WorldWideScience

Sample records for volumes atomic energy

  1. Atomic energy

    CERN Multimedia

    1996-01-01

    Interviews following the 1991 co-operation Agreement between the Department of Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider Project (LHC) . With Chidambaram, R, Chairman, Atomic Energy Commission and Secretary, Department of Atomic Energy, Department of Atomic Energy (DAE) of the Government of India and Professor Llewellyn-Smith, Christopher H, Director-General, CERN.

  2. Energy from the Atom.

    Science.gov (United States)

    Smith, Patricia L.

    This curriculum guide was written to supplement fifth and sixth grade science units on matter and energy. It was designed to provide more in-depth material on the atom. The first part, "Teacher Guide," contains background information, biographical sketches of persons in the history of nuclear energy, vocabulary, answer sheets, management sheets…

  3. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  4. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  5. Atomic Mass and Nuclear Binding Energy for F-35 (Fluorine)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-35 (Fluorine, atomic number Z = 9, mass number A = 35).

  6. Energy storage possibilities of atomic hydrogen

    Science.gov (United States)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    Several recent experiments designed to produce and store macroscopic quantities of atomic hydrogen are discussed. The bulk, ground state properties of atomic hydrogen, deuterium, and tritium systems are calculated assuming that all pair interactions occur via the atomic triplet potential. The conditions required to obtain this system, including inhibition of recombination through the energetically favorable singlet interaction, are discussed. The internal energy, pressure, and compressibility are calculated applying the Monte Carlo technique with a quantum mechanical variational wavefunction. The system studied consisted of 32 atoms in a box with periodic boundary conditions. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K; i.e., the internal energy is positive at all molar volumes considered.

  7. Free Energies of Solvation with Surface, Volume, and Local Electrostatic Effects and Atomic Surface Tensions to Represent the First Solvation Shell.

    Science.gov (United States)

    Liu, Junjun; Kelly, Casey P; Goren, Alan C; Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G; Zhan, Chang-Guo

    2010-03-04

    Building on the SVPE (surface and volume polarization for electrostatics) model for electrostatic contributions to the free energy of solvation with explicit consideration of both surface and volume polarization effects, on the SMx approach to including first-solvation-shell contributions, and on the linear relationship between the electric field and short-range electrostatic contributions found by Chipman, we have developed a new method for computing absolute aqueous solvation free energies by combining the SVPE method with semiempirical terms that account for effects beyond bulk electrostatics. The new method is called SMVLE, and the elements it contains are denoted by SVPE-CDSL where SVPE denotes accounting for bulk electrostatic interactions between solute and solvent with both surface and volume contributions, CDS denotes the inclusion of solvent cavitation, changes in dispersion energy, and possible changes in local solvent structure by a semiempirical term utilizing geometry-dependent atomic surface tensions as implemented in SMx models, and L represents the local electrostatic effect derived from the outward-directed normal electric field on the cavity surface. The semiempirical CDS and L terms together represent the deviation of short-range contributions to the free energy of solvation from those accounted for by the SVPE term based on the bulk solvent dielectric constant. A solute training set containing a broad range of molecules used previously in the development of SM6 is used here for SMVLE model calibration. The aqueous solvation free energies predicted by the parameterized SMVLE model correlate exceedingly well with experimental values. The square of the correlation coefficient is 0.9949 and the slope is 1.0079. Comparison of the final SMVLE model against the earlier SMx solvation model shows that the parameterized SMVLE model not only yields good accuracy for neutrals but also significantly increases the accuracy for ions, making it the best

  8. Electron correlation energies in atoms

    Science.gov (United States)

    McCarthy, Shane Patrick

    This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.

  9. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  10. Anomalous atomic volume of alpha-Pu

    DEFF Research Database (Denmark)

    Kollar, J.; Vitos, Levente; Skriver, Hans Lomholt

    1997-01-01

    .3%. The comparison between the LDA and GGA results show that the anomalously large atomic volume of alpha-Pu relative to alpha-Np can be ascribed to exchange-correlation effects connected with the presence of low coordinated sites in the structure where the f electrons are close to the onset of localization...

  11. Atomic Mass and Nuclear Binding Energy for Po-269 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-269 (Polonium, atomic number Z = 84, mass number A = 269).

  12. Atomic Mass and Nuclear Binding Energy for Po-278 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-278 (Polonium, atomic number Z = 84, mass number A = 278).

  13. Atomic Mass and Nuclear Binding Energy for Po-282 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-282 (Polonium, atomic number Z = 84, mass number A = 282).

  14. Atomic Mass and Nuclear Binding Energy for Po-271 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-271 (Polonium, atomic number Z = 84, mass number A = 271).

  15. Atomic Mass and Nuclear Binding Energy for Po-283 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-283 (Polonium, atomic number Z = 84, mass number A = 283).

  16. Atomic Mass and Nuclear Binding Energy for Po-281 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-281 (Polonium, atomic number Z = 84, mass number A = 281).

  17. Atomic Mass and Nuclear Binding Energy for Po-284 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-284 (Polonium, atomic number Z = 84, mass number A = 284).

  18. Atomic Mass and Nuclear Binding Energy for Po-280 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-280 (Polonium, atomic number Z = 84, mass number A = 280).

  19. Atomic Mass and Nuclear Binding Energy for Po-272 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-272 (Polonium, atomic number Z = 84, mass number A = 272).

  20. Atomic Mass and Nuclear Binding Energy for Po-276 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-276 (Polonium, atomic number Z = 84, mass number A = 276).

  1. Atomic Mass and Nuclear Binding Energy for Po-277 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-277 (Polonium, atomic number Z = 84, mass number A = 277).

  2. Atomic Mass and Nuclear Binding Energy for Po-275 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-275 (Polonium, atomic number Z = 84, mass number A = 275).

  3. Atomic Mass and Nuclear Binding Energy for Po-273 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-273 (Polonium, atomic number Z = 84, mass number A = 273).

  4. Atomic Mass and Nuclear Binding Energy for Po-274 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-274 (Polonium, atomic number Z = 84, mass number A = 274).

  5. Atomic Mass and Nuclear Binding Energy for Po-270 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-270 (Polonium, atomic number Z = 84, mass number A = 270).

  6. Atomic Mass and Nuclear Binding Energy for Po-279 (Polonium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-279 (Polonium, atomic number Z = 84, mass number A = 279).

  7. Atomic Mass and Nuclear Binding Energy for Ra-226 (Radium)

    Science.gov (United States)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ra-226 (Radium, atomic number Z = 88, mass number A = 226).

  8. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  9. Atomic displacement energy in amorphous compounds

    Science.gov (United States)

    Sanditov, D. S.; Mashanov, A. A.

    2016-12-01

    Atomic displacement energy Δɛe in multicomponent sheet and lead-silicate glasses is calculated from the free activation energy of a viscous flow. The value of Δɛe is shown to remain constant in a rather wide range of temperatures in the glass transition region. Satisfactory agreement with calculations of Δɛe using the current formula incorporating the glass transition temperature and the fluctuation volume fraction frozen at this temperature is obtained. The validity of the above formula not only at the glass transition temperature but also in the temperature region adjacent to it is confirmed.

  10. A Quantum Model of Atoms (the Energy Levels of Atoms).

    Science.gov (United States)

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  11. Atomic volumes and polarizabilities in density-functional theory.

    Science.gov (United States)

    Kannemann, Felix O; Becke, Axel D

    2012-01-21

    Becke and Johnson introduced an ad hoc definition of atomic volume [J. Chem. Phys. 124, 014204 (2006)] in order to obtain atom-in-molecule polarizabilities from free-atom polarizabilities in their nonempirical exchange-hole dipole moment model of dispersion interactions. Here we explore the dependence of Becke-Johnson atomic volumes on basis sets and density-functional approximations and provide reference data for all atoms H-Lr. A persuasive theoretical foundation for the Becke-Johnson definition is also provided.

  12. A History of the Atomic Energy Commission

    Science.gov (United States)

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  13. Why? The nuclear and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwangwoong

    2009-01-15

    This book is a science comic book for students in elementary school, which contains energy and life such as our body and energy, animal and energy, plant and energy, kinetic energy, potential energy and the principle of the conservation of energy in the first part. The second part explains fossil fuel like coal, petroleum and natural gas. Next it deals with electric power, nuclear energy such as atom and molecule, nuclear fusion and energy for future like solar cell and black hole power plant.

  14. Energy Wave Model of Atom

    Institute of Scientific and Technical Information of China (English)

    伍细如

    2015-01-01

    proton emits energy wave, electron could sits any position away from nucleus, but be the most stable just when it sits at the trough of energy wave, and this position accords with Bohr radius and Schr?dinger equation.

  15. The Future of Atomic Energy

    Science.gov (United States)

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  16. Index to the United States Atomic Energy Commission's Annual Report to Congress for 1961. Major activities in the atomic energy programs, January 1961 - December 1961

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1962-01-31

    This volume contains a name and subject index for the 1961 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1961.

  17. Index to the United States Atomic Energy Commission's Annual Report to Congress for 1962. Major activities in the atomic energy programs, January 1962 - December 1962

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1963-01-31

    This volume contains a name and subject index for the 1962 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1962.

  18. Index to the United States Atomic Energy Commission's Annual Report to Congress for 1960. Major activities in the atomic energy programs, January 1960 - December 1960

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1961-01-31

    This volume contains a name and subject index for the 1960 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1960.

  19. Index to the United States Atomic Energy Commission's Annual Report to Congress for 1959. Major activities in the atomic energy programs, January 1959 - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1960-01-31

    This volume contains a name and subject index for the 1959 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1959.

  20. Low Energy Atomic Photodesorption from Organic Coatings

    Directory of Open Access Journals (Sweden)

    Alessandro Lucchesini

    2016-10-01

    Full Text Available Organic coatings have been widely used in atomic physics during the last 50 years because of their mechanical properties, allowing preservation of atomic spins after collisions. Nevertheless, this did not produce detailed insight into the characteristics of the coatings and their dynamical interaction with atomic vapors. This has changed since the 1990s, when their adsorption and desorption properties triggered a renewed interest in organic coatings. In particular, a novel class of phenomena produced by non-destructive light-induced desorption of atoms embedded in the coating surface was observed and later applied in different fields. Nowadays, low energy non-resonant atomic photodesorption from organic coatings can be considered an almost standard technique whenever large densities of atomic vapors or fast modulation of their concentration are required. In this paper, we review the steps that led to this widespread diffusion, from the preliminary observations to some of the most recent applications in fundamental and applied physics.

  1. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  2. The Harnessed Atom: Nuclear Energy & Electricity.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  3. ATOMIZATION CAUSED BY BOTTOM FLOW ENERGY DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bottom flow energy dissipation is one of the common energydissipation methods for flood-releasing structures with high water head. Measures of this energy dissipation depend mainly on the turbulent action of hydraulic jump.In this paper, the physical process and the calculating methods of the atomization caused by bottom flow energy dissipation were studied, the computation models of atomization quantity for the self-aerated flow in overflow and hydraulic jump regions are presented, and the main results are of theoretical and practical significance for the hydraulic and electric engineering.

  4. Atomic orbital self-energy and electronegativity

    CERN Document Server

    Ribeiro, Mauro

    2016-01-01

    In this work, atomic calculations were performed within the local-density and generalized-gradient approximations of exchange and correlation density functionals within density-functional theory to provide accurate periodic trends of first ionization energies and electron affinities of the atomic series from hydrogen to xenon. Electronegativities were determined directly from Mulliken's formula and were shown to be equivalently calculated rather by using Slater-Janak's transition state or by calculating the electrostatic self-energies of the orbitals involved in the transition to ions. Finally, comparisons were made with other theoretical and experimental results, including Mulliken-Jaff\\'e's electronegativity scale.

  5. Atomic energy after Fukushima; Atomenergie nach Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Cosack, Tilman; Enders, Rainald [FH Trier, Umwelt-Campus Birkenfeld (DE). Inst. fuer das Recht der Erneuerbaren Energien, Energieeffizienzrecht und Klimaschutzrecht (IREK); Kanzlei VRT, Bonn (Germany)

    2011-11-15

    The Fukushima catastrophe caused a complete turnaround of German energy policy. The first part of this contribution investigates if the moratorium of the German government and the resulting shutdown of seven nuclear power plants on the basis of Sect. 19 No. 3 AtG was in compliance with current law. The second part discusses if the legal measures for nuclear phaseout as specified in the 13th Act to Amend the Atomic Energy Act were at all necessary.

  6. Probing Dark Energy with Atom Interferometry

    CERN Document Server

    Burrage, Clare; Hinds, E A

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  7. Scattering of low-energy neutrinos on atomic shells

    Energy Technology Data Exchange (ETDEWEB)

    Babič, Andrej [Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical University, 115 19 Prague, Czech Rep. (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague (Czech Republic); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Šimkovic, Fedor [Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague (Czech Republic); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Department of Nuclear Physics and Biophysics, Comenius University, 842 48 Bratislava (Slovakia)

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  8. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.

    Science.gov (United States)

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-02-15

    Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance.

  9. Atomic Interferometry Test of Dark Energy

    CERN Document Server

    Brax, Philippe

    2016-01-01

    Atomic interferometry can be used to probe dark energy models coupled to matter. We consider the constraints coming from recent experimental results on models generalising the inverse power law chameleons such as $f(R)$ gravity in the large curvature regime, the environmentally dependent dilaton and symmetrons. Using the tomographic description of these models, we find that only symmetrons with masses smaller than the dark energy scale can be efficiently tested. In this regime, the resulting constraints complement the bounds from the E\\"otwash experiment and exclude small values of the symmetron self-coupling.

  10. On the energy of electric field in hydrogen atom

    OpenAIRE

    Kornyushin, Yuri

    2009-01-01

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  11. Ground Levels and Ionization Energies for the Neutral Atoms

    Science.gov (United States)

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  12. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    Science.gov (United States)

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  13. 32 CFR 2400.4 - Atomic Energy Material.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Atomic Energy Material. 2400.4 Section 2400.4... General Provisions § 2400.4 Atomic Energy Material. Nothing in this Regulation supersedes any requirement made by or under the Atomic Energy act of 1954, as amended. “Restricted Data” and...

  14. Evaluation of atomic constants for optical radiation, volume 2

    Science.gov (United States)

    Kylstra, C. D.; Schneider, R. J.

    1974-01-01

    Various atomic constant for 23 elements from helium to mercury were computed and are presented in tables. The data given for each element start with the element name, its atomic number, its ionic state, and the designation and series limit for each parent configuration. This is followed by information on the energy level, parent configuration, and designation for each term available to the program. The matrix elements subtables are ordered by the sequence numbers, which represent the initial and final levels of the transitions. Each subtable gives the following: configuration of the core or parent, designation and energy level for the reference state, effective principal quantum number, energy of the series limit, value of the matrix element for the reference state interacting with itself, and sum of all of the dipole matrix elements listed in the subtable. Dipole and quadrupole interaction data are also given.

  15. Atom-interferometry constraints on dark energy

    CERN Document Server

    Hamilton, Paul; Haslinger, Philipp; Simmons, Quinn; Müller, Holger; Khoury, Justin

    2015-01-01

    If dark energy---which drives the accelerated expansion of the universe---consists of a new light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. There has, however, been much theoretical progress in developing theories with screening mechanisms, which can evade detection by suppressing forces in regions of high density, such as the laboratory. One prominent example is the chameleon field. We reduce the effect of this screening mechanism by probing the chameleon with individual atoms rather than bulk matter. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacuum chamber, we constrain a wide class of dynamical dark energy theories. Our experiment excludes a range of chameleon theories that reproduce the observed cosmic acceleration.

  16. Atom-Interferometry Constraints on Dark Energy

    Science.gov (United States)

    Mueller, Holger

    2016-03-01

    If dark energy is a light scalar field, it might interact with normal matter. The interactions, however, are suppressed in some leading models, which are thus compatible with current cosmological observations as well as solar-system and laboratory studies. Such suppression typically relies on the scalar's interaction with macroscopic amounts of ordinary matter, but can be bypassed by studying the interaction with individual particles. Using an atom interferometer, we have placed tight constraints on so-called chameleon models, ruling out interaction parameters βM > 4 ×104 . This limit is improved by 2.5 orders of magnitude relative to previous experiments. We have already increased the sensitivity of our interferometer hundredfold and are expecting a new constraint soon. Purpose-built experiments in the lab or on the international space station will completely close the gap and rule out out chameleons and other theories, such as axions, dark photons, symmetrons or f (R) gravity.

  17. Seeking to Improve Low Energy Neutral Atom Detection in Space

    Science.gov (United States)

    Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.

    2007-01-01

    The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.

  18. Wave energy devices with compressible volumes.

    Science.gov (United States)

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-12-08

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m(3) and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.

  19. A liquid drop model for embedded atom method cluster energies

    Science.gov (United States)

    Finley, C. W.; Abel, P. B.; Ferrante, J.

    1996-01-01

    Minimum energy configurations for homonuclear clusters containing from two to twenty-two atoms of six metals, Ag, Au, Cu, Ni, Pd, and Pt have been calculated using the Embedded Atom Method (EAM). The average energy per atom as a function of cluster size has been fit to a liquid drop model, giving estimates of the surface and curvature energies. The liquid drop model gives a good representation of the relationship between average energy and cluster size. As a test the resulting surface energies are compared to EAM surface energy calculations for various low-index crystal faces with reasonable agreement.

  20. Determination of Atomic Data Pertinent to the Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  1. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  2. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  3. Atomic volume, atomic distances and chemical bonding in solid metallic elements; Atomvolumen, Atomabstaende und chemische Bindung in festen metallischen Elementen

    Energy Technology Data Exchange (ETDEWEB)

    Troemel, M.; Huebner, S. [Frankfurt Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-05-01

    Relationships between bond lengths and bond numbers and also between atomic volumes and valencies are derived and parameters for their calculation are given for the s-block, p-block, and d-block metals. From the atomic volumes under pressure, the valencies of three solid lanthanoids have been confirmed or redetermined: La 3; Ce 2, 3, and 4; Yb 2 and 3. (orig.)

  4. Books on Atomic Energy for Adults and Children

    Energy Technology Data Exchange (ETDEWEB)

    None

    1969-01-01

    This booklet contains two lists of atomic energy books, one for students and one for adults. The student list has grade annotations. The lists are not all-inclusive but comprise selected basic books on atomic energy and closely related subjects.

  5. Positronium-alkali atom scattering at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Ajoy [Laban Hrad Vidyapith, AD-369, Salt Lake City, Kolkata 700 064 (India); Basu, Arindam [Department of Physics, Maheshtala College, Chandannagar, South 24 Parganas, Kolkata 700 140 (India); Sarkar, Nirmal K [Sodepur Chandrachur Vidyapith, 1, Desh Bandhu Nagar, Sodepur, 743 174 (India); Sinha, Prabal K [Department of Physics, Bangabasi College, 19, Raj Kumar Chakravorty Sarani, Kolkata 700 009 (India)

    2004-04-28

    We investigate the scattering of orthopositronium (o-Ps) atom off different atomic alkali targets (Na to Cs) at low and medium energies (up to 120 eV). Projectile-elastic and target-elastic close-coupling models have been employed to investigate the systems in addition to the static-exchange model. Elastic, excitation and total cross sections have been reported for all four systems. The magnitude of the alkali excitation cross section increases with increasing atomic number of the target atom while the position of the peak value shifts towards lower incident energies. The magnitudes of the Ps excitation and ionization cross sections increase steadily with atomic number with no change in the peak position. The reported results show regular behaviour with increasing atomic number of the target atom. Scattering parameters for the Ps-Rb and Ps-Cs systems are being reported for the first time.

  6. Atomic level spatial variations of energy states along graphene edges.

    Science.gov (United States)

    Warner, Jamie H; Lin, Yung-Chang; He, Kuang; Koshino, Masanori; Suenaga, Kazu

    2014-11-12

    The local atomic bonding of carbon atoms around the edge of graphene is examined by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy loss spectroscopy (EELS). High-resolution 2D maps of the EELS combined with atomic resolution annular dark field STEM images enables correlations between the carbon K-edge EELS and the atomic structure. We show that energy states of graphene edges vary across individual atoms along the edge according to their specific C-C bonding, as well as perpendicular to the edge. Unique spectroscopic peaks from the EELS are assigned to specific C atoms, which enables unambiguous spectroscopic fingerprint identification for the atomic structure of graphene edges with unprecedented detail.

  7. Energy spectrum of fermionized bosonic atoms in optical lattices

    Institute of Scientific and Technical Information of China (English)

    Jiurong Han; Haichao Zhang; Yuzhu Wang

    2005-01-01

    We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap.Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.

  8. Presentation to the Atomic Energy Commission and the Air Force, June 14, 1962

    Energy Technology Data Exchange (ETDEWEB)

    none

    1962-10-01

    This volume contains the charts and backup material presented to the Atomic Energy Commission and Air Force on June 14, 1962 concerning General Electric's Nuclear Materials and Propulsion Operation (formerly the Aircraft Nuclear Propulsion Department), during its work on the development of a nuclear power plant for manned aircraft.

  9. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 1, SUPPLEMENT.

    Science.gov (United States)

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    AUTOINSTRUCTIONAL MATERIALS WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY OF THE SELF-TUTORING APPROACH IN EDUCATION. THE MATERIALS COVER SECTIONS ON (1) THE ATOM, (2) ATOMIC PARTICLES, (3) CATHODE RAYS, (4) MEASURING THE ELECTRON, (5) CHARGE AND MASS OF THE ELECTRON, AND (6) MASS OF ATOMS. RELATED REPORTS ARE ED 003 205 THROUGH ED 003 207, ED…

  10. Streaming current of a rotary atomizer for energy harvesting

    NARCIS (Netherlands)

    Nguyen, Trieu; de Boer, Hans L.; Tran, T.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    We present the experimental results of an energy conversion system based on a rotary atomizer and the streaming current phenomenon. The advantage of using a rotary atomizer instead of a channel or membrane micropore as in conventional pressure-driven approached is that the centrifugal force exerted

  11. Streaming current of a rotary atomizer for energy harvesting

    NARCIS (Netherlands)

    Nguyen, Trieu; Boer, de H.; Tran, T.; Berg, van den A.; Eijkel, J.C.T.; Zengerle, R.

    2013-01-01

    We present the experimental results of an energy conversion system based on a rotary atomizer and the streaming current phenomenon. The advantage of using a rotary atomizer instead of a channel or membrane micropore as in conventional pressure-driven approached is that the centrifugal force exerted

  12. Energy scaling of cold atom-atom-ion three-body recombination

    CERN Document Server

    Krükow, Artjom; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H

    2015-01-01

    We study three-body recombination of Ba$^+$ + Rb + Rb in the mK regime where a single $^{138}$Ba$^{+}$ ion in a Paul trap is immersed into a cloud of ultracold $^{87}$Rb atoms. We measure the energy dependence of the three-body rate coefficient $k_3$ and compare the results to the theoretical prediction, $k_3 \\propto E_{\\textrm{col}}^{-3/4}$ where $E_{\\textrm{col}}$ is the collision energy. We find agreement if we assume that the non-thermal ion energy distribution is determined by at least two different micro-motion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed into an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s-wave regime.

  13. Single-atom electron energy loss spectroscopy of light elements

    National Research Council Canada - National Science Library

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    ... scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons...

  14. Single-atom electron energy loss spectroscopy of light elements

    Science.gov (United States)

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  15. Single-atom electron energy loss spectroscopy of light elements.

    Science.gov (United States)

    Senga, Ryosuke; Suenaga, Kazu

    2015-07-31

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds.

  16. Determination of Surface Exciton Energies by Velocity Resolved Atomic Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Wayne P.; Joly, Alan G.; Beck, Kenneth M.; Sushko, Petr V.; Shluger, Alexander L.

    2004-08-20

    We have developed a new method for determining surface exciton band energies in alkali halides based on velocity-resolved atomic desorption (VRAD). Using this new method, we predict the surface exciton energies for K1, KBr, KC1, and NaC1 within +0.15 eV. Our data, combined with the available EELS data for alkali fluorides, demonstrate a universal linear correlation with the inverse inter-atomic distance in these materials. The results suggest that surface excitons exist in all alkali halides and their excitation energies can be predicted from the known bulk exciton energies and the obtained correlation plot.

  17. An informational approach about energy and temperature in atoms

    Science.gov (United States)

    Flores-Gallegos, N.

    2016-08-01

    In this letter, we introduce new definitions of energy and temperature based on the information theory model, and we show that our definition of informational energy is related to the kinetic energy of the Thomas-Fermi model, meanwhile the definition of informational temperature proposed, permit identify 'hot' and 'cold' zones of an atom, such zones are related to the changes in the local electron energy wherein the chemical and physical changes can occur; informational temperature also can reproduce the shell structure of an atom.

  18. CPT Magnetometer with Atomic Energy Level Modulation

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-Bin; DU Run-Chang; LIU Chao-Yang; GU Si-Hong

    2008-01-01

    We propose and experimentally investigate a coherent population trapping state based magnetometer prototype with87 Rb atoms.Through modulating Zeeman sublevels with an ac magnetic field,not only a phase sensitive detection scheme suitable for miniature magnetometer is realized,but also the detection resolution of magnetic field intensity could be improved by a factor of two.Our study result indicates that it is a promising low power consumption miniature sensitive low magnetic field sensor offering spatially resolved measurement at the sub-millimetre level.

  19. Two atoms scattering at low and cold energies

    Indian Academy of Sciences (India)

    Hasi Ray

    2014-12-01

    A modified static-exchange model is developed to study the collision of an atom with another atom. It includes the effect of long-range dipole–dipole van der Waals interaction between two atoms in addition to the exact effect of short-range force due to Coulomb exchange between two system electrons. Both these interactions dominate at colder energies. The system is treated as a four-centre problem in the centre-of-mass frame. The present ab-initio model is useful to study the two-atomic collisions at low energies, as well as cold energies. The new code is applied to study the scattering of positronium (Ps) by hydrogen (H), both in their ground states.

  20. Chameleon dark energy and atom interferometry

    Science.gov (United States)

    Elder, Benjamin; Khoury, Justin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-08-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a three-dimensional nonlinear partial differential equation. This paper calculates the chameleonic force using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the partial differential equation to a one-dimensional ordinary differential equation. We examine the effects of approximations made in previous efforts on this subject and calculate the chameleonic force in a setup that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its offset from the center, and the effects of the chamber walls. Remarkably, the acceleration on a test atomic particle is found to differ by only 20% from the approximate analytical treatment. These results allow us to place rigorous constraints on the parameter space of chameleon field theories, although ultimately the constraint we find is the same as the one we reported in Hamilton et al. because we had slightly underestimated the size of the vacuum chamber. This computational technique will continue to be useful as experiments become even more precise and will also be a valuable tool in optimizing future searches for chameleon fields and related theories.

  1. Chameleon Dark Energy and Atom Interferometry

    CERN Document Server

    Elder, Benjamin; Haslinger, Philipp; Jaffe, Matt; Müller, Holger; Hamilton, Paul

    2016-01-01

    Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the PDE to a 1-dimensional ordinary differential equation (ODE). We examine the effects of approximations made in previous efforts on this subject, and calculate the chameleonic force in a set-up that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its o...

  2. Positron impact ionization of atomic hydrogen at low energies

    Indian Academy of Sciences (India)

    K Chakrabarti

    2001-04-01

    Low energy positron impact ionization of atomic hydrogen is studies theoretically using the hyperspherical partial wave method of Das [1] in constant 12, equal energy sharing geometry. The TDCS reveal considerable differences in physics compared to electron impact ionization under the same geometry.

  3. An atomic clockwork using phase dependent energy shifts

    CERN Document Server

    De Munshi, D; Mukherjee, M

    2011-01-01

    A frequency stabilized laser referenced to an unperturbed atomic two level system acts as the most accurate clock with femtosecond clock ticks. For any meaningful use, a Femtosecond Laser Frequency Comb (FLFC) is used to transfer the atomic clock accuracy to electronically countable nanosecond clock ticks. Here we propose an alternative clockwork based on the phenomenon that when an atomic system is slowly evolved in a cyclic path, the atomic energy levels gather some phase called the geometric phase. This geometric phase dependent energy shift has been used here to couple the two frequency regimes in a phase coherent manner. It has also been shown that such a technique can be implemented experimentally, bypassing the highly involved setup of a FLFC.

  4. General engineering ethics and multiple stress of atomic energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Shibaura Inst. of Tech., Tokyo (Japan)

    1999-08-01

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  5. Evaluation of atomic constants for optical radiation, volume 1

    Science.gov (United States)

    Kylstra, C. D.; Schneider, R. J.

    1974-01-01

    Atomic constants for optical radiation are discussed which include transition probabilities, line strengths, and oscillator strengths for both dipole and quadrupole transitions, as well as the associated matrix elements needed for line broadening calculations. Atomic constants were computed for a wide selection of elements and lines. An existing computer program was used, with modifications to include, in an approximate manner, the effect of equivalent electrons, and to enable reordering and restructuring of the output for publication. This program is suitable for fast, low cost computation of the optical constants, using the Coulomb approximation formalism for LS coupling.

  6. Automatic generation of reaction energy databases from highly accurate atomization energy benchmark sets.

    Science.gov (United States)

    Margraf, Johannes T; Ranasinghe, Duminda S; Bartlett, Rodney J

    2017-03-31

    In this contribution, we discuss how reaction energy benchmark sets can automatically be created from arbitrary atomization energy databases. As an example, over 11 000 reaction energies derived from the W4-11 database, as well as some relevant subsets are reported. Importantly, there is only very modest computational overhead involved in computing >11 000 reaction energies compared to 140 atomization energies, since the rate-determining step for either benchmark is performing the same 140 quantum chemical calculations. The performance of commonly used electronic structure methods for the new database is analyzed. This allows investigating the relationship between the performances for atomization and reaction energy benchmarks based on an identical set of molecules. The atomization energy is found to be a weak predictor for the overall usefulness of a method. The performance of density functional approximations in light of the number of empirically optimized parameters used in their design is also discussed.

  7. Stacking fault energy in FCC plutonium with multiple reference states in the modified embedded atom method

    Science.gov (United States)

    Valone, S. M.; Baskes, M. I.; Rudin, S. P.

    2012-03-01

    Basic concepts from the multi-reference state formalism for determining the functions for the modified embedded atom method (MEAM) are adopted to modeling elemental plutonium (Pu). In the case of elemental Pu, the focus is on the background electron density. Here we utilize a portion of the formalism that determines the structure of the background density necessary to capture correct phase ordering between fcc and ideal hcp crystal structures. The critical information comes from cold curves, that is the energy/volume relationships, for these phases. Practically speaking, the energy difference between these two phases determines the stacking fault energy of the material. At the same time, the simple monoclinic phase of elemental Pu also becomes higher in energy at the equilibrium volume of the fcc phase. The new model is based on first-principles electronic structure calculations and captures the basic phase ordering of those calculations.

  8. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  9. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  10. Correlated energy transfer between two ultracold atomic species

    Science.gov (United States)

    Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter

    2015-05-01

    We study a single atom as an open quantum system, which is initially prepared in a coherent state of low energy and oscillates in a one-dimensional harmonic trap through an interacting ensemble of NA bosons, held in a displaced trap [arXiv:1410.8676]. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method, giving us access to all properties of the open system and its finite environment. In this talk, we focus on unraveling the interplay of energy exchange and correlations between the subsystems, which are coupled in such a spatio-temporally localized manner. We show that an inter-species interaction-induced level splitting accelerates the energy transfer between the atomic species for larger NA, which becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom. By analyzing correlations between intra-subsystem excitations, certain energy transfer channels are shown to be (dis-)favored depending on the instantaneous direction of transfer.

  11. Towards an accurate volume reconstruction in atom probe tomography.

    Science.gov (United States)

    Beinke, Daniel; Oberdorfer, Christian; Schmitz, Guido

    2016-06-01

    An alternative concept for the reconstruction of atom probe data is outlined. It is based on the calculation of realistic trajectories of the evaporated ions in a recursive refinement process. To this end, the electrostatic problem is solved on a Delaunay tessellation. To enable the trajectory calculation, the order of reconstruction is inverted with respect to previous reconstruction schemes: the last atom detected is reconstructed first. In this way, the emitter shape, which controls the trajectory, can be defined throughout the duration of the reconstruction. A proof of concept is presented for 3D model tips, containing spherical precipitates or embedded layers of strongly contrasting evaporation thresholds. While the traditional method following Bas et al. generates serious distortions in these cases, a reconstruction with the proposed electrostatically informed approach improves the geometry of layers and particles significantly.

  12. Non—conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    DongChuan-Hua

    2003-01-01

    The interactions between coulpled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes-Cummings model for coupled atoms, the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of field and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  13. Non-conservation of energy arising from atomic dipole interactions and its effects on light field and coupled atoms

    Institute of Scientific and Technical Information of China (English)

    董传华

    2003-01-01

    The interactions between coupled atoms and a single mode of a quantized electromagnetic field, which involve the terms originating from the dipole interactions, are discussed. In the usual Jaynes Cummings model for coupled atoms,the terms of non-conservation of energy originating from dipole interactions are neglected, however, we take them into consideration in this paper. The effects of these terms on the evolutions of quantum statistic properties and squeezing of the field, the squeezing of atomic dipole moments and atomic population inversion are investigated. It has been shown that the coupling between atoms modulates these evolutions of fields and atoms. The terms of non-conservation of energy affect these evolutions of fields and atoms slightly. They also have effects on the squeezing of the field, the squeezing of atomic dipole and atomic population inversions. The initial states of atoms also affect these properties.

  14. The Atomic Energy Commission's Annual Report to Congress for 1959. Major Activities in the Atomic Energy Programs, January - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1960-01-31

    The document represents the first annual reporting versus semiannual reporting of the Atomic Energy Commission (AEC) to Congress. The report consists of three parts: Part One, The Atomic Energy Industry in 1959 and Related Activities; Part Two, Major Activities in Atomic Energy Programs; and Part Three, Management of Radioactive Wastes. Nineteen appendices are also included.

  15. The Atomic Energy Commission's Annual Report to Congress for 1961. Major Activities in the Atomic Energy Programs, January - December 1961

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1962-01-31

    The document represents the 1961 Annual Report of the Atomic Energy Commission (AEC) to Congress. This year's report consists of four parts: Part One, The Atomic Energy Industry for 1961 and Related Activities; Part Two, Nuclear Power Programs for 1961; Part Three, Major Activities in Atomic Energy Programs; and Part Four, Regulatory Activities. Sixteen appendices are also included.

  16. Correlation Between Energy Transfer Rate and Atomization Energy of Some Trinitro Aromatic Explosive Molecules

    Institute of Scientific and Technical Information of China (English)

    Su-hong Ge; Xin-lu Cheng; Zheng-lai Liu; Xiang-dong Yang; Fang-fang Dong

    2008-01-01

    An assumptive theoretical relationship is suggested to describe the property of molecular atomization energy and energy transfer rate in the initiation of explosions. To investigate the relationship between atomization energy and energy transfer rate, the number of doorway modes of explosives is estimated by the theory of Dlott and Fayer in which the rate is proportional to the number of normal mode vibrations. It was evaluated frequencies of normal mode vibrations of eight molecules by means of density functional theory (DFT) at the b3p86/6-31G(d,p) level. It is found that the number of doorway modes shows a linear correlation to the atomization energies of the molecules, which were also calculated by means of the same method. A mechanism of this correlation is discussed. It is also noted that in those explosives with similar molecular structure and molecular weight, the correlation between the atomization energy and the number of doorway modes is higher.

  17. Corrections to the Nonrelativistic Ground Energy of a Helium Atom

    Institute of Scientific and Technical Information of China (English)

    段一士; 刘玉孝; 张丽杰

    2004-01-01

    Considering the nuclear motion, we present the nonrelativistic ground energy of a helium atom by using a simple effective variational wavefunction with a flexible parameter k. Based on the result, the relativistic and radiative corrections to the nonrelativistic Hamiltonian are discussed. The high precision value of the helium ground energy is evaluated to be -2.90338 a.u. With the relative error 0.00034%.

  18. Delegation from the Pakistan Atomic Energy Commission (PAEC)

    CERN Multimedia

    Patrice Loiez

    2002-01-01

    L. to r.: Dr Hafeez Hoorani (NCP) and Dr Michel Della Negra, Spokesman, CMS experiment with a delegation from the Pakistan Atomic Energy Commission: Mr Saeed Ahmed, Director SES, PAEC, Mr Muhammad Naeem, Director PWI and Mr Javed Iqleem, Deputy Chairman PAEC visiting the CMS magnet assembly hall at Point 5.

  19. A Bibliography of Basic Books on Atomic Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1974-01-01

    This booklet lists selected commercially published books for the general public on atomic energy and closely related subjects. Books for young readers have school grade annotations.This booklet contains an author index, a title index, and a list of publishers’ addresses.

  20. Estimation of correlation energy for excited-states of atoms

    CERN Document Server

    Hemanadhan, M

    2014-01-01

    The correlation energies of various atoms in their excited-states are estimated by modelling the Coulomb hole following the previous work by Chakravorty and Clementi. The parameter in the model is fixed by making the corresponding Coulomb hole to satisfy the exact constraint of charge neutrality.

  1. Scientists credit `Atoms for Peace' for progress on energy, security

    CERN Multimedia

    Jones, D

    2003-01-01

    "Fifty years after President Eisenhower unveiled his plan for developing peaceful uses for nuclear fission, the scientific advances spawned by his Atoms for Peace program have made possible major advances in energy and national security, a panel of physicists said last week" (1 page).

  2. Low energy neutral atom imaging: Remote observations of the magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Funsten, H.O.; McComas, D.J.; Scime, E.E.; Moore, K.R.

    1995-02-01

    Recent developments in detection of neutral atom imaging should enable imaging the global structure and dynamics of the terrestrial magnetosphere. The inherent technical challenge of imaging low energy neutral atoms (LENAs) with energy < 30 keV is their separation from the tremendous UV background, to which LENA detectors are sensitive, without loss of information of LENA trajectory and energy. Three instrument concepts for separating LENAs from the background UV are presented: LENA charge conversion via transmission through an ultrathin carbon foil and subsequent electrostatic deflection, EUV grating polarizers and attenuators, and high frequency shutters. Each of these concepts can be mated to a detector section that provides both LENA imaging capability and coincidence/time-of-flight.

  3. Optical meta-atom for localization of light with quantized energy

    CERN Document Server

    Lannebère, Sylvain

    2015-01-01

    The capacity to confine light into a small region of space is of paramount importance in many areas of modern science. Here, we suggest a mechanism to store a quantized "bit" of light - with a very precise amount of energy - in an open core-shell plasmonic structure ("meta-atom") with a nonlinear optical response. Notwithstanding the trapped light state is embedded in the radiation continuum, its lifetime is not limited by the radiation loss. Interestingly, it is shown that the interplay between the nonlinear response and volume plasmons enables breaking fundamental reciprocity restrictions, and coupling very efficiently an external light source to the meta-atom. The collision of an incident optical pulse with the meta-atom may be used to release the trapped radiation "bit".

  4. World Energy Data System (WENDS). Volume V. International organization data

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The World Energy Data System contains organized data on those countries and international organizations that may have critical impact on the world energy scene. WENDS has acquired and organized information on the following energy-related organizations: Asian Development Bank; European Economic Community; Inter-American Development Bank; International Atomic Energy Agency; International Energy Agency; Nuclear Energy Agency; United Nations; and World Bank. Within each organizational grouping most of the following topics are addressed: organization background, government background, energy background (energy policy and objectives), energy research and development activities, and international activities.

  5. Atomic Energy Levels with QED and Contribution of the Screened Self-Energy

    OpenAIRE

    Bigot, Eric-Olivier Le; Indelicato, Paul

    2000-01-01

    We present an introduction to the principles behind atomic energy level calculations with Quantum Electrodynamics (QED) and the two-time Green's function method; this method allows one to calculate an effective Hamiltonian that contains all QED effects and that can be used to predict QED Lamb shifts of degenerate, quasidegenerate and isolated atomic levels.

  6. The Energy Messenger, Number 1, Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, J. [ed.

    1995-01-01

    `The Energy Messenger` is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities.

  7. Renewable energy annual 1997. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report presents information on renewable energy consumption, capacity, and electricity generation data, as well as data on US solar thermal and photovoltaic collector manufacturing activities. The renewable energy resources included in the report are: biomass (wood, ethanol, and biodiesel); municipal solid waste; geothermal; wind; and solar (solar thermal and photovoltaic). The first chapter of the report provides an overview of renewable energy use and capability from 1992 through 1996. It contains renewable energy consumption, capacity, and electricity generation data, as well as descriptive text. Chapter 2 presents current (through 1996) information on the US solar energy industry. A glossary of renewable energy terms is also included. 15 figs., 42 tabs.

  8. Quickening nature's pulse: atomic agriculture at the International Atomic Energy Agency.

    Science.gov (United States)

    Hamblin, Jacob Darwin

    2015-01-01

    Mutation breeders in the 1960s seemed poised to use atomic energy to speed up mutation rates in plants in order to develop new crop varieties, for the benefit of all people. Although skepticism had slowed this work in the United States, the International Atomic Energy Agency (IAEA) nurtured the scientific field, its community of experts, and an imagined version of the future that put humans in control of their destiny. The IAEA acted as a center of dissemination and support for experts and ideas even when they had fallen from favor elsewhere. Through the lens of the IAEA, plant breeding bore the appearance of a socially progressive, ultra-modern science destined to alleviate population pressures. Administrators at the IAEA also were desperate for success stories, hoping to highlight mutation plant breeding as a potential solution to the world's ills. The community of mutation plant breeders gained a lifeline from the consistent clarion call from the Vienna-based agency to use atomic energy to understand the natural world and quicken its pulse with radioisotopes.

  9. Plasma screening effects on the energies of hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Soylu, A. [Department of Physics, Nigde University, 51240 Nigde (Turkey)

    2012-07-15

    A more general exponential cosine screened Coulomb potential is used for the first time to investigate the screening effects on the hydrogen atom in plasmas. This potential is examined for four different cases that correspond to four different type potentials when the different parameters are used in the potential within the framework of the well-known asymptotic iteration method. By solving the corresponding the radial Schroedinger equation with the screened and exponential cosine screened Coulomb potentials and comparing the obtained energy eigenvalues with the results of other studies, the applicability of the method to this kind of plasma physics problem is shown. The energy values of more general exponential cosine screened Coulomb potential are presented for various parameters in the potential. One of the advantages of the present potential is that it exhibits stronger screening effect than that of the exponential cosine screened Coulomb potential and it is also reduced to screened Coulomb and exponential cosine screened Coulomb as well as Coulomb potentials for special values of parameters. The parameters in the potential would be useful to model screening effects which cause an increase or decrease in the energy values of hydrogen atom in both Debye and quantum plasmas and in this manner this potential would be useful for the investigations of the atomic structure and collisions in plasmas.

  10. Annual review of energy. Volume 6

    Science.gov (United States)

    Hollander, J. M.; Simmons, M. K.; Wood, D. O.

    Developments in the areas of energy resources and supply technologies, energy end use and conservation, energy policy, energy-related risks and the sociopolitical aspects of energy are reviewed. Progress in solar energy technologies over the last five years is discussed, along with the implications for reactor safety of the accident at Three Mile Island, the derivation of biomass fuels from agricultural products and the application of probabilistic risk assessment to energy technologies. Attention is also given to a program for national survival during an oil crisis, energy conservation in new buildings, the development of a United States synthetic fuel industry, the role of OPEC policies in world oil availability, the social impacts of soft and hard energy systems, and the energy implications of fixed rail mass transportation systems. Additional topics include the energy consumptions of industries, the relative economics of nuclear, coal and oil-fired electricity generation, and the role of petroleum price and allocation regulations in the management of energy shortages.

  11. Natural atomic orbital based energy density analysis: Implementation and applications

    Science.gov (United States)

    Baba, Takeshi; Takeuchi, Mari; Nakai, Hiromi

    2006-06-01

    We present an improvement of energy density analysis (EDA), which partitions the total energy obtained by Hartree-Fock and/or density functional theory calculations, with the use of the natural atomic orbital (NAO) [A.E. Reed et al., J. Chem. Phys. 83 (1985) 735] and Löwdin's symmetric-orthogonal orbital (LSO). The present NAO- and LSO-EDA schemes are applied to analyses of CO 2 and Li9+ with various basis sets. Numerical results confirm that NAO-EDA exhibits less basis-set dependence, while the conventional results are very sensitive to the adopted basis sets.

  12. Effective Approximation of Molecular Volume Using Atom-Centered Dielectric Functions in Generalized Born Models.

    Science.gov (United States)

    Chen, Jianhan

    2010-09-14

    The generalized Born (GB) theory is a prime choice for implicit treatment of solvent that provides a favorable balance between efficiency and accuracy for reliable simulation of protein conformational equilibria. In GB, the dielectric boundary is a key physical property that needs to be properly described. While it is widely accepted that the molecular surface (MS) should provide the most physical description, most existing GB models are based on van der Waals (vdW)-like surfaces for computational simplicity and efficiency. A simple and effective approximation to molecular volume is explored here using atom-centered dielectric functions within the context of a generalized Born model with simple switching (GBSW). The new model, termed GBSW/MS2, is as efficient as the original vdW-like-surface-based GBSW model, but is able to reproduce the Born radii calculated from the "exact" Poisson-Boltzmann theory with a correlation of 0.95. More importantly, examination of the potentials of mean force of hydrogen-bonding and charge-charge interactions demonstrates that GBSW/MS2 correctly captures the first desolvation peaks, a key signature of true MS. Physical parameters including atomic input radii and peptide backbone torsion were subsequently optimized on the basis of solvation free energies of model compounds, potentials of mean force of their interactions, and conformational equilibria of a set of helical and β-hairpin model peptides. The resulting GBSW/MS2 protein force field reasonably recapitulates the structures and stabilities of these model peptides. Several remaining limitations and possible future developments are also discussed.

  13. Importance of Atomic Contacts in Vibrational Energy Flow in Proteins.

    Science.gov (United States)

    Kondoh, Masato; Mizuno, Misao; Mizutani, Yasuhisa

    2016-06-02

    Vibrational energy flow in proteins was studied by monitoring the time-resolved anti-Stokes ultraviolet resonance Raman scattering of three myoglobin mutants in which a Trp residue substitutes a different amino acid residue near heme. The anti-Stokes Raman intensities of the Trp residue in the three mutants increased with similar rates after depositing excess vibrational energy at heme, despite the difference in distance between heme and each substituted Trp residue along the main chain of the protein. This indicates that vibrational energy is not transferred through the main chain of the protein but rather through atomic contacts between heme and the Trp residue. Distinct differences were observed in the amplitude of the band intensity change between the Trp residues at different positions, and the amplitude of the band intensity change exhibits a correlation with the extent of exposure of the Trp residue to solvent water. This correlation indicates that atomic contacts between an amino acid residue and solvent water play an important role in vibrational energy flow in a protein.

  14. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  15. Features of Low Energy Classical Bremsstrahlung From Neutral Atoms.

    Science.gov (United States)

    Florescu, A.; Obolensky, O. I.; Pratt, R. H.

    2002-05-01

    We study classical bremsstrahlung from neutral atoms and investigate the features characteristic for the low incident energy region. These features include oscillations in the energy dependence of the bremsstrahlung cross section and structures in the asymmetry parameter of radiation. We use soft-photon limit results to elucidate the physical origins of the features. We show that there is a correspondence between classical and quantum results [1]. In both cases the features result from the suppression of contributions to the radiation from certain angular momenta at certain energies. In quantum mechanics this corresponds to zeroes in certain radiation matrix elements. In the classical case the lack of contribution from some interval of angular momentum is caused by behaviors of elastic electron scattering in screened potentials. [1] A. Florescu, O. I. Obolensky, C. D. Shaffer, and R. H. Pratt 2001 AIP Conference Proceedings 576, 60-64.

  16. USAF Advanced Terrestrial Energy Study. Volume 2. Technology Handbook.

    Science.gov (United States)

    1983-04-01

    volume of Stirling svstems hecause the regenerator determines the dimensions of the system envelone. Table 27. STIRLING SYSTEM VOLUME (CUBIC FEET...Rankine Cycles Batteries Gas Turbines Stirling Engines Thermal Energy Storage 20. ABSTRACT (Confilime 4n roere. olde If neo**WY 41011184100140 & Wee bi A...TECHNOLOGY DESCRIPTIONS 13 Diesels, 13 Gas Turbines. 31 Stirlings , 49 Organic Rankine Cycle; 67 Fuel Cells 83 Photovoltaic Energy Conversion System, 102 Wind

  17. Fifth Semiannual Report of the Commission to the Congress: Atomic Energy Development, 1947- 1948

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.; Bacher, Robert F.; Pike, Sumner T.; Strauss, Lewis L.

    1949-01-01

    The document represents the fifth semiannual report to Congress, covering specifically the various developments in atomic energy since the inception of the Atomic Energy Commission in 1946. This fifth report represents an expansion of effort in all phases of atomic energy development and is prepared against a background of world affairs.

  18. Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Zhou, S.J. [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Vailhe, C.; Mutasa, B.; Panova, J. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    1997-01-01

    We performed embedded atom method calculations on surface energies and unstable stacking fault energies for a series of intermetallics for which interatomic potentials of the embedded atom type have recently been developed. These results were analyzed and applied to the prediction of relative ductility of these materials using the various current theories. Series of alloys with the B2 ordered structure were studied, and the results were compared to those in pure body-centered cubic (bcc) Fe. Ordered compounds with L1{sub 2} and L1{sub 0} structures based on the face-centered cubic (fcc) lattice were also studied. It was found that there is a correlation between the values of the antiphase boundary (APB) energies in B2 alloys and their unstackable stacking fault energies. Materials with higher APB energies tend to have higher unstable stacking fault energies, leading to an increased tendency to brittle fracture. {copyright} {ital 1997 Materials Research Society.}

  19. Positron-Lithium Atom and Electron-Lithium Atom Scattering Systems at Intermediate and High Energies

    Institute of Scientific and Technical Information of China (English)

    K. Ratnavelu; S. Y. Ng

    2006-01-01

    @@ The coupled-channel optical method is used to study positron scattering by atomic lithium at energies ranging from the ionization threshold to 60 eV. The present method simultaneously treats the target channels and the positronium (Ps) channels in the coupled-channel method together with the continuum effects via an ab-initio optical potential. Ionization, elastic and inelastic cross sections in target channels, and the total cross section are also reported and compared with other theoretical and experimental data. A comparative study with the corresponding electron-lithium data is also reported.

  20. Many-body approximations for atomic binding energies

    CERN Document Server

    Schuster, Micah D; Staker, Joshua T

    2011-01-01

    We benchmark three approximations for the many-body problem -- the Hartree-Fock, projected Hartree-Fock, and random phase approximations -- against full numerical configuration-interaction calculations of the electronic structure of atoms, from Li through to Ne. Each method uses exactly the same input, i.e., the same single-particle basis and Coulomb matrix elements, so any differences are strictly due to the approximation itself. Although it consistently overestimates the ground state binding energy, the random phase approximation has the smallest overall errors; furthermore, we suggest it may be useful as a method for efficient optimization of single-particle basis functions.

  1. Empirically corrected HEAT method for calculating atomization energies

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Holmann V [Los Alamos National Laboratory

    2008-01-01

    We describe how to increase the accuracy ofthe most recent variants ofthe HEAT method for calculating atomization energies of molecules by means ofextremely simple empirical corrections that depend on stoichiometry and the number ofunpaired electrons in the molecule. Our corrections reduce the deviation from experiment for all the HEAT variants. In particular, our corrections reduce the average absolute deviation and the root-mean-square deviation ofthe 456-QP variant to 0.18 and 0.23 kJoule/mol (i.e., 0.04 and 0.05 kcallmol), respectively.

  2. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J. (comps.)

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  3. The role of correlation in the ground state energy of confined helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, N. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 México Distrito Federal (Mexico)

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  4. Proposal for the International Atomic Energy Agency Training Course

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1994-06-01

    The Hanford Site has hosted similar activities, including both Hanford Summits I and II. The Hanford Summits were two-day televised events to discuss the commitment of the current Presidential administration to the environmental restoration of the Hanford Site. Public involvement and strategic issues established from Hanford Summit I include: Regulatory issues, training and education, economic development and partnership, and technology transfer. Hanford Summit II provided a summary of how Secretary of Energy O`Leary is proceeding on the above strategic issues. The DOE and Westinghouse School for Environmental Excellence frequently offers a six-week course for environmental professionals and workers. Approximately thirty to forty individuals attend the training course, which provides training in environmental regulation compliance. The Hanford Site has hosted two previous International Atomic Energy Agency training courses. The courses lasted two weeks and had approximately eight to ten participants. Nuclear Material Management and Neutron Monitoring were the courses hosted by the Hanford Site.

  5. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    Science.gov (United States)

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration.

  6. Measuring industrial energy efficiency: Physical volume versus economic value

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  7. U.S. Radioecology Research Programs of the Atomic Energy Commission in the 1950s

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, D.E.

    2004-01-12

    This report contains two companion papers about radiological and environmental research that developed out of efforts of the Atomic Energy Commission in the late 1940s and the 1950s. Both papers were written for the Joint U.S.-Russian International Symposium entitled ''History of Atomic Energy Projects in the 1950s--Sociopolitical, Environmental, and Engineering Lessons Learned,'' which was hosted by the International Institute for Applied Systems Analysis in Laxemberg, Austria, in October 1999. Because the proceedings of this symposium were not published, these valuable historic reviews and their references are being documented as a single ORNL report. The first paper, ''U.S. Radioecology Research Programs Initiated in the 1950s,'' written by David Reichle and Stanley Auerbach, deals with the formation of the early radioecological research programs at the U.S. Atomic Energy Commission's nuclear production facilities at the Clinton Engineering Works in Oak Ridge, Tennessee; at the Hanford Plant in Richland, Washington; and at the Savannah River Plant in Georgia. These early radioecology programs were outgrowths of the environmental monitoring programs at each site and eventually developed into the world renowned National Laboratory environmental program sponsored by the Office of Biological and Environmental Research of the U.S. Department of Energy. The original version of the first paper was presented by David Reichle at the symposium. The second paper, ''U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s,'' summarizes all the environmental research programs supported by the U.S. Atomic Energy Commission in the 1950s and discusses their present-day legacies. This paper is a modified, expanded version of a paper that was published in September 1997 in a volume commemorating the 50th anniversary symposium of the U.S. Department of Energy's Office of

  8. The Atomic Energy Commission's Annual Report to Congress for 1960. Major Activities in the Atomic Energy Programs, January - December 1960

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1961-01-31

    The document covers activities for the period January - December 1960. The report consists of two parts: Part One, The Atomic Energy Industry in 1960 and Related Activities; and Part Two, Major Activities in Atomic Energy Programs. Twenty-one appendices are also included.

  9. How polarizabilities and C6 coefficients actually vary with atomic volume

    Science.gov (United States)

    Gould, Tim

    2016-08-01

    In this work, we investigate how atomic C6 coefficients and static dipole polarizabilities α scale with effective volume. We show, using confined atoms covering rows 1-5 of the periodic table, that C 6 / C6 R ≈ ( V / VR ) p Z and α / α R ≈ ( V / VR ) pZ ' (for volume V = ∫ d r /4 π 3 r 3 n ( r ) ), where C6 R , αR, and VR are the reference values and effective volume of the free atom. The scaling exponents pZ and pZ ' vary substantially as a function of element number Z = N, in contrast to the standard "rule of thumb" that pZ = 2 and pZ ' = 1 . Remarkably, we find that the polarizability and C6 exponents p' and p are related by p' ≈ p - 0.615 rather than the expected p' ≈ p/2. Results are largely independent of the form of the confining potential (harmonic, cubic, and quartic potentials are considered) and kernel approximation, justifying this analysis.

  10. How polarizabilities and $C_6$ coefficients actually vary with atomic volume

    CERN Document Server

    Gould, Tim

    2016-01-01

    In this work we investigate how atomic $C_6$ coefficients and static dipole polarizabilities $\\alpha$ scale with effective volume. We show, using confined atoms covering rows 1-5 of the periodic table, that $C_6/C_6^R\\approx (V/V^R)^{p_Z}$ and $\\alpha/\\alpha^R\\approx (V/V^R)^{p'_Z}$ (for volume $V=\\int dr \\frac{4\\pi}{3}r^3 n(r)$) where $C_6^R$, $\\alpha^R$ and $V^R$ are the reference values and effective volume of the free atom. The scaling exponents $p_Z$ and $p'_Z$ vary substantially as a function of element number $Z=N$, in contrast to the standard "rule of thumb" that $p_Z=2$ and $p'_Z=1$. Remarkably, We find that the polarizability and $C_6$ exponents $p'$ and $p$ are related by $p'\\approx p-0.615$ rather than the expected $p'\\approx p/2$. Results are largely independent of the form of the confining potential (harmonic, cubic and quartic potentials are considered) and kernel approximation, justifying this analysis.

  11. Isotope Effects in Low Energy Ion-Atom Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Havener, Charles C [ORNL; Seely, D. G. [Albion College; Thomas, J. D. [University of Toledo, Toledo, OH; Kvale, Thomas Jay [University of Toledo, Toledo, OH

    2009-01-01

    Isotope effects for charge transfer processes have recently received increased attention. The ion-atom merged-beams apparatus at Oak Ridge National Laboratory is used to measure charge transfer for low energy collisions of multi-charged ions with H and D and is therefore well suited to investigate isotope effects. The apparatus has been relocated and upgraded to accept high velocity beams from the 250 kV High Voltage Platform at the Multi-Charged Ion Research Facility. The intense higher velocity multi-charged ion beams allow, for the first time, measurements with both H and D from keV/u down to meV/u collision energies in the center-of-mass frame. When charge transfer occurs at relatively large inter-nuclear distances (via radial couplings) the ion-induced dipole attraction can lead to trajectory effects, causing differences in the charge transfer cross sections for H and D. A strong isotope effect (nearly a factor of two) has been observed in the cross section for Si4+ + H(D) below 0.1 eV/u. However, little or no difference is observed for N2+ + H(D). Recently, strong effects have been predicted for the fundamental system He2+ + H(D,T) at collision energies below 200 eV/u where charge transfer occurs primarily through united-atom rotational coupling. We are currently exploring systems where rotational coupling is important and isotopic differences in the cross section can be observed.

  12. Energy from the Atom. A Basic Teaching Unit on Energy. Revised.

    Science.gov (United States)

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 9-12 social studies and/or physical science classes, this 4-8 day unit focuses on four topics: (1) the background and history of atomic development; (2) two common types of nuclear reactors (boiling water and pressurized water reactors); (3) disposal of radioactive waste; and (4) the future of nuclear energy. Each topic…

  13. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  14. Atomic data for controlled fusion research. Volume IV. Spectroscopic data for iron

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, W.L. (ed.)

    1985-02-01

    Comprehensive spectroscopic data tables are presented for all ions of Fe. Tables of ionization potentials, wave lengths of spectral lines, atomic energy levels, and transition probabilities are given which were excerpted from general critical compilations. All utilized compilations are less than five years old and include data on electric dipole as well as magnetic dipole transitions.

  15. An atomic empire a technical history of the rise and fall of the British atomic energy programme

    CERN Document Server

    Hill, C N

    2013-01-01

    Britain was the first country to exploit atomic energy on a large scale, and at its peak in the mid-1960s, it had generated more electricity from nuclear power than the rest of the world combined.The civil atomic energy programme grew out of the military programme which produced plutonium for atomic weapons. In 1956, Calder Hall power station was opened by the Queen. The very next year, one of the early Windscale reactors caught fire and the world's first major nuclear accident occurred.The civil programme ran into further difficulty in the mid-1960s and as a consequence of procrastination in

  16. Chaotic Energy Hopping in Bidirectionally Kicked Rydberg Atoms

    Science.gov (United States)

    Burke, Korana; Mitchell, Kevin; Ye, Shuzhen; Dunning, F. Barry

    2012-06-01

    A highly excited (n 306) quasi one-dimensional Rydberg atom exposed to periodic alternating external electric field pulses exhibits chaotic behavior. Time evolution of this system is governed by a geometric structure of phase space called a homoclinic tangle and its turnstile. The turnstile is responsible for organizing chaotic ionization. We present and explain the results from an experiment designed to probe the structure of the phase space turnstile. We create time-independent Rydberg wave packets, subject them to alternating electric field kicks, and measure the ionization fraction. We present the behavior of the ionization fraction as a function of the applied kick strength and show that this behavior is directly connected to the size and shape of the underlying turnstile. For short kicking periods the ionization fraction as a function of the applied kick strength exhibits step-function-like behavior that changes into s-shape behavior for large kicking periods. Next we use the geometric structure of phase space to design a short pulse sequence that quickly and efficiently transfers electronic wave packet from a high energy state to a much lower energy state. Finally, we show how the phase space geometry influences the efficiency of the transport between energy states.

  17. Atomic Energy of Canada Limited annual report 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor.

  18. Atomic Energy of Canada Limited annual report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor.

  19. A simple local correlation energy functional for spherically confined atoms from ab initio correlation energy density.

    Science.gov (United States)

    Vyboishchikov, Sergei F

    2017-09-03

    We propose a simple method of calculating the electron correlation energy density e_c(r) and the correlation potential V_c(r) from second-order Møller-Plesset amplitudes and its generalization for the case of a Configuration Interaction wavefunction, based on Nesbet's theorem. The correlation energy density obtained by this method for free and spherically confined Be and He atoms was employed to fit a local analytical density functional based on Wigner's functional. The functional is capable to reproduce a strong increase of the correlation energy with decreasing the confined radius for the Be atom. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Coating synthesis on dielectric substrates assisted by pulsed beams of high-energy gas atoms

    Science.gov (United States)

    Grigoriev, S. N.; Melnik, Yu A.; Metel, A. S.

    2017-05-01

    Titanium nitride and aluminum nitride coatings have been deposited on glass and aluminum oxide substrates in a flow of metal atoms accompanied by high-energy gas atoms. The metal atoms are produced due to sputtering of a flat rectangular magnetron target. The gas atoms with energy up to 25 keV are produced due to charge exchange collisions of ions extracted from the magnetron discharge plasma and accelerated by high-voltage pulses applied to a flat grid parallel to the target. The metal atoms pass through the grid and deposit on the substrate. Conjunction of their trajectories with those of gas atoms bombarding the growing coating enables the coating synthesis on complex-shape dielectric products planetary rotating inside the vacuum chamber. Mixing high-energy gas atoms of the coating and substrate atoms substantially improves the coating adhesion.

  1. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    Science.gov (United States)

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.

  2. The impact of atomic precision measurements in high energy physics

    OpenAIRE

    Casalbuoni, Roberto

    2000-01-01

    In this talk I discuss the relevance of atomic physics in understanding some important questions about elementary particle physics. A particular attention is devoted to atomic parity violation measurements which seem to suggest new physics beyond the Standard Model. Atomic physics might also be relevant in discovering possible violations of the CPT symmetry.

  3. A study on the improvement of the legal system concerning Korean Atomic Energy Act

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Il Un; Jung, Jong Hak; Kim, Jae Ho; Moon, Jong Wook; Kim, In Sub [Chungnam National Univ., Taejon (Korea, Republic of)

    1998-03-15

    Cause-effect analysis, adjustment, and generalization of the current atomic energy act are contents of this research. These are to be based on the legal theory. Analysis of the current atomic energy act from the viewpoint of constitutional law and administrative law. Review of the other domestic legal systems which have similar problems as the atomic energy act has. Inquiry about the operation of nuclear legal systems of foreign nations.

  4. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  5. Atomic Energy Act and Related Legislation. Environmental Guidance Program Reference Book: Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This report presents information related to the Atomic Energy Act and related legislation. Sections are presented pertaining to legislative history and statutes, implementing regulations, and updates.

  6. Proceedings of the second US Department of Energy environmental control symposium. Volume 2. Nuclear energy, conservation, and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume II contains papers relating to: environmental control aspects of nuclear energy use and development; nuclear waste management; renewable energy sources; transportation and building conservation (fuel economy, gasohol, building standards, and industry); and geothermal energy, power transmission, and energy storage. (DMC)

  7. The Atomic Energy Commission's Annual Report to Congress for 1962. Major Activities in the Atomic Energy Programs, January - December 1962

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1963-01-31

    The document represents the 1962 Annual Report of the Atomic Energy Commission (AEC) to Congress. This year's report opens with a section of Highlights of the Atomic Energy Programs of 1962, followed by five parts: Part One, Commission Activities; Part Two, Nuclear Reactor Programs; Part Three, Production and Weapons Programs; Part Four, Other Major Programs; and Part Five, The Regulatory Program. Sixteen appendices are also included.

  8. Energy-efficient buildings program evaluations. Volume 2: Evaluation summaries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.D.; Mayi, D.; Edgemon, S.D.

    1997-04-01

    This document presents summaries of code and utility building program evaluations reviewed as the basis for the information presented in Energy-Efficient Buildings Program Evaluations, Volume 1: Findings and Recommendations, DOE/EE/OBT-11569, Vol. 1. The main purpose of this volume is to summarize information from prior evaluations of similar programs that may be useful background for designing and conducting an evaluation of the BSGP. Another purpose is to summarize an extensive set of relevant evaluations and provide a resource for program designers, mangers, and evaluators.

  9. Applications of Hubble Volume in Atomic Physics, Nuclear Physics, Particle Physics, Quantum Physics and Cosmic Physics

    Directory of Open Access Journals (Sweden)

    U. V. S. Seshavatharam

    2013-08-01

    Full Text Available In this paper an attempt is made to emphasize the major shortcomings of standard cosmology. It can be suggested that, the current cosmological changes can be understood by studying the atom and the atomic nucleus through ground based experiments. If light is coming from the atoms of the gigantic galaxy, then redshift can be interpreted as an index of the galactic atomic ‘light emission mechanism’. In no way it seems to be connected with ‘galaxy receding’. With ‘cosmological increasing (emitted photon energy’, observed cosmic redshift can be considered as a measure of the age difference between our galaxy and any observed galaxy. If it is possible to show that, (from the observer older galaxy’s distance increases with its ‘age’, then ‘galaxy receding’ and ‘accelerating universe’ concepts can be put for a revision at fundamental level. At any given cosmic time, the product of ‘critical density’ and ‘Hubble volume’ gives a characteristic cosmic mass and it can be called as the ‘Hubble mass’. Interesting thing is that, Schwarzschild radius of the ‘Hubble mass’ again matches with the ‘Hubble length’. Most of the cosmologists believe that this is merely a coincidence. At any given cosmic time,’Hubble length’ can be considered as the gravitational or electromagnetic interaction range. If one is willing to think in this direction, by increasing the number of applications of Hubble mass and Hubble volume in other areas of fundamental physics like quantum physics, nuclear physics, atomic physics and particle physics - slowly and gradually - in a progressive way, concepts of ‘Black hole Cosmology’ can be strengthened and can also be confirmed.

  10. Microplasticity of surfaces and small volumes: An investigation by atomic force microscopy

    Science.gov (United States)

    Kramer, Donald Eugene

    This study uses atomic force microscopy (AFM) to study the evolution of microplasticity at surfaces and small volumes. It is at these length scales that the assumptions of isotropic and homogenous material properties, two assumptions that underpin much of continuum mechanics, begin to break down. The study begins by examining the indentation of metallic single crystals. It has been suggested that nanoindentation provides a means by which energies associated with dislocation nucleation can be measured. AFM combined with indentation tests on tungsten and Fe 3%-Si single crystals at variable temperature and humidity demonstrates that asperities and oxide thickness play a significant role in the initial deformation process. A flaw based oxide fracture model is proposed that accounts for the asperity and oxide film thickness effects. Plastic zones around nano-contacts are then observed using AFM. This is done first for a range of bulk metals and is used to evaluate a simple model that allows determination of the yield strength from knowledge of the contact load and the extent of the plastic zone. The model is found to accurately predict the yield strength for a variety of metals. However, limits are placed on its applicability. The same technique is then applied to Al 2%-Si thin films on silicon and sapphire substrates. AFM is used to evaluate the evolution of the plastic zone around these contacts. It is demonstrated that the constraint between indenter and substrate controls the evolution of the plastic zone. Based on experimental plastic zone measurements, a first-order model for composite hardness is proposed that accounts for the increasing constraint on mean contact pressure. Finally, a bending fatigue system is developed with an eye toward investigating the fatigue response of thin films and the interaction between contact defects and cyclic loading. AFM is then used to measure slip upset in titanium subjected to large amplitude fully reversed bending fatigue

  11. Report on the atom what you should know about atomic energy

    CERN Document Server

    Dean, Gordon

    1954-01-01

    The American approach to the atom ; Uranium is where you find it ; the production line: ore to bombs ; the expanding programme ; the headaches ; the pay-off: weapons ; the military and the atoms ; power: the peaceful goals, first phase ; power: the peaceful goals, second goals ; radioisotopes: servants of man ; the quest for knowledge ; secrecy, security and spies ; the international atom ; behind the Iron Curtain ; the way ahead.

  12. AtomDB and PyAtomDB: Atomic Data and Modelling Tools for High Energy and Non-Maxwellian Plasmas

    Science.gov (United States)

    Foster, Adam; Smith, Randall K.; Brickhouse, Nancy S.; Cui, Xiaohong

    2016-04-01

    The release of AtomDB 3 included a large wealth of inner shell ionization and excitation data allowing accurate modeling of non-equilibrium plasmas. We describe the newly calculated data and compare it to published literature data. We apply the new models to existing supernova remnant data such as W49B and N132D. We further outline progress towards AtomDB 3.1, including a new energy-dependent charge exchange cross sections.We present newly developed models for the spectra of electron-electron bremsstrahlung and those due to non-Maxwellian electron distributions.Finally, we present our new atomic database access tools, released as PyAtomDB, allowing powerful use of the underlying fundamental atomic data as well as the spectral emissivities.

  13. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-07

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  14. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  15. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

    CERN Document Server

    Rupp, Matthias; Müller, Klaus-Robert; von Lilienfeld, O Anatole

    2011-01-01

    We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schr\\"odinger equation is mapped onto a non-linear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross-validation over more than seven thousand small organic molecules yields a mean absolute error of ~10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.

  16. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota [Department of Physics, Toho University, Miyama, Funabashi, Chiba 274-8510 (Japan); Kato, Daiji; Murakami, Izumi [National Institute for Fusion Science, Toki, Gifu 509-5292, Japan and Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Sakaue, Hiroyuki A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kenmotsu, Takahiro [Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394 (Japan); Furuya, Kenji [Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Motohashi, Kenji, E-mail: motohashi@toyo.jp [Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan and Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  17. SIMULATION OF THE ATOMIZED FLOW BY SLIT TYPE BUCKET ENERGY DISSIPATOR

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-he; DUAN Hong-dong

    2005-01-01

    Slit type bucket is one kind of flip bucket for energy dissipation generally used in the hydraulic project.In this paper the atomized flow produced behind this energy dissipator is analyzed, a numerical model for the aerated jet considering air entrainment and air resistance force is suggested, and simulation of the rain resulted by the atomized flow is also discussed.Furthermore, the prototype observation data for the atomized flow of Dongjiang Hydropower Station is used to verify the model suggested.

  18. Energy shift of H-atom electrons due to Gibbons-Hawking thermal bath

    CERN Document Server

    Pardy, Miroslav

    2016-01-01

    The electromagnetic shift of energy levels of H-atom electrons is determined by calculating an electron coupling to the Gibbons-Hawking electromagnetic field thermal bath. Energy shift of electrons in H-atom is determined in the framework of the non-relativistic quantum mechanics.

  19. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of

  20. Current and future industrial energy service characterizations. Volume II. Energy data on the US manufacturing subsector

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    In order to characterize industrial energy service, current energy demand, its end uses, and cost of typical energy applications and resultant services in the industrial sector were examined and a projection of state industrial energy demands and prices to 1990 was developed. Volume II presents in Section 2 data on the US manufacturing subsector energy demand, intensity, growth rates, and cost for 1971, 1974, and 1976. These energy data are disaggregated not only by fuel type but also by user classifications, including the 2-digit SIC industry groups, 3-digit subgroups, and 4-digit SIC individual industries. These data characterize typical energy applications and the resultant services in this subsector. The quantities of fuel and electric energy purchased by the US manufacturing subsector were converted to British thermal units and reported in billions of Btu. The conversion factors are presented in Table 4-1 of Volume I. To facilitate the descriptive analysis, all energy cost and intensity data were expressed in constant 1976 dollars. The specific US industrial energy service characteristics developed and used in the descriptive analysis are presented in Volume I. Section 3 presents the computer program used to produce the tabulated data.

  1. Commercial applications of solar total energy systems. Volume 4. Appendices. Final report. [Solar Total Energy System Evaluation Program (STESEP) code

    Energy Technology Data Exchange (ETDEWEB)

    Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

    1978-07-01

    A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. This volume contains the appendices. Topics include deterministic insolation model computer code; building energy usage data; computer simulation programs for building energy demand analysis; model buildings for STES evaluation; Solar Total Energy System Evaluation Program (STESEP) computer code; transient simulation of STES concept; solar data tape analysis; program listings and sample output for use with TRNSYS; transient simulation, and financial parameters sensitivities. (WHK)

  2. Energy levels of light atoms in strong magnetic fields

    CERN Document Server

    Thirumalai, Anand

    2014-01-01

    In this review article we provide an overview of the field of atomic structure of light atoms in strong magnetic fields. There is a very rich history of this field which dates back to the very birth of quantum mechanics. At various points in the past significant discoveries in science and technology have repeatedly served to rejuvenate interest in atomic structure in strong fields, broadly speaking, resulting in three eras in the development of this field; the historical, the classical and the modern eras. The motivations for studying atomic structure have also changed significantly as time progressed. The review presents a chronological summary of the major advances that occurred during these eras and discusses new insights and impetus gained. The review is concluded with a description of the latest findings and the future prospects for one of the most remarkably cutting-edge fields of research in science today.

  3. Atomic mean excitation energies for stopping powers from local plasma oscillator strengths

    Science.gov (United States)

    Wilson, J. W.; Xu, Y. J.; Chang, C. K.; Kamaratos, E.

    1984-01-01

    The stopping of a charged particle by isolated atoms is investigated theoretically using an 'atomic plasma' model in which atomic oscillator strengths are replaced by the plasma frequency spectrum. The plasma-frequency correction factor for individual electron motion proposed by Pines (1953) is incorporated, and atomic mean excitation energies are calculated for atoms through Sr. The results are compared in a graph with those obtained theoretically by Inokuti et al. (1978, 1981) and Dehmer et al. (1975) and with the experimental values compiled by Seltzer and Berger (1982): good agreement is shown.

  4. Observation of a power-law energy distribution in atom-ion hybrid system

    Science.gov (United States)

    Meir, Ziv; Akerman, Nitzan; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2016-05-01

    Understanding atom-ion collision dynamics is at the heart of the growing field of ultra-cold atom-ion physics. The naive picture of a hot ion sympathetically-cooled by a cold atomic bath doesn't hold due to the time dependent potentials generated by the ion Paul trap. The energy scale of the atom-ion system is determined by a combination of the atomic bath temperature, the ion's excess micromotion (EMM) and the back action of the atom-ion attraction on the ion's position in the trap. However, it is the position dependent ion's inherent micromotion which acts as an amplifier for the ion's energy during random consecutive collisions. Due to this reason, the ion's energy distribution deviates from Maxwell-Boltzmann (MB) characterized by an exponential tail to one with power-law tail described by Tsallis q-exponential function. Here we report on the observation of a strong deviation from MB to Tsallis energy distribution of a trapped ion. In our experiment, a ground-state cooled 88 Sr+ ion is immersed in an ultra-cold cloud of 87 Rb atoms. The energy scale is determined by either EMM or solely due to the back action on the ion position during a collision with an atom in the trap. Energy distributions are obtained using narrow optical clock spectroscopy.

  5. Energy Spectra of the Confined Atoms Obtained by Using B-Splines

    Institute of Scientific and Technical Information of China (English)

    SHI Ting-Yun; BAO Cheng-Guang; LI Bai-Wen

    2001-01-01

    We have calculated the energy spectra of one- and two-electron atoms (ions) centered in an impenetrable spherical box by variational method with B-splines as basis functions. Accurate results are obtained for both large and small radii of confinement. The critical box radius of confined hydrogen atom is also calculated to show the usefulness of our method. A partial energy degeneracy in confined hydrogen atom is found when the radius of spherical box is equal to the distance at which a node of single-node wavefunctions of free hydrogen atom is located.

  6. Theoretical study of atoms by the electronic kinetic energy density and stress tensor density

    CERN Document Server

    Nozaki, Hiroo; Tachibana, Akitomo

    2016-01-01

    We analyze the electronic structure of atoms in the first, second and third periods using the electronic kinetic energy density and stress tensor density, which are local quantities motivated by quantum field theoretic consideration, specifically the rigged quantum electrodynamics. We compute the zero surfaces of the electronic kinetic energy density, which we call the electronic interfaces, of the atoms. We find that their sizes exhibit clear periodicity and are comparable to the conventional atomic and ionic radii. We also compute the electronic stress tensor density and its divergence, tension density, of the atoms, and discuss how their electronic structures are characterized by them.

  7. Alternate Funding Sources for the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an “extraordinary bargain” by the United Nations Secretary-General’s High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain

  8. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    CERN Document Server

    Barklem, Paul S

    2016-01-01

    A theoretical method for the estimation of cross sections and rates for excitation and charge transfer processes in low-energy hydrogen atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen atom system, is presented. The calculation of potentials and non-adiabatic radial couplings using the method is demonstrated. The potentials are used together with the multi-channel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wavefunctions, which can be determined from known atomic parameters. The method is applied to Li+H, Na+H, and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20000 K.

  9. Mode-synthesizing atomic force microscopy for volume characterization of mixed metal nanoparticles.

    Science.gov (United States)

    Vitry, P; Bourillot, E; Tétard, L; Plassard, C; Lacroute, Y; Lesniewska, E

    2016-09-01

    Atomic force microscopy (AFM) and other techniques derived from AFM have revolutionized the understanding of materials and biology at the nanoscale, but mostly provide surface properties. The observation of subsurface nanoscale features and properties remains a great challenge in nanometrology. The operating principle of the mode-synthesizing AFM (MSAFM) is based on the interaction of two ultrasonic waves, one launched by the AFM probe fp , a second launched by the sample fs , and their resulting nonlinear frequency mixing. Recent developments highlighted the need for quantitative correlation between the role of the frequency actuation of the probe fp and the sample fs . Here we present the great potential of MSAFM for advanced volume characterization of metallic nanoparticles presenting a multilayered structure composed of a nickel core surrounded by a gold envelope.

  10. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene.

    Science.gov (United States)

    Zhang, H; Tang, D Y; Zhao, L M; Bao, Q L; Loh, K P

    2009-09-28

    We report on large energy pulse generation in an erbium-doped fiber laser passively mode-locked with atomic layer graphene. Stable mode locked pulses with single pulse energy up to 7.3 nJ and pulse width of 415 fs have been directly generated from the laser. Our results show that atomic layer graphene could be a promising saturable absorber for large energy mode locking.

  11. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  12. Influence of the critical Fe atomic volume on the magnetism of Fe-rich metallic glasses evidenced by pressure-dependent measurements

    Science.gov (United States)

    Kiss, L. F.; Kemény, T.; Bednarčík, J.; Gamcová, J.; Liermann, H.-P.

    2016-06-01

    Despite the intensive studies for decades, it is still not well understood how qualitatively different magnetic behaviors can occur in a narrow composition range for the Fe-rich Fe-transition metal (TM) amorphous alloys. In this study of amorphous F e100 -xZ rx (x =7 , 9, 12) metallic glasses, normal ferromagnetism (FM) is found at 12 % Zr where only the FM-paramagnetic (PM) transition is observed at the Curie temperature, TC. In contrast, spin-glass (SG)-PM transition at a temperature, Tg, called SG temperature, is only observed at 7 % Zr, while in the transient re-entrant composition range (x =8 -11 ) , an SG-FM transition at a temperature, Tf, called spin-freezing temperature, is also observed at low temperature besides the normal FM-PM transition at TC. In order to understand this unusual behavior, a detailed characterization of pressure (atomic volume), composition, and temperature dependence of the magnetic properties is coupled with high pressure synchrotron x-ray diffraction determination of the pressure dependence of the atomic volume. The results on F e100 -xZ rx (x =7 , 9, 12) are compared to those obtained for the FM C o91Z r9 metallic glass not showing any kind of anomalous magnetic properties. It is confirmed that the unusual behavior is caused by a granularlike magnetic structure where weakly coupled magnetic clusters are embedded into a FM bulk matrix. Since the mechanism of the magnetization reversal was found to be of the curling type rather than homogeneous rotation, the energy barrier determining the blocking temperature of the clusters is calculated as AR, where A is the exchange constant and R is the cluster size, in contrast to the usual characterization of the energy barrier by KV where K is the anisotropy energy and V is the cluster volume. The volume fraction of the FM part is a fast changing function of the bulk composition: Almost 100% FM fraction is found at 12 % of Zr while no trace of real FM is observed at 7 at % Zr. The driving

  13. Resonance interaction energy between two accelerated identical atoms in a coaccelerated frame and the Unruh effect

    CERN Document Server

    Zhou, Wenting; Rizzuto, Lucia

    2016-01-01

    We investigate the resonance interaction energy between two uniformly accelerated identical atoms, interacting with the scalar field or the electromagnetic field in the vacuum state, in the reference frame coaccelerating with the atoms. We assume that one atom is excited and the other in the ground state, and that they are prepared in their correlated symmetric or antisymmetric state. Using perturbation theory, we separate, at the second order in the atom-field coupling, the contributions of vacuum fluctuations and radiation reaction field to the energy shift of the interacting system. We show that only the radiation reaction term contributes to the resonance interaction between the two atoms, while Unruh thermal fluctuations, related to the vacuum fluctuations contribution, do not affect the resonance interatomic interaction. We also show that the resonance interaction between two uniformly accelerated atoms, recently investigated in the comoving (locally inertial) frame, can be recovered in the coaccelerate...

  14. A compact laser-driven plasma accelerator for megaelectronvolt-energy neutral atoms

    Science.gov (United States)

    Rajeev, R.; Madhu Trivikram, T.; Rishad, K. P. M.; Narayanan, V.; Krishnakumar, E.; Krishnamurthy, M.

    2013-03-01

    Tremendous strides have been made in charged-particle acceleration using intense, ultrashort laser pulses. Accelerating neutral atoms is an important complementary technology because such particles are unaffected by electric and magnetic fields and can thus penetrate deeper into a target than ions. However, compact laser-based accelerators for neutral atoms are limited at best to millielectronvolt energies. Here, we report the generation of megaelectronvolt-energy argon atoms from an optical-field-ionized dense nanocluster ensemble. Measurements reveal that nearly every laser-accelerated ion is converted to an energetic neutral atom as a result of highly efficient electron transfer from Rydberg excited clusters, within a sheath around the laser focus. This process, although optimal in nanoclusters, is generic and adaptable to most laser-produced plasmas. Such compact laser-driven energetic neutral atom sources could have applications in fast atom lithography for surface science and tokamak diagnostics in plasma technology.

  15. Low-energy Scattering of Positronium by Atoms

    Science.gov (United States)

    Ray, Hasi

    2007-01-01

    The survey reports theoretical studies involving positronium (Ps) - atom scattering. Investigations carried out in last few decades have been briefly reviewed in this article. A brief description of close-coupling approximation (CCA), the first-Born approximation (FBA) and the Born-Oppenheimer approximation (BOA) for Ps-Atom systems are made. The CCA codes of Ray et a1 [1-6] are reinvestigated using very fine mesh-points to search for resonances. The article advocates the need for an extended basis set & a systematic study using CCAs.

  16. (e, 3e) reactions at moderate energies visualization of average field effects in atom

    CERN Document Server

    Kuzakov, K A; Gusev, A A; Popov, Y V; Vinitsky, S I

    2002-01-01

    In the case of helium atom the theory is presented for quasi-elastic A (e, 3e) A sup + sup + and A (e, 3 -1e) A sup + sup + atomic reactions in the coplanar symmetric geometry at incident electron energy of several hundreds eV. The comparison with the recent (e, 3 - 1 e) experiment has allowed one to observe the effect of the mean atomic field as well as postcollisional effects.

  17. Eighteenth Semiannual Report of the Commission to the Congress. Major Activities in the Atomic Energy Programs, January - June 1955

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Lewis L.

    1955-07-30

    The document represents the eighteenth semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period January - June 1955.

  18. Fourteenth Semiannual Report of the Commission to the Congress. Major Activities in the Atomic Energy Programs, January - June 1953

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Gordon

    1953-07-31

    The document represents the fourteenth semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period January - June 1953.

  19. Twelfth Semiannual Report of the Commission to the Congress. Major Activities in the Atomic Energy Programs, January - June 1952

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Gordon

    1952-07-01

    The document represents the twelfth semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period January - June 1952.

  20. Fifteenth Semiannual Report of the Commission to the Congress. Major Activities in the Atomic Energy Programs, July - December 1953

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Gordon

    1954-01-31

    The document represents the fifteenth semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period July - December 1953.

  1. Energy availabilities for state and local development: 1975 data volume

    Energy Technology Data Exchange (ETDEWEB)

    Mills, J.B.; Rice, P.L.; Vogt, D.P.

    1980-01-01

    The supply, demand, and net imports of seven fuel types of four final consuming sectors for Bureau of Economic Analysis Areas (BEAs), states, census regions, and the nation in 1975 are presented. The data are formatted to present regional energy availability from primary extraction as well as from regional transformation processes. Extensive tables depict energy balances between availability and use for each specific fuel. In keeping with the Metric Conversion Act of 1975, this volume is reported in joules rather than in Btu's. The objective of this series is to provide a consistent base of historic and projected energy information within a standard format. Such a framework should aid regional policymakers in their consideration of regional-growth issues that may be influenced by the regional energy system. For analysis of specific regions, however, this basic data should be supplemented by additional information which only the local policy analyst can bring to bear in his assessment of the energy conditions that characterize his region.

  2. State energy price system. Volume I: overview and technical documentation

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.M.; Nieves, L.A.; Sherman, K.L.; Hood, L.J.

    1982-06-01

    This study utilizes existing data sources and previous analyses of state-level energy prices to develop consistent state-level energy prices series by fuel type and by end-use sector. The fuels are electricity, natural gas, coal, distillate fuel oil, motor gasoline, diesel, kerosene, jet fuel, residual fuel, and liquefied petroleum gas. The end-use sectors are residential, commercial, industrial, transportation, and electric utility. Based upon an evaluation of existing data sources, recommendations were formulated on the feasible approaches for developing a consistent state energy price series. The data series were compiled based upon the approaches approved after a formal EIA review. Detailed documentation was provided, including annual updating procedures. Recommendations were formulated for future improvements in the collection of data or in data processing. Generally, the geographical coverage includes the 50 states and the District of Columbia. Information on state-level energy use was generally taken from the State Energy Data System (SEDS). Corresponding average US prices are also developed using volumes reported in SEDS. To the extent possible, the prices developed are quantity weighted average retail prices. Both a Btu price series and a physical unit price series are developed for each fuel. The period covered by the data series is 1970 through 1980 for most fuels, though prices for electricity and natural gas extend back to 1960. (PSB)

  3. Current status of the AMS facility at the Tono Geoscience Center of the Japan Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Saito-Kokubu, Y., E-mail: kokubu.yoko@jaea.go.jp [Japan Atomic Energy Agency, Toki, Gifu 509-5102 (Japan); Nishizawa, A.; Suzuki, M.; Ohwaki, Y.; Nishio, T. [Pesco Corp., Ltd., Toki, Gifu 509-5123 (Japan); Matsubara, A.; Saito, T.; Ishimaru, T.; Umeda, K.; Hanaki, T. [Japan Atomic Energy Agency, Toki, Gifu 509-5102 (Japan)

    2013-01-15

    The JAEA-AMS-TONO system is routinely used for {sup 14}C measurements at Tono Geoscience Center, Japan Atomic Energy Agency (JAEA) and applied to neotectonics and hydrogeology, in support of research on geosphere stability applicable to the long-term isolation of high-level radioactive waste. {sup 10}Be AMS has been developed for geochronological studies to estimate sedimentation rates and exposure age of basement rocks, incorporating a gas ionization detector with a large-volume gas absorber cell. Test measurements on {sup 14}C and {sup 10}Be reference materials show the system's performance and suitability for application in the geosciences.

  4. Interactions of satellite-speed helium atoms with satellite surfaces. 2: energy distributions of reflected helium atoms. [7000 m/s

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.M.; Knuth, E.L.

    1976-04-01

    Energy transfer in collisions of satellite-speed (7,000 m/s) helium atoms with a cleaned 6061-T6 satellite-type aluminum surface was investigated by use of the molecular-beam technique. The amount of energy transferred was determined from the measured energy of the molecular-beam and the measured spatial and energy distributions of the reflected atoms. Spatial distributions of helium atoms scattered from a 6061-T6 aluminum surface were measured. The scattering pattern exhibits a prominent backscattering, probably due to the gross surface roughness and/or the relative lattice softness of the aluminum surface. Energy distributions of reflected helium atoms from the same surface were measured for six different incidence angles. For each incidence angle, distributions were measured at approximately sixty scattering positions. At a given scattering position, the energy spectra of the reflected helium atoms and the background gas were obtained by use of the retarding-field energy analyzer. (auth)

  5. Seventh Semiannual Report of the Commission to the Congress: Atomic Energy and the Physical Sciences, January 1950

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.

    1950-01-01

    The document represents the seventh semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up briefly the major activities and developments in the national atomic energy program in Part I. Part II focuses on research in the physical sciences and progress in atomic energy.

  6. Experimental evidence of the decrease of kinetic energy of hadrons in passing through atomic nuclei

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Hadrons with kinetic energies higher than the pion production threshold lose their kinetic energies monotonically in traversing atomic nuclei, due to the strong interactions in nuclear matter. This phenomenon is a crude analogy to the energy loss of charged particles in their passage through materials. Experimental evidence is presented.

  7. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization

    Energy Technology Data Exchange (ETDEWEB)

    Piskur, J.; Borg, L. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Stupnik, A.; Leisch, M. [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Ernst, W.E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Holst, B. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)], E-mail: bodil@cantab.net

    2008-05-15

    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  8. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization

    Science.gov (United States)

    Piskur, J.; Borg, L.; Stupnik, A.; Leisch, M.; Ernst, W. E.; Holst, B.

    2008-05-01

    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  9. Mr Parvez Butt, Chairman of the Atomic Energy Commission (PAEC), Pakistan

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Photo 01: Mr. Parvez Butt, Chairman Pakistan Atomic Energy Commission (standing 4th from left) with his delegation and ATLAS team standing in front of the Barrel Supports manufactured in HMC3 - Pakistan.

  10. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  11. Annual Report to Congress of the Atomic Energy Commission for 1964

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1965-01-29

    The document represents the 1964 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report is divided into 6 areas for 1964, plus 8 appendices and the index. Section names are: Part One, The Atomic Energy Program - 1964; Part Two, Production and Weapons Programs; Part Three, Nuclear Reactor Programs; Part Four, Other Major Activities; Part Five, Support-Type Activities; and Part Six, Regulatory Activities.

  12. Fourth Semiannual Report to the Congress by the United States Atomic Energy Commission, July 1948

    Energy Technology Data Exchange (ETDEWEB)

    Lilienthal, David E.; Bacher, Robert F.; Pike, Sumner T.; Strauss, Lewis L.; Waymack, William W.

    1948-07-01

    The document includes the letter of submittal and the Fourth semiannual report. These reports are called for pursuant to Section 17 of the Atomic Energy Act of 1946. This fourth report incorporates some changes to the report. In order to make these reports of maximum value to Members of Congress, the Commission has prepared this mid-year report as a specialized document giving a comprehensive account of several major phases of the atomic energy program.

  13. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  14. The industrial development of atomic energy; Le developpement industriel de l'energie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Kowarski, L. [Commissariat a l' Energie Atomique, Paris (France). Centre d' Etudes Nucleaires

    1955-07-01

    Countries with large stock of fissile material and producing large quantity of nuclear pure {sup 235}U and {sup 239}Pu are able to allocate part of the stock to non military research. For countries with low stock of fissile material, all the stock is allocated to military research. An economical and technical solution has to be find to dedicate a part of fissile material to non military research and develop the atomic energy industry. It stated the industrial and economical problems and in particular the choice between the use of enriched fuel with high refining cost or depleted fuel with low production cost. It discusses of four possible utilizations of the natural resources: reactors functioning with pure fissile material ({sup 235}U or {sup 239}Pu) or concentrated material ({sup 235}U mixed with small quantities of {sup 238}U after an incomplete isotopic separation), breeder reactors functioning with enriched material mixed with {sup 238}U or Thorium placed in an appropriate spatial distribution to allow neutrons beam to activate {sup 238}U or Thorium with the regeneration of fissile material in {sup 239}Pu, reactors using natural uranium or low enriched uranium can also produce Plutonium with less efficiency than breeder reactors and the last solution being the use of natural uranium with the only scope of energy production and no production of secondary fissile material. The first class using pure fissile material has a low energy efficiency and is used only by large fissile material stock countries to accumulate energy in small size fuel for nuclear engines researches for submarines and warships. The advantage of the second class of reactors, breeder reactors, is that they produce energy and plutonium. Two type of breeder reactor are considered: breeder reactor using pure fissile material and {sup 238}U or breeder reactor using the promising mixture of pure fissile material and Thorium. Different projects are in phase of development in United States, England

  15. ASEAN-USAID buildings energy conservation project. Volume 1, Energy standards: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.; Busch, J.F. [eds.][Lawrence Berkeley Lab., CA (United States); Deringer, J.J. [Deringer Group, Riva, MD (United States)

    1992-06-01

    Mandatory or voluntary energy-efficiency standards for new or existing buildings can play an important role in a national program aimed at promoting energy conservation. Building codes and standards can provide a degree of control over design and building practices throughout the construction process, and encourage awareness of energy-conscious design. Studies in developed countries indicate that efficiency standards can produce energy reductions on the order of 20 to 40% or more. Within ASEAN, analyses of the savings potential from the proposed standards suggest that if implemented, these standards would produce savings over current new design practice of 19% to 24%. In this volume we provide an overview of the ASEAN-USAID project aimed at promulgating standards for energy efficiency in commercial buildings. The process of developing and implementing energy-efficiency standards for buildings can be subdivided into two key components: policy development; and technical and economic analysis. Each of these involves a number of steps and processes, as outlined in Figure 1-1. This volume describes the technical and economic analyses used to develop the proposed energy efficiency standards for four countries (Malaysia, Thailand, the Philippines, and Indonesia), and to refine an energy standard existing in Singapore since 1979. Though oriented toward the ASEAN region, the analysis methods described here are applicable in a range of settings, provided appropriate modifications are made for local building construction, climatic, economic, and political conditions. Implementation issues are not specifically addressed here; rather this volume is oriented towards the analytical work needed to establish or revise an energy standard for buildings.

  16. Extended free-volume defects in chalcogenide glassy semiconductors induced by high-energy {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, Valentina [Lviv Institute of Materials of SRC (Ukraine); State University of Vital Activity Safety, Lviv 79007 (Ukraine); Filipecki, Jacek; Shpotyuk, Oleh [Institute of Physics, Jan Dlugosz University, Czestochowa (Poland)

    2009-08-15

    It was shown that under-coordinated topological defects induced by high-energy {gamma}-irradiation can be a reason for significant changes in positron annihilation lifetime spectra of multicomponent chalcogenide glassy semiconductors within ternary Ge-As(Sb)-S systems. In the case of negatively-charged sulphur and arsenic atoms, the excess of free volume is quite enough to produce additional input in the second defect-related channel of positron trapping, while under-coordinated germanium atoms are practically non-detectable with this technique because of low associated free volume. Despite radiation-induced densification, the average positron lifetime demonstrate both growing and decaying tendencies after {gamma}-irradiation depending on glass composition. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energy-dispersive X-ray spectroscopy.

    Science.gov (United States)

    Wenner, Sigurd; Jones, Lewys; Marioara, Calin D; Holmestad, Randi

    2017-05-01

    Scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray spectroscopy (EDS) is a common technique for chemical mapping in thin samples. Obtaining high-resolution elemental maps in the STEM is jointly dependent on stepping the sharply focused electron probe in a precise raster, on collecting a significant number of characteristic X-rays over time, and on avoiding damage to the sample. In this work, 80kV aberration-corrected STEM-EDS mapping was performed on ordered precipitates in aluminium alloys. Probe and sample instability problems are handled by acquiring series of annular dark-field (ADF) images and simultaneous EDS volumes, which are aligned and non-rigidly registered after acquisition. The summed EDS volumes yield elemental maps of Al, Mg, Si, and Cu, with sufficient resolution and signal-to-noise ratio to determine the elemental species of each atomic column in a periodic structure, and in some cases the species of single atomic columns. Within the uncertainty of the technique, S and β" phases were found to have pure elemental atomic columns with compositions Al2CuMg and Al2Mg5Si4, respectively. The Q' phase showed some variation in chemistry across a single precipitate, although the majority of unit cells had a composition Al6Mg6Si7.2Cu2.

  18. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies.

    Science.gov (United States)

    Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W; Castillo-Alvarado, F L

    2009-07-14

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic energy (T(c)) is computed using the density-functional theory virial relation. Based on our calculations, it is shown that the conventional approach where atomic energies are computed using only the noninteracting part of the kinetic energy might be in error by hundreds of kJ/mol.

  19. Annual review of energy and the environment. Volume 23

    Energy Technology Data Exchange (ETDEWEB)

    Socolow, R.H. [ed.] [Princeton Univ., NJ (United States); Anderson, D. [ed.] [Imperial College of Science, Technology, and Medicine, London (United Kingdom); Harte, J. [ed.] [Univ. of California, Berkeley, CA (United States)

    1998-12-31

    Thirteen papers are included in this volume. The titles and authors are: From Physics to Development Strategies by Jose Goldemberg; Rewards and Penalties of Monitoring the Earth by Charles D. Keeling; Science and Nonscience Concerning Human-Caused Climate Warming by J. D. Mahlman; Consumption of Materials in the United States, 1990--1995 by Grecia Matos and Lorie Wagner; Future Technologies for Energy-Efficient Iron and Steel Making by Jeroen de Beer, Ernst Worrell, and Kornelis Blok; The O{sub 2} Balance of the Atmosphere: A Tool for Studying the Fate of Fossil Fuel CO{sub 2} by Michael L. Bender, Mark Battle, and Ralph F. Keeling; Mexican Electric End-Use Efficiency: Experiences to Date by Rafael Friedmann and Claudia Sheinbaum; Drinking Water in Developing Countries by Ashok Gadgil; Engineering-Economic Studies of Energy Technologies to Reduce Greenhouse Gas Emissions: Opportunities and Challenges by Marilyn A. Brown, Mark D. Levine, Joseph P. Romm, Arthur H. Rosenfeld, and Jonathan G. Koomey; Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries by Jayant A. Sathaye and N. H. Ravindranath; Toward a Productive Divorce: Separating DOE Cleanups from Transition Assistance by M. Russell; Recycling Metals for the Environment by Iddo K. Wernick and Nickolas J. Themelis; and Environmentally Conscious Chemical Process Design by J. A. Cano-Ruiz and G. J. McRae.

  20. Energy study of railroad freight transportation. Volume 2. Industry description

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-01

    The United States railroad industry plays a key role in transporting materials to support our industrial economy. One of the oldest industries in the US, the railroads have developed over 150 years into their present physical and operational configuration. Energy conservation proposals to change industry facilities, equipment, or operating practices must be evaluated in terms of their cost impact. A current, comprehensive and accurate data baseline of railroad economic activity and energy consumption is presented. Descriptions of the history of railroad construction in the US and current equipment, facilities, and operation practices follow. Economic models that relate cost and energy of railroad service to the volume of railroad output and to physical and operational parameters are provided. The analyses and descriptions should provide not only an analytical baseline for evaluating the impact of proposed conservation measures, but they should also provide a measure of understanding of the system and its operations to analysts and policy makers who are involved in proposing, analyzing, and implementing such changes.

  1. Production of dimeson atoms in high-energy collisions

    Science.gov (United States)

    Afanasyev, L.; Gevorkyan, S.; Voskresenskaya, O.

    2017-04-01

    The production of two-meson electromagnetic bound states and free meson pairs π^+π^- , K^+K^- , π^+K^{∓} in relativistic collisions has been considered. It is shown that using of exact Coulomb wave functions for dimeson atom (DMA) allows one to calculate the yield of discrete states with the desired accuracy. The relative probabilities of production of DMA and meson pairs in the free state are estimated. The amplitude of DMA transition from 1 S to 2 P state, which is essential for the pionium Lamb shift measurements, has been obtained.

  2. Production of dimeson atoms in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Afanasyev, L.; Gevorkyan, S.; Voskresenskaya, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2017-04-15

    The production of two-meson electromagnetic bound states and free meson pairs π{sup +}π{sup -}, K{sup +}K{sup -}, π{sup +}K{sup -+} in relativistic collisions has been considered. It is shown that using of exact Coulomb wave functions for dimeson atom (DMA) allows one to calculate the yield of discrete states with the desired accuracy. The relative probabilities of production of DMA and meson pairs in the free state are estimated. The amplitude of DMA transition from 1S to 2P state, which is essential for the pionium Lamb shift measurements, has been obtained. (orig.)

  3. Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2

    Science.gov (United States)

    Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie

    1995-01-01

    The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.

  4. Scaled-energy spectroscopy of a |M|=1 Rydberg barium atom in an electric field

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Quan Wei; Shen Li; Yang Hai-Feng; Shi Ting-Yun; Liu Xiao-Jun; Liu Hong-Ping; Zhan Ming-Sheng

    2009-01-01

    We observe strong energy-dependent quantum defects in the scaled-energy Stark spectra for |M|=1 Rydberg states of barium atoms at three scaled energies: ε= -2.000, ε= -2.500 and ε=-3.000. In an attempt to explain the observations, theoretical calculations of closed orbit theory based on a model potential including core effect are performed for non-hydrogenic atoms. While such a potential has been uniformly successful for alkali atoms with a single valence electron, it fails to match experimental results for barium atoms in the 6snp Rydberg states with two valence electrons. Our study points out that this discrepancy is due to the strong perturbation from the 5d8p state, which voids the simple approximation for constant quantum defects of principle quantum number n.

  5. A Combination of the Work Formalism for Exchange with an Optimized Correlation Energy Functional for Atoms

    Science.gov (United States)

    Cordero, N. A.; Sen, K. D.; Alonso, J. A.; Balbás, L. C.

    1995-09-01

    The Harbola-Sahni formalism for the exchange potential of many-electron systems gives extremely accurate total energies for atoms (the energies are practically indistinguishable from the Hartree-Fock energies). We combine here this formalism with the usual density functional prescription for the correlation potential, using a recently developed optimized local correlation functional (Gritsenko O.V. et al., Phys. Rev. A 47 (1993) 1811). Numerical tests carried out for several closed shell atoms and ions indicate that the results preserve the accuracy of the exchange-only calculations. We expect the same behavior to hold true for large molecules and atomic clusters. However, similar tests for the He, Be and Ne isoelectronic series indicate that the optimized local correlation functional is not valid for highly ionized atoms.

  6. Matter, energy, and heat transfer in a classical ballistic atom pump.

    Science.gov (United States)

    Byrd, Tommy A; Das, Kunal K; Mitchell, Kevin A; Aubin, Seth; Delos, John B

    2014-11-01

    A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction connecting them containing a localized time-varying potential. Atoms move through the pump as independent particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other. While such systems are sometimes called "quantum pumps," they are also models of classical chaotic transport, and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we examine classically such a pump's effect on energy and temperature in the reservoirs, in addition to net particle transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each reservoir vary in unexpected ways as the incident particle energy is varied.

  7. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  8. "Pseudo-invariant Eigen-operator" Method for Deriving Energy-Gap of an Atom-Cavity Jaynes-Cummings Hamiltonian with Atomic Centre-of-Mass Motion

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; TANG Xu-Bing

    2006-01-01

    Using the "Pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supersymmetric structure is involved in the Hamiltonian of an atom-cavity system. By selecting suitable supersymmetric generators and using supersymmetric transformation the Hamiltonian is diagonalized and energy eigenvectors are obtained.

  9. Developing the World's Digital Collection on Peaceful Uses of Atomic Energy.

    Science.gov (United States)

    Levine, Emil

    1997-01-01

    Discusses the developers/development, maintainers, and users of the digital collection on peaceful uses of nuclear energy, produced by the International Nuclear Information System (INIS) of the International Atomic Energy Agency (IAEA). Sensitive to users in both developing and highly developed countries, this system provides closer linkage…

  10. 76 FR 56242 - Duke Energy Carolinas, LLC; Southern Nuclear Operating Company; Establishment of Atomic Safety...

    Science.gov (United States)

    2011-09-12

    ... Energy Carolinas, LLC; Southern Nuclear Operating Company; Establishment of Atomic Safety and Licensing...: Duke Energy Carolinas, LLC, (William States Lee III Nuclear Station, Units 1 and 2), Docket Nos. 52-018... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY...

  11. Using Density Functional Theory (DFT) for the Calculation of Atomization Energies

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The calculation of atomization energies using density functional theory (DFT), using the B3LYP hybrid functional, is reported. The sensitivity of the atomization energy to basis set is studied and compared with the coupled cluster singles and doubles approach with a perturbational estimate of the triples (CCSD(T)). Merging the B3LYP results with the G2(MP2) approach is also considered. It is found that replacing the geometry optimization and calculation of the zero-point energy by the analogous quantities computed using the B3LYP approach reduces the maximum error in the G2(MP2) approach. In addition to the 55 G2 atomization energies, some results for transition metal containing systems will also be presented.

  12. Is the Accuracy of Density Functional Theory for Atomization Energies and Densities in Bonding Regions Correlated?

    Science.gov (United States)

    Brorsen, Kurt R; Yang, Yang; Pak, Michael V; Hammes-Schiffer, Sharon

    2017-05-04

    The development of approximate exchange-correlation functionals is critical for modern density functional theory. A recent analysis of atomic systems suggested that some modern functionals are straying from the path toward the exact functional because electron densities are becoming less accurate while energies are becoming more accurate since the year 2000. To investigate this trend for more chemically relevant systems, the electron densities in the bonding regions and the atomization energies are analyzed for a series of diatomic molecules with 90 different functionals. For hybrid generalized gradient approximation functionals developed since the year 2000, the errors in densities and atomization energies are decoupled; the accuracy of the energies remains relatively consistent while the accuracy of the densities varies significantly. Such decoupling is not observed for generalized gradient and meta-generalized gradient approximation functionals. Analysis of electron densities in bonding regions is found to be important for the evaluation of functionals for chemical systems.

  13. Proceedings of the second US Department of Energy environmental control symposium. Volume 1. Fossil energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume I contains papers relating to coal preparation, oil shales, coal combustion, advanced coal utilization (fluidized bed combustion, MHD generators, OCGT, fuel cells), coal gasification, coal liquefaction, and fossil resource extraction (enhanced recovery). Separate abstracts for individual papers are prepared for inclusion in the Energy Data Base. (DMC)

  14. [National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  15. Nuclear Energy: It is Time to Revitalize the Peaceful Atom

    Science.gov (United States)

    2011-03-16

    levels of poisonous hydrogen sulfide . Base load electricity is required twenty four hours a day. Wind power is intermittent. The sun does not shine at...dependence on foreign oil by producing hydrogen for use in fuel cells and synthetic liquid fuels.57 Nuclear energy is bad for the environment. Nuclear

  16. LOW ENERGY BEAM-GAS SPECTROSCOPY OF HIGHLY IONISED ATOMS

    OpenAIRE

    Desesquelles, J.; DENIS A.; Druetta, M.; Martin, S.

    1989-01-01

    Features of low energy beam-gas spectroscopic source are reviewed and compared to those of other light sources. Measurement techniques are surveyed. They include the study of wavelength of heavy multiply charged ions in visible and u.v. ranges from normal excited states, doubly excited states, high n levels and doubly excited Rydberg levels.

  17. Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes

    CERN Document Server

    Hidetoshi, Yamaguchi

    2003-01-01

    The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

  18. The energy profiles of atomic conformational transition intermediates of adenylate kinase.

    Science.gov (United States)

    Feng, Yaping; Yang, Lei; Kloczkowski, Andrzej; Jernigan, Robert L

    2009-11-15

    The elastic network interpolation (ENI) (Kim et al., Biophys J 2002;83:1620-1630) is a computationally efficient and physically realistic method to generate conformational transition intermediates between two forms of a given protein. However it can be asked whether these calculated conformations provide good representatives for these intermediates. In this study, we use ENI to generate conformational transition intermediates between the open form and the closed form of adenylate kinase (AK). Based on C(alpha)-only intermediates, we construct atomic intermediates by grafting all the atoms of known AK structures onto the C(alpha) atoms and then perform CHARMM energy minimization to remove steric conflicts and optimize these intermediate structures. We compare the energy profiles for all intermediates from both the CHARMM force-field and from knowledge-based energy functions. We find that the CHARMM energies can successfully capture the two energy minima representing the open AK and closed AK forms, while the energies computed from the knowledge-based energy functions can detect the local energy minimum representing the closed AK form and show some general features of the transition pathway with a somewhat similar energy profile as the CHARMM energies. The combinatorial extension structural alignment (Shindyalov et al., 1998;11:739-747) and the k-means clustering algorithm are then used to show that known PDB structures closely resemble computed intermediates along the transition pathway.

  19. van der Waals energy under strong atom-field coupling in doped carbon nanotubes

    OpenAIRE

    Bondarev, Igor; Lambin, Philippe

    2004-01-01

    Using a unified macroscopic QED formalism, we derive an integral equation for the van der Waals energy of a two-level atomic system near a carbon nanotube. The equation is valid for both strong and weak atom-vacuum-field coupling. By solving it numerically, we demonstrate the inapplicability of weak-coupling-based van der Waals interaction models in a close vicinity of the nanotube surface.

  20. Atom-Scale Reaction Pathways and Free-Energy Landscapes in Oxygen Plasma Etching of Graphene.

    Science.gov (United States)

    Koizumi, Kenichi; Boero, Mauro; Shigeta, Yasuteru; Oshiyama, Atsushi

    2013-05-16

    We report first-principles molecular dynamics calculations combined with rare events sampling techniques that clarify atom-scale mechanisms of oxygen plasma etching of graphene. The obtained reaction pathways and associated free-energy landscapes show that the etching proceeds near vacancies via a two-step mechanism, formation of precursor lactone structures and the subsequent exclusive CO2 desorption. We find that atomic oxygen among the plasma components is most efficient for etching, providing a guidline in tuning the plasma conditions.

  1. van der Waals energy under strong atom field coupling in doped carbon nanotubes

    Science.gov (United States)

    Bondarev, I. V.; Lambin, Ph.

    2004-10-01

    Using a unified macroscopic QED formalism, we derive an integral equation for the van der Waals energy of a two-level atomic system near a carbon nanotube. The equation is valid for both strong and weak atom-vacuum-field coupling. By solving it numerically, we demonstrate the inapplicability of weak-coupling-based van der Waals interaction models in a close vicinity of the nanotube surface.

  2. Graphite furnace atomic absorption spectrophotometry--a novel method to quantify blood volume in experimental models of intracerebral hemorrhage.

    Science.gov (United States)

    Kashefiolasl, Sepide; Foerch, Christian; Pfeilschifter, Waltraud

    2013-02-15

    Intracerebral hemorrhage (ICH) accounts for 10% of all strokes and has a significantly higher mortality than cerebral ischemia. For decades, ICH has been neglected by experimental stroke researchers. Recently, however, clinical trials on acute blood pressure lowering or hyperacute supplementation of coagulation factors in ICH have spurred an interest to also design and improve translational animal models of spontaneous and anticoagulant-associated ICH. Hematoma volume is a substantial outcome parameter of most experimental ICH studies. We present graphite furnace atomic absorption spectrophotometric analysis (AAS) as a suitable method to precisely quantify hematoma volumes in rodent models of ICH. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Direct measurement of desorption and diffusion energies of O and N atoms physisorbed on amorphous surfaces

    CERN Document Server

    Minissale, Marco; Dulieu, François

    2016-01-01

    Physisorbed atoms on the surface of interstellar dust grains play a central role in solid state astrochemistry. Their surface reactivity is one source of the observed molecular complexity in space. In experimental astrophysics, the high reactivity of atoms also constitutes an obstacle to measuring two of the fundamental properties in surface physics, namely desorption and diffusion energies, and so far direct measurements are non-existent for O and N atoms. We investigated the diffusion and desorption processes of O and N atoms on cold surfaces in order to give boundary conditions to astrochemical models. Here we propose a new technique for directly measuring the N- and O-atom mass signals. Including the experimental results in a simple model allows us to almost directly derive the desorption and diffusion barriers of N atoms on amorphous solid water ice (ASW) and O atoms on ASW and oxidized graphite. We find a strong constraint on the values of desorption and thermal diffusion energy barriers. The measured b...

  4. Exploring the possibility of detecting dark energy in a terrestrial experiment using atom interferometry

    OpenAIRE

    Perl, Martin L.; Mueller, Holger

    2010-01-01

    The majority of astronomers and physicists accept the reality of dark energy but also believe it can only be studied indirectly through observation of the motions of galaxies. This paper opens the experimental question of whether it is possible to directly detect dark energy on earth using atom interferometry through a force hypothetically caused by a gradient in the dark energy density. Our proposed experimental design is outlined. The possibility of detecting other weak fields is briefly di...

  5. Two photon dissociation of benzene, phenylacetylene, and benzaldehyde at 243 nm: translational energy releases in the H atom channel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Keun; Kim, Hong Lae [Kangwon National Univ., Chuncheon (Korea, Republic of); Park, Chan Ryang [Kookmin Univ., Seoul (Korea, Republic of)

    2002-02-01

    Hydrogen atom production channels from photodissociation of benzene, phenylacetylene, and benzaldehyde at 243 nm have been investigated by detecting H atoms using two photon absorption at 243.2 nm and induced fluorescence at 121.6 nm. Translational energies of the H atoms were measured by Doppler broadened H atom spectra. By absorption of two photons at 243 nm, the H atoms are statistically produced from benzene and phenylacetylene whereas the H atoms from the aldehyde group in benzaldehyde are produced from different pathways. The possible dissociation mechanisms are discussed from the measured translational energy releases.

  6. German atomic energy law in the international framework. Proceedings. Deutsches Atomenergierecht im internationalen Rahmen. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, N. (Goettingen Univ. (Germany). Inst. fuer Voelkerrecht) (ed.)

    1992-01-01

    The regional conference was devoted to the legal problems that ensue from German reunification against the background of the integration of German atomic energy law within international law. The elements of national atomic energy legislation required by international law and recent developments in international nuclear liability law were discussed from different perspectives. The particular problems of the application of the German Atomic Energy Act in the 5 new Laender (the territories of the former GDR) were presented and discussed, namely: The continued validity of old licences issued by the GDR; practical legal problems connected with the construction of nuclear power plants in the 5 new Laender; the legal issues connected with the final repository for radioactive wastes at Morsleben; and the new developments in radiation protection law following from the Unification Treaty and the new ICRP recommendations. All 14 lectures have been abstracted and indexed individually. (orig.).

  7. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms.

    Science.gov (United States)

    Vyboishchikov, Sergei F

    2016-12-05

    We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be(2+) , and Ne atoms. The variation of the correlation energy with the confinement radius Rc is relatively small for the He, Be(2+) , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small Rc . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing Rc . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small Rc . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Calculation of the surface energy of fcc metals with modified embedded-atom method

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian-Min; Ma Fei; Xu Ke-Wei

    2004-01-01

    The surface energies for 38 surfaces of fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Rh and Ir have been calculated by using the modified embedded-atom method. The results show that, for Cu, Ag, Ni, Al, Pb and Ir, the average values of the surface energies are very close to the polycrystalline experimental data. For all fcc metals, as predicted, the close-packed (111) surface has the lowest surface energy. The surface energies for the other surfaces increase linearly with increasing angle between the surfaces (hkl) and (111). This can be used to estimate the relative values of the surface energy.

  9. Self-energy and interaction energy of stacking fault in fcc metals calculated by embedded-atom method

    Institute of Scientific and Technical Information of China (English)

    何刚; 戎咏华; 徐祖耀

    2000-01-01

    The stacking fault energies of five fcc metals (Cu, Ag, Au, Ni and Al) with various quan-tivalences have been calculated by embedded-atom method (EAM). It indicated that the stacking fault energy is mainly determined by the metallic bond-energy and the lattice constant. Thus, monovalent fcc metals should have different stacking fault energies, contrary to Attree’s conclusion. The interaction energy between stacking faults one I 111 I layer apart in a fcc metal is found to be 1/40-1/250 of its self-energy, while it becomes zero when the two stacking faults are two layers apart. The twin energy is just half of the energy of intrinsic stacking fault energy without the consideration of lattice relaxation and the energy of a single intrinsic stacking fault is almost the same as that of extrinsic stacking fault, which are consistent with the results from the calculation of Lennard-Jones force between atoms, but differ from Attree’s result.

  10. Inquiries about awareness and knowledge of children and pupils on the concept related with atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, Kozo; Kobayashi, T.; Matukawa, Tokuo; Honda, Makoto; Awata, Takaaki; Fukuoka, Noboru [Naruto University of Education, Naruto, Tokushima (Japan); Okada, Moritami [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, Masuo [Faculty of Education, Kagawa University, Takamatsu, Kagawa (Japan)

    2001-01-01

    There is almost no chance to learn about the words (atomic energy), (radioactivity) and (radiation) in the middle and/or high school educations in Japan, because physics is one of the options in the high school curriculum, and 80-90% of students do not like to choose physics. This inquires aim to know the level of their knowledge on energy resources, atomic energy, radioactivity, radiation, and information sources on their related knowledge. Inquiries are made for the middle and high school students in Tokushima and Tsuruga. There are coal power plants in Tokushima, while atomic power plants in Tsuruga. Fossils energy gets the highest points in Tokushima, while Atomic energy gets the highest points in Tsuruga for a present-day energy source. Solar energy sources get the highest point as a promising 21st century energy source in both prefectures, especially for female students. Radioactivity reminds them of words atomic bomb, disease, injury, and harmful, those give very negative images. Radiation reminds them of words roentgen, radiation therapy, x-ray, and hospital use, those designate a sort of plus-image. More than 50 to 60% of them obtained their knowledge from mass media, particularly, television. In addition, less than a few % of them can give any scientific description about these words. As a whole, authors can say that the students have got a certain concept for these words from information of mass media. Meanwhile the school education has approximately no effect on the formation of their concept. Authors are giving some advises and recommendations for the school education and mass media in Japan. (Y. Tanaka)

  11. [Constant scaled-energy spectroscopy of Rydberg atoms in a static electric field].

    Science.gov (United States)

    Cao, Jun-wen; Liu, Xiao-jun; Zhao, Zhi; Zhan, Ming-sheng

    2002-02-01

    In the past years, scaled energy spectroscopy is under active investigation because this method can simplify the analysis of atomic spectra in the external field based on classic mechanics. A fully computer-controlled experimental system to study the constant scaled-energy spectroscopy was established and described in this paper. The excitation energy E and the strength of the external electric field F were controlled synchronously to keep the scaled-energy epsilon = E/square root of F constant. With this system, constant scaled-energy spectra of Strontium Rydberg atoms at epsilon = -3.0 in a static electric field were successfully recorded for the first time, and the recurrence spectra were obtained by a Fourier transform.

  12. A New Nonrelativistic Atomic Energy Spectrum of Energy Dependent Potential for Heavy Quarkouniom in Noncommutative Spaces and Phases Symmetries

    OpenAIRE

    Abdelmadjid Maireche

    2016-01-01

    The main objective of this search work is to study a three dimensional space-phase modified Schrödinger equation with energy dependent potential plus three terms: , and is carried out. Together with the Boopp’s shift method and standard perturbation theory the new energy spectra shown to be dependent with new atomic quantum in the non-commutative three dimensional real spaces and phases symmetries (NC-3D: RSP) and we have also constructed the corresponding deformed noncommutative Hamiltonia...

  13. Wavefunction and energy of the 1s22sns configuration in a beryllium atom

    Institute of Scientific and Technical Information of China (English)

    Huang Shi-Zhong; Ma Kun; Yu Jia-Ming; Liu Fen

    2008-01-01

    A new set of trial functions for 1s22sns configurations in a beryllium atom is suggested.A Mathematica program baaed on the variational method is developed to calculate the wavefunctions and energies of 1s22sns (n=3-6)configurations in a beryllium atom.Non-relativistic energy,polarization correction and relativistic correction which include mass correction,one- and two-body Darwin corrections,spin-spin contact interaction and orbit-orbit interaction,are calculated respectively.The results are in good agreement with experimental data.

  14. Mr. Ansar Shamsi, Member Finance, Mr. Malik Adalat Khan, Director Finance, Pakistan Atomic Energy Commission

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    Photo 01: Mr Ansar Shamsi, Member Finance, Pakistan Atomic Energy Commission (centre), visiting the ATLAS Tile Calorimeter in building 191 with, from left to right, Mr Syed Shaukat Hussain, Pakistan Mission in Geneva and Dr Peter Jenni, ATLAS Spokesperson. Photo 02: Mr Ansar Shamsi, Member Finance, Pakistan Atomic Energy Commission (2nd form left), visiting the ATLAS Tile Calorimeter in building 191 with, from left to right, Mr Syed Shaukat Hussain, Pakistan Mission in Geneva; Dr Peter Jenni, ATLAS Spokesperson; Dr David Jacobs and Dr Philip Bryant, Joint Pakistan-CERN Committee.

  15. Annual Report to Congress of the Atomic Energy Commission for 1963

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1964-01-30

    The document represents the 1963 Annual Report of the Atomic Energy Commission (AEC) to Congress. Beginning with this year's report, an index is included as part of the document, rather than as a separate publication.The report is divided into 7 areas for 1963, plus 11 appendices and the index. Section names are: Part One, The Atomic Energy Program - 1963; Part Two, Production and Weapons Programs; Part Three, Nuclear Reactor Programs; Part Four, Public Safety; Part Five, Other Major Activities; Part Six, Support-Type Activities; and Part Seven, Regulatory Activities.

  16. Progression of Technology Education for Atomic Energy Engineering in Tsuyama National College of Technology

    Science.gov (United States)

    Kato, Manabu; Kobayashi, Toshiro; Okada, Tadashi; Sato, Makoto; Sasai, Yuji; Konishi, Daijiro; Harada, Kanji; Taniguchi, Hironari; Toya, Hideaki; Inada, Tomomi; Sori, Hitoshi; Yagi, Hideyuki

    This paper describes the achievements of a program in which technology education is provided to cultivate practical core engineers for low-level radiation. It was made possible by means of (1) an introductory education program starting at an early age and a continuous agenda throughout college days and (2) regional collaboration. First, with regard to the early-age introductory education program and the continuous education agenda, the subjects of study related to atomic energy or nuclear engineering were reorganized as “Subjects related to Atomic Power Education” for all grades in all departments. These subjects were included in the syllabus and the student guide book, emphasizing a continuous and consistent policy throughout seven-year college study, including the five-year system and additional two-year advanced course. Second, to promote practical education, the contents of lectures, experiments, and internships were enriched and realigned in collaboration with the Japan Atomic Energy Agency, Okayama University and The Cyugoku Electric Power Co., Inc. In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects were undertaken to enhance the educational and research activities. In consequence, it has been estimated that there is now a total of fourteen subject areas in atomic energy technology, more than eight-hundred registered students in the department, and thirteen members of the teaching staff related to atomic energy technology. Furthermore, the “Tsuyama model” is still being developed. This program was funded by the Ministry of Education, Culture, Sports, Science and Technology.

  17. International Atomic Energy Agency intercomparison of ion beam analysis software

    Science.gov (United States)

    Barradas, N. P.; Arstila, K.; Battistig, G.; Bianconi, M.; Dytlewski, N.; Jeynes, C.; Kótai, E.; Lulli, G.; Mayer, M.; Rauhala, E.; Szilágyi, E.; Thompson, M.

    2007-09-01

    Ion beam analysis (IBA) includes a group of techniques for the determination of elemental concentration depth profiles of thin film materials. Often the final results rely on simulations, fits and calculations, made by dedicated codes written for specific techniques. Here we evaluate numerical codes dedicated to the analysis of Rutherford backscattering spectrometry, non-Rutherford elastic backscattering spectrometry, elastic recoil detection analysis and non-resonant nuclear reaction analysis data. Several software packages have been presented and made available to the community. New codes regularly appear, and old codes continue to be used and occasionally updated and expanded. However, those codes have to date not been validated, or even compared to each other. Consequently, IBA practitioners use codes whose validity, correctness and accuracy have never been validated beyond the authors' efforts. In this work, we present the results of an IBA software intercomparison exercise, where seven different packages participated. These were DEPTH, GISA, DataFurnace (NDF), RBX, RUMP, SIMNRA (all analytical codes) and MCERD (a Monte Carlo code). In a first step, a series of simulations were defined, testing different capabilities of the codes, for fixed conditions. In a second step, a set of real experimental data were analysed. The main conclusion is that the codes perform well within the limits of their design, and that the largest differences in the results obtained are due to differences in the fundamental databases used (stopping power and scattering cross section). In particular, spectra can be calculated including Rutherford cross sections with screening, energy resolution convolutions including energy straggling, and pileup effects, with agreement between the codes available at the 0.1% level. This same agreement is also available for the non-RBS techniques. This agreement is not limited to calculation of spectra from particular structures with predetermined

  18. Atomic Data for Fusion. Volume 5: Collisions of Carbon and Oxygen Ions with Electrons, H, H2 and He

    Science.gov (United States)

    1987-02-01

    814 ( 1940 ). E.24 M. Lennon, R. W. McCullough, and H. B. Gilbody, J. Phys. B 16, 2191 (1983). 6-7 E.25 I. S. Dmitriev, V. S. Nikolaev, Y. A. Tashaev...Dept. of Physics, Tel-Aviv Univ., Tel-Aviv, Israel 383. Dr. I. N. Golovin , I. V. Kurchatov Inst., Atomic Energy, Ulitsa Kurchatova 46, Moscow 123182

  19. A simple nonbinary scattering model applicable to atomic collisions is crystals at 1ow energies

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik; Sigmund, Peter

    1966-01-01

    Presents the solution of a special scattering problem which may be important in the theory of slowing-down of atomic particles in crystals. A projectile moves along the centre axis of a regular ring of n equal atoms which are free and do not interact with each other. The interaction between...... the projectile and each ring atom is described by a Born-Mayer potential, and the scattering is assumed to be elastic and governed by the classical equations of motion. Because of symmetry, the problem can be reduced to plane motion of a particle in a potential of elliptic symmetry. The elliptic force field...... the asymptotic velocities of the ring atoms as well as the energy loss of the projectile. Furthermore, it can be decided whether the projectile is reflected by the ring. Both the feasibility of assumptions specifying the problem and the validity of different approximations made in the transformation from...

  20. Free energy for a damped cold atom in SU(2) non-Abelian gauge potentials

    Science.gov (United States)

    Guingarey, Issoufou; Avossevou, Gabriel Y. H.

    2017-03-01

    Our main aim in this work is to find out the exact formula of the equilibrium free energy for a cold atom subjected to a harmonic potential in the background of an artificial non-Abelian uniform magnetic field and linearly coupled to a heat bath. The heat bath consists of a collection of independent quantum harmonic oscillators, while its interaction with the cold atom is modeled in terms of bilinear coupling between the coordinate variables of the cold atom and the oscillators. The main thermodynamic properties of such a system are modified in comparison with the Abelian case. For a non-Abelian magnetic field generated from the laser methods employing degenerate dark states, we evaluate the effect of the non-Abelian dynamics on the magnetic moment of the cold atom.

  1. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.

    Science.gov (United States)

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M

    2016-09-21

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.

  2. World Energy Data System (WENDS). Volume VI. International agreement profiles

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The World Energy Data System contains organized data on those countries and international organizations that may have critical impact on world energy. The international agreement profiles in WENDS are all energy-related and are organized by energy technology. These are: coal; conservation; fusion; geothermal; nuclear fission; oil, gas, and shale; solar, wind, and ocean thermal; and other (cooperation in electrical power equipment acquisition, energy, energy research, etc.). The agreement profiles are accessible by energy technology and alphabetically by country.

  3. World Energy Data System (WENDS). Volume I. Country data, AF-CO

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The World Energy Data System contains organized data on those countries and international organizations that may have critical impact on the world energy scene. Volumes 1 through 4 include energy-related information concerning 57 countries. Additional volumes (5 through 11) present review information on international organizations, summaries of energy-related international agreements, and fact sheets on nuclear facilities. Country data on Afghanistan, Algeria, Argentina, Australia, Austria, Bangladesh, Belgium, Bolivia, Brazil, Burma, Canada, China, and Colombia are included in Volume 1. The following topics are covered for most of the countries: economic, demographic, and educational profiles; energy policy; indigenous energy resources and uses; forecasts, demand, exports, imports of energy supplies; environmental considerations; power production facilities; energy industries; commercial applications of energy; research and development activities of energy; and international activities.

  4. Annual Report to Congress of the Atomic Energy Commission for 1967

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-31

    The document represents the 1967 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Summary of Atomic Energy Programs in 1967 and includes 17 Chapters, 11 appendices and an index. Chapters are as follows: (1) Source and Special Nuclear Materials; (2) Safeguards and Materials Management; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power Units; (10) Isotopic Radiation Applications; (11) The Plowshare Program; (12) International Cooperation Activities; (13) Informational Activities; (14) Nuclear Education and Training; (15) Basic Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.

  5. Hydrogen atom wave function and eigen energy in the Rindler space

    CERN Document Server

    Dai, De-Chang

    2016-01-01

    We study the hydrogen atom eigenstate energy and wave function in the Rindler space. The probability distribution is tilted because the electric field of the nucleus is no longer spherically symmetric. The hydrogen atom therefore cannot be treated exactly in the same way as what it is in an inertial frame. We also find that if the external force accelerates only the nucleus and then the nucleus accelerates its surrounding electrons through electromagnetic force, the electrons can tunnel through the local energy gap and split the hydrogen atom into an ion. This is similar to what one expects from the Stark effect. However, the critical acceleration is about $3\\times 10^{22} m/s^2$. It is well beyond the gravitational acceleration on a regular star surface.

  6. Annual Report to Congress of the Atomic Energy Commission for 1968

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1969-01-31

    The document represents the 1968 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1968'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Nuclear Byproduct Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informational and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.

  7. Annual Report to Congress of the Atomic Energy Commission for 1970

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1971-01-29

    The document represents the 1970 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1970'' followed by 14 Chapters, 8 appendices and an index. Chapters are as follows: (1) The Industrial Base; (2) Environmental and Safety Aspects; (3) Licensing and Regulating the Atom; (4) Source, Special, and Byproduct Nuclear Materials; (5) National Defense Programs; (6) Reactor Development and Technology; (7) Space Nuclear Systems; (8) Isotopic Systems Development; (9) Peaceful Nuclear Explosives; (10) International Affairs and Cooperation; (11) Nuclear Educational Activities; (12) Biomedical and Physical Research; (13) Administrative and Management Matters; and, (14) License Reviews and Adjudicatory Proceedings.

  8. Annual Report to Congress of the Atomic Energy Commission for 1966

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1967-01-31

    The document represents the 1966 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Summary of Atomic Energy Programs in 1966 and includes 18 Chapters, 11 appendices and an index. Chapters are as follows: (1) Licensing and Regulating the Atom; (2) Reactor and Other Nuclear Facility Licensing; (3) The Regulation of Radioactive Materials; (4) Source and Special Nuclear Materials; (5) The Nuclear Defense Effort; (6) Naval Propulsion Reactors; (7) Reactor Development and Technology; (8) Space Nuclear Systems; (9) Isotopic Heat and Power Applications; (10) Isotopic Radiation Applications; (11) The Plowshare Program; (12) International Cooperation Activities; (13) Research Facilities and Projects; (14) Nuclear Education and Training; (15) Informational Activities; (16) Operational Safety; (17) Industrial Participation Aspects; and, (18) Administrative and Management Matters.

  9. Hydrogen atom wave function and eigen energy in the Rindler space

    Science.gov (United States)

    Dai, De-Chang

    2016-10-01

    We study the hydrogen atom eigenstate energy and wave function in the Rindler space. The probability distribution is tilted because the electric field of the nucleus is no longer spherically symmetric. The hydrogen atom therefore cannot be treated exactly in the same way as what it is in an inertial frame. We also find that if the external force accelerates only the nucleus and then the nucleus accelerates its surrounding electrons through electromagnetic force, the electrons can tunnel through the local energy gap and split the hydrogen atom into an ion. This is similar to what one expects from the Stark effect. However, the critical acceleration is about 3 ×1022 m /s2. It is well beyond the gravitational acceleration on a regular star surface.

  10. Probing the energy flow in Bessel light beams using atomic photoionization

    Science.gov (United States)

    Surzhykov, A.; Seipt, D.; Fritzsche, S.

    2016-09-01

    The growing interest in twisted light beams also requires a better understanding of their complex internal structure. Particular attention is currently being given to the energy circulation in these beams as usually described by the Poynting vector field. In the present study we propose to use the photoionization of alkali-metal atoms as a probe process to measure (and visualize) the energy flow in twisted light fields. Such measurements are possible since the angular distribution of photoelectrons, emitted from a small atomic target, appears sensitive to and is determined by the local direction of the Poynting vector. To illustrate the feasibility of the proposed method, detailed calculations were performed for the ionization of sodium atoms by nondiffractive Bessel beams.

  11. Annual Report to Congress of the Atomic Energy Commission for 1969

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1970-01-31

    The document represents the 1969 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1969'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Byproduct Nuclear Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Space Nuclear Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informational and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.

  12. Nuclear energy in the service of biomedicine: the U.S. Atomic Energy Commission's radioisotope program, 1946-1950.

    Science.gov (United States)

    Creager, Angela N H

    2006-01-01

    The widespread adoption of radioisotopes as tools in biomedical research and therapy became one of the major consequences of the "physicists' war" for postwar life science. Scientists in the Manhattan Project, as part of their efforts to advocate for civilian uses of atomic energy after the war, proposed using infrastructure from the wartime bomb project to develop a government-run radioisotope distribution program. After the Atomic Energy Bill was passed and before the Atomic Energy Commission (AEC) was formally established, the Manhattan Project began shipping isotopes from Oak Ridge. Scientists and physicians put these reactor-produced isotopes to many of the same uses that had been pioneered with cyclotron-generated radioisotopes in the 1930s and early 1940s. The majority of early AEC shipments were radioiodine and radiophosphorus, employed to evaluate thyroid function, diagnose medical disorders, and irradiate tumors. Both researchers and politicians lauded radioisotopes publicly for their potential in curing diseases, particularly cancer. However, isotopes proved less successful than anticipated in treating cancer and more successful in medical diagnostics. On the research side, reactor-generated radioisotopes equipped biologists with new tools to trace molecular transformations from metabolic pathways to ecosystems. The U.S. government's production and promotion of isotopes stimulated their consumption by scientists and physicians (both domestic and abroad), such that in the postwar period isotopes became routine elements of laboratory and clinical use. In the early postwar years, radioisotopes signified the government's commitment to harness the atom for peace, particularly through contributions to biology, medicine, and agriculture.

  13. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.

    Science.gov (United States)

    Harris, Frank E

    2016-05-28

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.

  14. Kinetic Energy Distribution of D(2p) Atoms From Analysis of the D Lyman-a Line Profile

    Science.gov (United States)

    Ciocca, Marco; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The absolute cross sections of the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coeffiecients are given for the energy dependence of the measured slow atom cross section.

  15. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  16. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  17. Energy conservation choices for the City of Portland, Oregon: energy information retrieval system. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Volume 2 sets forth and describes the developmental history as well as the technical accomplishment and design of the non-computerized information retrieval system realized under the aegis of the Portland Energy Conservation Demonstration Project (PECDP). An optical coincidence mechanism, a thesaurus, and an indexing procedure which combine to yield a method to selectively store and retrieve discriminate information in such a fashion whereby that information is readily available in a format acceptable to local government decision makers, the City's capital budgeting process, planning agency personnel, and citizens are described. PECDP's Energy Information Retrieval System was housed in existing library space of the Portland Bureau of Planning and since its establishment, there has been a 500% increase in library use among Planning staff. (MCW)

  18. An extension of the Eisberg-Resnick treatment for electron energies in many-electron atoms

    Science.gov (United States)

    Whitaker, M. A. B.; Bennett, I.

    1989-03-01

    Eisberg and Resnick present a simple argument for the energy of an electron in a multielectron atom using the concept of shielding from electrons in inner shells. The results of such a treatment are unfortunately confined so as to be out of range of experimental values. Here, the effect of electrons in outer shells is included, and, in the nonrelativistic region, energies are obtained for electrons in the first and second shells in reasonable agreement with experiment.

  19. The regularities of the Rydberg energy levels of many-valence electron atom Al

    Institute of Scientific and Technical Information of China (English)

    郑能武; 孙育杰

    2000-01-01

    Within the scheme of the weakest bound electron potential model theory, the concept of spectral-level-like series is presented by reasonably classifying the Rydberg energy level of atom Al. Based on this concept, the regularities of the Rydberg energy levels are systematically studied. The deviations of the calculated values from the experimental values are generally about several percent of 1 cm, which is of high accuracy.

  20. Effect of energy transfer from atomic electron shell to an α particle emitted by decaying nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Igashov, S. Yu., E-mail: igashov@theor.mephi.ru [All-Russian Research Institute of Automatics (Russian Federation); Tchuvil’sky, Yu. M. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2016-12-15

    The process of energy transfer from the electron shell of an atom to an α particle propagating through the shell is formulated mathematically. Using the decay of the {sup 226}Ra nucleus as an example, it is demonstrated that this phenomenon increases the α-decay intensity in contrast with other known effects of similar type. Moreover, the α decay of the nucleus is more strongly affected by the energy transfer than by all other effects taken together.

  1. Local group modes and the dynamics of intramolecular energy transfer across a heavy atom

    OpenAIRE

    Lopez, Vicente; Fairen, Victor; Lederman, Steven M.; Marcus, R.A

    1986-01-01

    The dynamics of energy transfer is discussed for a model system in which two ligands are separated by a heavy atom. Numerical and analytical results are given for the case that each ligand is a CC. In the quasiperiodic regime, the dynamics are interpreted using perturbation theory. Local group modes involved in an intramolecular energy localization which can occur in this regime are identified. An approximate separation of the primarily ligand–ligand motions from the primarily ligand–metal–li...

  2. Molecular markers predicting radiotherapy response: report and recommendations from an International Atomic Energy Agency technical meeting.

    NARCIS (Netherlands)

    West, C.M.; McKay, M.J.; Holscher, T.; Baumann, M.; Stratford, I.J.; Bristow, R.G.; Iwakawa, M.; Imai, T.; Zingde, S.M.; Anscher, M.S.; Bourhis, J.; Begg, A.C.; Haustermans, K.; Bentzen, S.M.; Hendry, J.H.

    2005-01-01

    PURPOSE: There is increasing interest in radiogenomics and the characterization of molecular profiles that predict normal tissue and tumor radioresponse. A meeting in Amsterdam was organized by the International Atomic Energy Agency to discuss this topic on an international basis. METHODS AND MATERI

  3. Electromagnetic separation of stable isotopes at the Institute of Atomic Energy, Academia Sinica

    Science.gov (United States)

    Ming-da, Hua; Gong-pan, Li; Shi-jun, Su; Nai-feng, Mao; Hung-yung, Lu

    1981-07-01

    For almost 20 years the Institute of Atomic Energy, Academia Sinica has been separating stable isotopes of the elements by electromagnetic separators and supplying these materials to research work in many fields of our country. In this article we shall attempt to outline the growth of the effort and describe the present situation.

  4. Entropy-Energy Inequality for a Qutrit on the Example of a Three-Level Atom

    Science.gov (United States)

    Man'ko, V. I.; Markovich, L. A.

    2017-03-01

    We consider the entropy-energy inequality for a three-level atom implemented on superconducting circuits with the Josephson junction. It is suggested to use the positivity of the relative entropy of the qutritquantum system for verification of tomography of quantum states of qudits. The relations obtained are considered in detail on the example of the temperature density matrix.

  5. Energy Levels in Helium and Neon Atoms by an Electron-Impact Method.

    Science.gov (United States)

    Taylor, N.; And Others

    1981-01-01

    Electronic energy levels in noble gas atoms may be determined with a simple teaching apparatus incorporating a resonance potentials tube in which the electron beam intensity is held constant. The resulting spectra are little inferior to those obtained by more elaborate electron-impact methods and complement optical emission spectra. (Author/SK)

  6. A New Method for the Atomic Ground-State Energy in the Screened Coulomb Potential

    Institute of Scientific and Technical Information of China (English)

    YU Peng-Peng; GUO Hua

    2001-01-01

    The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.``

  7. Saturation of Energy Levels in Analytical Atomic Fluorescence Spectrometry. II. Experimental.

    Science.gov (United States)

    1981-01-30

    RESEARCH Contract N14-76-C-0838 Task Ao. NR 051-622 TECHNICAL REPORT NO. 34 SATURATION OF ENERGY LEVELS IN ANALYTICAL ATOMIC FLUORESCENCE SPECTROMETRY II...an assumption which is valid only if the daral o’l of 111, cxcilIatio n pulse is mucl ) longer than the fluorescence life- time of the tjaii!,ition

  8. Temperature and relative density of atomic hydrogen in a multicusp H sup minus volume source

    Energy Technology Data Exchange (ETDEWEB)

    Bruneteau, A.M.; Hollos, G.; Bacal, M. (Laboratoire de Physique des Milieux Ionises, Laboratoire du Centre National de la Recherche Scientifique, Ecole Polytechnique, 91128 Palaiseau Cedex, (France)); Bretagne, J. (Laboratoire de Physique des Gaz et des Plasmas, LA73 du Centre National de la Recherche Scientifique, Universite de Paris-Sud, 91405 Orsay (France))

    1990-06-15

    The Balmer {beta} and {gamma} line shapes have been analyzed to determine the relative density and the temperature of hydrogen atoms in magnetic multicusp plasma generators. Results for a 90-V, 4--40-mTorr, 1--18-A conventional multicusp plasma generator and a 50-V, 4-mTorr, 1--15-A hybrid multicusp plasma generator are presented. The relative number density of hydrogen atoms increased smoothly with pressure and discharge current but never exceeded 10%. The absolute atomic number density in a 90-V 10-A discharge varied in proportion with pressure. The atomic temperature (in the 0.1--0.4-eV range) decreased with pressure and slowly increased with the discharge current. The role of atoms in the processes determining the H{sup {minus}} temperature and the H{sub 2} vibrational and rotational temperatures is discussed. The results confirm that in multicusp negative-ion sources collisional excitation of ground state atoms and molecules by energetic electrons is the dominant process in Balmer-{beta} and -{gamma} light emission.

  9. Atomic temperature and density in multicusp H sup minus volume sources

    Energy Technology Data Exchange (ETDEWEB)

    Bruneteau, A.M.; Hollos, G.; Leroy, R.; Berlemont, P.; Bacal, M. (Laboratoire du C.N.R.S., Ecole Polytechnique, 91128 Palaiseau Cedex (France)); Bertagne, J. (Laboratoire de Physique des Gaz et des Plasmas, LA73 du CNRS, Universite de Paris-Sud, 91405 Orsay (France))

    1990-08-05

    The Balmer {beta} and {gamma} line shapes have been analyzed to determine the relative density and the temperature of hydrogen atoms in magnetic multicusp plasma generators. Results for a 90 V, 4--40 mTorr, 1--18 A conventional multicusp plasma generator and a 50 V, 4 mTorr, 1--15 A hybrid multicusp plasma generator are presented. The relative number density of hydrogen atoms increases smoothly with pressure and discharge current but never exceeds 10%. The absolute atomic number density in a 90 V--10 A discharge varies in proportion with pressure. The atomic temperature (in the 0.1--0.4 eV range) decreases with pressure and slowly increases with the discharge current. The role of atoms in the processes determining the H{sup {minus}} temperature and the H{sub 2} vibrational and rotational temperatures is discussed. The results confirm that in multicusp negative ion sources collisional excitation of ground-state atoms and molecules by energetic electrons is the dominant process in Balmer {beta} and {gamma} light emission.

  10. The energy report. Transforming markets. 1998 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This year`s Energy Report reflects the main results of the work done to make the United Kingdom`s energy sector function as a proper market. It summarises main events in each energy sector and reports main developments in energy policy and related initiatives. Further chapters are headed: energy regulation; environmental and international issues; energy demand and energy efficiency; fuel poverty; gas supply; electricity; nuclear, new and renewable sources of energy; coal; oil and gas production; and downstream oil. Three papers by the Energy Advisory Panel are included. Appendices include tables relating to the energy industries including productivity, employment, trade, production, supply, demand, prices and energy-related atmospheric emissions. 217 refs., 7 apps.

  11. Implementing US Department of Energy lessons learned programs. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The DOE Lessons Learned Handbook is a two-volume publication developed to supplement the DOE Lessons Learned Standard (DOE-STD-7501-95) with information that will organizations in developing or improving their lessons learned programs. Volume 1 includes greater detail than the Standard in areas such as identification and documentation of lessons learned; it also contains sections on specific processes such as training and performance measurement. Volume 2 (this document) contains examples of program documents developed by existing lessons learned programs as well as communications material, functional categories, transmittal documents, sources of professional and industry lessons learned, and frequently asked questions about the Lessons Learned List Service.

  12. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2014-12-01

    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  13. REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS,INFCIRC/540 (Corrected) VOLUME I/III SETTING THE STAGE: 1991-1996.

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.D.; Saum-Manning, L.; Houck, F.; Anzelon, G.

    2010-01-01

    Events in Iraq at the beginning of the 1990s demonstrated that the safeguards system of the International Atomic Energy Agency (IAEA) needed to be improved. It had failed, after all, to detect Iraq's clandestine nuclear weapon program even though some of Iraq's's activities had been pursued at inspected facilities in buildings adjacent to ones being inspected by the IAEA. Although there were aspects of the implementation of safeguards where the IAEA needed to improve, the primary limitations were considered to be part of the safeguards system itself. That system was based on the Nuclear Nonproliferation Treaty of 1970, to which Iraq was a party, and implemented on the basis of a model NPT safeguards agreement, published by the IAEA 1972 as INFCIRC/153 (corrected). The agreement calls for states to accept and for the IAEA to apply safeguards to all nuclear material in the state. Iraq was a party to such an agreement, but it violated the agreement by concealing nuclear material and other nuclear activities from the IAEA. Although the IAEA was inspecting in Iraq, it was hindered by aspects of the agreement that essentially limited its access to points in declared facilities and provided the IAEA with little information about nuclear activities anywhere else in Iraq. As a result, a major review of the NPT safeguards system was initiated by its Director General and Member States with the objective of finding the best means to enable the IAEA to detect both diversions from declared stocks and any undeclared nuclear material or activities in the state. Significant improvements that could be made within existing legal authority were taken quickly, most importantly a change in 1992 in how and when and what design information would be reported to the IAEA. During 1991-1996, the IAEA pursued intensive study, legal and technical analysis, and field trials and held numerous consultations with Member States. The Board of Governors discussed the issue of

  14. Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders

    Indian Academy of Sciences (India)

    Vikram V Dabhade; Rama Mohan R Tallapragada; Mahendra Kumar Trivedi

    2009-10-01

    Next to atoms and molecules the powders are the smallest state of matter available in high purities and large quantities. The effect of any external energy on the shape, morphology and structure can thus be studied with relative ease. The present investigation deals with the effect of a non-contact external energy on the powders of antimony and bismuth. The characteristics of powders treated by external energy are compared with the as received powders (control). The average particle sizes, 50 and 99, the sizes below which 99% of the particles are present showed significant increase and decrease indicating that the energy had caused deformation and fracture as if the powders have been subjected to high energy milling. To be able to understand the reasons for these changes the powders are characterized by techniques such as X-ray diffraction (XRD), surface area determination (BET), thermal analytical techniques such as DTA–DTG, DSC–TGA and SDTA and scanning electron microscopy (SEM). The treated powder samples exhibited remarkable changes in the powder characteristics at all structural levels starting from polycrystalline particles, through single crystal to atoms. The external energy had changed the lattice parameters of the unit cell which in turn changed the crystallite size and density. The lattice parameters are then used to compute the weight and effective nuclear charge of the atom which showed significant variation. It is speculated that the external energy is acting on the nucleus through some reversible weak interaction of larger cross section causing changes in the proton to neutron ratios. Thus the effect is felt by all the atoms, and hence the unit cell, single crystal grain and grain boundaries. The stresses generated in turn may have caused deformation or fracture of the weak interfaces such as the crystallite and grain boundaries.

  15. DEVELOPMENT OF ATOM-ECONOMICAL CATALYTIC PATHWAYS FOR CONVERSIONS OF SYNGAS TO ENERGY LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    MAHAJAN,D.; WEGRZYN,J.E.; LEE,T.; GUREVICH,M.

    1999-03-01

    The subject of catalytic syngas conversions to fuels and chemicals is well studied (1--3). But globally, the recent focus is on development of technologies that offer an economical route to desired products (4). Economical transport of natural gas from remote locations and within clathrate hydrates is of continuing interest at Brookhaven National Laboratory (BNL). Under this project, a Liquid Phase Low Temperature (LPLT) concept is being applied to attain highly efficient transformations of natural-gas derived syngas to specific products. Furthermore, a more precise term ``Atom Economy'' has been recently introduced by Trost to describe development of highly efficient homogeneously catalyzed synthesis of organic molecules (5). Taken from reference 5, the term ``Atom Economy'' is defined as maximizing the number of atoms of all raw materials that end up in the product with any other reactant required on in catalytic amount. For application to methane transformations that may involve one or more steps, atom economy of each of these steps is critical. The authors, therefore, consider atom-economy synonymous with overall energy efficiency of a process. This paper describes potential liquid products from catalytic syngas conversions, i.e. gas to liquids (GTL) technologies and process considerations that are necessary for economical transport of natural gas. As such, the present study defines an atom-economical standard to directly compare competing GTL technologies.

  16. American Security and the International Energy Situation. Volume 1. Introduction and Summary

    Science.gov (United States)

    1975-04-15

    Financial Security 28 Timely Energy Supply Enhancement 31 Prospects for a Price Break M Concluding Remarks ’♦S II. World Energy Interdependence...Security Implications of Energy (July 197’» Workshop) Bibliography Iv HI-2239-RR VOLUME H: WORLD ENERGY INTERDEPENDENCE AND THE SECURITY OF SUPPLY...DEPENDABILITY, 1975-1985 Vl The Outlook for World Energy Interdependence. Supply, Demand, OPEC and Prices Energy Interdependence and the Vulnerability of

  17. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, A.; Daum, C. (eds.)

    2002-03-01

    Major advances in 'Energy and Materials Cycles' have been achieved in the removal of heavy metals from the solid residues of municipal waste incineration. It has been conclusively shown that the oxidation/reduction conditions established during the thermal treatment of filter ash have a decisive influence on the evaporation of groups of heavy metals. With respect to biomass gasification, studies have been carried out with respect to the best way of extracting pure hydrogen from the low calorific value gas that is typically obtained from a biomass gasifier. The overarching goal of the laboratory 'High Temperature Solar Technology' is the use of solar energy for the production of solar fuels, or for the reduction of CO{sub 2} emissions in large scale industrial processes that are conventionally carried out with the use of fossil fuels. In a short-term project targeted at the solar production of lime, highly encouraging results (98% degree of calcination, adjustable reactivity of the lime) have been obtained in a 10 kW prototype reactor. Hybrid processes, in which the calorific value of fossil fuels is upgraded by solar energy, represent the medium-term strategy. In this context, the successful operation of the SYNMET reactor, in which zinc oxide is reacted with methane to produce zinc and synthesis gas, represents an important milestone. The physical sciences group has come up with a novel scheme in which sulfides, rather than oxides, are used as starting materials. Copper sulfide Cu{sub 2}S has been identified as a promising raw material, from which metallic copper would be produced in a solar reduction step. For the use of a catalytic combustor upstream of the main burning chamber of the gas turbine, it is crucial to know the stream wise distance over the catalyst where homogeneous ignition is initiated. The combustion-group working at this concept has made great advances in matching the observed ignition distances with theory. In addition, the

  18. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  19. The role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas

    Science.gov (United States)

    Gibson, Andrew Robert; Foucher, Mickaël; Marinov, Daniil; Chabert, Pascal; Gans, Timo; Kushner, Mark J.; Booth, Jean-Paul

    2017-02-01

    Surface interaction probabilities are critical parameters that determine the behaviour of low pressure plasmas and so are crucial input parameters for plasma simulations that play a key role in determining their accuracy. However, these parameters are difficult to estimate without in situ measurements. In this work, the role of two prominent surface interaction probabilities, the atomic oxygen recombination coefficient γ O and the thermal energy accommodation coefficient α E in determining the plasma properties of low pressure inductively coupled oxygen plasmas are investigated using two-dimensional fluid-kinetic simulations. These plasmas are the type used for semiconductor processing. It was found that α E plays a crucial role in determining the neutral gas temperature and neutral gas density. Through this dependency, the value of α E also determines a range of other plasma properties such as the atomic oxygen density, the plasma potential, the electron temperature, and ion bombardment energy and neutral-to-ion flux ratio at the wafer holder. The main role of γ O is in determining the atomic oxygen density and flux to the wafer holder along with the neutral-to-ion flux ratio. It was found that the plasma properties are most sensitive to each coefficient when the value of the coefficient is small causing the losses of atomic oxygen and thermal energy to be surface interaction limited rather than transport limited.

  20. Physics and Its Multiple Roles in the International Atomic Energy Agency

    Science.gov (United States)

    Massey, Charles D.

    2017-01-01

    The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.

  1. Kinetic Energy and Angular Distributions of He and Ar Atoms Evaporating from Liquid Dodecane.

    Science.gov (United States)

    Patel, Enamul-Hasan; Williams, Mark A; Koehler, Sven P K

    2017-01-12

    We report both kinetic energy and angular distributions for He and Ar atoms evaporating from C12H26. All results were obtained by performing molecular dynamics simulations of liquid C12H26 with around 10-20 noble gas atoms dissolved in the liquid and by subsequently following the trajectories of the noble gas atoms after evaporation from the liquid. Whereas He evaporates with a kinetic energy distribution of (1.05 ± 0.03) × 2RT (corrected for the geometry used in experiments: (1.08 ± 0.03) × 2RT, experimentally obtained value: (1.14 ± 0.01) × 2RT), Ar displays a kinetic energy distribution that better matches a Maxwell-Boltzmann distribution at the temperature of the liquid ((0.99 ± 0.04) × 2RT). This behavior is also reflected in the angular distributions, which are close to a cosine distribution for Ar but slightly narrower, especially for faster atoms, in the case of He. This behavior of He is most likely due to the weak interaction potential between He and the liquid hydrocarbon.

  2. Quasiclassical approach to high-energy QED processes in strong laser and atomic fields

    CERN Document Server

    Di Piazza, A

    2012-01-01

    An approach, based on the use of the quasiclassical Green's function, is developed for investigating high-energy quantum electrodynamical processes in combined strong laser and atomic fields. Employing an operator technique, we derive the Green's function of the Dirac equation in an arbitrary plane wave and a localized potential. Then, we calculate the total cross section of high-energy electron-positron photoproduction in an atomic field of arbitrary charge number (Bethe-Heitler process) in the presence of a strong laser field. It is shown that the laser field substantially modifies the cross section at already available incoming photon energies and laser parameters. This makes it feasible to observe the analogous effect in a laser field of the Landau-Pomeranchuk-Migdal effect for the Bethe-Heitler process.

  3. Construction of the energy matrix for complex atoms. Part VI: Core polarization effects

    Science.gov (United States)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Dembczyński, Jerzy

    2016-12-01

    The continuation of series of papers concerning the construction of the energy matrix for complex atoms is presented. The second-order perturbation theory contributions originating from core polarization effects in the hyperfine structure are considered. Fifteen new formulae for angular coefficients of core polarization parameters are given. The complete set of corrections up to the second-order perturbation theory was taken into account and the accuracy of the wave functions in the intermediate coupling scheme, on the example of the lanthanum atom, was checked.

  4. Circular dichroism in free-free transitions of high energy electron-atom scattering

    CERN Document Server

    Cionga, Aurelia; Zloh, Gabriela; 10.1103/PhysRevA.62.063406

    2013-01-01

    We consider high energy electron scattering by hydrogen atoms in the presence of a laser field of moderate power and higher frequencies. If the field is a superposition of a linearly and a circularly polarized laser beam in a particular configuration, then we can show that circular dichroism in two photon transitions can be observed not only for the differential but also for the integrated cross sections, provided the laser-dressing of the atomic target is treated in second order perturbation theory and the coupling between hydrogenic bound and continuum states is involved.

  5. Proceedings of solar energy storage options. Volume I. An intensive workshop on thermal energy storage for solar heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Separate abstracts were prepared for the 28 papers presented. Panel chairmen's summaries are included; the complete panel reports will be published in Volume II of the Solar Energy Storage Options Workshop proceedings. (WHK)

  6. Paul Scherrer Institute Scientific Report 1998. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, C.; Leuenberger, J. [eds.

    1999-08-01

    In view of its mission to contribute towards the development of a globally more sustainable energy supply system, the General Energy Department is focusing on four topical areas: advancing technologies for the use of renewable energies; investigating options for chemical and electrochemical energy storage on various time scales; developing highly efficient converters for the low emission use of fossil and renewable fuels, including both combustion devices and fuel cells; analyzing the consequences of energy use, and advancing scenarios for the development of the energy supply system. Progress in 1998 in these topical areas is described in this report. A list of scientific publications in 1998 is also provided. (author) figs., tabs., refs.

  7. Energy-preserving finite volume element method for the improved Boussinesq equation

    Science.gov (United States)

    Wang, Quanxiang; Zhang, Zhiyue; Zhang, Xinhua; Zhu, Quanyong

    2014-08-01

    In this paper, we design an energy-preserving finite volume element scheme for solving the initial boundary problems of the improved Boussinesq equation. Theoretical analysis shows that the proposed numerical schemes can conserve the energy and mass. Numerical experiments are performed to illustrate the efficiency of the scheme and theoretical analysis. While the results demonstrate that the proposed finite volume element scheme is second-order accuracy in space and time. Moreover, the new scheme can conserve mass and energy.

  8. Investigation of energy thresholds of atomic and cluster sputtering of some elements under ion bombardment

    CERN Document Server

    Atabaev, B G; Lifanova, L F

    2002-01-01

    Threshold energies of sputtering of negative cluster ions from the Si(111) surface were measured at bombardment by Cs sup + , Rb sup + , and Na sup + ions with energy of 0.1-3.0 keV. These results are compared with the calculations of the similar thresholds by Bohdansky etc. formulas (3) for clusters Si sub n sup - and Cu sub n sup - with n=(1-5) and also for B, C, Al, Si, Fe, Cu atoms. Threshold energies of sputtering for the above elements were also estimated using the data from (5). Satisfactory agreement between the experimental and theoretical results was obtained. (author)

  9. Japan Returns to Atom. Current Status and Prospects of the Japanese Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Łukasz Tolak

    2015-12-01

    Full Text Available In a year and a half after the events of March 2011, Japan excluded all their nuclear reactors, returning to fossil fuels as a basis in the energy field. The shock associated with nuclear disaster seemed to indicate an ultimate end of Japanese adventure with the atom. The situation has, however, significantly changed during the last several months, and the first nuclear reactor connected again to the electric network, is a proof of the change of the energy policy. The article aims to identify the current state of knowledge on the future of nuclear energy in the Japanese energy sector and adjustments proposed in the future energy mix. At the same time, it is an attempt to analyze the reasons that led the current Government of Prime Minister Abe to take very unpopular decisions to return to nuclear energy.

  10. Trajectory-dependent energy loss for swift He atoms axially scattered off a silver surface

    Energy Technology Data Exchange (ETDEWEB)

    Ríos Rubiano, C.A. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina); Bocan, G.A. [Centro Atómico Bariloche, Comisión Nacional de Energía Ató mica, and Consejo Nacional de Investigaciones Científicas y Técnicas, S.C. de Bariloche, Río Negro (Argentina); Juaristi, J.I. [Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC) and Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 San Sebastián (Spain); Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina)

    2014-12-01

    Angle- and energy-loss-resolved distributions of helium atoms grazingly scattered from a Ag(110) surface along low indexed crystallographic directions are investigated considering impact energies in the few keV range. Final projectile distributions are evaluated within a semi-classical formalism that includes dissipative effects due to electron–hole excitations through a friction force. For mono-energetic beams impinging along the [11{sup ¯}0],[11{sup ¯}2] and [001] directions, the model predicts the presence of multiple peak structures in energy-loss spectra. Such structures provide detailed information about the trajectory-dependent energy loss. However, when the experimental dispersion of the incident beam is taken into account, these energy-loss peaks are completely washed out, giving rise to a smooth energy-loss distribution, in fairly good agreement with available experimental data.

  11. World Energy Data System (WENDS). Volume III. Country data, LY-PO

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The World Energy Data System contains organized data on those countries and international organizations that may have critical impact on the world energy scene. Included in this volume, Vol. III, are Libya, Luxembourg, Malaysia, Mexico, Netherlands, New Zealand, Niger, Nigeria, Norway, Pakistan, Peru, Philippines, Poland, and Portugal. The following topics are covered for most of the countries: economic, demographic, and educational profiles; energy policy; indigenous energy resources and uses; forecasts, demand, exports, imports of energy supplies; environmental considerations of energy supplies; power production facilities; energy industries; commercial applications of energy; research and development activities of energy; and international activities.

  12. World Energy Data System (WENDS). Volume II. Country data, CZ-KS

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The World Energy Data System contains organized data on those countries and international organizations that may have critical impact on the world energy scene. Included in this volume, Vol. II, are Czechoslovakia, Denmark, Egypt, Finland, France, Germany (East), Germany (West), Greece, Guinea, India, Indonesia, Iran, Italy, Japan, and Korea (South). The following topics are covered for most of the countries: economic, demographic, and educational profiles; energy policy; indigenous energy resources and uses; forecasts, demand, exports, imports of energy supplies; environmental considerations of energy use; power production facilities; energy industries; commercial applications of energy; research and development activities of energy; and international activities.

  13. World Energy Data System (WENDS). Volume IV. Country data, SG-YO

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The World Energy Data System contains organized data on those countries and international organizations that may have critical impact on the world energy scene. Included in this volume, Vol. IV, are Senegal, South Africa, Soviet Union, Spain, Sweden, Switzerland, Taiwan, Tanzania, Thailand, Turkey, United Kingdom, United States, Upper Volta, Venezuela, and Yugoslavia. The following topics are covered for most of the countries: economic, demographic, and educational profiles; energy policy; indigenous energy resources and uses; forecasts, demand, exports, imports of energy supplies; environmental considerations of energy supplies; power production facilities; energy industries; commercial applications of energy; research and development activities of energy; and international activities.

  14. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    Science.gov (United States)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  15. On Atoms-in-Molecules Energies from Kohn-Sham Calculations.

    Science.gov (United States)

    Tognetti, Vincent; Joubert, Laurent

    2017-10-06

    Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms-in-molecules theory and in the particular context of Kohn-Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed "standard" and "model", are based on Pendás' interacting-quantum-atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Visualizing the large-$Z$ scaling of the kinetic energy density of atoms

    CERN Document Server

    Cancio, Antonio C

    2016-01-01

    The scaling of neutral atoms to large $Z$, combining periodicity with a gradual trend to homogeneity, is a fundamental probe of density functional theory, one that has driven recent advances in understanding both the kinetic and exchange-correlation energies. Although research focus is normally upon the scaling of energies, insights can also be gained from energy densities. We visualize the scaling of the positive-definite kinetic energy density (KED) in closed-shell atoms, in comparison to invariant quantities based upon the gradient and Laplacian of the density. We notice a striking fit of the KED within the core of any atom to a gradient expansion using both the gradient and the Laplacian, appearing as an asymptotic limit around which the KED oscillates. The gradient expansion is qualitatively different from that derived from first principles for a slowly-varying electron gas and is correlated with a nonzero Pauli contribution to the KED near the nucleus. We propose and explore orbital-free meta-GGA models...

  17. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition.

    Science.gov (United States)

    Parrish, Robert M; Sherrill, C David

    2014-07-28

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  18. Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes

    CERN Document Server

    Pedersen, Ulf R; Schrøder, Thomas B; Dyre, Jeppe C

    2007-01-01

    Constant-pressure molecular-dynamics simulations of phospholipid membranes in the fluid phase reveal strong correlations between equilibrium fluctuations of volume and energy on the nanosecond time-scale. The existence of strong volume-energy correlations was previously deduced indirectly by Heimburg from experiments focusing on the phase transition between the fluid and the ordered gel phases. The correlations, which are reported here for three different membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two temperatures showing that the correlation coefficient increases as the phase transition is approached.

  19. LARGE VOLUME IONIZATION CHAMBER USED AS LABORATORY REFERENCE FOR LOW ENERGY X—RAY MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    杨国山; 薛永库; 等

    1994-01-01

    A large volume spherical ionization chamber of 195mm diameter and 0.36mg/cm2 wall thickness made from conducting carbon-fibre epoxy composite material has been developed.The mechanical intensity of the chamber is satisfactory for a good longterm volume stability.Owing to its large volume and thin wall,the chamber is sensitive to low energy photon beams and has excellent energy-response characteristics.This ionization chamber is suitable not only for a laboratory reference but also for measurement of low energy photon beam exposure rates at protection-level.

  20. Paul Scherrer Institut Scientific Report 2003. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2004-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  1. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2002-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2001 is also provided.

  2. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2001-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around (1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; (2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; (3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; (4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; (5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  3. Paul Scherrer Institut Scientific Report 2004. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2005-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  4. Paul Scherrer Institut Scientific Report 2002. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2003-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  5. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2001-07-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  6. Calculations of Self-diffusion Activation Energies for Alkaline Metals With Embedded Atom Method

    Institute of Scientific and Technical Information of China (English)

    欧阳义芳; 张邦维; 廖树帜

    1994-01-01

    Calculations were performed for the self-diffusion activation energies of monovacancy and both formation and binding energies of divacancies for alkaline metals Li, Na, K, Rb, Cs using the embedded atom method (EAM) model for bcc transition metals developed by the authors recently. The aim of the paper is to extend the application of the new model, to compare the calculated values for self-diffusion with the experimental data and those of previous calculations, and to discuss the intrinsic characteristic of self-diffusion in alkaline metals. The calculated monovacancy migration energies and activation energies are in excellent agreement with experimental data, and the calculated divacancy migration and activation energies are in good agreement with the experimental values available.

  7. Paul Scherrer Institute Scientific Report 1999. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2000-07-01

    Strengthening of international collaborations represented a strategic goal of the General Energy Research Department for 1999. For the Fifth Framework Program of the European Union, we participated in consortia and in the successful preparation of several proposals. National networks with partners from academia and Industry have been formed in two topical areas of central interest in the context of sustainability, i.e. 'Ecoefficient energy use and material cycles' and 'Sustainable transportation' on the other hand. Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to

  8. Atomic Energy Act (AtG) and subordinate legislation. Collections. 33. ed.; Atomgesetz mit Verordnungen. Textsammlung

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Eberhard (ed.)

    2014-07-01

    The 33rd edition of the present statute book contains the Site Selection Law (StandAG) of 25 July 2013, which specifies the procedure for selecting sites for final disposal of high-level radioactive wastes, and the Law on the Establishment of a Federal Office for Disposal of Radioactive Wastes, promulgated as Art. 3 of the Site Selection Law. Some regulations of the StandAG already took effect on 27 July 2013, while others are to be enacted on 1 January 2014 along with amendments to the Atomic Energy Law, the Schedule of Costs to the Atomic Energy Law and the Law on Environmental Impact Assessments that result from the StandAG. The new edition also includes legislative amendments that were passed after the publication of the previous edition, namely those to the Food Irradiation Ordinance, the Law on the Establishment of the Federal Radiation Protection Office and to relevant regulations of the Criminal Code.

  9. Annual Report to Congress of the Atomic Energy Commission for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, James R.

    1971-01-31

    The document represents the 1971 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1971'' followed by 3 Parts, each with various chapters, plus a final index. Parts and Chapters are as follows. Part One, Regulatory Activities, has Chapters (1) Licensing and Regulation; (2) Reactor Licensing; and (3) Materials Control. Part Two, Environmental Safety, has Chapters (4) Environmental Considerations; (5) Radioactive Wastes; and (6), Operational Safety. Part Three, Operating and Developmental Functions, has Chapters (7) National Defense; (8) Reactor Technology; (9) Nuclear Materials; (10) Applications Research; (11) Basic Research; (12) International Affairs; and, (13) Educational and Administrative.

  10. Electronic torsional sound in linear atomic chains: chemical energy transport at 1000 km/s

    CERN Document Server

    Kurnosov, Arkady A; Maksymov, Andrii A; Burin, Alexander L

    2016-01-01

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so they can participate only in transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Molecular systems for experimental evaluation of the predictions are proposed.

  11. Secondary electron emission from Au by medium energy atomic and molecular ions

    CERN Document Server

    Itoh, A; Obata, F; Hamamoto, Y; Yogo, A

    2002-01-01

    Number distributions of secondary electrons emitted from a Au metal surface have been measured for atomic and molecular ions of H sup + , He sup + , C sup + , N sup + , O sup + , H sup + sub 2 , H sup + sub 3 , HeH sup + , CO sup + and O sup + sub 2 in the energy range 0.3-2.0 MeV. The emission statistics obtained are described fairly well by a Polya function. The Polya parameter b, determining the distribution shape, is found to decrease monotonously with increasing emission yield gamma, revealing a surprising relationship of b gamma approx 1 over the different projectile species and impact energies. This finding supports certainly the electron cascading model. Also we find a strong negative molecular effect for heavier molecular ions, showing a significant reduction of gamma compared to the estimated values using constituent atomic projectile data.

  12. Formation of nanostructures on HOPG surface in presence of surfactant atom during low energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, M., E-mail: ranjanm@ipr.res.in; Joshi, P.; Mukherjee, S.

    2016-07-15

    Low energy ions beam often develop periodic patterns on surfaces under normal or off-normal incidence. Formation of such periodic patterns depends on the substrate material, the ion beam parameters, and the processing conditions. Processing conditions introduce unwanted contaminant atoms, which also play strong role in pattern formation by changing the effective sputtering yield of the material. In this work we have analysed the effect of Cu, Fe and Al impurities introduced during low energy Ar{sup +} ion irradiation on HOPG substrate. It is observed that by changing the species of foreign atoms the surface topography changes drastically. The observed surface topography is co-related with the modified sputtering yield of HOPG. Presence of Cu and Fe amplify the effective sputtering yield of HOPG, so that the required threshold for the pattern formation is achieved with the given fluence, whereas Al does not lead to any significant change in the effective yield and hence no pattern formation occurs.

  13. Protein structure prediction by all-atom free-energy refinement

    Directory of Open Access Journals (Sweden)

    Wenzel Wolfgang

    2007-03-01

    Full Text Available Abstract Background The reliable prediction of protein tertiary structure from the amino acid sequence remains challenging even for small proteins. We have developed an all-atom free-energy protein forcefield (PFF01 that we could use to fold several small proteins from completely extended conformations. Because the computational cost of de-novo folding studies rises steeply with system size, this approach is unsuitable for structure prediction purposes. We therefore investigate here a low-cost free-energy relaxation protocol for protein structure prediction that combines heuristic methods for model generation with all-atom free-energy relaxation in PFF01. Results We use PFF01 to rank and cluster the conformations for 32 proteins generated by ROSETTA. For 22/10 high-quality/low quality decoy sets we select near-native conformations with an average Cα root mean square deviation of 3.03 Å/6.04 Å. The protocol incorporates an inherent reliability indicator that succeeds for 78% of the decoy sets. In over 90% of these cases near-native conformations are selected from the decoy set. This success rate is rationalized by the quality of the decoys and the selectivity of the PFF01 forcefield, which ranks near-native conformations an average 3.06 standard deviations below that of the relaxed decoys (Z-score. Conclusion All-atom free-energy relaxation with PFF01 emerges as a powerful low-cost approach toward generic de-novo protein structure prediction. The approach can be applied to large all-atom decoy sets of any origin and requires no preexisting structural information to identify the native conformation. The study provides evidence that a large class of proteins may be foldable by PFF01.

  14. Scaled-Down Moderator Circulation Test Facility at Korea Atomic Energy Research Institute

    OpenAIRE

    2016-01-01

    Korea Atomic Energy Research Institute (KAERI) started the experimental research on moderator circulation as one of a the national research and development programs from 2012. This research program includes the construction of the moderator circulation test (MCT) facility, production of the validation data for self-reliant computational fluid dynamics (CFD) tools, and development of optical measurement system using the particle image velocimetry (PIV). In the present paper we introduce the sc...

  15. Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    CERN Document Server

    Shi, H; Beer, G; Bellotti, G; Berucci, C; Bragadireanu, A M; Bosnar, D; Cargnelli, M; Curceanu, C; Butt, A D; d'Uffizi, A; Fiorini, C; Ghio, F; Guaraldo, C; Hayano, R S; Iliescu, M; Ishiwatari, T; Iwasaki, M; Sandri, P Levi; Marton, J; Okada, S; Pietreanu, D; Piscicchia, K; Vidal, A Romero; Sbardella, E; Scordo, A; Sirghi, D L; Sirghi, F; Tatsuno, H; Doce, O Vazquez; Widmann, E; Zmeskal, J

    2016-01-01

    In the exotic atoms where one atomic $1s$ electron is replaced by a $K^{-}$, the strong interaction between the $K^{-}$ and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the $1s$ state of $K^{-}p$ and the $2p$ state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.

  16. Community biomass handbook. Volume I: thermal wood energy

    Science.gov (United States)

    D. Becker; E. Lowell; D. Bihn; R. Anderson; S. Taff

    2014-01-01

    This handbook and financial app is a guide to help communities quickly determine if biomass energy projects might work for them so that this option is not overlooked. Its purpose is as a screening tool designed to save significant time, resources, and investment by weeding out those wood energy projects that may never come to fruition from those that have a chance of...

  17. Wind energy resource atlas. Volume 10. Alaska region

    Energy Technology Data Exchange (ETDEWEB)

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  18. Wind energy resource atlas. Volume 4. The Northeast region

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-09-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

  19. Wind energy resource atlas. Volume 5: the East Central Region

    Energy Technology Data Exchange (ETDEWEB)

    Brode, R.; Stoner, R.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-01-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters. States include Delaware, Maryland, Kentucky, North Carolina, Tennessee, Virginia, and West Virginia.

  20. Wind energy resource atlas. Volume 9. The Southwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  1. Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yu Sun; Yi-Zhou Qi; Wengen Ouyang; Xi-Qiao Feng; Qunyang Li

    2016-01-01

    Although atomic stick–slip friction has been extensively studied since its first demonstration on graphite, the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics (MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding (known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competi-tion of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces. For relatively low tip-graphite adhesion, friction behaves nor-mally and increases with increasing normal load. However, for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effec-tively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.

  2. The International Atomic Energy Agency's activities in radiation medicine and cancer: promoting global health through diplomacy.

    Science.gov (United States)

    Deatsch-Kratochvil, Amanda N; Pascual, Thomas Neil; Kesner, Adam; Rosenblatt, Eduardo; Chhem, Rethy K

    2013-02-01

    Global health has been an issue of seemingly low political importance in comparison with issues that have direct bearing on countries' national security. Recently, health has experienced a "political revolution" or a rise in political importance. Today, we face substantial global health challenges, from the spread of infectious disease, gaps in basic maternal and child health care, to the globalization of cancer. A recent estimate states that the "overall lifetime risk of developing cancer (both sexes) is expected to rise from more than one in three to one in two by 2015." These issues pose significant threats to international health security. To successfully combat these grave challenges, the international community must embrace and engage in global health diplomacy, defined by scholars Thomas Novotny and Vicanne Adams as a political activity aimed at improving global health, while at the same time maintaining and strengthening international relations. The IAEA (International Atomic Energy Agency) is an international organization with a unique mandate to "accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world." This article discusses global health diplomacy, reviews the IAEA's program activities in human health by focusing on radiation medicine and cancer, and the peaceful applications of atomic energy within the context of global health diplomacy.

  3. Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations

    Science.gov (United States)

    Sun, Xiao-Yu; Qi, Yi-Zhou; Ouyang, Wengen; Feng, Xi-Qiao; Li, Qunyang

    2016-08-01

    Although atomic stick-slip friction has been extensively studied since its first demonstration on graphite, the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics (MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding (known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competition of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces. For relatively low tip-graphite adhesion, friction behaves normally and increases with increasing normal load. However, for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effectively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.

  4. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting.

    Science.gov (United States)

    Sun, Yongfu; Cheng, Hao; Gao, Shan; Liu, Qinghua; Sun, Zhihu; Xiao, Chong; Wu, Changzheng; Wei, Shiqiang; Xie, Yi

    2012-12-19

    Thermoelectric materials can realize significant energy savings by generating electricity from untapped waste heat. However, the coupling of the thermoelectric parameters unfortunately limits their efficiency and practical applications. Here, a single-layer-based (SLB) composite fabricated from atomically thick single layers was proposed to optimize the thermoelectric parameters fully. Freestanding five-atom-thick Bi(2)Se(3) single layers were first synthesized via a scalable interaction/exfoliation strategy. As revealed by X-ray absorption fine structure spectroscopy and first-principles calculations, surface distortion gives them excellent structural stability and a much increased density of states, resulting in a 2-fold higher electrical conductivity relative to the bulk material. Also, the surface disorder and numerous interfaces in the Bi(2)Se(3) SLB composite allow for effective phonon scattering and decreased thermal conductivity, while the 2D electron gas and energy filtering effect increase the Seebeck coefficient, resulting in an 8-fold higher figure of merit (ZT) relative to the bulk material. This work develops a facile strategy for synthesizing atomically thick single layers and demonstrates their superior ability to optimize the thermoelectric energy harvesting.

  5. Surprising volume change in PPy(DBS): An atomic force microscopy study

    DEFF Research Database (Denmark)

    Smela, E.; Gadegaard, N.

    1999-01-01

    Communication: Conjugated polymers such as polypyrrole (PPy) have potential use as artificial muscles or in microsystems such as valves for micro-fluid handling. One of the most important parameters in such uses is the magnitude of volume change during associated redox processes; however, until now...

  6. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Silver, R.N. (comp.)

    1984-12-01

    This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  7. Solar energy research and development: program balance. Annex, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    Each of the seven solar energy technologies that have been assessed in the study are treated: photovoltaic devices, solar thermal power systems, wind energy systems, solar heating and cooling systems, agricultural and industrial heat processes, biomass conversion technologies, and ocean thermal energy conversion systems. A brief technical overview of storage for solar electric technologies is presented and some principles concerning how different levels of success on electrical storage can affect the commercial viability of solar electric options are discussed. A description is given of the solar penetration model that was developed and applied as an analytical tool in the study. This computer model has served the primary purpose of evaluating the competiveness of the solar energy systems in the markets in which they are expected to compete relative to that of the alternative energy sources. This is done under a variety of energy supply, demand, and price conditions. The seven sections treating the solar energy technologies contain discussions on each of six subject areas: description of the technology; economic projections; the potential contribution of the technology in different marketplaces; environmental considerations; international potential; and the present and possible future emphases within the RD and D program. The priority item for each of the technology sections has been the documentation of the economic projections.

  8. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    Science.gov (United States)

    1989-02-01

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.

  9. The Atoms for Peace USIS Films: Spreading the Gospel of the "Blessing" of Atomic Energy in the Early Cold War Era

    Directory of Open Access Journals (Sweden)

    Yuka Tsuchiya

    2014-08-01

    Full Text Available In 1955, the U.S. Information Service (USIS Tokyo produced a thirty-minute documentary film Blessing of Atomic Energy in commemoration of the tenth anniversary of the Atomic bombing of Hiroshima and Nagasaki. The film introduced how the Japanese government, researchers, and companies were using radioisotopes offered by the U.S. Argonne National Laboratory for the “peaceful” purposes in agriculture, medicine, hygiene, industry, and disaster prevention. The film also showed the mechanism of atomic power generation, and explained that it was already put into practice in the U.S. and Europe. The images of Japanese people enjoying the “blessing” of the “peaceful” use of atomic energy, ten years after the traumatic experience of A-bombs, were not only shown all over Japan, but also translated into different languages and shown in many countries, including the UK, Finland, Indonesia, Sudan, and Venezuela. The film was part of some fifty educational and documentary films produced for President Eisenhower’s “Atoms for Peace” campaign – a global information dissemination programs on the U.S. leadership in the civilian use of nuclear energy. This paper will explore the roles USIS films played in disseminating information on the “peaceful” use of nuclear energy in the early Cold War era.

  10. Progress in passive solar energy systems. Volume 8. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  11. Regenerative flywheel energy storage system. Volume 1: Executive summary

    Science.gov (United States)

    1980-06-01

    The development, fabrication, and test of a regenerative flywheel energy storage and recovery system for a battery/flywheel electric vehicle of the 3000 pound class are described. The vehicle propulsion system was simulated on a digital computer in order to determine the optimum system operating strategies and to establish a calculated range improvement over a nonregenerative, all electric vehicle. Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control are described. Test results of the system operating over the SAE J227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load commutated inverter. The motor/alternator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy.

  12. Energy recovery from solid waste. Volume 1: Summary report

    Science.gov (United States)

    1975-01-01

    A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.

  13. X-ray energies of circular transitions and electrons screening in kaonic atoms

    CERN Document Server

    Santos, J P; Desclaux, J P; Indelicato, P J; Parente, F; Indelicato, Paul; ccsd-00002661, ccsd

    2004-01-01

    The QED contribution to the energies of the circular (n,l=n-1), 2 ≤ n ≤ 19 transitions have been calculated for several kaonic atoms throughout the periodic table, using the current world average kaon mass. Calculations were done in the framework of the Klein-Gordon equation, with finite nuclear size and all-order Uelhing vacuum polarization corrections, as well as Kallen and Sabry and Wichmann and Kroll corrections. These energy level values are compared with other computed values. The circular transition energies are compared with available measured and theoretical transition energy. Electron screening is evaluated using a Dirac-Fock model for the electronic part of the wave function. The effect of electronic wavefunction correlation is evaluated for the first time.

  14. ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms

    Science.gov (United States)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-04-01

    MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (EMEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.

  15. Atomic Safety and Licensing Board Panel Biennial Report, Fiscal Years 1993--1994. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    In Fiscal Year 1993, the Atomic Safety and Licensing Board Panel (``the Panel``) handled 30 proceedings. In Fiscal Year 1994, the Panel handled 36 proceedings. The cases addressed issues in the construction, operation, and maintenance of commercial nuclear power reactors and other activities requiring a license form the Nuclear Regulatory Commission. This report sets out the Panel`s caseload during the year and summarizes, highlight, and analyzes how the wide- ranging issues raised in those proceedings were addressed by the Panel`s judges and licensing boards.

  16. PSI Scientific Report 2005. Volume 3: Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Schlaepfer-Miller, J.; Gerber, B. (eds.)

    2006-04-15

    The overarching goal of energy research at PSI is to provide scientific nd technical solutions for the development of cost-effective, reliable, socially acceptable and environmentally sustainable energy. his research is done within two departments: General Energy and nuclear Energy and Safety, their research highlights from 2005 are documented in the following chapter. Major accomplishments of the past year include: a pioneer solar power-plant; improvements in catalysts and processes for the production of methane from wood; development of characterization tools to improve combustion processes; fuel cells, and batteries under operating conditions; carbon dioxide in forests; and a new dating method for glacial ice. Progress was made in determining the suitability of opalinus clay to store radioactive waste and how iodine exposure could be reduced under normal operation and in the event of a severe accident at a nuclear power-plant. Systems analysis research also included a report on the external environmental costs of electricity and whether the Swiss population are willing to pay for renewable energy. This report only highlights a selection of the work done at PSI in the past year; information about many other ongoing projects can be accessed through our website, (www.psi.ch). (author)

  17. Community energy systems and the law of public utilities. Volume 20. Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Louisiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities--Volume One: An overview. This report also contains a summary of a strategy described in Volume One--An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enchance the likelihood of ICES implementation.

  18. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    CERN Document Server

    Antonov, A N; Sarriguren, P; de Guerra, E Moya

    2016-01-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS) and also with results of other theoretical methods.

  19. Energy availabilities for state and local development: 1973 data volume

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, D. P.; Rice, P. L.; Pai, V. P.

    1977-11-01

    This report is one of a continuing series developed by ORNL with financial support from the Economic Development Administration to present the supply, demand, and net imports of seven fuel types for four final consuming sectors of BEAs, states, census regions, and the nation in 1974. The data are formatted to present regional energy availability from primary extraction as well as from regional transformation processes. As constructed, the tables depict energy balances between availability and use for each of the specific fuels. The long-term objective of the program is to pinpoint those regions where economic development potentials will most likely be affected by the availability of energy. This information coupled with specific knowledge of projected economic growth and employment distribution patterns can assist EDA in developing its grant-in-aid investment strategy.

  20. Differences in energy expenditure between high- and low-volume training.

    Science.gov (United States)

    Drenowatz, Clemens; Eisenmann, Joey C; Pivarnik, James M; Pfeiffer, Karin A; Carlson, Joseph J

    2013-01-01

    Several studies have examined energy expenditure in various sports but there is a lack of research on the contribution of exercise and habitual activity during different training periods. This study examined changes in total daily energy expenditure (TDEE) and its components during high- and low-volume training periods. Further, changes in time spent in sedentary, light, moderate and vigorous activity in response to different training volumes were explored. Energy expenditure was measured in 15 male endurance athletes during 2 non-consecutive weeks - 1 week of high volume (>13 hours) training and another week of low volume (energy expenditure (EEE) and resting metabolic rate, respectively. Time spent at different intensities was assessed using previously established MET cutpoints. TDEE as well as EEE increased significantly with higher training volume, while no difference in NEAT occurred. Further, significantly less time was spent in sedentary activities during the high-volume week. These results suggest that highly trained athletes do not compensate for increased training volume and reduce sedentary activities to allow for more training time.

  1. Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission

    Indian Academy of Sciences (India)

    Anil Bhardwaj; Stas Barabash; Yoshifumi Futaana; Yoichi Kazama; Kazushi Asamura; David McCann; R Sridharan; Mats Holmstrom; Peter Wurz; Rickard Lundin

    2005-12-01

    This paper reports on the Sub-keV Atom Reflecting Analyzer (SARA)experiment that will be flown on the first Indian lunar mission Chandrayaan-1.The SARA is a low energy neutral atom (LENA)imaging mass spectrometer,which will perform remote sensing of the lunar surface via detection of neutral atoms in the energy range from 10 eV to 3 keV from a 100 km polar orbit.In this report we present the basic design of the SARA experiment and discuss various scientific issues that will be addressed.The SARA instrument consists of three major subsystems:a LENA sensor (CENA),a solar wind monitor (SWIM),and a digital processing unit (DPU).SARA will be used to image the solar wind –surface interaction to study primarily the surface composition and surface magnetic anomalies and associated mini-magnetospheres.Studies of lunar exosphere sources and space weathering on the Moon will also be attempted.SARA is the first LENA imaging mass spectrometer of its kind to be flown on a space mission.A replica of SARA is planned to fly to Mercury onboard the BepiColombo mission.

  2. Annual Report to Congress of the Atomic Energy Commission for 1965

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8) Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.

  3. Correlation energies beyond the random-phase approximation: ISTLS applied to spherical atoms and ions

    CERN Document Server

    Gould, Tim

    2012-01-01

    The inhomogeneous Singwi, Tosi, Land and Sjolander (ISTLS) correlation energy functional of Dobson, Wang and Gould [PRB {\\bf 66} 081108(R) (2008)] has proved to be excellent at predicting correlation energies in semi-homogeneous systems, showing promise as a robust `next step' fifth-rung functional by using dynamic correlation to go beyond the limitations of the direct random-phase approximation (dRPA), but with similar numerical scaling with system size. In this work we test the functional on fourteen spherically symmetric, neutral and charged atomic systems and find it gives excellent results (within 2mHa/$e^-$ except Be) for the absolute correlation energies of the neutral atoms tested, and good results for the ions (within 4mHa/$e^-$). In all cases it performs better than the dRPA. When combined with the previous successes, these new results point to the ISTLS functional being a prime contender for high-accuracy, benchmark DFT correlation energy calculations.

  4. Energy and angular distributions of excited rhodium atoms ejected from the rhodium (100) surface

    Energy Technology Data Exchange (ETDEWEB)

    El-Maazawi, M.; Maboudian, R.; Postawa, Z.; Winograd, N. (Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (US))

    1991-05-15

    Multiphoton resonance ionization spectroscopy has been used to determine the polar-angle and the kinetic-energy distribution of Rh atoms desorbed from the ion-bombarded Rh{l brace}100{r brace} surface in the fine-structure components of the {ital a}{sup 4}{ital F}{sub {ital J}} ground-state multiplet ({ital J}=9/2 and 7/2). The overall behavior is found to be very similar to that observed for higher-lying metastable levels. The energy distribution of the metastable level ({sup 4}{ital F}{sub 7/2} with excitation energy of {similar to}0.2 eV) is found to be broader than the ground-state ({sup 4}{ital F}{sub 9/2}) distribution. The energy distribution of the excited ejected atoms is shown to depend mainly on the electron configuration of the excited state. The measured spectra have also been used to investigate the dependence of the excitation probability on the emission velocity. It is shown that the excitation probability depends strongly on this parameter, approaching an exponential dependence on the reciprocal of the normal component of velocity at higher velocities ({gt}5{times}10{sup 5} cm/sec).

  5. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  6. Incorporating nuclear vibrational energies into the "atom in molecules" analysis: An analytical study.

    Science.gov (United States)

    Gharabaghi, Masumeh; Shahbazian, Shant

    2017-04-21

    The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.

  7. Development of a community energy conservation program. Volume II. Energy saving techniques for use by local governments

    Energy Technology Data Exchange (ETDEWEB)

    1976-11-26

    This volume contains technical material related to community energy conservation programs, and supplements the organizational material in Volume I. It is in looseleaf format so that sections related to specific topics can be easily copied or transferred to individuals responsible for various sorts of conservation, such as carpooling programs, building improvements, and community outreach. Three technical chapters are included, discussing topics in the areas of: internal city and county operations; community powers and regulations, and outreach programs. In the first, the concern is with what the community can do to reduce energy use in its own operations, an effective first step in promoting comprehensive energy conservation. The second chapter analyzes ways that the police power and fiscal powers of the community can be used for energy conservation, through building codes, zoning, and similar measures. In the final chapter, ways to promote energy conservation in the community are discussed: programs include outreach to households and firms, carpool promotion, waste oil recycling, etc.

  8. Atomic energy law after the opt-out. Alive and fascinating. Report about the 14{sup th} German atomic energy law symposium 2012; Atomrecht nach dem Ausstieg. Lebendig und spannend. Tagungsbericht 14. Deutsches Atomrechtssymposium 2012

    Energy Technology Data Exchange (ETDEWEB)

    Leidinger, Tobias [Gleiss Lutz Rechtsanwaelte, Duesseldorf (Germany)

    2013-01-15

    Atomic energy law remains a living, fascinating subject matter. Nearly 200 participants were convinced of this impression at the 14{sup th} German Atomic Energy Law Symposium held in Berlin on November 19-20, 2012. Under the scientific chairmanship of Professor Dr. Martin Burgi, Ludwig Maximilian University of Munich, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), after an interruption of 5 years, again organized a scientific conference about practice-related topics of atomic energy and radiation protection law. Atomic energy law once again proved to be a reference area for sophisticated issues of constitutional law and administrative law above and beyond its technical confines. The agenda of the 14{sup th} German Atomic Energy Law Symposium featured a broad spectrum of topics ranging from backfitting of nuclear power plants to European atomic energy and radiation protection law, to challenges facing national legal systems in the execution of atomic energy law, to legal issues connected with decommissioning and waste management, and on to the topical subject of finding a repository site. The 14{sup th} German Atomic Energy Law Symposium, on the whole, again demonstrated that an open discourse between science and practice is able to furnish important contributions to the implementation of laws in a balanced way rooted in practice. Especially the contributions dealing with the independence of public authorities and their organization, the doctrine of the reservation of functions of the executive branch, and planning by laws contain additional provisions able to influence the continued development of administrative law also above and beyond atomic energy law. The BMU also referred to a decision just heard from Brussels to the effect that a new European Safety Directive would be published as early as in 2013. As a consequence of the nuclear stress tests conducted EU-wide, the Directive is to lay down provisions about

  9. Photovoltaics as a terrestrial energy source. Volume 3: An overview

    Science.gov (United States)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were evaluated in terms of their potential for terrestrial application A comprehensive overview of important issues which bear on photovoltaic (PV) systems development is presented. Studies of PV system costs, the societal implications of PV system development, and strategies in PV research and development in relationship to current energy policies are summarized.

  10. Dark Energy and Inflation with Volume Normalized Action

    CERN Document Server

    Gabadadze, Gregory

    2016-01-01

    In the theories described by a volume normalized action functional, an arbitrary cosmological constant is eliminated from the physical picture of our Universe, and dynamical alternatives must be responsible for today's accelerated expansion as well as for the conjectured early-time inflation in the Universe. A few well-known such scenarios realized by a single homogeneous scalar field are examined in this new context, and their diverse fates are elucidated. Typical inflationary models are not affected at the level of the background evolution, and also give rise to the scalar perturbations equivalent to those obtained in the standard General Relativity; however, the primordial quantum tensor fluctuations are absent in the new framework, irrespective of the inflationary model. As a consequence, our proposal would be ruled out should the primordial tensor modes, or their indirect consequences, be discovered in observations.

  11. Enhanced creation of dispersive monolayer phonons in Xe/Pt(111) by inelastic helium atom scattering at low energies

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2007-01-01

    Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 meV. ...

  12. 78 FR 56944 - Strata Energy, Inc. (Ross In Situ Recovery Uranium Project); Notice of Atomic Safety and...

    Science.gov (United States)

    2013-09-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Strata Energy, Inc. (Ross In Situ Recovery Uranium Project); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing...

  13. Demystifying Introductory Chemistry. Part 4: An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization.

    Science.gov (United States)

    Spencer, James N.; And Others

    1996-01-01

    Presents an alternative approach to teaching reaction thermodynamics in introductory chemistry courses using calculations of enthalpies, entropies, and free energies of atomization. Uses a consistent concept, that of decomposition of a compound to its gaseous atoms, to discuss not only thermodynamic parameters but also equilibrium and…

  14. Software development agreement between CERN and the Indian Department of Atomic Energy

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The development and prototyping work for the LHC computing facility is being organised as a project that includes many scientific institutes and industrial partners, coordinated by CERN. The project is nicknamed LCG (after LHC Computing Grid). Addendum No. 1 to the Protocol dated 24/09/02 to the 1991 co-operation agreement between CERN and the Department of Atomic Energy (DAE) of the Government of India defines the collaboration between CERN and DAE on software development for the LCG Prototype Project. Signing the addendum are G. Govindrajan (left), Director of the Electronics and Instrumentation Group at the Bhabha Atomic Research Centre, Mumbai, India and Dr. Hans Hoffmann, CERN Director for Technology Transfer and for Scientific Computing.

  15. An Apparatus for the Measurement of Various Scattering Processes in Intermediate Energy, Ion - Atom Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kvale, T. J.; Seely, D. G.

    1998-07-01

    This paper summarizes the main features of an apparatus constructed at the University of Toledo for the study of various scattering processes in intermediate energy, ion - atom collisions. The main purpose of this facility is to provide experimental data which serve as benchmarks to test current scattering theories for those processes. Recent measurements of single electron detachment (SED) and double electron detachment (DED) total cross sections for 5-50 keV H{sup -} ions incident on noble gases and for 10-50 keV H{sup -} ions incident on CH{sub 4} molecules were conducted in this laboratory. As a result of an analysis of the scattered beam growth curves, information about other charge-changing cross sections in the hydrogen-atom (molecule) collision systems were obtain, as well.

  16. Software development agreement between CERN and the Indian Department of Atomic Energy

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The development and prototyping work for the LHC computing facility is being organised as a project that includes many scientific institutes and industrial partners, coordinated by CERN. The project is nicknamed LCG (after LHC Computing Grid). Addendum No. 1 to the Protocol dated 24/09/02 to the 1991 co-operation agreement between CERN and the Department of Atomic Energy (DAE) of the Government of India defines the collaboration between CERN and DAE on software development for the LCG Prototype Project. Photo 01: Signing the addendum are G. Govindrajan (left), Director of the Electronics and Instrumentation Group at the Bhabha Atomic Research Centre, Mumbai, India and Dr. Hans Hoffmann, CERN Director for Technology Transfer and for Scientific Computing. Looking on are Christoph Eck (far left), resource manager of the LCG Project and Les Robertson, LCG Project Leader. Photo 02: (left to right) Christoph Eck, resource manager of the LCG Project; G. Govindrajan, Director of the Electronics and Instrumentation G...

  17. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe

    2008-12-09

    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  18. A model for energy transfer in collisions of atoms with highly excited molecules.

    Science.gov (United States)

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M

    2015-05-21

    A model for energy transfer in the collision between an atom and a highly excited target molecule has been developed on the basis of classical mechanics and turning point analysis. The predictions of the model have been tested against the results of trajectory calculations for collisions of five different target molecules with argon or helium under a variety of temperatures, collision energies, and initial rotational levels. The model predicts selected moments of the joint probability distribution, P(Jf,ΔE) with an R(2) ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour. The model provides several insights into the energy transfer process. The joint probability distribution is strongly dependent on rotational energy transfer and conservation laws and less dependent on vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly efficient collisions are a natural consequence of the energy transfer and arise due to collisions at "sweet spots" in the space of impact parameter and molecular orientation.

  19. Evaluation of atomic electron binding energies for Monte Carlo particle transport

    CERN Document Server

    Pia, Maria Grazia; Batic, Matej; Begalli, Marcia; Kim, Chan Hyeong; Quintieri, Lina; Saracco, Paolo

    2011-01-01

    A survey of atomic binding energies used by general purpose Monte Carlo systems is reported. Various compilations of these parameters have been evaluated; their accuracy is estimated with respect to experimental data. Their effects on physics quantities relevant to Monte Carlo particle transport are highlighted: X-ray fluorescence emission, electron and proton ionization cross sections, and Doppler broadening in Compton scattering. The effects due to different binding energies are quantified with respect to experimental data. The results of the analysis provide quantitative ground for the selection of binding energies to optimize the accuracy of Monte Carlo simulation in experimental use cases. Recommendations on software design dealing with these parameters and on the improvement of data libraries for Monte Carlo simulation are discussed.

  20. Double-electron capture by highly-ionized atoms isolated at very low energy

    Science.gov (United States)

    Fogwell Hoogerheide, Shannon; Dreiling, Joan M.; Sahiner, Arda; Tan, Joseph N.

    2016-05-01

    Charge exchange with background gases, also known as electron capture processes, is important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. However, there are few experiments in the very low energy regime that could be useful for further theoretical development. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with energy state. Analysis using a system of rate equations yields information about the ion cloud expansion and single-electron capture rates. A substantial amount of double-electron capture is also observed. We present the relative rates and discuss the error budget. SFH and JMD were funded by National Research Council Research Associateship Awards during some of this work.

  1. Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms.

    Science.gov (United States)

    Wu, Wen-Jie; Chi, Wei-Jie; Li, Quan-Song; Li, Ze-Sheng

    2017-06-01

    One of the most important aims in the development of high-energy materials is to improve their stability and thus ensure that they are safe to manufacture and transport. In this work, we theoretically investigated open-chain N4B2 isomers using density functional theory in order to find the best way of stabilizing nitrogen-rich molecules. The results show that the boron atoms in these isomers are aligned linearly with their neighboring atoms, which facilitates close packing in the crystals of these materials. Upon comparing the energies of nine N4B2 isomers, we found that the structure with alternating N and B atoms had the lowest energy. Structures with more than one nitrogen atom between two boron atoms had higher energies. The energy of N4B2 increases by about 50 kcal/mol each time it is rearranged to include an extra nitrogen atom between the two boron atoms. More importantly, our results also show that boron atoms stabilize nitrogen-rich molecules more efficiently than carbon atoms do. Also, the combustion of any isomer of N4B2 releases more heat than the corresponding isomer of N4C2 does under well-oxygenated conditions. Our study suggests that the three most stable N4B2 isomers (BN13, BN24, and BN34) are good candidates for high-energy molecules, and it outlines a new strategy for designing stable boron-containing high-energy materials. Graphical abstract The structural characteristics, thermodynamic stabilities, and exothermic properties of nitrogen-rich N4B2 isomers were investigated by means of density functional theory.

  2. Twenty-third Semiannual Report of the Commission to the Congress, January 1958. Progress in peaceful uses of atomic energy July - December 1957

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Lewis L.

    1958-01-31

    The document represents the twenty-third semiannual Atomic Energy Commission (AEC) report to Congress. The report sums up the major activities and developments in the national atomic energy program covering the period July - December 1957. A special part one of this semiannual report is titled ''Progress in the Peaceful Uses of Atomic Energy - A 3-year Summary.

  3. Energy saving system of terminal regulated air volume in intelligent building

    Institute of Scientific and Technical Information of China (English)

    LIJiangtao; WANGPu

    2003-01-01

    This paper describes the application and the prominent energy saving of the new tecnnique Terminai Reguiation Air Volume(TRAV) air conditioning systems in intelligent building. Furthermore, it studies the problem taking full advantage of the Building Automation System(BAS) to save energy and to meet with demands of the intelligent building individuation.

  4. ASEAN--USAID Buildings Energy Conservation Project final report. Volume 2, Technology

    Energy Technology Data Exchange (ETDEWEB)

    Levine, M.D.; Busch, J.F. [eds.

    1992-06-01

    This volume reports on research in the area of energy conservation technology applied to commercial buildings in the Association of Southeast Asian Nations (ASEAN) region. Unlike Volume I of this series, this volume is a compilation of original technical papers prepared by different authors in the project. In this regard, this volume is much like a technical journal. The papers that follow report on research conducted by both US and ASEAN researchers. The authors representing Indonesia, Malaysia, Philippines, and Thailand, come from a range of positions in the energy arena, including government energy agencies, electric utilities, and universities. As such, they account for a wide range of perspectives on energy problems and the role that technology can play in solving them. This volume is about using energy more intelligently. In some cases, the effort is towards the use of more advanced technologies, such as low-emittance coatings on window glass, thermal energy storage, or cogeneration. In others, the emphasis is towards reclaiming traditional techniques for rendering energy services, but in new contexts such as lighting office buildings with natural light, or cooling buildings of all types with natural ventilation. Used in its broadest sense, the term ``technology`` encompasses all of the topics addressed in this volume. Along with the more customary associations of technology, such as advanced materials and equipment and the analysis of their performance, this volume treats design concepts and techniques, analysis of ``secondary`` impacts from applying technologies (i.e., unintended impacts, or impacts on parties not directly involved in the purchase and use of the technology), and the collection of primary data used for conducting technical analyses.

  5. APPLICATION OF CORRELATION—POLARIZA TION POTENTIAL TO THE LOW—ENERGY ELECTRON SCATTERING WITH ATOMS AND MOLECULES

    Institute of Scientific and Technical Information of China (English)

    Zhijie; JianminYuan

    1990-01-01

    Applicability of the correlation potential,which is currently used in the local density functional theory,to the low-energy electron-atom and molecule scattering is investigated with some examples of scattering processes.

  6. Two-atom interaction energies with one atom in an excited state: van der Waals potentials versus level shifts

    Science.gov (United States)

    Donaire, M.

    2016-05-01

    I revisit the problem of the interaction between two dissimilar atoms with one atom in an excited state, recently addressed by Berman [Phys. Rev. A 91, 042127 (2015), 10.1103/PhysRevA.91.042127], Donaire et al. [Phys. Rev. Lett. 115, 033201 (2015), 10.1103/PhysRevLett.115.033201], and Milonni and Rafsanjani [Phys. Rev. A 92, 062711 (2015), 10.1103/PhysRevA.92.062711], for which precedent approaches have given conflicting results. In the first place, I discuss to what extent these works provide equivalent results. I show that the phase-shift rate of the two-atom wave function computed by Berman, the van der Waals potential of the excited atom by Donaire et al., and the level shift of the excited atom by Milonni and Rafsanjani possess equivalent expressions in the quasistationary approximation. In addition, I show that the level shift of the ground-state atom computed by Milonni and Rafsanjani is equivalent to its van der Waals potential. A diagrammatic representation of all those quantities is provided. The equivalences among them are, however, not generic. In particular, it is found that for the case of the interaction between two identical atoms excited, the phase-shift rate and the van der Waals potentials differ. Concerning the conflicting results of previous approaches in regards to the spatial oscillation of the interactions, I conclude, in agreement with Berman and with Milonni and Rafsanjani, that they refer to different physical quantities. The impacts of free-space dissipation and finite excitation rates on the dynamics of the potentials are analyzed. In contrast with Milonni and Rafsanjani, the oscillatory versus monotonic spatial forms of the potentials of each atom are found not to be related to the reversible versus irreversible nature of the excitation transfer involved.

  7. REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS, INFCIRC/540 (Corrected) VOLUME III/III, IAEA COMMITTEE 24, DEVELOPMENT OF INFCIRC/540, ARTICLE-BY-ARTICLE REVIEW (1996-1997).

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.D.; Houck, F.

    2010-01-01

    In this section of the report, the development of INFCIRC/540 is traced by a compilation of citations from the IAEA documents presented to the Board of Governors and the records of discussions in the Board that took place prior to the establishment of Committee 24 as well as the documents and discussions of that committee. The evolution of the text is presented separately for each article or, for the more complex articles, for each paragraph or group of paragraphs of the article. This section covers all articles, including those involving no issues. Background, issues, interpretations and conclusions, which were addressed in Volumes I, II, and III are not repeated here. The comments by states that are included are generally limited to objections and suggested changes. Requests for clarification or elaboration have been omitted, although it is recognized that such comments were sometimes veiled objections.

  8. Community Energy Systems and the Law of Public Utilities. Volume Twenty-four. Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description of the laws and programs of the State of Michigan governing the regulation of public energy facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Atomic Data for Fusion: Volume 6, Spectroscopic data for titanium, chromium, and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, W.L.; Musgrove, A. (eds.) (National Inst. of Standards and Technology, Gaithersburg, MD (USA))

    1989-09-01

    Comprehensive spectroscopic data tables are presented for all ionization stages of chromium. Tables of ionization potentials, spectral lines, energy levels, and transition probabilities are presented. These tables contain data which have been excerpted from general critical compilations prepared under the sponsorship of the National Standard Reference Data System (NSRDS).

  10. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-14

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  11. Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, L. (ed.)

    1979-01-01

    The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations.

  12. Atomic-powered democracy: Policy against politics in the quest for American nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.W.

    1993-01-01

    This dissertation focuses on the relationship of American nuclear energy to democracy. It examines whether the nuclear policy processes have furthered the legitimacy-government accountability and citizen participation-which the democratic institutes are based. Nuclear policy and its institutions have placed severe limitations on democratic practices. Contravened democracy is seen most clearly in the decoupling of policy from politics. Decoupling refers to the weakening of institutional linkages between citizens and government, and to the erosion of the norms that ground liberal democracy. Decoupling is manifested in policy centralization, procedural biases, technical rationality, and the spatial displacement of conflict. Decoupling has normative implications: While federal accountability was limited and citizen participation was shackled, other major groups enjoyed privileged access to policy making. The decoupling of nuclear policy from politics arose within the context of US liberal-democratic capitalism. The federal government pursued its own goals of defense and world leadership. Yet, it was not structurally autonomous from the hegemony of the political-economic context. Economically, the Atomic Energy Act did not permit federal agencies to directly invest in power plant construction, and did not authorize them to commercially generate electricity. Private industry was structurally placed to domesticate the atom. Politically, the liberal-democratic system hampered an unquestioning pursuit of atomic energy. Federal institutions have been forced to heed some of the anti-nuclear concerns. The pervasive influence of the US political economy on nuclear policy has come to transgress democracy. Nuclear power's growth faltered during the 1970s. The political and economic constraints on federal actions have limited the means available to revive a becalmed nuclear industry; this has exerted strong pressure on federal institutions to decouple policy from

  13. ELENA MCP detector: absolute detection efficiency for low-energy neutral atoms

    Science.gov (United States)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J. A.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-09-01

    Microchannel Plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission of ESA to Mercury to be launched in 2015. ELENA is a Time of Flight (TOF) sensor, based on a novel concept using an ultra-sonic oscillating shutter (Start section), which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop detector. The scientific objective of ELENA is to detect energetic neutral atoms in the range 10 eV - 5 keV, within 76° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the plasma environment and the planet’s surface, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles released from the surface, via solar wind-induced ion sputtering (MEFISTO facility of the Physical Institute of the University of Bern (CH), measurements on three different types of MCP (with and without coating) have been performed providing the detection efficiencies in the energy range 10eV - 1keV. Outcomes from such measurements are discussed here.

  14. New atomic energy law - international and national developments. Proceedings; Neues Atomenergierecht - internationale und nationale Entwicklungen. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, N. [ed.] [Goettingen Univ. (Germany). Inst. fuer Voelkerrecht

    1995-12-31

    Two of the working sessions of the meeting were devoted to aspects of international atomic energy law; the international character of the meeting was also reflected by the home countries of the members of the panel discussion concluding the working sessions. There was substantial reason to put emphasis on the international dimension of the topics discussed. In June 1994, the Nuclear Safety Convention had been signed in Vienna by diplomatic representatives of the signatory countries, and this Convention marks a signpost in the history of international atomic energy law. At the time the meeting was held, negotiations for improving the international nuclear lability law, which had been dragging on since 1989, had come to a stalemate. The meeting offered a suitable forum for taking a scientific approach to tackle the complex problems involved in reshaping the law on nuclear safety and nuclear liability. The third working session of the meeting has been discussing topics relating to the implementation of the German Atomgesetz (Atomic Energy Act). (orig./HP) [Deutsch] Zwei der Arbeitssitzungen waren Fragen des internationalen Atomenergierechts gewidmet; auch die Zusammensetzung der Teilnehmer des abschliessenden Rundtischgespraechs wiesen die internationalen Aspekte als den Schwerpunkt der Veranstaltung aus. Fuer diese Gewichtung bestand begruendeter Anlass. Im Juni 1994 hatte eine diplomatische Konferenz in Wien die sogenannte Nukleare Sicherheitskonvention verabschiedet, die einen Meilenstein in der Entwicklung des internationalen Atomrechts darstellt. Die bereits seit 1989 andauernden Verhandlungen zur Verbesserung des internationalen Atomhaftungsrechts fanden sich zur Zeit der Tagung in einer krisenhaften Situation. Dies bot Anlass zur wissenschaftlichen Aufarbeitung der Komplexe nukleare Sicherheit und Atomhaftungsrecht. In einer dritten Arbeitssitzung wurden aktuelle Themen aus dem Bereich des Vollzugs des Atomgesetzes eroertert. (orig./HP)

  15. Basewide Energy Study, Fort Wainwright Alaska: Volume 1-Executive Summary

    Science.gov (United States)

    1982-04-01

    List have been categorlzed into Increments A, S. P. & G as per dlrecticon. o tomo projocts have been *onuolidntod Into tremps to fit Increment A [CtIP...ft J I 8t 7[782 3. m-:: ,,~-. - - 9 -’ - ai , . t @ ( __ __ a s -, - . to I • •-N6 -.-----. -F i E’I , I - 0 a a i, V2 • • 2 2 -- ; II I s.n...how capital costs for energy conservation to this rategorv could be paid f•r, sinn* the current prioing polic• only &l- lovs for charging differential

  16. Scaled-energy spectroscopy of helium \\|M\\|=1 Rydberg atoms in a static electric field

    Science.gov (United States)

    Kips, Annemieke; Vassen, Wim; Hogervorst, Wim; Dando, Paul A.

    1998-10-01

    We present scaled-energy spectra on helium Rydberg atoms in a static electric field. \\|M\\|=1 states were studied in excitation from the 2 1S0 metastable state. Spectra were recorded for ɛ=-2.940(4), ɛ=-2.350(4), both below the saddle point, and ɛ=-1.760(4), above the saddle point. Closed-orbit theory was applied to interpret the spectra. A recent extension to closed-orbit theory, incorporating core effects, was used. This significantly improved agreement between experiment and theory.

  17. Energy landscape investigation by wavelet transform analysis of atomic force spectroscopy data in a biorecognition experiment.

    Science.gov (United States)

    Bizzarri, Anna Rita

    2016-01-01

    Force fluctuations recorded in an atomic force spectroscopy experiment, during the approach of a tip functionalized with biotin towards a substrate charged with avidin, have been analyzed by a wavelet transform. The observation of strong transient changes only when a specific biorecognition process between the partners takes place suggests a drastic modulation of the force fluctuations when biomolecules recognize each other. Such an analysis allows to investigate the peculiar features of a biorecognition process. These results are discussed in connection with the possible role of energy minima explored by biomolecules during the biorecognition process.

  18. X-alpha calculation of transition energies in multiply ionized atoms

    Science.gov (United States)

    Ringers, D. A.; Chen, M. H.

    1974-01-01

    It is shown that the accuracy of calculations can be improved if appropriate (different) values of alpha are used for each configuration. Alternatively, the Slater Transition state can be used, wherein a total energy difference is related to a difference in single electron eigenvalues. By a series expansion, the value of alpha for an excited configuration can be related to its value for the ground state configuration. The terms Delta alpha (delta Epsilon/delta alpha) exhibit a similar dependence on atomic number as the ground state values of alpha. Results of sample calculations are reported and compared with experiment.

  19. The University of Rochester Atomic Energy Project quarterly report, April 1, 1950--June 30, 1950

    Energy Technology Data Exchange (ETDEWEB)

    Blair, H.A.

    1950-12-31

    This quarterly progress report gives an overview of the University of Rochester Atomic Energy Project for April 1, 1950 thru June 30, 1950. Sections included are entitled (1) Biological Effects of External Radiation (X-rays and gamma rays), (2) Biological Effects of External Radiation (Infra-red and ultraviolet), (3) Biological effects of radioactive materials (polonium, radon, thoron, and miscellaneous project materials), (4) Uranium, (5) Beryllium, (7) thorium, (8) fluoride, (9) zirconium, (10) special materials, (11) Isotopes, (12) Outside services, (12) Project health, (13) Health physics, (14) Special Clinical Service, and (15) Instrumentation (Spectroscopy, electron microscopy, x-ray and nuclear radiation detectors, x-ray diffraction, and electronics).

  20. Theoretical Investigation Leading to Energy Storage in Atomic and Molecular Systems

    Science.gov (United States)

    1990-12-01

    spontaneous transition coefficient of the band (v’, v") n 4 [Ej 3pl . A - mv I V (51) my" 3 h 4c 3. n 30 Similarly, the lifetime of an upper...AFW L Kirt- land AYFB, New Mexico , 27 February, 1987. 3. ’Applications in Computational Chemistry: Theoretical Studies of Storable Highly Energetic...Kirtland AFB. New Mexico , 2 December 1988. 12. "Theoretical Investigation of Energy Storage in Atomic and Molecular Systems", H. H. Michels and J. A

  1. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  2. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Kukita; Ohnuki, Akira [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  3. Real-time study of the adiabatic energy loss in an atomic collision with a metal cluster.

    Science.gov (United States)

    Baer, Roi; Siam, Nidal

    2004-10-01

    Gas-phase hydrogen atoms are accelerated towards metallic surfaces in their vicinity. As it approaches the surface, the velocity of an atom increases and this motion excites the metallic electrons, causing energy loss to the atom. This dissipative dynamics is frequently described as atomic motion under friction, where the friction coefficient is obtained from ab initio calculations assuming a weak interaction and slow atom. This paper tests the aforementioned approach by comparing to a real-time Ehrenfest molecular dynamics simulation of such a process. The electrons are treated realistically using standard approximations to time-dependent density functional theory. We find indeed that the electronic excitations produce a friction-like force on the atom. However, the friction coefficient strongly depends on the direction of the motion of the atom: it is large when the atom is moving towards the cluster and much smaller when the atom is moving away. It is concluded that a revision of the model for energy dissipation at metallic surfaces, at least for clusters, may be necessary.

  4. Technology transfer for the US Department of Energy's Energy Storage Program: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Bruneau, C.L.; Fassbender, L.L.

    1988-10-01

    This document contains the appendices to Technology Transfer Recommendations for the US Department of Energy's Storage Program (PNL-6484, Vol. 1). These appendices are a list of projects, publications, and presentations connected with the Energy Storage (STOR) program. In Volume 1, the technology transfer activities of the STOR program are examined and mechanisms for increasing the effectiveness of those activities are recommended.

  5. Magnetizabilities of relativistic hydrogenlike atoms in some arbitrary discrete energy eigenstates

    CERN Document Server

    Stefańska, Patrycja

    2016-01-01

    We present the results of numerical calculations of magnetizability ($\\chi$) of the relativistic one-electron atoms with a pointlike, spinless and motionless nuclei of charge $Ze$. Exploiting the analytical formula for $\\chi$ recently derived by us [P. Stefa{\\'n}ska, 2015], valid for an arbitrary discrete energy eigenstate, we have found the values of the magnetizability for the ground state and for the first and the second set of excited states (i.e.: $2s_{1/2}$, $2p_{1/2}$, $2p_{3/2}$, $3s_{1/2}$, $3p_{1/2}$, $3p_{3/2}$, $3d_{3/2}$, and $3d_{5/2}$) of the Dirac one-electron atom. The results for ions with the atomic number $1 \\leqslant Z \\leqslant 137$ are given in 14 tables. The comparison of the numerical values of magnetizabilities for the ground state and for each states belonging to the first set of excited states of selected hydrogenlike ions, obtained with the use of two different values of the fine-structure constant, i.e.: $\\alpha^{-1}=137.035 999 139$ (CODATA 2014) and $\\alpha^{-1}=137.035 999 074...

  6. Low-energy electron elastic scattering from Os atom: New electron affinity

    Science.gov (United States)

    Felfli, Z.; Kiros, F.; Msezane, A. Z.

    2013-05-01

    Bilodeau and Haugan measured the binding energies (BEs) of the ground state and the excited state of the Os- ion to be 1.07780(12) eV and 0.553(3) eV, respectively. These values are consistent with those calculated in. Here our investigation, using the recent complex angular momentum methodology wherein is embedded the crucial electron-electron correlations and the vital core polarization interaction, has found that the near threshold electron-Os elastic scattering total cross section (TCS) is characterized by three stable bound states of the Os- ion formed as resonances during the slow electron collision, with BEs of 1.910 eV, 1.230 eV and 0.224 eV. The new extracted electron affinity (EA) value from the TCS of 1.910 eV for the Os atom is significantly different from that measured in. Our calculated elastic differential cross sections (DCSs) also yield the relevant BEs for the ground and the two excited states of the Os- ion. The complex characteristic resonance structure in the TCS for the Os atom is ideal for catalysis, but makes it difficult to execute the Wigner threshold law in describing the threshold detachment behavior of complex atoms and extracting the reliable attendant EAs. Supported by U.S. DOE, AFOSR and CAU CFNM, NSF-CREST Program.

  7. A Terrestrial Search for Dark Contents of the Vacuum, Such as Dark Energy, Using Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Ronald J.; /Stanford U., HEPL /San Francisco State U.; Muller, Holger; /UC, Berkeley; Perl, Martin L.; /KIPAC, Menlo Park /SLAC

    2012-06-11

    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark contents of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but which might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong nongravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO. The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The laboratory apparatus is now being constructed.

  8. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  9. REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS, INFCIRC/540 (Corrected) VOLUME II/III IAEA COMMITTEE 24, Major Issues Underlying the Model Additional Protocol (1996-1997).

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, M.D.; Saum-Manning, L.; Houck, F.

    2010-01-01

    Volume I of this Review traces the origins of the Model Additional Protocol. It covers the period from 1991, when events in Iraq triggered an intensive review of the safeguards system, until 1996, when the IAEA Board of Governors established Committee 24 to negotiate a new protocol to safeguards agreement. The period from 1991-1996 set the stage for this negotiation and shaped its outcome in important ways. During this 5-year period, many proposals for strengthening safeguards were suggested and reviewed. Some proposals were dropped, for example, the suggestion by the IAEA Secretariat to verify certain imports, and others were refined. A rough consensus was established about the directions in which the international community wanted to go, and this was reflected in the draft of an additional protocol that was submitted to the IAEA Board of Governors on May 6, 1996 in document GOV/2863, Strengthening the Effectiveness and Improving the Efficiency of the Safeguards System - Proposals For Implementation Under Complementary Legal Authority, A Report by the Director General. This document ended with a recommendation that, 'the Board, through an appropriate mechanism, finalize the required legal instrument taking as a basis the draft protocol proposed by the Secretariat and the explanation of the measures contained in this document.'

  10. Distributed technologies in California's energy future: A preliminary report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, M.; Craig, P.; McGuire, C.B.; Simmons, M. (eds.)

    1977-09-01

    The chapters in Volume 2 of Distributed Energy Systems in California's Future are: Environmental Impacts of Alternative Energy Technologies for California; Land Use Configurations and the Utilization of Distributive Energy Technology; Land Use Implications of a Dispersed Energy Path; Belief, Behavior, and Technologies as Driving Forces in Transitional Stages--The People Problem in Dispersed Energy Futures; Development of an Energy Attitude Survey; Interventions to Influence Firms Toward the Adoption of ''Soft'' Energy Technology; The Entry of Small Firms into Distributed Technology Energy Industries; Short-Term Matching of Supply and Demand in Electrical Systems with Renewable Sources; Vulnerability of Renewable Energy Systems; and District Heating for California.

  11. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, A.; Daum, C. (eds.)

    2002-03-01

    Major advances in 'Energy and Materials Cycles' have been achieved in the removal of heavy metals from the solid residues of municipal waste incineration. It has been conclusively shown that the oxidation/reduction conditions established during the thermal treatment of filter ash have a decisive influence on the evaporation of groups of heavy metals. With respect to biomass gasification, studies have been carried out with respect to the best way of extracting pure hydrogen from the low calorific value gas that is typically obtained from a biomass gasifier. The overarching goal of the laboratory 'High Temperature Solar Technology' is the use of solar energy for the production of solar fuels, or for the reduction of CO{sub 2} emissions in large scale industrial processes that are conventionally carried out with the use of fossil fuels. In a short-term project targeted at the solar production of lime, highly encouraging results (98% degree of calcination, adjustable reactivity of the lime) have been obtained in a 10 kW prototype reactor. Hybrid processes, in which the calorific value of fossil fuels is upgraded by solar energy, represent the medium-term strategy. In this context, the successful operation of the SYNMET reactor, in which zinc oxide is reacted with methane to produce zinc and synthesis gas, represents an important milestone. The physical sciences group has come up with a novel scheme in which sulfides, rather than oxides, are used as starting materials. Copper sulfide Cu{sub 2}S has been identified as a promising raw material, from which metallic copper would be produced in a solar reduction step. For the use of a catalytic combustor upstream of the main burning chamber of the gas turbine, it is crucial to know the stream wise distance over the catalyst where homogeneous ignition is initiated. The combustion-group working at this concept has made great advances in matching the observed ignition distances with theory. In addition, the

  12. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bonnin, Anne, E-mail: annebonnin@free.fr [ESRF, 6 Jules Horowitz, F-38073 Grenoble Cedex (France); LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Duvauchelle, Philippe, E-mail: philippe.duvauchelle@insa-lyon.fr [LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Kaftandjian, Valérie [LVA, Vibrations and Acoustic Laboratory, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne Cedex (France); Ponard, Pascal [Thales Electron Devices SAS, 2 Rue Marcel Dassault, BP23 78141 Vélizy, Villacoublay Cedex (France)

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage.

  13. Imaging the heliosphere using neutral atoms from solar wind energy down to 15 eV

    Energy Technology Data Exchange (ETDEWEB)

    Galli, A.; Wurz, P. [Physics Institute, University of Bern, Bern 3012 (Switzerland); Fuselier, S. A.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States); Bzowski, M.; Sokół, J. M.; Kubiak, M. A. [Space Research Centre, Polish Academy of Sciences, Warsaw 00-716 (Poland); Möbius, E. [University of New Hampshire, Durham, NH 03824 (United States)

    2014-11-20

    We study the spatial and temporal distribution of hydrogen energetic neutral atoms (ENAs) from the heliosheath observed with the IBEX-Lo sensor of the Interstellar Boundary EXplorer (IBEX) from solar wind energies down to the lowest available energy (15 eV). All available IBEX-Lo data from 2009 January until 2013 June were included. The sky regions imaged when the spacecraft was outside of Earth's magnetosphere and when the Earth was moving toward the direction of observation offer a sufficient signal-to-noise ratio even at very low energies. We find that the ENA ribbon—a 20° wide region of high ENA intensities—is most prominent at solar wind energies whereas it fades at lower energies. The maximum emission in the ribbon is located near the poles for 2 keV and closer to the ecliptic plane for energies below 1 keV. This shift is an evidence that the ENA ribbon originates from the solar wind. Below 0.1 keV, the ribbon can no longer be identified against the globally distributed ENA signal. The ENA measurements in the downwind direction are affected by magnetospheric contamination below 0.5 keV, but a region of very low ENA intensities can be identified from 0.1 keV to 2 keV. The energy spectra of heliospheric ENAs follow a uniform power law down to 0.1 keV. Below this energy, they seem to become flatter, which is consistent with predictions. Due to the subtraction of local background, the ENA intensities measured with IBEX agree with the upper limit derived from Lyα observations.

  14. Solution of the Energy Level of Hydrogen-Like Atom for the Debye Shidlding Potential

    Institute of Scientific and Technical Information of China (English)

    HUXian-Quan; HUWen-Jiang; 等

    2002-01-01

    The first-order revision and the approximation analytical formula of the energy levels for hydrogen-like atoms under the condition of Debye shielding potential are achieved by means of the Rayleigh-Schroedinger perturbation theory.meanwhile,the corresponding recurrence relations are obtained from the use of the solution of power series,Based on the above solutions and with the use of energy consistent method the equivalent value of second-order reversion under the condition of Debye shielding potential is produced as well and the esult is compared with the data obtained by the numerical method.Besides,the critical bond-state and corresponding cut-off conditions are discussed.

  15. Geothermal research and development program of the US Atomic Energy Commission

    Science.gov (United States)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  16. Self-Energy Correction to the Two-Photon Decay Width in Hydrogenlike Atoms

    CERN Document Server

    Jentschura, U D

    2004-01-01

    We investigate the gauge invariance of the leading logarithmic radiative correction to the two-photon decay width in hydrogenlike atoms. It is shown that an effective treatment of the correction using a Lamb-shift "potential" leads to equivalent results in both the length as well as the velocity gauges provided all relevant correction terms are taken into account. Specifically, the relevant radiative corrections are related to the energies that enter into the propagator denominators, to the Hamiltonian, to the wave functions, and to the energy conservation condition that holds between the two photons; the form of all of these effects is different in the two gauges, but the final result is shown to be gauge invariant, as it should be. Although the actual calculation only involves integrations over nonrelativistic hydrogenic Green functions, the derivation of the leading logarithmic correction can be regarded as slightly more complex than that of other typical logarithmic terms. The dominant radiative correctio...

  17. Charge-state-dependent energy loss of slow ions. II. Statistical atom model

    Science.gov (United States)

    Wilhelm, Richard A.; Möller, Wolfhard

    2016-05-01

    A model for charge-dependent energy loss of slow ions is developed based on the Thomas-Fermi statistical model of atoms. Using a modified electrostatic potential which takes the ionic charge into account, nuclear and electronic energy transfers are calculated, the latter by an extension of the Firsov model. To evaluate the importance of multiple collisions even in nanometer-thick target materials we use the charge-state-dependent potentials in a Monte Carlo simulation in the binary collision approximation and compare the results to experiment. The Monte Carlo results reproduce the incident charge-state dependence of measured data well [see R. A. Wilhelm et al., Phys. Rev. A 93, 052708 (2016), 10.1103/PhysRevA.93.052708], even though the experimentally observed charge exchange dependence is not included in the model.

  18. Atomic structure of "multilayer silicene" grown on Ag(111): Dynamical low energy electron diffraction analysis

    Science.gov (United States)

    Kawahara, Kazuaki; Shirasawa, Tetsuroh; Lin, Chun-Liang; Nagao, Ryo; Tsukahara, Noriyuki; Takahashi, Toshio; Arafune, Ryuichi; Kawai, Maki; Takagi, Noriaki

    2016-09-01

    We have investigated the atomic structure of the "multilayer silicene" grown on the Ag(111) single crystal surface by using low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). We measured the intensity of the LEED spot as a function of the incident electron energy (I-V curve) and analyzed the I-V curve using a dynamical LEED theory. We have found that the Si(111)(√{ 3} ×√{ 3})-Ag model well reproduces the I-V curve whereas the models consisting of the honeycomb structure of Si do not. The bias dependence of the STM image of multilayer silicene agrees with that of the Si(111)(√{ 3} ×√{ 3})-Ag reconstructed surface. Consequently, we have concluded that the multilayer silicene grown on Ag(111) is identical to the Si(111)(√{ 3} ×√{ 3})-Ag reconstructed structure.

  19. Localized description of surface energy gap effects in the resonant charge exchange between atoms and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias-Garcia, A; Garcia, Evelina A; Goldberg, E C, E-mail: aiglesiasg@santafe-conicet.gov.ar [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC-CONICET-UNL), Gueemes 3450, CC91, (S3000GLN) Santa Fe (Argentina)

    2011-02-02

    The resonant charge exchange between atoms and surfaces is described by considering a localized atomistic view of the solid within the Anderson model. The presence of a surface energy gap is treated within a simplified tight-binding model of the solid, and a proper calculation of the Hamiltonian terms based on a LCAO expansion of the solid eigenstates is performed. It is found that interference terms jointly with a surface projected gap maximum at the {Gamma} point and the Fermi level inside it, lead to hybridization widths negligible around the Fermi level. This result can explain experimental observations related to long-lived adsorbate states and anomalous neutral fractions of low energy ions in alkali/Cu(111) systems.

  20. Kinetic energy partition method applied to ground state helium-like atoms.

    Science.gov (United States)

    Chen, Yu-Hsin; Chao, Sheng D

    2017-03-28

    We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.

  1. Interactions and low energy collisions between an alkali ion and an alkali atom of different nucleus

    CERN Document Server

    Rakshit, Arpita; Berriche, Hamid; Deb, Bimalendu

    2015-01-01

    We study theoretically interaction potentials and low energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems like X + Y$^{+}$, where X(Y$^{+})$ is either Li(Cs$^+$) or Cs((Li$^+$), Na(Cs$^+$) or Cs(Na$^+$) and Li(Rb$^+$) or Rb(Li$^+$). We calculate the molecular potentials of the ground and first two excited states of these three systems using pseudopotential method and compare our results with those obtained by others. We calculate ground-state scattering wave functions and cross sections of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order $1$ K, one needs to take into account at least 60 partial waves. In the low energy limit ($< 1 \\mu$K), elastic scattering cross sections exhibit Wigner law threshold behavior while in the high energy limit the cross sections go as $E^{-1/3}$. We discuss qualitatively the possibilities of forming cold molecular ion by ...

  2. Earthquake volume, fault plane area, seismic energy, strain, deformation and related quantities

    Directory of Open Access Journals (Sweden)

    S. J. DUDA

    1964-06-01

    Full Text Available An effort is made to improve Benioff's method for investigation
    of strain release in aftershock sequences. The improvement
    may be summarized as follows:
    1. Earthquake volume increases with magnitude, instead of being
    constant. A relation is given, relating volume to magnitude.
    2. A revised energy-magnitude formula is used.
    3. The seismic gain ratio, i. e. the ratio between seismic energy and
    elastic strain energy, probably increases with magnitude, instead of being
    constant. Likewise, the ratio of fault plane area of the main shock to the
    vertical section through the aftershock volume increases with magnitude.
    4. The seismic energy density, the elastic strain energy density as
    well as strain are independent of magnitude.
    5. The deformation, i. e. the total strain in the aftershock zone, increases
    with magnitude at the same rate as seismic energy and volume do.
    As a consequence of these improvements some earlier published strain
    release characteristics are reconstructed, this time as deformation characteristics
    instead.

  3. CFD Applications in Energy and Environment Sectors: Volume 1

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi and Hashim R. Abdol Hamid

    2012-01-01

    Full Text Available Chapter 1: Simulation and Modelling of Oxygen Coal Combustion with Flue Gas Recirculation. Chaouki Ghenai Chapter 2: The Choice of the Best Air Distribution Concept in Air-Conditioned Auditorium by Means of CFD Numerical Prediction. Barbara Lipska, Piotr Koper Chapter 3: CFD Applications in Natural Ventilation of Buildings and Air Quality Dispersion. N. Nikolopoulos, A. Nikolopoulos, I. Papadakis, K.-S. P. Nikas Chapter 4: CFD Modeling of Air Pollutant Transport and Dispersion. Labovský Juraj, Jelemenský Ľudovít Chapter 5: CFD Modeling of Multiphase Flow in Environmental Engineering. Masroor Mohajerani, Mehrab Mehrvar, Farhad Ein-Mozaffari Chapter 6: CFD Study on the Roles of Trees on Airflow and Pollutant Dispersion within Urban Street Canyons. Salim Mohamed Salim, Andrew Chan, Riccardo Buccolieri, Silvana Di Sabatino Chapter 7: Energy Efficiency and Air Quality in Hospitals Design. Essam E. Khalil Chapter 8: Application of CFD in Pulverized Fuel Combustion. M. Tayyeb Javed, Tahira Sultana Chapter 9: A Heat Transfer Model For Fluids Based on Cellular Automaton Application to an Air Conditioning of A Building. Andrés Saiz Martínez Chapter 10: CFD Application in Power Plants. Essam E. Khalil Chapter 11: Analysis and Computation of the Heat Charge/Discharge Behavior in Packed Bed Thermal Storage Systems. Pei-Wen Li, Jon Van Lew, Wafaa Karaki, Cho Lik Chan, Jake Stephens

  4. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    Science.gov (United States)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  5. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  6. Energy extension service pilot program evaluation report: the first year. Volume III: supplementary reports

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The appendices presented in this volume support and supplement Volume I of the Energy Extension Service Pilot Program Evaluation Report: The First Year. The appendices contain back-up data and detailed information on energy savings estimation and other analytic procedures. This volume also describes the data sources used for the evaluation. Appendix I presents the Btu estimation procedures used to calculate state-by-state energy savings. Appendix II contains details of the data sources used for the evaluation. Appendix III presents program activity data, budget, and cost per client analyses. Appendix IV, the Multivariate Analysis of EES Survey Data, provides the basis for the Integrating Statistical Analyses. Appendix V describes the rationale and exclusion rules for outlying data points. The final appendix presents program-by-program fuel costs and self-reported savings and investment.

  7. Incorporating the nuclear vibrational energies into the -atom in molecules- analysis: An analytical study

    CERN Document Server

    Gharabaghi, Masumeh

    2016-01-01

    The orthodox quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and working solely with the electronic wavefunctions, so unable to include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e. those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction the quantum nuclei may be conceived pseudo-adiabatically as qua...

  8. Pairwise energies for polypeptide coarse-grained models derived from atomic force fields

    Science.gov (United States)

    Betancourt, Marcos R.; Omovie, Sheyore J.

    2009-05-01

    The energy parametrization of geometrically simplified versions of polypeptides, better known as polypeptide or protein coarse-grained models, is obtained from molecular dynamics and statistical methods. Residue pairwise interactions are derived by performing atomic-level simulations in explicit water for all 210 pairs of amino acids, where the amino acids are modified to closer match their structure and charges in polypeptides. Radial density functions are computed from equilibrium simulations for each pair of residues, from which statistical energies are extracted using the Boltzmann inversion method. The resulting models are compared to similar potentials obtained by knowledge based methods and to hydrophobic scales, resulting in significant similarities in spite of the model simplicity. However, it was found that glutamine, asparagine, lysine, and arginine are more attractive to other residues than anticipated, in part, due to their amphiphilic nature. In addition, equally charged residues appear more repulsive than expected. Difficulties in the calculation of knowledge based potentials and hydrophobicity scale for these cases, as well as sensitivity of the force field to polarization effects are suspected to cause this discrepancy. It is also shown that the coarse-grained model can identify native structures in decoy databases nearly as well as more elaborate knowledge based methods, in spite of its resolution limitations. In a test conducted with several proteins and corresponding decoys, the coarse-grained potential was able to identify the native state structure but not the original atomic force field.

  9. American Security and the International Energy Situation. Volume 2. World Energy and the Security of Supply

    Science.gov (United States)

    1975-04-15

    DEPENDABILITY. 1975-,905 VI THE OUTLOOK FOR WORLD ENERGY INTERDEPENDENCE ,„ Supply, Demand, OPEC and Prices Energy Interdependence...the outlook of the world energy market is speculated upon in Chapter Vi and the resulting patterns of interdependence are subse...theme of this study is the relationship of Interdepen- dence which characterizes the world energy system. From the standpoint of the international

  10. A hydrogen energy carrier. Volume 1: Summary. [for meeting energy requirements

    Science.gov (United States)

    Savage, R. L. (Editor); Blank, L. (Editor); Cady, T. (Editor); Cox, K. E. (Editor); Murray, R. (Editor); Williams, R. D. (Editor)

    1973-01-01

    The production, technology, transportation, and implementation of hydrogen into the energy system are discussed along with the fossil fuel cycle, hydrogen fuel cycle, and the demands for energy. The cost of hydrogen production by coal gasification; electrolysis by nuclear energy, and solar energy are presented. The legal aspects of a hydrogen economy are also discussed.

  11. Application analysis of solar total energy systems to the residential sector. Volume II, energy requirements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This project analyzed the application of solar total energy systems to appropriate segments of the residential sector and determined their market penetration potential. This volume covers the work done on energy requirements definition and includes the following: (1) identification of the single-family and multi-family market segments; (2) regionalization of the United States; (3) electrical and thermal load requirements, including time-dependent profiles; (4) effect of conservation measures on energy requirements; and (5) verification of simulated load data with real data.

  12. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions.

    Science.gov (United States)

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2017-02-09

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C2 molecule.

  13. Finite volume effects in low-energy neutron-deuteron scattering

    CERN Document Server

    Rokash, Alexander; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G

    2013-01-01

    We present a lattice calculation of neutron-deuteron scattering at very low energies and investigate in detail the impact of the topological finite-volume corrections. Our calculations are carried out in the framework of pionless effective field theory at leading order in the low-energy expansion. Using lattice sizes and a lattice spacing comparable to those employed in nuclear lattice simulations, we find that the topological volume corrections must be taken into account in order to obtain correct results for the neutron-proton S-wave scattering lengths.

  14. Potential energies of characteristic atoms on basis of experimental heats of formation of AuCu and AuCu_3 compounds (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    XIE You-qing; LIU Xin-bi; LI Xiao-bo; PENG Hong-jian; NIE Yao-zhuang

    2009-01-01

    The systematic science of alloys(SSA) is a framework of the total energy and total volume able to be separated. The potential energy sequences of characteristic atoms at the central sites of the basic clusters in the fcc-based lattice Au-Cu system are separated out from smaller experimental heats of formation of L10-AuCu and L1_2-AuCu_3 compounds only, by nine potential energy E-functions and through the use of structural unit inversion method. From these potential energy sequences, the potential energies and heats of formation of the disordered Au1-xCux alloys at 0 K are calculated. The potential energies, heats of formation and Tc-temperatures of order-disorder transitions of the L1_0-AuCu, L1_2-Au_3Cu and L1_2-AuCu_3 compounds, as well as the Au_3Cu-, AuCu- and AuCu_3~- type ordered alloys with maximal ordering degrees are calculated too. The results show that the 5th E-function may be chosen for developing it into the free energy-, enthalpy-, vibrational energy- and vibrational entropy-functions for describing thermodynamic properties of the compounds, ordered and disordered phases and for establishing the phase diagram of the Au-Cu system in the future.

  15. Recent developments at French atomic energy commission relating to non destructive nuclear waste assay by using electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lvoussi, A.; Romeyer-Dhebey, J.; Jallu, F.; Passard, C.; Mariani, A.; Recroix, H.; Payan, E.; Denis, C.; Loridon, J. [CEA Cadarache, Dept. d' Etudes des Reacteurs, DER, 13 - Saint Paul lez Durance (France); Buisson, A.; Nurdin, G.; Allano, J.; Jaureguy, J.C. [DGA, Delegation Generale pour l' Armement, ETCA-CEB-DPN, 94 - Arcueil (France)

    2000-07-01

    An important program is currently in progress at several laboratories over the world for the development of sensitive, practical non-destructive assay techniques for the quantification of low level transuranics (TRU) in solid wastes. The wide variety of materials and contaminants, the low concentrations and large volumes involve, all make this kind of assay a complicated affair. Over the last few years, considerable progress has been made in the field of assay techniques for low level contaminated wastes. This report describes the methods being developed at French Atomic Energy Commission (C.E.A.) in Cadarache to assay high density TRU waste packages by using photon, neutron or both photon and neutron as interrogating particles. All of these particles are produced by using a pulsed electron linear accelerator from which the photons are produced following Bremsstrahlung phenomena on a heavy metallic converter and the neutrons are generated in appropriate low level photoneutron threshold target (e.g. Beryllium). The dynamic of photonuclear interactions and photoneutron production, use of an electron linear accelerator as a particle source, experimental and electronics details, experimental results, simulation to experiment performances and future experimental and theoretical studies are discussed. (authors)

  16. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

    1995-02-01

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

  17. Effects of activation energy and activation volume on the temperature-dependent viscosity of water

    Science.gov (United States)

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10-23m3 ), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.

  18. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    Science.gov (United States)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; DeAngelis, E; Desai, M.; Goldstein, R.; Lp, W.-H.; Killen, R.; Livi, S.

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper

  19. Energy modeling. Volume 2: Inventory and details of state energy models

    Science.gov (United States)

    Melcher, A. G.; Underwood, R. G.; Weber, J. C.; Gist, R. L.; Holman, R. P.; Donald, D. W.

    1981-05-01

    An inventory of energy models developed by or for state governments is presented, and certain models are discussed in depth. These models address a variety of purposes such as: supply or demand of energy or of certain types of energy; emergency management of energy; and energy economics. Ten models are described. The purpose, use, and history of the model is discussed, and information is given on the outputs, inputs, and mathematical structure of the model. The models include five models dealing with energy demand, one of which is econometric and four of which are econometric-engineering end-use models.

  20. 10 CFR 8.2 - Interpretation of Price-Anderson Act, section 170 of the Atomic Energy Act of 1954.

    Science.gov (United States)

    2010-01-01

    ... upon the legislative history, stated that the problem of a reactor accident in the United States... Atomic Energy Act of 1954. 8.2 Section 8.2 Energy NUCLEAR REGULATORY COMMISSION INTERPRETATIONS § 8.2... caused outside the United States by a nuclear incident occurring within the United States. (b)...

  1. Dependence of the atomic energy levels on a superstrong magnetic field with account of a finite nucleus radius and mass

    Science.gov (United States)

    Godunov, S. I.; Vysotsky, M. I.

    2013-06-01

    The influence of the finiteness of the proton radius and mass on the energies of a hydrogen atom and hydrogenlike ions in a superstrong magnetic field is studied. The finiteness of the nucleus size pushes the ground energy level up leading to a nontrivial dependence of the value of the critical nucleus charge on the external magnetic field.

  2. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Science.gov (United States)

    2010-05-05

    ... COMMISSION DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste Shipment Tracking Requirements In 10 CFR Part 20 Appendix G 1.0 Background DTE Energy (DTE) is the licensee.... DTE is in the process of decommissioning Fermi-1 and radioactive waste shipments from the site are...

  3. A new exact quantum mechanical rovibrational kinetic energy operator for penta-atomic systems in internal coordinates

    Institute of Scientific and Technical Information of China (English)

    陈光巨; 李玉学

    1999-01-01

    The concrete molecule-fixed (MF) kinetic energy operator for penta-atomic molecules is expressed in terms of the parameterδ, the matrix element G?, and angular momentum operator (?). The applications of the operator are also discussed. Finally, a general compact form of kinetic energy operator suitable for calculating the rovibrational spectra of polyatomie molecules is presented.

  4. Influence on electron energy loss spectroscopy of the niobium-substituted uranium atom: A density functional theory study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U3Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U3Nb shifts downward to low energy. Niobium affects DOS forfand d electrons more than that for p and s electrons. U3Nb is similar to uranium for the electronic energy loss spectra.

  5. Background report for the formerly utilized Manhattan Engineer District/Atomic Energy Commission sites program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    The Department of Energy is conducting a program to determine radiological conditions at sites formerly used by the Army Corps of Engineers' Manhattan Engineer District and the Atomic Energy Commission in the early years of nuclear energy development. Also included in the program are sites used in the Los Alamos plutonium development program and the Trinity atomic bomb test site. Materials, equipment, buildings, and land became contaminated, primarily with naturally occurring radioactive nuclides. They were later decontaminated in accordance with the standards and survey methods in use at that time. Since then, however, radiological criteria, and proposed guidelines for release of such sites for unrestricted use have become more stringent as research on the effects of low-level radiation has progressed. In addition, records documenting some of these decontamination efforts cannot be found, and the final radiological conditions of the sites could not be adequately determined from the records. As a result, the Formerly Utilized Sites Program was initiated in 1974 to identify these formerly used sites and to reevaluate their radiological status. This report covers efforts through June 1980 to determine the radiological status of sites for which the existing conditions could not be clearly defined. Principal contractor facilities and associated properties have already been identified and activities are continuing to identify additional sites. Any new sites located will probably be subcontractor facilities and areas used for disposal of contractor waste or equipment; however, only limited information regarding this equipment and material has been collected to date. As additional information becomes available, supplemental reports will be published.

  6. Precise atomic-scale investigations of material sputtering process by light gas ions in pre-threshold energy region

    CERN Document Server

    Suvorov, A L

    2002-01-01

    Foundation and prospects of the new original technique of the sputtering yield determination of electro-conducting materials and sub-atomic layers on their surface by light gas ions the pre-threshold energy region (from 10 to 500 eV) are considered. The technique allows to identify individual surface vacancies, i.e., to count individual sputtered atoms directly. A short review of the original results obtained by using the developed techniques is given. Data are presented and analyzed concerning energy thresholds of the sputtering onset and energy dependences of sputtering yield in the threshold energy region for beryllium, tungsten, tungsten oxide, alternating tungsten-carbon layers, three carbon materials as well as for sub-atomic carbon layers on surface of certain metals at their bombardment by hydrogen, deuterium and/or helium ions

  7. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  8. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  9. Collisions of low-energy antiprotons and protons with atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Luehr, Armin

    2010-02-18

    Antiproton (anti p) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of anti p collisions with the simplest one- and two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy anti p+He collisions (<40 keV), stimulating a vivid theoretical activity. On the other hand, only very few theoretical anti p studies can be found considering molecular as well as other atomic targets, in contrast to proton (p) collisions. This is in particular true for anti p impacts on H{sub 2} despite its fundamental role in representing the simplest two-electron molecule. The obtained results may be useful for the anti p experiments at CERN (e.g., antihydrogen production) and in particular for the facility design of low-energy anti p storage rings (e.g., at FLAIR) where a precise knowledge of the anti p interaction with the dominant residual-gas molecule H{sub 2} is needed. In this work a nonperturbative, time-dependent numerical approach is developed which describes ionization and excitation of atoms or molecules by either anti p or p impact based on the impact-parameter method. A spectral close-coupling method is employed for solving the time-dependent Schroedinger equation in which the scattering wave function is expanded in (effective) one- or two-electron eigenstates of the target. This includes for the first time a full two-electron, two-center description of the H{sub 2} molecule in anti p collisions. The radial part of the one-electron eigenstates is expanded in B splines while the two-electron basis is obtained with a configurationinteraction approach. Calculations are performed for anti p collisions with H, H{sub 2}{sup +}, and H{sub 2} as well as with He and alkali-metal atoms Li, Na, K, and Rb. Additionally, data are obtained for p collisions with H{sub 2}, Li, Na, and K. The developed method is tested and validated by detailed

  10. Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and Atmospheric Influences

    Science.gov (United States)

    2016-09-01

    maximum ambient ( panel ) temperature of 25 °C. The solar photovoltaic (PV) panel would be mounted on a pole, and for maximum solar energy input, would...designers often use averaged azimuth and elevation angles for the panel orientation. This choice presumes the power system design is not constrained by...ARL-TR-7797 ● SEP 2016 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 3: Solar -Power Microgrids and

  11. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Armend Gazmeno Håti

    Full Text Available Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase-polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ, lifetimes in the absence of external perturbation (τ0 and free energies (ΔG# were determined for the different epimerase-alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate

  12. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy.

    Science.gov (United States)

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase-polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase-alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the

  13. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy

    Science.gov (United States)

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase–polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase–alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the

  14. Journal of Sustainable Development of Energy, Water and Environment Systems – Volume IV

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2016-12-01

    In total 32 manuscripts were published in Volume IV, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  15. Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

  16. Relating polarizability to volume, ionization energy, electronegativity, hardness, moments of momentum, and other molecular properties

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Shamus A.; Thakkar, Ajit J., E-mail: ajit@unb.ca [Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2014-08-21

    Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.

  17. Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

  18. Status of contamination monitoring in radiation activities of National Atomic Energy Agency (NAEA) in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Suhariyono, Gatot [National Atomic Energy Agency, Jakarta (Indonesia)

    1997-06-01

    National Atomic Energy Agency (NAEA) or Badan Tenaga Atom Nasional (BATAN) is a non departmental governmental agency, headed by a Director General who is directly responsible to the President. Center for Standardization and Radiation Safety Research (CSRSR) is one of the research centers within the deputy for the assessment of nuclear science and technology of the NAEA. The main task of the CSRSR is to implement research and development program, development and services in the field of radiation safety, standardization, dosimetry, radiation health as well as the application of nuclear techniques in medicine, according to the policy confirmed by the director general of BATAN. Task of radiation protection division is to set up programs and to develop radiation protection, personal monitoring system and radiation level of the working areas and their surroundings as well as dose limitation system, to carry out technical up grading of radiation protection officials skill and to help coping with radiation accident. The key factor on contamination monitoring is to reduce human error and mechanical failures. These problems can be achieved to the highest degree by developing knowledge and skill of staffs via trainings or courses on contamination and decontamination, so that they are hoped to become trained and qualified staffs. (G.K.)

  19. Greatly enhanced intensity-difference squeezing via energy-level modulations in hot atomic media

    CERN Document Server

    Zhang, Da; Zhang, Zhaoyang; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2016-01-01

    Narrow-band intensity-difference squeezing (IDS) beams have important applications in quantum metrology and quantum information. The best way to generate narrow-band IDS is to employ parametrically-amplified (PA) four-wave mixing (FWM) process in high-gain atomic media. Such IDS can be further enhanced by cascading multiple PA-FWM processes in separate atomic media. The complicated experimental setup, added losses and mechanical stability can limit the wide uses of such scheme in practical applications. Here, we show that by modulating/dressing the internal energy level(s) with additional laser(s), the degree of original IDS can be substantially increased. With an initial IDS of $-4.0\\pm0.1$ dB using PA-non-degenerate-FWM process in a three-level $\\Lambda$-type configuration, the degree of IDS can be enhanced to $-7.0\\pm0.1$ dB/$-8.1\\pm0.1$ dB when we use one/two laser beam(s) to modulate the involved ground/excited state(s). Our results show a low-loss, robust and efficient way to produce high degree of IDS ...

  20. A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry

    CERN Document Server

    Adler, Ronald J; Perl, Martin L

    2011-01-01

    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark content of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong non-gravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO.The paper concludes ...

  1. Lyman- photodissociation of CH3CFCl2 (HCFC-141b): Quantum yield and translational energy of hydrogen atoms

    Indian Academy of Sciences (India)

    Almuth Laeuter; Hans-Robert Volpp; Jai P Mittal; Rajesh K Vatsa

    2007-07-01

    The collision-free, room temperature gas-phase photodissociation dynamics of CH3CFCl2 (HCFC-141b) was studied using Lyman- laser radiation (121.6 nm) by the laser photolysis/laserinduced fluorescence `pump/probe’ technique. Lyman- radiation was used both to photodissociate the parent molecule and to detect the nascent H atom products via (22P → 12S) laser-induced fluorescence. Absolute H atom quantum yield, H = (0.39 ± 0.09) was determined by calibration method in which CH4 photolysis at 121.6 nm was used as a reference source of well-defined H atom concentrations. The line shapes of the measured H atom Doppler profiles indicate a Gaussian velocity distribution suggesting the presence of indirect H atom formation pathways in the Lyman- photodissociation of CH3CFCl2. The average kinetic energy of H atoms calculated from Doppler profiles was found to be T(lab) = (50 ± 3) kJ/mol. The nearly statistical translational energy together with the observed Maxwell-Boltzmann velocity distribution indicates that for CH3CFCl2 the H atom forming dissociation process comes closer to the statistical limit.

  2. Molecular Dynamics Study on Interfacial Energy and Atomic Structure of Ag/Ni and Cu/Ni Heterophase System

    Institute of Scientific and Technical Information of China (English)

    Haijiang LIU; Shaoqing WANG; An DU; Caibei ZHANG

    2004-01-01

    The results of molecular dynamics calculations on the interfacial energies and atomic structures of Ag/Ni and Cu/Ni interaces are presented. Calculation on Ag/Ni interfaces with low-index planes shows that those containing the (111) plane have the lowest energies, which is in agreement with the experiments. Comparing surface energy with interracial energy, it is found the order of the interfacial energies of Ag/Ni and Cu/Ni containing the planes fall in the same order as solid-vapor surface energies of Ag, Cu and Ni. In this MD simulation, the relaxed atomic structure and dislocation network of (110)Ag||(110)Ni interface are coincident to HREM observations.

  3. Latitude, Energy, and Time Variations of Energetic Neutral Atom Spectral indices Measured by IBEX

    Science.gov (United States)

    Desai, Mihir; Heerikhuisen, Jacob; McComas, David; Funsten, Herbert; Pogorelov, Nikolai; Zank, Gary; Schwadron, Nathan; Fuselier, Stephen; Allegrini, Frederic; Dayeh, Maher A.

    2016-07-01

    We investigate the latitude, energy, and time variations of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 5 years of the mission. Our previous results based on the first 3 years of IBEX observations showed that the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur within ±30° of the equator. While these results confirmed the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere, we also showed that, unlike previous reports, the ˜0.5-6 keV globally distributed ENA spectral indices could not be represented as single power laws over much of the sky, and that they depend on energy and latitude. In this paper we extend the above results to include years 4 and 5 of IBEX observations and investigate if the spectral indices vary as a function of time. Finally, we discuss implications of our results on models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  4. Lifetime Measurements of $ \\pi ^+ \\pi ^- $ and $\\pi^{+-} K^{-+}$ Atoms to Test Low-Energy QCD Predictions

    CERN Multimedia

    Ponta, T C; Dumitriu, D E; Afanasyev, L; Zhabitskiy, M; Rykalin, V; Hons, Z; Schacher, J; Yazkov, V; Gerndt, J; Detraz, C C; Guaraldo, C; Dreossi, D; Smolik, J; Gorchakov, O; Nikitin, M; Dudarev, A; Kluson, J; Hansroul, M; Okada, K; Constantinescu, S; Kruglov, V; Komarov, V; Takeutchi, F; Tarta, P D; Kuptsov, A; Nemenov, L; Karpukhin, V; Shliapnikov, P; Brekhovskikh, V; Saborido silva, J J; Drijard, D; Rappazzo, G F; Pentia, M C; Gugiu, M M; Kruglova, L; Pustylnik, Z; Trojek, T; Vrba, T; Iliescu, M A; Duma, M; Ciocarlan, C; Kulikov, A; Ol'shevskiy, V; Ryazantsev, A; Chiba, M; Anania, A; Tarasov, A; Gritsay, K; Lapchine, V; Cechak, T; Lopez aguera, A

    2002-01-01

    %PS212 \\\\ \\\\ The proposed experiment aims to measure the lifetime of $ \\pi ^+ \\pi ^- $ atoms in the ground state with 10\\% precision, using the 24~GeV/c proton beam of the CERN Proton Synchrotron. As the value of the above lifetime of order 10$ ^- ^{1} ^{5} $s is dictated by a strong interaction at low energy, the precise measurement of this quantity enables to determine a combination of S-wave pion scattering lengths to 5\\%. Pion scattering lengths have been calculated in the framework of chiral perturbation theory and values predicted at the same level of accuracy have, up to now, never been confronted with accurate experimental data. Such a measurement would submit the understanding of chiral symmetry breaking of QCD to a crucial test.

  5. Negotiating supranational rules - The genesis of the International Atomic Energy Agency Safeguards System

    Energy Technology Data Exchange (ETDEWEB)

    Forland, Astrid

    1998-12-31

    The object of this thesis is the evolution from 1954-56 up until the mid 1970s of the nuclear safeguards system administered by the International Atomic Energy Agency (IAEA) in Vienna. The evolution is traced not through the practical implementation of the safeguards system, but through the various multilateral negotiations through which it was created. The focus is on analysing the arguments advanced in the various negotiations, and the main objective is to single out the factors determining the result. The discussion is organised into the following chapters: (1) The statute of the IAEA, (2) The IAEA 1961 safeguard document (INFCIRC/26), (3) The IAEA 1965 safeguards document (INFCIRC/66), (4) The non-proliferation treaty, (5) NPT safeguards. 92 refs.

  6. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation Energy and Imaging Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2002-01-01

    This paper presents particle formation energy balances and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium during the Phase II testing in 2001. Solid particles of hydrogen were frozen in liquid helium and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. The particle formation efficiency is also estimated. Particle sizes from the Phase I testing in 1999 and the Phase II testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed. These experiment image analyses are one of the first steps toward visually characterizing these particles and it allows designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  7. Cell Evolutionary Algorithm: a New Optimization Method on Ground-State Energy of the Atomic

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solution space, rather than the point. The paper defines the Cell Evolutionary Algorithm, which imple-ments such a view of the evolution mechanism. First, the optimal set in which the optimal solution may be ob-tained. Then this approach applies the embedded search method to get the optimal solution. We tested this approach on the atomic structure, and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem.

  8. Testing the validity of the International Atomic Energy Agency (IAEA) safety culture model.

    Science.gov (United States)

    López de Castro, Borja; Gracia, Francisco J; Peiró, José M; Pietrantoni, Luca; Hernández, Ana

    2013-11-01

    This paper takes the first steps to empirically validate the widely used model of safety culture of the International Atomic Energy Agency (IAEA), composed of five dimensions, further specified by 37 attributes. To do so, three independent and complementary studies are presented. First, 290 students serve to collect evidence about the face validity of the model. Second, 48 experts in organizational behavior judge its content validity. And third, 468 workers in a Spanish nuclear power plant help to reveal how closely the theoretical five-dimensional model can be replicated. Our findings suggest that several attributes of the model may not be related to their corresponding dimensions. According to our results, a one-dimensional structure fits the data better than the five dimensions proposed by the IAEA. Moreover, the IAEA model, as it stands, seems to have rather moderate content validity and low face validity. Practical implications for researchers and practitioners are included.

  9. Scaled-Down Moderator Circulation Test Facility at Korea Atomic Energy Research Institute

    Directory of Open Access Journals (Sweden)

    Hyoung Tae Kim

    2016-01-01

    Full Text Available Korea Atomic Energy Research Institute (KAERI started the experimental research on moderator circulation as one of a the national research and development programs from 2012. This research program includes the construction of the moderator circulation test (MCT facility, production of the validation data for self-reliant computational fluid dynamics (CFD tools, and development of optical measurement system using the particle image velocimetry (PIV. In the present paper we introduce the scaling analysis performed to extend the scaling criteria suitable for reproducing thermal-hydraulic phenomena in a scaled-down CANDU- (CANada Deuterium Uranium- 6 moderator tank, a manufacturing status of the 1/4 scale moderator tank. Also, preliminary CFD analysis results for the full-size and scaled-down moderator tanks are carried out to check whether the moderator flow and temperature patterns of both the full-size reactor and scaled-down facility are identical.

  10. Disposal of radioactive wastes arising in the United Kingdom from the peaceful uses of atomic energy

    CERN Document Server

    Bryant, P M

    1971-01-01

    This paper describes United Kingdom policy in relation to radioactive waste and summarises the relevant legislation ad methods of control. Data are given on the amounts of radioactivity discharged as waste from establishments of the United Kingdom Atomic Energy Authority, the nuclear power stations operated by the Electricity Generating Boards and other users of radioactive materials. Studies of the behaviour of radioactivity in the environment are reported with particular reference to food chains and other potential sources of irradiation of the public. The results of environmental monitoring are presented and estimates are made of radiation doses received by individual members of the public and larger population groups as a result of waste disposal. It is concluded that the doses received are all within the appropriate limits recommended by the International Commission on Radiological Protection, and in most cases are trivial.

  11. Determining Nuclear Fingerprints: Glove Boxes, Radiation Protection, and the International Atomic Energy Agency.

    Science.gov (United States)

    Rentetzi, Maria

    2017-06-01

    In a nuclear laboratory, a glove box is a windowed, sealed container equipped with two flexible gloves that allow the user to manipulate nuclear materials from the outside in an ostensibly safe environment. As a routine laboratory device, it invites neglect from historians and storytellers of science. Yet, since especially the Gulf War, glove boxes have put the interdependence of science, diplomacy, and politics into clear relief. Standing at the intersection of history of science and international history, technological materials and devices such as the glove box can provide penetrating insight into the role of international diplomatic organizations to the global circulation and control of scientific knowledge. The focus here is on the International Atomic Energy Agency. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    Science.gov (United States)

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction .This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  13. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume III. Wind conversion systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The variability of energy output inherent in wind energy conversion systems (WECS) has led to the investigation of energy storage as a means of managing the available energy when immediate, direct use is not possible or desirable. This portion of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a wind energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with wind energy conversion systems.

  14. Ion-neutral chemistry at ultralow energies: Dynamics of reactive collisions between laser-cooled Ca^+ ions and Rb atoms in an ion-atom hybrid trap

    CERN Document Server

    Hall, Felix H J; Hegi, Gregor; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier; Willitsch, Stefan

    2013-01-01

    Cold chemical reactions between laser-cooled Ca^+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the range of collision energies /k_B = 20 mK-20 K. The lowest energies were achieved in experiments using single localized Ca^+ ions. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes in this system (non-radiative and radiative charge transfer as well as radiative association leading to the formation of CaRb^+ molecular ions) have been analyzed using high-level quantum-chemical calculations of the potential energy curves of CaRb^+ and quantum-scattering calculations for the radiative channels. For the present low-energy scattering experiments, it is shown that the energy dependence of the reaction rate constants is governed by long-range interactions in line with the classical Langevin model, but their magnitude is determined by short-range non-adiabatic and radiative couplings which only ...

  15. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    Science.gov (United States)

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  16. Implementation of dose management system at radiation protection board of Ghana Atomic Energy Commission.

    Science.gov (United States)

    Hasford, F; Amoako, J K; Darko, E O; Emi-Reynolds, G; Sosu, E K; Otoo, F; Asiedu, G O

    2012-01-01

    The dose management system (DMS) is a computer software developed by the International Atomic Energy Agency for managing data on occupational exposure to radiation sources and intake of radionuclides. It is an integrated system for the user-friendly storage, processing and control of all existing internal and external dosimetry data. The Radiation Protection Board (RPB) of the Ghana Atomic Energy Commission has installed, customised, tested and using the DMS as a comprehensive DMS to improve personnel and area monitoring in the country. Personnel dose records from the RPBs database from 2000 to 2009 are grouped into medical, industrial and education/research sectors. The medical sector dominated the list of monitored institutions in the country over the 10-y period representing ∼87 %, while the industrial and education/research sectors represent ∼9 and ∼4 %, respectively. The number of monitored personnel in the same period follows a similar trend with medical, industrial and education/research sectors representing ∼74, ∼17 and ∼9 %, respectively. Analysis of dose data for 2009 showed that there was no instance of a dose above the annual dose limit of 20 mSv, however, 2.7 % of the exposed workers received individual annual doses >1 mSv. The highest recorded individual annual dose and total collective dose in all sectors were 4.73 mSv and 159.84 man Sv, respectively. Workers in the medical sector received higher individual doses than in the other two sectors, and average dose per exposed worker in all sectors is 0.25 mSv.

  17. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, B.D. [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Houben, L. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Mayer, J. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Central Facility for Electron Microscopy, RWTH Aachen University, D-52074 Aachen (Germany); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2014-12-15

    We present atomic-resolution energy-filtered transmission electron microscopy (EFTEM) images obtained with the chromatic-aberration-corrected FEI Titan PICO at the Ernst-Ruska Centre, Jülich, Germany. We find qualitative agreement between experiment and simulation for the background-subtracted EFTEM images of the Ti–L{sub 2,3} and O–K edges for a specimen of SrTiO{sub 3} oriented down the [110] zone axis. The simulations utilize the transition potential formulation for inelastic scattering, which permits a detailed investigation of contributions to the EFTEM image. We find that energy-filtered images of the Ti–L{sub 2,3} and O–K edges are lattice images and that the background-subtracted core-loss maps may not be directly interpretable as elemental maps. Simulations show that this is a result of preservation of elastic contrast, whereby the qualitative details of the image are determined primarily by elastic, coherent scattering. We show that this effect places a constraint on the range of specimen thicknesses which could theoretically yield directly useful elemental maps. In general, interpretation of EFTEM images is ideally accompanied by detailed simulations. - Highlights: • Achromatic atomic-resolution EFTEM images were obtained for STO 〈110〉. • Simulations were in qualitative agreement with Ti–L{sub 2,3} and O–K edge maps. • The experimental EFTEM maps are not directly interpretable as elemental maps. • Image intensities are strongly determined by preservation of elastic contrast. • Interpretation of EFTEM images is ideally accompanied by detailed simulations.

  18. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    Science.gov (United States)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on

  19. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Forty-four. Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Tennessee governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Twenty-one. Maine

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maine governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Community Energy Systems and the Law of Public Utilities. Volume Forty-one. Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Rhode Island governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Forty-six. Utah

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Utah governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilites, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Twenty-one. Maine

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maine governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Forty-seven. Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Vermont governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Two. Federal

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is presented of the laws and programs of the Federal government governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Thirty-nine. Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Oregon governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Seventeen. Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Iowa governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Twenty-six. Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Mississippi governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Nine. Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Connecticut governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Thirteen. Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Hawaii governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Forty-eight. Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Ten. Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Delaware governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Twenty-eight. Montana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Montana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Twenty-two. Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Maryland governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Forty. Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Pennsylvania governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Community Energy Systems and the Law of Public Utilities. Volume Twenty-three. Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Massachusetts governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Community Energy Systems and the Law of Public Utilities. Volume Eleven. Florida

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Florida governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Community Energy Systems and the Law of Public Utilities. Volume Four. Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Alaska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Three. Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Alabama governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  1. Community Energy Systems and the Law of Public Utilities. Volume Eighteen. Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  2. Community Energy Systems and the Law of Public Utilities. Volume Eight. Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Colorado governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. Community Energy Systems and the Law of Public Utilities. Volume Thirty-nine. Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Oregon governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  4. Community Energy Systems and the Law of Public Utilities. Volume Forty-seven. Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Vermont governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Community Energy Systems and the Law of Public Utilities. Volume Sixteen. Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Indiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  6. Community Energy Systems and the Law of Public Utilities. Volume Forty-three. South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of South Dakota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. Community Energy Systems and the Law of Public Utilities. Volume Fourteen. Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Idaho governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  8. Community Energy Systems and the Law of Public Utilities. Volume Seven. California

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of California governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Community Energy Systems and the Law of Public Utilities. Volume Forty-two. South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of South Carolina governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  10. Community Energy Systems and the Law of Public Utilities. Volume Two. Federal

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is presented of the laws and programs of the Federal government governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Community Energy Systems and the Law of Public Utilities. Volume Forty-five. Texas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Texas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  12. Community Energy Systems and the Law of Public Utilities. Volume Forty-nine. Washington

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Washington governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Community Energy Systems and the Law of Public Utilities. Volume Twenty-five. Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Minnesota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  14. Community Energy Systems and the Law of Public Utilities. Volume Thirty-two. New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Jersey governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  15. Community Energy Systems and the Law of Public Utilities. Volume Twenty-seven. Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Missouri governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Community Energy Systems and the Law of Public Utilities. Volume Six. Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Arkansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  17. Community Energy Systems and the Law of Public Utilities. Volume Thirty-three. New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of New Mexico governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Community Energy Systems and the Law of Public Utilities. Volume Fifteen. Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Illinois governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Community Energy Systems and the Law of Public Utilities. Volume Fifty. West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of West Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. Community Energy Systems and the Law of Public Utilities. Volume Thirty-seven. Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is presented of the laws and programs of the State of Ohio governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.