath flow mechanism within the inward rotating cavity. Meanwhile, the underneath flow and loss mechanism are also studied in the current paper. The computational results show that the sealing air flow's ingestion and ejection are highly interwound with each other in both upstream and downstream flow of the rim seal. Both the down-stream blades' potential effects as well as the upstream blades' wake trajectory can bring about the ingestion of the hot gas flow within the cavity, abrupt increase of the static pressure is believed to be the main reason. Also, the results indicate that sealing air flow ejected through the rear cavity will cause unexpected loss near the outlet section of the blades in the downstream of the HP rotor passages.

  1. Impact of co-flow air on buoyant diffusion flames flicker

    Energy Technology Data Exchange (ETDEWEB)

    Gohari Darabkhani, H., E-mail: h.g.darabkhani@gmail.com [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Wang, Q.; Chen, L.; Zhang, Y. [Mechanical Engineering Department, University of Sheffield, Mapping Street, Sheffield S1 3JD (United Kingdom)

    2011-08-15

    Highlights: {yields} We present the co-flow effects on flickering behaviour of diffusion flames. {yields} Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. {yields} Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. {yields} Stability controlling parameter as a ratio of air to fuel velocities is presented. {yields} Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, {gamma}, is a stability controlling parameter. The velocity ratio, {gamma}, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes

  2. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  3. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  4. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, Robert [Paul Scherrer Institute, PSI Villigen 5232 (Switzerland); Dangendorf, Volker; Bromberger, Benjamin; Tittelmeier, Kai [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 38116 (Germany); Mor, Ilan [Soreq NRC, Yavne 81800 (Israel)

    2015-07-15

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  5. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system.

    Science.gov (United States)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  6. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  7. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  8. An experimental setup for the study of the steady air flow in a diesel engine chamber

    Directory of Open Access Journals (Sweden)

    Montanero José María

    2012-04-01

    Full Text Available We present an experimental setup for studying the steady air flow in a diesel engine chamber. An engine block containing the inlet manifold was placed on a test bench. A steady air stream crossed the inlet manifold and entered a glass chamber driven by a fan. A PIV system was set up around the bench to measure the in-chamber flow. An air spray gun was used as seed generator to producing sub-millimeter droplets, easily dragged by the air stream. Images of the in-flow chamber were acquired in the course of the experiments, and processed to measure the velocity field. The pressure drop driven the air current and the mass flow rate were also measured.

  9. Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area

    Directory of Open Access Journals (Sweden)

    Honghai Zhang

    2014-01-01

    Full Text Available We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential factors of the three characteristic parameters as traffic flux, density, and velocity are presented. Then according to such models, the macro emergence of traffic flow evolution is emulated with the NetLogo simulation platform, and the correlativity of basic traffic flow parameters is deduced and verified by means of sensitivity analysis. The results suggest that there are remarkable relations among the three characteristic parameters of the air traffic flow in terminal area. Moreover, such relationships evolve distinctly with the flight procedures, control separations, and ATC strategies.

  10. Experimental research on the flow field uniformity in the filter house of a nuclear air cleaning system

    International Nuclear Information System (INIS)

    Jiang Feng; Yang Jun; Ye Suisheng

    2000-01-01

    The filter house structure is designed using similarity laws showing that the filter house structure causes a non-uniform flow field. The flow field is also measured experimentally. The air flow field is analyzed for different conditions. The results show that: (1) The HEPA filters affect the dispersion of the air flow; (2) The appropriate angle for air input to the rectifier satisfies the requirements for uniform air flow for the test conditions; (3) The rectifier has little influence on the air flow for operating conditions

  11. Effect of Low Co-flow Air Velocity on Hydrogen-air Non-premixed Turbulent Flame Model

    Directory of Open Access Journals (Sweden)

    Noor Mohsin Jasim

    2017-08-01

    Full Text Available The aim of this paper is to provide information concerning the effect of low co-flow velocity on the turbulent diffusion flame for a simple type of combustor, a numerical simulated cases of turbulent diffusion hydrogen-air flame are performed. The combustion model used in this investigation is based on chemical equilibrium and kinetics to simplify the complexity of the chemical mechanism. Effects of increased co-flowing air velocity on temperature, velocity components (axial and radial, and reactants have been investigated numerically and examined. Numerical results for temperature are compared with the experimental data. The comparison offers a good agreement. All numerical simulations have been performed using the Computational Fluid Dynamics (CFD commercial code FLUENT. A comparison among the various co-flow air velocities, and their effects on flame behavior and temperature fields are presented.

  12. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  13. Theoretical and numerical studies of transonic flow of moist air around a thin airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Chang [School of Mechanical Engineering, Andong National University, Kyongbuk (Korea); Rusak, Zvi [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2002-07-01

    Numerical studies of a two-dimensional and steady transonic flow of moist air around a thin airfoil with condensation are presented. The computations are guided by a recent transonic small-disturbance (TSD) theory of Rusak and Lee (2000) on this topic. The asymptotic model provides a simplified framework to investigate the changes in the flow field caused by the heat addition from a nonequilibrium process of condensation of water vapor in the air by homogeneous nucleation. An iterative method which is based on a type-sensitive difference scheme is applied to solve the governing equations. The results demonstrate the similarity rules for transonic flow of moist air and the effects of energy supply by condensation on the flow behavior. They provide a method to formulate various cases with different flow properties that have a sufficiently close behavior and that can be used in future computations, experiments, and design of flow systems operating with moist air. Also, the computations show that the TSD solutions of moist air flows represent the essence of the flow character computed from the inviscid fluid flow equations. (orig.)

  14. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  15. Performance improvement of a cross-flow hydro turbine by air layer effect

    International Nuclear Information System (INIS)

    Choi, Y D; Yoon, H Y; Inagaki, M; Ooike, S; Kim, Y J; Lee, Y H

    2010-01-01

    The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively.The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  16. Analysis of heat flow in a tube bank of a condenser considering the influence of air

    Directory of Open Access Journals (Sweden)

    Joachimiak Magda

    2017-09-01

    Full Text Available The pressure of wet water vapor inside a condenser has a great impact on the efficiency of thermal cycle. The value of this pressure depends on the mass share of inert gases (air. The knowledge of the spots where the air accumulates allows its effective extraction from the condenser, thus improving the conditions of condensation. The condensation of water vapor with the share of inert gas in a model tube bank of a condenser has been analyzed in this paper. The models include a static pressure loss of the water vapor/air mixture and the resultant changes in the water vapor parameters. The mass share of air in water vapor was calculated using the Dalton’s law. The model includes changes of flow and thermodynamic parameters based on the partial pressure of water vapor utilizing programmed water vapor tables. In the description of the conditions of condensation the Nusselts theory was applied. The model allows for a deterioration of the heat flow conditions resulting from the presence of air. The paper contains calculations of the water vapor flow with the initial mass share of air in the range 0.2 to 1%. The results of calculations clearly show a great impact of the share of air on the flow conditions and the deterioration of the conditions of condensation. The data obtained through the model for a given air/water vapor mixture velocity upstream of the tube bank allow for identification of the spots where the air accumulates.

  17. Plenoptic Flow Imaging for Ground Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Instantaneous volumetric flow imaging is crucial to aerodynamic development and testing. Simultaneous volumetric measurement of flow parameters enables accurate...

  18. Visual study of air--water mixtures flowing inside serpentine tubes

    International Nuclear Information System (INIS)

    Farukhi, M.N.; Parker, J.D.

    1974-01-01

    Hydrodynamic behavior of air-water mixtures flowing inside serpentine tubes, with bends in the vertical plane, was investigated. Flow visualization was accomplished by injecting dye into the liquid phase and recording the events on color slides and color movies. For certain combinations of gas and liquid flow rates, in the annular type flow regime, ''film inversion'' was observed in the bend as well as in the straight section immediately downstream of the bend. A new flow regime map particularly applicable to two phase flow inside serpentine tubes is presented. (U.S.)

  19. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  20. Experimental Evaluation of Discharge Characteristics in Inhomogeneous Fields under Air Flow

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim

    2018-01-01

    voltages and a laminar air flow up to 22 m/s. In the first setup, the gap was exposed to a variable DC potential of up to 100 kV in order to create space charges in the vicinity of the electrode. The impact of the air flow on partial discharges and the dynamic behavior of the space charges is evaluated...... by means of partial discharge measurement and ultraviolet photography. The results show that the air flow increases the frequency of partial discharges in the gap due to an increased rate of space charge removal in the high field area around the tip of the electrode. The partial discharge behavior shows...... higher dependency on air flow at positive tip polarity as compared to the negative polarity. In the second setup, the standard impulse voltage created by a multistage impulse voltage generator was superimposed to a DC voltage, which continuously created corona and space charges around the tip...

  1. Helium-air exchange flows through partitioned opening and two-opening

    International Nuclear Information System (INIS)

    Kang, T. I.

    1997-01-01

    This paper describes experimental investigations of helium-air exchange flows through partitioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature engineering test reactor. A test vessel with the two types of small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed to measure the exchange flow rate. Upward flow of the helium and downward flow of the air in partitioned opening system interact out of entrance and exit of the opening. Therefore, an experiment with two-opening system is made to investigate effect of the fluids interaction of partitioned opening system. As a result of comparison of the exchange flow rates between two types of the opening system, it is demonstrated that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system because of absence of the effect of fluids interaction. (author)

  2. The influence of air flow speed on fire propagation in object

    Directory of Open Access Journals (Sweden)

    Jevtić Radoje

    2015-01-01

    Full Text Available Fire presents the process of the uncontrolled combustion that makes material damage and endangers human lives. It is important to know the factors that fire depends on for success projecting and realization of fire protection systems. One of such factors is different air flow that could be presented as wind, draft and the like. The simulation of different air flow speeds and its influences on fire propagation in object were analyzed in this paper.

  3. Numerical Model of Air Valve For Computation of One-dimensional Flow

    Directory of Open Access Journals (Sweden)

    Daniel HIMR

    2014-06-01

    Full Text Available The paper is focused on a numerical simulation of unsteady flow in a pipeline. The special attention is paid to a numerical model of an air valve, which has to include all possible regimes: critical/subcritical inflow and critical/subcritical outflow of air. Thermodynamic equation of subcritical mass flow was simplified to get more friendly shape of relevant equations, which enables easier solution of the problem.

  4. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  5. Comparative Study of Convective Heat Transfer Performance of Steam and Air Flow in Rib Roughened Channels

    Science.gov (United States)

    Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua

    2018-04-01

    A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.

  6. Measurement of the resistivity of porous materials with an alternating air-flow method.

    Science.gov (United States)

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  7. Modelling of the flow of stable air over a complex region

    CSIR Research Space (South Africa)

    Scholtz, MT

    1976-01-01

    Full Text Available The flow of stable air over a general region of complex topography and non-uniform surface temperature has been investigated. In order to gain further understanding of the motion of surface air, it was necessary to study the vertical structure...

  8. Experimental study of flow monitoring instruments in air-water, two-phase downflow

    International Nuclear Information System (INIS)

    Sheppard, J.D.; Hayes, P.H.; Wynn, M.C.

    1976-01-01

    The performance of a turbine meter, target flow meter (drag disk), and a gamma densitometer was studied in air-water, two-phase vertical downflow. Air and water were metered into an 0.0889-m-ID (3.5-in.) piping system; air flows ranged from 0.007 to 0.3 m 3 /sec (16 to 500 scfm) and water flows ranged from 0.0006 to 0.03 m 3 /sec (10 to 500 gpm). The study included effects of flow rate, quality, flow regime, and flow dispersion on the mean and fluctuating components of the instrument signals. Wire screen flow dispersers located at the inlet to the test section had a significant effect on the readings of the drag disk and gamma densitometer, but had little effect on the turbine. Further, when flow dispersers were used, mass flow rates determined from the three instrument readings and a two-velocity, slip flow model showed good agreement with actual mass flow rate over a three-fold range in quality; mass flows determined with the drag disk and densitometer readings assuming homogeneous flow were nearly as accurate. However, when mass flows were calculated using the turbine and densitometer or turbine and drag disk readings assuming homogeneous flow, results were scattered and relatively inaccurate compared to the actual mass flows. Turbine meter data were used with a two-velocity turbine model and continuity relationships for each phase to determine the void fraction and mean phase velocities in the test section. The void fraction was compared with single beam gamma densitometer results and fluid momentum calculated from a two-velocity model was compared with drag disk readings

  9. CFD study on the effects of boundary conditions on air flow through an air-cooled condenser

    Science.gov (United States)

    Sumara, Zdeněk; Šochman, Michal

    2018-06-01

    This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.

  10. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-08-28

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  11. Reduced energy reqirement for air conditioning by using air diffusion with air flow from floor to ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Dittes, W; Mangelsdorf, R; Detzer, R; Jungbaeck, E; Fitzner, K; Radtke, W; Soethout, F

    1982-02-01

    The condition of the air in the occupied zone in airconditioned rooms is influenced by the mixing of supply air with room air. When supplying air from the ceiling there is a mixing all over the room, when supplying from the floor or from desks there is a mixing region only in the lower area. Above this their is warm air from which the return air is drawn. For air supply from below the cooling load can be decreased. In combination with the possible enthalpy difference between room air and supply air this decrease of the cooling load influences the necessary air rate. The interdependence of various air conditioning systems and various air temperatures is shown with a computer program. The load factor for various air distribution system at various cooling loads have been measured in a room of (8 x 5)m/sup 2/ x 3m. Experiments in a smaller model room (scale 1:3) showed how the heat was transported from the mixing region to the stratification region. The theoretically gained influence of the supply air jets of the height of the mixing region and on the load rate could be verified by the experiments. For the design of the fresh air rate, experience has been gained by measurements with tracegas (N/sub 2/O) in a third room. In comparing calculations the annual energy consumption has been computed for a building assuming various air conditioning systems and typical operation data. From experience with the existing systems the conclusions have been drawn how air distribution from floor to ceiling can be installed and operated.

  12. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    International Nuclear Information System (INIS)

    Hoffmann-Vocke, Jonas; Neale, James; Walmsley, Michael

    2011-01-01

    Highlights: → Measured the effects of air heater inlet header geometry on hydraulic performance. → Measured the effects of inlet header flow maldistribution on hydraulic performance. → Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  13. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    cavity such as behind the exterior cladding of a building envelope, i.e. a flow which is parallel to the construction plane. (2) Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the constructionplane. The paper presents the models and how they have...

  14. On the design criteria for the evaporated water flow rate in a wet air cooler

    International Nuclear Information System (INIS)

    Bourillot, C.

    1982-01-01

    The author discusses Poppe's formulation used for the modelling of heat exchangers between air and water, in Electricite de France's TEFERI numerical wet atmospheric cooler model: heat transfer laws in unsaturated and saturated air, Bosnjakivic's formula, evaporation coefficient. The theorical results show good agreement with the measurements taken on Neurath's cooler C in West Germany, whatever the ambient temperature (evaporated water flow rate, condensate content of warm air). The author then demonstrates the inadequacy of Merkel's method for calculating evaporated water flow rates, and estimates the influence of the assumptions made on the total error [fr

  15. Air-water two-phase flow through a pipe junction

    International Nuclear Information System (INIS)

    Suu, Tetsuo

    1991-01-01

    The distribution of the local void fraction across the section of the conduit was studied experimentally in air-water two-phase flow flowing through a pipe junction with the branching angle of 90deg and the area ratio of unity. As in the previous report, the main conduit of the junction was set up vertically and upward air-water bubbly and slug flows were arranged in the main upstream section. If the flow regime, the quality and the ratio of lateral mass flow discharge of water to total mass flow discharge of water are the same, the larger the Reynolds number is, the more violent the variety of the local void fraction distribution adjacent to the branching part in the lateral conduit is. However, the variety in the main downstream section is scarcely influenced by the Reynolds number. (author)

  16. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  17. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  18. Stability and Volumetric Properties of Asphalt Mixture Containing Waste Plastic

    Directory of Open Access Journals (Sweden)

    Abd Kader Siti Aminah

    2017-01-01

    Full Text Available The objectives of this study are to determine the optimum bitumen content (OBC for every percentage added of waste plastics in asphalt mixtures and to investigate the stability properties of the asphalt mixtures containing waste plastic. Marshall stability and flow values along with density, air voids in total mix, voids in mineral aggregate, and voids filled with bitumen were determined to obtain OBC at different percentages of waste plastic, i.e., 4%, 6%, 8%, and 10% by weight of bitumen as additive. Results showed that the OBC for the plastic-modified asphalt mixtures at 4%, 6%, 8%, and 10% are 4.98, 5.44, 5.48, and 5.14, respectively. On the other hand, the controlled specimen’s shows better volumetric properties compared to plastic mixes. However, 4% additional of waste plastic indicated better stability than controlled specimen.

  19. Effect of air on water capillary flow in silica nanochannels

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton

    2013-01-01

    , with the fabrication of microsystems integrated by nanochannels, a thorough understanding of the transport of fluids in nanoconfinement is required for a successful operation of the functional parts of such devices. In this work, Molecular Dynamics simulations are conducted to study the spontaneous imbibition of water...... in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show...... that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads...

  20. Implicit analysis of the transient water flow with dissolved air

    Directory of Open Access Journals (Sweden)

    J. Twyman

    2018-01-01

    Full Text Available The implicit finite-difference method (IFDM for solving a system that transports water with dissolved air using a fixed (or variable rectangular space-time mesh defined by the specified time step method is applied. The air content in the fluid modifies both the wave speed and the Courant number, which makes it inconvenient to apply the traditional Method of Characteristics (MOC and other explicit schemes due to their impossibility to simulate the changes in magnitude, shape and frequency of the pressures train. The conclusion is that the IFDM delivers an accurate and stable solution, with a good adjustment level with respect to a classical case reported in the literature, being a valid alternative for the transient solution in systems that transport water with dissolved air.

  1. Air flow optimization for energy efficient blower of biosafety cabinet class II A2

    Science.gov (United States)

    Ibrahim, M. D.; Mohtar, M. Z.; Alias, A. A.; Wong, L. K.; Yunos, Y. S.; Rahman, M. R. A.; Zulkharnain, A.; Tan, C. S.; Thayan, R.

    2017-04-01

    An energy efficient Biosafety Cabinet (BSC) has become a big challenge for manufacturers to develop BSC with the highest level of protection. The objective of research is to increase air flow velocity discharge from centrifugal blower. An aerodynamic duct shape inspired by the shape of Peregrine Falcon’s wing during diving flight is added to the end of the centrifugal blower. Investigation of air movement is determined by computational fluid dynamics (CFD) simulation. The results showed that air velocity can be increased by double compared to typical manufactured BSC and no air recirculation. As conclusion, a novel design of aerodynamic duct shape successfully developed and proved that air velocity can be increase naturally with same impeller speed. It can contribute in increasing energy efficiency of the centrifugal blower. It is vital to BSC manufacturer and can be apply to Heating, Air Ventilation and Air Conditioning (HVAC) industries.

  2. Air-water upward flow in prismatic channel of rectangular base

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de.

    1984-01-01

    Experiments had carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. Flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt

  3. A Numerical Assessment of the Air Flow Behaviour in a Conventional Compact Dry Kiln

    OpenAIRE

    Paulo Zdanski; Daniel Possamai; Miguel Vaz Jr.

    2015-01-01

    Convective drying is the most common drying strategy used in timber manufacturing industries in the developing world. In convective drying, the reduction rate of the moisture content is directly affected by the flow topology in the inlet and exit plenums and the air flow velocity in the channels formed by timber layers.Turbulence, boundary layer separation, vortex formation and recirculation regions are flow features that are intrinsically associated with the kiln geometry, which in turn dict...

  4. Air Flows in Gravity Sewers - Determination of Wastewater Drag Coefficient

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Østertoft, Kristian; Vollertsen, Jes

    2016-01-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results...... of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water...

  5. Numerical analysis on flows in supersonic air intakes. Choonsoku kuki toriireguchi no nagare no suchi kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, T.; Tamura, N.; Sekino, N.; Tsujimura, N. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1992-06-25

    By applying computational fluid dynamics (CFD) to a flow in the supersonic air intake of rocket, appropriateness of computational result was confirmed from a comparison with the wind tunnel test result. In order for the air intake type rocket to heighten the combustion efficiency of fuel and air, it is important to possibly minimize the total pressure loss of air which has been taken in and maintain the air flow rate. A numerical analysis was made through modeling the sectional shape of wind tunnel test body and analyzing the two-dimensional flow by Reynolds-averaged Navier-Stokes equations. The computational result of analysis coincided well with the pressure measurement result in wind tunnel test. Having elucidated the main factors of total pressure loss in a two-dimensionally curved flow passage, the CFD computation gave a possibility that the total pressure loss is considerably low against that passage if improved in shape. If simultaneously used with a characteristic curve method, the CFD computation made it possible to optimize the pressure recovery characteristics in the axially symmetric air intake. The CFD can be expected to be an effective method of designing the basic shape of supersonic air intake. 9 refs., 14 figs.

  6. Influence of air flow rate on structural and electrical properties of undoped indium oxide thin films

    International Nuclear Information System (INIS)

    Mirzapour, S.; Rozati, S.M.; Takwale, M.G.; Marathe, B.R.; Bhide, V.G.

    1993-01-01

    Using the spray pyrolysis technique thin films of indium oxide were prepared on Corning glass (7059) at a substrate temperature of 425 C at different flow rates. The electrical and structural properties of these films were studied. The Hall measurements at room temperature showed that the films prepared in an air flow rate of 7 litre min -1 have the highest mobility of 47 cm 2 V -1 s -1 and a minimum resistivity of 1.125 x 10 -3 Ω cm. The X-ray diffraction patterns showed that the films have a preferred orientation of [400] which peaks at the air flow rate of 7 litre min -1 . (orig.)

  7. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    Science.gov (United States)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  8. Modelling of hot air chamber designs of a continuous flow grain dryer

    DEFF Research Database (Denmark)

    Kjær, Lotte Strange; Poulsen, Mathias; Sørensen, Kim

    2018-01-01

    The pressure loss, flow distribution and temperature distribution of a number of designs of the hot air chamber in a continuous flow grain dryer, were investigated using CFD. The flow in the dryer was considered as steady state, compressible and turbulent. It is essential that the grain...... is uniformly dried as uneven drying can result in damage to the end-product during storage. The original commercial design was modified with new guide vanes at the inlets to reduce the pressure loss and to ensure a uniform flow to the line burner in the hot air chamber. The new guide vane design resulted...... in a 10% reduction in pressure loss and a γ-value of 0.804. Various design changes of the hot air chamber were analysed in terms of pressure loss and temperature distribution with the aim of a temperature variation of 5 K at the outlet ducts. An obstruction design was analysed, which improved mixing...

  9. A new method for controlling refrigerant flow in automobile air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Xuquan Li; Jiangping Chen; Zhijiu Chen [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics Engineering; Weihua Liu; Wei Hu; Xiaobing Liu [Shanghai Delphi Automotive Air Conditiong Systems Co. Ltd., Changhai (China)

    2004-05-01

    This paper describes the improvement of the refrigerant flow control method by using an electronic expansion valve (EEV) which is driven by a stepper motor in automobile air conditioning system. An EEV can make a quick response to the abrupt change in the refrigerant flow rate during the change in automobile speed and the thermostatic on/off operation. The flow rate characteristic of the EEV for automobile air conditioning was presented. A microcontroller is used to receive the input signal and generate the output signal to control the opening of the EEV. The fuzzy self-tuning proportional-integral-derivative (PID) control method is employed. Experimental results show that the new control method can feed adequate refrigerant flow into the evaporator in various operations. The evaporator discharge air temperature has dropped by approximately 3{sup o}C as compared with that of the conventional PID control system. (author)

  10. Modelling of integrated effect of volumetric heating and magnetic field on tritium transport in a U-bend flow as applied to HCLL blanket concept

    International Nuclear Information System (INIS)

    Valls, E.Mas de les; Batet, L.; Medina, V. de; Fradera, J.; Sedano, L.

    2011-01-01

    Highlights: → 3D transient CFD code based on OpenFOAM toolbox and accounting for MHD and thermal et al. effects. → Hydrodynamic instabilities caused by the jet (generated at the gap narrowing) are found at Reynolds 480. → Hartmann 1740 is able to stabilise the flow. → A heat deposition corresponding to Gr = 5.21 x 10 9 is sufficient for buoyancy to be predominant at the bend region. Flow becomes unstable. → Tritium permeation ratio cannot be accurately predicted due to major uncertainties in Sievert's coefficient. - Abstract: Under fusion reactor operational conditions, heat deposition might cause a complex buoyant liquid metal flow in the HCLL blanket, what has a direct influence on tritium permeation ratio. In order to characterise the nature of this flow, a simplified HCLL channel, including the U-bend near the reactor first wall, is analysed using a finite volume CFD code, based on OpenFOAM toolbox, following an electric potential based formulation. Code validation results for developed MHD flow and magneto-convective flow are exposed. The influence of the HCLL U-bend on the flow pattern is studied with the validated code, covering the range of possible Reynolds numbers in HCLL-ITER blanket, and considering either electrically insulating or perfectly conducting walls. It can be stated that, despite the very low velocities and the high Hartmann number, flow pattern is complex and unsteady vortices are formed by the action of buoyancy forces together with the influence of the U-bend. Through the analysis, the flow physics is decoupled in order to identify the exact origin of vortex formation. A simplified tritium transport analysis, considering tritium as a passive scalar, has been carried out including a study on boundary conditions influence and a sensitivity analysis of tritium permeation fluxes to diffusivity and solubility parameters. Results show the relevance of Sievert's coefficient uncertainties, which alters the permeation ratio by an order of

  11. Modelling of integrated effect of volumetric heating and magnetic field on tritium transport in a U-bend flow as applied to HCLL blanket concept

    Energy Technology Data Exchange (ETDEWEB)

    Valls, E.Mas de les, E-mail: elisabet.masdelesvalls@gits.ws [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Dept. of Heat Engines (UPC) (Spain); Batet, L. [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Dept. of Physics and Nuclear Engineering (UPC) (Spain); Medina, V. de [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Sediment Transport Research Group, Dept. of Engineering Hydraulic, Marine and Environmental Engineering (UPC) (Spain); Fradera, J. [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Dept. of Physics and Nuclear Engineering (UPC) (Spain); Sedano, L. [EURATOM-CIEMAT Fusion Association, Av. Complutense 22, 28040 Madrid (Spain)

    2011-06-15

    Highlights: > 3D transient CFD code based on OpenFOAM toolbox and accounting for MHD and thermal et al. effects. > Hydrodynamic instabilities caused by the jet (generated at the gap narrowing) are found at Reynolds 480. > Hartmann 1740 is able to stabilise the flow. > A heat deposition corresponding to Gr = 5.21 x 10{sup 9} is sufficient for buoyancy to be predominant at the bend region. Flow becomes unstable. > Tritium permeation ratio cannot be accurately predicted due to major uncertainties in Sievert's coefficient. - Abstract: Under fusion reactor operational conditions, heat deposition might cause a complex buoyant liquid metal flow in the HCLL blanket, what has a direct influence on tritium permeation ratio. In order to characterise the nature of this flow, a simplified HCLL channel, including the U-bend near the reactor first wall, is analysed using a finite volume CFD code, based on OpenFOAM toolbox, following an electric potential based formulation. Code validation results for developed MHD flow and magneto-convective flow are exposed. The influence of the HCLL U-bend on the flow pattern is studied with the validated code, covering the range of possible Reynolds numbers in HCLL-ITER blanket, and considering either electrically insulating or perfectly conducting walls. It can be stated that, despite the very low velocities and the high Hartmann number, flow pattern is complex and unsteady vortices are formed by the action of buoyancy forces together with the influence of the U-bend. Through the analysis, the flow physics is decoupled in order to identify the exact origin of vortex formation. A simplified tritium transport analysis, considering tritium as a passive scalar, has been carried out including a study on boundary conditions influence and a sensitivity analysis of tritium permeation fluxes to diffusivity and solubility parameters. Results show the relevance of Sievert's coefficient uncertainties, which alters the permeation ratio by an

  12. Internal flow characteristics of a rectangular ramjet air intake

    NARCIS (Netherlands)

    Moerel, J.-L.; Veraar, R.G.; Halswijk, W.H.C.; Pimentel, R.; Corriveau, D.; Hamel, N.; Lesage, F.; Vos, J.B.

    2009-01-01

    Two research institutes TNO Defence, Security and Safety and DRDC-Valcartier have worked together on the improvement of modeling and simulation tools for the functioning of supersonic air intakes for realistic ramjet engines of tactical missiles. The emphasis laid on complex rectangular intake

  13. Detailed analysis of turbulent flows in air curtains

    NARCIS (Netherlands)

    Jaramillo, Julian E.; Perez-Segarra, Carlos D.; Lehmkuhl, Oriol; Castro, Jesus

    2011-01-01

    In order to prevent entrainment, an air curtain should provide a jet with low turbulence level, and enough momentum to counteract pressure differences across the opening. Consequently, the analysis of the discharge plenum should be taken into consideration. Hence, the main object of this paper is to

  14. Investigation of air flow in open-throat wind tunnels

    Science.gov (United States)

    Jacobs, Eastman N

    1930-01-01

    Tests were conducted on the 6-inch wind tunnel of the National Advisory Committee for Aeronautics to form a part of a research on open-throat wind tunnels. The primary object of this part of the research was to study a type of air pulsation which has been encountered in open-throat tunnels, and to find the most satisfactory means of eliminating such pulsations. In order to do this it was necessary to study the effects of different variable on all of the important characteristics of the tunnel. This paper gives not only the results of the study of air pulsations and methods of eliminating them, but also the effects of changing the exit-cone diameter and flare and the effects of air leakage from the return passage. It was found that the air pulsations in the 6-inch wind tunnel could be practically eliminated by using a moderately large flare on the exit cone in conjunction with leakage introduced by cutting holes in the exit cone somewhat aft of its minimum diameter.

  15. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  16. Effect of variations in air speed on cross-flow cylinder frosting

    International Nuclear Information System (INIS)

    Monaghan, P.F.; Cassidy, S.F.; Oosthuizen, P.H.

    1990-01-01

    In this paper the effect of fluctuating air speed on frost growth and heat transfer to a cylinder in cross-flow is discussed. Frost-growth of up to 20 hours is simulated using an experimentally validated finite difference computer model. Graphical results are presented for frost mass, frost depth, frost surface temperature and heat transfer versus time under both steady and fluctuating air speed conditions. In general, it is found that a thinner, more dense frost layer develops under fluctuating air speed conditions giving improved heat transfer. This phenomenon may be explained by the increased frequency of frost surface thaw/freeze cycles when fluctuating air speed conditions prevail

  17. An open-access modeled passenger flow matrix for the global air network in 2010.

    Science.gov (United States)

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  18. Countercurrent Flow of Molten Glass and Air during Siphon Tests

    International Nuclear Information System (INIS)

    Guerrero, H.N.

    2001-01-01

    Siphon tests of molten glass were performed to simulate potential drainage of a radioactive waste melter, the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Glass is poured from the melter through a vertical downspout that is connected to the bottom of the melter through a riser. Large flow surges have the potential of completely filling the downspout and creating a siphon effect that has the potential for complete draining of the melter. Visual observations show the exiting glass stream starts as a single-phase pipe flow, constricting into a narrow glass stream. Then a half-spherical bubble forms at the exit of the downspout. The bubble grows, extending upwards into the downspout, while the liquid flows counter-currently to one side of the spout. Tests were performed to determine what are the spout geometry and glass properties that would be conducive to siphoning, conditions for terminating the siphon, and the total amount of glass drained

  19. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  20. Features of round air jet flowing at low Reynolds numbers

    Science.gov (United States)

    Lemanov, V. V.; Sharov, K. A.; Gorinovich, N. V.

    2018-03-01

    The laminar-turbulent transition in a round jet flowing from a cylindrical channel with the diameter of 3.2 mm was studied experimentally. In experiments, the range of Reynolds numbers determined by the mean-flow velocity was Re = Ud/ν = 700-12000. The measurements were carried out using a PIV system and one-component hot-wire anemometer. The profiles of average velocities and their pulsations in the zone of laminar-turbulent transition were obtained along with axial distributions of longitudinal velocity and pulsations of longitudinal velocity.

  1. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, Jørgen; Kragh, Jesper

    2009-01-01

    must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements......In cold climates heat recovery in the ventilation system is essential to reduce heating energy demand. Condensation and freezing occur often in efficient heat exchangers used in cold climates. To develop efficient heat exchangers and defrosting strategies for cold climates, heat and mass transfer...

  2. Effect of mobile unidirectional air flow unit on microbial contamination of air in standard urologic procedures.

    Science.gov (United States)

    Ferretti, Stefania; Pasquarella, Cesira; Fornia, Samanta; Saccani, Elisa; Signorelli, Carlo; Vitali, Pietro; Sansebastiano, Giuliano Ezio

    2009-12-01

    Infection is one of the most feared complications of surgery. New instrumentation is being developed to reduce deposition of bacteria. We investigated 45 major surgical procedures (21 radical nephrectomies [RN] and 24 radical retropubic prostatectomies [RRP]) in our urology department during 2007. In about one-half of the interventions, an ultraclean air flow mobile (UAF) unit was used. Bacterial sedimentation was evaluated by nitrocellulose membranes placed on the instrument tray and by settle plates positioned at four points in the operating room. In 27 operations, an additional membrane was located near the incision. Bacterial counts on the nitrocellulose membranes during RN were 230 colony-forming units (cfu)/m(2)/h with the UAF unit and 2,254 cfu/m(2)/h without the unit (p = 0.001). During RRP, the values were 288 cfu/m(2)/h and 3,126 cfu/m(2)/h respectively (p = 0.001). The membrane placed near the incision during RN showed a microbial count of 1,235 cfu/m(2)/h with the UAF unit and 5,093 cfu/m(2)/h without the unit (p = 0.002); during RRP, the values were 1,845 cfu/m(2)/h and 3,790 cfu/m(2)/h, respectively (difference not significant). Bacterial contamination detected by settle plates during RN showed a mean value of 2,273 cfu/m(2)/h when the UAF unit was used and 2,054 cfu/m(2)/h without the unit; during RRP, the values were 2,332 cfu/m(2)/h and 2,629 cfu/m(2)/h with and without the UAF unit, respectively (NS). No statistically significant differences were detected in the clinical data registered in patients operated on under standard conditions and while the UAF unit was functioning. The UAF appears able to reduce microbial contamination at the operating table, reaching a bacterial number obtained in ultraclean operating theatres.

  3. Calibration of nozzle for air mass flow measurement

    Science.gov (United States)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  4. Breeze Gravity Current in a Uniform Flow of Air

    Directory of Open Access Journals (Sweden)

    M.V. Shokurov

    2017-02-01

    Full Text Available Breeze circulation is often observed nearby the water basin coasts and usually accompanied by a background synoptic wind. One of the basic dynamically important components of the breeze circulation is gravity current. In the present paper the latter is used as the breeze simplified model. The theory of interaction of gravity current and a uniform synoptic wind are developed. The gravity current in the domain of infinite height in a stationary environment and environment with background flow was considered. To solve this problem the law of conservation of mass and universal property of the Froude number was used, which is true in the steady state. It is shown that increase of a tail-wind is followed by growth of the gravity current velocity and decrease of its height. The opposite situation is observed at increase of a head wind: the current velocity reduces and its height increases. Using a Taylor series expansion for small values of the background flow velocity a linear dependence of gravity current velocity on background flow velocity can be obtained. The factor determining the slope of the velocity of gravity current propagation on the background wind speed, which is equal 2/3, is a universal constant. The theory explains the results of numerical simulation previously obtained by numerous authors. A physical interpretation of dependence of the height and velocity of the gravity current on the background flow velocity is presented.

  5. The impact of traffic-flow patterns on air quality in urban street canyons

    International Nuclear Information System (INIS)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. - Highlights: • CFD is used to study impact of traffic-flow patterns on urban air quality. • Facilitating free-flow patterns induce more turbulence in street canyons. • Traffic-generated turbulence alters pollutant levels in urban street canyons. - This study investigates the effect of vehicle-induced-turbulence generated during free-flow traffic pattern in reduction of air pollutant concentrations in urban street canyons.

  6. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    International Nuclear Information System (INIS)

    Mohr, D.H.; Merz, P.H.

    1995-01-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature

  7. 3-dimensional Simulation of an Air-lift Pump from Bubbly to Slug Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hongrae; Jo, Daeseong [Kyungpook National Univ, Daegu (Korea, Republic of)

    2015-10-15

    The air-lift pump has been used in various applications with its merit that it can pump up without any moving parts. E.g. coffee percolator, petroleum industry, suction dredge, OTEC i.e. ocean thermal energy conversion and so on. By the merit, it has high durability for high temperature water or vapor, and fluid-solid mixture like waste water, muddy water and crude, which cause problems when it's pumped up with general pumps. In this regard, the air-lift pump has been one of the most desirable technology. A typical air-lift pump configuration is illustrated in Figure 01. The principle of this pump is very simple. When air is injected from the injector at bottom of a submerged tube, i.e., air bubbles are suspended in the liquid, the average density of the mixture in the tube is less than that of the surrounding fluid in the reservoir. Then hydrostatic pressure over the length of the tube is decreased. This buoyancy force causes a pumping action. The comparison of the simulated results, experimental result, and theoretical result is been able by data shown as Figure 04. They have similar trends but they also have a little differences because there are some limits of simulating the flow regimes. At the different flow condition, different coefficients for friction factor or pressure drop should be used, but this simulation uses a laminar condition and the theoretical equations are valid only for slug regime where the air flow rate is lower than the other regimes. From these causes, the differences has arisen, and difference comes bigger as the air flow rate increases, i.e., becoming annular flow regime or churn flow regime.

  8. Effect of water and air flow on concentric tubular solar water desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Jayaprakash, R.; Ahsan, Amimul; Denkenberger, D.; Okundamiya, M.S.

    2013-01-01

    Highlights: ► We optimized the augmentation of condense by enhanced desalination methodology. ► We measured ambient together with solar radiation intensity. ► The effect of cooling air and water flowing over the cover was studied. -- Abstract: This work reports an innovative design of tubular solar still with a rectangular basin for water desalination with flowing water and air over the cover. The daily distillate output of the system is increased by lowering the temperature of water flowing over it (top cover cooling arrangement). The fresh water production performance of this new still is observed in Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore (11° North, 77° East), India. The water production rate with no cooling flow was 2050 ml/day (410 ml/trough). However, with cooling air flow, production increased to 3050 ml/day, and with cooling water flow, it further increased to 5000 ml/day. Despite the increased cost of the water cooling system, the increased output resulted in the cost of distilled water being cut in roughly half. Diurnal variations of a few important parameters are observed during field experiments such as water temperature, cover temperature, air temperature, ambient temperature and distillate output.

  9. Toward the Experimental Characterization of an Unmanned Air System Flow Field

    Science.gov (United States)

    Velarde, John-Michael; Connors, Jacob; Glauser, Mark

    2017-11-01

    The velocity flow field around a small unmanned air system (sUAS) is investigated in a series of experiments at Syracuse University. Experiments are conducted in the 2'x2' sub-sonic wind tunnel at Syracuse University and the Indoor Flow Lab. The goal of these experiments is to gain a better understanding of the rich, turbulent flow field that a sUAS creates. Comparison to large, multi-rotor manned vehicles is done to gain a better understanding of the flow physics that could be occurring with the sUAS. Regions of investigation include the downwash, above the vehicle, and far downstream. Characterization of the flow is performed using hotwire anemometry. Investigation of several locations around the sUAS show that dominant frequencies exist within the flow field. Analysis of the flow field using power spectral density will be presented as well as looking at which parameters have an effect on these dominant frequencies.

  10. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    Science.gov (United States)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  11. Structure of two-phase air-water flows. Study of average void fraction and flow patterns

    International Nuclear Information System (INIS)

    Roumy, R.

    1969-01-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr

  12. Experimental investigation of droplet separation in a horizontal counter-current air/water stratified flow

    International Nuclear Information System (INIS)

    Gabriel, Stephan Gerhard

    2015-01-01

    ). Measurements in the gaseous phase were carried out by conventional oil-droplets as tracer particles. The volumetric phase distribution was investigated by the new OVM method, which was developed within this work. The validation of this method was done by simultaneous measurements of the new method and an electrical conductivity probe in the WENKA channel. Finally, the droplet mass flux was measured by an isokinetic sampling probe, which was also developed within this work. The functional capability of the probe and the accuracy of isokinetic conditions were demonstrated by PIV-measurements under various flow conditions. The investigations include both supercritical and subcritical, stratified flows, with partially and fully reversed conditions. The behavior of both fluids was analyzed at four measurement sites and under 31 different volumetric flux conditions. The results include sequences of images and numerical data, providing an accurate impression of the flow behavior in the channel. This dataset can now be used for the development and validation of new turbulence and phase interaction models for stratified counter-current two-phase flows.

  13. Acoustic metacages for sound shielding with steady air flow

    Science.gov (United States)

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2018-03-01

    Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. In-plane sound at an arbitrary angle of incidence is reflected due to the strong parallel momentum on the metacage surface, which leads to low sound transmission through the metacage. The performance of the proposed metacage is verified by numerical simulations and measurements on a three-dimensional printed prototype. The acoustic metacage has potential applications in sound insulation where steady fluid flow is necessary or advantageous.

  14. Mathematical modelling of air-flow in geometrically complicated areas

    OpenAIRE

    Fuka, Vladimír

    2014-01-01

    The Charles University Large-eddy Microscale Model (CLMM) and its application are presented. It is a numerical model for simulation of turbulent flow and dispersion in the planetary boundary layer. CLMM solves the incompressible Navier-Stokes equations in the Boussinesq approximation and describes turbulence using the large eddy simulation. Three applications of the model are presented. In the first case, the model is applied to the stable boundary layer over a flat terrain. The second case p...

  15. Flow directing means for air-cooled transformers

    Science.gov (United States)

    Jallouk, Philip A.

    1977-01-01

    This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

  16. A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance

    Science.gov (United States)

    Yilbas, B. S.; Shuja, S. Z.

    2017-01-01

    Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.

  17. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure.

    Science.gov (United States)

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-10-17

    This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms -1 ), a high velocity measurement limit (45ms -1 ) and a rapid response time (0.53 s).

  18. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    Directory of Open Access Journals (Sweden)

    Che-Ming Chiang

    2007-10-01

    Full Text Available This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms-1, a high velocity measurement limit (45ms-1 and a rapid response time (0.53 s.

  19. Experimental measurement of fluid force coefficients for helical tube arrays in air cross flow

    International Nuclear Information System (INIS)

    Shen Shifang; Liu Reilan

    1993-01-01

    A helical coil steam generator is extensively used in the High Temperature Gas Cooled Reactor (HTGCR) and Sodium Cooled Reactor (SCR) nuclear power stations because of its compact structure, good heat-exchange, and small volume. The experimental model is established by the structure parameter of 200MW HTGCR. The fluid elastic instability of helical tube arrays in air cross flow is studied in this experiment, and the fluid force coefficients of helical tube arrays having the same notational direction of two adjacent layers in air cross flow are obtained. As compared to the fluid force coefficients of cylinder tube arrays, the fluid force coefficients of helical tube arrays are smaller in the low velocity area, and greater in the high velocity area. The experimental results help the study of the dynamic characteristics of helical tube arrays in air cross flow

  20. Improving the performance of a compression ignition engine by directing flow of inlet air

    Science.gov (United States)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  1. Influence of ventilation structure on air flow distribution of large turbo-generator

    Science.gov (United States)

    Zhang, Liying; Ding, Shuye; Zhao, Zhijun; Yang, Jingmo

    2018-04-01

    For the 350 MW air - cooled turbo—generator, the rotor body is ventilated by sub -slots and 94 radial ventilation ducts and the end adopts arc segment and the straight section to acquire the wind. The stator is ventilated with five inlets and eight outlet air branches. In order to analyze the cooling effect of different ventilation schemes, a global physical model including the stator, rotor, casing and fan is established, and the assumptions and boundary conditions of the solution domain are given. the finite volume method is used to solve the problem, and the air flow distribution characteristics of each part of the motor under different ventilation schemes are obtained. The results show that the baffle at the end of the rotor can eliminate the eddy current at the end of the rotor, and make the flow distribution of cooling air more uniform and reasonable. The conclusions can provide reference for the design of motor ventilation structure.

  2. Investigation of effect of air flow rate on Zircaloy-4 oxidation kinetics and breakaway phenomenon in air at 850 .deg. C

    International Nuclear Information System (INIS)

    Maeng, Yunhwan; Lee, Jaeyoung; Park, Sanggil

    2016-01-01

    This paper analyzed an effect of flow rate on oxidation kinetics of Zircaloy-4 in air at 850 .deg. C. In case of the oxidation of Zircaloy-4 in air at 850 .deg. C, acceleration of oxidation kinetics from parabolic to linear (breakaway phenomenon) occurs. Oxidation and breakaway kinetics of the Zircaloy-4 in air was experimentally studied by changing a flow rate of argon/air mixture. Tests were conducted at 850 .deg. C under constant ratio of argon and air. The effects of flow rate on the oxidation and breakaway kinetics was observed. This paper is based on a revised and considerably extended presentation given at the 21 st International Quench Workshop. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were explained with residence time and percent flow efficiency. In addition, several issues were observed from this study, interdiffusion at breakaway and deformation of oxide structure by breakaway phenomenon

  3. Turbine flow meter response in two-phase flows

    International Nuclear Information System (INIS)

    Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.

    1996-01-01

    The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter

  4. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  5. Velocity measurements and identification of the flow pattern of vertical air-water flows with light-beam detectors

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Leoni, B.

    1980-07-01

    A new detector for measuring fluid velocities in two-phase flows by means of Noise-Analysis (especially Transient-Cross-Correlation-technique) has been developed. The detector utilizes a light-beam which is modulated by changes in the transparency of the two-phase flow. The results of nine measurements for different flow-regimes of vertical air/water-flows are shown. A main topic of these investigations was to answer the question if it is possible to identify the flow-pattern by looking at the shape of different 'Noise-Analytical-functions' (like APSD, CPSD, CCF etc.). The results prove that light-beam sensors are good detectors for fluid-velocity measurements in different flow regimes and in a wide range of fluid velocities starting with values of about 0.08 m/s up to values of 40 m/s. With respect to flow-pattern identification only the time-signals and the shape of the cross-power-density-function (CPSD) seem to be useful. (Auth.)

  6. Air flow phenomena in the model of the blind drift

    Directory of Open Access Journals (Sweden)

    Jaszczur Marek

    2016-01-01

    Full Text Available In the presented paper, Particle Image Velocimetry (PIV has been used to investigate flow pattern and turbulent structure in the model of blind drift. The presented model exist in mining, and has been analyzed to resolve ventilation issues. Blind region is particularly susceptible to unsafe methane accumulation. The measurement system allows us to evaluate all components of the velocity vector in channel cross-section simultaneously. First order and second order statistic of the velocity fields from different channel cross-section are computed and analyzed.

  7. Transition to chaos of a vertical collapsible tube conveying air flow

    International Nuclear Information System (INIS)

    Flores, F Castillo; Cros, A

    2009-01-01

    'Sky dancers', the large collapsible tubes used as advertising, are studied in this work through a simple experimental device. Our study is devoted to the nonlinear dynamics of this system and to its transition to chaos. Firstly, we have shown that after a collapse occurs, the air fills the tube at a different speed rate from the flow velocity. Secondly, the temporal intermittency is studied as the flow rate is increased. A statistical analysis shows that the chaotic times maintain roughly the same value by increasing air speed. On the other hand, laminar times become shorter, until the system reaches a completely chaotic state.

  8. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    OpenAIRE

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco Domingo; Peña, Araceli

    2013-01-01

    Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1), and at low wind speed (≈ 1.8 m s-1) the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening t...

  9. Transition to chaos of a vertical collapsible tube conveying air flow

    Energy Technology Data Exchange (ETDEWEB)

    Flores, F Castillo; Cros, A, E-mail: anne_cros@yahoo.co [Departamento de Fisica, Universidad de Guadalajara, 44430 Jalisco (Mexico)

    2009-05-01

    'Sky dancers', the large collapsible tubes used as advertising, are studied in this work through a simple experimental device. Our study is devoted to the nonlinear dynamics of this system and to its transition to chaos. Firstly, we have shown that after a collapse occurs, the air fills the tube at a different speed rate from the flow velocity. Secondly, the temporal intermittency is studied as the flow rate is increased. A statistical analysis shows that the chaotic times maintain roughly the same value by increasing air speed. On the other hand, laminar times become shorter, until the system reaches a completely chaotic state.

  10. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    Science.gov (United States)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  11. A comparative study of turbulence models for dissolved air flotation flow analysis

    International Nuclear Information System (INIS)

    Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho

    2015-01-01

    The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models

  12. Volumetric studies and thermodynamics of viscous flow of hydroxamic acids in acetone + water solvent at temperatures 303.15 and 313.15 K

    International Nuclear Information System (INIS)

    Tiwari, Vaishali; Pande, Rama

    2006-01-01

    Densities ρ and viscosities η of two hydroxamic acids, N-phenyl-2-chlorobenzo- and N-o-tolyl-4-chlorobenzo-, have been determined as a function of their concentration in aqueous acetone solution at temperatures 303.15 and 313.15 K. Apparent molar volumes, standard-state partial molar volumes and relative viscosities have been calculated. The viscosity data have been analyzed using Jones-Dole equation. The activation thermodynamic parameters of viscous flow have been evaluated using Feakins equation. These were obtained to throw light on the mechanism of viscous flow. Thermodynamic interactions in solutions have been studied in terms of a number of excess functions calculated from the experimental data. The effect of hydroxamic acid concentration and temperature on these parameters has been discussed. The results were interpreted in the light of solute-solvent interactions in aquo-organic media

  13. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger

    International Nuclear Information System (INIS)

    Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir

    2012-01-01

    Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.

  14. Heat transfer to air-water two-phase flow in slug/churn region

    International Nuclear Information System (INIS)

    Wadekar, V.V.; Tuzla, K.; Chen, J.C.

    1996-01-01

    Measured heat transfer data for air-water two-phase flow in the slug/churn flow region are reported. The measurements were obtained from a 1.3 m tall, 15.7 mm diameter vertical tube test-section. It is observed that the data exhibit different heat transfer characteristics to those predicted by the standard correlations for the convective component of flow boiling heat transfer. Comparison with the predictions of a slug flow model for evaporation shows a significant overprediction of the data. The reason for the overprediction is attributed to the sensible heating requirement of the gas phase. The slug flow model is therefore suitably modified for non-evaporating two-phase flow. This specially adapted model is found to give reasonably good predictions of the measured data

  15. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  16. Viscous Potential Flow Analysis of Electroaerodynamic Instability of a Liquid Sheet Sprayed with an Air Stream

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Awasthi

    2013-01-01

    Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.

  17. Study on heat and mass transfer characteristics of humid air-flow in a fin bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hwi [Air-Conditioner Research Laboratory, LG Electronics, Seoul 153-082 (Korea); Koyama, Shigeru; Kuwahara, Ken [Department of Energy and Environmental Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kwon, Jeong-Tae [Department of Mechanical Engineering, Hoseo University, Asan, Chungnam 336-795 (Korea); Park, Byung-Duck [School of Mechanical and Automotive Engineering, Kyungpook National University, Sangju, Gyeongbuk 742-711 (Korea)

    2010-11-15

    This paper deals with the heat and mass transfer characteristics of humid air-flow under frosting conditions. A slit fin bundle was used for the simulation of fins of a heat exchanger. The effects of the cooling block temperature, air humidity and air velocity on the frosting characteristics were experimentally investigated. The frosted mass was affected considerably by the cooling block temperature and air humidity. However, the effect of air velocity on it was not so large. The pressure drop was affected remarkably by all experimental parameters in this study. Local heat flux distribution and frost thickness distribution on each fin were predicted from the measured fin temperatures and the mass and energy conservation equations on the frost surface and inside the frost layer. (author)

  18. Transient analysis of air-water two-phase flow in channels and bends

    International Nuclear Information System (INIS)

    Khan, H.J.; Ye, W.; Pertmer, G.A.

    1992-01-01

    The algorithm used in this paper is the Newton Block Gauss Seidel method, which has been applied to both simple and complex flow conditions in two-phase flow. This paper contains a description of difference techniques and an iterative solution algorithm that is used to solve the field and constitutive equations of the two-fluid model. In practice, this solution procedure has been proven to be stable and capable of generating solutions in problems where other schemes have failed. The method converges rapidly for reasonable error tolerances and is easily extended to three-dimensional geometries. Using air-water as the two-phase medium, transient flow behavior in several geometries of interest are shown. Flow through a vertical channel with flow obstruction, large U bends, and 90-deg bends are being demonstrated with variation of inlet void fraction and slip ratio. Significant changes in the velocity and void distribution profiles have been observed. Various regions of flow recirculation are obtained in the flow domain for each phase. The phasic velocity and void distributions are dominated by gravity-induced phase separation causing air to accumulate in the upper region. The influence of inlet slip ratio and interfacial momentum transfer on the transient flow profile has been demonstrated in detail

  19. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    Science.gov (United States)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  20. Evaluation of air flow rates through spargers for optimization of KNGR IRWST and SDVS design

    International Nuclear Information System (INIS)

    Jung, J. S.; Rha, I. S.; Jang, Y. S.; Koh, H. J.; Park, J. N.; Lee, S. W.

    1999-01-01

    In KNGR in the event of POSRVs actuation water, air and steam discharged from the RCS impose the dynamic loads on IRWST walls and submerged structures. The largest load is air clearing load. The main factors having an effect on the air clearing load are steam mass flux, the pressure and air volume in the POSRV discharge line. It is practically difficult to make the amount of air mass and its flow rates discharged through each sparger evenly distributed because several spargers are branched from one horizontal header. For an optimization of KNGR IRWST and SDVS design to minimize the T/H loads, the pressure in the discharge pipe and the air mass flow rates through spargers are evaluated using RELAP5/MOD3 code with changing the POSRV opening time and line and sparger arrangement. It is shown that as the opening time is the longer, the pressure in the discharge line is decreased and difference of the amount of air mass between spargers is reduced. And sparger headers with three spargers show better performance rather than those with six ones

  1. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  2. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    Science.gov (United States)

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  3. Numerical investigation on turbulence mixing characteristics under thermal striping flows. Investigations on fluid temperature fluctuation phenomena in air and sodium

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Satoshi [Customer System Co. Ltd., Tokai, Ibaraki (Japan); Muramatsu, Toshiharu

    1999-05-01

    A three-dimensional thermal striping analysis was carried out using a direct numerical simulation code DINUS-3, for a coaxial jet configuration using air and sodium as a working fluid, within the framework of the EJCC thermo-hydraulic division. From the analysis, the following results have been obtained: (1) Calculated potential core length in air and sodium turbulence flows agreed with a theoretical value (5d - 7d ; d : diameter of jet nozzle) in the two-dimensional free jet theory. (2) Hydraulic characteristics in sodium flows as the potential core length can be estimated by the use of that of air flow characteristics. (3) Shorter thermally potential core length defined by spatial temperature distribution was evaluated in sodium flows, compared with that in air flows. This is due to the higher thermal conductivity of sodium. (4) Thermal characteristics in sodium flows as the thermally potential core length can not be evaluated, based on that air thermal characteristics. (author)

  4. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    Directory of Open Access Journals (Sweden)

    Alejandro López

    2013-08-01

    Full Text Available Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1, and at low wind speed (≈ 1.8 m s-1 the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening to the windward side and two side vents, the windward one being blocked by another greenhouse close to it, while the leeward one is free of obstacles. When no fans are used, air enters through the roof vent and exits through both side vents, thus flowing contrary to the thermal effect which causes hot air to rise and impairing the natural ventilation of the greenhouse. Using fans inside the greenhouse helps the air to circulate and mix, giving rise to a more homogeneous inside temperature and increasing the average value of normalized air velocity by 365 %. These fans also increase the average values of kinetic turbulence energy inside the greenhouse by 550 % compared to conditions of natural ventilation. As the fans are placed 4 m away from the side vents, their effect on the entrance of outside air is insufficient and they do not help to reduce the inside temperature on hot days with little wind. It is therefore recommended to place the fans closer to the side vents to allow an additional increase of the air exchange rate of greenhouses.

  5. Air Distribution in a Room and Design Considerations of Mixing Ventilation by Flow Elements

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Pedersen, D. N.

    2001-01-01

    The paper shows detailed measurements of the air distribution in a room ventilated by mixing ventilation according to the specifications given by the International Energy Agency work. (Energy Conservation in Buildings and Community Systems Programme, Annex 20). It describes a number of flow...

  6. Estimating Probable Maximum Precipitation by Considering Combined Effect of Typhoon and Southwesterly Air Flow

    Directory of Open Access Journals (Sweden)

    Cheng-Chin Liu

    2016-01-01

    Full Text Available Typhoon Morakot hit southern Taiwan in 2009, bringing 48-hr of heavy rainfall [close to the Probable Maximum Precipitation (PMP] to the Tsengwen Reservoir catchment. This extreme rainfall event resulted from the combined (co-movement effect of two climate systems (i.e., typhoon and southwesterly air flow. Based on the traditional PMP estimation method (i.e., the storm transposition method, STM, two PMP estimation approaches, i.e., Amplification Index (AI and Independent System (IS approaches, which consider the combined effect are proposed in this work. The AI approach assumes that the southwesterly air flow precipitation in a typhoon event could reach its maximum value. The IS approach assumes that the typhoon and southwesterly air flow are independent weather systems. Based on these assumptions, calculation procedures for the two approaches were constructed for a case study on the Tsengwen Reservoir catchment. The results show that the PMP estimates for 6- to 60-hr durations using the two approaches are approximately 30% larger than the PMP estimates using the traditional STM without considering the combined effect. This work is a pioneer PMP estimation method that considers the combined effect of a typhoon and southwesterly air flow. Further studies on this issue are essential and encouraged.

  7. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    Science.gov (United States)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  8. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  9. High accuracy acoustic relative humidity measurement in duct flow with air

    NARCIS (Netherlands)

    Schaik, van W.; Grooten, M.H.M.; Wernaart, T.; Geld, van der C.W.M.

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and

  10. Air-flow resistances of silicone rubber voice prostheses after formation of bacterial and fungal biofilms

    NARCIS (Netherlands)

    Elving, GJ; van der Mei, HC; Busscher, HJ; van Weissenbruch, R; Albers, FWJ

    Laryngectomized patients use silicone rubber voice prostheses to rehabilitate their voice. However, biofilm formation limits the lifetime of voice prostheses by causing leakage or an increased air-flow resistance and the prosthesis has to be replaced. To determine which bacterial or yeast strains,

  11. Compensation of flow maldistribution in fin-and-tube evaporators for residential air-conditioning

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian

    2011-01-01

    Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution....

  12. Air Distribution in Rooms with Ceiling-mounted Obstacles and Three-Dimensional Isothermal Flow

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Evensen, Louis; Grabau, Peter

    The air supply openings in ventilated rooms are often placed close to the ceiling. A recirculating flow is generated in the room, and the region between the ceiling and the occupied zone serves as an entrainment and velocity decay area for the wall jets. Ceiling-mounted obstacles may disturb...

  13. Experimental and numerical study of flow deflection effects on electronic air-cooling

    International Nuclear Information System (INIS)

    Arfaoui, Ahlem; Ben Maad, Rejeb; Hammami, Mahmoud; Rebay, Mourad; Padet, Jacques

    2009-01-01

    This work present a numerical and experimental investigation of the influence of transversal flow deflector on the cooling of a heated block mounted on a flat plate. The deflector is inclined and therefore it guides the air flow to the upper surface of the block. This situation is simulating the air-cooling of a rectangular integrated circuit or a current converter mounted on an electronic board. The electronic component are assumed dissipating a low or medium heat flux (with a density lower than 5000 W/m 2 ), as such the forced convection air cooling without fan or heat sink is still sufficient. The study details the effects of the angle of deflector on the temperature and the heat transfer coefficient along the surface of the block and around it. The results of the numerical simulations and the InfraRed camera measurements show that the deviation caused by deflector may significantly enhance the heat transfer on the top face of block

  14. Simplified model for a ventilated glass window under forced air flow conditions

    International Nuclear Information System (INIS)

    Ismail, K.A.R.; Henriquez, J.R.

    2006-01-01

    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance

  15. Simplified model for a ventilated glass window under forced air flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, K.A.R. [Depto. de Engenharia Termica e de Fluidos-FEM-UNICAMP CP: 6122 CEP 13083-970 Campinas, SP (Brazil); Henriquez, J.R. [Depto. de Eng. Mecanica-DEMEC, UFPE Av. Academico Helio Ramos, S/N CEP 50740-530, Recife, PE (Brazil)

    2006-02-01

    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance. (author)

  16. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    Science.gov (United States)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  17. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using Eulerian –Eulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  18. Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro

    2009-11-01

    In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.

  19. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    Science.gov (United States)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  20. Determination of fan flow and water rate adjustment for off-design cooling tower tests

    International Nuclear Information System (INIS)

    Vance, J.M.

    1984-02-01

    The determination of the performance of a mechanical draft cooling tower requires that the air mass flow through the tower be known. Since this flow is not measured, it has been customary to use the manufacturer's design air flow and adjust it by the one-third power of the ratio of the design to test fan horsepower. The most nearly correct approximation of air flow through a tower can be obtained by incrementally moving through the tower from air inlet to outlet while calculating mass flows, energy balances, and pressure drops for each increment and then utilizing fan curves to determine volumetric and mass flows. This procedure would account for changes in air humidity and density through the tower, evaporation of water, effect of water rate on air pressure drop, and changes in fan characteristics. These type calculations may be within the capabilities of all in the near future, but for the interim, it is recommended that a more elementary approach be used which can be handled with a good calculator and without any proprietary data. This approach depends on certain assumptions which are acceptable if the tower test is conducted within CTI code requirements. The fan must be considered a constant suction volume blower for a given blade pitch. The total pressure at the fan, a function of volumetric flow and wet air density, must be assumed to be unaffected by other considerations, and the fan horsepower must be assumed to change only as volumetric flow and wet air density changes. Given these assumptions, along with design information normally provided with a tower, the determination of air flow through a tower in a test can be made from CTI test data. The air flow, and consequently the water rate adjustment and corrected water to air ratio, are derived and found to be direct functions of horsepower and density and an inverse function of wet air humidities

  1. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  2. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  3. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    Science.gov (United States)

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  4. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Khairunizam, Wan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Shahriman, A. B., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Yaacob, S., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my [Centre of Excellence for Unmanned Aerial Systems, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  5. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  6. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Science.gov (United States)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  7. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    International Nuclear Information System (INIS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz

    2014-01-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity

  8. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

    Science.gov (United States)

    Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

    2017-12-01

    Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

  9. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules.

    Science.gov (United States)

    Waldrop, Lindsay D; Koehl, M A R

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. © 2016 The Author(s).

  10. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  11. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  12. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  13. Numerical analysis of flow field formed by air bubble dischanging through a sparger

    International Nuclear Information System (INIS)

    Kim, H. W.; Bae, Y. Y.

    2002-01-01

    In both a boiling water reactor and an advanced type of pressurized water reactor APR1400 being constructed in Korea, water, air and steam successively discharge into a subcooled water pool through spargers, when a pressure relieving system is in operation. During the discharging processes, the air bubble clouds produce a low-frequency and high-amplitude oscillatory loading, which may result in significant damages to the submerged structures if the resonance between bubble clouds and structures occur. This study deals with a numerical analysis of the flow field due to the oscillation of air bubble clouds by using a commercial thermal hydraulic analysis code FLUENT, version 4.5. The VOF (Volume Of Fluid) model was used to simulate the interface of water, air and steam flows, since it is known to be suitable for the large bubble simulation and it enables to treat air as a compressible fluid. A good agreement between the analysis results and the ABB-Atom test results, which had been performed for the development of BWR sparger, was obtained

  14. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  15. Relationship between spontaneous expiratory flow-volume curve pattern and air-flow obstruction in elderly COPD patients.

    Science.gov (United States)

    Nozoe, Masafumi; Mase, Kyoshi; Murakami, Shigefumi; Okada, Makoto; Ogino, Tomoyuki; Matsushita, Kazuhiro; Takashima, Sachie; Yamamoto, Noriyasu; Fukuda, Yoshihiro; Domen, Kazuhisa

    2013-10-01

    Assessment of the degree of air-flow obstruction is important for determining the treatment strategy in COPD patients. However, in some elderly COPD patients, measuring FVC is impossible because of cognitive dysfunction or severe dyspnea. In such patients a simple test of airways obstruction requiring only a short run of tidal breathing would be useful. We studied whether the spontaneous expiratory flow-volume (SEFV) curve pattern reflects the degree of air-flow obstruction in elderly COPD patients. In 34 elderly subjects (mean ± SD age 80 ± 7 y) with stable COPD (percent-of-predicted FEV(1) 39.0 ± 18.5%), and 12 age-matched healthy subjects, we measured FVC and recorded flow-volume curves during quiet breathing. We studied the SEFV curve patterns (concavity/convexity), spirometry results, breathing patterns, and demographics. The SEFV curve concavity/convexity prediction accuracy was examined by calculating the receiver operating characteristic curves, cutoff values, area under the curve, sensitivity, and specificity. Fourteen subjects with COPD had a concave SEFV curve. All the healthy subjects had convex SEFV curves. The COPD subjects who had concave SEFV curves often had very severe airway obstruction. The percent-of-predicted FEV(1)% (32.4%) was the most powerful SEFV curve concavity predictor (area under the curve 0.92, 95% CI 0.83-1.00), and had the highest sensitivity (0.93) and specificity (0.88). Concavity of the SEFV curve obtained during tidal breathing may be a useful test for determining the presence of very severe obstruction in elderly patients unable to perform a satisfactory FVC maneuver.

  16. Air cleaning efficiency of deodorant materials under dynamic conditions: effect of air flow rate

    DEFF Research Database (Denmark)

    Mizutani, Chiyomi; Bivolarova, Mariya Petrova; Melikov, Arsen Krikor

    2014-01-01

    Unpleasant odor is a serious problem in hospitals and elderly facilities. One of the unpleasant odors is ammonia originating from human urine and sweat. The air cleaning efficiency of porous activated carbon fiber fabric which has been treated with acid, and porous activated carbon fiber fabric...... mixed with ammonia gas at a concentration of 20 ppm and velocities of 0.05, 0.15, 0.3 and 1.2 m/s. The activated carbon fibers treated with acid had a high deodorizing effect for ammonia (0.8) at a velocity of 0.05 m/s. The deodorizing effect of this material decreased with the increase in the velocity....... The porous activated carbon fiber fabric did not have a deodorant effect....

  17. Measurements of air entrainment by vertical plunging liquid jets

    Science.gov (United States)

    El Hammoumi, M.; Achard, J. L.; Davoust, L.

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We n to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling.

  18. Measurements of air entrainment by vertical plunging liquid jets

    Energy Technology Data Exchange (ETDEWEB)

    El Hammoumi, M. [Faculte des Sciences et Techniques, Departement de Physique, Laboratoire de Mecanique Appliquee, Fes (Morocco); Achard, J.L.; Davoust, L. [Laboratoire des Ecoulements Geophysiques et Industriels (LEGI), Grenoble (France)

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We{sub n} to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling. (orig.)

  19. Two-phase upward air water flow in a prismatic channel with rectangular base

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de

    1984-01-01

    Two-phase liquid-gas mixtures provide suitable means to simulate water-water vapor flows, which may occur in nuclear reactor cores. The mastery of physical transport phenomena is of great importance, as far as the analysis of such thermal systems is concerned. Within the framework of thermal-hydraulic programs, experiments have been carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. In this paper, flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt

  20. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  1. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  2. Air flows in big cavity, building aeraulics; ecoulements de l`air en grande cavite, aeraulique des batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop day was jointly organized by the French society of thermal engineers (SFT) and the university group of thermal engineers (GUT). This compilation of proceedings comprises 10 papers dealing with: the use of zonal models for the prediction of the temperature field inside buildings; prediction of the natural ventilation air renewing inside a cavity with a single big aperture using a finite-difference code; experimental validation of the EOL-3D code in industrial ventilating; precise numerical modeling of flows inside ventilated or not-ventilated cavities with pollutant species using a finite difference field code; building aeraulics at Electricite de France (EdF): from the basic research to field applications; experimental study of a heavy vertical jet, influence on the thermal comfort inside a air-conditioned room; study of non-isothermal 3-D free jets: comparison of measurement results with field code modeling; natural air-conditioning of accommodations in humid tropical climate; natural ventilating in humid tropical climate, proposition for a method of evaluation of the velocity coefficients; comparison between measurements and calculations concerning the atmosphere of occupied rooms. (J.S.)

  3. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Air flow analysis II; 1999 nendo gakujutsu koenkai gaiyo. Kiryu kaiseki 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-05

    B-4 reported the result on particle size distribution experiment and numerical calculation with FEM and {kappa}- {epsilon} model using a welding simulation equipment for generation and removal of welding fume in a narrow site. Discussion was held on the position of an exhaust hood. B-5 reported the study results on indoor air flow conditions derived from a movable nozzle air conditioning system by model experiment and numerical analysis. Disagreement of both results between the experiment and calculation in the case of two diffusing nozzles attached at 30 degrees toward the inside was improved by shortening a sampling time for calculation. B-6 reported the study results on some parameters such as wind velocity, flow rate and inlet position, and the energy saving effect of an air curtain (wall outlet, floor inlet) to control air conditioning areas for a part of large spaces by numerical analysis of air flow. Discussion was held on calculation of 2-D flow and layered flow. B-7 is the 5th research report on measurement of air flow conditions such as measurement of large space environment by video camera and balloon. Study on the camera for automatic measurement, and the identification technique of balloon positions was reported. (translated by NEDO)

  4. FLOW VISUALIZATION OF RECTANGULAR SLOT AIR JET IMPINGEMENT ON FLAT SURFACES

    OpenAIRE

    Satheesha V *1, B. K. Muralidhra2, Abhilash N3, C. K. Umesh4

    2018-01-01

    Jet impingement near the mid-chord of the gas turbine blade is treated as a flat plate. Experimental and numerical investigations are carried out for a single slot air jet impinging on flat surface for two different rectangular slots of dimension (3mm x 65 mm) and (5mm x 65 mm). Experimentation is done to study the flow pattern topography on the flat target plate, with varying the flow rate from 20 LPM to 50 LPM by varying the nozzle to plate distance from 9 mm to 24 mm for slot jet of 3mm an...

  5. Sensitivity study of poisson corruption in tomographic measurements for air-water flows

    International Nuclear Information System (INIS)

    Munshi, P.; Vaidya, M.S.

    1993-01-01

    An application of computerized tomography (CT) for measuring void fraction profiles in two-phase air-water flows was reported earlier. Those attempts involved some special radial methods for tomographic reconstruction and the popular convolution backprojection (CBP) method. The CBP method is capable of reconstructing void profiles for nonsymmetric flows also. In this paper, we investigate the effect of corrupted CT data for gamma-ray sources and aCBP algorithm. The corruption in such a case is due to the statistical (Poisson) nature of the source

  6. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    OpenAIRE

    Zheng, Bin; Liu, Yongqi; Liu, Ruixiang; Meng, Jian; Mao, Mingming

    2015-01-01

    This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h) and catalytic oxidation bed average temperature (20°C to 560°C) within the preheated catalytic oxidation reactor. The pressure drop and res...

  7. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    Science.gov (United States)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  8. Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method

    International Nuclear Information System (INIS)

    Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok; Yi, Sun

    2016-01-01

    In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

  9. Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Yi, Sun [North Carolina A and T State Univ., Raleigh (United States)

    2016-08-15

    In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

  10. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    Directory of Open Access Journals (Sweden)

    Erinc Erdem

    2014-12-01

    Full Text Available An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.

  11. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    Science.gov (United States)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  12. Study of Mouthguard Design for Endurance and Air-Flow Intake

    Science.gov (United States)

    Zaman, I.; Rozlan, S. A. M.; Manshoor, B.; Ngali, M. Z.; Khalid, A.; Amin, N. A. M.

    2017-08-01

    Mouthguard is one of the important device for athletes. Wearing a mouthguard is a must to prevent them from any orofacial injuries occurs during their sport activities. Therefore, to make sure it is safe and comfort, a study on the mouthguard design is carried out to investigate the performance of the mouthguard, in term of stress distribution and air flow path by improving the pressure difference between ambient and the oral cavity pressure. A preliminary design has been study to simulate its total deformation and stress, in terms of Von Mises Stress by using ANSYS 15.0 Workbench. From the results, the critical parts are identified on the preliminary design and later being used to improve the design to the new one. By increasing the thickness of the preliminary design, the total deformation has been decreased for about 0.20 mm to 0.16 mm for the exerted external forces ranging from 50-500 N, whereas, for internal forces ranging from 100-600 N have reduced deformation from 0.24 mm to 1.44 mm. The simulation process is then followed by the air flow study in the oral cavity with an open mouth about 0.5 mm when the athlete is doing exercise with speed 4.43 m/s of air flow into a mouth. The finding indicates that the modified mouthguard has large value of velocity streamline compared to the preliminary design which is supported by significant pressure difference of 401.86 Pa, compared to 140.09 Pa of the preliminary design. Velocity stream line also shows that the higher speeds occur in the near mouthguard, that is, between the bottom surfaces of the mouthguard and the lower teeth. The results demonstrated that the thicker the mouthguard, the better it is for prevention but less in air flow distribution into the oral cavity.

  13. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  14. Investigation of flow condition on the oxidation of Zircaloy-4 in air at 850 and 1100 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Yun Hwan; Lee, Jae Young [Hangdong Global University, Pohang (Korea, Republic of); Park, Sang Gil [ACT Co. Ltd, Daejeon (Korea, Republic of)

    2016-05-15

    An oxidation behavior of the Zircaloy-4 was experimentally studied by varying a flow rate and partial pressure of air. Tests were conducted at two distinct temperatures in which a kinetic transition was occurred, or not: 850 .deg. C and 1100 .deg. C. The effects of flow rate and partial pressure of air was studied by a measurement of mass gain using thermogravimetric analyzer (TGA). After experiments, samples were observed with macrophotography and metallography using optical microscopy. The effect of flow rate and partial pressure of air were qualitatively analyzed with those methods. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were qualitatively studied. The flow rate and the partial pressure of air were changed and their effects was different when the temperature was changed.

  15. Experimental characterization of mass, work and heat flows in an air cooled, single cylinder engine

    International Nuclear Information System (INIS)

    Perez-Blanco, H.

    2004-01-01

    Small air cooled engines, although large in numbers, receive scant attention in the literature. Experimental data for a four stroke, air cooled, single cylinder engine are presented in this report. Air to fuel ratios, indicated and output power, exhaust composition and heat loss are determined to result in suitable thermal and mechanical efficiencies. The data obtained are discussed with the perspective obtained from other literature references. Exhaust composition figures appear reasonable, but the measurement of the transient exhaust flows is still a concern. Based on the measurements, a graph illustrating the different energy transformations in the engine is produced. Undergraduate students in the curriculum routinely use the engine and the present work allows one to conclude that the measurement approach produces reasonable results. These results could be used by engine modelers and others interested in this wide field of technology

  16. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  17. Numerical simulation of air flow through turbocharger compressors with dual volute design

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Kui; Li, Xianguo; Wu, Hao [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada); Sun, Harold; Schram, Tim [Ford Motor Company, Dearborn, MI 48126 (United States); Krivitzky, Eric; Larosiliere, Louis M. [Concepts NREC, White River Junction, VT 05001 (United States)

    2009-11-15

    In this paper, turbocharger centrifugal compressors with dual volute design were investigated by using Computational Fluid Dynamics (CFD) method. The numerical simulation focused on the air flow from compressor impeller inlet to volute exit, and the overall performance level and range are predicted. The numerical investigation revealed that the dual volute design could separate the compressor into two operating regions: ''high efficiency'' and ''low efficiency'' regions with different air flow characteristics, and treating these two regions separately with dual diffuser design showed extended stable operating range and improved efficiency by comparing with conventional single volute design. The ''dual sequential volute'' concept also showed the potential to further extend the stable operating range by closing one of the volutes at low air flow rates. Furthermore, by comparing with other alternate designs such as variable diffuser vanes and variable inlet guide vanes, the operation of the dual sequential volute also features relatively simple control and calibration. (author)

  18. Influences of air flow on energy consumption as well as cost of investment and operation of airconditioning plants

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1981-08-01

    Within research project 'RELA', tests have been made to determine the amount of entering air to be guided from bottom to top and from ceiling to ceiling in order to obtain equal cooling capacity and air quality as well as equal entering air temperature. On the basis of these results, the 'Schmidt-Reuter Ingenieurgesellschaft', Cologne/Germany, has investigated the effects of air flow on the energy consumption for the equal air conditioning of a conventional office building. Since the energy consumption is also influenced by the sort of air treatment, energy transport by air or water, the selected air temperatures and the adaption of the plant to part-load, the calculation has been performed for a larger number of air treatment and control systems customary today. Furthermore, the effects of the type of air flow on plant size, plant rooms and building construction are shown. The author reports on the resulting influences of the type of air flow on energy consumption and cost of operation.

  19. Radiative effects on turbulent buoyancy-driven air flow in open square cavities

    International Nuclear Information System (INIS)

    Zamora, B.; Kaiser, A.S.

    2016-01-01

    The effects of the radiative effects and the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low- Reynolds k-ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide range of the Rayleigh number varying from 10 3 to 10 16 . The results obtained taking into account the variable thermophysical properties of air are compared to those calculated assuming constant properties and the Boussinesq approximation. In addition, the influence of considering surface radiative effects on the differences reached for the Nusselt number and the mass flow rate obtained with several intensities of heating is studied; specifically, the effects of thermal radiation on the appearance of the burnout phenomenon is analyzed. The changes produced in the flow patterns into the cavity when the radiative heat transfer and the effects of variation of properties are relevant, are also shown. (authors)

  20. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    Science.gov (United States)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  1. Video imaging measurement of interfacial wave velocity in air-water flow through a horizontal elbow

    Science.gov (United States)

    Al-Wazzan, Amir; Than, Cheok F.; Moghavvemi, Mahmoud; Yew, Chia W.

    2001-10-01

    Two-phase flow in pipelines containing elbows represents a common situation in the oil and gas industries. This study deals with the stratified flow regime between the gas and liquid phase through an elbow. It is of interest to study the change in wave characteristics by measuring the wave velocity and wavelength at the inlet and outlet of the elbow. The experiments were performed under concurrent air-water stratified flow in a horizontal transparent polycarbonate pipe of 0.05m diameter and superficial air and water velocities up to 8.97 and 0.0778 m/s respectively. A non-intrusive video imaging technique was applied to capture the waves. For image analysis, a frame by frame direct overlapping method was used to detect for pulsating flow and a pixel shifting method based on the detection of minimum values in the overlap function was used to determine wave velocity and wavelength. Under superficial gas velocity of less than 4.44 m/s, the results suggest a regular pulsating outflow produced by the elbow. At higher gas velocities, more random pulsation was found and the emergence of localized interfacial waves was detected. Wave velocities measured by this technique were found to produce satisfactory agreement with direct measurements.

  2. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  3. Interfacial structures of confined air-water two-phase bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  4. Interfacial structures of confined air-water two-phase bubbly flow

    International Nuclear Information System (INIS)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-01-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C 0 = 1.35

  5. Three dimensional turbulence structure measurements in air/water two phase flow

    International Nuclear Information System (INIS)

    Wang, S.K.L.

    1986-01-01

    The phenomena of turbulent air/water two phase upward and downward flows in a circular test section were investigated. Important flow quantities such as void fraction, liquid velocity, and Reynolds stresses were measured by using both single sensor and three sensor hot film probes. A digital data processing technique based on combined derivative and level thresholding was developed to determine the local void fraction from hot-film anemometer signals. The measured local void fraction was integrated and the result was compared with the chordal averaged void fraction measured by a gamma ray densitometer. It was found that the local measurement underestimated local void fraction due to surface tension effects and bubble deflection by the probe. A correlation based on local parameters characterizing probe/bubble interaction was developed, and it corrected the measured void fraction successfully. The measured void fraction profiles in upward flow and downward flow showed two distinct patterns. In upward flow, bubbles tend to migrate toward the wall and the void fraction profile shows a sharp peak near the wall. In downward flow, as the liquid velocity increases, the wall peaking phenomenon fades out and bubbles tend to migrate toward the center of the pipe

  6. Preliminary Calculations of Bypass Flow Distribution in a Multi-Block Air Test

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il

    2011-01-01

    The development of a methodology for the bypass flow assessment in a prismatic VHTR (Very High Temperature Reactor) core has been conducted at KAERI. A preliminary estimation of variation of local bypass flow gap size between graphite blocks in the NHDD core were carried out. With the predicted gap sizes, their influence on the bypass flow distribution and the core hot spot was assessed. Due to the complexity of gap distributions, a system thermo-fluid analysis code is suggested as a tool for the core thermo-fluid analysis, the model and correlations of which should be validated. In order to generate data for validating the bypass flow analysis model, an experimental facility for a multi-block air test was constructed at Seoul National University (SNU). This study is focused on the preliminary evaluation of flow distribution in the test section to understand how the flow is distributed and to help the selection of experimental case. A commercial CFD code, ANSYS CFX is used for the analyses

  7. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  8. Numerical modelling of convective heat transport by air flow in permafrost talus slopes

    Directory of Open Access Journals (Sweden)

    J. Wicky

    2017-06-01

    Full Text Available Talus slopes are a widespread geomorphic feature in the Alps. Due to their high porosity a gravity-driven internal air circulation can be established which is forced by the gradient between external (air and internal (talus temperature. The thermal regime is different from the surrounding environment, leading to the occurrence of permafrost below the typical permafrost zone. This phenomenon has mainly been analysed by field studies and only few explicit numerical modelling studies exist. Numerical simulations of permafrost sometimes use parameterisations for the effects of convection but mostly neglect the influence of convective heat transfer in air on the thermal regime. In contrast, in civil engineering many studies have been carried out to investigate the thermal behaviour of blocky layers and to improve their passive cooling effect. The present study further develops and applies these concepts to model heat transfer in air flows in a natural-scale talus slope. Modelling results show that convective heat transfer has the potential to develop a significant temperature difference between the lower and the upper parts of the talus slope. A seasonally alternating chimney-effect type of circulation develops. Modelling results also show that this convective heat transfer leads to the formation of a cold reservoir in the lower part of the talus slope, which can be crucial for maintaining the frozen ground conditions despite increasing air temperatures caused by climate change.

  9. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    Science.gov (United States)

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  10. The effect of compressed air massage on skin blood flow and temperature.

    Science.gov (United States)

    Mars, Maurice; Maharaj, Sunil S; Tufts, Mark

    2005-01-01

    Compressed air massage is a new treatment modality that uses air under pressure to massage skin and muscle. It is claimed to improve skin blood flow but this has not been verified. Several pilot studies were undertaken to determine the effects of compressed air massage on skin blood flow and temperature. Skin blood flow (SBF), measured using laser Doppler fluxmetry and skin temperature was recorded under several different situations: (i) treatment, at 1 Bar pressure using a single-hole (5-mm) applicator head, for 1 min at each of several sites on the right and left lower legs, with SBF measured on the dorsum of the left foot; (ii) at the same treatment pressure, SBF was measured over the left tibialis anterior when treatment was performed at different distances from the probe; (iii) SBF and skin temperature of the lower leg were measured with treatment at 0 or 1 Bar for 45 min, using two different applicator heads; (iv) SBF was measured on the dorsum of the foot of 10 subjects with treatment for 1 min at 0, 0.5, 1, 1.5 and 2 Bar using three different applicator heads. (i) SBF of the left foot was not altered by treatment of the right leg or chest, but was significantly increased during treatment of the left sole and first web, p Compressed air massage causes an immediate increase in SBF, and an immediate fall in SBF when treatment is stopped. The effect appears to be locally and not centrally mediated and is related to the pressure used. Treatment cools the skin for at least 15 min after a 45-min treatment.

  11. The air flow and heat transfer in gravel embankment in permafrost areas

    Institute of Scientific and Technical Information of China (English)

    JIANG Fan; LIU Shi; WANG Haigang; CHEN Huanzhuo

    2004-01-01

    A comparative numerical investigation of transient temperature profile and pore-air velocities in horizontal rock block embankments are conducted using the "gravels model", in which the embankment is composed of stones and air, and the "porous media model" respectively. As the velocities from the "gravels model" directly reflect the true flow of air and winter-time convection, in this paper it can be concluded that computational results from the "gravels model"are superior to the "porous media model". In addition, the "gravels model" has the advantages of reflecting the effect of the dimensions and collocation of gravels upon the temperature fields.Therefore, the computation of the gravels embankment is mainly based on the gravels model.Simulation results show that in summer, a clockwise circulation of the pore-air extends throughout most of the embankment. However its motion is very weak that results in relatively straight horizontal isotherm lines. And heat transfer is mainly maintained through conduction. But in winter, the pore-air velocities are higher and multiple vortexes are formed in the embankment.Natural convection then becomes the dominant influence on the isotherm shapes within the embankment. The isotherms are complex and alternative upward and downward flowing plumes exist. The winter-time convection can further reduce the temperature of the foundation soil beneath the gravel embankment. In addition, the effects of the gravel dimensions within the embankment have been analyzed and compared in the gravels model. It shows that in winter, large stones, e.g. 200 mm, lead to stronger vortexes than those of small stones, say 60 mm. Consequently, the zone of low-temperature beneath the large-stone embankment extends deeper into the ground.

  12. Modelling of air flows in pleated filters and of their clogging by solid particles

    International Nuclear Information System (INIS)

    Del Fabbro, L.

    2002-01-01

    The devices of air cleaning against particles are widely spread in various branches of industry: nuclear, motor, food, electronic,...; among these devices, numerous are constituted by pleated porous media to increase the surface of filtration and thus to reduce the pressure drop, for given air flow. The objective of our work is to compensate a lack evident of knowledge on the evolution of the pressure drop of pleated filter during the clogging and to deduct a modelling from it, on the basis of experiments concerning industrial filters of nuclear and car types. The obtained model is a function of characteristics of the filtering medium and pleats, of the characteristics of solid particles deposited on the filter, of the mass of particles and of the aeraulic conditions of air flow. It also depends on data on the clogging of flat filters of equivalent medium. To elaborate this model of pressure drop, an initial stage was carried out in order to characterize, experimentally and numerically, the pressure drop and the distribution of air flow in clean pleated filters of nuclear (high efficiency particulate air filter, in fiberglasses) and car (mean efficiency filter, in fibers of cellulose) types. The numerical model allowed to understand the fundamental role played by the aeraulic resistance of the filtering medium. From an non-dimensional approach, we established a semi-empirical model of pressure drop for a clean pleated filter valid for both studied types of medium; this model is used of first base for the development of the final model of clogging. The study of the clogging of the filters showed the complexity of the phenomenon dependent mainly on a reduction of the surface of filtration. This observation brings us to propose a clogging of pleated filters in three phases. Both first phases are similar in those observed for flat filters, while last phase corresponds to a reduction of the surface of filtration and leads a strong increase of the filter pressure drop

  13. Numerical Analysis of Flow Distribution in a Sodium Chamber of a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Youngchul; Son, Seokkwon; Kim, Hyungmo; Eoh, Jaehyuk; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    DHR systems consist of two diverse heat removal loops such as passive and active DHR systems, and the heat load imposed on the primary sodium pool is safely rejected into the environment through different kinds of sodium-to-air heat exchangers, e.g. M-shape and helical-coil type air-coolers. The former is called as an FHX(Forced-draft sodium-to-air Heat Exchanger) and the latter is simply called as an AHX(natural-draft sodium-to-Air Heat Exchanger). In a general sodium-to-air heat exchanger design, convection resistance in a shell-side air flow path becomes dominant factor affecting the mechanism of conjugate heat transfer from the sodium flow inside the tube to the air path across the sodium tube wall. Hence verification of the flow and heat transfer characteristics is one of the most important tasks to demonstrate decay heat removal performance. To confirm a kind of ultimate heat sink heat exchanger, a medium-scale Sodium thermal-hydraulic Experiment Loop for Finned-tube sodium-to-Air Heat exchanger (here after called the SELFA) has been designed and is recently being constructed at KAERI site. The introduction of the flow baffle inside the upper sodium chamber of the model FHX unit in the SELFA facility is briefly proposed and discussed as well. The present study aims at introducing a flow baffle design inside the upper sodium chamber to make more equalized flowrates flowing into each heat transfer tube of the model FHX unit. In the cases without the flow baffle geometry, it was observed lager discrepancies in flowrates at the heat transfer tubes. However it was also found that those kinds of discrepancies could be definitely decreased at around 1/10 by employing a flow baffle.

  14. On the potential importance of transient air flow in advective radon entry into buildings

    International Nuclear Information System (INIS)

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y.

    1990-01-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations

  15. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  16. Simultaneous velocity and pressure quantification using pressure-sensitive flow tracers in air

    Science.gov (United States)

    Zhang, Peng; Peterson, Sean; Porfiri, Maurizio

    2017-11-01

    Particle-based measurement techniques for assessing the velocity field of a fluid have advanced rapidly over the past two decades. Full-field pressure measurement techniques have remained elusive, however. In this work, we aim to demonstrate the possibility of direct simultaneous planar velocity and pressure measurement of a high speed aerodynamic flow by employing novel pressure-sensitive tracer particles for particle image velocimetry (PIV). Specifically, the velocity and pressure variations of an airflow through a converging-diverging channel are studied. Polystyrene microparticles embedded with a pressure-sensitive phosphorescent dye-platinum octaethylporphyrin (PtOEP)-are used as seeding particles. Due to the oxygen quenching effect, the emission lifetime of PtOEP is highly sensitive to the oxygen concentration, that is, the partial pressure of oxygen, in the air. Since the partial pressure of oxygen is linearly proportional to the air pressure, we can determine the air pressure through the phosphorescence emission lifetime of the dye. The velocity field is instead obtained using traditional PIV methods. The particles have a pressure resolution on the order of 1 kPa, which may be improved by optimizing the particle size and dye concentration to suit specific flow scenarios. This work was supported by the National Science Foundation under Grant Number CBET-1332204.

  17. Behavior of cross flow heat exchangers during the cooling and dehumidification of air

    Energy Technology Data Exchange (ETDEWEB)

    Ober, C [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Mess- und Regelungstechnik mit Maschinenlaboratorium

    1980-09-01

    The task of cross flow heat exchangers in room air engineering consists on the one hand in heating up the air and, on the other hand, in the simultaneous cooling and dehumidification. The facilities used for this purpose generally are multi-row finned pipe heat exchangers which when used for cooling contain cold water or brine as the working fluid. The use of directly evaporating freezing mixtures may not be included in this consideration. The model establishment for the dynamic and the static behavior of multi-row cross flow heat exchangers during cooling and dehumidification of air has been derived in this contribution. The representation is performed for the dynamic case in the complex, display range of the Laplace transformation. A comparison with experimental results can be done very simply by means of measurements of the frequency-responce curves in the form of Bode diagrams. The description of the static behaviour may be applied as a basis for humidity controls with more favourable energy utilization.

  18. The impact of traffic-flow patterns on air quality in urban street canyons.

    Science.gov (United States)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  20. Helium-air exchange flow through an opening with a partition

    International Nuclear Information System (INIS)

    Kang, Tae-il; Okamoto, Koji; Madarame, Haruki; Fumizawa, Motoo.

    1993-01-01

    The helium-air exchange flow through a small vertical opening with a partition was experimentally investigated. The vertical partition was aligned with the center line of the small opening to evaluate the effects of the multiple openings. The dimensionless exchange flow rates, i.e., Froude numbers, were experimentally obtained with several opening ratios (H 1 /D f ), i.e., the ratio of the height to the effective diameter of the opening. In the case of low opening ratios (H 1 /D f 1 /D f ≥ 0.75), the measured Froude numbers for the multiple openings were larger than those for the single opening, because the upward and downward flows were separated by the vertical partition. Based on the balance between the pressure losses in the openings and the driving force due to density difference, the exchange flow rate was calculated, and found to agree qualitatively with the measured Froude numbers. The effect of the upward and downward flow interaction at the exit of the opening was found to play an important role in the prediction of the Froude number. (author)

  1. Experimental investigation and CFD validation of Horizontal Air/Water slug flow

    International Nuclear Information System (INIS)

    Vallee, Christophe; Hoehne, Thomas

    2007-01-01

    For the investigation of co-current two-phase flows at atmospheric pressure and room temperature, the Horizontal Air/Water Channel (HAWAC) was built at Forschungszentrum Dresden-Rossendorf (FZD). At the channel inlet, a special device provides adjustable and well-defined inlet boundary conditions and therefore very good CFD validation possibilities. The HAWAC facility is designed for the application of optical measurement techniques, which deliver the high resolution required for CDF validation. Therefore, the 8 m long acrylic glass test-section with rectangular cross-section provides good observation possibilities. High-speed video observation was applied during slug flow. The camera images show the generation of slug flow from the inlet of the test-section. Parallel to the experiments, CFD calculations were carried out. The aim of the numerical simulations is to validate the prediction of slug flow with the existing multiphase flow models built in the commercial code ANSYS CFX. The Euler-Euler two-fluid model with the free surface option was applied to a grid of 600,000 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare well in terms of slug formation, and breaking. The qualitative agreement between calculation and experiment is encouraging, while quantitative comparison show that further model improvement is needed. (author)

  2. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  3. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  4. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  5. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    Science.gov (United States)

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  6. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    Science.gov (United States)

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  7. Operation of a catalytic reverse flow reactor for the purification of air contamined with volatile organic compounds

    NARCIS (Netherlands)

    van de Beld, L.; van de Beld, L.; Westerterp, K.R.

    1997-01-01

    Catalytic oxidation in a reverse flow reactor is an attractive process for the decontamination of air polluted with volatile organic compounds (VOCs). In this paper several aspects of operating this type of reactor for air purification under strongly varying conditions will be discussed. For a

  8. Drop size distribution evolution after continuous or intermittent injection of butane or propane in a confined air flow

    NARCIS (Netherlands)

    Knubben, G.; Geld, van der C.W.M.

    1999-01-01

    Drop size distributions and velocities have been measured of n-butane and propane sprays, rapidly evaporating in air flowing at constant velocity, 15 m/s typically. The inlet air temperature has been found to be of main importance in the evaporation process. After a period of the order of the

  9. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  10. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    Science.gov (United States)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  11. Viscous flow considerations in the design of the Busemann hypersonic air inlet

    International Nuclear Information System (INIS)

    Walsh, P.C.; Tahir, R.B.; Molder, S.

    2002-01-01

    A cost effective means of traveling to a low earth orbit is using an aircraft that relies on air-breathing engine technology for most of its trajectory while in the atmosphere. The scramjets that would be used to provide propulsion require inlet air diffusion with minimal total pressure losses to maintain efficiency. The Busemann inlet was designed using inviscid flow assumptions specifically for such purposes. This paper presents an investigation into the effects of viscosity on inlet performance in terms of static pressure rise and internal shockwave configuration. The viscous effects within the inlet can alter the design pressure ratio as much as 50%. It was shown that a correction based on a displacement radius calculation was sufficient to restore the static pressure performance of the inviscid design. An improvement of 16% in total pressure losses was observed with the corrected Busemann profile. Results are compared to experimentally determined surface pressure values. (author)

  12. Development of advanced air-blown entrained-flow two-stage bituminous coal IGCC gasifier

    Directory of Open Access Journals (Sweden)

    Abaimov Nikolay A.

    2017-01-01

    Full Text Available Integrated gasification combined cycle (IGCC technology has two main advantages: high efficiency, and low levels of harmful emissions. Key element of IGCC is gasifier, which converts solid fuel into a combustible synthesis gas. One of the most promising gasifiers is air-blown entrained-flow two-stage bituminous coal gasifier developed by Mitsubishi Heavy Industries (MHI. The most obvious way to develop advanced gasifier is improvement of commercial-scale 1700 t/d MHI gasifier using the computational fluid dynamics (CFD method. Modernization of commercial-scale 1700 t/d MHI gasifier is made by changing the regime parameters in order to improve its cold gas efficiency (CGE and environmental performance, namely H2/CO ratio. The first change is supply of high temperature (900°C steam in gasifier second stage. And the second change is additional heating of blast air to 900°C.

  13. Kinetics Analysis of Synthesis Reaction of Struvite With Air-Flow Continous Vertical Reactors

    Science.gov (United States)

    Edahwati, L.; Sutiyono, S.; Muryanto, S.; Jamari, J.; Bayuseno, dan A. P.

    2018-01-01

    Kinetics reaction is a knowledge about a rate of chemical reaction. The differential of the reaction rate can be determined from the reactant material or the formed material. The reaction mechanism of a reactor may include a stage of reaction occurring sequentially during the process of converting the reactants into products. In the determination of reaction kinetics, the order of reaction and the rate constant reaction must be recognized. This study was carried out using air as a stirrer as a medium in the vertical reactor for crystallization of struvite. Stirring is one of the important aspects in struvite crystallization process. Struvite crystals or magnesium ammonium phosphate hexahydrates (MgNH4PO4·6H2O) is commonly formed in reversible reactions and can be generated as an orthorhombic crystal. Air is selected as a stirrer on the existing flow pattern in the reactor determining the reaction kinetics of the crystal from the solution. The experimental study was conducted by mixing an equimolar solution of 0.03 M NH4OH, MgCl2 and H3PO4 with a ratio of 1: 1: 1. The crystallization process of the mixed solution was observed in an inside reactor at the flow rate ranges of 16-38 ml/min and the temperature of 30°C was selected in the study. The air inlet rate was kept constant at 0.25 liters/min. The pH solution was adjusted to be 8, 9 and 10 by dropping wisely of 1 N KOH solution. The crystallization kinetics was examined until the steady state of the reaction was reached. The precipitates were filtered and dried at a temperature for subsequent material characterization, including Scanning Electron Microscope (SEM) and XRD (X-Ray diffraction) method. The results show that higher flow rate leads to less mass of struvite.

  14. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y; Osuga, M; Yamauchi, T [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  15. Application of a vortex shedding flowmeter to the wide range measurement of high temperature gas flow

    International Nuclear Information System (INIS)

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-01-01

    A single flowmeter was required for helium gas measurement in a Gas Cooled Fast Breeder Reactor loss of coolant simulator. Volumetric flow accuracy of +-1.0% of reading was required over the Reynolds Number range 6 x 10 3 to 1 x 10 6 at flowing pressures from 0.2 to 9 MPa (29 to 1305 psia) at 350 0 C (660 0 F) flowing temperature. Because of its inherent accuracy and rangeability, a vortex shedding flowmeter was selected and specially modified to provide for a remoted thermal sensor. Experiments were conducted to determine the relationship between signal attenuation and sensor remoting geometry, as well as the relationship between gas flow parameters and remoted thermal sensor signal for both compressed air and helium gas. Based upon the results of these experiments, the sensor remoting geometry was optimized for this application. The resultant volumetric flow rangeability was 155:1. The associated temperature increase at the sensor position was 9 0 C above ambient (25 0 F) at a flowing temperature of 350 0 C. The volumetric flow accuracy was measured over the entire 155:1 flow range at parametric values of flowing density. A volumetric flow accuracy of +- % of reading was demonstrated

  16. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  17. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  18. An investigation of turbulent catalytically stabilized channel flow combustion of lean hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I; Benz, P; Schaeren, R; Bombach, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.

  19. Theoretical and experimental investigation of the destruction of graphites in a flow of dissociated air

    Science.gov (United States)

    Bovina, T. A.; Zviagin, Y. V.; Markelov, N. V.; Chudetskiy, Y. V.

    1986-01-01

    A method is presented for calculating the heating and erosion of blunt bodies made of graphite in a high-enthalpy flow of dissociated air, assuming chemical equilibrium on the surface and taking account of the thermal effects of combustion and sublimation of graphite. The analysis involves the use of a finite difference scheme to solve an equation of unsteady heat conduction. Attention is given to the equilibrium vaporization of C, C2 and C3 molecules. The calculations agree well with experimental data for a wide range of temperatures and stagnation pressures.

  20. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    Directory of Open Access Journals (Sweden)

    Stefano Salati

    2010-09-01

    Full Text Available Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field.

  1. Measured anisotropic air flow resistivity and sound attenuation of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    Department of Mechanical Engineering, Technical University of Denmark, Bygning 358, DK 2800 Lyngby, Denmark The air flow resistivity of glass wool has been measured in different directions. The glass wool was delivered from the manufacturer as slabs measuring 100×600×900 mm3, where the surface 600...... 7.75 kPa s m**2. A formula for prediction of resistivity for other densities is given. By comparing measured values of sound attenuation with results calculated from resistivity data, it is demonstrated that the measured attenuation can be predicted in a simple manner. ©2002 Acoustical Society...

  2. Study on law of negative corona discharge in microparticle-air two-phase flow media

    Directory of Open Access Journals (Sweden)

    Bo He

    2016-03-01

    Full Text Available To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity measurements and ultraviolet observations.

  3. De-entrainment on vertical elements in air droplet cross flow

    International Nuclear Information System (INIS)

    Dallman, J.C.; Kirchner, W.L.

    1980-01-01

    De-entrainment phenomena on vertical elements in air-water droplet cross flow are generated using a horizontal array of water spray nozzles and a draft-induced wind tunnel. These conditions are used to obtain experimental values of the de-entrainment efficiency of isolated elements (25.4-, 63.5-, and 101.6-mm-diam cylinders and a 76.2-mm-square tube), and of an array of 101.6-mm-diam cylinders. A flow model is developed that extrapolates the de-entrainment efficiency of isolated elements through the use of a correlation for the interference effect to predict the efficiency of large arrays of similar elements. This simple model is shown to provide a good prediction of the de-entrainment efficiency of arrays in terms of the efficiency of an isolated element

  4. Ignition of an organic water-coal fuel droplet floating in a heated-air flow

    Science.gov (United States)

    Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.

    2017-01-01

    Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.

  5. Wind-Induced Air-Flow Patterns in an Urban Setting: Observations and Numerical Modeling

    Science.gov (United States)

    Sattar, Ahmed M. A.; Elhakeem, Mohamed; Gerges, Bishoy N.; Gharabaghi, Bahram; Gultepe, Ismail

    2018-04-01

    City planning can have a significant effect on wind flow velocity patterns and thus natural ventilation. Buildings with different heights are roughness elements that can affect the near- and far-field wind flow velocity. This paper aims at investigating the impact of an increase in building height on the nearby velocity fields. A prototype urban setting of buildings with two different heights (25 and 62.5 cm) is built up and placed in a wind tunnel. Wind flow velocity around the buildings is mapped at different heights. Wind tunnel measurements are used to validate a 3D-numerical Reynolds averaged Naviers-Stokes model. The validated model is further used to calculate the wind flow velocity patterns for cases with different building heights. It was found that increasing the height of some buildings in an urban setting can lead to the formation of large horseshoe vortices and eddies around building corners. A separation area is formed at the leeward side of the building, and the recirculation of air behind the building leads to the formation of slow rotation vortices. The opposite effect is observed in the wake (cavity) region of the buildings, where both the cavity length and width are significantly reduced, and this resulted in a pronounced increase in the wind flow velocity. A significant increase in the wind flow velocity in the wake region of tall buildings with a value of up to 30% is observed. The spatially averaged velocities around short buildings also increased by 25% compared to those around buildings with different heights. The increase in the height of some buildings is found to have a positive effect on the wind ventilation at the pedestrian level.

  6. Preliminary three-dimensional potential flow simulation of a five-liter flask air injection experiment

    International Nuclear Information System (INIS)

    Davis, J.E.

    1977-01-01

    The preliminary results of an unsteady three-dimensional potential flow analysis of a five-liter flask air injection experiment (small-scale model simulation of a nuclear reactor steam condensation system) are presented. The location and velocity of the free water surface in the flask as a function of time are determined during pipe venting and bubble expansion processes. The analyses were performed using an extended version of the NASA-Ames Three-Dimensional Potential Flow Analysis System (POTFAN), which uses the vortex lattice singularity method of potential flow analysis. The pressure boundary condition at the free water surface and the boundary condition along the free jet boundary near the pipe exit were ignored for the purposes of the present study. The results of the analysis indicate that large time steps can be taken without significantly reducing the accuracy of the solutions and that the assumption of inviscid flow should not have an appreciable effect on the geometry and velocity of the free water surface. In addition, the computation time required for the solutions was well within acceptable limits

  7. Impact of heat load location and strength on air flow pattern with a passive chilled beam system

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, Risto [Halton Oy, Niittyvillankuja 4, 01510 Vantaa (Finland); Saarinen, Pekka; Koskela, Hannu [Finnish Institute of Occupational Health, Lemminkaisenkatu 14-18 B, 20520 Turku (Finland); Hole, Alex [Arup, Rob Leslie-Carter, Level 10, 201 Kent Street, Sydney, NSW 2000 (Australia)

    2010-01-15

    A passive chilled beam is a source of natural convection, creating a flow of cold air directly into the occupied zone. Experiments were conducted in a mock-up of an office room to study the air velocities in the occupied spaces. In addition, velocity profiles are registered when underneath heat loads exist and the cool and warm air flows interact. Experimental laboratory study revealed that in the case of the underneath heat gains, even no upward plume was generated and the dummy only acted as a flow obstacle, having a significant effect on the velocity profile. Furthermore, in an actual occupied office environment, the thermal plumes and the supply air diffuser mixed effectively the whole air volume. The maximum air velocity measured was still below 0.25 m/s with the extremely high heat gain of 164 W/m{sup 2}. The results demonstrate that analysis methods were the interaction of convection flow and jet are not taken into account could not accurately describe air movement and draught risk in the occupied room space. (author)

  8. Numerical simulation of the gas-solid flow in a square circulating fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengyang [Harbin Institute of Technology, Harbin (China). Post-doctor Station of Civil Engineering; Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Sun, Shaozeng; Zhao, Ningbo; Wu, Shaohua [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Tan, Yufei [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering

    2013-07-01

    The dynamic behavior of gas-solid flow in an experimental square circulating fluidized bed setup (0.25 m x 0.25 m x 6.07 m) is predicted with numerical simulation based on the theory of Euler-Euler gas-solid two-phase flow and the kinetic theory of granular flows. The simulation includes the operation cases with secondary injection and without air-staging. The pressure drop profile, local solids concentration and particle velocity was compared with experimental results. Both simulation and experimental results show that solids concentration increases significantly below the secondary air injection ports when air-staging is adopted. Furthermore, the flow asymmetry in the solid entrance region of the bed was investigated based on the particle concentration/velocity profile. The simulation results are in agreement with the experimental results qualitatively.

  9. Countercurrent air/water and steam/water flow above a perforated plate. Report for October 1978-October 1979

    International Nuclear Information System (INIS)

    Hsieh, C.; Bankoff, S.G.; Tankin, R.S.; Yuen, M.C.

    1980-11-01

    The perforated plate weeping phenomena have been studied in both air/water and steam/cold water systems. The air/water experiment is designed to investigate the effect of geometric factors of the perforated plate on the rate of weeping. A new dimensionless flow rate in the form of H star is suggested. The data obtained are successfully correlated by this H star scaling in the conventional flooding equation. The steam/cold water experiment is concentrated on locating the boundary between weeping and no weeping. The effects of water subcooling, water inlet flow rate, and position of water spray are investigated. Depending on the combination of these factors, several types of weeping were observed. The data obtained at high water spray position can be related to the air/water flooding correlation by replacing the stream flow rate to an effective stream flow rate, which is determined by the mixing efficiency above the plate

  10. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  11. Investigation of the propagation characteristics in turbulent dispersed two-phase flow

    International Nuclear Information System (INIS)

    Sami, S.M.

    1980-01-01

    The propagation characteristics of turbulent dispersed two-phase flows have been studied experimentally using the Pitot tube associated with a conical hot-film anemometer. It is found that the mixture velocity increases with decreasing volumetric mixing ratio of the air and water. The void fraction distribution shows homogeneity across the test section in the special case of fully developed boundary layer two-phase flow. An expression is obtained which relates the local mixture velocity to the local void fraction, gas and liquid densities, and volumetric gas-liquid ratio

  12. A Study on the Performance of the Saffron Separator for Different Air Flows

    Directory of Open Access Journals (Sweden)

    Abbas Moghanizadeh

    2014-10-01

    Full Text Available Saffron, the dried stigmas of Crocus sativus, is extremely appreciated for its extraordinary color, taste and aroma. At the present time, nearly all the saffron harvest and post harvest processes are carried out manually. To increase the quality and development of economic role of saffron, it is essential to go beyond the traditional method of harvest of saffron. Considering that saffron components terminal velocities are different, a separator is planned and constructed to separate stigma from other parts of saffron flower. This separator is designed on the basis of aerodynamic and physical properties of saffron flower. The purpose of this study is to analyze the performance of a saffron separator for different air flows to increase the level of automation and efficiency of post-harvest operations. The results show that the maximum stigma separation happens when the air flow speed in outlet B is 3 m/s. finally, this data will be applied to find the optimum areas of outlet B and D, as two main parameters which have significant effect on the efficiency of saffron separator.

  13. Particle re-entrainment from a powder deposit in an horizontal air flow

    International Nuclear Information System (INIS)

    Alloul, L.; Witschger, O.; Alloul, L.; Renoux, A.; Le Dur, D.; Monnatte, J.

    2000-01-01

    Particle re-entrainment from surfaces to turbulent air flow is an important subject in many different fields like nuclear safety, environmental air pollution, sediment transport by wind, surface contamination in semiconductor operations. Theoretical and experimental studies have been numerous and cover different aspects of the phenomena. Although a number of theoretical works have been devoted for describing the mechanisms of detachment of primary spherical particles form flat smooth surfaces in a turbulent flow, experimental data are still needed in order to comparison. Moreover, the knowledge of the effect of parameters related to the deposit (monolayer, multilayer, cone-like pile), the powder particles (particle-size distribution, adhesive properties), the surface (roughness,...),the airflow (velocity, acceleration, turbulence) or the environment (humidity,...) is still in an elementary stage. The main objective of our work is to contribute to the understanding and quantification of the parameters that govern the particle re-entrainment from a powder deposit in an turbulent horizontal airflow. Therefore, a new experimental facility called BISE (french acronym for wind tunnel for studying particle re-entrainment by airflow) has been designed and built in our laboratory. (authors)

  14. Control of multi-evaporator air-conditioning systems for flow distribution

    International Nuclear Information System (INIS)

    Lin, J.-L.; Yeh, T.-J.

    2009-01-01

    Modern air-conditioners incorporate variable-speed compressors and variable-opening expansion valves as the actuators for improving cooling performance and energy efficiency. These actuators have to be properly feedback-controlled; otherwise the systems may exhibit even poorer performance than the conventional machines which use fixed-speed compressors and mechanical expansion valves. In this paper, a control strategy with flow distribution capability is proposed for multi-evaporator air-conditioners to accommodate different thermal demands in different rooms. The structure in the control strategy is based on a low-order, linear model obtained from system identification. To determine appropriate control parameters, theorems regarding stability of the closed-loop system are given. Moreover, by performing steady-state analysis on the control system and utilizing characteristics of the identified system parameters, one can analytically explain the mechanics of flow distribution. Experiments indicate that the proposed strategy can successfully regulate the indoor temperatures regardless that the reference settings for respective rooms are different and the settings are switched in the middle of the control process.

  15. Gradients estimation from random points with volumetric tensor in turbulence

    Science.gov (United States)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  16. Bifunctional electrode performance for zinc-air flow cells with pulse charging

    International Nuclear Information System (INIS)

    Pichler, Birgit; Weinberger, Stephan; Reščec, Lucas; Grimmer, Ilena; Gebetsroither, Florian; Bitschnau, Brigitte; Hacker, Viktor

    2017-01-01

    Highlights: •Manufacture of bi-catalyzed bifunctional air electrodes via scalable process. •Direct synthesis of NiCo 2 O 4 on carbon nanofibers or nickel powder support. •450 charge and discharge cycles over 1000 h at 50 mA cm −2 demonstrated. •Pulse charging with 150 mA cm −2 is successfully applied on air electrodes. •Charge and discharge ΔV of <0.8 V at 50 mA cm −2 when supplied with O 2. -- Abstract: Bifunctional air electrodes with tuned composition consisting of two precious metal-free oxide catalysts are manufactured for application in rechargeable zinc-air flow batteries and electrochemically tested via long-term pulse charge and discharge cycling experiments at 50 mA cm −2 (mean). NiCo 2 O 4 spinel, synthesized via direct impregnation on carbon nanofibers or nickel powder and characterized by energy dispersive X-ray spectroscopy and X-ray diffraction experiments, shows high activity toward oxygen evolution reaction with low charge potentials of < 2.0 V vs. Zn/Zn 2+ . La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 perovskite exhibits bifunctional activity and outperforms the NiCo 2 O 4 spinel in long-term stability tenfold. By combining the catalysts in one bi-catalyzed bifunctional air electrode, stable performances of more than 1000 h and 450 cycles are achieved when supplied with oxygen and over 650 h and 300 cycles when supplied with synthetic air. In addition, the pulse charging method, which is beneficial for compact zinc deposition, is successfully tested on air electrodes during long-term operation. The oxygen evolution potentials during pulse, i.e. at tripled charge current density of 150 mA cm −2 , are only 0.06–0.08 V higher compared to constant charging current densities. Scanning electron microscopy confirms that mechanical degradation caused by bubble formation during oxygen evolution results in slowly decreasing discharge potentials.

  17. Air stepping in response to optic flows that move Toward and Away from the neonate.

    Science.gov (United States)

    Barbu-Roth, Marianne; Anderson, David I; Desprès, Adeline; Streeter, Ryan J; Cabrol, Dominique; Trujillo, Michael; Campos, Joseph J; Provasi, Joëlle

    2014-07-01

    To shed further light on the perceptual regulation of newborn stepping, we compared neonatal air stepping in response to optic flows simulating forward or backward displacement with stepping forward on a surface. Twenty-two 3-day-olds performed four 60 s trials in which they stepped forward on a table (Tactile) or in the air in response to a pattern that moved toward (Toward) or away (Away) from them or was static (Static). Significantly more steps were taken in the Tactile and Toward conditions than the Static condition. The Away condition was intermediate to the other conditions. The knee joint activity across the entire trial was significantly greater in the Toward than the Away condition. Within-limb kinematics and between-limb coordination were very similar for steps taken in the air and on the table, particularly in the Toward and Tactile conditions. These findings highlight that visual and tactile stimulation can equally elicit neonatal stepping. © 2013 Wiley Periodicals, Inc.

  18. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans

    Energy Technology Data Exchange (ETDEWEB)

    Ozgen, Filiz; Esen, Mehmet; Esen, Hikmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2009-11-15

    This study experimentally investigates a device for inserting an absorbing plate made of aluminium cans into the double-pass channel in a flat-plate solar air heater (SAH). This method substantially improves the collector efficiency by increasing the fluid velocity and enhancing the heat-transfer coefficient between the absorber plate and air. These types of collectors had been designed as a proposal to use aluminium materials to build absorber plates of SAHs at a suitable cost. The collector had been covered with a 4-mm single glass plate, in order to reduce convective loses to the atmosphere. Three different absorber plates had been designed and tested for experimental study. In the first type (Type I), cans had been staggered as zigzag on absorber plate, while in Type II they were arranged in order. Type III is a flat plate (without cans). Experiments had been performed for air mass flow rates of 0.03 kg/s and 0.05 kg/s. The highest efficiency had been obtained for Type I at 0.05 kg/s. Also, comparison between the thermal efficiency of the SAH tested in this study with the ones reported in the literature had been presented, and a good agreement had been found. (author)

  19. Heat transfer from a plate cooled by a water film with countercurrent air flow

    International Nuclear Information System (INIS)

    Ambrosini, W.; Manfredini, A.; Mariotti, F.; Oriolo, F.; Vigni, P.

    1995-01-01

    An experimental program at the University of Pisa provides specific data for the evaluation of heat and mass transfer by falling film evaporation. The problem is addressed primarily because of its relevance to the study of the behavior of passive containment cooling systems in simplified pressurized water reactors. In these plants, after an accident that releases vapor from the primary circuit, the steel containment envelope is cooled either by an ascending stream of air in natural circulation or by the combination of air flow and falling film evaporation. To qualify models for the prediction of the heat transfer capabilities in postulated accident conditions, researchers have built an experimental facility consisting of a flat heated plate with water sprays and a fan to simulate a countercurrent air stream. The range of relevant parameters to be investigated has been determined on the basis of integral calculations performed for the AP600 reactor containment. The facility has enabled the collection of data that confirm the adequacy of the classical heat and mass transfer analogy in predicting evaporation phenomena. Further developments in the research are needed to confirm the first results and to extend the experimental database by considering more subtle aspects of the phenomenon such as the characteristics of surface waviness of the water film and its effect on heat transfer

  20. Air-water flow in a vertical pipe with sudden changes of superficial water velocity

    International Nuclear Information System (INIS)

    Horst-Michael Prasser; Eckhard Krepper; Thomas Frank

    2005-01-01

    tests showing a monodisperse bubble size distribution were compared to CFD calculations using the code CFX-5. Applying the two fluid approach, the momentum interaction between the liquid and gas phase was considered. Additional to the interphase drag the non-drag forces like lift, wall lubrication and turbulent dispersion forces were taken into account, where the latter lead to the finally observable gas volume fraction distributions in the measurement cross section at z = 3.03 m due to their lateral balance perpendicular to the main flow direction. Detailed transient numerical simulations provide deep insight into the phase interaction, the physics and the transient behavior of the studied air-water two-phase flows. For the experimental conditions of dispersed bubbly flows without or with neglectable bubble coalescence and breakup the main flow features observed in the experiments could be reproduced qualitatively and quantitatively by the numerical simulation. Further research will be undertaken for the investigation of flow regime transition from gaseous phase volume fraction wall peak to core peak dominated flows. Further investigations will also include compressibility effects for the disperse bubbly phase. (authors)

  1. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 8. Operational Logic Flow Diagrams for a Generic Advanced Air Traffic Management system

    Science.gov (United States)

    1974-02-01

    The volume presents a description of the services a generic Advanced Air Traffic Management System (AATMS) should provide to the useres of the system to facilitate the safe, efficient flow of traffic. It provides a definition of the functions which t...

  2. Numerical study of the thermo-flow performances of novel finned tubes for air-cooled condensers in power plant

    Science.gov (United States)

    Guo, Yonghong; Du, Xiaoze; Yang, Lijun

    2018-02-01

    Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.

  3. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  4. Estimation of Engine Intake Air Mass Flow using a generic Speed-Density method

    Directory of Open Access Journals (Sweden)

    Vojtíšek Michal

    2014-10-01

    Full Text Available Measurement of real driving emissions (RDE from internal combustion engines under real-world operation using portable, onboard monitoring systems (PEMS is becoming an increasingly important tool aiding the assessment of the effects of new fuels and technologies on environment and human health. The knowledge of exhaust flow is one of the prerequisites for successful RDE measurement with PEMS. One of the simplest approaches for estimating the exhaust flow from virtually any engine is its computation from the intake air flow, which is calculated from measured engine rpm and intake manifold charge pressure and temperature using a generic speed-density algorithm, applicable to most contemporary four-cycle engines. In this work, a generic speed-density algorithm was compared against several reference methods on representative European production engines - a gasoline port-injected automobile engine, two turbocharged diesel automobile engines, and a heavy-duty turbocharged diesel engine. The overall results suggest that the uncertainty of the generic speed-density method is on the order of 10% throughout most of the engine operating range, but increasing to tens of percent where high-volume exhaust gas recirculation is used. For non-EGR engines, such uncertainty is acceptable for many simpler and screening measurements, and may be, where desired, reduced by engine-specific calibration.

  5. Supercavitating flow around high-speed underwater projectile near free surface induced by air entrainment

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-03-01

    Full Text Available Cavitating flow near free surface is a complicated issue and may provide new inspiration on high-speed surface cruising. This study observes stable supercavitating flow as a new phenomenon in a launch experiment of axisymmetric projectile when the upper side of the projectile coincides with the free surface. A numerical approach is established using large eddy-simulation and volume-of-fluid methods, and good agreements are achieved between numerical and experimental results. Supercavity formation mechanism is revealed by analyzing the experiment photographs and the iso-surface of 90% water volume fraction in numerical results. The entrainment of a large amount of air into the cavity can cause the pressure inside the cavity to similarly increase with the pressure outside the cavity, which makes the actual cavitation number close to zero and is similar to supercavitation. Cases with various headforms of the projectile and cavitation numbers on the cavitating flow, as well as the drag reduction effects are further examined. Results indicate that the present strategy near the free surface could possibly be a new effective approach for high-speed cruising after vigorous design optimization in the future.

  6. Flow and free running speed characterization of dental air turbine handpieces.

    Science.gov (United States)

    Dyson, J E; Darvell, B W

    1999-09-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, yet little work has been reported on their performance. A few studies have been concerned with measurement of speed (i.e. rotation rate), torque and power performance of these devices, but neither investigations of functional relationships between controlling variables nor theory dealing specifically with this class of turbine have been reported. This has hindered the development of satisfactory methods of handpiece specification and of testing dental rotary cutting tools. It was the intention of the present work to remedy that deficiency. Measurements of pressure, temperature, gas flow rate and rotation rate were made with improved accuracy and precision for 14 ball bearing turbine handpieces on several gases. Functional relationships between gas properties, supply pressure, flow rate, turbine design factors and free running speed were identified and equations describing these aspects of behaviour of this class of turbine developed. The rotor radius, through peripheral Mach number, was found to be a major determinant of speed performance. In addition, gas flow was found to be an important limiting factor through the effect of choke. Each dental handpiece can be treated as a simple orifice of a characteristic cross-sectional area. Free running speed can be explained in terms of gas properties and pressure, with allowance for a design-specific performance coefficient.

  7. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Joao Eduardo [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Department of Mechanical Engineering, Lisbon (Portugal); Pereira, Nuno H.C. [EST Setubal, Polytechnic Institute of Setubal, Department of Mechanical Engineering, Setubal (Portugal); Matos, Jorge [Instituto Superior Tecnico, Technical University of Lisbon, Department of Civil Engineering and Architecture, Lisbon (Portugal); Frizell, Kathleen H. [U.S. Bureau of Reclamation, Denver, CO (United States)

    2010-01-15

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows. (orig.)

  8. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    Science.gov (United States)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  9. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...... and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation...... of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also...

  10. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  11. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Directory of Open Access Journals (Sweden)

    Nicolas Craquelin

    2010-12-01

    Full Text Available We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  12. Slip length measurement of confined air flow on three smooth surfaces.

    Science.gov (United States)

    Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid

    2013-04-02

    An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.

  13. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  14. Air-segmented continuous-flow analysis for molybdenum in various geochemical samples

    International Nuclear Information System (INIS)

    Harita, Y.; Sugiyama, M.; Hori, T.

    2003-01-01

    An air-segmented continuous-flow method has been developed for the determination of molybdenum at ultra trace levels using the catalytic effect of molybdate during the oxidation of L-ascorbic acid by hydrogen peroxide. Incorporation of an on-line ion exchange column improved the tolerance limit for various ions. The detection limits with and without the column were 64 pmol L m1 and 17 pmol L m1 , and the reproducibilities at 10 nmol L m1 were 2.1 % and 0.2 %, respectively. The proposed method was applied to the determination of molybdenum in seawater and lake water as well as in rock and sediment samples. This method has the highest sensitivity among the available literature to our knowledge, and is also convenient for routine analysis of molybdenum in various natural samples. (author)

  15. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Science.gov (United States)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign

  16. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2018-01-01

    Full Text Available Secondary organic aerosol (SOA formation from ambient air was studied using an oxidation flow reactor (OFR coupled to an aerosol mass spectrometer (AMS during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5 field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3 or weeks (OH of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m−3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds are present in ambient air and can explain such additional SOA formation. To investigate the sources of the

  17. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    Science.gov (United States)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  18. Air-driven viscous film flow coating the interior of a vertical tube

    Science.gov (United States)

    Ogrosky, H. Reed; Camassa, Roberto; Olander, Jeffrey

    2017-11-01

    We discuss a model for the flow of a viscous liquid film coating the interior of a vertical tube when the film is driven upwards against gravity by airflow through the center of the tube. The model consists of two components: (i) a nonlinear model, exploiting the slowly-varying liquid-air interface, for the interfacial stresses created by the airflow, and (ii) a long-wave asymptotic model for the air-liquid interface. The stability of small interfacial disturbances is studied analytically, and it is shown that the modeled free surface stresses contribute to both an increased upwards disturbance velocity and a more rapid instability growth than those of a previously developed model. Numerical solutions to the long-wave model exhibit saturated waves whose profiles and velocities show improvement, with respect to the previous model, in matching experiments. The model results are then compared with additional experiments for a slightly modified version of the problem. We gratefully acknowledge funding from NSF DMS-0509423, DMS-0908423, DMS-1009750, DMS-1517879, RTG DMS-0943851, CMG ARC-1025523 and NIEHS 534197-3411.

  19. Phenomenology and numerical calculations of lean hydrogen-air premixed flame propagation in a turbulent flow

    International Nuclear Information System (INIS)

    Faix-Gantier, A.

    2001-12-01

    This thesis concerns the study of flame propagation in a turbulent flow of lean hydrogen-air mixtures. The aim is to precise the characteristics of propagation as well as combustion and turbulence models able to take into account the peculiarities of these mixtures. This research work is related to the prevention of fire hazards associated with accidental release of hydrogen within the reactor of a nuclear power plant. In a first part, the scales (the flame velocity and thickness) associated with the laminar flame propagation in hydrogen-air mixtures are studied. A specific attention is devoted to the intrinsic instability properties of such flames. Then, the turbulence scales potentially present within a reactor are estimated in order to allow for the determination of the regimes of combustion that might be present within the reactor and among which the flamelet regime appears to be conceivable. In a second part, starting with the analysis of the propagation properties of a mean reaction zone calculated with a flamelet model, we show that, with an adequate tuning of the parameter appearing in the mean reaction rate expression, it is possible to predict numerically the turbulent flame speeds available with the literature. (author)

  20. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    Science.gov (United States)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  1. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  2. Flow control in s-shaped air intake diffuser of gas turbine using proposed energy promoters

    Directory of Open Access Journals (Sweden)

    Jessam Raed A.

    2017-01-01

    Full Text Available This paper presents an experimental and numerical investigation of the flow control in an air intake S-shaped diffuser with and without energy promoters. The S-shaped diffuser had an area ratio 3.1and turning angle of 45°/45°. The proposed energy promoter was named as stream line sheet energy promoter. Computational Fluid Dynamics simulation was performed through commercial ANSYS-FLUENT 16.2 software. The measurements were made inside annular subsection, 45° from 360° of the complete annular shape of the diffuser, at Reynolds number 5.8×104 and turbulence intensity 4.1%. Results for the bare S-shaped diffuser (without energy promoters showed the flow structures within the S-shaped diffuser were dominated by counter-rotating vortices and boundary layer separation especially in the outer surface. The combination of the adverse pressure gradient at the first bend of outer surface and upstream low momentum wakes caused the boundary layer to separate early. The combinations of proposed energy promoters were installed on the inner and outer surfaces at three installation planes. The use of energy promoters resulting in significantly decreased the outer surface boundary layer separation with consequential improving the static pressure coefficient and reduction of total pressure losses

  3. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  4. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  5. Effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss

    Science.gov (United States)

    Koval, L. R.

    1976-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. Flow is shown to provide a modest increase in TL that is uniform with frequency up to the critical frequency. The increase is about 2 dB at Mach number M = 0.5, and about 3.5 dB at M = 1. Above the critical frequency where TL is damping controlled, the increase can be slightly larger at certain frequencies. Curvature is found to stiffen the panel, thereby increasing the TL at low frequencies, but also to introduce a dip at the 'ring frequency' of a full cylinder having the same radius as the panel. Pressurization appears to produce a slight decrease in TL throughout the frequency range, and also slightly shifts the dips at the critical frequency and at the ring frequency.

  6. A Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management

    Science.gov (United States)

    Bertsimas, Dimitris; Odoni, Amedeo

    1997-01-01

    This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.

  7. Characteristics of transonic moist air flows around butterfly valves with spontaneous condensation

    Directory of Open Access Journals (Sweden)

    A.B.M. Toufique Hasan

    2015-06-01

    Full Text Available Effects of spontaneous condensation of moist air on the shock wave dynamics around butterfly valves in transonic flows are investigated by experimental and numerical simulations. Two symmetric valve disk shapes namely- a flat rectangular plate and a mid-plane cross-section of a prototype butterfly valve have been studied in the present research. Results showed that in case with spontaneous condensation, the root mean square of pressure oscillation (induced by shock dynamics is reduced significantly with those without condensation for both shapes of the valves. Moreover, local aerodynamic moments were reduced in case with condensation which is considered to be beneficial in torque requirement in case of on/off applications of valves as flow control devices. However, total pressure loss was increased with spontaneous condensation in both the valves. Furthermore, the disk shape of a prototype butterfly valve showed better aerodynamic performances compared to flat rectangular plate profile in respect of total pressure loss and vortex shedding frequency in the wake region.

  8. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    Directory of Open Access Journals (Sweden)

    F. Terzuoli

    2008-01-01

    Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.

  9. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    International Nuclear Information System (INIS)

    Terzuoli, F.; Galassi, M.C.; Mazzini, D.; D'Auria, F.

    2008-01-01

    Pressurized thermal shock (PTS) modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV) lifetime is the cold water emergency core cooling (ECC) injection into the cold leg during a loss of coolant accident (LOCA). Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM) Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs) code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mecanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX), and a research code (NEPTUNE CFD). The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling

  10. Improved energy performance of air cooled centrifugal chillers with variable chilled water flow

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2008-01-01

    This paper considers how to apply optimum condensing temperature control and variable chilled water flow to increase the coefficient of performance (COP) of air cooled centrifugal chillers. A thermodynamic model for the chillers was developed and validated using a wide range of operating data and specifications. The model considers real process phenomena, including capacity control by the inlet guide vanes of the compressor and an algorithm to determine the number and speed of condenser fans staged based on a set point of condensing temperature. Based on the validated model, it was found that optimizing the control of condensing temperature and varying the evaporator's chilled water flow rate enable the COP to increase by 0.8-191.7%, depending on the load and ambient conditions. A cooling load profile of an office building in a subtropical climate was considered to assess the potential electricity savings resulting from the increased chiller COP and optimum staging of chillers and pumps. There is 16.3-21.0% reduction in the annual electricity consumption of the building's chiller plant. The results of this paper provide useful information on how to implement a low energy chiller plant

  11. Air-water two-phase flow in a four by four rod bundle with partial length rods

    International Nuclear Information System (INIS)

    Ohta, Motoki; Kamei, Akihiro; Mizutani, Yoshitaka; Hosokawa, Shigeo; Tomiyama, Akio

    2009-01-01

    Partial length rods (PLR) are used in fuel bundles of BWR to reduce pressure drops in two-phase regions and to optimize the power distribution. Since little is known about effects of PLR on two-phase flows, air-water two-phase flow around PLRs in a four by four rod bundle is visualized by using a high-speed video camera. The experimental apparatus consists of acrylic channel box and transparent rods. Air and water at atmospheric pressure and room temperature are used for the gas and liquid phases, respectively. The ranges of the gas and liquid volume fluxes, J G and J L , are 0.4 L G L , the flow pattern in the downstream of PLR transits to slug flow, and the flow patterns in the surrounding subchannels transit to bubbly flow due to the redistribution of gas flow. (2) In annular flow, the liquid film on the PLR forms a liquid column above the end cap of PLR. Droplets are generated by column breakup and deposit on liquid films on the neighboring rods. (3) The liquid film thickness on the surface of neighbor rods facing the PLR increases and it reduces that on their opposite surface in the downstream of PLR. (author)

  12. NUMERICAL ANALYSIS OF INFLUENCE OF EXOGENOUS FIRE IN DOG HEADING ON PARAMETERS OF THE AIR STREAM FLOWING THROUGH THIS HEADING

    Directory of Open Access Journals (Sweden)

    Magdalena TUTAK

    2014-04-01

    Full Text Available Flow of ventilation air stream through the dog heading with a fire centre is the flow with complex character, during which as a result of emission of fire gases into the mining atmosphere, there occur to disturbances of its flow. In the paper there is presented a numerical analysis of an influence of exogenous fire in a dog heading, on the parameters of the ventilation air stream flowing through this heading. Modeling tests were carried out with a use of ANSYS software, basing on the Finite Volume Method. For the made assumptions, there were determined physical parameters of air stream flowing through the heading with a fire centre, and also changes in mass fraction of gases in this stream during its flow through the analyzed heading: oxygen, carbon monoxide and carbon dioxide. As a result of performed analysis over the fire centre, the local increase of velocity and temperature and violent decrease of static pressure were recorded. Model of heading presented in the paper gives possibilities for development, and then the analysis of more complicated problems in a range of ventilation of mining headings.

  13. Flow Alteration and Chemical Reduction: Air Stripping to Lessen Subsurface Discharges of Mercury to Surface Water

    Science.gov (United States)

    Brooks, S. C.; Bogle, M.; Liang, L.; Miller, C. L.; Peterson, M.; Southworth, G. R.; Spalding, B. P.

    2009-12-01

    Mercury concentrations in groundwater, surface water, and biota near an industrial facility in Oak Ridge, Tennessee remain high some 50 years after the original major releases from the facility to the environment. Since the mid-1980s, various remedial and abatement actions have been implemented at the facility, including re-routing water flows, armoring contaminated stream banks, relining or cleanout of facility storm drains, and activated charcoal treatment of groundwater and sump discharges. These actions were taken to reduce inorganic mercury inputs from the facility to the stream; a strategy that assumes limiting the inorganic mercury precursor will reduce Hg methylation and its subsequent bioaccumulation. To date, such actions have reduced mercury loading from the site by approximately 90% from levels typical of the mid 1980's, but waterborne mercury at the facility boundary remains roughly 100 times the typical local background concentration and methylmercury accumulation in aquatic biota exceed standards for safe consumption by humans and wildlife. In 2008 and 2009, a series of investigations was initiated to explore innovative approaches to further control mercury concentrations in stream water. Efforts in this study focused on decreasing waterborne inorganic mercury inputs from two sources. The first, a highly localized source, is the discharge point of the enclosed stormdrain network whereas the second is a more diffuse short reach of stream where metallic Hg in streambed sediments generates a continued input of dissolved Hg to the overlying water. Moving a clean water flow management discharge point to a position downstream of the contaminated reach reduced mercury loading from the streambed source by 75% - 100%, likely by minimizing resuspension of Hg-rich fine particulates and changing characteristic hyporheic flow path length and residence time. Mercury in the stormdrain discharge exists as highly reactive dissolved Hg(II) due to residual chlorine in

  14. Experimental investigation on the droplet entrainment from interfacial waves in air-water horizontal stratified flow

    International Nuclear Information System (INIS)

    Bae, Byeong Geon; Yun, Byong Jo; Kim, Kyoung Du

    2014-01-01

    It was mainly due to the fact that droplet entrainment affects the Peak Cladding Temperature (PCT) of the nuclear fuel rod in the Postulated accident conditions of NPP. Recently, droplet entrainment in the horizontally arranged primary piping system for the NPP is of interest because it affects directly the steam binding phenomena in the steam generators. Pan and Hanratty correlation is the only applicable one for the droplet entrainment rate model for horizontal flow. Moreover, there are no efforts for the model development on the basis of the droplet entrainment principal and physics phenomena. More recently, Korea Atomic Energy Research Institute (KAERI) proposed a new mechanistic droplet generation model applicable in the horizontal pipe for the SPACE code. However, constitutive relations in this new model require three model coefficients which have not yet been decided. The purpose of present work is determining three model coefficients by visualization experiment. For these model coefficients, the major physical parameters regarding the interfacial disturbance wave should be measured in this experiments. There are the wave slope, liquid fraction, wave hypotenuse length, wave velocity, wave frequency, and wavelength in the major physical parameters. The experiment was conducted at an air water horizontal rectangular channel with the PIV system. In this study, the experimental conditions were stratified-way flow during the droplet generation. Three coefficients were determined based on several data related to the interfacial wave. Additionally, we manufactured the parallel wire conductance probe to measure the fluctuating water level over time, and compared the wave height measured by the parallel wire conductance probe and image processing from images taken by high speed camera. Experimental investigation was performed for droplet entrainment from phase interface wave in an air-water stratified flow. In the experiments, we measured major physical parameters

  15. A study on the characteristics of upward air-water two-phase flow in a large pipe

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Mishima, Kaichiro; Nakamura, Hideo

    2003-01-01

    Adiabatic upward air-water two-phase flow in a vertical large pipe (inner diameter, D: 0.2 m, ratio of pipe length to diameter, L/D: 60.5.) was experimentally investigated under various inlet conditions. Flow regime was observed and void fraction, bubble frequency, Sauter mean diameter, interfacial area concentration (IAC) and interfacial direction were measured with optical four-sensor probe. Characteristics of various flow regimes were analyzed carefully. Both the void fraction and the IAC demonstrated radial wall-peak and core-peak distributions in the undisturbed bubbly flow and the other flow regimes, respectively. The existence of bubbly secondary flow accounts for the core-peak distribution in the agitated bubbly, churn bubbly, churn slug and churn froth flow. The bubble frequency showed a wall-peak radial distribution only when the bubbles were small in diameter and the flow was in the undisturbed bubbly flow. The Sauter mean diameter of bubbles did not change much in the main flow of undisturbed bubbly, agitated bubbly and churn bubbly flow regimes and showed a core peak radial distribution in the churn slug flow. In the latter flow regime, the secondary flow disintegrated the bubbles, resulting in the decrease of the Sauter mean diameter. The measurements of the interfacial direction showed that the bubbly main flow and secondary flow can be displayed by the main flow peak and the secondary flow peak, respectively, in the PDF of the interfacial directional angle between the interfacial direction and the z-axis, η zi . The local average η zi at the bubble front hemispheres reflects the local bubble movement and is in direct connection with the flow regimes. Based on the analysis, the authors classified the flow regimes in the vertical large pipe quantitatively by the local average η zi . Bubbles in the liquid phase moved in a zigzag line with no inclination toward any direction in the plane vertical to z-axis in the pipe core. The axial differential

  16. Volumetric formulation of lattice Boltzmann models with energy conservation

    OpenAIRE

    Sbragaglia, M.; Sugiyama, K.

    2010-01-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum and energy. ...

  17. Design, fabrication and testing of an air-breathing micro direct methanol fuel cell with compound anode flow field

    International Nuclear Information System (INIS)

    Wang, Luwen; Zhang, Yufeng; Zhao, Youran; An, Zijiang; Zhou, Zhiping; Liu, Xiaowei

    2011-01-01

    An air-breathing micro direct methanol fuel cell (μDMFC) with a compound anode flow field structure (composed of the parallel flow field and the perforated flow field) is designed, fabricated and tested. To better analyze the effect of the compound anode flow field on the mass transfer of methanol, the compound flow field with different open ratios (ratio of exposure area to total area) and thicknesses of current collectors is modeled and simulated. Micro process technologies are employed to fabricate the end plates and current collectors. The performances of the μDMFC with a compound anode flow field are measured under various operating parameters. Both the modeled and the experimental results show that, comparing the conventional parallel flow field, the compound one can enhance the mass transfer resistance of methanol from the flow field to the anode diffusion layer. The results also indicate that the μDMFC with an anode open ratio of 40% and a thickness of 300 µm has the optimal performance under the 7 M methanol which is three to four times higher than conventional flow fields. Finally, a 2 h stability test of the μDMFC is performed with a methanol concentration of 7 M and a flow velocity of 0.1 ml min −1 . The results indicate that the μDMFC can work steadily with high methanol concentration.

  18. On the calculation of air flow rates to ventilate closed-type stations in subway with the double-track tunnel

    Science.gov (United States)

    Kiyanitsa, LA

    2018-03-01

    Metro is not only the most promising kind of public transport but also an important part of infrastructure in a modern city. As a place where large groups of people gather, subway is to ensure the required air exchange at the passenger platforms of the stations. The air flow rate for airing the stations is also determined based on the required temperature, humidity and MAC of gases. The present study estimates the required air flow rate at the passenger platform of the closed-type subway station with the double-track tunnel given the standard air temperature, humidity and gas concentration, as well as based on the condition of the specified air flow feed and air changes per hour. The article proposes the scheme of air recirculation from the double-track tunnel to the station.

  19. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    Science.gov (United States)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  20. The antifungal activity of essential oils in combination with warm air flow against postharvest phytopathogenic fungi in apples

    Czech Academy of Sciences Publication Activity Database

    Franková, A.; Šmíd, J.; Bernardos, A.; Finkousová, A.; Maršík, Petr; Novotný, D.; Legarová, V.; Půlkrábek, J.; Klouček, P.

    2016-01-01

    Roč. 68, OCT (2016), s. 62-68 ISSN 0956-7135 R&D Projects: GA MŠk(CZ) LD13013 Institutional support: RVO:61389030 Keywords : Essential oil vapor phase * Antifungal * Warm air flow Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.496, year: 2016

  1. A Fully Developed Flow Thermofluid Model for Topology Optimization of 3D-Printed Air-Cooled Heat Exchangers

    DEFF Research Database (Denmark)

    Haertel, Jan Hendrik Klaas; Nellis, Gregory F.

    2017-01-01

    In this work, density-based topology optimization is applied to the design of the air-side surface of dry-cooled power plant condensers. A topology optimization model assuming a steady-state, thermally and fluid dynamically fully developed internal flow is developed and used for this application....

  2. Air bubble-induced detachment of polystyrene particles with different sizes from collector surfaces in a parallel plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; van der Mei, HC; Busscher, HJ

    2001-01-01

    Particle size was found to be an important factor in air bubble-induced detachment of colloidal particles from collector surfaces in a parallel plate flow chamber and generally polystyrene particles with a diameter of 806 nm detached less than particles with a diameter of 1400 nm. Particle

  3. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    KAUST Repository

    Heitz, Sylvain A; Moeck, Jonas P; Schuller, Thierry; Veynante, Denis; Lacoste, Deanna

    2016-01-01

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region. © 2016 IOP Publishing Ltd.

  4. An extension of theoretical analysis for the onset of slugging criterion in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Lee, Byung Ryung

    1997-02-01

    This paper presents an experimental and theoretical investigation of interfacial friction factor, wave height and transition criterion from wavy to slug flow in a long horizontal air-water countercurrent stratified flow condition. A series of experiments have been conducted in adiabatic countercurrent stratified flow with the round pipe and rectangular duct test section to develop the interfacial friction factor and the criterion of onset of slugging in horizontal air-water countercurrent stratified flow. An adiabatic semi-empirical correlation for interfacial friction factor has been developed based on the surface roughness concept. A comparison of the measured data in this study and of other investigators with the predictions of the present correlation shows that the agreement is within ±30% error, and that the present correlation is applicable to a broader range of water flow rate than the correlations of previous investigators. The theories which can calculate the wave height and criteria of onset of slug flow in a stratified wavy flow regime have been developed based on the concept of total energy conservation and also wave theory. This theoretical criteria agree better with the measured data than the other criteria available in the literature, but the criteria range about 92∼107% of the measured data. An empirical formula for the criterion has been also developed and compared with the formula in the literatures. Comparison between the measured data and the predictions of the present theory shows that the agreement is within ±8%

  5. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    KAUST Repository

    Heitz, Sylvain A

    2016-03-16

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region. © 2016 IOP Publishing Ltd.

  6. Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow

    Science.gov (United States)

    Mitra, D.; Dhir, V. K.; Catton, I.

    2009-10-01

    Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.

  7. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC

    International Nuclear Information System (INIS)

    Abaimov, N A; Osipov, P V; Ryzhkov, A F

    2016-01-01

    In the paper the development of the advanced bituminous coal entrained-flow air- blown gasifier for the high power integrated gasification combined cycle is considered. The computational fluid dynamics technique is used as the basic development tool. The experiment on the pressurized entrained-flow gasifier was performed by “NPO CKTI” JSC for the thermochemical processes submodel verification. The kinetic constants for Kuznetsk bituminous coal (flame coal), obtained by thermal gravimetric analysis method, are used in the model. The calculation results obtained by the CFD model are in satisfactory agreements with experimental data. On the basis of the verified model the advanced gasifier structure was suggested which permits to increase the hydrogen content in the synthesis gas and consequently to improve the gas turbine efficiency. In order to meet the specified requirements vapor is added on the second stage of MHI type gasifier and heat necessary for air gasification is compensated by supplemental heating of the blasting air. (paper)

  8. Interfacial shear stress and hold-up in an air-water annular two-phase flow

    International Nuclear Information System (INIS)

    Fukano, T.; Ousaka, A.; Kawakami, Y.; Tominaga, A.

    1991-01-01

    This paper reports on an experimental investigation that was made into hold-up, frictional pressure drop and interfacial shear stress of an air-water two-phase annular flow in horizontal and vertical up- and downward flows to make clear the effects of tube diameter and flow direction on them. The tube diameters examined are 10mm, 16mm and 26mm. Both the hold-up and the pressure drop considerably changed with time. Especially, the amplitude of the variation of the hold-up was quite larger in comparison with its averaged value in the cause of disturbance wave flow. for the time averaged hold-up and interfacial friction factor, we got new correlations, by which we can estimate them within an accuracy of ±20% and ±30%, respectively, independent of the flow direction and the tube diameter

  9. COMPORTAMIENTO DE LA TEMPERATURA DEL FLUJO DE AIRE EN UN ABSORBEDOR SOLAR BEHAVIOR OF THE TEMPERATURE OF THE FLOW OF AIR IN A SOLAR ABSORBER

    Directory of Open Access Journals (Sweden)

    GERARDO C CIFUENTES

    2009-12-01

    Full Text Available El presente trabajo evalúa el comportamiento de la temperatura del flujo de aire en un colector solar de lecho de rocas, mediante un modelo matemático que simula las temperaturas del flujo de aire a la entrada y salida del colector. El modelo relaciona la geometría, la radiación incidente en el colector y las constantes propias del colector determinadas experimentalmente. Para el análisis se realizaron tres pruebas en las que se midieron las temperaturas del ambiente, de entrada y salida en el colector y la radiación solar incidente.The present work evaluates the behavior of the temperature of the flow of air in a solar collector of channel of rocks, by means of a mathematical model that simulates the temperatures from the flow of air to the entrance and exit of the collector. The pattern relates the geometry, the incident radiation in the collector and the constants own collector determined experimentally. For the analysis they were carried out three tests in those that the temperatures of the atmosphere were measured, of entrance and exit in the collector and the solar incident radiation.

  10. How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood.

    Science.gov (United States)

    Aristodemou, Elsa; Boganegra, Luz Maria; Mottet, Laetitia; Pavlidis, Dimitrios; Constantinou, Achilleas; Pain, Christopher; Robins, Alan; ApSimon, Helen

    2018-02-01

    The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings ("skyscrapers") with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of "dead-zones" and high-concentration "hotspots" in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    Directory of Open Access Journals (Sweden)

    Jafari Mohammad Javad

    2012-12-01

    Full Text Available Abstract The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p 3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

  12. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions

    Science.gov (United States)

    Winkel, Eric S.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    2004-12-01

    As air is injected into a flowing liquid, the resultant bubble characteristics depend on the properties of the injector, near-wall flow, and flowing liquid. Previous research has shown that near-wall bubbles can significantly reduce skin-friction drag. Air was injected into the turbulent boundary layer on a test section wall of a water tunnel containing various concentrations of salt and surfactant (Triton-X-100, Union Carbide). Photographic records show that the mean bubble diameter decreased monotonically with increasing salt and surfactant concentrations. Here, 33 ppt saltwater bubbles had one quarter, and 20 ppm Triton-X-100 bubbles had one half of the mean diameter of freshwater bubbles.

  13. Safety by design: effects of operating room floor marking on the position of surgical devices to promote clean air flow compliance and minimise infection risks

    NARCIS (Netherlands)

    de Korne, Dirk F.; van Wijngaarden, Jeroen D. H.; van Rooij, Jeroen; Wauben, Linda S. G. L.; Hiddema, U. Frans; Klazinga, Niek S.

    2012-01-01

    To evaluate the use of floor marking on the positioning of surgical devices within the clean air flow in an operating room (OR) to minimise infection risk. Laminar flow clean air systems are important in preventing infection in ORs but, for optimal results, surgical devices must be correctly

  14. Air flow and pollution in a real, heterogeneous urban street canyon: A field and laboratory study

    Science.gov (United States)

    Karra, Styliani; Malki-Epshtein, Liora; Neophytou, Marina K.-A.

    2017-09-01

    In this work we investigate the influence of real world conditions, including heterogeneity and natural variability of background wind, on the air flow and pollutant concentrations in a heterogeneous urban street canyon using both a series of field measurements and controlled laboratory experiments. Field measurements of wind velocities and Carbon Monoxide (CO) concentrations were taken under field conditions in a heterogeneous street in a city centre at several cross-sections along the length of the street (each cross-section being of different aspect ratio). The real field background wind was in fact observed to be highly variable and thus different Intensive Observation Periods (IOPs) represented by a different mean wind velocity and different wind variability were defined. Observed pollution concentrations reveal high sensitivity to local parameters: there is a bias towards the side closer to the traffic lane; higher concentrations are found in the centre of the street as compared to cross-sections closer to the junctions; higher concentrations are found at 1.5 height from the ground than at 2.5 m height, all of which are of concern regarding pedestrian exposure to traffic-related pollution. A physical model of the same street was produced for the purpose of laboratory experiments, making some geometrical simplifications of complex volumes and extrusions. The physical model was tested in an Atmospheric Boundary Layer water channel, using simultaneously Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF), for flow visualisation as well as for quantitative measurement of concentrations and flow velocities. The wind field conditions were represented by a steady mean approach velocity in the laboratory simulation (essentially representing periods of near-zero wind variability). The laboratory investigations showed a clear sensitivity of the resulting flow field to the local geometry and substantial three-dimensional flow patterns were

  15. Flow, stock, and impact assessment of refrigerants in the Japanese household air conditioner sector.

    Science.gov (United States)

    Xue, Mianqiang; Kojima, Naoya; Machimura, Takashi; Tokai, Akihiro

    2017-05-15

    Refrigerants provide society with great benefits while have the potential to cause adverse effects on the environment and human health. The present study estimated time-dependent flows and stocks and assessed the effects of refrigerants (R-22, R-410a, and R-32) in household air conditioners in Japan. It was found that stock of R-22 and R-410a peaked at 49,147t in 2000 and 55,994t in 2017, respectively. The largest flow of R-22 and R-410a to waste phase occurred at 3417t/yr. in 2005 and 4011t/yr. in 2023, respectively. The total global warming potential (GWP) due to refrigerant emissions increased from 3.6kt CO 2 eq. in 1952 to 6999kt CO 2 eq. in 2019, and then decreased to 5314kt CO 2 eq. in 2030. The ozone depletion potential (ODP) peaked at 141t CFC-11 eq. in 2002. When substituting R-410a for R-22, the ODP decreased 50% while the GDP increased 8%. When substituting R-32 for R-410a, there was no effect on the ODP while the GDP decreased 6%. The human health damage due to the global warming effect of refrigerant emission was much higher than that due to the ozone depleting effect. The refrigerant emission in use and waste management phases dominated the human health damage. The dynamic estimation not only allows us to evaluate the performance of past policies but also supports the future sustainable management associated with the health effects of refrigerants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  17. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    Science.gov (United States)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  18. CFD simulation of air to air enthalpy heat exchanger

    International Nuclear Information System (INIS)

    Al-Waked, Rafat; Nasif, Mohammad Shakir; Morrison, Graham; Behnia, Masud

    2013-01-01

    Highlights: • A CFD model capable of modelling conjugate heat and mass transfer processes. • A mesh independence studies and a CFD model validation have been conducted. • Effects of flow direction on the effectiveness have been examined. • Performance parameters were sensible and latent effectiveness and pressure drop. - Abstract: A CFD model which supports conjugate heat and mass transfer problem representation across the membrane of air-to-air energy recovery heat exchangers has been developed. The model consists of one flow passage for the hot stream and another for the adjacent cold stream. Only half of each flow passage volume has been modelled on each side of the membrane surface. Three dimensional, steady state and laminar flow studies have been conducted using a commercial CFD package. The volumetric species transport model has been adopted to describe the H 2 O and air gas mixtures. Mesh dependency has been examined and followed by validation of the CFD model against published data. Furthermore, effects of flow direction at the inlet of the heat exchanger on its thermal effectiveness have been investigated. Simulation results are presented and analysed in terms of sensible effectiveness, latent effectiveness and pressure drop across the membrane heat exchanger. Results have shown that counter-flow configuration has greater sensitivity to the mesh centre perpendicular distance from the membrane when compared to the other two flow configurations (cross-/parallel-flow). However, the lateral mesh element length has shown minimal effect on the thermal effectiveness of the enthalpy heat exchanger. For the quasi-flow heat exchanger, a perpendicular flow direction to the inlets has been found to produce a higher performance in contrast to the non-perpendicular flow

  19. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Gorji-Bandpy Mofid

    2012-04-01

    Full Text Available This paper presents a computational fluid dynamics (CFD calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  20. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  1. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  2. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine

    Science.gov (United States)

    Little, David A.; Schilp, Reinhard; Ross, Christopher W.

    2016-03-22

    A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).

  3. The Effect of Temperature and Air Velocity on Drying Kinetics of Pistachio Nuts during Roasting by using Hot Air Flow

    Directory of Open Access Journals (Sweden)

    A Dini

    2017-10-01

    Full Text Available Introduction Pistachio nut is one of the most delicious and nutritious nuts in the world and it is being used as a saltedand roasted product or as an ingredient in snacks, ice cream, desserts, etc. The purpose of roasting is to promote flavour and texture changes in nuts that ultimately increase the overall palatability of the product.Roasting involves a number of physico-chemical changes, including heat exchange, chemical reactions and drying. Knowledge of desorption kinetics is essential to predict the behavior of the material during roasting process and to design roaster equipment.The main aim of this research was to evaluate suitable models for predicting moisture ratio, the effect of air temperature and velocity on the drying kinetics of pistachio nuts and obtain the effective diffusivity coefficient and activation energy in the drying process during the roasting of pistachio nuts. Materials and Methods Dried Ahmadaghaei pistachio nuts were supplied from Kashefan Kavir company (Doraj co. in Rafsanjan. Pistachio nuts were soaked in 17% salt solution for 8 minute and roasting was investigated at air temperatures of 120,130, 145, 160 and 170 °C and air velocities of 0.6, 0.88, 1.3, 1.72 and 2 ms-1. Five semi-theoretical and two empirical kinetic models were fitted to drying experimental data using nonlinear regression analysis techniques in the Curve Expert 2.2 computer program. Results and Discussion Tow-way ANOVA indicated that temperature and hot air velocity significantly affected the drying process during roasting of shelled pistachio nuts. The higher roasting temperatures and air velocities resulted in the higher drying rates. During first 10 min of roasting at constant air velocity of 1.3 ms-1, 64.5%, 70.3%, 77.1%, 83.5%, 89.7% of the moisture were removed at roasting air temperatures of 120 °C, 130 °C, 145 °C, 160 °C, 170 °C, respectively. The high regression coefficients (R2>0.996 and low reduced chi-square (χ2, mean relative

  4. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Sun, X.; Kim, S.; Cheng, L.; Ishii, M.; Beus, S.G.

    2001-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions

  5. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  6. Slug flow transitions in horizontal gas/liquid two-phase flows. Dependence on channel height and system pressure for air/water and steam/water two-phase flows

    International Nuclear Information System (INIS)

    Nakamura, Hideo

    1996-05-01

    The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs

  7. Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow

    International Nuclear Information System (INIS)

    Ni, Xu; He, Cheng; Sun, Xiao-Chen; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yan-Feng; Feng, Liang

    2015-01-01

    Recent explorations of topology in physical systems have led to a new paradigm of condensed matters characterized by topologically protected states and phase transition, for example, topologically protected photonic crystals enabled by magneto-optical effects. However, in other wave systems such as acoustics, topological states cannot be simply reproduced due to the absence of similar magnetics-related sound–matter interactions in naturally available materials. Here, we propose an acoustic topological structure by creating an effective gauge magnetic field for sound using circularly flowing air in the designed acoustic ring resonators. The created gauge magnetic field breaks the time-reversal symmetry, and therefore topological properties can be designed to be nontrivial with non-zero Chern numbers and thus to enable a topological sonic crystal, in which the topologically protected acoustic edge-state transport is observed, featuring robust one-way propagation characteristics against a variety of topological defects and impurities. Our results open a new venue to non-magnetic topological structures and promise a unique approach to effective manipulation of acoustic interfacial transport at will. (paper)

  8. Second order numerical method of two-fluid model of air-water flow

    International Nuclear Information System (INIS)

    Tiselj, I.; Petelin, S.

    1995-01-01

    Model considered in this paper is six-equation two-fluid model used in computer code RELAP5. Air-water equations were taken in a code named PDE to avoid additional problems caused by condensation or vaporization. Terms with space derivatives were added in virtual mass term in momentum equations to ensure the hyperbolicity of the equations. Numerical method in PDE code is based on approximate Riemann solvers. Equations are solved on non-staggered grid with explicit time advancement and with upwind discretization of the convective terms in characteristic form of the equations. Flux limiters are used to find suitable combinations of the first (upwind) and the second order (Lax-Wendroff) discretization s which ensure second order accuracy on smooth solutions and damp oscillations around the discontinuities. Because of the small time steps required and because of its non-dissipative nature the scheme is suitable for the prediction of the fast transients: pressure waves, shock and rarefaction waves, water hammer or critical flow. Some preliminary results are presented for a shock tube problem and for Water Faucet problem - problems usually used as benchmarks for two-fluid computer codes. (author)

  9. On fluttering modes for aircraft wing model in subsonic air flow.

    Science.gov (United States)

    Shubov, Marianna A

    2014-12-08

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.

  10. Auto-ignition of methane-air mixtures flowing along an array of thin catalytic plates

    Science.gov (United States)

    Treviño, C.

    2010-12-01

    In this paper, the heterogeneous ignition of a methane-air mixture flowing along an infinite array of catalytic parallel plates has been studied by inclusion of gas expansion effects and the finite heat conduction on the plates. The system of equations considers the full compressible Navier-Stokes equations coupled with the energy equations of the plates. The gas expansion effects which arise from temperature changes have been considered. The heterogeneous kinetics considers the adsorption and desorption reactions for both reactants. The limits of large and small longitudinal thermal conductance of the plate material are analyzed and the critical conditions for ignition are obtained in closed form. The governing equations are solved numerically using finite differences. The results show that ignition is more easily produced as the longitudinal wall thermal conductance increases, and the effects of the gas expansion on the catalytic ignition process are rather small due to the large value of the activation energy of the desorption reaction of adsorbed oxygen atoms.

  11. Air sampling by pumping through a filter: effects of air flow rate, concentration, and decay of airborne substances

    OpenAIRE

    Šoštarić, Marko; Petrinec, Branko; Babić, Dinko

    2016-01-01

    This paper tackles the issue of interpreting the number of airborne particles adsorbed on a filter through which a certain volume of sampled air has been pumped. This number is equal to the product of the pumped volume and particle concentration in air, but only if the concentration is constant over time and if there is no substance decomposition on the filter during sampling. If this is not the case, one must take into account the inconstancy of the concentration and the decay law for a give...

  12. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    International Nuclear Information System (INIS)

    Chen Kang; Liang Hua

    2016-01-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. (paper)

  13. Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina

    Science.gov (United States)

    Varni, Marcelo R.; Usunoff, Eduardo J.

    A three-dimensional modular model (MODFLOW) was used to simulate groundwater flow in the Azul River basin, Buenos Aires Province, Argentina, in order to assess the correctness of the conceptual model of the hydrogeological system. Simulated heads satisfactorily match observed heads in the regional water-table aquifer. Model results indicate that: (1) groundwater recharge is not uniform throughout the region but is best represented by three recharge rates, decreasing downgradient, similar to the distribution of soils and geomorphological characteristics; and (2) evapotranspiration rates are larger than previous estimates, which were made by using the Thornthwaite-Mather method. Evapotranspiration rates estimated by MODFLOW agree with results of independent studies of the region. Model results closely match historical surface-flow records, thereby suggesting that the model description of the aquifer-river relationship is correct. Résumé Un modèle modulaire tridimensionnel (MODFLOW) a été utilisé pour simuler les écoulements souterrains dans le bassin de la rivière Azul (Province de Buenos Aires, Argentine), dans le but d'évaluer la justesse du modèle conceptuel du système hydrogéologique. La piézométrie simulée s'ajuste de façon satisfaisante à celle observée pour l'ensemble de la nappe. Les résultats du modèle indiquent que: (1) la recharge de la nappe n'est pas uniforme sur toute la région, mais qu'elle est mieux approchée par trois valeurs différentes, décroissant vers l'aval-gradient, en suivant la même distribution que les sols et les caractéristiques géomorphologiques et (2) l'évapotranspiration est nettement plus importante que prévu initialement à partir de la méthode de Thornthwaite-Mather. Les valeurs d'évapotranspiration fournies par MODFLOW concordent bien avec les résultats d'autres études portant sur la région. Les résultats du modèle reproduisent convenablement les chroniques de débit des écoulements de surface

  14. Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow

    International Nuclear Information System (INIS)

    Bizon, Nicu

    2014-01-01

    Highlights: • The Maximum Efficiency Point (MEP) is tracked based on air flow rate. • The proposed Extremum Seeking (ES) control assures high performances. • About 10 kW/s search speed and 99.99% stationary accuracy can be obtained. • The energy efficiency increases with 3–12%, according to the power losses. • The control strategy is robust based on self-optimizing ES scheme proposed. - Abstract: An advanced control of the air compressor for the Proton Exchange Membrane Fuel Cell (PEMFC) system is proposed in this paper based on Extremum Seeking (ES) control scheme. The FC net power is mainly depended on the air and hydrogen flow rate and pressure, and heat and water management. This paper proposes to compute the optimal value for the air flow rate based on the advanced ES control scheme in order to maximize the FC net power. In this way, the Maximum Efficiency Point (MEP) will be tracked in real time, with about 10 kW/s search speed and a stationary accuracy of 0.99. Thus, energy efficiency will be close to the maximum value that can be obtained for a given PEMFC stack and compressor group under dynamic load. It is shown that the MEP tracking allows an increasing of the FC net power with 3–12%, depending on the percentage of the FC power supplied to the compressor and the level of the load power. Simulations shows that the performances mentioned above are effective

  15. Effects of the Air Flow Rate on The Oxidation of NBG-18 and 25 Nuclear Graphite Grades

    International Nuclear Information System (INIS)

    Chi, Se-Hwan; Kim, Gen-Chan; Jang, Joon-Hee

    2007-01-01

    For a VHTR, graphite oxidation is regarded as a critical phenomenon for degrading the integrity of graphite components under normal or abnormal conditions. The oxidation of a graphite core component can occur by air which may permeate into the primary coolant operation and/or by impurities contained in the He coolant, or by air ingress during a severe accident. It is well known that the oxidation properties of a graphite are highly dependent on the source of raw materials, impurities, microstructures (crystallites, pore structure), and on the processing and environmental parameters, such as the forming methods, the coolant type, moisture and impurity content, temperature, flow rate and the oxygen potential of the coolants. A lot of work has been performed on the oxidation of graphite since the 1960s, and, for example, in the case of the temperature, a widely accepted oxidation model on the effects of a temperature has already been developed. However, in the case of the flow rate, even for its expected effects in a VHTR, for example, as to the expected changes in the bypass flow (10-20 %) during an operation, no systematic works have been performed. In this respect, as a preliminary study, the effects of an air flow rate on the oxidation of NBG-18 and 25 nuclear graphite were investigated

  16. Mobile laminar air flow screen for additional operating room ventilation: reduction of intraoperative bacterial contamination during total knee arthroplasty.

    Science.gov (United States)

    Sossai, D; Dagnino, G; Sanguineti, F; Franchin, F

    2011-12-01

    Surgical site infections are important complications in orthopedic surgery. A mobile laminar air flow (LAF) screen could represent a useful addition to an operating room (OR) with conventional turbulent air ventilation (12.5 air changes/h), as it could decrease the bacterial count near the operating field. The purpose of this study was to evaluate LAF efficacy at reducing bacterial contamination in the surgical area during 34 total knee arthroplasties (TKAs). The additional unit was used in 17 operations; the LAF was positioned beside the operating table between two of the surgeons, with the air flow directed towards the surgical area (wound). The whole team wore conventional OR clothing and the correct hygiene procedures and rituals were used. Bacterial air contamination (CFU/m(3)) was evaluated in the wound area in 17 operations with the LAF unit and 17 without the LAF unit. The LAF unit reduced the mean bacterial count in the wound area from 23.5 CFU/m(3) without the LAF to 3.5 CFU/m(3) with the LAF (P contamination of the wound area significantly decreased to below the accepted level for an ultraclean OR, preventing SSI infections.

  17. Moxa-stick suffumigation for disinfecting air in hematology and hematopoietic stem cell transplantation wards with class 100 laminar flow.

    Science.gov (United States)

    He, Jing-song; Yang, Qing; Huang, Wei-jia; Hu, Xiao-rong

    2014-04-01

    To evaluate the effect of moxa-stick suffumigation in the hematology and hematopoietic stem cell transplantation (HSCT) wards with luminar flow. The plate exposure method was used to measure the effect of air-disinfection of moxa-stick suffumigation in hematology and HSCT wards. The yearly average qualified rates of air sampling in HSCT wards were evaluated from 2007 to 2010. To further investigate the disinfecting effect of moxa-stick suffumigation, the colony counts of common pathogens (including Staphylcoccus aureus and Pseudomonas aeruginosa) before and after moxa-stick suffumigation were compared. The mean air quality rates of the HSCT wards with class 100 laminar flow were all above 90.0% (91.2%-96.2%) from 2007 to 2010. Moxa-stick suffumigation effectively decreased the presence of bacteria in the hematology ward's air (Pplates exposed to air treated with moxa-stick suffumigation (77.1±52.9 cfu/m(2) vs 196.1±87.5 cfu/m(2), P<0.01; and 100.2±35.3 cfu/m(2) vs 371.5±35.3 cfu/m(2), P<0.01). Moxa-stick suffumigation proved to be a reliable and effective airdisinfection method for hematology and HSCT wards, and hence, it should be employed extensively.

  18. Summertime nocturnal drainage flow in the San Mateo and Ambrosia lake air sheds of the grants basin

    International Nuclear Information System (INIS)

    Gedayloo, T.; Barr, S.; Clements, W.E.; Wilson, S.K.

    1979-01-01

    An initial study of some fundamental meteorological properties of two major air sheds in the Grants Basin of northwestern New Mexico was conducted from May 18 to September 19, 1978. Three mechanical weather stations were used in conjunction with a few vertical wind soundings to develop a data set for the summer regime. Data collected between May 18 and July 30 is analyzed to investigate nocturnal drainage flows, daytime flows, and channeling of synoptic wind. Drainage wind averaging 2.5 m s -1 was found to exist in a surface layer not greater than 200 m deep on 60% of the nights investigated. This frequently occurring drainage flow is characterized by a strong decoupling from the upper level winds. Daytime winds, on the other hand, are representative of the synoptic flow patterns suggesting a rather rapid coupling after sunrise

  19. Experimental investigation of flooding in air-water counter-current flow with a vertical adiabatic multi-rod bundle

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Hho Jung; Cha, Jong Hee; Cho, Sung Jae; Chun, Moon Hyun

    1991-01-01

    The process of flooding phenomenon in a vertical adiabatic 3 x 3 tube bundle flow channel has been studied experimentally. A series of tests was performed, using three types of tube bundle differing only in the number of spacer grids attached, to investigate the effects of spacer grids and multi-flow channel interactions on the air-water counter-current flow limitations. Experimentally determined flooding points at various water film Reynolds numbers for three different test sections are presented in graphical form and compared with entrainment criterion for co-current flow and instability criteria. In addition, empirical flooding correlations of the Kutateladze type are obtained for each type of test section using liquid penetration data

  20. Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young

    2001-01-01

    A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant

  1. Ebb and Flow: Maintaining the Close Air Support Relationship through History

    Science.gov (United States)

    2016-05-10

    3-09.3, Close Air Support (Washington, DC: Government Printing Office, 2014), xi. 20 Scott Fischer , LtCol, USAF, “Army and Air Force Subcultures...also happens that airmen and ground forces can 30 Jeff Schogol, "Welsh: The Air Force cares about...Advanced Military Studies, 2004), 59. 60 Fischer , “Army Air Force Subcultures,” 15. 61 Bolton, “Army Fixed-Wing Attack,” 5-6. 21 external

  2. Experimental investigation of the unsteady two-phase flow through perforated plates

    International Nuclear Information System (INIS)

    Tartaglia, G.P.

    1985-07-01

    The coolant flow across the perforated dip-plate during a hypothetical core disruptive accident (HCDA) in a liquid metal fast breeder reactor was simulated in a one-dimensional model. Experiments with a water-air mixture as fluid were run by varying the following parameters: geometry of the dip-plate (perforation ratio, number of the holes), height of the fluid head over the dip-plate, air volumetric fraction, size of the air bubbles, acceleration of the fluid. The pressure drop across the dip-plate, the forces acting on the dip-plate and on the upper plate, acceleration and displacement of the piston, the air volumetric fraction and the size of the air bubbles were measured in a wide range of Strouhal and acceleration numbers. The flow pattern downstream the dip-plate was filmed with a high-speed camera. The following correlations were investigated: resistance coefficients as a function of the acceleration and Strouhal number, time delay of the force on the upper plate as a function of the cavitation number, and forces and impulses acting on the upper plate compared with those acting on the dip-plate. Finally, using high-speed film pictures, the formation of fluid jets downstream the dip-plate was investigated. The following relations were obtained: displacement of the mixture surface and of the jets as a function of the perforation ratio and of the air volumetric fraction, and cavitation volume as a function of the cavitation number. (orig.) [de

  3. Modelling of air flow supply in a room at variable regime by using both K - E and spalart - allmaras turbulent model

    Science.gov (United States)

    Korbut, Vadim; Voznyak, Orest; Sukholova, Iryna; Myroniuk, Khrystyna

    2017-12-01

    The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT). Calculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it's possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.

  4. Investigation of air-water flow in a horizontal pipe with 90 degree bends using wire mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, R.C.; Yang, S.K., E-mail: robert.bowden@cnl.ca, E-mail: sun-kyu.yang@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Wire mesh sensors were used to investigate the void fraction distribution along a 9 meter long, 50.8 mm diameter, horizontal test section that contained two 90 degree bends. Deionised water and compressed air were used as the working fluids, with the bubbly flow regime achieved at a superficial liquid velocity of 3.5 m/s and superficial gas velocities that varied between 0.1 and 1.2 m/s. The effects of superficial gas velocity and axial location on the void fraction distribution were investigated. Bubble and slug flow patterns were identified using a probability density function analysis based on a Gaussian mixture model. (author)

  5. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  6. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  7. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    Directory of Open Access Journals (Sweden)

    M. Malík

    2014-01-01

    Full Text Available This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect. A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  8. Identification and control of factors influencing flow-accelerated corrosion in HRSG units using computational fluid dynamics modeling, full-scale air flow testing, and risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pietrowski, Ronald L. [The Consolidated Edison Company of New York, Inc., New York, NY (United States)

    2010-11-15

    In 2009, Consolidated Edison's East River heat recovery steam generator units 10 and 20 both experienced economizer tube failures which forced each unit offline. Extensive inspections indicated that the primary failure mechanism was flow-accelerated corrosion (FAC). The inspections revealed evidence of active FAC in all 7 of the economizer modules, with the most advanced stages of degradation being noted in center modules. Analysis determined that various factors were influencing and enabling this corrosion mechanism. Computational fluid dynamics and full-scale air flow testing showed very turbulent feedwater flow prevalent in areas of the modules corresponding with the pattern of FAC damage observed through inspection. It also identified preferential flow paths, with higher flow velocities, in certain tubes directly under the inlet nozzles. A FAC risk analysis identified more general susceptibility to FAC in the areas experiencing damage due to feedwater pH, operating temperatures, local shear fluid forces, and the chemical composition of the original materials of construction. These, in combination, were the primary root causes of the failures. Corrective actions were identified, analyzed, and implemented, resulting in equipment replacements and repairs. (orig.)

  9. Research of Workflow Efficiency in HighEnthalpy Air Flow Compact Generators

    Directory of Open Access Journals (Sweden)

    V. Yu. Aleksandrov

    2015-01-01

    Full Text Available To test the combustion chambers (CC of high-speed ramjet engine (ramjet it is necessary to create the inlet conditions as realistic as possible, including the stagnation temperature T0, the Mach number M0, and the total airflow pressure p0. To achieve T0 = 1000 ... 2000 K is possible using a high-enthalpy airflow generator (HAG providing the fired air-heating and oxygen balance compensation.Due to strict weight and size restrictions imposed by the test conditions of the ramjet CC and bench equipment, there is a need to reduce HAG size and weight. For small HAG the relevant tasks are to organize effective workflow and ensure combustion stability, which can be solved directly at the developmental testing stage.The characteristic criterion of the workflow efficiency in HAG is the completed physicochemical combustion processes of the working fluid components. This is due to the fact that in the testing process a possible after-burning component of the working fluid in the flow path of the ramjet CC has a significant impact on the studied characteristics of the engine, thereby having a detrimental effect on the quality of the experiment.The examination of the workflow efficiency in HAG showed that the use of hydrogen as a fuel allows us to achieve a high degree of completing the physicochemical processes and reaching the specified conditions at the CC inlet to the ramjet under test. The use of hydrocarbon fuels reduces the completion degree of the workflow process in HAG and is accompanied by the development of pressure pulsations.The data obtained can be used when developing various HAGs, including those intended for testing the CC of ramjets for the prospective aircrafts.

  10. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  11. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2016-03-01

    Full Text Available An oxidation flow reactor (OFR is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq. atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected compared to daytime (average 0.9 µg m−3 when LVOC fate corrected, with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70, similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production

  12. A randomized pilot study comparing the role of PEEP, O2 flow, and high-flow air for weaning of ventilatory support in very low birth weight infants

    Directory of Open Access Journals (Sweden)

    Chang-Yo Yang

    2018-04-01

    Full Text Available Background: There is a lack of evidence to guide step-wise weaning of positive pressure respiratory support for premature infants. This study sought to compare the efficacy of three weaning protocols we designed to facilitate weaning of very low birth weight (VLBW, less than 1500 g preterm infants from nasal continuous positive airway pressure (NCPAP support. Methods: This was a prospective, randomized, controlled trial of VLBW preterm infants who received positive pressure ventilatory support in our neonatal intensive care unit (NICU from April 2008 through March 2009. When these infants were weaned to CPAP as their last step of respiratory support, they would be randomly assigned to one of the following three groups as their further weaning methods (M: (M1 CPAP group, (M2 O2 flow group, and (M3 air flow group. The time period they needed to wean off any kind of respiratory support, as well as the likelihood of developing relevant prematurity related morbidities, were compared among patients using different weaning modalities. Results: 181 patients were enrolled in the study. Their gestational age (GA and birth weight (BW were 29.1 ± 2.5, 28.7 ± 2.4, 28.7 ± 2.4 (mean ± SD weeks and 1142 ± 232, 1099 ± 234, 1083 ± 219 g, in M1, M2 and M3, respectively. The time (period needed to wean off support was 16.0 ± 10.0 days (M1, 11.6 ± 6.4 days (M2, and 15.0 ± 8.9 days (M3, respectively (p = .033. Incidence of retinopathy of prematurity (ROP and bronchopulmonary dysplasia (BPD were both significantly higher in the O2 flow group (p = .048. Conclusions: Although using low oxygen flow significantly shortens CPAP weaning time, it may increase risks of BPD and ROP, both known to be related to oxygen toxicity. Unless the infant has BPD and is O2-dependent, clinicians should consider using air flow or just splinting with no support at all when weaning NCPAP. Key Words: weaning, nasal continuous positive airway pressure, very

  13. The simulated air flow pattern around a moving animal transport vehicle as the basis for a prospective biosecurity risk assessment

    Directory of Open Access Journals (Sweden)

    Jens Seedorf

    2017-08-01

    Full Text Available Research that investigates bioaerosol emissions from animal transport vehicles (ATVs and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m3/h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.

  14. The simulated air flow pattern around a moving animal transport vehicle as the basis for a prospective biosecurity risk assessment.

    Science.gov (United States)

    Seedorf, Jens; Schmidt, Ralf-Gunther

    2017-08-01

    Research that investigates bioaerosol emissions from animal transport vehicles (ATVs) and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD) software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m 3 /h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.

  15. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    Science.gov (United States)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  16. AIR FLOW AND ENVIRONMENTAL WIND VISUALIZATION USING A CW DIODE PUMPED FREQUENCY DOUBLED Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Mircea UDREA

    2009-09-01

    Full Text Available Preliminary results obtained in developing a visualisation technique for non-invasive analysis of air flow inside INCAS subsonic wind tunnel and its appendages are presented. The visualisation technique is based on using a green light sheet generated by a continuous wave (cw longitudinally diode pumped and frequency doubled Nd:YAG laser. The output laser beam is expanded on one direction and collimated on rectangular direction. The system is tailored to the requirements of qualitative analysis and vortex tracking requirements inside the INCAS 2.5m x 2.0m subsonic wind tunnel test section, for measurements performed on aircraft models. Also the developed laser techniques is used for non-invasive air flow field analysis into environmental facilities settling room (air flow calming area. Quantitative analysis is enabled using special image processing tools upon movies and pictures obtained during the experiments. The basic experimental layout in the wind tunnel takes advantage of information obtained from the investigation of various aircraft models using the developed visualisation technique. These results are further developed using a Particle Imaging Velocimetry (PIV experimental technique.The focus is on visualisation techniques to be used for wind flow characterization at different altitudes in indus-trial and civil buildings areas using a light sheet generated by a Nd:YAG cw pumped and doubled laser at 532 nm wave-length. The results are important for prevention of biological/chemical disasters such as spreading of extremely toxic pol-lutants due to wind. Numerical simulations of wind flow and experimental visualisation results are compared. A good agreement between these results is observed.

  17. Relation of Long-term Exposure to Air Pollution to Brachial Artery Flow-Mediated Dilation and Reactive Hyperemia

    Science.gov (United States)

    Wilker, Elissa H.; Ljungman, Petter L.; Rice, Mary B.; Kloog, Itai; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.; Benjamin, Emelia J.; Hamburg, Naomi M.; Mittleman, Murray A.

    2014-01-01

    Long-term exposure to ambient air pollution has been associated with cardiovascular morbidity and mortality. Impaired vascular responses may in part explain these findings, but the association of such long-term exposure with measures of both conduit artery and microvascular function have not been widely reported. We evaluated the association between residential proximity to a major roadway (primary or secondary highway) and spatially resolved average fine particulate matter (PM2.5) and baseline brachial artery diameter and mean flow velocity, flow mediated dilation % and hyperemic flow velocity, in the Framingham Offspring and Third Generation Cohorts. We examined 5,112 participants (2,731 (53%) women, mean age 49±14 years). Spatially resolved average PM2.5 was associated with lower flow mediated dilation% and hyperemic flow velocity. An interquartile range difference in PM2.5 (1.99 μg/m3) was associated with −0.16% (95%CI: −0.27%, −0.05%) lower FMD% and −0.72 (95%CI: −1.38, −0.06) cm/s lower hyperemic flow velocity %. Residential proximity to a major roadway was negatively associated with flow mediated dilation %. Compared to living ≥400 m away, living <50 m from a major roadway was associated with 0.32% lower flow mediated dilation (95% confidence interval (CI): −0.58%, −0.06%), but results for hyperemic flow velocity had wide confidence intervals −0.68 cm/s (95%CI: −2.29, 0.93). In conclusion, residential proximity to a major roadway and higher levels of spatially resolved estimates of PM2.5 at participant residences are associated with impaired conduit artery and microvascular function in this large community-based cohort of middle-aged and elderly adults. PMID:24793676

  18. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  19. Numerical study of combustion initiation in a supersonic flow of H2-air mixture by resonance laser radiation

    International Nuclear Information System (INIS)

    Bezgin, L V; Kopchenov, V I; Kuleshov, P S; Titova, N S; Starik, A M

    2012-01-01

    A comparative analysis of the efficiency of approaches based on the exposure of reacting gas to resonance laser radiation to enhance combustion in a supersonic flow of H 2 -air mixture is conducted. The kinetic processes responsible for the intensification of chain reactions in premixed and non-premixed H 2 -air flows upon photodissociation of O 2 molecules by 193.3 nm laser radiation, excitation of these molecules to the singlet sigma state by laser photons with 762.346 nm wavelength and heating the mixture by laser radiation are analysed in a detailed manner. It is shown that both photochemical methods, photodissociation and excitation of O 2 molecules, are much more effective in shortening the ignition delay length than merely heating the mixture. For the premixed flow, the photodissociation of O 2 molecules ensures a slightly higher reduction in the ignition delay than the laser-induced excitation of molecular oxygen to the singlet sigma state. However, in the non-premixed flow the situation is inverted. The analysis shows that both photochemical methods make it possible to raise the efficiency of conversion of reactant chemical energy to thermal energy released during combustion compared with the method of heating the mixtures. (paper)

  20. Interfacial area transport of vertical upward air-water two-phase flow in an annulus at elevated pressures

    International Nuclear Information System (INIS)

    Ozar, Basar; Hibiki, Takashi; Ishii, Mamoru; Euh, Dong-Jin

    2009-01-01

    The interfacial area transport of vertical, upward, air-water two-phase flows in an annular channel has been investigated at different system pressures. The inner and outer diameters of the annular channel were 19.1 mm and 38.1 mm, respectively. Twenty three inlet flow conditions were selected, which coverED bubbly, cap-slug, and churn-turbulent flows. These flow conditions also overlapped with twelve conditions of our previous study for comparison. The local flow parameters, such as void fractions, interfacial area concentrations (IAC), and bubble interface velocities, were measured at nine radial positions for the three axial locations (z/D h =52, 149 and 230) and converted into area-averaged parameters. The axial evolutions of local flow structure was interpreted in terms of bubble coalescence, breakup, expansion of the gas-phase due to pressure drop and system pressure. An assessment of interfacial area transport equation (IATE) was made and compared with the experimental data. A discussion of the comparison between model prediction and the experimental results were made. (author)

  1. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer

    International Nuclear Information System (INIS)

    Delhaye, J.

    1968-01-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a γ-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [fr

  2. Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment

    OpenAIRE

    Hatamoto, Masashi; Miyauchi, Tomo; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-01-01

    Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (OHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2 h and volumetric air supply rate of 12.95 m(3)-air...

  3. Volumetric Visualization of Human Skin

    Science.gov (United States)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  4. Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    Directory of Open Access Journals (Sweden)

    Stefano Pagliara

    2011-06-01

    Full Text Available Free surface flows in macro- and intermediate roughness conditions have a high aeration potential causing the flow characteristics to vary with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m2/s and 0.09 m2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.

  5. A case study of the development of nocturnal slope flows in a wide open valley and associated air quality implications

    Energy Technology Data Exchange (ETDEWEB)

    Pardyjak, Eric R. [Utah Univ., Salt Lake City, UT (United States). Dept. of Mechanical Engineering; Fernando, Harindra Joseph S.; Anderson, James [Arizona State Univ., Tempe, AZ (United States). Center for Environmental Fluid Dynamics; Hunt, Julian C.R. [University Coll., London (United Kingdom). Dept. of Space and Climate Physics, and Earth Sciences; Grachev, Andrey A. [Colorado Univ./NOAA, Boulder, CO (US). Cooperative Inst. for Research in Environmental Sciences (CIRES)

    2009-07-01

    This paper documents the development of nocturnal flows in the wide open Phoenix, Arizona (U.S.A) valley (30 km x 100 km) that is bordered by a large nearly flat plain to the west and high mountains to the north and east. Local thermally driven winds concomitant with the absence of significant synoptic pressure gradients dominate typical winter conditions in the Phoenix valley. The purpose of the Phoenix Air Flow Experiment (PAFEX-1) was to study the development of thermally driven flows during the evening transition in a sloping valley and describe the general pattern of transport and dispersion of contaminants during transition periods and at night. Measurements were made using a tethered balloon, sonic anemometer, balloon-based aerosol sampler, radiation sensors, cup anemometers, thermistors and humidity sensors in conjunction with data collected from 44 standard meteorological stations located throughout the valley. Over the period of 15 days in January and February 1998 the general diurnal flow patterns were repeatable, but varied substantially around the valley. This paper focuses on a case study of the evening transition, nocturnal circulation and morning breakdown of the nocturnal circulation on the night of 31 January and morning of 1 February. Central valley measurements were consistent with the notion that the evening transition is associated with a moving front, followed by intense mixing and the movement of the front to establish down-valley winds. Flows originating from different slopes led to the arrival of fronts at the various measurement locations at different times. These flows intrude into the valley and interact with each other, often causing multi-layered vertical structure. The intrusions respond to the evolving stratification and cause striking variability of these layers, for example, periodic wind and temperature disturbances corresponding to the arrival of new intrusive fronts. The evolution of the boundary layer was found to have a

  6. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  7. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  8. Traffic flow and microbial air contamination in operating rooms at a major teaching hospital in Ghana

    DEFF Research Database (Denmark)

    Stauning, M. T.; Bediako-Bowan, A.; Andersen, L. P.

    2018-01-01

    . Aim: To assess microbial air contamination in operating rooms at a Ghanaian teaching hospital and the association with door-openings and number of people present. Moreover, we aimed to document reasons for door-opening. Methods: We conducted active air-sampling using an MAS 100® portable impactor...

  9. Study of air flow and temperature distribution in ship's crew cabins

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Ali, A.A.; Nasr, A.N. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Marine Engineering Technology

    2007-07-01

    Because of low internal heights in ship's crew cabins, the supplied air is directed to the persons at low mixing ratios. However, this does not allow the mixing process between the supplied air and the indoor air to be completed before the air enters human lungs. This paper presented an experimental and numerical simulation study that used computational fluid dynamics (CFD) to investigate the effect of the air supply location on thermal air diffusion in the ship's crew cabins space. The paper presented the results in terms of air diffusion performance index. The paper presented the CFD model, including selected space configurations; CFD simulation; boundary conditions; and CFD results. The CFD airflow simulation programs CFD were utilized to calculate the spatial distribution of temperature and velocity. The study focused on the typical Middle East region working vessel under thermal and boundary conditions including the high cooling load used in this region. Experimental data were also introduced to verify the CFD results package. It was concluded that the supply should be located near the high sidewall of the cabin. This gives better air distribution inside the space rather than the center of the room. 5 refs., 1 tab., 6 figs.

  10. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  11. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control

    Science.gov (United States)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh

    2017-11-01

    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  12. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.

    1996-01-01

    A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations

  13. Dependence of energy characteristics of ascending swirling air flow on velocity of vertical blowing

    Science.gov (United States)

    Volkov, R. E.; Obukhov, A. G.; Kutrunov, V. N.

    2018-05-01

    In the model of a compressible continuous medium, for the complete Navier-Stokes system of equations, an initial boundary problem is proposed that corresponds to the conducted and planned experiments and describes complex three-dimensional flows of a viscous compressible heat-conducting gas in ascending swirling flows that are initiated by a vertical cold blowing. Using parallelization methods, three-dimensional nonstationary flows of a polytropic viscous compressible heat-conducting gas are constructed numerically in different scaled ascending swirling flows under the condition when gravity and Coriolis forces act. With the help of explicit difference schemes and the proposed initial boundary conditions, approximate solutions of the complete system of Navier-Stokes equations are constructed as well as the velocity and energy characteristics of three-dimensional nonstationary gas flows in ascending swirling flows are determined.

  14. Measurement of Air Flow Characteristics Using Seven-Hole Cone Probes

    Science.gov (United States)

    Takahashi, Timothy T.

    1997-01-01

    The motivation for this work has been the development of a wake survey system. A seven-hole probe can measure the distribution of static pressure, total pressure, and flow angularity in a wind tunnel environment. The author describes the development of a simple, very efficient algorithm to compute flow properties from probe tip pressures. Its accuracy and applicability to unsteady, turbulent flow are discussed.

  15. Analysis of transient flows in gasoline direct injection systems: effects on unsteady air entrainment by the spray; Analyse des ecoulements transitoires dans les systemes d'injection directe essence: effets sur l'entrainement d'air instationnaire du spray

    Energy Technology Data Exchange (ETDEWEB)

    Delay, G

    2005-03-15

    The aim of this study is to determine instantaneous liquid flow rate oscillations effect on non stationary air entrainment of an injector conical spray (Gasoline Direct Injection). The tools we use are either experimental or numerical ones. An instantaneous flow rate determination method is used. It is based on pulsated flows physics and only requires the velocity at the centerline of a pipe mounted just before the injector. So, it is possible to 'rebuild' the instantaneous velocity distributions and then to get the instantaneous liquid flow rate (Laser Doppler Anemometry measurements). A mechanical and hydraulics modeling software (AMESim) is necessary to get injector outlet flow rate. Simulations are validated by both 'rebuilding' method results and common rail pressure measurements. Fluorescent Particle Image Velocimetry (FPIV), suited to dense two -phase flows, is used to measure air flow around and inside the conical spray. Velocity measurements close to the spray frontier are used to compute instantaneous air entrainment. Considering droplets momentum exchange with air and thanks to droplets diameters and liquid velocities measurements at the nozzle exit, a transient air entrainment model is proposed according to FPIV measurements. (author)

  16. WRF modeling of PM2.5 remediation by SALSCS and its clean air flow over Beijing terrain.

    Science.gov (United States)

    Cao, Qingfeng; Shen, Lian; Chen, Sheng-Chieh; Pui, David Y H

    2018-06-01

    Atmospheric simulations were carried out over the terrain of entire Beijing, China, to investigate the effectiveness of an air-pollution cleaning system named Solar-Assisted Large-Scale Cleaning System (SALSCS) for PM 2.5 mitigation by using the Weather Research and Forecasting (WRF) model. SALSCS was proposed to utilize solar energy to generate airflow therefrom the airborne particulate pollution of atmosphere was separated by filtration elements. Our model used a derived tendency term in the potential temperature equation to simulate the buoyancy effect of SALSCS created with solar radiation on its nearby atmosphere. PM 2.5 pollutant and SALSCS clean air were simulated in the model domain by passive tracer scalars. Simulation conditions with two system flow rates of 2.64 × 10 5  m 3 /s and 3.80 × 10 5  m 3 /s were tested for seven air pollution episodes of Beijing during the winters of 2015-2017. The numerical results showed that with eight SALSCSs installed along the 6 th Ring Road of the city, 11.2% and 14.6% of PM 2.5 concentrations were reduced under the two flow-rate simulation conditions, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  18. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  19. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  20. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  1. Development and assessment of multi-dimensional flow model in MARS compared with the RPI air-water experiment

    International Nuclear Information System (INIS)

    Lee, Seok Min; Lee, Un Chul; Bae, Sung Won; Chung, Bub Dong

    2004-01-01

    The Multi-Dimensional flow models in system code have been developed during the past many years. RELAP5-3D, CATHARE and TRACE has its specific multi-dimensional flow models and successfully applied it to the system safety analysis. In KAERI, also, MARS(Multi-dimensional Analysis of Reactor Safety) code was developed by integrating RELAP5/MOD3 code and COBRA-TF code. Even though COBRA-TF module can analyze three-dimensional flow models, it has a limitation to apply 3D shear stress dominant phenomena or cylindrical geometry. Therefore, Multi-dimensional analysis models are newly developed by implementing three-dimensional momentum flux and diffusion terms. The multi-dimensional model has been assessed compared with multi-dimensional conceptual problems and CFD code results. Although the assessment results were reasonable, the multi-dimensional model has not been validated to two-phase flow using experimental data. In this paper, the multi-dimensional air-water two-phase flow experiment was simulated and analyzed

  2. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    Science.gov (United States)

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  3. An Investigation of the Composition of the Flow in and out of a Two-Stroke Diesel Engine and Air Consumption Ratio

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2017-06-01

    Full Text Available The aim of this research was to investigate the mass, substance and energy flow through two-stroke low speed Diesel engines. For this reason, a zero-dimensional model of the combustion in the engine was developed with a calculated amount and composition of exhaust gases. Due to the large amount of oxygen in the exhaust gases, a ratio of real air consumption and stoichiometric amount of air required for combustion of injected fuel was set. The calculated ratio showed that the engine consumed four times more air than needed for combustion in AFRstoich. In this work, this was called the Air Consumption Factor or Ratio, and has not previously been mentioned in scientific literature. The air consumption ratio is defined as a factor of dry or humid air. To be more comprehensive, a modified diagram of the composition of the flow in and out of a two-stroke fuel injection engine and the cylinder was made.

  4. Flow field studies on a micro-air-vehicle-scale cycloidal rotor in forward flight

    Science.gov (United States)

    Lind, Andrew H.; Jarugumilli, Tejaswi; Benedict, Moble; Lakshminarayan, Vinod K.; Jones, Anya R.; Chopra, Inderjit

    2014-12-01

    This paper examines the flow physics and principles of force production on a cycloidal rotor (cyclorotor) in forward flight. The cyclorotor considered here consists of two blades rotating about a horizontal axis, with cyclic pitch angle variation about the blade quarter-chord. The flow field at the rotor mid-span is analyzed using smoke flow visualization and particle image velocimeV are compared with flow fields predicted using 2D CFD and time-averaged force measurements acquired in an open-jet wind tunnel at three advance ratios. It is shown that the experimental flow field is nearly two dimensional at μ = 0.73 allowing for qualitative comparisons to be made with CFD. The incoming flow velocity decreases in magnitude as the flow passes through the retreating (upper) half of the rotor and is attributed to power extraction by the blades. A significant increase in flow velocity is observed across the advancing (lower) half of the rotor. The aerodynamic analysis demonstrates that the blades accelerate the flow through the lower aft region of the rotor, where they operate in a high dynamic pressure environment. This is consistent with CFD-predicted values of instantaneous aerodynamic forces which reveal that the aft section of the rotor is the primary region of force production. Phase-averaged flow field measurements showed two blade wakes in the flow, formed by each of the two blades. Analysis of the blades at several azimuthal positions revealed two significant blade-wake interactions. The locations of these blade-wake interactions are correlated with force peaks in the CFD-predicted instantaneous blade forces and highlight their importance to the generation of lift and propulsive force of the cyclorotor.

  5. Three-dimensional DEM–CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers

    Directory of Open Access Journals (Sweden)

    Jiecheng Yang

    2014-02-01

    Full Text Available Air flow and particle–particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs. Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM–CFD (discrete element method–computational fluid dynamics is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force.

  6. Three-dimensional DEM–CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers

    Science.gov (United States)

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2014-01-01

    Air flow and particle–particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs). Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM–CFD (discrete element method–computational fluid dynamics) is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier) increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force. PMID:26579364

  7. Wind tunnel experimental study on effect of inland nuclear power plant cooling tower on air flow and dispersion of pollutant

    International Nuclear Information System (INIS)

    Qiao Qingdang; Yao Rentai; Guo Zhanjie; Wang Ruiying; Fan Dan; Guo Dongping; Hou Xiaofei; Wen Yunchao

    2011-01-01

    A wind tunnel experiment for the effect of the cooling tower at Taohuajiang nuclear power plant on air flow and dispersion of pollutant was introduced in paper. Measurements of air mean flow and turbulence structure in different directions of cooling tower and other buildings were made by using an X-array hot wire probe. The effects of the cooling tower and its drift on dispersion of pollutant from the stack were investigated through tracer experiments. The results show that the effect of cooling tower on flow and dispersion obviously depends on the relative position of stack to cooling towers, especially significant for the cooling tower parallel to stack along wind direction. The variation law of normalized maximum velocity deficit and perturbations in longitudinal turbulent intensity in cooling tower wake was highly in accordance with the result of isolated mountain measured by Arya and Gadiyaram. Dispersion of pollutant in near field is significantly enhanced and plume trajectory is changed due to the cooling towers and its drift. Meanwhile, the effect of cooling tower on dispersion of pollutant depends on the height of release. (authors)

  8. Non-Darcy interfacial dynamics of air-water two-phase flow in rough fractures under drainage conditions.

    Science.gov (United States)

    Chang, Chun; Ju, Yang; Xie, Heping; Zhou, Quanlin; Gao, Feng

    2017-07-04

    Two-phase flow interfacial dynamics in rough fractures is fundamental to understanding fluid transport in fractured media. The Haines jump of non-Darcy flow in porous media has been investigated at pore scales, but its fundamental processes in rough fractures remain unclear. In this study, the micron-scale Haines jump of the air-water interface in rough fractures was investigated under drainage conditions, with the air-water interface tracked using dyed water and an imaging system. The results indicate that the interfacial velocities represent significant Haines jumps when the meniscus passes from a narrow "throat" to a wide "body", with jump velocities as high as five times the bulk drainage velocity. Locally, each velocity jump corresponds to a fracture aperture variation; statistically, the velocity variations follow an exponential function of the aperture variations at a length scale of ~100 µm to ~100 mm. This spatial-scale-invariant correlation may indicate that the high-speed local velocities during the Haines jump would not average out spatially for a bulk system. The results may help in understanding the origin of interface instabilities and the resulting non-uniform phase distribution, as well as the micron-scale essence of the spatial and temporal instability of two-phase flow in fractured media at the macroscopic scale.

  9. Image processing analysis on the air-water slug two-phase flow in a horizontal pipe

    Science.gov (United States)

    Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto

    2016-06-01

    Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.

  10. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    Science.gov (United States)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  11. Experimental investigation and CFD simulation of multi-pipe earth-to-air heat exchangers (EAHEs) flow performance

    Science.gov (United States)

    Amanowicz, Łukasz; Wojtkowiak, Janusz

    2017-11-01

    In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.

  12. An experimental study for the interface shear stress of near vertical air-water separated flow on evaporation

    International Nuclear Information System (INIS)

    Kwon, H.; Park, G. C.

    2000-01-01

    The object of experiment is improved model of evaporative heat transfer coefficient using interfacial friction factor on evaporation. Experiments have been conducted with near-vertical(87 .deg.) flat plate on evaporation for air-water countercurrent stratified flow. Experiment facility is consisted of 1.7m length and 0.2 X 0.005m cross section, the one side direct heating system which have 10kw power capacity. The interfacial shear stress, pressure drop and temperatures in test section were measured. These parameters were measured by DP-103 pressure transducer, K-type thermocouple, RTD and Hot Wire Anemometer(HWA). Experimental results were inclination as increased interfacial shear stress with increased the evaporation rate. Interfacial shear stress was increased as increased water flow rate and air flow rate too. For the evaluation of the measured evaporative heat transfer coefficients and physical understanding of the evaporation phenomena, the evaporative heat transfer coefficients were obtained through the simple calculation process by the use of mass transfer coefficient correlation and the experimental data of wavy film surface effect on shear and on evaporation

  13. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.

    Science.gov (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary

    2017-08-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  14. The indicative effects of inefficient urban traffic flow on fuel cost and exhaust air pollutant emissions

    CSIR Research Space (South Africa)

    Moselakgomo, M

    2015-07-01

    Full Text Available Poor urban traffic management such as poor intersection controls, congestions, illegal roadway blockages and construction works causes “stop-go” driving conditions with excessive idling resulting in wasted fuel and increased air pollutant emissions...

  15. Air Education and Training Command Cost and Capacity System: Implications for Organizational and Data Flow Changes

    National Research Council Canada - National Science Library

    Manacapilli, Thomas

    2004-01-01

    .... It briefly reviews training management systems and associated organizational arrangements in the other services and the private sector to draw insights for a model management system for the Air Force...

  16. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ

    1999-01-01

    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and

  17. Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber

    NARCIS (Netherlands)

    Wit, PJ; vanderMei, HC; Busscher, HJ

    1997-01-01

    By allowing an air-bubble to pass through a parallel plate flow chamber with negatively charged, colloidal polystyrene particles adhering to the bottom collector plate of the chamber, the detachment of adhering particles stimulated by surface tension forces induced by the passage of a liquid-air

  18. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    Science.gov (United States)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  19. Numerical analysis of air effect on the powder flow dynamics in the FT4 Powder Rheometer

    Directory of Open Access Journals (Sweden)

    Nan Wenguang

    2017-01-01

    Full Text Available The FT4 powder rheometer of Freeman Technology is widely used nowadays in industry for characterisation of particle flow under dynamic conditions of shear strain rate. It measures the work (termed flow energy required to penetrate a rotating impeller into a powder bed. However, little is known about its underlying powder mechanics, i.e. the relationship between the flow energy and the prevailing local shear stress. This has recently been studied, but only for very simple and ideal systems amenable to analysis by DEM. We analyse the effect of gas flow through the powder bed on the flow behaviour of cohesionless particles in FT4 by DEM-CFD simulation. The results show that the relative particle velocities induced by the mean shear speed, is of the same order as that produced by the root of granular temperature. The shear stress in both cases with and without gas flow could be quantified by the inertial number. The flow energy correlates well with the shear stress in front of the blade, and both increase with the inertial number and could be significantly reduced by the upward gas flow.

  20. An experimental technique for the modelling of air flow movements in nuclear plant

    International Nuclear Information System (INIS)

    Ainsworth, R.W.; Hallas, N.J.

    1986-01-01

    This paper describes an experimental technique developed at Harwell to model ventilation flows in plant at 1/5th scale. The technique achieves dynamic similarity not only for forced convection imposed by the plant ventilation system, but also for the interaction between natural convection (from heated objects) and forced convection. The use of a scale model to study flow of fluids is a well established technique, relying upon various criteria, expressed in terms of dimensionless numbers, to achieve dynamic similarity. For forced convective flows, simulation of Reynolds number is sufficient, but to model natural convection and its interaction with forced convection, the Rayleigh, Grashof and Prandtl numbers must be simulated at the same time. This paper describes such a technique, used in experiments on a hypothetical glove box cell to study the interaction between forced and natural convection. The model contained features typically present in a cell, such as a man, motor, stairs, glove box, etc. The aim of the experiment was to study the overall flow patterns, especially around the model man 'working' at the glove box. The cell ventilation was theoretically designed to produce a downward flow over the face of the man working at the glove box. However, the results have shown that the flow velocities produced an upwards flow over the face of the man. The work has indicated the viability of modelling simultaneously the forced and natural convection processes in a cell. It has also demonstrated that simplistic assumptions cannot be made about ventilation flow patterns. (author)