Chlorophyll-a specific volume scattering function of phytoplankton.
Tan, Hiroyuki; Oishi, Tomohiko; Tanaka, Akihiko; Doerffer, Roland; Tan, Yasuhiro
2017-06-12
Chlorophyll-a specific light volume scattering functions (VSFs) by cultured phytoplankton in visible spectrum range is presented. Chlorophyll-a specific VSFs were determined based on the linear least squares method using a measured VSFs with different chlorophyll-a concentrations. We found obvious variability of it in terms of spectral and angular shapes of VSF between cultures. It was also presented that chlorophyll-a specific scattering significantly affected on spectral variation of the remote sensing reflectance, depending on spectral shape of b. This result is useful for developing an advance algorithm of ocean color remote sensing and for deep understanding of light in the sea.
DEFF Research Database (Denmark)
Cannavacciuolo, L.; Sommer, C.; Pedersen, J.S.
2000-01-01
outlined in the Odijk-Skolnick-Fixman theory, in which the behavior of charged polymers is described only in terms of increasing local rigidity and excluded volume effects. Moreover, the Monte Carlo data are found to be in very good agreement with experimental scattering measurements with equilibrium......We present a systematic Monte Carlo study of the scattering function S(q) of semiflexible polyelectrolytes at infinite dilution, in solutions with different concentrations of added salt. In the spirit of a theoretical description of polyelectrolytes in terms of the equivalent parameters, namely......, persistence length and excluded volume interactions, we used a modified wormlike chain model, in which the monomers are represented by charged hard spheres placed at distance a. The electrostatic interactions are approximated by a Debye-Huckel potential. We show that the scattering function is quantitatively...
Soltanmoradi, Elmira; Shokri, Babak
2017-05-01
In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.
Tan, Shurun
The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell's equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell's equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5˜2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green's function, we have developed the method of broadband Green's function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We've applied the technique to simulate band diagrams and modal solutions of periodic structures, and to
Scattering theory and automorphic functions
International Nuclear Information System (INIS)
Lachaud, G.
1982-01-01
After a consideration of the Fourier expansion of an automorphic function corresponding to the group SL(2,R) and a description of the Eisenstein series the author describes the application of these results to the quantum mechanical scattering theory using the group SO(2,R). (HSI)
Finding related functional neuroimaging volumes
DEFF Research Database (Denmark)
Nielsen, Finn Årup; Hansen, Lars Kai
2004-01-01
We describe a content-based image retrieval technique for finding related functional neuroimaging experiments by voxelization of sets of stereotactic coordinates in Talairach space, comparing the volumes and reporting related volumes in a sorted list. Voxelization is accomplished by convolving ea...
Boson structure functions from inelastic electron scattering
International Nuclear Information System (INIS)
De Jager, C.W.
1986-01-01
The even /sup 104-110/Pd isotopes and /sup 196/Pt have been investigated at NIKHEF-K by high-resolution inelastic electron scattering. A new IBA-2 calculation has been performed for the Pd isotopes, in which the ratio of the proton and neutron coupling constants is taken from pion scattering. One set of boson structure functions sufficed for the description of the first and second E2-excitations in all Pd isotopes. The data showed no sensitivity for different structure functions for proton and neutron bosons. A preliminary analysis of a number of negative parity states (3/sup -/,5/sup -/ and 7/sup -/), observed in /sup 196/Pt, was performed through the introduction of an f-boson. The first E4-excitation in the palladium isotopes can be reasonably described with a β-structure function, but all other E4-excitations require the introduction of g-boson admixtures
Enhanced Raman scattering on functionalized graphene substrates
Czech Academy of Sciences Publication Activity Database
Valeš, Václav; Kovaříček, Petr; Fridrichová, Michaela; Ji, X.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kalbáč, Martin
2017-01-01
Roč. 4, č. 2 (2017), č. článku 025087. ISSN 2053-1583 R&D Projects: GA ČR(CZ) GA15-01953S Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : spectroscopy * molecules * graphene * graphene enhanced Raman scattering * functionalized graphene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 6.937, year: 2016
Calculating scattering matrices by wave function matching
International Nuclear Information System (INIS)
Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J.; Xia, K.; Turek, I.; Bauer, G.E.W.
2008-01-01
The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Retrieving mesospheric water vapour from observations of volume scattering radiances
Directory of Open Access Journals (Sweden)
P. Vergados
2009-02-01
Full Text Available This study examines the possibility for a theoretical approach in the estimation of water vapour mixing ratios in the vicinity of polar mesospheric clouds (PMC using satellite observations of Volume Scattering Radiances (VSR obtained at the wavelength of 553 nm. The PMC scattering properties perturb the underlying molecular Rayleigh scattered solar radiance of the background atmosphere. As a result, the presence of PMC leads to an enhancement in the observed VSR at the altitude of the layer; the PMC VSRs are superimposed on the exponentially decreasing with height Rayleigh VSR, of the PMC-free atmosphere. The ratio between the observed and the Rayleigh VSR of the background atmosphere is used to simulate the environment in which the cloud layer is formed. In addition, a microphysical model of ice particle formation is employed to predict the PMC VSRs. The initial water vapour profile is perturbed until the modelled VSRs match the observed, at which point the corresponding temperature and water vapour profiles can be considered as a first approximation of those describing the atmosphere at the time of the observations. The role of temperature and water vapour in the cloud formation is examined by a number of sensitivity tests suggesting that the water vapour plays a dominant role in the cloud formation in agreement with experimental results. The estimated water vapour profiles are compared with independent observations to examine the model capability in the context of this study. The results obtained are in a good agreement at the peak of the PMC layer although the radiance rapidly decreases with height below the peak. This simplified scenario indicates that the technique employed can give a first approximation estimate of the water vapour mixing ratio, giving rise to the VSR observed in the presence of PMC.
Sayed, Sadeed Bin
2016-11-02
An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.
Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan
2016-01-01
An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.
International Nuclear Information System (INIS)
Bowen, A.W.
1994-01-01
Using model data sets for the Brass orientation, the importance of scatter width, angular accuracy and grain size and volume fraction on the sensitivity of the calculated Orientation Distribution Functions have been determined in order to highlight some of the practical considerations needed in the processing of experimental data from individual grain orientation measurements determined by the Electron Back-Scattered Diffraction technique. It is suggested that the most appropriate scatter width can be calculated from the maximum function height versus scatter width curve in order to accommodate variations in texture sharpness. The sensitivity of the ODF to careful sample preparation, mounting and pattern analysis, in order to keep errors in angular accuracy to 1 or less is demonstrated, as is the imperative need to correct for the size of grains, and their volume fractions. (orig.)
Gaussian basis functions for highly oscillatory scattering wavefunctions
Mant, B. P.; Law, M. M.
2018-04-01
We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.
Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter.
Cejnar, M; Kobler, H; Hunyor, S N
1993-03-01
Finger blood volume is commonly determined from measurement of infra-red (IR) light transmittance using the Lambert-Beer law of light absorption derived for use in non-scattering media, even when such transmission involves light scatter around the phalangeal bone. Simultaneous IR transmittance and finger volume were measured over the full dynamic range of vascular volumes in seven subjects and outcomes compared with data fitted according to the Lambert-Beer exponential function and an inverse function derived for light attenuation by scattering materials. Curves were fitted by the least-squares method and goodness of fit was compared using standard errors of estimate (SEE). The inverse function gave a better data fit in six of the subjects: mean SEE 1.9 (SD 0.7, range 0.7-2.8) and 4.6 (2.2, 2.0-8.0) respectively (p < 0.02, paired t-test). Thus, when relating IR transmittance to blood volume, as occurs in the finger during measurements of arterial compliance, an inverse function derived from a model of light attenuation by scattering media gives more accurate results than the traditional exponential fit.
A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers
Bagci, Hakan
2015-01-01
Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability
A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers
Bagci, Hakan
2015-01-07
Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability
Anisotropy function for pion-proton elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Saleem, Mohammad; Fazal-e-Aleem; Rashid, Haris
1988-09-01
By using the generalised Chou-Yang model and the experimental data on ..pi../sup -/p elastic scattering at 200 GeV/c, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction ..pi../sup -/p -> ..pi../sup -/p.
Anisotropy function for proton-proton elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Saleem, Mohammad; Fazal-e-Aleem; Azhar, I.A. (Punjab Univ., Lahore (Pakistan). Centre for High Energy Physics)
1990-07-01
By using the generalized Chou-Yang model and the experimental data on pp elastic scattering at 53 GeV, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction pp{yields}pp. (author).
Anisotropy function for proton-proton elastic scattering
International Nuclear Information System (INIS)
Saleem, Mohammad; Fazal-e-Aleem; Azhar, I.A.
1990-01-01
By using the generalized Chou-Yang model and the experimental data on pp elastic scattering at 53 GeV, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction pp→pp. (author)
Anisotropy function for pion-proton elastic scattering
International Nuclear Information System (INIS)
Saleem, Mohammad; Fazal-e-Aleem; Rashid, Haris
1988-01-01
By using the generalised Chou-Yang model and the experimental data on π - p elastic scattering at 200 GeV/c, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction π - p → π - p. (author)
Secure data storage by three-dimensional absorbers in highly scattering volume medium
International Nuclear Information System (INIS)
Matoba, Osamu; Matsuki, Shinichiro; Nitta, Kouichi
2008-01-01
A novel data storage in a volume medium with highly scattering coefficient is proposed for data security application. Three-dimensional absorbers are used as data. These absorbers can not be measured by interferometer when the scattering in a volume medium is strong enough. We present a method to reconstruct three-dimensional absorbers and present numerical results to show the effectiveness of the proposed data storage.
Structure functions in electron-nucleon deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)
1982-06-26
The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.
Green function and scattering amplitudes in many dimensional space
International Nuclear Information System (INIS)
Fabre de la Ripelle, M.
1991-06-01
Methods for solving scattering are studied in many dimensional space. Green function and scattering amplitudes are given in terms of the requested asymptotic behaviour of the wave function. The Born approximation and the optical theorem are derived in many dimensional space. Phase-shift analysis are developed for hypercentral potentials and for non-hypercentral potentials with the hyperspherical adiabatic approximation. (author) 16 refs., 3 figs
Green functions and scattering amplitudes in many-dimensional space
International Nuclear Information System (INIS)
Fabre de la Ripelle, M.
1993-01-01
Methods for solving scattering are studied in many-dimensional space. Green function and scattering amplitudes are given in terms of the required asymptotic behaviour of the wave function. The Born approximation and the optical theorem are derived in many-dimensional space. Phase-shift analyses are performed for hypercentral potentials and for non-hypercentral potentials by use of the hyperspherical adiabatic approximation. (author)
How a change in the interaction potential affects the p-wave scattering volume
International Nuclear Information System (INIS)
Jamieson, M J; Dalgarno, A
2012-01-01
We derive a simple expression for the change in the s-wave scattering length in terms of zero-energy wavefunctions, we generalize it to obtain an expression for the change in the p-wave scattering volume and we use both expressions to derive the first order differential equations of variable phase theory that are satisfied by the closely related accumulated scattering length and volume. We provide numerical demonstrations for the example of a pair of hydrogen atoms interacting via the X 1 Σ + g molecular state. (fast track communication)
International Nuclear Information System (INIS)
Binzoni, T; Leung, T S; Ruefenacht, D; Delpy, D T
2006-01-01
Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware
A local dynamic correlation function from inelastic neutron scattering
International Nuclear Information System (INIS)
McQueeney, R.J.
1997-01-01
Information about local and dynamic atomic correlations can be obtained from inelastic neutron scattering measurements by Fourier transform of the Q-dependent intensity oscillations at a particular frequency. A local dynamic structure function, S(r,ω), is defined from the dynamic scattering function, S(Q,ω), such that the elastic and frequency-integrated limits correspond to the average and instantaneous pair-distribution functions, respectively. As an example, S(r,ω) is calculated for polycrystalline aluminum in a model where atomic motions are entirely due to harmonic phonons
Effective Spectral Function for Quasielastic Scattering on Nuclei
Bodek, A.; Christy, M. E.; Coopersmith, B.
2014-01-01
Spectral functions that are used in neutrino event generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the $\
Total scattering of disordered crystalline functional materials
International Nuclear Information System (INIS)
Shamoto, Shin-Ichi; Kodama, Katsuaki; Iikubo, Satoshi; Taguchi, Tomitsugu
2009-01-01
There are disorders in some modern functional materials. As an example, the crystalline phase of an optical recording material has low thermal conductivity but high electrical conductivity, simultaneously. This contradiction is a challenge to material scientists in designing good functional materials, which should have at least two types of crystallographic sites. One site limits thermal conductivity while the other site carries electrons or holes with high mobility. This problem exists with not only optical recording materials but also thermoelectric materials. The periodic boundary condition gets lost in the disordered parts. This therefore, makes atomic pair distribution function (PDF) analysis with a wide range of real space suitable for investigating the form and size of crystalline parts as well as disordered parts in the material. Pulsed neutron powder diffraction is one of the best tools for use in this new type of emerging research, together with synchrotron X-ray powder diffraction and electron diffraction.
Two-dimensional analytic weighting functions for limb scattering
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
Sayed, Sadeed Bin
2014-07-01
A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.
Dynamic Volume Holography and Optical Information Processing by Raman Scattering
International Nuclear Information System (INIS)
Dodin, I.Y.; Fisch, N.J.
2002-01-01
A method of producing holograms of three-dimensional optical pulses is proposed. It is shown that both the amplitude and the phase profile of three-dimensional optical pulse can be stored in dynamic perturbations of a Raman medium, such as plasma. By employing Raman scattering in a nonlinear medium, information carried by a laser pulse can be captured in the form of a slowly propagating low-frequency wave that persists for a time large compared with the pulse duration. If such a hologram is then probed with a short laser pulse, the information stored in the medium can be retrieved in a second scattered electromagnetic wave. The recording and retrieving processes can conserve robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information stored in optical signals. While storing or reading the pulse structure, the optical information can be processed as an analogue or digital signal, which allows simultaneous transformation of three-dimensional continuous images or computing discrete arrays of binary data. By adjusting the phase fronts of the reference pulses, one can also perform focusing, redirecting, and other types of transformation of the output pulses
Radioiodine therapy of functional autonomy using the functional autonomous volume
International Nuclear Information System (INIS)
Seeger, T.; Emrich, D.; Sandrock, D.
1995-01-01
In order to determine the effective radiation dose to be delivered by 131 I in functional autonomy we have used the functional autonomous volume calculated from the global 99m Tc thyroid uptake under exogenous or endogenous suppression before and 3 to 7 months after treatment. The radiation dose to the autonomous volume was calculated retrospectively in 131 patients with unifocal, multifocal and disseminated autonomy (75 hyperthyroid, 56 euthyroid) who received 131 I treatment of 200-300 Gy to the total volume of the gland. It could be shown that at least 350 Gy to the autonomous volume are required to reach the desired effect of treatment which was dependent only on the radiation dose delivered to the functional autonomous volume. (orig.) [de
Approximate scattering wave functions for few-particle continua
International Nuclear Information System (INIS)
Briggs, J.S.
1990-01-01
An operator identity which allows the wave operator for N particles interacting pairwise to be expanded as products of operators in which fewer than N particles interact is given. This identity is used to derive appproximate scattering wave functions for N-particle continua that avoid certain difficulties associated with Faddeev-type expansions. For example, a derivation is given of a scattering wave function used successfully recently to describe the three-particle continuum occurring in the electron impact ionization of the hydrogen atom
Effective spectral function for quasielastic scattering on nuclei
Energy Technology Data Exchange (ETDEWEB)
Bodek, A.; Coopersmith, B. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Christy, M.E. [Hampton University, Hampton, VA (United States)
2014-10-15
Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d{sup 2}σ/dQ{sup 2}dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)
Effective spectral function for quasielastic scattering on nuclei
International Nuclear Information System (INIS)
Bodek, A.; Coopersmith, B.; Christy, M.E.
2014-01-01
Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d 2 σ/dQ 2 dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)
Photon distribution function for stocks wave for stimulated Raman scattering
International Nuclear Information System (INIS)
Man'ko, O.V.; Tcherniega, N.V.
1997-04-01
New time-dependent integrals of motion are found for stimulated Raman scattering. Explicit formula for the photon-number probability distribution as a function of the laser-field intensity and the medium parameters is obtained in terms of Hermite polynomials of two variables. (author). 29 refs
A Simple Generator of Forward Scattering Functions on Spherical Dielectrics
Directory of Open Access Journals (Sweden)
O. Fiser
1993-04-01
Full Text Available The described program generates the forward scattering functions of dielectrics of spherical shape, while the input parameters are: frequency, radius of the sphere and complex refractive index. The part enabling to evaluate the complex refractive index of water in the dependence on frequency and temperature is added.
Analytical approximations to seawater optical phase functions of scattering
Haltrin, Vladimir I.
2004-11-01
This paper proposes a number of analytical approximations to the classic and recently measured seawater light scattering phase functions. The three types of analytical phase functions are derived: individual representations for 15 Petzold, 41 Mankovsky, and 91 Gulf of Mexico phase functions; collective fits to Petzold phase functions; and analytical representations that take into account dependencies between inherent optical properties of seawater. The proposed phase functions may be used for problems of radiative transfer, remote sensing, visibility and image propagation in natural waters of various turbidity.
Functional imaging of small tissue volumes with diffuse optical tomography
Klose, Alexander D.; Hielscher, Andreas H.
2006-03-01
Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.
Parametrization of the scattering wave functions of the Paris potential
International Nuclear Information System (INIS)
Loiseau, B.; Mathelitsch, L.
1996-10-01
The neutron-proton scattering wave functions of the Paris nucleon-nucleon potential are parametrized for partial waves of total angular momenta less than 5. The inner parts of the wave functions are approximated by polynomials with a continuous transition to the outer parts, which are given by the asymptotic regime and determined by the respective phase shifts. The scattering wave functions can then be calculated at any given energy below 400 MeV. Special attention is devoted to the zero-energy limit of the low partial waves. An easy-to-use FORTRAN program, which allows the user to calculate these parametrized wave functions, is available via electronic mail. (author)
Angular dispersion and deflection function for heavy ion elastic scattering
International Nuclear Information System (INIS)
Bai Zhen; Han Jianlong; Hu Zhengguo; Chinese Academy of Sciences, Beijing
2007-01-01
The differential cross sections for elastic scattering products of 17 F on 208 Pb have been measured. The angular dispersion plots of ln(dσ/dθ) versus θ 2 are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena. (authors)
Assessment of left atrial volume and function
DEFF Research Database (Denmark)
Kühl, J Tobias; Lønborg, Jacob; Fuchs, Andreas
2012-01-01
dynamic LA volume changes. Conversely, cardiac magnetic resonance imaging (CMR) and multi-slice computed tomography (MSCT) appears more appropriate for such measures. We sought to determine the relationship between LA size assessed with TTE and LA size and function assessed with CMR and MSCT. Fifty......-four patients were examined 3 months post myocardial infarction with echocardiography, CMR and MSCT. Left atrial volumes and LA reservoir function were assessed by TTE. LA time-volume curves were determined and LA reservoir function (cyclic change and fractional change), passive emptying function (reservoir...... between CMR and MSCT, with a small to moderate bias in LA(max) (4.9 ± 10.4 ml), CC (3.1 ± 9.1 ml) and reservoir volume (3.4 ± 9.1 ml). TTE underestimates LA(max) with up to 32% compared with CMR and MSCT (P ...
Evolution of the transfer function characterization of surface scatter phenomena
Harvey, James E.; Pfisterer, Richard N.
2016-09-01
Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2007-01-01
The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...... with the analytical Mie series solution. Scattering by more complex metal-dielectric objects are also considered to compare the presented technique with other numerical methods....
Inverse electronic scattering by Green's functions and singular values decomposition
International Nuclear Information System (INIS)
Mayer, A.; Vigneron, J.-P.
2000-01-01
An inverse scattering technique is developed to enable a sample reconstruction from the diffraction figures obtained by electronic projection microscopy. In its Green's functions formulation, this technique takes account of all orders of diffraction by performing an iterative reconstruction of the wave function on the observation screen. This scattered wave function is then backpropagated to the sample to determine the potential-energy distribution, which is assumed real valued. The method relies on the use of singular values decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise. The technique is applied to the analysis of a two-dimensional nanometric sample that is observed in Fresnel conditions with an electronic energy of 25 eV. The algorithm turns out to provide results with a mean relative error of the order of 5% and to be very stable against random noise
DEFF Research Database (Denmark)
Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg
2017-01-01
) in the elevation change algorithm, to correct for temporal changes in the ratio between surface- and volume-scatter in Cryosat-2 observations. We present elevation and volume changes for the Greenland ice sheet in the period from 2010 until 2014. The waveform parameters considered here are the backscatter...... waveform parameters to be applicable for correcting for changes in volume scattering. The best results in the Synthetic Aperture Radar Interferometric mode area of the GrIS are found when applying only the backscatter correction, whereas the best result in the Low Resolution Mode area is obtained by only......Long-term observations of surface elevation change of the Greenland ice sheet (GrIS) is of utmost importance when assessing the state of the ice sheet. Satellite radar altimetry offers a long time series of data over the GrIS, starting with ERS-1 in 1991. ESA's Cryosat-2 mission, launched in 2010...
Tissue hepatic blood volume and liver function
International Nuclear Information System (INIS)
Masuyama, Mamoru
1997-01-01
Positron emission tomography (PET) scan has an advantage that it can measure regional organ blood flow and volume not only quantitatively but also non-invasively. In order to estimate the liver function, tissue hepatic blood volume was measured using C 15 O inhalation in conjunction with positron emission tomography. PET scans of the liver were performed after the single breath inhalation of 20 mCi of high specific activity 15 O-labeled carbon monoxide in 105 patients which were classified 3 groups; normal, chronic hepatitis, and cirrhosis. They consist of 61, 14, and 30 patients, respectively. Significant differences between normal and cirrhotic patients were noted in tissue hepatic blood volume (mean 20.4, 18.2, 16.0 ml/100 g, respectively). Tissue hepatic blood volume (tHBV) correlated with the reaction of the peripheral reticuloendothelial compartment and protein synthesis, because there was a potent correlation between tHBV and hepatic fibrosis. In normal livers, we were able to demonstrate significant differences in tissue hepatic blood volume among liver segments. (author)
Energy Technology Data Exchange (ETDEWEB)
Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G., E-mail: ansar.calloo@cea.fr, E-mail: jean-francois.vidal@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: gerald.rimpault@cea.fr [CEA, DEN, DER/SPRC/LEPh, Saint-Paul-lez-Durance (France)
2011-07-01
This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S{sub n} method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)
International Nuclear Information System (INIS)
Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.
2011-01-01
This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)
Scattering function for a model of interacting surfaces
International Nuclear Information System (INIS)
Colangelo, P.; Gonnella, G.; Maritan, A.
1993-01-01
The two-point correlation function of an ensemble of interacting closed self-avoiding surfaces on a cubic lattice is analyzed in the disordered phase, which corresponds to the paramagnetic region in a related spin formulation. Mean-field theory and Monte Carlo simulations predict the existence of a disorder line which corresponds to a transition from an exponential decay to an oscillatory damped behavior of the two-point correlation function. The relevance of the results for the description of amphiphilic systems in a microemulsion phase is discussed. The scattering function is also calculated for a bicontinuous phase coexisting with the paramagnetic phase
Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei
2018-01-01
The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.
Atomic form factors, incoherent scattering functions, and photon scattering cross sections
International Nuclear Information System (INIS)
Hubbell, J.H.; Veigele, W.J.; Briggs, E.A.; Brown, R.T.; Cromer, D.T.; Howerton, R.J.
1975-01-01
Tabulations are presented of the atomic form factor, F (α,Z), and the incoherent scattering function, S (x,Z), for values of x (=sin theta/2)/lambda) from 0.005 A -1 to 10 9 A -1 , for all elements A=1 to 100. These tables are constructed from available state-of-the-art theoretical data, including the Pirenne formulas for Z=1, configuration-into action results by Brown using Brown-Fontana and Weiss correlated wavefunctions for Z=2 to 6 non-relativistic Hartree-Fock results by Cromer for Z=7 to 100 and a relativistic K-shell analytic expression for F (x,Z) by Bethe Levinger for x>10 A -1 for all elements Z=2 to 100. These tabulated values are graphically compared with available photon scattering angular distribution measurements. Tables of coherent (Rayleigh) and incoherent (Compton) total scattering cross sections obtained by nummerical integration over combinations of F 2 (x,Z) with the Thomson formula and S (x,Z) with the Klum-Nishina Formual, respectively, are presented for all elements Z=1 to 100, for photon energies 100 eV (lambda=124 A) to 100 MeV (0.000124 A). The incoherent scattering cross sections also include the radiative and double-Compton corrections as given by Mork. Similar tables are presented for the special cases of terminally-bonded hydrogen and for the H 2 molecule, interpolated and extrapolated from values calculated by Stewart et al., and by Bentley and Stewart using Kolos-Roothaan wavefunctions
Computation of bessel functions in light scattering studies.
Ross, W D
1972-09-01
Computations of light scattering require finding Bessel functions of a series of orders. These are found most easily by recurrence, but excessive rounding errors may accumulate. Satisfactory procedures for cylinder and sphere functions are described. If argument z is real, find Y(n)(z) by recurrence to high orders. From two high orders of Y(n)(z) estimate J(n)(z). Use backward recurrence to maximum J(n)(z). Correct by forward recurrence to maximum. If z is complex, estimate high orders of J(n)(z) without Y(n)(z) and use backward recurrence.
International Nuclear Information System (INIS)
Mueller, J.J.; Friedrichowicz, E.; Nothnagel, A.; Wunderlich, T.; Ziehlsdorf, E.; Damaschun, G.
1983-01-01
The wide angle X-ray scattering curve, the electron distance distribution function and the solvent excluded volume of a macromolecule in solution are calculated from the atomic coordinates contained in the PROTEIN DATA BANK. The structures and the projections of the excluded volumes are depicted using molecule graphic routines. The described computer programs are used to determine the three-dimensional structure of macromolecules in solution from wide angle X-ray scattering data. (author)
Scattering phase functions of horizontally oriented hexagonal ice crystals
International Nuclear Information System (INIS)
Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.
2006-01-01
Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns
A compilation of structure functions in deep-inelastic scattering
International Nuclear Information System (INIS)
Roberts, R.G.; Whalley, M.R.
1991-01-01
A compilation of data on the structure functions F 2 , xF 3 , and R = σ L /σ T from lepton deep-inelastic scattering off protons and nuclei is presented. The relevant experiments at CERN, Fermilab and SLAC from 1985 are covered. All the data in this review can be found in and retrieved from the Durham-RAL HEP Databases (HEPDATA on the RAL and CERN VM systems and on DURPDG VAX/VMS) together with data on a wide variety of other reactions. (author)
Modifications of Geometric Truncation of the Scattering Phase Function
Radkevich, A.
2017-12-01
Phase function (PF) of light scattering on large atmospheric particles has very strong peak in forward direction constituting a challenge for accurate numerical calculations of radiance. Such accurate (and fast) evaluations are important in the problems of remote sensing of the atmosphere. Scaling transformation replaces original PF with a sum of the delta function and a new regular smooth PF. A number of methods to construct such a PF were suggested. Delta-M and delta-fit methods require evaluation of the PF moments which imposes a numerical problem if strongly anisotropic PF is given as a function of angle. Geometric truncation keeps the original PF unchanged outside the forward peak cone replacing it with a constant within the cone. This approach is designed to preserve the asymmetry parameter. It has two disadvantages: 1) PF has discontinuity at the cone; 2) the choice of the cone is subjective, no recommendations were provided on the choice of the truncation angle. This choice affects both truncation fraction and the value of the phase function within the forward cone. Both issues are addressed in this study. A simple functional form of the replacement PF is suggested. This functional form allows for a number of modifications. This study consider 3 versions providing continuous PF. The considered modifications also bear either of three properties: preserve asymmetry parameter, provide continuity of the 1st derivative of the PF, and preserve mean scattering angle. The second problem mentioned above is addressed with a heuristic approach providing unambiguous criterion of selection of the truncation angle. The approach showed good performance on liquid water and ice clouds with different particle size distributions. Suggested modifications were tested on different cloud PFs using both discrete ordinates and Monte Carlo methods. It was showed that the modifications provide better accuracy of the radiance computation compare to the original geometric truncation.
Vesicoureteral refluxed volume and renal function
International Nuclear Information System (INIS)
Markovic, V.; Capkun, V.; Eterovic, D.; Stanicic, A.; Saraga, M.
1994-01-01
The therapeutical approach to vesicoureteral reflux (VUR) depends on assessment of the renal involvement. The effective renal plasma flow (ERPF) and parenchymal mean transit time of radiotracer (pMTT) of the affected kidney are sensitive functional parameters. We investigated the association of these functional indices with the volume of refluxed urine. In 64 children (mean age 6.4 yrs) the presence of VUR was confirmed with direct radionuclide cystography in 80 ureters (48 unilateral and 32 bilateral) and the maximal volume of refluxed urine (MVRU) was determined for each uretero-renal unit. All patients also underwent dynamic renal scintigraphy with I-131-hippuran, providing the values of pMTT and relative renal hippuran clearances of the respective kidneys by deconvolution analysis. In 37 of the affected kidneys ERPF was also determined by combining the latter results with total ERPF, determined by plasma clearance of hippuran. Using the borderline value of MVRU of 4 ml, the group with higher MVRU exhibited significantly lower ERPF of the affected kidney (194±93 vs. 270±77 ml/min/1.73 m2, p=.002) and significantly higher proportion of pMTT's over 3.5 min (31/33 vs. 17/47, p=.003). The negative linear correlation between MVRU and ERPF was found (r=-.45, p=.006). We conclude that quantitative radionuclide cystography, aside from diagnosis and follow-up of VUR, may also provide insight in the function of the affected kidney and thus contribute in designing the therapeutical approach. (author)
Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P
2013-01-01
We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.
Anomalous x-ray scattering studies of functional disordered materials
International Nuclear Information System (INIS)
Kohara, S; Tajiri, H; Song, C H; Ohara, K; Temleitner, L; Sugimito, K; Fujiwara, A; Pusztai, L; Usuki, T; Hosokawa, S; Benino, Y; Kitamura, N; Fukumi, K
2014-01-01
We have developed anomalous x-ray scattering (AXS) spectrometers, that employ intrinsic Ge detectors and crystal analyzers, at SPring-8. The use of LiF analyzer crystal provides us with an energy resolution of ∼ 12 eV. Furthermore, it has been established that the use of AXS technique is essential to reveal the relationship between the atomic structure and its function of a fast phase-change material, Ge 2 Sb 2 Te 5 . We were able to address the issue of why the amorphous phase of fast phase change materials is stable at room temperature for a long time despite the fact that it can rapidly transform to the crystalline phase by using a combination of AXS and large scale density functional theory-based molecular dynamics simulations.
Dynamic radial distribution function from inelastic neutron scattering
International Nuclear Information System (INIS)
McQueeney, R.J.
1998-01-01
A real-space, local dynamic structure function g(r,ω) is defined from the dynamic structure function S(Q,ω), which can be measured using inelastic neutron scattering. At any particular frequency ω, S(Q,ω) contains Q-dependent intensity oscillations which reflect the spatial distribution and relative displacement directions for the atoms vibrating at that frequency. Information about local and dynamic atomic correlations is obtained from the Fourier transform of these oscillations g(r,ω) at the particular frequency. g(r,ω) can be formulated such that the elastic and frequency-summed limits correspond to the average and instantaneous radial distribution function, respectively, and is thus called the dynamic radial distribution function. As an example, the dynamic radial distribution function is calculated for fcc nickel in a model which considers only the harmonic atomic displacements due to phonons. The results of these calculations demonstrate that the magnitude of the atomic correlations can be quantified and g(r,ω) is a well-defined correlation function. This leads to a simple prescription for investigating local lattice dynamics. copyright 1998 The American Physical Society
Sayed, Sadeed Bin; Uysal, Ismail Enes; Bagci, Hakan; Ulku, H. Arda
2018-01-01
Quantum tunneling is observed between two nanostructures that are separated by a sub-nanometer gap. Electrons “jumping” from one structure to another create an additional current path. An auxiliary tunnel is introduced between the two structures as a support for this so that a classical electromagnetic solver can account for the effects of quantum tunneling. The dispersive permittivity of the tunnel is represented by a Drude model, whose parameters are obtained from the electron tunneling probability. The transient scattering from the connected nanostructures (i.e., nanostructures plus auxiliary tunnel) is analyzed using a time domain volume integral equation solver. Numerical results demonstrating the effect of quantum tunneling on the scattered fields are provided.
International Nuclear Information System (INIS)
Broome, J.
1965-11-01
The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)
[Neutron scatter studies of chromatin structure related to function
International Nuclear Information System (INIS)
Bradbury, E.M.
1990-01-01
This study is concerned with the application of neutron scatter techniques to the different structural states of nucleosomes and chromatin with the long term objective of understanding how the enormous lengths of DNA are folded into chromosomes. Micrococcal nuclease digestion kinetics have defined two subnucleosome particles; the chromatosome with 168 bp DNA, the histone octamer and one H1 and the nucleosome core particle with 146 bp DNA and the histone octamer. As will be discussed, the structure of the 146 bp DNA core particle is known in solution at low resolution from neutron scatter studies and in crystals. Based on this structure, the authors have a working model for the chromatosome and the mode of binding of H1. In order to define the structure of the nucleosome and also the different orders of chromatin structures they need to know the paths of DNA that link nucleosomes and the factors associated with chromosome functions that act on those DNA paths. The major region for this situation is the inherent variabilities in nucleosome DNA sequences, in the histone subtypes and their states of chemical modification and in the precise locations of nucleosomes. Such variabilities obscure the underlying principles that govern the packaging of DNA into the different structural states of nucleosomes and chromatin. The only way to elucidate these principles is to study the structures of nucleosomes and oligonucleosomes that are fully defined. They have largely achieved these objectives
The Lauricella functions and exact string scattering amplitudes
International Nuclear Information System (INIS)
Lai, Sheng-Hong; Lee, Jen-Chi; Yang, Yi
2016-01-01
We discover that the 26D open bosonic string scattering amplitudes (SSA) of three tachyons and one arbitrary string state can be expressed in terms of the D-type Lauricella functions with associated SL(K+3,ℂ) symmetry. As a result, SSA and symmetries or relations among SSA of different string states at various limits calculated previously can be rederived. These include the linear relations first conjectured by Gross http://dx.doi.org/10.1016/0370-2693(87)90355-8; http://dx.doi.org/10.1016/0550-3213(88)90390-2; http://dx.doi.org/10.1103/PhysRevLett.60.1229D.J. Gross and J.R. Ellis, Strings at superplanckian energies: in search of the string symmetry, Phil. Trans. Roy. Soc. Lond. A 329 (1989) 401. http://dx.doi.org/10.1016/0550-3213(89)90435-5 and later corrected and proved in http://dx.doi.org/10.1016/j.physletb.2005.02.034; http://arxiv.org/abs/hep-th/0303012; http://dx.doi.org/10.1016/j.nuclphysb.2004.04.022; http://dx.doi.org/10.1016/j.nuclphysb.2004.11.032; http://dx.doi.org/10.1103/PhysRevLett.96.171601; http://dx.doi.org/10.1016/j.nuclphysb.2005.07.018; http://dx.doi.org/10.1016/j.nuclphysb.2005.12.025 in the hard scattering limit, the recurrence relations in the Regge scattering limit with associated SL(5,ℂ) symmetry http://dx.doi.org/10.1088/1126-6708/2009/06/028; http://dx.doi.org/10.1007/JHEP04(2013)082; http://dx.doi.org/10.1016/j.physletb.2014.11.017 and the extended recurrence relations in the nonrelativistic scattering limit with associated SL(4,ℂ) symmetry http://dx.doi.org/10.1007/JHEP05(2016)186 discovered recently. Finally, as an application, we calculate a new recurrence relation of SSA which is valid for all energies.
Recent structure function results from neutrino scattering at fermilab
International Nuclear Information System (INIS)
Yang, U.K.; Avvakumov, S.; Barbaro, P. de
2001-01-01
We report on the extraction of the structure functions F 2 and ΔxF 3 = xF ν 3 - xF ν -bar 3 from CCFR ν μ -Fe and ν-bar μ -Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement of ΔxF 3 , which is useful in testing models of heavy charm production, is higher than current theoretical predictions. The ratio of the F 2 (PMI) values measured in ν μ , and μ scattering is in agreement (within 5%) with the NLO predictions using massive charm production schemes, thus resolving the long-standing discrepancy between the two sets of data. In addition, measurements of F L (or, equivalently, R) and 2xF 1 are reported in the kinematic region where anomalous nuclear effects in R are observed at HERMES. (author)
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
A compilation of structure functions in deep inelastic scattering
International Nuclear Information System (INIS)
Gehrmann, T.; Roberts, R.G.; Whalley, M.R.
1999-01-01
A compilation of all the available data on the unpolarized structure functions F 2 and xF 3 , R=(σ L /σ T ), the virtual photon asymmetries A 1 and A 2 and the polarized structure functions g 1 and g 2 , from deep inelastic lepton scattering off protons, deuterium and nuclei is presented. The relevant experiments at CERN, DESY, Fermilab and SLAC from 1991, the date of our earlier review [1], to the present day are covered. A brief general theoretical introduction is given followed by the data presented both in tabular and graphical form and, for the F 2 and xF 3 data, the predictions based on the MRST98 and CTEQ4 parton distribution functions are also displayed. All the data in this review, together with data on a wide variety of other reactions, can be found in and retrieved from the Durham-RAL HEP Databases on the World-Wide-Web (http://durpdg.dur.ac.uk/HEPDATA). (author)
International Nuclear Information System (INIS)
Srivastava, R.P.; De Wagter, C.
2012-01-01
The aim of this study is to determine the optimal backscatter thickness and lateral phantom dimension beyond the irradiated volume for the dosimetric verification with radiographic film when applying large field sizes. Polystyrene and Virtual Water™ phantoms were used to study the influence of the phantom backscatter thickness. EDR2 and XV films were used in 6 and 18 MV photon beams. The results show 11.4% and 6.4% over-response of the XV2 film when compared to the ion chamber for 6 MV 30×30 and 10×10 cm 2 field sizes, respectively, when the phantom backscatter thickness is 5 cm. For the same setup, measurements with EDR2 films indicate 8.5% and 1.7% over-response. The XV2 film response in the polystyrene phantom is about 2.0% higher than in the Virtual Water™ phantom for the 6 MV beam and 20 cm backscatter thickness. Similar results were obtained for EDR2 film. In the lateral scatter study, film response was nearly constant within 5 cm of lateral thickness and it increases when lateral thickness increases due to more multiple scatter of low energy photons. The backscatter thickness of the phantom should be kept below 7 cm for the accuracy of the film dosimetry. The lateral extension of the phantom should not be more than 5 cm from the field boundary in case of large irradiated volumes.
Scattering amplitudes over finite fields and multivariate functional reconstruction
International Nuclear Information System (INIS)
Peraro, Tiziano
2016-01-01
Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.
Scattering amplitudes over finite fields and multivariate functional reconstruction
Energy Technology Data Exchange (ETDEWEB)
Peraro, Tiziano [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)
2016-12-07
Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.
Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I
Energy Technology Data Exchange (ETDEWEB)
Thomas, L. (ed.)
1979-01-01
The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations.
Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I
International Nuclear Information System (INIS)
Thomas, L.
1979-01-01
The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations
Variational divergence in wave scattering theory with Kirchhoffean trial functions
Bird, J. F.
1986-01-01
In a recent study of variational improvement of the Kirchhoff approximation for electromagnetic scattering by rough surfaces, a key ingredient in the variational principle was found to diverge for important configurations (e.g., backscatter) if the polarization had any vertical component. The cause and a cure of this divergence are discussed here. The divergence is demonstrated to occur for arbitrary perfectly conducting scatterers and its universal characterstics are determined, by means of a general divergence criterion that is derived. A variational cure for the divergence is prescribed, and it is tested successfully on a standard scattering model.
Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field
International Nuclear Information System (INIS)
Philipp, W.
1975-01-01
The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de
International Nuclear Information System (INIS)
Korneta, W.; Lopez Quintela, M.A.; Liz, L.
1993-09-01
The experimental results obtained by the static small-angle neutron scattering technique for the microemulsion consisting of 40% in volume of nonionic surfactant pentaethylene-glycol-4-octylphenylether, equal volumes of heavy water and decane, and additives (the salt KCl, the anionic surfactant SDS and butanol) are presented and discussed. The universal features of obtained scattering intensity plots are determined. The shape of the peak present in all scattering spectra was fitted by the universal function derived from the density functional theory. The persistence length of surfactant sheet used in many density functional theories of microemulsions is determined and the effect of different additives on this length is shown. (author). 10 refs, 2 figs
Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan
2014-01-01
A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using
Reduction of thyroid volume following radioiodine therapy for functional autonomy
International Nuclear Information System (INIS)
Luster, M.; Jacob, M.; Thelen, M.H.; Michalowski, U.; Deutsch, U.; Reiners, C.
1995-01-01
In a retrospective study we evaluated the data of 112 patients who underwent radioiodine treatment for functional autonomy of the thyroid at Essen University Hospital from 1988 to 1993. Therapeutic activities of radioiodine were administered after individual determination of activity for intended radiation doses (150-300 Gy) taking into consideration autonomously functioning volume, maximum uptake, and effective half-life. The achieved dose was calculated by means of measurement of the radioiodine kinetics during therapy. Depending on the type of autonomous function of the thyroid (solitary autonomously functioning nodule, multiple autonomously functioning nodules, autonomously functioning thyroid tissue) volume reductions between 39 and 46% were found approximately 6 months after treatment. (orig.) [de
Directory of Open Access Journals (Sweden)
D. L. Hysell
2004-09-01
Full Text Available Common-volume observations of sporadic E-layers made on 14-15 June 2002 with the Arecibo incoherent scatter radar and a 30MHz coherent scatter radar imager located on St. Croix are described. Operating in dual-beam mode, the Arecibo radar detected a slowly descending sporadic E-layer accompanied by a series of dense E-region plasma clouds at a time when the coherent scatter radar was detecting quasi-periodic (QP echoes. Using coherent radar imaging, we collocate the sources of the coherent scatter with the plasma clouds observed by Arecibo. In addition to patchy, polarized scattering regions drifting through the radar illuminated volume, which have been observed in previous imaging experiments, the 30MHz radar also detected large-scale electrostatic waves in the E-region over Puerto Rico, with a wavelength of about 30km and a period of about 10min, propagating to the southwest. Both the intensity and the Doppler shifts of the coherent echoes were modulated by the wave.
CSIR Research Space (South Africa)
Roos, TH
2014-06-01
Full Text Available large sphere scattering phase function distributions of interest for packed bed radiative heat transfer: the analytic distribution for a diffusely reflecting sphere (a backscattering test case) and the distribution for a transparent sphere (n = 1...
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
2018-01-01
of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...
The photon structure function and hard scattering in two-photon reactions
International Nuclear Information System (INIS)
Kolanoski, H.
1984-09-01
This report summarizes experimental results obtained by the CELLO, JADE, PLUTO and TASSO collaborations on the following topics: the structure function of the photon; hard scattering and jet production and exclusive hadron pair production. (orig.)
Directory of Open Access Journals (Sweden)
Qinghua Xie
2017-01-01
Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there
The Effects of Scattered Light from Optical Components on Visual Function
2016-02-01
zones (e.g., 0-5° vs 5-10°) occurs, then the general distribution of scatter, uniform or not, or that some ratio of scatter between different angular...affect the sensitivity of the eye and none reported having refractive surgery within the past year (photorefractive keratectomy ( PRK ) or laser...assisted in situ keratomileusis ( LASIK )). They performed all the visual function tasks monocularly, using the right eye. 2.3 Visual Function Assessment
Incoherent neutron scattering functions for random jump diffusion in bounded and infinite media
International Nuclear Information System (INIS)
Hall, P.L.; Ross, D.K.
1981-01-01
The incoherent neutron scattering function for unbounded jump diffusion is calculated from random walk theory assuming a gaussian distribution of jump lengths. The method is then applied to calculate the scattering function for spatially bounded random jumps in one dimension. The dependence on momentum transfer of the quasi-elastic energy broadenings predicted by this model and a previous model for bounded one-dimensional continuous diffusion are calculated and compared with the predictions of models for diffusion in unbounded media. The one-dimensional solutions can readily be generalized to three dimensions to provide a description of quasi-elastic scattering of neutrons by molecules undergoing localized random motions. (author)
Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.
2009-04-01
Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted
Neutron scattering studies of eco-friendly functional materials
International Nuclear Information System (INIS)
Mishra, S.K.; Gupta, M.K.; Mittal, R.; Krishna, P.S.R.; Chaplot, S.L.
2016-01-01
Niobate based materials are environment friendly and appropriate for wide piezoelectric applications due to their piezo-response that is comparable to Pb(Zr Ti)O_3 beyond the technological application, NaNbO_3 has been a rich model system for understanding of mechanisms of structural phase transitions when subject to changes in thermodynamical conditions like: temperature, pressure, and/or composition, particle size and external stimuli like electric/magnetic field etc. In the present work, we report systematic investigation of structural phase transitions with variations in temperature, external pressure and chemical pressure (via compositional modification) using the neutron scattering technique. (author)
Determination of the autonomously functioning volume of the thyroid
International Nuclear Information System (INIS)
Emrich, D.; Erlenmaier, U.; Pohl, M.; Luig, H.
1993-01-01
The aim of this work was to determine the autonomously functioning volume in euthyroid and hyperthyroid goitres for prognostic and therapeutic pruposes. To this end, various groups of patients were selected: Individuals without evidence of thyroid disease, euthyroid patients with diffuse goitre of normal structure and function, euthyroid patients with evidence of autonomy and patients with hyperthyroidism due to autonomy. In all of them the thyroid uptake of Technetium-99m was determined under exogeneous suppression (TcU s ) in the euthyroid state and under endogenous suppression (TcU) in the hyperthyroid state. It was demonstrated that: 1. In patients with unifocal autonomy the TcU s and TcU correlated linearly with the autonomous volume delineated and measured by sonography. 2. A nearly identical result was obtained if the mean autonomous volume in individuals without thyroid disease of 2.2±1.1 ml calculated by TcU s /TcU x total thyroid volume was used as a basis. 3. The critical autonomous volume, i.e. the volume at which hyperthryroidism will occur, was found to be 16 ml at a cumulated sensitivity and specificity of >0.9. The method can be used to select patients for definitive treatment before hyperthryroidism occurs and to measure the autonomously functioning volume independent of its distribution within the thyroid for treatment with radioiodine. The method is easy to perform and is also an example of how a relative parameter of a function can be converted into an absolute parameter of a functioning volume. (orig.)
Deep inelastic scattering and light-cone wave functions
International Nuclear Information System (INIS)
Belyaev, V.M.; Johnson, M.B.
1996-01-01
In the framework of light-cone QCD rules, we study the valence quark distribution function q(x B ) of a pion for moderate x B . The sum rule with the leading twist-2 wave function gives q(x B ) = φ π (x B ). Twist-4 wave functions give about 30% for x B ∼0.5. It is shown that QCD sum rule predictions, with the asymptotic pion wave function, are in good agreement with experimental data. We found that a two-hump profile for the twist-2 wave function leads to a valence quark distribution function that contradicts experimental data
Bagci, Hakan
2014-01-06
Time domain integral equation (TDIE) solvers represent an attractive alternative to finite difference (FDTD) and finite element (FEM) schemes for analyzing transient electromagnetic interactions on composite scatterers. Current induced on a scatterer, in response to a transient incident field, generates a scattered field. First, the scattered field is expressed as a spatio-temporal convolution of the current and the Green function of the background medium. Then, a TDIE is obtained by enforcing boundary conditions and/or fundamental field relations. TDIEs are often solved for the unknown current using marching on-in-time (MOT) schemes. MOT-TDIE solvers expand the current using local spatio-temporal basis functions. Inserting this expansion into the TDIE and testing the resulting equation in space and time yields a lower triangular system of equations (termed MOT system), which can be solved by marching in time for the coefficients of the current expansion. Stability of the MOT scheme often depends on how accurately the spatio-temporal convolution of the current and the Green function is discretized. In this work, band-limited prolate-based interpolation functions are used as temporal bases in expanding the current and discretizing the spatio-temporal convolution. Unfortunately, these functions are two sided, i.e., they require ”future” current samples for interpolation, resulting in a non-causal MOT system. To alleviate the effect of non-causality and restore the ability to march in time, an extrapolation scheme can be used to estimate the future values of the currents from their past values. Here, an accurate, stable and band-limited extrapolation scheme is developed for this purpose. This extrapolation scheme uses complex exponents, rather than commonly used harmonics, so that propagating and decaying mode fields inside the dielectric scatterers are accurately modeled. The resulting MOT scheme is applied to solving the time domain volume integral equation (VIE
Generating bessel functions in mie scattering calculations using continued fractions.
Lentz, W J
1976-03-01
A new method of generating the Bessel functions and ratios of Bessel functions necessary for Mie calculations is presented. Accuracy is improved while eliminating the need for extended precision word lengths or large storage capability. The algorithm uses a new technique of evaluating continued fractions that starts at the beginning rather than the tail and has a built-in error check. The continued fraction representations for both spherical Bessel functions and ratios of Bessel functions of consecutive order are presented.
Neutron scatter studies of chromatin structures related to functions
International Nuclear Information System (INIS)
Bradbury, E.M.
1992-01-01
Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin
Neutron scatter studies of chromatin structures related to functions
International Nuclear Information System (INIS)
Bradbury, E.M.
1992-01-01
We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin
Point spread function due to multiple scattering of light in the atmosphere
International Nuclear Information System (INIS)
Pękala, J.; Wilczyński, H.
2013-01-01
The atmospheric scattering of light has a significant influence on the results of optical observations of air showers. It causes attenuation of direct light from the shower, but also contributes a delayed signal to the observed light. The scattering of light therefore should be accounted for, both in simulations of air shower detection and reconstruction of observed events. In this work a Monte Carlo simulation of multiple scattering of light has been used to determine the contribution of the scattered light in observations of a point source of light. Results of the simulations and a parameterization of the angular distribution of the scattered light contribution to the observed signal (the point spread function) are presented. -- Author-Highlights: •Analysis of atmospheric scattering of light from an isotropic point source. •Different geometries and atmospheric conditions were investigated. •A parameterization of scattered light distribution has been developed. •The parameterization allows one to easily account for the light scattering in air. •The results will be useful in analyses of observations of extensive air shower
Sayed, Sadeed Bin
2015-05-05
A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert- Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations can not be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown “future” field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known “past” ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.
Sayed, Sadeed Bin; Ulku, Huseyin; Bagci, Hakan
2015-01-01
A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert- Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations can not be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown “future” field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known “past” ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.
Matheoud, Roberta; Della Monica, Patrizia; Secco, Chiara; Loi, Gianfranco; Krengli, Marco; Inglese, Eugenio; Brambilla, Marco
2011-01-01
The aim of this work is to evaluate the role of different amount of attenuation and scatter on FDG-PET image volume segmentation using a contrast-oriented method based on the target-to-background (TB) ratio and target dimensions. A phantom study was designed employing 3 phantom sets, which provided a clinical range of attenuation and scatter conditions, equipped with 6 spheres of different volumes (0.5-26.5 ml). The phantoms were: (1) the Hoffman 3-dimensional brain phantom, (2) a modified International Electro technical Commission (IEC) phantom with an annular ring of water bags of 3 cm thickness fit over the IEC phantom, and (3) a modified IEC phantom with an annular ring of water bags of 9 cm. The phantoms cavities were filled with a solution of FDG at 5.4 kBq/ml activity concentration, and the spheres with activity concentration ratios of about 16, 8, and 4 times the background activity concentration. Images were acquired with a Biograph 16 HI-REZ PET/CT scanner. Thresholds (TS) were determined as a percentage of the maximum intensity in the cross section area of the spheres. To reduce statistical fluctuations a nominal maximum value is calculated as the mean from all voxel > 95%. To find the TS value that yielded an area A best matching the true value, the cross section were auto-contoured in the attenuation corrected slices varying TS in step of 1%, until the area so determined differed by less than 10 mm² versus its known physical value. Multiple regression methods were used to derive an adaptive thresholding algorithm and to test its dependence on different conditions of attenuation and scatter. The errors of scatter and attenuation correction increased with increasing amount of attenuation and scatter in the phantoms. Despite these increasing inaccuracies, PET threshold segmentation algorithms resulted not influenced by the different condition of attenuation and scatter. The test of the hypothesis of coincident regression lines for the three phantoms used
Misawa, M; Inamura, Y; Hosaka, D; Yamamuro, O
2006-08-21
Quasielastic neutron scattering measurements have been made for 1-propanol-water mixtures in a range of alcohol concentration from 0.0 to 0.167 in mole fraction at 25 degrees C. Fraction alpha of water molecules hydrated to fractal surface of alcohol clusters in 1-propanol-water mixture was obtained as a function of alcohol concentration. Average hydration number N(ws) of 1-propanol molecule is derived from the value of alpha as a function of alcohol concentration. By extrapolating N(ws) to infinite dilution, we obtain values of 12-13 as hydration number of isolated 1-propanol molecule. A simple interpretation of structural origin of anomalous excess partial molar volume of water is proposed and as a result a simple equation for the excess partial molar volume is deduced in terms of alpha. Calculated values of the excess partial molar volumes of water and 1-propanol and the excess molar volume of the mixture are in good agreement with experimental values.
Dissipative Lax-Phillips scattering theory and the characteristic function of a contraction
International Nuclear Information System (INIS)
Neidhardt, H.
1987-01-01
The paper deals with the problem to characterize all those contractions admitting a dissipative Lax-Phillips scattering theory. The characterization is given in terms of the characteristic function of contraction and its unitary part. Moreover, the problem is considered and solved to describe all those completely contractions which can be orthogonally enlarged by a unitary operator such that the sum admits an orthogonal dissipative Lax-Phillips scattering theory
International Nuclear Information System (INIS)
Alger, T.W.
1979-01-01
A new method for determining the particle-size-distribution function of a polydispersion of spherical particles is presented. The inversion technique for the particle-size-distribution function is based upon matching the measured intensity profile of angularly scattered light with a summation of the intensity contributions of a series of appropriately spaced, narrowband, size-distribution functions. A numerical optimization technique is used to determine the strengths of the individual bands that yield the best agreement with the measured scattered-light-intensity profile. Because Mie theory is used, the method is applicable to spherical particles of all sizes. Several numerical examples demonstrate the application of this inversion method
Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.
2013-12-01
We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.
An analysis of some aspects of the attenuation - Scatter functions in brachytherapy dosimetry
Energy Technology Data Exchange (ETDEWEB)
Klevenhagen, S C [The Royal London Hospital, London (United Kingdom). Dept. of Medical Physics
1996-08-01
An analysis is presented of the attenuation-scatter functions radial dose functions employed in brachytherapy dosimetry which accounts for the interplay between attenuation and scattering along the radial distance from the source. Some of the characteristics of these functions are still not established with certainty and are subject of misinterpretation. Such issues like whether they should be normalized or not, particularly in relation to the currently employed source strength specification in terms of air kerma, are not as yet agreed. In the literature, the functions are presented either as normalized or non-normalized but the differences between them are wrongly interpreted as being due to either computational or experimental uncertainties. Furthermore, there is uncertainty about the attenuation-scatter ratio very close to the brachytherapy sources and, in the case of some functions, at larger radial distances. Although the function`s value at close distance may seem of lesser dosimetric relevance, it is important if one wants the underlying physics to be correct. These problems were studied in this analysis on the basis of the available data. An experiment was also carried out in order to determine the scatter component in the close vicinity to the source. The study is based on the data for Iridium-192 but the discussion and conclusions are relevant to all types of brachytherapy sources. It is concluded in this analysis that: i) it is incorrect to be comparing the normalised with non-normalised functions; ii) only non-normalised (the natural) functions such as that derived by Mesiberger et al (1968) or Sakelliou et al (1992) are corrected for dose calculation systems based on the recommended air kerma source specification; iii) the function should not have a value of unity at r = 0 because of the scatter domination over attenuation in the space around the source and; iv) the Van Kleffens-Star function is in error at larger radial distances. 22 refs, 7 figs.
Yurkin, Maxim A.; Mishchenko, Michael I.
2018-04-01
We present a general derivation of the frequency-domain volume integral equation (VIE) for the electric field inside a nonmagnetic scattering object from the differential Maxwell equations, transmission boundary conditions, radiation condition at infinity, and locally-finite-energy condition. The derivation applies to an arbitrary spatially finite group of particles made of isotropic materials and embedded in a passive host medium, including those with edges, corners, and intersecting internal interfaces. This is a substantially more general type of scatterer than in all previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the entire discussion accessible to the applied scattering community. We also consider the known results on the existence and uniqueness of VIE solution and conjecture a general sufficient condition for that. Finally, we discuss an alternative way of deriving the VIE for an arbitrary object by means of a continuous transformation of the everywhere smooth refractive-index function into a discontinuous one. Overall, the paper examines and pushes forward the state-of-the-art understanding of various analytical aspects of the VIE.
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.
Frisvad, Jeppe Revall
2018-04-01
In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.
Zhan, Hanyu; Voelz, David G.
2016-12-01
The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.
An analysis of some aspects of the attenuation - Scatter functions in brachytherapy dosimetry
International Nuclear Information System (INIS)
Klevenhagen, S.C.
1996-01-01
An analysis is presented of the attenuation-scatter functions radial dose functions employed in brachytherapy dosimetry which accounts for the interplay between attenuation and scattering along the radial distance from the source. Some of the characteristics of these functions are still not established with certainty and are subject of misinterpretation. Such issues like whether they should be normalized or not, particularly in relation to the currently employed source strength specification in terms of air kerma, are not as yet agreed. In the literature, the functions are presented either as normalized or non-normalized but the differences between them are wrongly interpreted as being due to either computational or experimental uncertainties. Furthermore, there is uncertainty about the attenuation-scatter ratio very close to the brachytherapy sources and, in the case of some functions, at larger radial distances. Although the function's value at close distance may seem of lesser dosimetric relevance, it is important if one wants the underlying physics to be correct. These problems were studied in this analysis on the basis of the available data. An experiment was also carried out in order to determine the scatter component in the close vicinity to the source. The study is based on the data for Iridium-192 but the discussion and conclusions are relevant to all types of brachytherapy sources. It is concluded in this analysis that: i) it is incorrect to be comparing the normalised with non-normalised functions; ii) only non-normalised (the natural) functions such as that derived by Mesiberger et al (1968) or Sakelliou et al (1992) are corrected for dose calculation systems based on the recommended air kerma source specification; iii) the function should not have a value of unity at r = 0 because of the scatter domination over attenuation in the space around the source and; iv) the Van Kleffens-Star function is in error at larger radial distances. (author). 22 refs, 7
Bagci, Hakan
2014-01-01
scatterer, in response to a transient incident field, generates a scattered field. First, the scattered field is expressed as a spatio-temporal convolution of the current and the Green function of the background medium. Then, a TDIE is obtained by enforcing
Scattering Phase Functions of Constituents of Mineral Dust Aerosols ...
African Journals Online (AJOL)
... Montmorillonte, Hematite, Calcite and Quartz. The behaviour of these constituents as observed by their phase functions provide information on the optical properties and radiative effects of the mineral dust types and is therefore useful on regional and global scales in assessing radiative impacts of dust outbreak events.
Ulaby, F. T.; Moore, R. K.; Fung, A. K.
1982-01-01
The fundamental principles of radar backscattering measurements are presented, including measurement statistics, Doppler and pulse discrimination techniques, and associated ambiguity functions. The operation of real and synthetic aperture sidelooking airborne radar systems is described, along with the internal and external calibration techniques employed in scattering measurements. Attention is given to the physical mechanisms responsible for the scattering emission behavior of homogeneous and inhomogeneous media, through a discussion of surface roughness, dielectric properties and inhomogeneity, and penetration depth. Simple semiempirical models are presented. Theoretical models involving greater mathematical sophistication are also given for extended ocean and bare soil surfaces, and the more general case of a vegetation canopy over a rough surface.
International Nuclear Information System (INIS)
Gazdallah, Moncef; Feldheim, Véronique; Claramunt, Kilian; Hirsch, Charles
2012-01-01
This paper presents the implementation of the finite volume method to solve the radiative transfer equation in a commercial code. The particularity of this work is that the method applied on unstructured hexahedral meshes does not need a pre-processing step establishing a particular marching order to visit all the control volumes. The solver simply visits the faces of the control volumes as numbered in the hexahedral unstructured mesh. A cell centred mesh and a spatial differencing step scheme to relate facial radiative intensities to nodal intensities is used. The developed computer code based on FVM has been integrated in the CFD solver FINE/Open from NUMECA Int. Radiative heat transfer can be evaluated within systems containing uniform, grey, emitting, absorbing and/or isotropically or linear anisotropically scattering medium bounded by diffuse grey walls. This code has been validated for three test cases. The first one is a three dimensional rectangular enclosure filled with emitting, absorbing and anisotropically scattering media. The second is the differentially heated cubic cavity. The third one is the L-shaped enclosure. For these three test cases a good agreement has been observed when temperature and heat fluxes predictions are compared with references taken, from literature.
Mitri, Farid
2014-11-01
The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.
SFERXS, Photoabsorption, Coherent, Incoherent Scattering Cross-Sections Function for Shielding
International Nuclear Information System (INIS)
Legarda, F.; Mtz de la Fuente, O.; Herranz, M.
2002-01-01
Description of program or function: The use of electromagnetic radiation cross-sections in radiation shielding calculations and more generally in transport theory applications actually requires an interpolation between values which are tabulated for certain values of the energy. In order to facilitate this process and to reduce the computer memory requirements, we have developed, by a least squares method, a set of functions which represents the cross-sections for the photoelectric absorption, the coherent (Rayleigh) and the incoherent (Compton) scattering (1). For this purpose we have accepted as true values the ones tabulated by Storm and Israel (2) for the photoeffect, by Hubbell et Al. (3) for the incoherent scattering and by Hubbell and Overbo (4) for the coherent scattering
International Nuclear Information System (INIS)
Barut, A.O.; Anders, T.B.; Jachmann, W.
1992-06-01
The experimental data for the polarization asymmetries of pp-scattering available at the scattering angle θ = 90 deg. and at various moderate energies, as well as at E = 2.4434 GeV and various scattering angles are described by smooth phenomenological coupling functions for scalar, vector, tensor and the ''magnetic moment'' couplings as well as the corresponding parity conserving axial couplings. The analysis shows a predominant role of the ''axial magnetic moment'', the axial scalar, and the axial vector interactions. Moreover, the data contain oscillations of the type sin(qw 0 -π)/(qw 0 -π), where q is the square root of the energy-momentum transfer. The oscillations have amplitudes of 5%, and a constant frequency w o = 2π/0.88 m p . They arise from oscillating modulations up to 25% of the non-axial coupling functions. 8 refs, 21 figs, 4 tabs
Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles
Yamini, D.; Devanand Venkatasubbu, G.; Kumar, J.; Ramakrishnan, V.
2014-01-01
The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass.
A Literature Survey on Inverse Scattering for Electron Density Profile Determination. Volume II.
1981-09-24
THE INVERSE SCATTERING PROBLEM4 FOR THE EQUAT ION Of ACOUSTIC$ AVILA, G.S.S. DEPT. DE MATEMATICA . INST. DE CIENCIAS EXATAS. UNIV. Of BRASILIA...of Colict support Portinari. Joao C. Departamento do Matematica . Pontificia Universidade Catolica do Rio de Janeiro, Rio do Janeiro. Brasil J. Math
Excitation function of elastic $pp$ scattering from a unitarily extended Bialas-Bzdak model
Nemes, F.; Csanád, M.
2015-01-01
The Bialas-Bzdak model of elastic proton-proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic $pp$ scattering not only at the lower ISR energies but also at $\\sqrt{s}=$7~TeV in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton-proton scattering is predicted for the future LHC energies of $\\sqrt{s}=$13, 14, 15~TeV and also to 28~TeV. A non-trivial, significantly non-exponential feature of the differential cross-section of elastic proton-proton scattering is analyzed and the excitation function of the non-exponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small ...
Biçer, M.; Kaşkaş, A.
2018-03-01
The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.
Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine
2017-06-01
Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.
Velocity-Autocorrelation Function in Liquids, Deduced from Neutron Incoherent Scattering Results
DEFF Research Database (Denmark)
Carneiro, Kim
1976-01-01
The Fourier transform p(ω) of the velocity-autocorrelation function is derived from neutron incoherent scattering results, obtained from the two liquids Ar and H2. The quality and significance of the results are discussed with special emphasis on the long-time t-3/2 tail, found in computer simula...
International Nuclear Information System (INIS)
Bluemlein, J.
1993-08-01
The possibilities to measure structure functions, to extract parton distributions, and to measure α s and Λ QCD in current and future high energy deep inelastic scattering experiments are reviewed. A comparison is given for experiments at HERA, an ep option at LEP xLHC, and a high energy neutrino experiment. (orig.)
Effects of wave function correlations on scaling violation in quasi-free electron scattering
International Nuclear Information System (INIS)
Tornow, V.; Drechsel, D.; Orlandini, G.; Traini, M.
1981-01-01
The scaling law in quasi-free electron scattering is broken due to the existence of exchange forces, leading to a finite mean value of the scaling variable anti y. This effect is considerably increased by wave function correlations, in particular by tensor correlations, similar to the case of the photonuclear enhancement factor k. (orig.)
On the calculation of x-ray scattering signals from pairwise radial distribution functions
DEFF Research Database (Denmark)
Dohn, Asmus Ougaard; Biasin, Elisa; Haldrup, Kristoffer
2015-01-01
We derive a formulation for evaluating (time-resolved) x-ray scattering signals of solvated chemical systems, based on pairwise radial distribution functions, with the aim of this formulation to accompany molecular dynamics simulations. The derivation is described in detail to eliminate any possi...
Finite volume gauge theory partition functions in three dimensions
International Nuclear Information System (INIS)
Szabo, Richard J.
2005-01-01
We determine the fermion mass dependence of Euclidean finite volume partition functions for three-dimensional QCD in the ε-regime directly from the effective field theory of the pseudo-Goldstone modes by using zero-dimensional non-linear σ-models. New results are given for an arbitrary number of flavours in all three cases of complex, pseudo-real and real fermions, extending some previous considerations based on random matrix theory. They are used to describe the microscopic spectral correlation functions and smallest eigenvalue distributions of the QCD 3 Dirac operator, as well as the corresponding massive spectral sum rules
Scattering and the Point Spread Function of the New Generation Space Telescope
Schreur, Julian J.
1996-01-01
Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called
Linear estimates of structure functions from deep inelastic lepton-nucleon scattering data. Part 1
International Nuclear Information System (INIS)
Anikeev, V.B.; Zhigunov, V.P.
1991-01-01
This paper concerns the linear estimation of structure functions from muon(electron)-nucleon scattering. The expressions obtained for the structure functions estimate provide correct analysis of the random error and the bias The bias arises because of the finite number of experimental data and the finite resolution of experiment. The approach suggested may become useful for data handling from experiments at HERA. 9 refs
WKB approach to evaluate series of Mathieu functions in scattering problems
Hubert, Maxime; Dubertrand, Remy
2017-01-01
The scattering of a wave obeying Helmholtz equation by an elliptic obstacle can be described exactly using series of Mathieu functions. This situation is relevant in optics, quantum mechanics and fluid dynamics. We focus on the case when the wavelength is comparable to the obstacle size, when the most standard approximations fail. The approximations of the radial (or modified) Mathieu functions using WKB method are shown to be especially efficient, in order to precisely evaluate series of suc...
The EDDA experiment: proton-proton elastic scattering excitation functions at intermediate energies
International Nuclear Information System (INIS)
Hinterberher, F.
1996-01-01
The EDDA experiment is designed to provide a high precision measurement of proton-proton elastic scattering excitation functions ranging from 0.5 to 2.5 GeV of (lab) incident kinetic energy. It is an internal target experiment utilizing the proton beam of the cooler synchrotron COSY operated by KFA Juelich. The excitation functions are measured during the acceleration ramp of COSY. (author)
Bound and scattering wave functions for a velocity-dependent Kisslinger potential for l>0
International Nuclear Information System (INIS)
Jaghoub, M.I.
2002-01-01
Using formal scattering theory, the scattering wave functions are extrapolated to negative energies corresponding to bound-state poles. It is shown that the ratio of the normalized scattering and the corresponding bound-state wave functions, at a bound-state pole, is uniquely determined by the bound-state binding energy. This simple relation is proved analytically for an arbitrary angular momentum quantum number l>0, in the presence of a velocity-dependent Kisslinger potential. The extrapolation relation is tested analytically by solving the Schroedinger equation in the p-wave case exactly for the scattering and the corresponding bound-state wave functions when the Kisslinger potential has the form of a square well. A numerical resolution of the Schroedinger equation in the p-wave case and of a square-well Kisslinger potential is carried out to investigate the range of validity of the extrapolated connection. It is found that the derived relation is satisfied best at low energies and short distances. (orig.)
Dirac Coulomb Green's function and its application to relativistic Rayleigh scattering
International Nuclear Information System (INIS)
Wong, M.K.F.; Yeh, E.H.Y.
1985-01-01
The Dirac Coulomb Green's function is obtained in both coordinate and momentum space. The Green's function in coordinate space is obtained by the eigenfunction expansion method in terms of the wave functions obtained by Wong and Yeh. The result is simpler than those obtained previously by other authors, in that the radial part for each component contains one term only instead of four terms. Our Green's function reduces to the Schroedinger Green's function upon some simple conditions, chiefly by neglecting the spin and replacing lambda by l. The Green's function in momentum space is obtained as the Fourier transform of the coordinate space Green's function, and is expressed in terms of basically three types of functions: (1) F/sub A/ (α; β 1 β 2 β 3 ; γ 1 γ 2 γ 3 ; z 1 z 2 z 3 ), (2) the hypergeometric function, and (3) spherical harmonics. The matrix element for Rayleigh scattering, or elastic Compton scattering, from relativistically bound electrons is then obtained in analytically closed form. The matrix element is written basically in terms of the coordinate space Dirac Coulomb Green's function. The technique used in the evaluation of the matrix element is based on the calculation of the momentum space Dirac Coulomb Green's function. Finally the relativistic result is compared with the nonrelativistic result
High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies
International Nuclear Information System (INIS)
Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.
1989-02-01
Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Franz Gross, Alfred Stadler
2010-09-01
We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.
International Nuclear Information System (INIS)
Nakada, Masaru; Maruyama, Kenji; Misawa, Masakatsu; Yamamuro, Osamu
2007-01-01
Quasielastic neutron scattering has been used to investigate the hydration of alcohol clusters in tert-butyl alcohol-water mixture. The measurements were made in a range of alcohol concentration, x TBA , from 0.0 to 0.17 in mole fraction at 25degC. Fraction, α, of water molecules hydrated to fractal-surface of alcohol clusters in tert-butyl alcohol-water mixture was obtained as a function of alcohol concentration. Average hydration number N WS of tert-butyl alcohol molecule was derived from the value of α as a function of alcohol concentration. The value of N WS for an isolated alcohol molecule in water was 19-21. The anomalous excess partial molar volume of tert-butyl alcohol-water mixture was interpreted successfully by applying the same model with the same values of volume parameter as used for 1-propanol-water mixture, δ 1 (=-0.36 cm 3 ·mol -1 ) and δ 2 (=0.60 cm 3 ·mol -1 ). (author)
Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry
DEFF Research Database (Denmark)
Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik
2004-01-01
n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....
PET functional volume delineation: a robustness and repeatability study
International Nuclear Information System (INIS)
Hatt, Mathieu; Cheze-le Rest, Catherine; Albarghach, Nidal; Pradier, Olivier; Visvikis, Dimitris
2011-01-01
Current state-of-the-art algorithms for functional uptake volume segmentation in PET imaging consist of threshold-based approaches, whose parameters often require specific optimization for a given scanner and associated reconstruction algorithms. Different advanced image segmentation approaches previously proposed and extensively validated, such as among others fuzzy C-means (FCM) clustering, or fuzzy locally adaptive bayesian (FLAB) algorithm have the potential to improve the robustness of functional uptake volume measurements. The objective of this study was to investigate robustness and repeatability with respect to various scanner models, reconstruction algorithms and acquisition conditions. Robustness was evaluated using a series of IEC phantom acquisitions carried out on different PET/CT scanners (Philips Gemini and Gemini Time-of-Flight, Siemens Biograph and GE Discovery LS) with their associated reconstruction algorithms (RAMLA, TF MLEM, OSEM). A range of acquisition parameters (contrast, duration) and reconstruction parameters (voxel size) were considered for each scanner model, and the repeatability of each method was evaluated on simulated and clinical tumours and compared to manual delineation. For all the scanner models, acquisition parameters and reconstruction algorithms considered, the FLAB algorithm demonstrated higher robustness in delineation of the spheres with low mean errors (10%) and variability (5%), with respect to threshold-based methodologies and FCM. The repeatability provided by all segmentation algorithms considered was very high with a negligible variability of <5% in comparison to that associated with manual delineation (5-35%). The use of advanced image segmentation algorithms may not only allow high accuracy as previously demonstrated, but also provide a robust and repeatable tool to aid physicians as an initial guess in determining functional volumes in PET. (orig.)
An estimation of the structure function xF3 in neutrino-proton scattering
International Nuclear Information System (INIS)
Aoki, Kenzaburo; Arimoto, Shinsuke; Hoshino, Shigetoshi; Itoh, Nobuhisa; Konno, Toshiharu.
1981-01-01
The structure function xF 3 (x, Q 2 ) in the deep-inelastic neutrino-proton scattering was estimated without differentiating with respect to Q 2 in the evolution function. At first, the moment of the non-singlet structure function xF 3 (x, Q 2 ) is defined. Then, the kernel function f(z, Q 2 ) is presented. Finally, the expression for the structure function xF 3 is given. The values of the structure function for various Q 2 are shown in five figures. A peak is seen in each figure, and the highest peak is at about Q 2 = 14GeV 2 . The analysis suggests very small value of xF 3 in small Q 2 region. The kernel function f(x/y, Q 2 ) may be interpreted as the probability of finding a quark of momentum fraction x arising from that of y is quantum chromodynamics. (Kato, T.)
Resonances in a two-dimensional electron waveguide with a single δ-function scatterer
International Nuclear Information System (INIS)
Boese, Daniel; Lischka, Markus; Reichl, L. E.
2000-01-01
We study the conductance properties of a straight two-dimensional electron waveguide with an s-like scatterer modeled by a single δ-function potential with a finite number of modes. Even such a simple system exhibits interesting resonance phenomena. These resonances are explained in terms of quasibound states both by using a direct solution of the Schroedinger equation and by studying the Green's function of the system. Using the Green's function we calculate the survival probability as well as the power absorption, and show the influence of the quasibound states on these two quantities. (c) 2000 The American Physical Society
Directory of Open Access Journals (Sweden)
M. V. Uspensky
2011-06-01
Full Text Available Norway and Finland STARE radar measurements in the eastward auroral electrojet are combined with EISCAT CP-1 measurements of the electron density and electric field vector in the common scattering volume to investigate the variation of the auroral radar volume cross section (VCS with the flow angle of observations (radar look direction with respect to the E×B electron drift. The data set available consists of ~6000 points for flow angles of 40–85° and electron drifts between 500 and 2000 m s−1. The EISCAT electron density N(h-profile data are used to estimate the effective electron density, aspect angle and thickness of the backscattering layer. It is shown that the flow angle variation of the VCS is rather weak, only ~5 dB within the range of the considered flow angles. The VCS values themselves respond almost linearly to the square of both the electron drift velocity magnitude and the effective electron density. By adopting the inferred shape of the VCS variation with the flow angle and the VCS dependence upon wavelength, the relative amplitude of electrostatic electron density fluctuations over all scales is estimated. Inferred values of 2–4 percent react nearly linearly to the electron drift velocity in the range of 500–1000 m s−1 but the rate of increase slows down at electron drifts >1000 m s−1 and density fluctuations of ~5.5 percent due to, perhaps, progressively growing nonlinear wave losses.
Nucleon-nucleon scattering in the functional quantum theory of the nonlinear spinor field
International Nuclear Information System (INIS)
Haegele, G.
1979-01-01
The author calculates the S matrix for the elastic nucleon-nucleon scattering in the lowest approximation using the quantum theory of nonlinear spinor fields with special emphasis to the ghost configuration of this theory. Introducing a general scalar product a new functional channel calculus is considered. From the results the R and T matrix elements and the differential and integral cross sections are derived. (HSI)
International Nuclear Information System (INIS)
Dias, S.A.
1985-01-01
The transformation law of truncated pertubation theory observables under changes of renormalization scheme is deduced. Based on this, a criticism of the calculus of the moments of structure functions in deep inelastic scattering, obtaining that the A 2 coefficient not renormalization group invariant is done. The PMS criterion is used to optimize the perturbative productions of the moments, truncated to 2nd order. (author) [pt
Laplace transforms of the Hulthén Green's function and their application to potential scattering
Laha, U.; Ray, S.; Panda, S.; Bhoi, J.
2017-10-01
We derive closed-form representations for the single and double Laplace transforms of the Hulthén Green's function of the outgoing wave multiplied by the Yamaguchi potential and write them in the maximally reduced form. We use the expression for the double transform to compute the low-energy phase shifts for the elastic scattering in the systems α-nucleon, α-He3, and α-H3. The calculation results agree well with the experimental data.
Studies on eletron scattering by hydrogen atoms through of a correlationed wave function
International Nuclear Information System (INIS)
Jacchieri, S.G.
1982-01-01
A correlationed wave function dependent of two adjustable parameters ( α e β), aiming describe a system formed by an electron and a hydrogen atom is studied. Some elastic differential cross-sections for several values of α and β parameters, scattering angle of 2 0 to 140 0 and energies of 50 eV and 680 eV are presented. (M.J.C.) [pt
Renal function and plasma volume following ultramarathon cycling.
Neumayr, G; Pfister, R; Hoertnagl, H; Mitterbauer, G; Prokop, W; Joannidis, M
2005-01-01
In recreational cyclists marathon cycling influences renal function only on a minimal scale. Respective information on extreme ultramarathon cycling in better trained athletes is not available. The objective was to evaluate the renal and haematological effects of ultraendurance cycling in the world's best ultramarathon cyclists. Creatinine (CR), urea, haemoglobin (Hb), haematocrit (Hct) and plasma volume (PV) were investigated in 16 male ultramarathon cyclists during the 1st Race Across the Alps in 2001 (distance: 525 km; cumulative altitude difference: 12,600 m). All renal functional parameters were normal pre-exercise. During the race serum CR, urea and uric acid rose significantly by 33, 97 % and 18 % (p training kilometers. The serum urea/CR ratio rose above 40 in 12 athletes (75 %). Mean fractional sodium excretion and fractional uric acid excretion fell below 0.5 % (p 0.40; p training.
Energy Technology Data Exchange (ETDEWEB)
Jonsson, Jacob C.; Branden, Henrik
2006-10-19
This paper demonstrates a method to determine thebidirectional transfer distribution function (BTDF) using an integratingsphere. Information about the sample's angle dependent scattering isobtained by making transmittance measurements with the sample atdifferent distances from the integrating sphere. Knowledge about theilluminated area of the sample and the geometry of the sphere port incombination with the measured data combines to an system of equationsthat includes the angle dependent transmittance. The resulting system ofequations is an ill-posed problem which rarely gives a physical solution.A solvable system is obtained by using Tikhonov regularization on theill-posed problem. The solution to this system can then be used to obtainthe BTDF. Four bulk-scattering samples were characterised using both twogoniophotometers and the described method to verify the validity of thenew method. The agreement shown is great for the more diffuse samples.The solution to the low-scattering samples contains unphysicaloscillations, butstill gives the correct shape of the solution. Theorigin of the oscillations and why they are more prominent inlow-scattering samples are discussed.
Elucidation of spin echo small angle neutron scattering correlation functions through model studies.
Shew, Chwen-Yang; Chen, Wei-Ren
2012-02-14
Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics
International Nuclear Information System (INIS)
Lezoch, P.; Trost, H.; Strohbusch, U.
1981-01-01
The magnitudes of volume integrals per interacting nucleon pair J/sub R/' calculated from a compilation of 6 Li potentials vary between 100 and 500 MeV fm 3 . They are grouped in discrete branches with J/sub R/(A) smoothly increasing with decreasing target mass. Comparison with the results for lighter projectiles restricts the ''physically meaningful'' branches to those characterized by J/sub R/ (A> or =48) 3 . ( 6 Li,d) reaction analyses yield the same fit qualities for 6 Li potentials of the different discrete families, but deduced spectroscopic factors jump (by factors of approx.3) when changing between successive families
Baryon scattering at high energies. Wave function, impact factor, and gluon radiation
International Nuclear Information System (INIS)
Bartels, J.; Motyka, L.; Jagellonian Univ., Krakow
2007-11-01
The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in γ * scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in γ * scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the γ * -initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2→4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3→4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)
Baryon scattering at high energies. Wave function, impact factor, and gluon radiation
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Motyka, L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Jagellonian Univ., Krakow (Poland). Inst. of Physics
2007-11-15
The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in {gamma}{sup *} scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in {gamma}{sup *} scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the {gamma}{sup *}-initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2{yields}4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3{yields}4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)
Measurement of the proton structure function F2 in ep scattering at HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1993-08-01
This paper presents our first measurement of the F 2 structure function in neutral-current, deep inelastic scattering using the ZEUS detector at HERA, the ep colliding beam facility at DESY. The data correspond to an integrated luminosity of 24.7 nb -1 . Results are presented for data in a range of Q 2 from 10 GeV 2 to 4700 GeV 2 and Bjorken x down to 3.0x10 -4 . The F 2 structure function increases rapidly as x decreases. (orig.)
Directory of Open Access Journals (Sweden)
Sidlof P.
2013-04-01
Full Text Available This paper deals with the method which calculates a filtration efficiency of nonwoven textiles from scattered light intensity by seeding particles. Thefiltration efficiency is commonly measured by particle counters. Samples of liquid or gas are taken during a test in front of and behind a filtration material. The concentration of particles is measured and the filtration efficiency is calculated. The filtration efficiency does not have to be uniform in itswhole surface. The uniformity of filtration is another indicator of a quality of filtration materials. Measurements described in this article were performed on a water filtration setup which enables optical access to the place where the filtration material is mounted. Pictures of illuminated seeding particles are made by a laser sheet and a camera. Visualisation of the filtration process enables measuring of the efficiency of separation versus time and also versus two-dimensional position in case of use of a traverse mechanism. The filtration textiles were tested by 1 μm seeding particles. Mean value of light intensity and number of bright pixels in evaluative areas during image analysis were obtained. On the basis of these data, the filtration efficiency iscalculated. The best image analysis method was chosen.
Structure function measurements in the deep inelastic muon-nucleon scattering
International Nuclear Information System (INIS)
Peschel, H.
1990-03-01
Measurements of deep inelastic scattering events on a combined copper and deuterium target were performed by the European Muon Collaboration (EMC) using a muon beam at CERN's SPS with energies at 100 GeV and 280 GeV. The data are analysed and compared with a detailed Monte-Carlo simulation and allow the determination of structure functions from both targets. In the light of the present discrepancy between EMC's and BCDMS's structure functions, stringend cuts were applied to the data. The results confirm the EMC structure function measurements on unbound nucleons. The comparison between the copper structure function from this experiment and the NA2 iron structure function shows a trend to lower values at low x Bj . (orig.) [de
Collinear factorization for deep inelastic scattering structure functions at large Bjorken xB
International Nuclear Information System (INIS)
Accardi, Alberto; Qiu, Jian-Wei
2008-01-01
http://dx.doi.org/10.1088/1126-6708/2008/07/090 We examine the uncertainty of perturbative QCD factorization for hadron structure functions in deep inelastic scattering at a large value of the Bjorken variable xB. We analyze the target mass correction to the structure functions by using the collinear factorization approach in the momentum space. We express the long distance physics of structure functions and the leading target mass corrections in terms of parton distribution functions with the standard operator definition. We compare our result with existing work on the target mass correction. We also discuss the impact of a final-state jet function on the extraction of parton distributions at large fractional momentum x.
International Nuclear Information System (INIS)
Bertagnolli, H.
1978-01-01
For the case of special molecular models representing the acetonitrile molecule the expansion coefficients of the molecular par distribution function are calculated by use of pertubation theory. These results are used to get theoretical access to scattering intensities in the frame of several approximations. The first model describes the molecule by three hard spheres and uses a hard sphere liquid as reference. In the second cast the calculations are based on an anisotropic Lennard-Jones potential by application of a model of overlapping ellipsoids and by use of a Lennard-Jones liquid as a reference system. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. Finally all the calculations with different intermolecular potentials are compared with neutron scattering experiments. (orig.) 891 HK [de
The use of neutron scattering to determine the functional structure of glycoside hydrolase.
Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko
2016-10-01
Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Excitation function of elastic scattering on 12C + 4He system, at low energies
International Nuclear Information System (INIS)
Perez-Torres, R.; Aguilera, E. F.; Martinez-Quiroz, E.; Murillo, G.; Belyaeva, T. L.; Maldonado-Velazquez, M.
2011-01-01
Interactions in the 12 C + 4 He system are of great interest in astrophysics and to help determine the relative abundances of elements in stars, at the end of helium burning [1, 2]. The Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, have made measurements of elastic scattering for this system, using the inverse kinematics method with thick white gas [3, 4], for E CM (0.5 - 4 MeV) θ CM = 180 o . In this work we obtain excitation functions of elastic scattering of 12 C + 4 He system with angular and energy dependence; E CM = 0.5 - 4 MeV and θ CM 100 o -170 o .Using inverse kinematics method with thick white gas and energy loss tables. (Author)
International Nuclear Information System (INIS)
Li Heng; Mohan, Radhe; Zhu, X Ronald
2008-01-01
The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.
Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R
2000-01-01
The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.
Mittag–Leffler's function, Vekua transform and an inverse obstacle scattering problem
International Nuclear Information System (INIS)
Ikehata, Masaru
2010-01-01
This paper studies a prototype of inverse obstacle scattering problems whose governing equation is the Helmholtz equation in two dimensions. An explicit method to extract information about the location and shape of unknown obstacles from the far-field operator with a fixed wave number is given. The method is based on an explicit construction of a modification of Mittag–Leffler's function via the Vekua transform and the study of the asymptotic behaviour; an explicit density in the Herglotz wavefunction that approximates the modification of Mittag–Leffler's function in the bounded domain surrounding unknown obstacles; a system of inequalities derived from Kirsch's factorization formula of the far-field operator. Then an indicator function which can be calculated from the far-field operator acting on the density is introduced. It is shown that the asymptotic behaviour of the indicator function yields information about the visible part of the exterior of the obstacles
Time reversal odd fragmentation functions in semi-inclusive deep inelastic lepton-hadron scattering
Energy Technology Data Exchange (ETDEWEB)
Mulders, P.J. [National Inst. for Nuclear Physics and High Energy Physics, Amsterdam (Netherlands); Levelt, J. [Univ. of Erlangen-Nuernberg (Germany)
1994-04-01
In semi-inclusive scattering of polarized leptons from unpolarized hadrons, one can measure a time reversal odd structure function. It shows up as a sin({phi}) asymmetry of the produced hadrons. This asymmetry can be expressed as the product of a twist-three {open_quotes}hadron {r_arrow} quark{close_quotes} profile function and a time reversal odd twist-two {open_quotes}quark {r_arrow} hadron{close_quotes} fragmentation function. This fragmentation function can only be measured for nonzero transverse momenta of the produced hadron. Its appearance is a consequence of final state interactions between the produced hadron and the rest of the final state.
Response functions for crystals and surfaces, with applications to surface scattering
International Nuclear Information System (INIS)
Barker, J.A.; Steele, W.A.
1978-01-01
A general solution of the equations of forced motion of a harmonic crystal or other vibrating system with arbitrary time-dependent forces acting on the atoms is given. The solution is given in terms of dynamical 'response functions', for which expressions in terms of the normal mode frequencies and eigenvectors (polarization vectors) are given. Numerical calculations of the response functions are described for (111) and (100) surfaces of face-centered cubic crystals interacting with Lennard-Jones 6-12 potentials, and the qualitative features of the surface and bulk response functions are discussed. The use of these functions in problems of atomic scattering from surface is outlined, and convenient parametrized forms for this application are given. (Auth.)
Yura, H T; Thrane, L; Andersen, P E
2000-12-01
Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.
Coulomb singularities in scattering wave functions of spin-orbit-coupled states
International Nuclear Information System (INIS)
Bogdanski, P.; Ouerdane, H.
2011-01-01
We report on our analysis of the Coulomb singularity problem in the frame of the coupled channel scattering theory including spin-orbit interaction. We assume that the coupling between the partial wave components involves orbital angular momenta such that Δl= 0, ±2. In these conditions, the two radial functions, components of a partial wave associated to two values of the angular momentum l, satisfy a system of two second-order ordinary differential equations. We examine the difficulties arising in the analysis of the behavior of the regular solutions near the origin because of this coupling. First, we demonstrate that for a singularity of the first kind in the potential, one of the solutions is not amenable to a power series expansion. The use of the Lippmann-Schwinger equations confirms this fact: a logarithmic divergence arises at the second iteration. To overcome this difficulty, we introduce two auxilliary functions which, together with the two radial functions, satisfy a system of four first-order differential equations. The reduction of the order of the differential system enables us to use a matrix-based approach, which generalizes the standard Frobenius method. We illustrate our analysis with numerical calculations of coupled scattering wave functions in a solid-state system.
Nucleon polarizabilities from deuteron Compton scattering within a Green's function hybrid approach
Energy Technology Data Exchange (ETDEWEB)
Hildebrandt, R.P.; Hemmert, T.R. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Griesshammer, H.W. [Technische Universitaet Muenchen, Institut fuer Theoretische Physik (T39), Physik-Department, Garching (Germany); Universitaet Erlangen-Nuernberg, Institut fuer Theoretische Physik III, Naturwissenschaftliche Fakultaet I, Erlangen (Germany); The George Washington University, Center for Nuclear Studies, Department of Physics, Washington DC (United States)
2010-10-15
We examine elastic Compton scattering from the deuteron for photon energies ranging from zero to 100MeV, using state-of-the-art deuteron wave functions and NN potentials. Nucleon-nucleon rescattering between emission and absorption of the two photons is treated by Green's functions in order to ensure gauge invariance and the correct Thomson limit. With this Green's function hybrid approach, we fulfill the low-energy theorem of deuteron Compton scattering and there is no significant dependence on the deuteron wave function used. Concerning the nucleon structure, we use the chiral effective field theory with explicit {delta} (1232) degrees of freedom within the small-scale expansion up to leading-one-loop order. Agreement with available data is good at all energies. Our 2-parameter fit to all elastic {gamma} d data leads to values for the static isoscalar dipole polarizabilities which are in excellent agreement with the isoscalar Baldin sum rule. Taking this value as additional input, we find {alpha}{sub E}{sup s} = (11.3{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and {beta}{sub M}{sup s} = (3.2{+-}0.7(stat){+-}0.6(Baldin){+-}1(theory)){sup .}10{sup -4} fm{sup 3} and conclude by comparison to the proton numbers that neutron and proton polarizabilities are the same within rather small errors. (orig.)
Single-site Green function of the Dirac equation for full-potential electron scattering
Energy Technology Data Exchange (ETDEWEB)
Kordt, Pascal
2012-05-30
I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)
Single-site Green function of the Dirac equation for full-potential electron scattering
International Nuclear Information System (INIS)
Kordt, Pascal
2012-01-01
I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schroedinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schroedinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity. (orig.)
International Nuclear Information System (INIS)
Marinyuk, V V; Sheberstov, S V
2017-01-01
We calculate the total transmission coefficient (transmittance) of a disordered medium with large (compared to the light wavelength) inhomogeneities. To model highly forward scattering in the medium we take advantage of the Gegenbauer kernel phase function. In a subdiffusion thickness range, the transmittance is shown to be sensitive to the specific form of the single-scattering phase function. The effect reveals itself at grazing angles of incidence and originates from small-angle multiple scattering of light. Our results are in a good agreement with numerical solutions to the radiative transfer equation. (paper)
Backward elastic p3He-scattering and high momentum components of 3He wave function
International Nuclear Information System (INIS)
Uzikov, Yu.N.
1998-01-01
It is shown that owing to a dominance of np-pair transfer mechanism of backward elastic p 3 He-scattering for incident proton kinetic energies T p > 1 GeV the cross section of this process is defined mainly by the values of the Faddeev component of the wave function of 3 He nucleus, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ∼ 0 - 0.2 GeV/c
Energy Technology Data Exchange (ETDEWEB)
Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob
2011-01-21
We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.
Experimental results on polarized structure functions in deep inelastic lepton-nucleon scattering
International Nuclear Information System (INIS)
Stuart, L.
1994-08-01
A summary is given of experimental results on spin structure functions of the proton g 1 p (x,Q 2 ), deuteron g 1 d (x,Q 2 ), and neutron g 1 n (x,Q 2 ) as measured in deep inelastic scattering of polarized leptons from a polarized target. All results are consistent with the Bjorken sum rule predictions at the Q 2 of each experiment. The data do not support the Ellis-Jaffe sum rule prediction for the proton which implies that the hencity carried by the strange quark may be nonzero and that the net quark helicity is smaller than expected from simple quark models
9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method
Descouvemont, P.; Itagaki, N.
2018-01-01
We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.
Memory function approach to the line shape problem in collision-induced light scattering
International Nuclear Information System (INIS)
Balucani, U.; Tognetti, V.; Vallauri, R.
1980-01-01
This article mainly deals with the problem of the shape of the spectrum due to interacting pairs of atoms at low and moderate densities. A memory function approach is used which permits to obtain in a consistent way the shape of the scattered spectrum. In order to obtain 'exact' time correlation functions and spectral shapes, molecular-dynamics 'experiments' in Lennard-Jones argon at two different densities were also performed. The dipole-induced dipole (DID) polarizabilities have been used to ascertain the validity of the theoretical approach in a well-defined physical model. The theoretical shapes and correlation functions can be then directly compared with computer simulations. Finally, a comparison with the data of real experiments clarifies the relevance of other-than-DID polarizability mechanisms as far as the spectrum is concerned. (KBE)
Raman, Rajesh N.; Pivetti, Chris D.; Ramsamooj, Rajendra; Troppmann, Christoph; Demos, Stavros G.
2018-02-01
A major source of kidneys for transplant comes from deceased donors whose tissues have suffered an unknown amount of warm ischemia prior to retrieval, with no quantitative means to assess function before transplant. Toward addressing this need, non-contact monitoring of optical signatures in rat kidneys was performed in vivo during ischemia and reperfusion. Kidney autofluorescence images were captured under ultraviolet illumination (355 nm, 325 nm, and 266 nm) in order to provide information on related metabolic and non-metabolic response. In addition, light scattering images under 355 nm, 325 nm, and 266 nm, 500 nm illumination were monitored to report on changes in kidney optical properties giving rise to the observed autofluorescence signals during these processes. During reperfusion, various signal ratios were generated from the recorded signals and then parametrized. Time-dependent parameters derived from the ratio of autofluorescence under 355 nm excitation to that under 266 nm excitation, as well as from 500 nm scattered signal, were found capable of discriminating dysfunctional kidneys from those that were functional (p Kidney dysfunction was confirmed by subsequent survival study and histology following autopsy up to a week later. Physiologic changes potentially giving rise to the observed signals, including those in cellular metabolism, vascular response, tissue microstructure, and microenvironment chemistry, are discussed.
Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.
2015-02-01
Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these
Mao, Shi-Chun; Wu, Zhen-Sen
2008-12-01
An exact solution to the two-dimensional scattering properties of an anisotropic elliptic cylinder for transverse electric polarization is presented. The internal field in an anisotropic elliptic cylinder is expressed as integral representations of Mathieu functions and Fourier series. The coefficients of the series expansion are obtained by imposing boundary conditions on the anisotropic-free-space interface. A matrix is developed to solve the nonorthogonality properties of Mathieu functions at the interface between two different media. Numerical results are given for the bistatic radar cross section and the amplitude of the total magnetic field along the x and y axes. The result is in agreement with that available as expected when an elliptic cylinder degenerates to a circular one.
Deep inelastic scattering in the formalism with the wave functions of composite systems at rest
International Nuclear Information System (INIS)
Khvedelidze, A.M.; Kvinikhidze, A.N.; Sisakyan, A.N.
1987-01-01
A deep inelastic process of lepton-hadron scattering is studied in the bound-state rest frame. A new version of expansion of structure functions over an interaction constant is proposed, each term in it having spectral properties. It is shown that the impulse approximation is insufficient for a correct description of the elastic limit in the composite particle rest frame in contrast with the system of infinite momentum P Z → ∞. The leading asymptotics of the structure functions as x Bj → 1 can be obtained by allowing for the interaction of consituents in a final state. Using as an example a bound state ot two and three particles it is shown that the results of calculations of the relevant diagrams in the QCD model are in agreement with those obtained in th formalism P Z → ∞
International Nuclear Information System (INIS)
Oliveira, P.M.C. de.
1976-12-01
A method of calculation of the K atomic shell ionization probability by heavy particles impact, in the semi-classical approximation is presented. In this approximation, the projectile has a classical trajectory. The potential energy due to the projectile is taken as perturbation of the Hamiltonian of the neutral atom. We use scaled Thomas-Fermi wave function for the atomic electrons. The method is valid for intermediate atomic number elements and particle energies of some MeV. Probabilities are calculated for the case of Ag (Z = 47) and protons of 1 and 2 MeV. Results are given as function of scattering angle, and agree well known experimental data and also improve older calculations. (Author) [pt
Positron scattering by molecules: implementation of the C-tilde-functional
International Nuclear Information System (INIS)
Silva Lino, Jorge Luiz da
1995-01-01
In this work, we present a formulation called the C-Functional to study collisions of low-energy positron by molecules. This formalism is based on the Schwinger Multichannel Method for positrons which although being a quite general method (it is applicable to polyatomic molecules and include polarization and multichannel coupling) is limited to the use of trial wavefunctions consisting only of square integrable basis functions (Gaussian Cartesian Function). In principle this is not a problem, considering that the Schwinger type of methods require a good description of the scattering wavefunction only in the region where the potential is non-zero. However, there exist some situations (long range potentials) where the SMC has consequences. The C-functional (CF) consists in writing the wavefunctions as a sum of a plane-wave plus a combination of trial functions (where the combination is variationally determined). The basic difference between the 2 cases (SMC and CF) is the presence in the CF amplitude of the First (FBA) and Second Born terms. Aiming the preservation of important features of the SMG, we have developed general codes (applicable to polyatomic targets) to evaluate these terms. To illustrate the CF method we show elastic cross sections ti He and H 2 . (author)
Multiple parton scattering in nuclei: heavy quark energy loss and modified fragmentation functions
International Nuclear Information System (INIS)
Zhang Benwei; Wang, Enke; Wang Xinnian
2005-01-01
Multiple scattering, induced radiative energy loss and modified fragmentation functions of a heavy quark in nuclear matter are studied within the framework of generalized factorization in perturbative QCD. Modified heavy quark fragmentation functions and energy loss are derived in detail with illustration of the mass dependencies of the Landau-Pomeranchuk-Migdal interference effects and heavy quark energy loss. Due to the quark mass dependence of the gluon formation time, the nuclear size dependencies of nuclear modification of the heavy quark fragmentation function and heavy quark energy loss are found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss of the heavy quark is also significantly suppressed due to limited cone of gluon radiation imposed by the mass. Medium modification of the heavy quark fragmentation functions is found to be limited to the large z region due to the form of heavy quark fragmentation functions in vacuum
International Nuclear Information System (INIS)
Curiel-Garcia, Quiela-Marina
2014-01-01
One of the goals of the COMPASS experience is the study of the nucleon spin structure. Data were taken from a polarized muon beam (160 GeV/c) scattering off a polarized target ( 6 LiD or NH 3 ). In this context, the need of a precise knowledge of quark Fragmentation Functions (final-state hadronization of quarks q into hadrons h, FFs) was raised. The FFs can be extracted from hadron multiplicities produced in Semi-Inclusive Deep Inelastic Scattering (SIDIS). This thesis presents the measurement of charged hadrons (pions and kaons) multiplicities from SIDIS data collected in 2006. The data cover a large kinematical range: Q 2 ≥1 (GeV/c)2, y belongs to [0.1,0.9], x belongs to [0.004,0.7] and W belongs to [5,17] GeV. These multiplicities provide an important input for global QCD analyses of world data at NLO, aiming at the FFs determination. (author) [fr
Bidirectional optical scattering facility
Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...
Neutron scattering from fractals
DEFF Research Database (Denmark)
Kjems, Jørgen; Freltoft, T.; Richter, D.
1986-01-01
The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...
International Nuclear Information System (INIS)
Bellis, Cédric; Bonnet, Marc; Cakoni, Fioralba
2013-01-01
Originally formulated in the context of topology optimization, the concept of topological derivative has also proved effective as a qualitative inversion tool for a wave-based identification of finite-sized objects. This approach remains, however, largely based on a heuristic interpretation of the topological derivative, whereas most other qualitative approaches to inverse scattering are backed by a mathematical justification. As an effort toward bridging this gap, this study focuses on a topological derivative approach applied to the L 2 -norm of the misfit between far-field measurements. Either an inhomogeneous medium or a finite number of point-like scatterers are considered, using either the Born approximation or a full-scattering model. Topological derivative-based imaging functionals are analyzed using a suitable factorization of the far-field operator, for each of the considered cases, in order to characterize their behavior and assess their ability to reconstruct the unknown scatterer(s). Results include the justification of the usual sign heuristic underpinning the method for (i) the Born approximation and (ii) full-scattering models limited to moderately strong scatterers. Semi-analytical and numerical examples are presented. Within the chosen framework, the topological derivative approach is finally discussed and compared to other well-known qualitative methods. (paper)
Resolution function in deep inelastic neutron scattering using the Foil Cycling Technique
International Nuclear Information System (INIS)
Pietropaolo, A.; Andreani, C.; Filabozzi, A.; Pace, E.; Senesi, R.
2007-01-01
New perspectives for epithermal neutron spectroscopy are being opened up by the development of the Resonance Detector (RD) and its use on inverse geometry time of flight (TOF) spectrometers at spallation sources. The most recent result is the Foil Cycling Technique (FCT), which has been developed and applied on the VESUVIO spectrometer operating in the RD configuration. This technique has demonstrated its capability to improve the resolution function of the spectrometer and to provide an effective neutron and gamma background subtraction method. This paper reports a detailed analysis of the line shape of the resolution function in Deep Inelastic Neutron Scattering (DINS) measurements on VESUVIO spectrometer, operating in the RD configuration and employing the FCT. The aim is to provide an analytical approximation for the analyzer energy transfer function, an useful tool for data analysis on VESUVIO. Simulated and experimental results of DINS measurements on a lead sample are compared. The line shape analysis shows that the most reliable analytical approximation of the energy transfer function is a sum of a Gaussian and a power of a Lorentzian. A comparison with the Double Difference Method (DDM) is also discussed. It is shown that the energy resolution improvement for the FCT and the DDM is almost the same, while the counting efficiency is a factor of about 1.4 higher for the FCT
Measurement of the diffractive structure function in deep inelastic scattering hat HERA
International Nuclear Information System (INIS)
Derrick, M.; Krakauer, D.; Magill, S.
1995-05-01
This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in ep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of x IP , the momentum fraction lost by the proton, of β, the momentum fraction of the struck quark with respect to x IP , and of Q 2 . The x IP dependence is consistent with the form (1/x IP ) a where a=1.30-±0.80(stat) -0.14 +0.08 (sys) in all bins of βand Q 2 . In the measured Q 2 range, the diffractive structure function approximately scales with Q 2 at fixed β. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule. (orig.)
Bound-state wave functions at rest in describing deep inelastic scattering
International Nuclear Information System (INIS)
Khvedelidze, A.M.; Kvinikhidze, A.N.
1991-01-01
The deep inelastic process of the lepton-hadron scattering is studied in the bound-state rest frame. A new version of expanding structure functions in interaction constant powers is proposed, each term in it having spectral properties. This expansion makes it possible to consider contributions of composites in the final state to the cross section. It is shown that, as compared with the system P z →∞, the impulse approximation is insufficient for describing correctly the elastic limit in the composite particle rest frame. The leading asymptotics of structure functions as χ Bj →1 can be obtained by taking into account the interaction of contituents in the final state. It is shown that in contrast to the 'light-cone' formalism the ratio F 2 en (χ)/F 2 ep (χ) as χ Bj →1 depends on the explicit form of the spatial part of the nucleon wave function and, in particular, assuming the relativistic character of internal motion, it may be lower than the well-known prediction (i.e. 3/7). This is due to the correct consideration of spin degrees of freedom of the wave function of the nucleon at rest. (orig.)
Two comments to utilization of structure function approach in deep inelastic scattering experiments
International Nuclear Information System (INIS)
Kuraev, E.; Galynskij, M.; Il'ichev, A.
2002-01-01
The 'returning to resonance' mechanism can be used to obtain the simple procedure of taking radiative corrections (RC) to deep inelastic scattering (DIS) cross sections into account in the framework of the Drell-Yan picture. Iteration procedure is proposed. Kinematical region y→1 can be described in the framework of the Drell-Yan picture using the structure function approach. The large RC in the lowest order reflect the Sudakov form factor suppression, which can be taken into account in all orders of the perturbation theory. Based on explicit calculation in two lowest orders of the perturbation theory, we construct the cross section in the y→1 region obeying renormalization group equations and including the Sudakov-like form factor suppression
International Nuclear Information System (INIS)
Caprini, I.
1982-06-01
Upper and lower bounds upon the subtraction functions required in the dispersion theory of the proton Compton process are derived in a framework wbich optimally exploits the gauge invariance, the fixed-t analyticity and the s-u crossing properties of the scattering amplitudes, together with the consequences of the s, u-channel unitarity. The bounds, which are expressed only in terms of measurable s, u-channel physical quantities, without any reference to model dependent annihilation channel contributions, appear to be quite restrictive for some values of the momentum transfer t. The results are significant for removing the sign ambiguity of the pion decay constant. Fsub(p) and for the estimation of the electromagnetic polarizabilities of the proton. (author)
Disorder effects on the static scattering function of star branched polymers
Directory of Open Access Journals (Sweden)
V. Blavatska
2012-10-01
Full Text Available We present an analysis of the impact of structural disorder on the static scattering function of f-armed star branched polymers in d dimensions. To this end, we consider the model of a star polymer immersed in a good solvent in the presence of structural defects, correlated at large distances r according to a power law ~r-a. In particular, we are interested in the ratio g(f of the radii of gyration of star and linear polymers of the same molecular weight, which is a universal experimentally measurable quantity. We apply a direct polymer renormalization approach and evaluate the results within the double ϵ = 4 - d, δ = 4 - a-expansion. We find an increase of g(f with an increasing δ. Therefore, an increase of disorder correlations leads to an increase of the size measure of a star relative to linear polymers of the same molecular weight.
Energy Technology Data Exchange (ETDEWEB)
Ward, Greg [Anywhere Software, Albany, CA (United States); Kurt, Murat [International Computer Institute, Ege University (Turkey); Bonneel, Nicolas [Harvard Univ., Cambridge, MA (United States)
2012-09-30
The utilization of real-world materials has been hindered by a lack of standards for sharing and interpreting measured data. This paper presents an XML representation and an Open Source C library to support bidirectional scattering distribution functions (BSDFs) in data-driven lighting simulation and rendering applications.The library provides for the efficient representation, query, and Monte Carlo sampling of arbitrary BSDFs in amodel-free framework. Currently, we support two BSDF data representations: one using a fixed subdivision of thehemisphere, and one with adaptive density. The fixed type has advantages for certain matrix operations, while theadaptive type can more accurately represent highly peaked data. We discuss advanced methods for data-drivenBSDF rendering for both types, including the proxy of detailed geometry to enhance appearance and accuracy.We also present an advanced interpolation method to reduce measured data into these standard representations.We end with our plan for future extensions and sharing of BSDF data.
Reichardt, J; Hess, M; Macke, A
2000-04-20
Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.
Directory of Open Access Journals (Sweden)
Chenyang Shi
2017-09-01
Full Text Available Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situ structural studies for a wide range of materials.
International Nuclear Information System (INIS)
Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; Fisher, Peter H.; Formaggio, Joseph Angelo; Karagiorgi, Georgia S.; )
2009-01-01
We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics
LOFT reflood as a function of accumulator initial gas volume
International Nuclear Information System (INIS)
Rhodes, H.F.
1978-01-01
The effect of the initial gas volume in the LOFT accumulators on the time to start of core reflood, after a LOCA, has been studied. The bases of the calculations are the data used and results presented in the Safety Analysis Report, Rev.1, August 1977, and the data in the RELAP and TOODEE2 program input and output listings. The results of this study show that an initial nitrogen volume of 12 cu ft, or more (at 600 psig initial pressure), would cause start of core reflood in time to prevent the cladding temperature from reaching 2200 0 F. The 12 cu ft initial volume will expand from 600 psig, initial pressure, to about 10 psig (containment pressure shortly after start of LOCA is approximately 8 psig) when all ECC liquid has been expelled from the accumulator. This pressure margin is considered too small; the ECC flowrate will be zero before the accumulator is empty
Interactive general-purpose function minimization for the analysis of neutron scattering data
International Nuclear Information System (INIS)
Abel, W.
1981-12-01
An on-line graphic display facility has been employed mainly for the peak analysis of time-of-flight spectra measured by inelastic scattering of thermal neutrons. But it is useful also for the analysis of spectra measured with triple axis spectrometers and of diffraction patterns. The spectral lines may be fitted by the following analytical shape functions: (i) a Gaussian, (ii) a Lorentzian, or (iii) a convolution of a Lorentzian with a Gaussian, plus a background continuum. Data reduction or correction may be invoked optionally. For more general applications in analysing of numerical data there is also the possibility to define the analytical shape functions by the user. Three different minimization methods are available which may be used alone or in combination. The parameters of the shape functions may be kept fixed or variable during the minimization steps. The width of variation may be restricted. Global correlation coefficients, parameter errors and the chi 2 are displayed to inform the user about the quality of the fit. A detailed description of the program operations is given. The programs are written in FORTRAN IV and use an IBM/2250-1 graphic display unit. (orig.) [de
A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering
Milder, A. L.; Froula, D. H.
2017-10-01
A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2 Zvosc2 vth2 > 1 , vth2 > 1 , the inverse bremsstrahlung heating rate is sufficiently fast to compete with electron-electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions. A method to identify the super-Gaussian order of the distribution functions in these plasmas using collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and super-Gaussian order can be determined. This is accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to match the density and electron temperature to within 10%, the super-Gaussian order must be varied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Deep inelastic scattering in formalism with wave functions of rest compound system
International Nuclear Information System (INIS)
Sisakyan, A.N.; Kvinikhidze, A.N.; Khvedelidze, A.M.
1987-01-01
One of the most simple examples of interaction of compound systems: deep inelastic scattering of the point particle on hadron is considered. By choosing the compound particle (hadron) rest system the corresponding cross section is expressed in terms of more usual from the view point of nonrelativistic quantum mechanics wave functions of the rest bound state. A new variant of structure functions expansion into a series in terms of the coupling constant is suggested. Each therm of a series due to correct account of the energy conservation law in any order of the perturbation theory possess spectral property. Analysis in QCD shows that in the bound state rest system (P-vector=0) the pulse approximation though satisfies the requirements of scale invariance is insufficient for correct description of elastic limit x Bj →1 by contrast to P Z →∞ system. It means that parton model is equivalent to pulse approximation only in P Z →∞ system. To obtain the leading in asymptotic region x Bj →1 terms account of component interaction in the finite state is necessary. The simplicity and physical evidence of the wave functions are attained due to the seeming complication of calculations according to the perturbation theory
Goikoetxea, I; Meyer, J; Juaristi, J I; Alducin, M; Reuter, K
2014-04-18
We simulate the scattering of O2 from Ag(111) with classical dynamics simulations performed on a six-dimensional potential energy surface calculated within semilocal density-functional theory. The enigmatic experimental trends that originally required the conjecture of two types of repulsive walls, arising from a physisorption and chemisorption part of the interaction potential, are fully reproduced. Given the inadequate description of the physisorption properties in semilocal density-functional theory, our work casts severe doubts on the prevalent notion to use molecular scattering data as indirect evidence for the existence of such states.
Functional distribution of coronary vascular volume in beating goat hearts
van der Ploeg, C. P.; Dankelman, J.; Spaan, J. A.
1993-01-01
With use of hemoglobin-bound O2 as an endogenous tracer, intramyocardial blood volume distribution between vessels involved in O2 exchange and more distal vessels was estimated. In nine anesthetized open-chest goats, the left main coronary artery was cannulated and perfused at a constant flow.
Static and dynamic properties of multiple light scattering
Štěpánek, Petr
1993-11-01
We have examined the onset and evolution of multiple scattering of light on a series of latex dispersions as a function of increasing volume concentration φ of particles. We have shown that using vertically polarized incident light, the static scattered intensity becomes progressively depolarized, with increasing φ. The polarization of scattered light is completely random in the limit of strong multiple scattering. The spectra of decay times of dynamic light scattering display a region of oligo scattering at intermediate φ where both the single and multiple scattering components can be dynamically identified. For φ≳0.03 the limit of diffusive transport of light is attained. The obtained results confirm that our earlier measurements of dynamic light scattering on systems exhibiting critical opalescence are not influenced by multiple light scattering.
Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults
Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.
2014-01-01
Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203
Fernandez, J. R.; Mertens, C. J.; Bilitza, D.; Xu, X.; Russell, J. M., III; Mlynczak, M. G.
2009-01-01
Broadband infrared limb emission at 4.3 microns is measured by the TIMED/SABER instrument. At night, these emission observations at E-region altitudes are used to derive the so called NO+(v) Volume Emission Rate (VER). NO+(v) VER can be derived by removing the background CO2(v3) 4.3 microns radiance contribution using SABER-based non-LTE radiation transfer models, and by performing a standard Abel inversion on the residual radiance. SABER observations show that NO+(v) VER is significantly enhanced during magnetic storms in accordance with increased ionization of the neutral atmosphere by auroral electron precipitation, followed by vibrational excitation of NO+ (i.e., NO+(v)) from fast exothermic ion-neutral reactions, and prompt infrared emission at 4.3 m. Due to charge neutrality, the NO+(v) VER enhancements are highly correlated with electron density enhancements, as observed for example by Incoherent Scatter Radar (ISR). In order to characterize the response of the storm-time E-region from both SABER and ISR measurements, a Storm/Quiet ratio (SQR) quantity is defined as a function of altitude. For SABER, the SQR is the ratio of the storm-to-quiet NO+(v) VER. SQR is the storm-to-quiet ratio of electron densities for ISR. In this work, we compare SABER and ISR SQR values between 100 to 120 km. Results indicate good agreement between these measurements. SQR values are intended to be used as a correction factor to be included in an empirical storm-time correction to the International Reference Ionosphere model at E-region altitudes.
Determination of the S-wave scattering shape parameter P from the zero-energy wave function
International Nuclear Information System (INIS)
Kermode, M.W.; van Dijk, W.
1990-01-01
We show that for S-wave scattering at an energy k 2 by a local potential which supports no more than one bound state, the shape parameter P and coefficients of higher powers of k 2 in the effective range expansion function cotδ=-1/a+1/2 r 0 k 2 -Pr 0 3 k 3 +Qr 0 5 k 6 +..., where δ is the phase shift, may be obtained from the zero-energy wave function, u 0 (r). Thus δ itself may be determined from u 0 . We show that Pr 0 3 =∫ 0 R [β(r)u 0 2 (r)-bar β(r)bar u 0 2 (r)]dr, where r 0 is the effective range, β(r) is determined from an integral involving the wave function, and bar β(r) is a simple function of r which involves the scattering length and effective range
Incoherent scattering functions of 145 keV gamma rays by K-shell electrons in Y, Ag and Au
International Nuclear Information System (INIS)
Raghava Rao, A.; Ramana Reddy, S.V.S.; Premchand, K.; Narasimham, K.L.; Parthasaradhi, K.; Lakshminarayana, V.
1982-01-01
The values of incoherent scattering functions are determined experimentally for 145 keV gamma rays in elements Au, Ag and Y at scattering angles 40 0 , 70 0 and 100 0 , using a x-ray gamma coincidence technique. The corresponding theoretical values are obtained from the tabulations of Hubbell et al, and computed from the models of Jauch and Rohrlich and Shimizu et al. A comparison between the theoretical and experimental results showed that the non-relativistic approach adopted in the theory of Shimizu et al is inapplicable to the present cases. A gross agreement is noticed between the present experimental results and the other theoretical values. (author)
Energy Technology Data Exchange (ETDEWEB)
Kennedy, Robert D. [UC, San Diego
1992-01-01
The ratio of the neutron and proton structure functions $F_2$ has been measured to very low $X_{bj}$ using inelastic muon scattering. Data were taken in 1990 using 475 GeV muons incident on hydrogen and deuterium targets. Electromagnetic calorimetry has been used to remove radiative backgrounds and muon-electron elastic scattering. Results of the measurement are presented which cover the kinematic region 0.0001 $\\le$ $X_{bj} \\le$ 0.4 and 0.1 GeV$^2$ /$c^2$ $\\le$ $Q^2$ $\\le$ 100.0 GeV$^2$ /c$^2$.
Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Broker, H.-B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K.H.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.
2004-01-01
The proton structure function F_2(x,Q^2) is measured in inelastic QED Compton scattering using data collected with the H1 detector at HERA. QED Compton events are used to access the kinematic range of very low virtualities of the exchanged photon, Q^2, down to 0.5 GeV^2, and Bjorken x up to \\sim 0.06, a region which has not been covered previously by inclusive measurements at HERA. The results are in agreement with the measurements from fixed target lepton-nucleon scattering experiments.
Automatic delineation of functional lung volumes with 68Ga-ventilation/perfusion PET/CT.
Le Roux, Pierre-Yves; Siva, Shankar; Callahan, Jason; Claudic, Yannis; Bourhis, David; Steinfort, Daniel P; Hicks, Rodney J; Hofman, Michael S
2017-10-10
Functional volumes computed from 68 Ga-ventilation/perfusion (V/Q) PET/CT, which we have shown to correlate with pulmonary function test parameters (PFTs), have potential diagnostic utility in a variety of clinical applications, including radiotherapy planning. An automatic segmentation method would facilitate delineation of such volumes. The aim of this study was to develop an automated threshold-based approach to delineate functional volumes that best correlates with manual delineation. Thirty lung cancer patients undergoing both V/Q PET/CT and PFTs were analyzed. Images were acquired following inhalation of Galligas and, subsequently, intravenous administration of 68 Ga-macroaggreted-albumin (MAA). Using visually defined manual contours as the reference standard, various cutoff values, expressed as a percentage of the maximal pixel value, were applied. The average volume difference and Dice similarity coefficient (DSC) were calculated, measuring the similarity of the automatic segmentation and the reference standard. Pearson's correlation was also calculated to compare automated volumes with manual volumes, and automated volumes optimized to PFT indices. For ventilation volumes, mean volume difference was lowest (- 0.4%) using a 15%max threshold with Pearson's coefficient of 0.71. Applying this cutoff, median DSC was 0.93 (0.87-0.95). Nevertheless, limits of agreement in volume differences were large (- 31.0 and 30.2%) with differences ranging from - 40.4 to + 33.0%. For perfusion volumes, mean volume difference was lowest and Pearson's coefficient was highest using a 15%max threshold (3.3% and 0.81, respectively). Applying this cutoff, median DSC was 0.93 (0.88-0.93). Nevertheless, limits of agreement were again large (- 21.1 and 27.8%) with volume differences ranging from - 18.6 to + 35.5%. Using the 15%max threshold, moderate correlation was demonstrated with FEV1/FVC (r = 0.48 and r = 0.46 for ventilation and perfusion images, respectively
Changes in plasma volume and baroreflex function following resistance exercise
Ploutz, L. L.; Tatro, D. L.; Dudley, G. A.; Convertino, V. A.
1993-01-01
The dynamics of change in plasma volume (PV) and baroreflex responses have been reported over 24 h immediately following maximal cycle exercise. The purpose of this study was to determine if PV and baroreflex showed similar changes for 24 h after resistance exercise. Eight men were studied on 2 test days, 1 week apart. On 1 day, per cent change (% delta) in PV was estimated at 0,3, and 6 h after resistance exercise using haematocrit and haemoglobin. Baseline PV was measured 24 h after exercise using Evans blue dye. The carotid baroreceptor-cardiac reflex response was measured before, and 3, 6, 9, 12, and 24 h post-exercise. Each subject performed six sets of the bench press and leg press with 10 repetitions per set with a load that induced failure within each set. On a control day, the protocol was used without exercise. Plasma volume did not change during the control day. There was a 20% decrease in PV immediately post-exercise; the recovery of the PV was rapid and complete within 3 h. PV was 20% greater 24 h post-exercise than on the control day. There were no differences in any of the baroreflex measurements. Therefore, it is suggested that PV shifts may occur without altering baroreflex sensitivity.
V-T theory for the self-intermediate scattering function in a monatomic liquid.
Wallace, Duane C; Chisolm, Eric D; De Lorenzi-Venneri, Giulia
2017-02-08
In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering function (SISF), V-T theory produced an accurate account of molecular dynamics (MD) data at all wave numbers q and time t. Recently, analysis of the mean square displacement (MSD) resolved a crossover behavior that was not observed in the SISF study. Our purpose here is to apply the more accurate MSD calibration to the SISF, and assess the results. We derive and discuss the theoretical equations for vibrational and transit contributions to the SISF. The time evolution is divided into three successive intervals: the vibrational interval when the vibrational contribution alone accurately accounts for the MD data; the crossover when the vibrational contribution saturates and the transit contribution becomes resolved; and the diffusive interval when the transit contribution alone accurately accounts for the MD data. The resulting theoretical error is extremely small at all q and t. V-T theory is compared to mode-coupling theories for the MSD and SISF, and to recent developments in Brownian motion experiments and theory.
V-T theory for the self-intermediate scattering function in a monatomic liquid
International Nuclear Information System (INIS)
Wallace, Duane C; Chisolm, Eric D; De Lorenzi-Venneri, Giulia
2017-01-01
In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering function (SISF), V-T theory produced an accurate account of molecular dynamics (MD) data at all wave numbers q and time t . Recently, analysis of the mean square displacement (MSD) resolved a crossover behavior that was not observed in the SISF study. Our purpose here is to apply the more accurate MSD calibration to the SISF, and assess the results. We derive and discuss the theoretical equations for vibrational and transit contributions to the SISF. The time evolution is divided into three successive intervals: the vibrational interval when the vibrational contribution alone accurately accounts for the MD data; the crossover when the vibrational contribution saturates and the transit contribution becomes resolved; and the diffusive interval when the transit contribution alone accurately accounts for the MD data. The resulting theoretical error is extremely small at all q and t . V-T theory is compared to mode-coupling theories for the MSD and SISF, and to recent developments in Brownian motion experiments and theory. (paper)
International Nuclear Information System (INIS)
Colle, R.; Simonucci, S.
1996-01-01
The theoretical framework of a method that utilizes a projected potential operator to construct scattering wave functions is presented. Theorems and spectral properties of a Hamiltonian with the potential energy operator represented in terms of L'2(R'3)-functions are derived. The computational advantages offered by the method for calculating spectroscopic quantities, like resonance energies, decay probabilities and photoionization cross-sections, are discussed
International Nuclear Information System (INIS)
Chaparian, A.; Oghabian, M. A.; Changizi, V.
2009-01-01
Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo codes are the best option for radiation simulation: however, one permanent defect with Monte Carlo codes has been the lack of a sufficient physical model for coherent (Rayleigh) scattering, including molecular interference effects. Materials and Methods: It was decided to obtain molecular interference functions of coherent X-ray scattering for normal breast tissues by combination of modeling and experimental methods. A Monte Carlo simulation program was written to simulate the angular distribution of scattered photons for the normal breast tissue samples. Moreover, experimental diffraction patterns of these tissues were measured by means of energy dispersive X-ray diffraction method. The simulation and experimental data were used to obtain a tabulation of molecular interference functions for breast tissues. Results: With this study a tabulation of molecular interference functions for normal breast tissues Was prepared to facilitate the simulation diffraction patterns of the tissues without any experimental. Conclusion: The method may lead to design new systems for early detection of breast cancer.
DEFF Research Database (Denmark)
Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank
-I clathrate Ba8Ga16Ge30. This suggests that local structure reorientations in the cage are likely to be the root cause of the degradation of the structure. This deepens our understanding of disordered clathrates, and provides evidence that the PDF technique is an effective method for probing local structure.......e., by measuring both the Bragg and diffuse scattering from a sample. This method has rarely been exploited by the non-oxide thermoelectrics community. , , Treating total scattering data by the Pair Distribution Function method is a logical approach to understanding defects, disorder and amorphous components...... to heating cycles, then we are closer to distinguishing how we may generate materials that do not undergo specific structure reorientation processes, and/or how we may mitigate them before they occur. Here, we will present a total scattering and PDF study that probes the local structure of the Type...
International Nuclear Information System (INIS)
Blau, R.; Rosenberg, L.; Spruch, L.
1977-01-01
A minimum principle for the calculation of the scattering length, applicable when the ground-state wave function of the target system is known precisely, has been available for some time. When, as is almost always the case, the target wave function is imprecisely known, a minimum principle is available but the simple minimum principle noted above is not applicable. Further, as recent calculations show, numerical instabilities usually arise which severely limit the utility of even an ordinary variational approach. The difficulty, which can be traced to the appearance of singularities in the variational construction, is here removed through the introduction of a minimum principle, not for the true scattering length, but for one associated with a closely connected problem. This guarantees that no instability difficulties can arise as the trial scattering wave function and the trial target wave function are improved. The calculations are little different from those required when the target ground-state wave function is known, and, in fact, the original version of the minimum principle is recovered as the trial target wave function becomes exact. A careful discussion is given of the types of problems to which the method can be applied. In particular, the effects of the Pauli principle, and the existence of a finite number of composite bound states, can be accounted for
Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering
International Nuclear Information System (INIS)
Bauer, J.M.
1996-09-01
Experiment E143 at SLAC performed deep-inelastic scattering measurements with polarized electrons incident on polarized protons and deuterons. The data for the beam energy of 29 GeV cover the kinematical range of x Bj > 0.03 and 1 2 2 . From these data, the spin-dependent structure functions g 1 were determined. This dissertation describes the experiment and its analysis and discusses the results. The measured integral of g 1 d over x from x = 0 to x = 1 is Γ 1 d = 0.046 ± 0.003 (stat)±0.004 (syst) at Q 2 = 3 GeV 2 and disagrees by more than three standard deviations with the prediction of the Ellis-Jaffe, sum rule. The data suggest that the quark contribution to the nucleon helicity is 0.35 ± 0.05. From the proton data of the same experiment, the integral over the proton spin-structure functional g 1 d was determined to be Γ 1 p = 0.127 ± 0.003(stat)±0.008(syst). By Combining the deuteron data with the proton data, the integral Γ 1 n was extracted as -0.027 ± 0.008 (stat)±0.010 (syst). The integral Γ 1 p - Γ 1 n is 0.154±0.010(stat) ±0.016 (syst) according to the E143 analysis. This result agrees with the important Bjorken sum rule of 0.171 ± 0.009 at Q 2 = 3 GeV 2 within less than one standard deviation. Furthermore, results of a separate analysis involving GLAP evolution equations are shown. Data were also collected for beam energies of 16.2 and 9.7 GeV, Results for g 1 at these energies are presented
Resonances and analyticity of scattering wave function for square-well-type potentials
International Nuclear Information System (INIS)
Weber, T.A.; Hammer, C.L.; Zidell, V.S.
1982-01-01
In this paper we extend our previous analysis of the scattering of wave packets in one dimension to the case of the square-well potential. The analytic properties of the general scattering solution are emphasized thereby making the analysis useful as introductory material for a more sophisticated S-matrix treatment. The square-well model is particularly interesting because of its application to the deuteron problem. Resonance scattering, barrier penetration, time delay, and line shape are discussed at the level of the first-year graduate student
Gamow-Teller strength functions from (→p,→p') scattering experiments
International Nuclear Information System (INIS)
Hausser, O.
1987-01-01
We present here recent (→p, →'p) results from TRIUMF that are relevant to the determination of spin-flip isovector strength functions in nuclei. Distortion factors needed for the extraction of nuclear-structure information have been deduced from cross sections and analyzing powers in elastic scattering for several energies and targets. Nonrelativistic optical potentials obtained by folding effective nucleon (N)-nucleus interactions with nuclear densities are found to overpredict both elastic and reaction cross sections, whereas Dirac calculations that include Pauli blocking are in good agreement with the data. Spin observables (S nn and A y ) for the quasi-elastic region in 54 Fe(→p, →p) at 290 MeV provide some evidence for the reduction of the effective proton mass predicted in relativistic mean-field theories as a consequence of the attractive scalar field in the nuclear medium. The energy dependence of the effective N-nucleus interaction at small momentum transfers has been investigated using isoscalar and isovector 1 + states in 28 Si as probe states. We find that the cross sections for the isovector transitions are in good agreement with predictions for the dominant Vστ part of the Franey-Love interaction. Gamow-Teller (GT) strength functions have been obtained in 24 Mg and 54 Fe from measurements of both cross sections and spin-flip probabilities S nn . The spin-flip cross sections σS nn are particularly useful in heavier nuclei to discriminate against a continuous background of ΔS = 0 excitations. In the (s, d) shell where full shell-model wave functions are available, the GT quenching factors (g A eff / g A free ) 2 ≅ 0.7 are in good agreement with those from recent (p, n) and (n, p) experiments. We show that a state-by-state comparison of (p, p') and (e, e') results has the potential of identifying pionic current contributions in (e, e'). The GT quenching factors in 54 Fe are smaller than in the (s, d) shell probably because of severely
Zhang, Xi; Jiang, Hongrui
2015-03-09
Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.
The functional hepatic volume assessed by 99mTc-GSA hepatic scintigraphy
International Nuclear Information System (INIS)
Wu, Jin; Ishikawa, Nobuyoshi; Takeda, Tohoru; Pan, Xiao-Qing; Sato, Motohiro; Todoroki, Takeshi; Itai, Yuji; Tanaka, Yumiko; Hatakeyama, Rokurou.
1995-01-01
The accuracy of measurement of the functional hepatic volume by single photon emission computed tomography (SPECT) with 99m Tc-galactosyl serum albumin ( 99m Tc-GSA) was evaluated. 99m Tc-GSA planar scintigraphic images were obtained dynamically and the hepatic SPECT imaging was then performed in 25 patients with hepatobiliary tumors. The patients were divided into 4 groups with normal hepatic function, mild, moderate and severe hepatic dysfunction. The functional hepatic volume determined by SPECT was compared with the morphological hepatic volume determined by computed tomography. The ratio of the hepatic volumes obtained by the two methods was calculated. The mean hepatic volume ratio was 96.6±2.3% in the normal hepatic function group and 95.9±2.2% in the mild dysfunction group (n.s.). In both the moderate and severe hepatic dysfunction groups, the hepatic volume ratio was smaller than that in the normal group (87.9±5.2%, p 15 (r=0.83, p 15 (r=0.74, p 15 (r=0.75, p 99m Tc-GSA faithfully reflects the functioning hepatocyte mass. 99m Tc-GSA scintigraphy and hepatic SPECT therefore provide information regarding global and regional reserve hepatic function. (author)
International Nuclear Information System (INIS)
Sitenko, A.
1991-01-01
This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text
Space Tug avionics definition study. Volume 2: Avionics functional requirements
1975-01-01
Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.
International Nuclear Information System (INIS)
Hura, Greg; Russo, Daniela; Glaeser, Robert M.; Head-Gordon, Teresa; Krack, Matthias; Parrinello, Michele
2003-01-01
We present high-quality X-ray scattering experiments on pure water taken over a temperature range of 2 to 77 C using a synchrotron beam line at the advanced light source (ALS) at Lawrence Berkeley National Laboratory. The ALS X-ray scattering intensities are qualitatively different in trend of maximum intensity over this temperature range compared to older X-ray experiments. While the common procedure is to report both the intensity curve and radial distribution function(s), the proper extraction of the real-space pair correlation functions from the experimental scattering is very difficult due to uncertainty introduced in the experimental corrections, the proper weighting of OO, OH, and HH contributions, and numerical problems of Fourier transforming truncated data in Q-space. Instead, we consider the direct calculation of X-ray scattering spectra using electron densities derived from density functional theory based on real-space configurations generated with classical water models. The simulation of the experimental intensity is therefore definitive for determining radial distribution functions over a smaller Q-range. We find that the TIP4P, TIP5P and polarizable TIP4P-Pol2 water models, with DFT-LDA densities, show very good agreement with the experimental intensities, and TIP4P-Pol2 in particular shows quantitative agreement over the full temperature range. The resulting radial distribution functions from TIP4P-Pol2 provide the current best benchmarks for real-space water structure over the biologically relevant temperature range studied here
International Nuclear Information System (INIS)
Andou, Akio; Shimizu, Nobuyosi; Maruyama, Shuichiro
1992-01-01
Measurement of lung volume by lung perfusion scanning using single photon emission computed tomography (SPECT) and its usefulness for the prediction of respiratory function after lung resection were investigated. The lung volumes calculated in 5 patients by SPECT (threshold level 20%) using 99m Tc-macroaggregated albumin (MAA), related very closely to the actually measured lung volumes. This results prompted us to calculate the total lung volume and the volume of the lobe to be resected in 18 patients with lung cancer by SPECT. Based on the data obtained, postoperative respiratory function was predicted. The predicted values of forced vital capacity (FVC), forced expiratory volume (FEV 1.0 ), and maximum vital volume (MVV) showed closer correlations with the actually measured postoperative values (FVC, FEV 1.0 , MVV : r=0.944, r=0.917, r=0.795 respectively), than the values predicted by the ordinary lung perfusion scanning. This method facilitates more detailed evaluation of local lung function on a lobe-by-lobe basis, and can be applied clinically to predict postoperative respiratory function. (author)
Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman
2015-03-28
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.
International Nuclear Information System (INIS)
Doeker, T.
1995-10-01
The analysis of deep inelastic scattering events at the ep collider HERA at DESY has shown that in about 7% of the recorded events a large rapidity gap of at least 3 units is observed between the proton direction and the observed hadronic system. The observation can be understood in terms of soft photon-hadron reactions, where the hadronic final state is interpreted as arising from the dissociation of a virtual photon in the field of a diffractively scattered proton. The cross section of this process can be expressed in terms of the diffractive structure function of the proton. Here a measurement with the ZEUS detector is presented of the diffractive structure function of the proton as a function of x IP , the momentum fraction lost by the proton, of β, the momentum fraction of the struck constituent with respect to x IP , and of Q 2 , the virtuality of the exchanged photon. The kinematic range of this measurement is 6.3.10 -4 IP -2 , 0.1 2 2 2 . The x IP dependence is consistent with the form (1/x IP ) a where a=1.30±0.08(stat) -0.14 +0.08 (sys) in all bins of β and Q 2 . The diffractive structure function scales with Q 2 at fixed β. The results are compared with theoretical predictions of diffractive dissociation in deep inelastic scattering. (orig.)
Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis.
Ledonio, Charles Gerald T; Rosenstein, Benjamin E; Johnston, Charles E; Regelmann, Warren E; Nuckley, David J; Polly, David W
2017-01-01
Scoliosis deformity has been linked with deleterious changes in the thoracic cavity that affect pulmonary function. The causal relationship between spinal deformity and pulmonary function has yet to be fully defined. It has been hypothesized that deformity correction improves pulmonary function by restoring both respiratory muscle efficiency and increasing the space available to the lungs. This research aims to correlate pulmonary function and thoracic volume before and after scoliosis correction. Retrospective correlational analysis between thoracic volume modeling from plain x-rays and pulmonary function tests was conducted. Adolescent idiopathic scoliosis patients enrolled in a multicenter database were sorted by pre-operative Total Lung Capacities (TLC) % predicted values from their Pulmonary Function Tests (PFT). Ten patients with the best and ten patients with the worst TLC values were included. Modeled thoracic volume and TLC values were compared before and 2 years after surgery. Scoliosis correction resulted in an increase in the thoracic volume for patients with the worst initial TLCs (11.7%) and those with the best initial TLCs (12.5%). The adolescents with the most severe pulmonary restriction prior to surgery strongly correlated with post-operative change in total lung capacity and thoracic volume (r 2 = 0.839; p volume in this group was 373.1 cm 3 (11.7%) which correlated with a 21.2% improvement in TLC. Scoliosis correction in adolescents was found to increase thoracic volume and is strongly correlated with improved TLC in cases with severe restrictive pulmonary function, but no correlation was found in cases with normal pulmonary function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:175-182, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Kim, Kyungsik
2011-01-01
We study the effect of the strange axial form factor on various structure functions for the neutral reaction of neutrino-nucleus scattering in the quasielastic region within the framework of a relativistic single particle model. We use 12 C as the target nucleus, and the incident neutrino energy range is between 150 MeV and 1.5 GeV. The structure functions are extracted at a fixed three momentum transfer and energy transfer by using the intrinsic helicity of neutrino. While the effect of the strange axial form factor is very small, the effect on various structure functions is exhibited explicitly.
Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.
Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G
1999-01-01
The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.
Functionality and Performance Visualization of the Distributed High Quality Volume Renderer (HVR)
Shaheen, Sara
2012-07-01
Volume rendering systems are designed to provide means to enable scientists and a variety of experts to interactively explore volume data through 3D views of the volume. However, volume rendering techniques are computationally intensive tasks. Moreover, parallel distributed volume rendering systems and multi-threading architectures were suggested as natural solutions to provide an acceptable volume rendering performance for very large volume data sizes, such as Electron Microscopy data (EM). This in turn adds another level of complexity when developing and manipulating volume rendering systems. Given that distributed parallel volume rendering systems are among the most complex systems to develop, trace and debug, it is obvious that traditional debugging tools do not provide enough support. As a consequence, there is a great demand to provide tools that are able to facilitate the manipulation of such systems. This can be achieved by utilizing the power of compute graphics in designing visual representations that reflect how the system works and that visualize the current performance state of the system.The work presented is categorized within the field of software Visualization, where Visualization is used to serve visualizing and understanding various software. In this thesis, a number of visual representations that reflect a number of functionality and performance aspects of the distributed HVR, a high quality volume renderer system that uses various techniques to visualize large volume sizes interactively. This work is provided to visualize different stages of the parallel volume rendering pipeline of HVR. This is along with means of performance analysis through a number of flexible and dynamic visualizations that reflect the current state of the system and enables manipulation of them at runtime. Those visualization are aimed to facilitate debugging, understanding and analyzing the distributed HVR.
Bollini, D; Benvenuti, Alberto C; Bozzo, M; Brun, R; Cvach, J; Dobrowolski, T; Fadeev, N G; Feltesse, J; Frabetti, P L; Gennow, H; Golutvin, I A; Goossens, M; Heiman, G; Jamnik, D; Kiryushin, Yu T; Kisselev, V S; Klein, M; Kopp, R; Krivokhizhin, V G; Kukhtin, V V; Maillard, J; Malasoma, J M; Meyer-Berkhout, U; Milsztajn, A; Monari, L; Navach, F; Navarria, Francesco Luigi; Nowak, Wolf-Dieter; Piemontese, L; Pilcher, J E; Renardy, J F; Sacquin, Yu; Savin, I A; Schinzel, D; Smadja, G; Smirnov, G I; Staude, A; Teichert, K M; Tirler, R; Verrecchia, P; Vesztergombi, G; Virchaux, M; Volodko, A G; Voss, R; Zácek, J; Zupancic, Crtomir
1981-01-01
Deep inelastic scattering cross sections have been measured with the CERN SPS muon beam at incident energies of 120 and 200 GeV. Approximately 10000 events at each energy used to obtain the structure function F/sub 2/(x, Q/sup 2/) in the kinematic region 0.3
Influence of stapling the intersegmental planes on lung volume and function after segmentectomy.
Tao, Hiroyuki; Tanaka, Toshiki; Hayashi, Tatsuro; Yoshida, Kumiko; Furukawa, Masashi; Yoshiyama, Koichi; Okabe, Kazunori
2016-10-01
Dividing the intersegmental planes with a stapler during pulmonary segmentectomy leads to volume loss in the remnant segment. The aim of this study was to assess the influence of segment division methods on preserved lung volume and pulmonary function after segmentectomy. Using image analysis software on computed tomography (CT) images of 41 patients, the ratio of remnant segment and ipsilateral lung volume to their preoperative values (R-seg and R-ips) was calculated. The ratio of postoperative actual forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) per those predicted values based on three-dimensional volumetry (R-FEV1 and R-FVC) was also calculated. Differences in actual/predicted ratios of lung volume and pulmonary function for each of the division methods were analysed. We also investigated the correlations of the actual/predicted ratio of remnant lung volume with that of postoperative pulmonary function. The intersegmental planes were divided by either electrocautery or with a stapler in 22 patients and with a stapler alone in 19 patients. Mean values of R-seg and R-ips were 82.7 (37.9-140.2) and 104.9 (77.5-129.2)%, respectively. The mean values of R-FEV1 and R-FVC were 103.9 (83.7-135.1) and 103.4 (82.2-125.1)%, respectively. There were no correlations between the actual/predicted ratio of remnant lung volume and pulmonary function based on the division method. Both R-FEV1 and R-FVC were correlated not with R-seg, but with R-ips. Stapling does not lead to less preserved volume or function than electrocautery in the division of the intersegmental planes. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Dependence of optimum baseline setting on scatter fraction and detector response function
International Nuclear Information System (INIS)
Atkins, F.B.; Beck, R.N.; Hoffer, P.B.; Palmer, D.
1977-01-01
A theoretical and experimental investigation has been undertaken to determine the dependence of an optimum baseline setting on the amount of scattered radiation recorded in a spectrum, and on the energy resolution of the detector. In particular, baseline settings were established for clinical examinations which differed greatly in the amount of scattered radiation, namely, liver and brain scans, for which individual variations were found to produce only minimal fluctuations in the optimum baseline settings. This analysis resulted in an optimum baseline setting of 125.0 keV for brain scans and 127.2 keV for liver scans for the scintillation camera used in these studies. The criterion that was used is based on statistical considerations of the measurement of an unscattered component in the presence of a background due to scattered photons. The limitations of such a criterion are discussed, and phantom images are presented to illustrate these effects at various baseline settings. (author)
Yu, Hsiu-Yu
2014-09-15
© the Partner Organisations 2014. We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials. This journal is
Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A; Koch, Donald L
2014-12-07
We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials.
Energy Technology Data Exchange (ETDEWEB)
Hicks, R.G.
1978-01-01
An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10/sup 10/ muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s//sup 0/ and ..lambda../sup 0/ decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references.
Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost
2016-04-01
Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.
International Nuclear Information System (INIS)
Nikolaev, N.N.; Zakharov, B.G.
1994-01-01
We develop the novel description of diffractive deep inelastic scattering based on the technique of lightcone wave functions of multiparton Fock states of the photon. The technique takes advantage of the exact diagonalization of the diffractive S-matrix in the dipole-cross section representation. In this paper we derive properties of the diffractive dissociation of virtual photons in the triple-pomeron regime. We demonstrate that the photon-pomeron interactions can be described by the partonic structure function, which satisfies the conventional GLDAP evolution equations. We identify the valence and sea (anti) quark and the valence gluon structure functions of the pomeron. We show how the gluon structure of the pomeron can be described by the constituent gluon wave function. We derive the leading unitarization correction to the rising structure functions at small x and conclude that the unitarized structure function satisfies the linear GLDAP evolution equations. This result holds even when the multipomeron exchanges are included. (orig.)
Structure functions and final-state properties in deeply inelastic electron-proton scattering
International Nuclear Information System (INIS)
Kharraziha, H.
1997-01-01
In this thesis, we give a description of the detailed structure of the proton and a description of the final-state properties in electron-proton scattering. Qualitative results, in a purely gluonic scenario with the leading log approximation, and quantitative results, where quarks are included and some sub-leading corrections have been made, are presented. The quantitative results are in fair agreement with available experimental data and a Monte Carlo event generator for electron-proton scattering is presented. Further, a computer program for calculating QCD colour factors is presented
Virtual Singular Scattering of Electromagnetic Waves in Transformation Media Concept
Directory of Open Access Journals (Sweden)
M. Y. Barabanenkov
2012-07-01
Full Text Available If a scatterer and an observation point (receive both approach the so-called near field zone of a source of electromagnetic waves, the scattering process becomes singular one which is mathematically attributed to the spatial singularity of the free space Green function at the origin. Starting from less well known property of left-handed material slab to transfer the singularity of the free space Green function by implementing coordinate transformation, we present a phenomenon of virtual singular scattering of electromagnetic wave on an inhomogeneity located in the volume of left – handed material slab. Virtual singular scattering means that a scatterer is situated only virtually in the near field zone of a source, being, in fact, positioned in the far field zone. Such a situation is realized if a scatterer is embedded into a flat Veselago’s lens and approaches the lens’s inner focus because a slab of Veselago medium produces virtual sources inside and behind the slab and virtual scatterer (as a source of secondary waves from both slab sides. Considering a line-like dielectric scatterer we demonstrate that the scattering efficiency is proportional to product of singular quasistatic parts of two empty space Green functions that means a multiplicative quasistatic singularity of the Green function for a slab of inhomogeneous Veselago medium. We calculate a resonance value of the scattering amplitude in the regime similar to the known Mie resonance scattering.
Korponay, Cole; Pujara, Maia; Deming, Philip; Philippi, Carissa; Decety, Jean; Kosson, David S; Kiehl, Kent A; Koenigs, Michael
2017-07-01
Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Studies of brain structure and function in psychopathy have frequently identified abnormalities in the prefrontal cortex. However, findings have not yet converged to yield a clear relationship between specific subregions of prefrontal cortex and particular psychopathic traits. We performed a multimodal neuroimaging study of prefrontal cortex volume and functional connectivity in psychopathy, using a sample of adult male prison inmates (N = 124). We conducted volumetric analyses in prefrontal subregions, and subsequently assessed resting-state functional connectivity in areas where volume was related to psychopathy severity. We found that overall psychopathy severity and Factor 2 scores (which index the impulsive/antisocial traits of psychopathy) were associated with larger prefrontal subregion volumes, particularly in the medial orbitofrontal cortex and dorsolateral prefrontal cortex. Furthermore, Factor 2 scores were also positively correlated with functional connectivity between several areas of the prefrontal cortex. The results were not attributable to age, race, IQ, substance use history, or brain volume. Collectively, these findings provide evidence for co-localized increases in prefrontal cortex volume and intra-prefrontal functional connectivity in relation to impulsive/antisocial psychopathic traits. © The Author (2017). Published by Oxford University Press.
Revisiting the Fourier expansion of Mie scattering matrices in generalized spherical functions
International Nuclear Information System (INIS)
Sanghavi, Suniti
2014-01-01
Mie computations of the scattering properties of large particles are a time consuming step in the radiative transfer modeling of aerosol and clouds. Currently, there exist two methods based on the use of spherical functions for computing the Fourier moments of the phase matrix of a given spherical particle or particulate polydispersion: The first, developed over the years before being presented in a convenient form by Siewert [31], required an intermediate computation of the phase matrix over which numerical integration was performed to deliver the required Fourier components. The second, suggested by Domke [9], promised a direct computation of the Fourier moments using Wigner 3-j symbols. While the former was relatively easy to implement and is thus the most commonly used to date, its numerical implementation using an arbitrary user choice of angular quadrature (NAI-1) can produce inaccurate results. Numerical integration using quadrature points as recommended by de Rooij and van der Stap [5] (NAI-2) delivers accurate results with high computational efficiency. Domke's method enables a direct computation of the exact number of required Fourier components. However, the original manuscript contained several misprints, many of which were subsequently corrected by de Rooij and van der Stap [5]. Unfortunately, the main recurrence relationship used in Domke [9] remained uncorrected. In this paper, the corrected relationship is presented along with other minor corrections. de Rooij and van der Stap [5] had found the straightforward application of Domke's method viable only for size parameters smaller than ∼120 due to issues involving computer storage. A means of implementing the corrected Domke formalism using precomputed tabulations of Wigner 3-j symbols (PCW) is presented here, making it more computationally economical and applicable over much broader particle size ranges. The accuracy of PCW is only limited by machine precision. For a single particle, NAI-2 is found
Lobar analysis of collapsibility indices to assess functional lung volumes in COPD patients.
Kitano, Mariko; Iwano, Shingo; Hashimoto, Naozumi; Matsuo, Keiji; Hasegawa, Yoshinori; Naganawa, Shinji
2014-01-01
We investigated correlations between lung volume collapsibility indices and pulmonary function test (PFT) results and assessed lobar differences in chronic obstructive pulmonary disease (COPD) patients, using paired inspiratory and expiratory three dimensional (3D) computed tomography (CT) images. We retrospectively assessed 28 COPD patients who underwent paired inspiratory and expiratory CT and PFT exams on the same day. A computer-aided diagnostic system calculated total lobar volume and emphysematous lobar volume (ELV). Normal lobar volume (NLV) was determined by subtracting ELV from total lobar volume, both for inspiratory phase (NLVI) and for expiratory phase (NLVE). We also determined lobar collapsibility indices: NLV collapsibility ratio (NLVCR) (%)=(1-NLVE/NLVI)×100%. Associations between lobar volumes and PFT results, and collapsibility indices and PFT results were determined by Pearson correlation analysis. NLVCR values were significantly correlated with PFT results. Forced expiratory volume in 1 second, measured as percent of predicted results (FEV1%P) was significantly correlated with NLVCR values for the lower lobes (Pvolume, measured as percent of predicted (DLCO/VA%P) results were strongly correlated with ELVI for the upper lobes (Ppulmonary function in COPD patients.
Assessment of left atrial volume and function in patients with permanent atrial fibrillation
DEFF Research Database (Denmark)
Agner, Bue F Ross; Kühl, Jørgen Tobias; Linde, Jesper James
2014-01-01
Atrial fibrillation (AF) is a common cardiac arrhythmia that is associated with substantial morbidity and mortality. AF is associated with enlargement of the left atrium (LA), and the LA volume has important prognostic implications for the disease. The objective of the study was to determine how...... measurements of LA volume and function obtained by transthoracic echocardiography (TTE), cardiac magnetic resonance (CMR), and 320-slice multi-detector computed tomography (MDCT) correlate in patients with permanent AF....
Pulmonary blood volume and transit time in cirrhosis: relation to lung function
DEFF Research Database (Denmark)
Møller, Søren; Burchardt, H; Øgard, CG
2006-01-01
BACKGROUND/AIMS: In cirrhosis a systemic vasodilatation leads to an abnormal distribution of the blood volume with a contracted central blood volume. In addition, the patients have a ventilation/perfusion imbalance with a low diffusing capacity. As the size of the pulmonary blood volume (PBV) has...... not been determined separately we assessed PBV and pulmonary transit time (PTT) in relation to lung function in patients with cirrhosis and in controls. METHODS: Pulmonary and cardiac haemodynamics and transit times were determined by radionuclide techniques in 22 patients with alcoholic cirrhosis......, in the controls, Pvolume...
Niskanen, Johannes; Kooser, Kuno; Koskelo, Jaakko; Käämbre, Tanel; Kunnus, Kristjan; Pietzsch, Annette; Quevedo, Wilson; Hakala, Mikko; Föhlisch, Alexander; Huotari, Simo; Kukk, Edwin
2016-09-21
In this paper we report an experimental and computational study of liquid acetonitrile (H 3 C-C[triple bond, length as m-dash]N) by resonant inelastic X-ray scattering (RIXS) at the N K-edge. The experimental spectra exhibit clear signatures of the electronic structure of the valence states at the N site and incident-beam-polarization dependence is observed as well. Moreover, we find fine structure in the quasielastic line that is assigned to finite scattering duration and nuclear relaxation. We present a simple and light-to-evaluate model for the RIXS maps and analyze the experimental data using this model combined with ab initio molecular dynamics simulations. In addition to polarization-dependence and scattering-duration effects, we pinpoint the effects of different types of chemical bonding to the RIXS spectrum and conclude that the H 2 C-C[double bond, length as m-dash]NH isomer, suggested in the literature, does not exist in detectable quantities. We study solution effects on the scattering spectra with simulations in liquid and in vacuum. The presented model for RIXS proved to be light enough to allow phase-space-sampling and still accurate enough for identification of transition lines in physical chemistry research by RIXS.
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Mihalas, D.; Kunasz, P.B.; Hummer, D.G.
1976-01-01
A numerical method is presented of solving the radiative transfer equation in the comoving frame of a spherically symmetric expanding atmosphere in which both the line and the electron-scattering source function can depend on frequency (i.e., when there is partial frequency redistribution in the scattering process). This method is used to assess the adequacy of various assumptions regarding frequency redistribution in the comoving frame and to discuss the effects of electron scattering more accurately than previously possible. The methods developed here can be used in realistic model atmospheres to account for the (major) effects of electron scattering upon emergent flux profiles
International Nuclear Information System (INIS)
Barreiro, F.; Bhadra, S.; Lancaster, M.; Lim, J.N.; Soeldner-Rembold, S.; Straub, B.
1994-11-01
This report contains some of the papers presented by the ZEUS Collaboration at the 27th international conference on high energy physics in Glasgow (20-27 July 1994). These concern deep inelastic ep scattering at low x, photoproduction and diffraction in ep scattering, a measurement of the proton structure function and determination of the low-x gluon distribution, D * and J/Ψ production in ep scattering, multi-jet production and determination of α s in ep scattering, and the search for leptoquarks in ep collisions. (HSI)
International Nuclear Information System (INIS)
Iwinski, Z.R.; Rosenberg, L.; Spruch, L.
1986-01-01
For potential scattering, with delta/sub L/(k) the phase shift modulo π for an incident wave number k, Levinson's theorem gives delta/sub L/(0)-delta/sub L/(infinity) in terms of N/sub L/, the number of bound states of angular momentum L, for delta/sub L/(k) assumed to be a continuous function of k. N/sub L/ also determines the number of nodes of the zero-energy wave function u/sub L/(r). A knowledge of the nodal structure and of the absolute value of delta/sub L/(0) is very useful in theoretical studies of low-energy potential scattering. Two preliminary attempts, one formal and one ''physical,'' are made to extend the above results to single-channel scattering by a compound system initially in its ground state. The nodal structure will be of greater interest to us here than an extension of Levinson's theorem
Energy Technology Data Exchange (ETDEWEB)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)
2016-10-15
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.
Left atrial volume and function in dogs with naturally occurring myxomatous mitral valve disease
DEFF Research Database (Denmark)
Höllmer, M.; Willesen, J. L.; Tolver, A.
2017-01-01
stroke volume increased, whereas LA reservoir and contractile function decreased with increasing disease severity. A maximal LA volume heart failure in dogs with chronic MMVD with a sensitivity of 96% and a specificity of 100......%. An active LA emptying fraction heart failure in dogs with chronic MMVD with a sensitivity of 77% and a specificity of 89% and a sensitivity of 82% and a specificity of 82%, respectively. CONCLUSION: Dogs with MMVD appear to have larger LA...... of cardiac compensation. Left atrial function in dogs with naturally occurring MMVD remains largely unexplored. The objective of this study was to evaluate LA volume and function in dogs with naturally occurring MMVD. ANIMALS: This prospective study included 205 client-owned dogs of different breeds, 114...
Come, Carolyn E; Diaz, Alejandro A; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P; Zach, Jordan A; Schroeder, Joyce; Lynch, David A; Celli, Bartolome; Washko, George R
2013-06-01
CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.
International Nuclear Information System (INIS)
Gillete, V.H.; Patino, N.E.; Granada, J.E.; Mayer, R.E.
1988-01-01
Using a synthetic scattering function which describes the interaction of neutrons with molecular gases we provide analytical expressions for zero-and first-order scattering kernels, σ 0 (E 0 →E), σ 1 (E 0 →E), and total cross section σ 0 (E 0 ). Based on these quantities, we have performed calculations of thermalization parameters and transport coefficients for H 2 O, D 2 O, C 6 H 6 and (CH 2 ) n at room temperature. Comparasion of such values with available experimental data and other calculations is satisfactory. We also generated nuclear data libraries for H 2 O with 47 thermal groups at 300K and performed some benchmark calculations ( 235 U, 239 Pu, PWR cell and typical APWR cell); the resulting reactivities are compared with experimental data and ENDF/B-IV calculations. (author) [pt
Shao, Yangfan; Li, Chongyang; Feng, Yuanming; Lin, Wang
2013-12-01
This paper experimentally and theoretically investigated Raman and surface-enhanced Raman scattering (SERS) of 1,4-benzenedithiol (1,4-BDT). Density functional theory methods were used to study Raman scattering spectra of isolated 1,4-BDT and 1,4-BDT-Agn (n=2,4,6) complexes with B3LYP/6-311+g(d)(C,H,S)/Lanl2dz(Ag) basis set. A full assignment of the Raman spectrum of 1,4-BDT has been made based on the DFT analysis. The calculated data showed good agreement with experimental observations. The adsorption sites, metal cluster size, and HOMO-LUMO energies are discussed to give insight in the SERS mechanisms for 1,4-BDT molecules. Copyright © 2013 Elsevier B.V. All rights reserved.
Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults.
Aanes, Synne; Bjuland, Knut Jørgen; Skranes, Jon; Løhaugen, Gro C C
2015-01-15
The hippocampi are regarded as core structures for learning and memory functions, which is important for daily functioning and educational achievements. Previous studies have linked reduction in hippocampal volume to working memory problems in very low birth weight (VLBW; ≤ 1500 g) children and reduced general cognitive ability in VLBW adolescents. However, the relationship between memory function and hippocampal volume has not been described in VLBW subjects reaching adulthood. The aim of the study was to investigate memory function and hippocampal volume in VLBW young adults, both in relation to perinatal risk factors and compared to term born controls, and to look for structure-function relationships. Using Wechsler Memory Scale-III and MRI, we included 42 non-disabled VLBW and 61 control individuals at age 19-20 years, and related our findings to perinatal risk factors in the VLBW-group. The VLBW young adults achieved lower scores on several subtests of the Wechsler Memory Scale-III, resulting in lower results in the immediate memory indices (visual and auditory), the working memory index, and in the visual delayed and general memory delayed indices, but not in the auditory delayed and auditory recognition delayed indices. The VLBW group had smaller absolute and relative hippocampal volumes than the controls. In the VLBW group inferior memory function, especially for the working memory index, was related to smaller hippocampal volume, and both correlated with lower birth weight and more days in the neonatal intensive care unit (NICU). Our results may indicate a structural-functional relationship in the VLBW group due to aberrant hippocampal development and functioning after preterm birth. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, B B; Shih, T T F; Hsu, C Y; Yu, C W; Wei, S Y; Chen, C Y; Wu, C H; Chen, C Y
2011-06-01
(1) to correlate thigh muscle volume measured by magnetic resonance image (MRI) with anthropometric measurements and physical function in elderly subjects; (2) to predict MRI-measured thigh muscle volume using anthropometric measurements and physical functional status in elderly subjects. Cross-sectional, nonrandomized study. Outpatient clinic in Taiwan. Sixty-nine elderly subjects (33 men and 36 women) aged 65 and older. The anthropometric data (including body height, body weight, waist size, and thigh circumference), physical activity and function (including grip strength, bilateral quadriceps muscle power, the up and go test, chair rise, and five meters walk time) and bioelectrical impedance analysis data (including total body fat mass, fat-free mass, and predictive muscle size) were measured. MRI-measured muscle volume of both thighs was used as the reference standard. The MRI-measured thigh volume was positively correlated with all anthropometric data, quadriceps muscle power and the up and go test as well as fat-free mass and predictive muscle mass, whereas it was negatively associated with age and walk time. In predicting thigh muscle volume, the variables of age, gender, body weight, and thigh circumference were significant predictors in the linear regression model: Muscle volume (cm3) =4226.3－42.5 × Age (year)－955.7 × gender (male=1, female=2) + 45.9 × body weight(kg) + 60.0 × thigh circumference (cm) (r2 = 0.745, P estimate = 581.6 cm3). The current work provides evidence of a strong relationship between thigh muscle volume and physical function in the elderly. We also developed a prediction equation model using anthropometric measurements. This model is a simple and noninvasive method for everyday clinical practice and follow-up.
International Nuclear Information System (INIS)
Neuwirth, J.; Hefner, A.
2008-01-01
Dental Radiography Digital Volume Tomography (DVT) gains more and more importance due to its possibility of three-dimensional imaging of teeth, jaw and visercoranium and the reduced radiation dose in comparison to conventional Computer Tomography (CT). Contrary to other, well documented radiographic procedures like dental panorama X-ray imaging there are no national or international guidelines or recommendations relating to DVT which regulate the designation of areas and standardize risk assessment. This study aims to assess the parameters necessary for local radiation protection in dental practices. Measurements were carried out in dental practices in order to evaluate the local dose resulting from different DVT devices. A special dental-phantom and a real human head were used in the irradiations in order to define the local dose of scattered radiation by nominal voltage. The dental-phantom was created for conventional dental panorama X-ray devices which make use of lower nominal voltages. This poses the question if the scatter performance of the special dental-phantom is comparable to a real human head and therefore applicable to the estimation of the radiation quality of a DVT when using 120 kV. The existing guidelines for dental panorama xray are analyzed and suggestions for future recommendations concerning the designation of areas and risk assessment for DVT are then deducted by comparing both sets of measurements. The results show that the special dental-phantom is absolutely suitable for the definition of the local dose resulting from the scattered radiation of a DVT. (author)
Energy Technology Data Exchange (ETDEWEB)
Strauss, R.; Rothe, J.; Angloher, G.; Hauff, D.; Mancuso, M.; Petricca, F.; Proebst, F.; Seidel, W.; Stodolsky, L. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bento, A. [Universidade de Coimbra, CIUC, Departamento de Fisica, Coimbra (Portugal); Guetlein, A.; Kluck, H.; Schieck, J. [Institut fuer Hochenergiephysik, Oesterreichische Akademie der Wissenschaften, Vienna (Austria); Vienna University of Technology, Atominstitut, Vienna (Austria); Oberauer, L.; Schoenert, S. [Technische Universitaet Muenchen, Physik-Department, Garching (Germany)
2017-08-15
We discuss a small-scale experiment, called ν-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV regime. The detector consists of low-threshold CaWO{sub 4} and Al{sub 2}O{sub 3} calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ, neutron and surface backgrounds. A first prototype Al{sub 2}O{sub 3} device, operated above ground in a setup without shielding, has achieved an energy threshold of ∝20 eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5 σ) within a measuring time of
Low frequency enzyme dynamics as a function of temperature and hydration: A neutron scattering study
Energy Technology Data Exchange (ETDEWEB)
Kurkal, V. [Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany); Daniel, R.M. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Finney, John L. [Department of Physics and Astronomy, University college, London, Gower Street, London WC1E 6BT, England (United Kingdom); Tehei, M. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Dunn, R.V. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Smith, Jeremy C. [Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: biocomputing@iwr.uni-heidelberg.de
2005-10-31
The effect of hydration and temperature on the low-frequency dynamics of the enzyme Pig liver esterase has been investigated with incoherent neutron scattering experiments. The results suggest that at low temperature, increasing hydration results in lower flexibility of the protein. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The environmental force constants indicate that the environment of the protein is more rigid below than it is above the dynamical transition temperature.
Left ventricular volume analysis as a basic tool to describe cardiac function.
Kerkhof, Peter L M; Kuznetsova, Tatiana; Ali, Rania; Handly, Neal
2018-03-01
The heart is often regarded as a compression pump. Therefore, determination of pressure and volume is essential for cardiac function analysis. Traditionally, ventricular performance was described in terms of the Starling curve, i.e., output related to input. This view is based on two variables (namely, stroke volume and end-diastolic volume), often studied in the isolated (i.e., denervated) heart, and has dominated the interpretation of cardiac mechanics over the last century. The ratio of the prevailing coordinates within that paradigm is termed ejection fraction (EF), which is the popular metric routinely used in the clinic. Here we present an insightful alternative approach while describing volume regulation by relating end-systolic volume (ESV) to end-diastolic volume. This route obviates the undesired use of metrics derived from differences or ratios, as employed in previous models. We illustrate basic principles concerning ventricular volume regulation by data obtained from intact animal experiments and collected in healthy humans. Special attention is given to sex-specific differences. The method can be applied to the dynamics of a single heart and to an ensemble of individuals. Group analysis allows for stratification regarding sex, age, medication, and additional clinically relevant covariates. A straightforward procedure derives the relationship between EF and ESV and describes myocardial oxygen consumption in terms of ESV. This representation enhances insight and reduces the impact of the metric EF, in favor of the end-systolic elastance concept advanced 4 decades ago.
International Nuclear Information System (INIS)
Davies, J.; Vogt, A.
2016-06-01
We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in ν- anti ν charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling α_s, thus completing the description of unpolarized inclusive W"±-exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for ν+ anti ν charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.
Jaroch, Joanna; Rzyczkowska, Barbara; Bociąga, Zbigniew; Vriz, Olga; Driussi, Caterina; Loboz-Rudnicka, Maria; Dudek, Krzysztof; Łoboz-Grudzień, Krystyna
2016-04-01
The contribution of arterial functional and structural changes to left ventricular (LV) diastolic dysfunction has been the area of recent research. There are some studies on the relationship between arterial stiffness (a.s.) and left atrial (LA) remodelling as a marker of diastolic burden. Little is known about the association of arterial structural changes and LA remodelling in hypertension (H). The aim of this study was to examine the relationship between carotid a.s. and intima-media thickness (IMT) and LA volume in subjects with H. The study included 245 previously untreated hypertensives (166 women and 79 men, mean age 53.7 ± 11.8 years). Each patient was subjected to echocardiography with measurement of LA volume, evaluation of left ventricular hypertrophy (LVH) and LV systolic/diastolic function indices, integrated assessment of carotid IMT and echo-tracking of a.s. and wave reflection parameters. Univariate regression analysis revealed significant correlations between indexed LA volume and selected clinical characteristics, echocardiographic indices of LVH and LV diastolic/systolic function and a.s./wave reflection parameters. The following parameters were identified as independent determinants of indexed LA volume on multivariate regression analysis: diastolic blood pressure (beta = -0.229, P arterial stiffness but not intima-media thickness and LA volume in patients with untreated hypertension.
Rain Scattering and Co-ordinate Distance Calculation
Directory of Open Access Journals (Sweden)
M. Hajny
1998-12-01
Full Text Available Calculations of scattered field on the rain objects are based on using of Multiple MultiPole (MMP numerical method. Both bi-static scattering function and bi-static scattering cross section are calculated in the plane parallel to Earth surface. The co-ordination area was determined using the simple model of scattering volume [1]. Calculation for frequency 9.595 GHz and antenna elevation of 25Ã‚Â° was done. Obtained results are compared with calculation in accordance to ITU-R recommendation.
Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong
2006-03-01
Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.
Regional cerebellar volume and cognitive function from adolescence to late middle age.
Bernard, Jessica A; Leopold, Daniel R; Calhoun, Vince D; Mittal, Vijay A
2015-03-01
Cerebellar morphology and function have been implicated in a variety of developmental disorders, and in healthy aging. Although recent work has sought to characterize the relationships between volume and age in this structure during adolescence, young, and older adulthood, there have been no investigations of regional cerebellar volume from adolescence through late middle age. Middle age in particular has been largely understudied, and investigating this period of the lifespan may be especially important for our understanding of senescence. Understanding regional patterns of cerebellar volume with respect to age during this portion of the lifespan may provide important insight into healthy aging and cognitive function as well as pathology from adolescence into later life. We investigated regional cerebellar volume using a highly novel lobular segmentation approach in conjunction with a battery of cognitive tasks in a cross-sectional sample of 123 individuals from 12 to 65 years old. Our results indicated that regional cerebellar volumes show different patterns with respect to age. In particular, the more posterior aspect of the neocerebellum follows a quadratic "inverse-U" pattern while the vermis and anterior cerebellum follow logarithmic patterns. In addition, we quantified the relationships between age and a variety of cognitive assessments and found relationships between regional cerebellar volumes and performance. Finally, exploratory analyses of sex differences in the relationships between regional cerebellar volume, age, and cognition were investigated. Taken together, these results provide key insights into the development and aging of the human cerebellum, and its role in cognitive function across the lifespan. © 2014 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Chan Yuleung; Law Manyee; Howard, Robert [Chinese University of Hong Kong, Department of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, Hong Kong (China); Li Chikong; Chik Kiwai [Chinese University of Hong Kong, Department of Paediatrics, Prince of Wales Hospital, Hong Kong (China)
2005-02-01
It is not known whether body weight alone can adjust for the volume of liver in the calculation of the chelating dose in {beta}-thalassaemia major patients, who frequently have iron overload and hepatitis. The hypothesis is that liver volume in children and adolescents suffering from {beta}-thalassaemia major is affected by ferritin level and liver function. Thirty-five {beta}-thalassaemia major patients aged 7-18 years and 35 age- and sex-matched controls had liver volume measured by MRI. Serum alanine aminotransferase (ALT) and ferritin levels were obtained in the thalassaemia major patients. Body weight explained 65 and 86% of the change in liver volume in {beta}-thalassaemia major patients and age-matched control subjects, respectively. Liver volume/kilogram body weight was significantly higher (P<0.001) in thalassaemia major patients than in control subjects. There was a significant correlation between ALT level and liver volume/kilogram body weight (r=0.55, P=0.001). Patients with elevated ALT had significantly higher liver volume/kilogram body weight (mean 42.9{+-}12 cm{sup 3}/kg) than control subjects (mean 23.4{+-}3.6 cm{sup 3}/kg) and patients with normal ALT levels (mean 27.4{+-}3.6 cm{sup 3}/kg). Body weight is the most important single factor for liver-volume changes in thalassaemia major patients, but elevated ALT also has a significant role. Direct liver volume measurement for chelation dose adjustment may be advantageous in patients with elevated ALT. (orig.)
Hippocampal volumes are important predictors for memory function in elderly women
Directory of Open Access Journals (Sweden)
Adolfsdottir Steinunn
2009-08-01
Full Text Available Abstract Background Normal aging involves a decline in cognitive function that has been shown to correlate with volumetric change in the hippocampus, and with genetic variability in the APOE-gene. In the present study we utilize 3D MR imaging, genetic analysis and assessment of verbal memory function to investigate relationships between these factors in a sample of 170 healthy volunteers (age range 46–77 years. Methods Brain morphometric analysis was performed with the automated segmentation work-flow implemented in FreeSurfer. Genetic analysis of the APOE genotype was determined with polymerase chain reaction (PCR on DNA from whole-blood. All individuals were subjected to extensive neuropsychological testing, including the California Verbal Learning Test-II (CVLT. To obtain robust and easily interpretable relationships between explanatory variables and verbal memory function we applied the recent method of conditional inference trees in addition to scatterplot matrices and simple pairwise linear least-squares regression analysis. Results APOE genotype had no significant impact on the CVLT results (scores on long delay free recall, CVLT-LD or the ICV-normalized hippocampal volumes. Hippocampal volumes were found to decrease with age and a right-larger-than-left hippocampal asymmetry was also found. These findings are in accordance with previous studies. CVLT-LD score was shown to correlate with hippocampal volume. Multivariate conditional inference analysis showed that gender and left hippocampal volume largely dominated predictive values for CVLT-LD scores in our sample. Left hippocampal volume dominated predictive values for females but not for males. APOE genotype did not alter the model significantly, and age was only partly influencing the results. Conclusion Gender and left hippocampal volumes are main predictors for verbal memory function in normal aging. APOE genotype did not affect the results in any part of our analysis.
Brain volume and cognitive function in patients with revascularized coronary artery disease
Ottens, Thomas H; Hendrikse, Jeroen; Nathoe, Hendrik M; Biessels, Geert Jan; van Dijk, Diederik
2017-01-01
BACKGROUND: The pathogenesis of cognitive dysfunction in patients with CAD remains unclear. CAD is associated with brain atrophy and specific lesions. Detailed knowledge about the association of brain volume measured with MRI, and cognitive function in patients with CAD is lacking. We therefore
International Nuclear Information System (INIS)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required
Energy Technology Data Exchange (ETDEWEB)
Botto, D.J.; Pratt, R.H.
1979-05-01
The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.
DEFF Research Database (Denmark)
Voss, Johannes; Shi, Qing; Jacobsen, Hjalte Sylvest
2007-01-01
alanate with TiCl3, and here we study hydrogen dynamics in doped and undoped Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. The hydrogen dynamics is found to be vacancy mediated and dominated by localized jump events, whereas long-range bulk......Understanding the elusive catalytic role of titanium-based additives on the reversible hydrogenation of complex hydrides is an essential step toward developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed effects of doping sodium...... defect motion in sodium alanate could result from vacancy-mediated sodium diffusion....
DEFF Research Database (Denmark)
Shi, Qing; Voss, Johannes; Jacobsen, H.S.
2007-01-01
we study hydrogen dynamics in undoped and TiCl3-doped samples of NaAlH4 and Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. Hydrogen dynamics is found to be limited and mediated by hydrogen vacancies in both alanate phases, requiring......Understanding the catalytic role of titanium-based additives on the reversible hydrogenation of complex metal hydrides is an essential step towards developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed catalytic effects, and here...
Ahn, Chi Young; Jeon, Kiwan; Park, Won-Kwang
2015-06-01
This study analyzes the well-known MUltiple SIgnal Classification (MUSIC) algorithm to identify unknown support of thin penetrable electromagnetic inhomogeneity from scattered field data collected within the so-called multi-static response matrix in limited-view inverse scattering problems. The mathematical theories of MUSIC are partially discovered, e.g., in the full-view problem, for an unknown target of dielectric contrast or a perfectly conducting crack with the Dirichlet boundary condition (Transverse Magnetic-TM polarization) and so on. Hence, we perform further research to analyze the MUSIC-type imaging functional and to certify some well-known but theoretically unexplained phenomena. For this purpose, we establish a relationship between the MUSIC imaging functional and an infinite series of Bessel functions of integer order of the first kind. This relationship is based on the rigorous asymptotic expansion formula in the existence of a thin inhomogeneity with a smooth supporting curve. Various results of numerical simulation are presented in order to support the identified structure of MUSIC. Although a priori information of the target is needed, we suggest a least condition of range of incident and observation directions to apply MUSIC in the limited-view problem.
High throughput in situ scattering of roll-to-roll coated functional polymer films
DEFF Research Database (Denmark)
Andreasen, Jens Wenzel
2017-01-01
The development of conjugated polymers for organic electronics and photovoltaics has relied heavily on advanced X-ray scattering techniques almost since the earliest studies in the field. Almost from the beginning, structural studies focused on how the polymers self-organize in thin films......, and the relation between chemical configuration of the polymer, structure and performance. This chapter presents the latest developments where structural analysis is applied as in situ characterization of structure formation during roll-to-roll coating of photoactive layers for solar cells....
Lu, Yi; Haverkort, Maurits W.
2017-12-01
We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.
Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.
Directory of Open Access Journals (Sweden)
Yasuyuki Taki
Full Text Available Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.
Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.
Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta
2010-12-08
Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.
da Silva, Anabela; Elias, Mady; Andraud, Christine; Lafait, Jacques
2003-12-01
Two methods for solving the radiative transfer equation are compared with the aim of computing the angular distribution of the light scattered by a heterogeneous scattering medium composed of a single flat layer or a multilayer. The first method [auxiliary function method (AFM)], recently developed, uses an auxiliary function and leads to an exact solution; the second [discrete-ordinate method (DOM)] is based on the channel concept and needs an angular discretization. The comparison is applied to two different media presenting two typical and extreme scattering behaviors: Rayleigh and Mie scattering with smooth or very anisotropic phase functions, respectively. A very good agreement between the predictions of the two methods is observed in both cases. The larger the number of channels used in the DOM, the better the agreement. The principal advantages and limitations of each method are also listed.
International Nuclear Information System (INIS)
Zajic, T.; Fischer, R.; Brink, I.; Moser, E.; Krause, T.; Saurbier, B.
2001-01-01
Aim: Left ventricular volume and function can be computed from gated SPECT myocardial perfusion imaging using emory cardiac toolbox (ECT) or gated SPECT quantification (GS-Quant). The aim of this study was to compare both programs with respect to their practical application, stability and precision on heart-models as well as in clinical use. Methods: The volumes of five cardiac models were calculated by ECT and GS-Quant. 48 patients (13 female, 35 male) underwent a one day stress-rest protocol and gated SPECT. From these 96 gated SPECT images, left ventricular ejection fraction (LVEF), end-diastolic volume (EDV) and end-systolic volume (ESV) were estimated by ECT and GS-Quant. For 42 patients LVEF was also determined by echocardiography. Results: For the cardiac models the computed volumes showed high correlation with the model-volumes as well as high correlation between ECT and GS-Quant (r ≥0.99). Both programs underestimated the volume by approximately 20-30% independent of the ventricle-size. Calculating LVEF, EDV and ESV, GS-Quant and ECT correlated well to each other and to the LVEF estimated by echocardiography (r ≥0.86). LVEF values determined with ECT were about 10% higher than values determined with GS-Quant or echocardiography. The incorrect surfaces calculated by the automatic algorithm of GS-Quant for three examinations could not be corrected manually. 34 of the ECT studies were optimized by the operator. Conclusion: GS-Quant and ECT are two reliable programs in estimating LVEF. Both seem to underestimate the cardiac volume. In practical application GS-Quant was faster and easier to use. ECT allows the user to define the contour of the ventricle and thus is less susceptible to artifacts. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Kaptari, Leonya P. [University of Perugia (Italy); INFN-Perugia (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Joint Inst. for Nuclear Research, Dubna (Russia); Del Dotto, Alessio [University of Rome, Rome (Italy); INFN-Roma (Italy); Pace, Emanuele [University of Rome (Italy); INFN-Tor Vergata (Italy); Salme, Giovanni [INFN-Roma (Italy); Scopetta, Sergio [University of Perugia (Italy); INFN-Perugia (Italy)
2014-03-01
The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.
International Nuclear Information System (INIS)
Xue, Xiaopan; Tian, Jianhua; Liao, Wenming; Shan, Zhongqiang
2014-01-01
Highlights: • Spherical anatase TiO 2 covered with nanospindles (SNS) were employed in DSSCs. • SNS possess the dual functions of light scattering and high dye loading. • SNS were fabricated through a facile hydrothermal treatment of the precursors. • Precursors were synthesized by controlled hydrolysis of TBT after being diluted. • The cells based on SNS-18/P25 photoanode exhibited advanced performance. - Abstract: Spherical anatase TiO 2 covered with nanospindles (SNS) were fabricated through a facile hydrothermal treatment of precursors in the presence of ammonia. The precursors were synthesized by controlling hydrolysis rate of TBT (tetrabutyl titanate) in ethanol. Organic structure directing agents and toxic reagents were avoided in the two–step process. By scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), it is confirmed that the morphology and structure of the products can be controlled by adjusting hydrothermal treatment conditions. Time dependent trails revealed the growth mechanism of SNS, which indicating that ammonia can not only retard the dissolution of precursors but also make TiO 2 grow selectively along the direction. Furthermore, photocurrent-potential (I-V) curves show that the solar cells fabricated with the SNS collected after 18 h hydrothermal treatment (SNS-18) exhibit the highest solar energy conversion efficiency. The efficiency is improved by 24.5% compared with that of the cells fabricated with pure P25. Based on the UV-Vis spectrum, nitrogen sorption and IPCE analysis, the improved performance can be attributed to the enhanced scattering and increased active sites for dye loading. Therefore, the dual functions of light scattering and many active sites for dye loading make SNS superior candidates for DSSCs
Combining MRI with PET for partial volume correction improves image-derived input functions in mice
Energy Technology Data Exchange (ETDEWEB)
Evans, Eleanor; Buonincontri, Guido [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Izquierdo, David [Athinoula A Martinos Centre, Harvard University, Cambridge, MA (United States); Methner, Carmen [Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Hawkes, Rob C [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Ansorge, Richard E [Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kreig, Thomas [Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Carpenter, T Adrian [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Sawiak, Stephen J [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge (United Kingdom)
2014-07-29
Kinetic modelling in PET requires the arterial input function (AIF), defined as the time-activity curve (TAC) in plasma. This measure is challenging to obtain in mice due to low blood volumes, resulting in a reliance on image-based methods for AIF derivation. We present a comparison of PET- and MR-based region-of-interest (ROI) analysis to obtain image-derived AIFs from the left ventricle (LV) of a mouse model. ROI-based partial volume correction (PVC) was performed to improve quantification.
Combining MRI with PET for partial volume correction improves image-derived input functions in mice
International Nuclear Information System (INIS)
Evans, Eleanor; Buonincontri, Guido; Izquierdo, David; Methner, Carmen; Hawkes, Rob C; Ansorge, Richard E; Kreig, Thomas; Carpenter, T Adrian; Sawiak, Stephen J
2014-01-01
Kinetic modelling in PET requires the arterial input function (AIF), defined as the time-activity curve (TAC) in plasma. This measure is challenging to obtain in mice due to low blood volumes, resulting in a reliance on image-based methods for AIF derivation. We present a comparison of PET- and MR-based region-of-interest (ROI) analysis to obtain image-derived AIFs from the left ventricle (LV) of a mouse model. ROI-based partial volume correction (PVC) was performed to improve quantification.
Tracking Regional Tissue Volume and Function Change in Lung Using Image Registration
Directory of Open Access Journals (Sweden)
Kunlin Cao
2012-01-01
Full Text Available We have previously demonstrated the 24-hour redistribution and reabsorption of bronchoalveolar lavage (BAL fluid delivered to the lung during a bronchoscopic procedure in normal volunteers. In this work we utilize image-matching procedures to correlate fluid redistribution and reabsorption to changes in regional lung function. Lung CT datasets from six human subjects were used in this study. Each subject was scanned at four time points before and after BAL procedure. Image registration was performed to align images at different time points and different inflation levels. The resulting dense displacement fields were utilized to track tissue volume changes and reveal deformation patterns of local parenchymal tissue quantitatively. The registration accuracy was assessed by measuring landmark matching errors, which were on the order of 1 mm. The results show that quantitative-assessed fluid volume agreed well with bronchoscopist-reported unretrieved BAL volume in the whole lungs (squared linear correlation coefficient was 0.81. The average difference of lung tissue volume at baseline and after 24 hours was around 2%, which indicates that BAL fluid in the lungs was almost absorbed after 24 hours. Regional lung-function changes correlated with the presence of BAL fluid, and regional function returned to baseline as the fluid was reabsorbed.
International Nuclear Information System (INIS)
Yamada, Kiyoyasu; Isobe, Satoshi; Hirai, Makoto
2006-01-01
In postmenopausal women, it has been reported that the plasma estrogen levels diminish immediately after menopause, and that this phenomenon affects left ventricular (LV) function and volumes. However, the effects of age on LV function and volumes for a relatively short period in the postmenopausal women remain to be established. Electrocardiographically gated-myocardial single-photon emission computed tomography (SPECT) has recently provided accurate estimations of perfusion, cardiac systolic and diastolic functions. We investigated the age-related changes in LV function and volumes in postmenopausal women using electrocardiographically gated-myocardial scintigraphy. Twenty-two consecutive healthy postmenopausal women (mean age of 63.8±9.4 years, from 42 to 77 years) without cardiac disease underwent stress/rest technetium-99m tetrofosmin gated-myocardial SPECT with 16 frames per cardiac cycle at baseline and follow-up (1.0±0.3 years later). LV ejection fraction (LVEF) and LV volumes were calculated by quantitative gated SPECT (QGS) software. Fourier series were retained for the analysis of the volume curve. From this volume curve, we derived the following diastolic indices: peak filling rate (PFR) and time to PFR (TPFR). End-systolic volume index (ESVI) significantly decreased at postexercise (p=0.02) and tended to decrease at rest (p=0.06) from the baseline to the follow-up study. LVEF significantly increased at both postexercise (p=0.01) and rest (p=0.03) from the baseline to the follow-up study. The TPFR at rest tended to be prolonged from the baseline to the follow-up study (p=0.07). The absolute increase in LVEF at postexercise tended to decrease with age [4.8% (50s) vs. 3.4% (60s) vs. 1.2% (70s)]. An age-related change in cardiac performance is apparent at an approximately 1 year follow-up in postmenopausal women. In particular, the increase in LV systolic function tends to show the greatest value in the 50s subjects among the 3 generations. (author)
The Green Function cellular method and its relation to multiple scattering theory
International Nuclear Information System (INIS)
Butler, W.H.; Zhang, X.G.; Gonis, A.
1992-01-01
This paper investigates techniques for solving the wave equation which are based on the idea of obtaining exact local solutions within each potential cell, which are then joined to form a global solution. The authors derive full potential multiple scattering theory (MST) from the Lippmann-Schwinger equation and show that it as well as a closely related cellular method are techniques of this type. This cellular method appears to have all of the advantages of MST and the added advantage of having a secular matrix with only nearest neighbor interactions. Since this cellular method is easily linearized one can rigorously reduce electronic structure calculation to the problem of solving a nearest neighbor tight-binding problem
DEFF Research Database (Denmark)
Xu, Hui; Birgisson, Steinar; Sommer, Sanna
structure. At the same time, there is an ongoing debate on whether the SBU is present prior, or during MOF crystallization in MOF chemistry. However, little is known about MOFs formation mechanism. Currently techniques to study the in situ MOF formation process mainly focused on after......-crystallization process, for example in situ XRD and SAXS/WAXS study on MOF formation. However, the pre-crystallization process in the early stage of MOF formation is still unexplored. In this project, total scattering and PDF study will be carried out to explore the MOF formation process in early stage. This includes......Metal-Organic Frameworks (MOFs) is constructed by metal-oxide nodes and organic ligands. The formation of different structures of metal-oxide nodes (also called secondary building units, SBU) is crucial for MOF final structures, because the connectivity of SBU greatly influence the final MOF...
Pulmonary blood volume and transit time in cirrhosis: relation to lung function
DEFF Research Database (Denmark)
Møller, Søren; Burchardt, H; Øgard, CG
2006-01-01
BACKGROUND/AIMS: In cirrhosis a systemic vasodilatation leads to an abnormal distribution of the blood volume with a contracted central blood volume. In addition, the patients have a ventilation/perfusion imbalance with a low diffusing capacity. As the size of the pulmonary blood volume (PBV) has...... in cirrhosis. The relation between PBV and PTT and the low diffusing capacity suggests the pulmonary vascular compartment as an important element in the pathophysiology of the lung dysfunction in cirrhosis....... not been determined separately we assessed PBV and pulmonary transit time (PTT) in relation to lung function in patients with cirrhosis and in controls. METHODS: Pulmonary and cardiac haemodynamics and transit times were determined by radionuclide techniques in 22 patients with alcoholic cirrhosis...
International Nuclear Information System (INIS)
Mueller, D.W.; Crosbie, A.L.
2005-01-01
The topic of this work is the generalized X- and Y-functions of multidimensional radiative transfer. The physical problem considered is spatially varying, collimated radiation incident on the upper boundary of an isotropically scattering, plane-parallel medium. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is used to derive coupled, integro-differential equations for the source functions at the boundaries of the medium. The resulting equations are said to be in double-integral form because the integration is over both angular variables. Numerical results are presented to illustrate the computational characteristics of the formulation
International Nuclear Information System (INIS)
Czachor, A.; Al-Wahsh, H.
1999-01-01
Complete text of publication follows. To determine the neutron inelastic coherent scattering (MS) cross section for disordered magnets a system of equations of motion for the Green functions (GF) related to the localized-spin correlation-functions, has been exploited. The higher-order Green functions are decoupled using a symmetric 'equal access' (EA) form of the RPA decoupling scheme. The quasi-crystal approximation (QCA) was applied to construct the space-time Fourier transformed GF Q (ω)> related to neutron scattering. On assuming isotropy of the magnetic structure and a short range coupling between the spins (on the sphere approximation, OSA) we have found an explicit analytic form of this function. Poles of the Q (ω)> determine the dispersion relation ω = ω Q for elementary excitations, such as they are seen in the MS experiment - the positions of the MS profile maxima in the ω-Q space. Single formula for the dispersion relations derived here covers a variety of isotropic spin structures: in particular disordered 'longitudinal' ferrornagnets (ω ∼Q z , Q→ 0), disordered 'transverse' spin structures (ω ∼Q, Q→0), and some intermediate cases. For the system of spins coupled identically - the magnetization and the magnetic susceptibility calculated within the present EA-RPA approach do agree with the results of exact calculations. It provides an interesting insight into the nature of the RPA approach do agree with the results of exact calculations. It provides an interesting insight into the nature of the RPA - treatment of the localized spin dynamics. (author)
Right Hemisphere Grey Matter Volume and Language Functions in Stroke Aphasia
Directory of Open Access Journals (Sweden)
Sladjana Lukic
2017-01-01
Full Text Available The role of the right hemisphere (RH in recovery from aphasia is incompletely understood. The present study quantified RH grey matter (GM volume in individuals with chronic stroke-induced aphasia and cognitively healthy people using voxel-based morphometry. We compared group differences in GM volume in the entire RH and in RH regions-of-interest. Given that lesion site is a critical source of heterogeneity associated with poststroke language ability, we used voxel-based lesion symptom mapping (VLSM to examine the relation between lesion site and language performance in the aphasic participants. Finally, using results derived from the VLSM as a covariate, we evaluated the relation between GM volume in the RH and language ability across domains, including comprehension and production processes both at the word and sentence levels and across spoken and written modalities. Between-subject comparisons showed that GM volume in the RH SMA was reduced in the aphasic group compared to the healthy controls. We also found that, for the aphasic group, increased RH volume in the MTG and the SMA was associated with better language comprehension and production scores, respectively. These data suggest that the RH may support functions previously performed by LH regions and have important implications for understanding poststroke reorganization.
Magnetotelluric Detection Thresholds as a Function of Leakage Plume Depth, TDS and Volume
Energy Technology Data Exchange (ETDEWEB)
Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-04-21
We conducted a synthetic magnetotelluric (MT) data analysis to establish a set of specific thresholds of plume depth, TDS concentration and volume for detection of brine and CO_{2} leakage from legacy wells into shallow aquifers in support of Strategic Monitoring Subtask 4.1 of the US DOE National Risk Assessment Partnership (NRAP Phase II), which is to develop geophysical forward modeling tools. 900 synthetic MT data sets span 9 plume depths, 10 TDS concentrations and 10 plume volumes. The monitoring protocol consisted of 10 MT stations in a 2×5 grid laid out along the flow direction. We model the MT response in the audio frequency range of 1 Hz to 10 kHz with a 50 Ωm baseline resistivity and the maximum depth up to 2000 m. Scatter plots show the MT detection thresholds for a trio of plume depth, TDS concentration and volume. Plumes with a large volume and high TDS located at a shallow depth produce a strong MT signal. We demonstrate that the MT method with surface based sensors can detect a brine and CO_{2} plume so long as the plume depth, TDS concentration and volume are above the thresholds. However, it is unlikely to detect a plume at a depth larger than 1000 m with the change of TDS concentration smaller than 10%. Simulated aquifer impact data based on the Kimberlina site provides a more realistic view of the leakage plume distribution than rectangular synthetic plumes in this sensitivity study, and it will be used to estimate MT responses over simulated brine and CO_{2} plumes and to evaluate the leakage detectability. Integration of the simulated aquifer impact data and the MT method into the NRAP DREAM tool may provide an optimized MT survey configuration for MT data collection. This study presents a viable approach for sensitivity study of geophysical monitoring methods for leakage detection. The results come in handy for rapid assessment of leakage detectability.
Energy Technology Data Exchange (ETDEWEB)
Campa, Julia; Estrada, Juan; Flaugher, Brenna
2017-02-03
The knowledge of the scatter in the mass-observable relation is a key ingredient for a cosmological analysis based on galaxy clusters in a photometric survey. We demonstrate here how the linear bias measured in the correlation function for clusters can be used to determine the value of the scatter. The new method is tested in simulations of a 5.000 square degrees optical survey up to z~1, similar to the ongoing Dark Energy Survey. The results indicate that the scatter can be measured with a precision of 5% using this technique.
Test Functions for Three-Dimensional Control-Volume Mixed Finite-Element Methods on Irregular Grids
National Research Council Canada - National Science Library
Naff, R. L; Russell, T. F; Wilson, J. D
2000-01-01
.... For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error...
Gluon structure function for deeply inelastic scattering with nucleus in QCD
Energy Technology Data Exchange (ETDEWEB)
Ayala Filho, Alvaro L; Ducati, M.B. Gay [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, Eugene [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation). Theory Dept.
1995-06-01
In this talk we present the first calculation of the gluon structure function for nucleus in QCD. We discuss the Glauber formula for the gluon structure function and the violation of this simple approach that we anticipate in QCD. (author). 10 refs, 4 figs.
Double Bounce Component in Cross-Polarimetric SAR from a New Scattering Target Decomposition
Hong, Sang-Hoon; Wdowinski, Shimon
2013-08-01
Common vegetation scattering theories assume that the Synthetic Aperture Radar (SAR) cross-polarization (cross-pol) signal represents solely volume scattering. We found this assumption incorrect based on SAR phase measurements acquired over the south Florida Everglades wetlands indicating that the cross-pol radar signal often samples the water surface beneath the vegetation. Based on these new observations, we propose that the cross-pol measurement consists of both volume scattering and double bounce components. The simplest multi-bounce scattering mechanism that generates cross-pol signal occurs by rotated dihedrals. Thus, we use the rotated dihedral mechanism with probability density function to revise some of the vegetation scattering theories and develop a three- component decomposition algorithm with single bounce, double bounce from both co-pol and cross-pol, and volume scattering components. We applied the new decomposition analysis to both urban and rural environments using Radarsat-2 quad-pol datasets. The decomposition of the San Francisco's urban area shows higher double bounce scattering and reduced volume scattering compared to other common three-component decomposition. The decomposition of the rural Everglades area shows that the relations between volume and cross-pol double bounce depend on the vegetation density. The new decomposition can be useful to better understand vegetation scattering behavior over the various surfaces and the estimation of above ground biomass using SAR observations.
International Nuclear Information System (INIS)
Nascimento, M.A.C. do
1992-01-01
A Generalized Multi Structural (GMS) wave function is presented which combines the advantages of the SCF-MO and VB models, preserving the classical chemical structures but optimizing the orbitals in a self-consistent way. This wave function is particularly suitable to treat situations where the description of the molecular state requires localized wave functions. It also provides a very convenient way of treating the electron correlation problem, avoiding large CI expansions. The final wave functions are much more compact and easier to interpret than the ones obtained by the conventional methods, using orthogonal orbitals. Applications of the GMS wave function to the study of the photoelectron spectra of the trans-glyoxal molecule and to electron impact excitation processes in the nitrogen molecule are presented as an illustration of the method. (author)
Regge analysis of diffractive and leading baryon structure functions from deep inelastic scattering
International Nuclear Information System (INIS)
Batista, M.; Covolan, R.J.M.; Montanha, J.
2002-01-01
In this paper we present a combined analysis of the H1 data on leading baryon and diffractive structure functions from DIS, which are handled as two components of the same semi-inclusive process. The available structure function data are analyzed in a series of fits in which three main exchanges are taken into account: the Pomeron, Reggeon, and pion. For each of these contributions, Regge factorization of the correspondent structure function is assumed. By this procedure, we extract information about the interface between the diffractive, Pomeron-dominated, region and the leading proton spectrum, which is mostly ruled by secondary exchanges. One of the main results is that the relative Reggeon contribution to the semi-inclusive structure function is much smaller than the one obtained from an analysis of the diffractive structure function alone
Wu Ta You
1962-01-01
This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati
International Nuclear Information System (INIS)
Armour, E.A.G.; Plummer, M.
1989-01-01
An explanation is given of why it is necessary to include long-range polarisation functions in the trial function when carrying out Kohn calculations of low-energy positron (and electron) scattering by atoms and simple molecules. The asymptotic form of these functions in low-energy e + -H 2 scattering is deduced. Appropriate functions with this asymptotic form are used to represent the closed-channel part of the wavefunction in a Kohn calculation of the lowest partial wave of Σ u + symmetry in e + -H 2 scattering at very low energies. For k≤0.03a 0 -1 , the results obtained are in good agreement with those obtained using the Born approximation and the asymptotic forms of the static and polarisation potentials. The relationship is pointed out between this method of taking into account long-range polarisation and the polarised pseudostate method used in R-matrix calculations. (author)
Functional Requirements for Onboard Management of Space Shuttle Consumables. Volume 2
Graf, P. J.; Herwig, H. A.; Neel, L. W.
1973-01-01
This report documents the results of the study "Functional Requirements for Onboard Management of Space Shuttle Consumables." The study was conducted for the Mission Planning and Analysis Division of the NASA Lyndon B. Johnson Space Center, Houston, Texas, between 3 July 1972 and 16 November 1973. The overall study program objective was two-fold. The first objective was to define a generalized consumable management concept which is applicable to advanced spacecraft. The second objective was to develop a specific consumables management concept for the Space Shuttle vehicle and to generate the functional requirements for the onboard portion of that concept. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The report consists of two volumes. Volume I presents a description of the study activities related to general approaches for developing consumable management, concepts for advanced spacecraft applications, and functional requirements for a Shuttle consumables management concept. Volume II presents a detailed description of the onboard consumables management concept proposed for use on the Space Shuttle.
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2004-01-01
An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...
Directory of Open Access Journals (Sweden)
A. Gogoi
2011-09-01
Full Text Available Scattering properties of bentonite clay particles were investigated at 543.5 nm incident laser wavelength by using a designed and fabricated light scattering setup. The scattering samples were held in front of a laser beam by using a transparent cylindrical thermosetting epoxy matrix.
Structure functions of deep inelastic scattering and e+e- annihilation at small x in QCD
International Nuclear Information System (INIS)
Zinov'ev, G.M.; Pavlenko, O.P.; Snigirev, A.M.; Shelest, V.P.
1984-01-01
Small x behaviour of the distribution and fragmentation functions from perturbative QCD in various asymptotic regimes is discussed. It is shown that in the leading logarithmic approximation, the Gribov - Lipatov relation between these functions is fulfilled at Q 2 → infinity, x → 0 and is violated at Q 2 =const, x → 0. Taking into account the nonleading terms we have found that the relation is invald in the former regime too
The 90deg excitation function for elastic 12C+12C scattering. The importance of Airy elephants
International Nuclear Information System (INIS)
McVoy, K.W.; Brandan, M.E.
1992-01-01
The 90deg excitation function for elastic 12 C+ 12 C scattering, at laboratory energies between the Coulomb barrier and 130 MeV, exhibits a complex structure of peaks and valleys whose nature has remained an unsolved mystery for more than 20 years. The problem has primarily been caused by the difficulty of choosing from a plethora of discretely ambiguous optical potentials. However, data accumulated above 150 MeV over the last decade have determined unique potentials at these higher energies, and the requirement of continuity downward in energy has recently permitted the determination of a unique set of potentials for angular distributions at energies below 130 MeV, where the excitation-function data exist. These new potentials are used to provide a mean-field (i.e., nonresonant) interpretation of the structure in the 12 C+ 12 C 90deg excitation function between 70 and 130 MeV. Its most prominent minima are found to be Airy minima from nuclear rainbows, with the remaining structure arising primarily from more elementary optical phenomena related to Fraunhofer diffraction. These same potentials are also successful in explaining the details of excitation functions measured very recently at other angles by Morsad. (orig.)
International Nuclear Information System (INIS)
Ness, H
2006-01-01
In this paper, we consider the problem of inelastic electron transport in molecular systems in which both electronic and vibrational degrees of freedom are considered on the quantum level. The electronic transport properties of the corresponding molecular nanojunctions are obtained by means of a non-perturbative Landauer-like multi-channel inelastic scattering technique. The connections between this approach and other Green's function techniques that are useful in particular cases are studied in detail. The validity of the wide-band approximation, the effects of the lead self-energy and the dynamical polaron shift are also studied for a wide range of parameters. As a practical application of the method, we consider the effects of the temperature on the conductance properties of molecular breakjunctions in relation to recent experiments
International Nuclear Information System (INIS)
Delbary, Fabrice; Piana, Michele; Aramini, Riccardo; Brignone, Massimo; Bozza, Giovanni
2008-01-01
Microwave tomography is a non-invasive approach to the early diagnosis of breast cancer. However the problem of visualizing tumors from diffracted microwaves is a difficult nonlinear ill-posed inverse scattering problem. We propose a qualitative approach to the solution of such a problem, whereby the shape and location of cancerous tissues can be detected by means of a combination of the Reciprocity Gap Functional method and the Linear Sampling method. We validate this approach to synthetic near-fields produced by a finite element method for boundary integral equations, where the breast is mimicked by the axial view of two nested cylinders, the external one representing the skin and the internal one representing the fat tissue.
Delbary, Fabrice; Aramini, Riccardo; Bozza, Giovanni; Brignone, Massimo; Piana, Michele
2008-11-01
Microwave tomography is a non-invasive approach to the early diagnosis of breast cancer. However the problem of visualizing tumors from diffracted microwaves is a difficult nonlinear ill-posed inverse scattering problem. We propose a qualitative approach to the solution of such a problem, whereby the shape and location of cancerous tissues can be detected by means of a combination of the Reciprocity Gap Functional method and the Linear Sampling method. We validate this approach to synthetic near-fields produced by a finite element method for boundary integral equations, where the breast is mimicked by the axial view of two nested cylinders, the external one representing the skin and the internal one representing the fat tissue.
Correlation of pulmonary perfusion volume analysis with pulmonary function in emphysema
International Nuclear Information System (INIS)
Kaneta, Tomohiro; Yamazaki, Tetsuro; Takai, Yoshihiro; Takahashi, Shoki; Yamada, Shogo; Maruoka, Shin; Abe, Yoetsu
2000-01-01
Pulmonary perfusion single photon emission tomography with 99m Tc MAA was performed on 13 pulmonary emphysema patients and 6 controls. We calculated perfusion volume with lower 10%, 20%, 30%, 40% and 50% of the highest counts/boxels in the lung cut-off. And perfusion index (PI) was defined as follows; PI=((A% cut-off volume)-(B% cut-off volume))/(A% cut-off volume); A and B take 10 to 50, A 1 , FEV 1 %, VC, VC%, FVC, FVC%, PaO 2 and PaCO 2 ) was examined. There were significant correlation between every PI and FEV 1 or FEV 1 % (p 1 (r=0.680) and FEV 1 % (r=0.830). And the PI showed an increasing tendency along with the rise of the emphysema severity. The PI may have the clinical utility of the evaluation of pulmonary function. Moreover, we showed the lung CT painted the area where the uptake counts/boxels was more than 10% and less than 40% of the highest counts/boxels. This makes it easy to understand the severe emphysematous area. (author)
Terban, Maxwell W.
Nanoscale structural characterization is critical to understanding the physical underpinnings of properties and behavior in materials with technological applications. The work herein shows how the pair distribution function technique can be applied to x-ray total scattering data for material systems which weakly scatter x-rays, a typically difficult task due to the poor signal-to-noise obtained from the structures of interest. Characterization and structural modeling are demonstrated for a variety of molecular and porous systems, along with the detection and characterization of disordered, minority phases and components. In particular, reliable detection and quantitative analysis are demonstrated for nanocrystals of an active pharmaceutical ingredient suspended in dilute solution down to a concentration of 0.25 wt. %, giving a practical limit of detection for ordered nanoscale phases within a disordered matrix. Further work shows that minority nanocrystalline phases can be detected, fingerprinted, and modeled for mixed crystalline and amorphous systems of small molecules and polymers. The crystallization of amorphous lactose is followed under accelerated aging conditions. Melt quenching is shown to produce a different local structure than spray drying or freeze drying, along with increased resistance to crystallization. The initial phases which form in the spray dried formulation are identified as a mixture of polymorphs different from the final alpha-lactose monohydrate form. Hard domain formation in thermoplastic polyurethanes is also characterized as a function of methylene diphenyl diisocyanate and butanediol component ratio, showing that distinct and different hard phase structures can form and are solved by indexing with structures derived from molecular dynamics relaxation. In both cases, phase fractions can be quantified in the mixed crystalline and amorphous systems by fitting with both standards or structure models. Later chapters, demonstrate pair
International Nuclear Information System (INIS)
Ustinov, Eugene A.
2005-01-01
An approach to formulation of inversion algorithms for remote sensing in the thermal spectral region in the case of a scattering planetary atmosphere, based on the adjoint equation of radiative transfer (Ustinov (JQSRT 68 (2001) 195; JQSRT 73 (2002) 29); referred to as Papers 1 and 2, respectively, in the main text), is applied to the general case of retrievals of atmospheric and surface parameters for the scattering atmosphere with nadir viewing geometry. Analytic expressions for corresponding weighting functions for atmospheric parameters and partial derivatives for surface parameters are derived. The case of pure atmospheric absorption with a scattering underlying surface is considered and convergence to results obtained for the non-scattering atmospheres (Ustinov (JQSRT 74 (2002) 683), referred to as Paper 3 in the main text) is demonstrated
Electron-hydrogen atom inelastic scattering through a correlated wave function
International Nuclear Information System (INIS)
Serpa Vieira, A.E. de.
1984-01-01
The inelastic collision between an electron and a hydrogen atom is studied. A correlated function, used previously to the same system in elastic collisions in which there are two parameters fitted in the energy range studied, is utilized. With this functions an equation is developed for the direct and exchange transition matrix elements to the 15-25 and 15-2 p transitions. The obtained results are compared with Willians experimental measurements, as well the results given by the theoretical treatments of Kingston, Fon and Burke. (L.C.) [pt
Remizovich, V. S.
2010-06-01
It is commonly accepted that the Schwarzschild-Schuster two-flux approximation (1905, 1914) can be employed only for the calculation of the energy characteristics of the radiation field (energy density and energy flux density) and cannot be used to characterize the angular distribution of radiation field. However, such an inference is not valid. In several cases, one can calculate the radiation intensity inside matter and the reflected radiation with the aid of this simplest approximation in the transport theory. In this work, we use the results of the simplest one-parameter variant of the two-flux approximation to calculate the angular distribution (reflection function) of the radiation reflected by a semi-infinite isotropically scattering dissipative medium when a relatively broad beam is incident on the medium at an arbitrary angle relative to the surface. We do not employ the invariance principle and demonstrate that the reflection function exhibits the multiplicative property. It can be represented as a product of three functions: the reflection function corresponding to the single scattering and two identical h functions, which have the same physical meaning as the Ambartsumyan-Chandrasekhar function ( H) has. This circumstance allows a relatively easy derivation of simple analytical expressions for the H function, total reflectance, and reflection function. We can easily determine the relative contribution of the true single scattering in the photon backscattering at an arbitrary probability of photon survival Λ. We compare all of the parameters of the backscattered radiation with the data resulting from the calculations using the exact theory of Ambartsumyan, Chandrasekhar, et al., which was developed decades after the two-flux approximation. Thus, we avoid the application of fine mathematical methods (the Wiener-Hopf method, the Case method of singular functions, etc.) and obtain simple analytical expressions for the parameters of the scattered radiation
Fetal growth, cognitive function, and brain volumes in childhood and adolescence.
Rogne, Tormod; Engstrøm, Andreas Aass; Jacobsen, Geir Wenberg; Skranes, Jon; Østgård, Heidi Furre; Martinussen, Marit
2015-03-01
To evaluate the association between fetal growth pattern and cognitive function at 5 and 9 years and regional brain volumes at 15 years. Eighty-three term-born small-for-gestational-age (SGA) neonates and 105 non-SGA neonates in a control group were available for follow-up. Based on serial fetal ultrasound measurements from gestational weeks 25-37, SGA neonates were classified with fetal growth restriction (n=13) or non-fetal growth restriction (n=36). Cognitive function was assessed at 5 and 9 years, and brain volumes were estimated with cerebral magnetic resonance imaging at 15 years. Small-for-gestational-age children had lower performance intelligence quotient at 5 years compared with those in a control group (107.3 compared with 112.5, Pgrowth restriction and control groups, the SGA fetal growth restriction group had significantly lower performance intelligence quotient at 5 years (103.5 compared with 112.5, Pgrowth restriction and control groups for thalamic (17.4 compared with 18.6 cm, Pintelligence quotient scores at 5 and 9 years and smaller brain volumes at 15 years compared with those in the control group, but these findings were only found in those with fetal growth restriction, indicating a possible relationship to decelerated fetal growth. II.
Camiciottoli, G; Diciotti, S; Bartolucci, M; Orlandi, I; Bigazzi, F; Matucci-Cerinic, M; Pistolesi, M; Mascalchi, M
2013-03-01
Spiral low-dose computed tomography (LDCT) permits to measure whole-lung volume and density in a single breath-hold. To evaluate the agreement between static lung volumes measured with LDCT and pulmonary function test (PFT) and the correlation between the LDCT volumes and lung density in restrictive lung disease. Patients with Systemic Sclerosis (SSc) with (n = 24) and without (n = 16) pulmonary involvement on sequential thin-section CT and patients with chronic obstructive pulmonary disease (COPD)(n = 29) underwent spirometrically-gated LDCT at 90% and 10% of vital capacity to measure inspiratory and expiratory lung volumes and mean lung attenuation (MLA). Total lung capacity and residual volume were measured the same day of CT. Inspiratory [95% limits of agreement (95% LoA)--43.8% and 39.2%] and expiratory (95% LoA -45.8% and 37.1%) lung volumes measured on LDCT and PFT showed poor agreement in SSc patients with pulmonary involvement, whereas they were in substantial agreement (inspiratory 95% LoA -14.1% and 16.1%; expiratory 95% LoA -13.5% and 23%) in SSc patients without pulmonary involvement and in inspiratory scans only (95% LoA -23.1% and 20.9%) of COPD patients. Inspiratory and expiratory LDCT volumes, MLA and their deltas differentiated both SSc patients with or without pulmonary involvement from COPD patients. LDCT lung volumes and density were not correlated in SSc patients with pulmonary involvement, whereas they did correlate in SSc without pulmonary involvement and in COPD patients. In restrictive lung disease due to SSc there is poor agreement between static lung volumes measured using LDCT and PFT and the relationship between volume and density values on CT is altered.
Effect of Hemodialysis on Left and Right Ventricular Volume and Function
International Nuclear Information System (INIS)
Han, Jin Suk; Koh, Chang Soon
1985-01-01
With the improvement of hemodialysis, the course of thc discase in patient with endstage renal disease has been clearly improved. Nevertheless, among several shortcomings to our present mode of renal replacement therapy, cardiovascular complications have been the leading cause of morbidity and mortality. Several factors such as anemia, arteriovenous shunting of blood, intermittent extracorporeal circulation and hypertension may be contributing. But little is known about the quantitative cardiac hemodynamic characteristics occurred during hemodialysis. The purpose of this study is to observe the sequential hemodynamic changes before, during and after the hemodialysis and to investigate: reliable parameters in the detection of ventricular dysfunction. In the present study, equilibrium radionuclide cardiac angiography was performed and left and right ventricular volume indices, ejection phase indices of both ventricular, performance were measured in the 16 stable patients with chronic renal failure treated with maintenance hemodialysis sequentially i.e. before, during (carly and late phase) and after the hemodialysis. The results obtained were as follows; 1) The indices of the left ventricular function were not changed during the hemodialysis but increased after the hemodialysis. 2) The indices of the right ventricular function(EF, SVI) were significantly decreased in the early phase (15, 30 minutes after starting extracorporeal circulation) but recovered after the hemodialysis, 3) The ratio of right ventricular to left ventricular ejection fraction was significantly decreased in the early phase and the lung volume indices were significantly increased at the same phase. As a conclusion, hemodialysis improves left ventricular function maybe du to increased contractility, and effects on the right ventricular function maybe due to the increased lung volume in the early phase of hemodialysis.
Effect of Hemodialysis on Left and Right Ventricular Volume and Function
Energy Technology Data Exchange (ETDEWEB)
Han, Jin Suk; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of)
1985-09-15
With the improvement of hemodialysis, the course of thc discase in patient with endstage renal disease has been clearly improved. Nevertheless, among several shortcomings to our present mode of renal replacement therapy, cardiovascular complications have been the leading cause of morbidity and mortality. Several factors such as anemia, arteriovenous shunting of blood, intermittent extracorporeal circulation and hypertension may be contributing. But little is known about the quantitative cardiac hemodynamic characteristics occurred during hemodialysis. The purpose of this study is to observe the sequential hemodynamic changes before, during and after the hemodialysis and to investigate: reliable parameters in the detection of ventricular dysfunction. In the present study, equilibrium radionuclide cardiac angiography was performed and left and right ventricular volume indices, ejection phase indices of both ventricular, performance were measured in the 16 stable patients with chronic renal failure treated with maintenance hemodialysis sequentially i.e. before, during (carly and late phase) and after the hemodialysis. The results obtained were as follows; 1) The indices of the left ventricular function were not changed during the hemodialysis but increased after the hemodialysis. 2) The indices of the right ventricular function(EF, SVI) were significantly decreased in the early phase (15, 30 minutes after starting extracorporeal circulation) but recovered after the hemodialysis, 3) The ratio of right ventricular to left ventricular ejection fraction was significantly decreased in the early phase and the lung volume indices were significantly increased at the same phase. As a conclusion, hemodialysis improves left ventricular function maybe du to increased contractility, and effects on the right ventricular function maybe due to the increased lung volume in the early phase of hemodialysis.
International Nuclear Information System (INIS)
Rinat, A.S.
2000-01-01
We discuss applications of previously computed nuclear structure functions (SF) to inclusive cross sections, compare predictions with recent CEBAF data and perform two scaling tests. We mention that the large Q 2 plateau of scaling functions may only in part be due to the asymptotic limit of SF, which prevents the extraction of the nucleon momentum distribution in a model- independent way. We show that there may be sizable discrepancies between computed and semi-heuristic estimates of SF ratios. We compute ratios of moments of nuclear SF and show these to be in reasonable agreement with data. We speculate that an effective theory may underly the model for the nuclear SF, which produces overall agreement with several observables. (author)
Inelastic electron scattering as an indicator of clustering in wave functions
International Nuclear Information System (INIS)
1998-01-01
While the shell model is the most fundamental of nuclear structure models, states in light nuclei also have been described successfully in terms of clusters. Indeed, Wildemuth and Tang have shown a correspondence between the cluster and shell models, the clusters arising naturally as correlations out of the shell model Hamiltonian. For light nuclei, the cluster model reduces the many-body problem to a few-body one, with interactions occurring between the clusters. These interactions involve particle exchanges, since the nucleons may still be considered somewhat freely moving, with their motion not strictly confined to the clusters themselves. Such is the relation of the cluster model to the shell model. For a realistic shell model then, one may expect some evidence of clustering in the wave functions for those systems in which the cluster model is valid. The results obtained using the multi-ℎωshell model wave functions are closer in agreement with experiment than the results obtained using the 0ℎωwave functions. Yet in all cases, that level of agreement is not good, with the calculations underpredicting the measured values by at least a factor of two. This indicates that the shell model wave functions do not exhibit clustering behavior, which is expected to manifest itself at small momentum transfer. The exception is the transition to the 7 - /2 state in 7 Li, for which the value obtained from the γ-decay width is in agreement with the value obtained from the MK3W and (0 + 2 + 4)ℎωshell model calculations
Inelastic electron scattering as an indicator of clustering in wave functions
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-09-01
While the shell model is the most fundamental of nuclear structure models, states in light nuclei also have been described successfully in terms of clusters. Indeed, Wildemuth and Tang have shown a correspondence between the cluster and shell models, the clusters arising naturally as correlations out of the shell model Hamiltonian. For light nuclei, the cluster model reduces the many-body problem to a few-body one, with interactions occurring between the clusters. These interactions involve particle exchanges, since the nucleons may still be considered somewhat freely moving, with their motion not strictly confined to the clusters themselves. Such is the relation of the cluster model to the shell model. For a realistic shell model then, one may expect some evidence of clustering in the wave functions for those systems in which the cluster model is valid. The results obtained using the multi-{Dirac_h}{omega}shell model wave functions are closer in agreement with experiment than the results obtained using the 0{Dirac_h}{omega}wave functions. Yet in all cases, that level of agreement is not good, with the calculations underpredicting the measured values by at least a factor of two. This indicates that the shell model wave functions do not exhibit clustering behavior, which is expected to manifest itself at small momentum transfer. The exception is the transition to the 7{sup -}/2 state in {sup 7}Li, for which the value obtained from the {gamma}-decay width is in agreement with the value obtained from the MK3W and (0 + 2 + 4){Dirac_h}{omega}shell model calculations 17 refs., 1 tab., 2 figs.
Correlation functions for fully or partially state-resolved reactive scattering calculations
International Nuclear Information System (INIS)
Manthe, Uwe; Welsch, Ralph
2014-01-01
Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H 2 reaction illustrate important aspects of the formalism
International Nuclear Information System (INIS)
Armour, E.A.G.
1985-01-01
In the application of a generalisation of the Kohn method to low-energy positron-hydrogen-molecule scattering, up to 31 short-range correlation functions, made up of one-particle functions of σ symmetry, were included in the trial function. In the calculation described in this paper, the flexibility of the trial function is greatly improved by the inclusion of up to 64-short-range correlation functions of which 32 contain products of one-particle functions of π symmetry. The behaviour of the phaseshift values with increasing incident energy is qualitatively similar to the behaviour of the corresponding S-wave phaseshifts in low-energy positron-helium scattering. Comparison with experiment indicates that the results reproduce qualitatively the experimental trend at very low energies but higher partial waves must make a significant contribution to the total cross section above about 0.1 eV. (author)
International Nuclear Information System (INIS)
Marks, Lawrence B.; Spencer, David P.; Sherouse, George W.; Bentel, Gunilla; Clough, Robert; Vann, Karen; Jaszczak, Ronald; Coleman, R. Edward; Prosnitz, Leonard R.
1995-01-01
Purpose: During thoracic irradiation (XRT), treatment fields are usually designed to minimize the volume of nontumor-containing lung included. Generally, functional heterogeneities within the lung are not considered. The three dimensional (3D) functional information provided by single photon emission computed tomography (SPECT) lung perfusion scans might be useful in designing beams that minimize incidental irradiation of functioning lung tissue. We herein review the pretreatment SPECT scans in 86 patients (56 with lung cancer) to determine which are likely to benefit from this technology. Methods and Materials: Prior to thoracic XRT, SPECT lung perfusion scans were obtained following the intravenous injection of ∼4 mCi of 99m Tc-labeled macro-aggregated albumin. The presence of areas of decreased perfusion, their location relative to the tumor, and the potential clinical usefulness of their recognition, were scored. Patients were grouped and compared (two-tailed chi-square) based on clinical factors. Conventional dose-volume histograms (DVHs) and functional DVHs (DV F Hs) are calculated based on the dose distribution throughout the computed tomography (CT)-defined lung and SPECT-defined perfused lung, respectively. Results: Among 56 lung cancer patients, decreases in perfusion were observed at the tumor, adjacent to the tumor, and separate from the tumor in 94%, 74%, and 42% of patients, respectively. Perfusion defects adjacent to the tumor were often large with centrally placed tumors. Hypoperfusion in regions separate from the tumor were statistically most common in patients with relatively poor pulmonary function and chronic obstructive pulmonary disease (COPD). Considering all SPECT defects adjacent to and separate from the tumor, corresponding CT abnormalities were seen in only ∼50% and 20% of patients, respectively, and were generally not as impressive. Following XRT, hypoperfusion at and separate from the tumor persisted, while defects adjacent to the
High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.
Andras, Peter
2018-02-01
Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.
Second-order contributions to the structure functions in deep inelastic scattering III The singlet
González-Arroyo, A
1980-01-01
For pt.II see ibid., vol.159, p.512 (1979). Pointlike QCD predictions for the singlet part of the structure functions are given up to next- to-leading order of perturbation theory. This generalises the result obtained in pt.I (see ibid., vol.153, p.161, 1979) which deals with the non-singlet case. An interesting by-product is an exact and simple analytical expression for the anomalous dimension matrix to second non-trivial order in the QCD coupling constant. (18 refs).
The total cross section as a function of energy for elastic scattering of noble gas atoms
International Nuclear Information System (INIS)
Linse, C.A.
1978-01-01
Precise relative measurements of the total cross-sections as a function of velocity is presented for the systems Ar-Ar, Ar-Kr, Kr-Ar, Ar-Xe, Ne-Ar, Ne-Kr, and Ne-Xe, the primary beam particle being mentioned first. A discription of the apparatus is given. Then the method for extracting total cross-sections from the measured beam attenuation is analyzed. A comparison is made with total cross-sections calculated from various potentials that have been proposed in the literature
Exact potential and scattering amplitudes from the tachyon non-linear β -function
International Nuclear Information System (INIS)
Coletti, E.; Forini, V.; Nardelli, G.; Orselli, M.; Grignani, G.
2004-01-01
We compute, on the disk, the non-linear tachyon β-function, β T , of the open bosonic string theory. β T is determined both in an expansion to the third power of the field and to all orders in derivatives and in an expansion to any power of the tachyon field in the leading order in derivatives. We construct the Witten-Shatashvili (WS) space-time effective action S and prove that it has a very simple universal form in terms of the renormalized tachyon field and β T . The expression for S is well suited to studying both processes that are far off-shell, such as tachyon condensation, and close to the mass-shell, such as perturbative on-shell amplitudes. We evaluate S in a small derivative expansion, providing the exact tachyon potential. The normalization of S is fixed by requiring that the field redefinition that maps S into the tachyon effective action derived from the cubic string field theory is regular on-shell. The normalization factor is in precise agreement with the one required for verifying all the conjectures on tachyon condensation. The coordinates in the space of couplings in which the tachyon β-function is non linear are the most appropriate to study RG fixed points that can be interpreted as solitons of S, i.e. D-branes. (author)
Volume-assisted estimation of liver function based on Gd-EOB-DTPA-enhanced MR relaxometry
Energy Technology Data Exchange (ETDEWEB)
Haimerl, Michael; Schlabeck, Mona; Verloh, Niklas; Fellner, Claudia; Stroszczynski, Christian; Wiggermann, Philipp [University Hospital Regensburg, Department of Radiology, Regensburg (Germany); Zeman, Florian [University Hospital Regensburg, Center for Clinical Trials, Regensburg (Germany); Nickel, Dominik [MR Applications Development, Siemens AG, Healthcare Sector, Erlangen (Germany); Barreiros, Ana Paula [University Hospital Regensburg, Department of Internal Medicine I, Regensburg (Germany); Loss, Martin [University Hospital Regensburg, Department of Surgery, Regensburg (Germany)
2016-04-15
To determine whether liver function as determined by indocyanine green (ICG) clearance can be estimated quantitatively from hepatic magnetic resonance (MR) relaxometry with gadoxetic acid (Gd-EOB-DTPA). One hundred and seven patients underwent an ICG clearance test and Gd-EOB-DTPA-enhanced MRI, including MR relaxometry at 3 Tesla. A transverse 3D VIBE sequence with an inline T1 calculation was acquired prior to and 20 minutes post-Gd-EOB-DTPA administration. The reduction rate of T1 relaxation time (rrT1) between pre- and post-contrast images and the liver volume-assisted index of T1 reduction rate (LVrrT1) were evaluated. The plasma disappearance rate of ICG (ICG-PDR) was correlated with the liver volume (LV), rrT1 and LVrrT1, providing an MRI-based estimated ICG-PDR value (ICG-PDR{sub est}). Simple linear regression model showed a significant correlation of ICG-PDR with LV (r = 0.32; p = 0.001), T1{sub post} (r = 0.65; p < 0.001) and rrT1 (r = 0.86; p < 0.001). Assessment of LV and consecutive evaluation of multiple linear regression model revealed a stronger correlation of ICG-PDR with LVrrT1 (r = 0.92; p < 0.001), allowing for the calculation of ICG-PDR{sub est}. Liver function as determined using ICG-PDR can be estimated quantitatively from Gd-EOB-DTPA-enhanced MR relaxometry. Volume-assisted MR relaxometry has a stronger correlation with liver function than does MR relaxometry. (orig.)
International Nuclear Information System (INIS)
Varma, M.N.; Bond, V.P.
1982-01-01
Microdosimetric spectra for 0.43, 1.8, and 14.7 MeV neutrons, and for 215 kVp x rays and 1250 keV gammas were used in conjunction with relative biological effectiveness (RBE) values for pink mutations in Tradescantia to obtain an effectiveness function (i.e., a cell critical volume dose vs. cell response function). This effectiveness function (or hit size weighting function) provides the probability of inducing a biological effect of interest (in the present study, pink mutations in Tradescantia) as a function of lineal energy density y. In a preliminary analysis the critical value of y above which pink mutations are seen was 4.5 keV/μm, and the value of y at which the probability reaches unity was 115 keV/μm. Idealized but approximate event size distributions for mono-LET particles ranging from 10 to 5000 keV/μm were generated, and these distributions were weighted by the effectiveness function to determine the pink mutation frequencies. Results are compared with measured pink mutation frequencies for 11 keV/μm ( 12 C) and 31 keV/μm ( 20 Ne) ions
Dybalski, Wojciech; Pizzo, Alessandro
2018-02-01
Let $H_{P,\\sigma}$ be the single-electron fiber Hamiltonians of the massless Nelson model at total momentum $P$ and infrared cut-off $\\sigma>0$. We establish detailed regularity properties of the corresponding $n$-particle ground state wave functions $f^n_{P,\\sigma}$ as functions of $P$ and $\\sigma$. In particular, we show that \\[ |\\partial_{P^j}f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)|, \\ \\ |\\partial_{P^j} \\partial_{P^{j'}} f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)| \\leq \\frac{1}{\\sqrt{n!}} \\frac{(c\\lambda_0)^n}{\\sigma^{\\delta_{\\lambda_0}}} \\prod_{i=1}^n\\frac{ \\chi_{[\\sigma,\\kappa)}(k_i)}{|k_i|^{3/2}}, \\] where $c$ is a numerical constant, $\\lambda_0\\mapsto \\delta_{\\lambda_0}$ is a positive function of the maximal admissible coupling constant which satisfies $\\lim_{\\lambda_0\\to 0}\\delta_{\\lambda_0}=0$ and $\\chi_{[\\sigma,\\kappa)}$ is the (approximate) characteristic function of the energy region between the infrared cut-off $\\sigma$ and the ultraviolet cut-off $\\kappa$. While the analysis of the first derivative is relatively straightforward, the second derivative requires a new strategy. By solving a non-commutative recurrence relation we derive a novel formula for $f^n_{P,\\sigma}$ with improved infrared properties. In this representation $\\partial_{P^{j'}}\\partial_{P^{j}}f^n_{P,\\sigma}$ is amenable to sharp estimates obtained by iterative analytic perturbation theory in part II of this series of papers. The bounds stated above are instrumental for scattering theory of two electrons in the Nelson model, as explained in part I of this series.
Effects of Thyroid Hormone on Left Ventricular Volume and Function in Hyperthyroidism
International Nuclear Information System (INIS)
Lee, Myung Chul; Koh, Chang Soon
1983-01-01
The purpose of this study is to investigate the effects of thyroid hormone on the left ventricular (LV) volume and function in man with untreated hyperthyroidism and to determine the effects of successful therapy for thyrotoxicosis on the ventricular pathophysiology. In the present study, equilibrium ralhianuclide cardiac angiography was performed and LV volume index, ejection phase indexes of LV performance, serum thyroid hormone levels and other hemodynamic parameters were measured in 28 normal subjects and 39 patients with hyperthyroidism before treatment and again every 4 weeks for the first 2 months after the initiation of effective therapy. The result obtained were as follows; 1) In the untreated hyperthyroid state heart rate, blood volume, cardiac index and stroke volume index (97±14 beats/min, 73.5±11.8 ml/kg, 6.9±1.4 l/min/m2 and 77.6±13.8 ml/m2, respectively) were increased significantly compared to those in normal control (74±12 beats/min, 65.6±14.8 ml/kg, 3.8±1.2 l/min/m2 and 56.6±13.2 ml/m2 respectively). (Mean±SD). 2) There was a significant increase in LV end-diastolic volume index in patients with hyperthyroidism (30.5±7.5 for hyperthyroid group compared to a normal control of 22.2±6.5; P<0.001), whereas end-systolic volume index remained unchanged 9.6±3.6 and 8.8±3.3 respectively. 3) In patients with hyperthyroidism, LV ejection fraction was 70.0±5.6%, fractional shortening 32.9±5.1%, mean velocity of circumferential fiber shortening (mean Vcf) 1.34±0.31 circ/sec and maximum ejection rate 3.47±0.80. All the ejection phase indexes were significantly greater than those in normal control (65.2±5.7%, 28.8±3.2%, 0.88±0.37 circ/sec and 2.27±0.50, respectively; p<0.001). 4) Effective therapy produced significant decrease in all the values of serum thyroid hormone concenrations (p<0.001), hemodynamic parameters (p<0.001), end-diastolic volume index (p<0.01) and ejection phase indexes of LV contractility in patients with hyperthyroidism
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1984-10-01
Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)
Light-scattering evolution from particles to regolith
International Nuclear Information System (INIS)
Videen, Gorden; Muinonen, Karri
2015-01-01
The radiative-transfer coherent-backscattering (RT–CB) model is unique among light-scattering methodologies as it can be used to calculate accurate light-scattering properties of sparsely populated particle volumes with sizes ranging from subwavelength to infinity. We use the RT–CB model to examine the evolution of light-scattering properties as a volume of particles increases from wavelength-sized to several hundreds of wavelengths. We examine the evolution of light-scattering intensity phase function and polarization, as well as linear and circular polarization ratios. We confirm the expected trends for backscattering features to shift to smaller phase angles as the volume increases. In addition, we also see the amplitude of these features increases to some maximum for volumes having size parameters kR∼100, before decaying to less than half this amplitude as their volumes approach infinity. - Highlights: • We use the RT–CB method to examine how gross light-scattering properties evolve as particle size increases. • The transition from a wavelength-sized particle to a large particle is not monotonic. • Backscattering properties associated with the CB mechanism appear to have a peak value before decaying asymptotically
National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of calculated annual and monthly mean ocean volume transport stream function on 1 degree resolution using the WOA13 (T, S) and corresponding...
Directory of Open Access Journals (Sweden)
Lirong Tan
2017-09-01
Full Text Available In this paper, we investigated the problem of computer-aided diagnosis of Attention Deficit Hyperactivity Disorder (ADHD using machine learning techniques. With the ADHD-200 dataset, we developed a Support Vector Machine (SVM model to classify ADHD patients from typically developing controls (TDCs, using the regional brain volumes as predictors. Conventionally, the volume of a brain region was considered to be an anatomical feature and quantified using structural magnetic resonance images. One major contribution of the present study was that we had initially proposed to measure the regional brain volumes using fMRI images. Brain volumes measured from fMRI images were denoted as functional volumes, which quantified the volumes of brain regions that were actually functioning during fMRI imaging. We compared the predictive power of functional volumes with that of regional brain volumes measured from anatomical images, which were denoted as anatomical volumes. The former demonstrated higher discriminative power than the latter for the classification of ADHD patients vs. TDCs. Combined with our two-step feature selection approach which integrated prior knowledge with the recursive feature elimination (RFE algorithm, our SVM classification model combining functional volumes and demographic characteristics achieved a balanced accuracy of 67.7%, which was 16.1% higher than that of a relevant model published previously in the work of Sato et al. Furthermore, our classifier highlighted 10 brain regions that were most discriminative in distinguishing between ADHD patients and TDCs. These 10 regions were mainly located in occipital lobe, cerebellum posterior lobe, parietal lobe, frontal lobe, and temporal lobe. Our present study using functional images will likely provide new perspectives about the brain regions affected by ADHD.
SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry
International Nuclear Information System (INIS)
Disney, R.K.; Vogtman, S.E.
1987-01-01
1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total
Zhou, Liang; Hansen, Charles
2013-01-01
Multivariate volumetric datasets are important to both science and medicine. We propose a transfer function (TF) design approach based on user selected samples in the spatial domain to make multivariate volumetric data visualization more accessible for domain users. Specifically, the user starts the visualization by probing features of interest on slices and the data values are instantly queried by user selection. The queried sample values are then used to automatically and robustly generate high dimensional transfer functions (HDTFs) via kernel density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically generated in the dimensionality reduced space using these samples. With the extracted features rendered in the volume rendering view, the user can further refine these features using segmentation brushes. Interactivity is achieved in our system and different views are tightly linked. Use cases show that our system has been successfully applied for simulation and complicated seismic data sets. © 2013 IEEE.
Zhou, Liang
2013-02-01
Multivariate volumetric datasets are important to both science and medicine. We propose a transfer function (TF) design approach based on user selected samples in the spatial domain to make multivariate volumetric data visualization more accessible for domain users. Specifically, the user starts the visualization by probing features of interest on slices and the data values are instantly queried by user selection. The queried sample values are then used to automatically and robustly generate high dimensional transfer functions (HDTFs) via kernel density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically generated in the dimensionality reduced space using these samples. With the extracted features rendered in the volume rendering view, the user can further refine these features using segmentation brushes. Interactivity is achieved in our system and different views are tightly linked. Use cases show that our system has been successfully applied for simulation and complicated seismic data sets. © 2013 IEEE.
A point-value enhanced finite volume method based on approximate delta functions
Xuan, Li-Jun; Majdalani, Joseph
2018-02-01
We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.
A Clustering-Based Automatic Transfer Function Design for Volume Visualization
Directory of Open Access Journals (Sweden)
Tianjin Zhang
2016-01-01
Full Text Available The two-dimensional transfer functions (TFs designed based on intensity-gradient magnitude (IGM histogram are effective tools for the visualization and exploration of 3D volume data. However, traditional design methods usually depend on multiple times of trial-and-error. We propose a novel method for the automatic generation of transfer functions by performing the affinity propagation (AP clustering algorithm on the IGM histogram. Compared with previous clustering algorithms that were employed in volume visualization, the AP clustering algorithm has much faster convergence speed and can achieve more accurate clustering results. In order to obtain meaningful clustering results, we introduce two similarity measurements: IGM similarity and spatial similarity. These two similarity measurements can effectively bring the voxels of the same tissue together and differentiate the voxels of different tissues so that the generated TFs can assign different optical properties to different tissues. Before performing the clustering algorithm on the IGM histogram, we propose to remove noisy voxels based on the spatial information of voxels. Our method does not require users to input the number of clusters, and the classification and visualization process is automatic and efficient. Experiments on various datasets demonstrate the effectiveness of the proposed method.
Salihoglu, Murat; Kurt, Onuralp; Ay, Seyid Ahmet; Baskoy, Kamil; Altundag, Aytug; Saglam, Muzaffer; Deniz, Ferhat; Tekeli, Hakan; Yonem, Arif; Hummel, Thomas
2017-08-24
Idiopathic hypogonadotrophic hypogonadism (IHH) with an olfactory deficit is defined as Kallmann syndrome (KS) and is distinct from normosmic IHH. Because olfactory perception not only consists of orthonasally gained impressions but also involves retronasal olfactory function, in this study we decided to comprehensively evaluate both retronasal and orthonasal olfaction in patients with IHH. This case-control study included 31 controls and 45 IHH patients. All participants whose olfactory and taste functions were evaluated with orthonasal olfaction (discrimination, identification and threshold), retronasal olfaction, taste function and olfactory bulb volume (OBV) measurement. The patients were separated into three groups according to orthonasal olfaction: anosmic IHH (aIHH), hyposmic IHH (hIHH) and normosmic IHH (nIHH). Discrimination, identification and threshold scores of patients with KS were significantly lower than controls. Threshold scores of patients with nIHH were significantly lower than those of controls, but discrimination and identification scores were not significantly different. Retronasal olfaction was reduced only in the aIHH group compared to controls. Identification of bitter, sweet, sour, and salty tastes was not significantly different when compared between the anosmic, hyposmic, and normosmic IHH groups and controls. OBV was lower bilaterally in all patient groups when compared with controls. The OBV of both sides was found to be significantly correlated with TDI scores in IHH patients. 1) There were no significant differences in gustatory function between controls and IHH patients; 2) retronasal olfaction was reduced only in anosmic patients but not in orthonasally hyposmic participants, possibly indicating presence of effective compensatory mechanisms; 3) olfactory bulb volumes were highly correlated with olfaction scores in the HH group. The current results indicate a continuum from anosmia to normosmia in IHH patients. Copyright © 2017
DEFF Research Database (Denmark)
Brothers, R M; Pecini, Redi; Dalsgaard, Morten
2014-01-01
via volume loading while heat stressed would 1) increase indices of left ventricular diastolic function, and 2) preserve left ventricular end-diastolic volume (LVEDV) during a subsequent simulated hemorrhagic challenge induced by lower-body negative pressure (LBNP). Indices of left ventricular......Volume loading normalizes tolerance to a simulated hemorrhagic challenge in heat-stressed individuals, relative to when these individuals are thermoneutral. The mechanism(s) by which this occurs is unknown. This project tested two unique hypotheses; that is, the elevation of central blood volume...... diastolic function were evaluated in nine subjects during the following conditions: thermoneutral, heat stress, and heat stress after acute volume loading sufficient to return ventricular filling pressures toward thermoneutral levels. LVEDV was also measured in these subjects during the aforementioned...
International Nuclear Information System (INIS)
Granada, J. R.; Mayer, R. E.; Gillette, V. H.
1997-09-01
The Synthetic Scattering Function (SSF) allows a simple description of the incoherent interaction of slow neutrons with hydrogenous materials. The main advantages of this model reside in the analytical expressions that it produces for double-differential cross sections, energy-transfer kernels, and total cross sections, which in turn permit the fast evaluation of neutron scattering and transport properties. In this work we briefly discuss basic features of the SSF, review some previous applications to a number of moderating materials, and present new Monte Carlo results for a fast time-response moderator concept based on methane at low temperatures. (auth)
Introduction to neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Fischer, W E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-11-01
We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.
Automatic delineation of functional volumes in emission tomography for oncology applications
International Nuclear Information System (INIS)
Hatt, M.
2008-12-01
One of the main factors of error for semi-quantitative analysis in positron emission tomography (PET) imaging for diagnosis and patient follow up, as well as new flourishing applications like image guided radiotherapy, is the methodology used to define the volumes of interest in the functional images. This is explained by poor image quality in emission tomography resulting from noise and partial volume effects induced blurring, as well as the variability of acquisition protocols, scanner models and image reconstruction procedures. The large number of proposed methodologies for the definition of a PET volume of interest does not help either. The majority of such proposed approaches are based on deterministic binary thresholding that are not robust to contrast variation and noise. In addition, these methodologies are usually unable to correctly handle heterogeneous uptake inside tumours. The objective of this thesis is to develop an automatic, robust, accurate and reproducible 3D image segmentation approach for the functional volumes determination of tumours of all sizes and shapes, and whose activity distribution may be strongly heterogeneous. The approach we have developed is based on a statistical image segmentation framework, combined with a fuzzy measure, which allows to take into account both noisy and blurry properties of nuclear medicine images. It uses a stochastic iterative parameters estimation and a locally adaptive model of the voxel and its neighbours for the estimation and segmentation. The developed approaches have been evaluated using a large array of datasets, comprising both simulated and real acquisitions of phantoms and tumours. The results obtained on phantom acquisitions allowed to validate the accuracy of the segmentation with respect to the size of considered structures, down to 13 mm in diameter (about twice the spatial resolution of a typical PET scanner), as well as its robustness with respect to noise, contrast variation, acquisition
Adams, D; Adeva, B; Akdogan, T; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, Dimitri Yuri; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gómez, F; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Kalinovskaya, L V; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Polec, J; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Pyrlik, J; Rädel, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Steigler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Yañez, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J
1997-01-01
We present a new measurement of the spin-dependent structure function $g_{1}^{\\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\\Gamma_{1}^{\\rm d} = \\int_{0}^{1} g_{1}^{\\rm d}{\\rm d}x = 0.041 \\pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \\pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \\pm 0.03$. Using our earlier determination of $\\Gamma_{1}^{\\rm p}$, we obtain $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.183 \\pm 0.035$ at $Q^2 = 10\\,\\mbox{GeV}^2$. This result is in agreement with the Bjorken sum rule which predicts $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.186 \\pm 0.002$ at the same $Q^2$.
Bassauer, Sergej; Neumann-Cosel, Peter von; Tamii, Atsushi
2017-09-01
Inelastic proton scattering at energies of a few 100 MeV and forward angles including 0∘ provides a novel method to measure gamma strength functions (GSF) in nuclei in an energy range of about 5-23 MeV. The experiments provide not only the E1 but also the M1 part of the GSF. The latter is poorly known in heavy nuclei. A case study of 208Pb indicates that the systematics proposed for the M1-GSF in RIPL-3 needs to be substantially revised. Comparison with gamma decay data (e.g. from the Oslo method) allows to test the generalised Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance (PDR) crucial for the modelling of (n,γ) and (γ,n) reactions in astrophysical reaction networks. A fluctuation analysis of the high-resolution data also provides a direct measure of level densities in the energy region well above the neutron threshold, where hardly any experimental information is available.
Directory of Open Access Journals (Sweden)
Bassauer Sergej
2017-01-01
Full Text Available Inelastic proton scattering at energies of a few 100 MeV and forward angles including 0∘ provides a novel method to measure gamma strength functions (GSF in nuclei in an energy range of about 5–23 MeV. The experiments provide not only the E1 but also the M1 part of the GSF. The latter is poorly known in heavy nuclei. A case study of 208Pb indicates that the systematics proposed for the M1-GSF in RIPL-3 needs to be substantially revised. Comparison with gamma decay data (e.g. from the Oslo method allows to test the generalised Brink-Axel (BA hypothesis in the energy region of the pygmy dipole resonance (PDR crucial for the modelling of (n,γ and (γ,n reactions in astrophysical reaction networks. A fluctuation analysis of the high-resolution data also provides a direct measure of level densities in the energy region well above the neutron threshold, where hardly any experimental information is available.
International Nuclear Information System (INIS)
Fehrenbacher, G.; Meckbach, R.; Paretzke, H.G.
1996-01-01
The dependence of the shape of the right-sided broadening of the inelastic scattering peak at 692 keV in the pulse-height distribution measured with a Ge detector in fast neutron fields on the energy of the incident neutrons has been analyzed. A model incorporating the process contributing to the energy deposition that engender the peak, including the partitioning of the energy deposition by the Ge recoils, was developed. With a Monte Carlo code based on this model, the detector response associated with this peak was computed and compared with results of measurements with quasi-monoenergetic neutrons for energies between 0.88 and 2.1 MeV. A set of 80 response functions for neutron energies in the range from the reaction threshold at 0.7 to 6 MeV was computed, which will serve as a starting point for methods, which aim at obtaining information on the spectral distribution of fast neutron fields for this energy range from measurements with a Ge detector. (orig.)
Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.
2018-05-01
We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to
International Nuclear Information System (INIS)
Hatt, Mathieu; Cheze le Rest, Catherine; Descourt, Patrice; Dekker, Andre; De Ruysscher, Dirk; Oellers, Michel; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris
2010-01-01
Purpose: Accurate contouring of positron emission tomography (PET) functional volumes is now considered crucial in image-guided radiotherapy and other oncology applications because the use of functional imaging allows for biological target definition. In addition, the definition of variable uptake regions within the tumor itself may facilitate dose painting for dosimetry optimization. Methods and Materials: Current state-of-the-art algorithms for functional volume segmentation use adaptive thresholding. We developed an approach called fuzzy locally adaptive Bayesian (FLAB), validated on homogeneous objects, and then improved it by allowing the use of up to three tumor classes for the delineation of inhomogeneous tumors (3-FLAB). Simulated and real tumors with histology data containing homogeneous and heterogeneous activity distributions were used to assess the algorithm's accuracy. Results: The new 3-FLAB algorithm is able to extract the overall tumor from the background tissues and delineate variable uptake regions within the tumors, with higher accuracy and robustness compared with adaptive threshold (T bckg ) and fuzzy C-means (FCM). 3-FLAB performed with a mean classification error of less than 9% ± 8% on the simulated tumors, whereas binary-only implementation led to errors of 15% ± 11%. T bckg and FCM led to mean errors of 20% ± 12% and 17% ± 14%, respectively. 3-FLAB also led to more robust estimation of the maximum diameters of tumors with histology measurements, with bckg and FCM lead to 10%, 12%, and 13%, respectively. Conclusion: These encouraging results warrant further investigation in future studies that will investigate the impact of 3-FLAB in radiotherapy treatment planning, diagnosis, and therapy response evaluation.
Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.
2010-01-01
It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.
Light Scattering at Various Angles
Latimer, Paul; Pyle, B. E.
1972-01-01
The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610
Kühl, J Tobias; Lønborg, Jacob; Fuchs, Andreas; Andersen, Mads J; Vejlstrup, Niels; Kelbæk, Henning; Engstrøm, Thomas; Møller, Jacob E; Kofoed, Klaus F
2012-06-01
Measurement of left atrial (LA) maximal volume (LA(max)) using two-dimensional transthoracic echocardiography (TTE) provides prognostic information in several cardiac diseases. However, the relationship between LA(max) and LA function is poorly understood and TTE is less well suited for measuring dynamic LA volume changes. Conversely, cardiac magnetic resonance imaging (CMR) and multi-slice computed tomography (MSCT) appears more appropriate for such measures. We sought to determine the relationship between LA size assessed with TTE and LA size and function assessed with CMR and MSCT. Fifty-four patients were examined 3 months post myocardial infarction with echocardiography, CMR and MSCT. Left atrial volumes and LA reservoir function were assessed by TTE. LA time-volume curves were determined and LA reservoir function (cyclic change and fractional change), passive emptying function (reservoir volume) and pump function (left atrial ejection fraction-LAEF) were derived using CMR and MSCT. Left atrial fractional change and left atrial ejection fraction (LAEF) determined with CMR and MSCT were unrelated to LA(max) enlargement by echocardiography (P = NS). There was an overall good agreement between CMR and MSCT, with a small to moderate bias in LA(max) (4.9 ± 10.4 ml), CC (3.1 ± 9.1 ml) and reservoir volume (3.4 ± 9.1 ml). TTE underestimates LA(max) with up to 32% compared with CMR and MSCT (P fractional change and LAEF is not significantly related to LA(max) measured by TTE. TTE systematically underestimated LA volumes, whereas there are good agreements between MSCT and CMR for volumetric and functional properties.
International Nuclear Information System (INIS)
Staraselski, Y; Brahme, A; Inal, K; Mishra, R K
2015-01-01
This paper presents the first application of three-dimensional (3D) cross-correlation microstructure reconstruction implemented for a representative volume element (RVE) to facilitate the microstructure engineering of materials. This has been accomplished by developing a new methodology for reconstructing 3D microstructure using experimental two-dimensional electron backscatter diffraction data. The proposed methodology is based on the analytical representation of the generalized form of the two-point correlation function—the distance-disorientation function (DDF). Microstructure reconstruction is accomplished by extending the simulated annealing techniques to perform three term reconstruction with a minimization of the DDF. The new 3D microstructure reconstruction algorithm is employed to determine the 3D RVE containing all of the relevant microstructure information for accurately computing the mechanical response of solids, especially when local microstructural variations influence the global response of the material as in the case of fracture initiation. (paper)
Directory of Open Access Journals (Sweden)
Lijie Zhang
2016-10-01
Full Text Available Abstract: Although previous research provides converging evidence for the role of posterior regions of the brain (including temporal, occipital, and parietal regions involved in inhibition on creative thinking, it remains unclear as to how these regions influence individual differences in creative thinking. Thus, we explored the relationship between posterior regions (i.e., hippocampal, parahippocampal, lingual gyrus, precuneus, and cuneus , inhibition function, and divergent thinking in 128 healthy college students. The results revealed that lower inhibition was associated with larger gray matter volume (GMV in the lingual gyrus, which in turn was associated with higher divergent thinking. In addition, GMV in the lingual gyrus mediated the association between inhibition and divergent thinking. These results provide new evidence for the role of inhibition in creative thinking. Inhibition may affect the amount of information stored in long-term memory, which, in turn influences divergent thinking.
Nanda, Pranav; Tandon, Neeraj; Mathew, Ian T; Padmanabhan, Jaya L; Clementz, Brett A; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S
2016-01-01
Patients with psychotic disorders appear to exhibit greater impulsivity-related behaviors relative to healthy controls. However, the neural underpinning of this impulsivity remains uncertain. Furthermore, it remains unclear how impulsivity might differ or be conserved between psychotic disorder diagnoses in mechanism and manifestation. In this study, self-reported impulsivity, measured by Barratt Impulsiveness Scale (BIS), was compared between 305 controls (HC), 139 patients with schizophrenia (SZ), 100 with schizoaffective disorder (SZA), and 125 with psychotic bipolar disorder (PBP). In each proband group, impulsivity was associated with regional cortical volumes (using FreeSurfer analysis of T1 MRI scans), suicide attempt history, Global Assessment of Functioning (GAF), and Social Functioning Scale (SFS). BIS scores were found to differ significantly between participant groups, with SZA and PBP exhibiting significantly higher impulsivity than SZ, which exhibited significantly higher impulsivity than HC. BIS scores were significantly related to suicide attempt history, and they were inversely associated with GAF, SFS, and bilateral orbitofrontal cortex (OFC) volume in both SZA and PBP, but not SZ. These findings indicate that psychotic disorders, particularly those with prominent affective symptoms, are characterized by elevated self-reported impulsivity measures. Impulsivity's correlations with suicide attempt history, GAF, and SFS suggest that impulsivity may be a mediator of clinical outcome. The observed impulsivity-OFC correlations corroborate the importance of OFC deficits in impulsivity. These correlations' presence in SZA and PBP but not in SZ suggests that impulsivity may have different underlying mechanisms in affective and non-affective psychotic disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Cheng Xu; Huang Gang
2004-01-01
Objective: The purpose of this study was to evaluate left ventricular volume and function by gated SPECT and comparison of the results with echocardiography. Methods: 65 Consecutive patients (49 male, 16 female; mean age 61+11 years) who underwent both gated 99m Tc-MIBI myocardial perfusion SPECT and echocardiography within a 15 days period were included in the study. Exclusion criteria were any change in clinical status between acquisition of the gated SPECT and echocardiography studies, acute myocardial infarction occurring less than 7 days before study, and surgical procedures occurring within 30 days of the study. The clinical diagnosis of each patient was not considered, as this was not relevant to the purpose of the study. The diagnoses were as follows: coronary artery disease (n=46), hypertensive heart disease (n=8), old myocardial infarction (n=5), myocarditis (n=2), and routine medical examination(n=4). A dose of 740 MBq of 99 Tc m -sestamibi was administered in resting condition. Gated SPECT images were obtained with ADAC Vertex MCD-AC SPECT system. The raw projection images were reconstructed with filtered back-projection (ramp filter), without attenuation correction. The data, including left ventricular ejection fraction (LVEF), end-diastolic volume (EDV), end-systolic volume (ESV) were obtained using AUTOQUANT software (ADAC corporation). The echocardiography study used its standard techniques. Two nuclear medicine physicians processed the raw images respectively to evaluate internal reproducibility of gated SPECT. In order to compare the results of gated SPECT with echocardiography on different left ventricular volumes, all patients were divided into two groups (EDV 90 ml, n=34) based by EDV measurements in echocardiography. Results: The correlation coefficient of LVEF, EDV, ESV between SPECT and echocardiography were 0.77, 0.86 and 0.90 respectively. P 0.07). The reproducibility of gated SPECT was excellent. There were no significant differences in
Cross plane scattering correction
International Nuclear Information System (INIS)
Shao, L.; Karp, J.S.
1990-01-01
Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution
Neutron scattering study of dilute supercritical solutions
International Nuclear Information System (INIS)
Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.
1994-01-01
Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope 36 Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast
Directory of Open Access Journals (Sweden)
Porter John B
2010-04-01
Full Text Available Abstract Aim We aimed to define reference ranges for right ventricular (RV volumes, ejection fraction (EF in thalassemia major patients (TM without myocardial iron overload. Methods and results RV volumes, EF and mass were measured in 80 TM patients who had no myocardial iron overload (myocardial T2* > 20 ms by cardiovascular magnetic resonance. All patients were receiving deferoxamine chelation and none had evidence of pulmonary hypertension or other cardiovascular comorbidity. Forty age and sex matched healthy non-anemic volunteers acted as controls. The mean RV EF was higher in TM patients than controls (males 66.2 ± 4.1% vs 61.6 ± 6%, p = 0.0009; females 66.3 ± 5.1% vs 62.6 ± 6.4%, p = 0.017, which yielded a raised lower threshold of normality for RV EF in TM patients (males 58.0% vs 50.0% and females 56.4% vs 50.1%. RV end-diastolic volume index was higher in male TM patients (mean 98.1 ± 17.3 mL vs 88.4 ± 11.2 mL/m2, p = 0.027, with a higher upper limit (132 vs 110 mL/m2 but this difference was of borderline significance for females (mean 86.5 ± 13.6 mL vs 80.3 ± 12.8 mL/m2, p = 0.09, with upper limit of 113 vs 105 mL/m2. The cardiac index was raised in TM patients (males 4.8 ± 1.0 L/min vs 3.4 ± 0.7 L/min, p Conclusion The normal ranges for functional RV parameters in TM patients with no evidence of myocardial iron overload differ from healthy non-anemic controls. The new reference RV ranges are important for determining the functional effects of myocardial iron overload in TM patients.
Mondoñedo, Jarred R; Suki, Béla
2017-02-01
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.
Frey, S; Weysser, F; Meyer, H; Farago, J; Fuchs, M; Baschnagel, J
2015-02-01
We present molecular-dynamics simulations for a fully flexible model of polymer melts with different chain length N ranging from short oligomers (N = 4) to values near the entanglement length (N = 64). For these systems we explore the structural relaxation of the supercooled melt near the critical temperature T c of mode-coupling theory (MCT). Coherent and incoherent scattering functions are analyzed in terms of the idealized MCT. For temperatures T > T c we provide evidence for the space-time factorization property of the β relaxation and for the time-temperature superposition principle (TTSP) of the α relaxation, and we also discuss deviations from these predictions for T ≈ T c. For T larger than the smallest temperature where the TTSP holds we perform a quantitative analysis of the dynamics with the asymptotic MCT predictions for the late β regime. Within MCT a key quantity, in addition to T c, is the exponent parameter λ. For the fully flexible polymer models studied we find that λ is independent of N and has a value (λ = 0.735 ) typical of simple glass-forming liquids. On the other hand, the critical temperature increases with chain length toward an asymptotic value T c (∞) . This increase can be described by T c (∞) - T c(N) ∼ 1/N and may be interpreted in terms of the N dependence of the monomer density ρ, if we assume that the MCT glass transition is ruled by a soft-sphere-like constant coupling parameter Γ c = ρ c T c (-1/4), where ρ c is the monomer density at T c. In addition, we also estimate T c from a Hansen-Verlet-like criterion and MCT calculations based on structural input from the simulation. For our polymer model both the Hansen-Verlet criterion and the MCT calculations suggest T c to decrease with increasing chain length, in contrast to the direct analysis of the simulation data.
Hindryckx, An; Raaijmakers, Anke; Levtchenko, Elena; Allegaert, Karel; De Catte, Luc
2017-12-01
To evaluate renal blood flow and renal volume for the prediction of postnatal renal function in fetuses with solitary functioning kidney (SFK). Seventy-four SFK fetuses (unilateral renal agenesis [12], multicystic dysplastic kidney [36], and severe renal dysplasia [26]) were compared with 58 healthy fetuses. Peak systolic velocity (PSV), pulsatility index (PI), and resistance index (RI) of the renal artery (RA) were measured; 2D and 3D (VOCAL) volumes were calculated. Renal length and glomerular filtration rate (GFR) were obtained in SFK children (2 years). Compared with the control group, the PSV RA was significantly lower in nonfunctioning kidneys and significantly higher in SFK. Volume measurements indicated a significantly larger volume of SFK compared with healthy kidneys. All but 4 children had GFR above 70 mL/min/1.73 m 2 , and compensatory hypertrophy was present in 69% at 2 years. PSV RA and SFK volume correlated with postnatal renal hypertrophy. No correlation between prenatal and postnatal SFK volume and GFR at 2 years was demonstrated. Low PSV RA might have a predictive value for diagnosing a nonfunctioning kidney in fetuses with a SFK. We demonstrated a higher PSV RA and larger renal volume in the SFK compared with healthy kidneys. © 2017 John Wiley & Sons, Ltd.
Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia
2017-01-01
Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection ...
Human factors evaluation of teletherapy: Function and task analysis. Volume 2
Energy Technology Data Exchange (ETDEWEB)
Kaye, R.D.; Henriksen, K.; Jones, R. [Hughes Training, Inc., Falls Church, VA (United States); Morisseau, D.S.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology
1995-07-01
As a treatment methodology, teletherapy selectively destroys cancerous and other tissue by exposure to an external beam of ionizing radiation. Sources of radiation are either a radioactive isotope, typically Cobalt-60 (Co-60), or a linear accelerator. Records maintained by the NRC have identified instances of teletherapy misadministration where the delivered radiation dose has differed from the radiation prescription (e.g., instances where fractions were delivered to the wrong patient, to the wrong body part, or were too great or too little with respect to the defined treatment volume). Both human error and machine malfunction have led to misadministrations. Effective and safe treatment requires a concern for precision and consistency of human-human and human-machine interactions throughout the course of therapy. The present study is the first part of a series of human factors evaluations for identifying the root causes that lead to human error in the teletherapy environment. The human factors evaluations included: (1) a function and task analysis of teletherapy activities, (2) an evaluation of the human-system interfaces, (3) an evaluation of procedures used by teletherapy staff, (4) an evaluation of the training and qualifications of treatment staff (excluding the oncologists), (5) an evaluation of organizational practices and policies, and (6) an identification of problems and alternative approaches for NRC and industry attention. The present report addresses the function and task analysis of teletherapy activities and provides the foundation for the conduct of the subsequent evaluations. The report includes sections on background, methodology, a description of the function and task analysis, and use of the task analysis findings for the subsequent tasks. The function and task analysis data base also is included.
Computed tomography assessment of intestinal gas volumes in functional gastrointestinal disorders.
Mc Williams, Sebastian R; Mc Laughlin, Patrick D; O'Connor, Owen J; Desmond, Alan N; Ní Laoíre, Aine; Shanahan, Fergus; Quigley, Eamonn Mm; Maher, Michael M
2012-10-01
Many patients with functional gastrointestinal disorders (FGIDs) rank sensations of bloating and distension among their most debilitating symptoms. Previous studies that have examined intestinal gas volume (IGV) in patients with FGIDs have employed a variety of invasive and imaging techniques. These studies are limited by small numbers and have shown conflicting results. The aim of our study was to estimate, using CT of the abdomen and pelvis (CTAP), IGV in patients attending FGID clinic and to compare IGV in patients with and without FGID. All CTAP (n = 312) performed on patients (n = 207) attending a specialized FGID clinic over 10-year period were included in this study. Patients were classified into one of 3 groups according to the established clinical grading system, as organic gastrointestinal disorder (OGID, ie, patients with an organic non-functional disorder, n = 84), FGID (n = 36) or organic and functional gastrointestinal disorder (OFGID, ie, patients with an organic and a functional disorder, n = 87). Two independent readers blinded to the diagnostic group calculated IGV using threshold based 3D region growing with OsiriX. Median IGVs for the FGID, OGID, and OFGID groups were 197.6, 220.6 and 155.0 mL, respectively. Stepwise linear regression revealed age at study, gender, and calculated body mass index to predict the log IGV with an r(2) of 0.116, and P IGV in OGID (Spearman's = 0.253, P = 0.02) but this correlation was non-significant in the other groups. Although bloating is a classic symptom in FGID patients, IGV may not be increased compared with OGID and OFGID patients.
Human factors evaluation of teletherapy: Function and task analysis. Volume 2
International Nuclear Information System (INIS)
Kaye, R.D.; Henriksen, K.; Jones, R.; Morisseau, D.S.; Serig, D.I.
1995-07-01
As a treatment methodology, teletherapy selectively destroys cancerous and other tissue by exposure to an external beam of ionizing radiation. Sources of radiation are either a radioactive isotope, typically Cobalt-60 (Co-60), or a linear accelerator. Records maintained by the NRC have identified instances of teletherapy misadministration where the delivered radiation dose has differed from the radiation prescription (e.g., instances where fractions were delivered to the wrong patient, to the wrong body part, or were too great or too little with respect to the defined treatment volume). Both human error and machine malfunction have led to misadministrations. Effective and safe treatment requires a concern for precision and consistency of human-human and human-machine interactions throughout the course of therapy. The present study is the first part of a series of human factors evaluations for identifying the root causes that lead to human error in the teletherapy environment. The human factors evaluations included: (1) a function and task analysis of teletherapy activities, (2) an evaluation of the human-system interfaces, (3) an evaluation of procedures used by teletherapy staff, (4) an evaluation of the training and qualifications of treatment staff (excluding the oncologists), (5) an evaluation of organizational practices and policies, and (6) an identification of problems and alternative approaches for NRC and industry attention. The present report addresses the function and task analysis of teletherapy activities and provides the foundation for the conduct of the subsequent evaluations. The report includes sections on background, methodology, a description of the function and task analysis, and use of the task analysis findings for the subsequent tasks. The function and task analysis data base also is included
Hummer, Tom A; Kronenberger, William G; Wang, Yang; Anderson, Caitlin C; Mathews, Vincent P
2014-07-01
Prior research has indicated that self-reported violent media exposure is associated with poorer performance on some neuropsychological tests in adolescents. This study aimed to examine the relationship of executive functioning to violent television viewing in healthy young adult males and examine how brain structure is associated with media exposure measures. Sixty-five healthy adult males (ages 18-29) with minimal video game experience estimated their television viewing habits over the past year and, during the subsequent week, recorded television viewing time and characteristics in a daily media diary. Participants then completed a battery of neuropsychological laboratory tests quantifying executive functions and underwent a magnetic resonance imaging (MRI) scan. Aggregate measures of executive functioning were not associated with measures of overall television viewing (any content type) during the past week or year. However, the amount of television viewing of violent content only, as indicated by both past-year and daily diary measures, was associated with poorer scores on an aggregate score of inhibition, interference control and attention, with no relationship to a composite working memory score. In addition, violent television exposure, as measured with daily media diaries, was associated with reduced frontoparietal white matter volume. Future longitudinal work is necessary to resolve whether individuals with poor executive function and slower white matter growth are more drawn to violent programming, or if extensive media violence exposure modifies cognitive control mechanisms mediated primarily via prefrontal cortex. Impaired inhibitory mechanisms may be related to reported increases in aggression with higher media violence exposure. Copyright © 2014 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Windmolders, R.
1989-01-01
In this paper the following topics are reviewed: 1. the structure functions measured in deep inelastic e-N, μ-N and ν-N scattering; 2. nuclear effects on the structure functions; 3. nuclear effects on the fragmentation functions; 4. the spin dependent structure functions and their interpretation in terms of nucleon constituents. (orig./HSI)
International Nuclear Information System (INIS)
Stojanovska, Jadranka; Prasitdumrong, Hutsaya; Patel, Smita; Sundaram, Baskaran; Gross, Barry H.; Yilmaz, Zeynep N.; Kazerooni, Ella A.
2014-01-01
Left ventricular (LV) and right ventricular (RV) volumetric and functional parameters are important biomarkers for morbidity and mortality in patients with heart failure. To retrospectively determine reference mean values of LV and RV volume, function and mass normalised by age, gender and body surface area (BSA) from retrospectively electrocardiographically gated 64-slice cardiac computed tomography (CCT) by using automated analysis software in healthy adults. The study was approved by the institutional review board with a waiver of informed consent. Seventy-four healthy subjects (49% female, mean age 49.6±11) free of hypertension and hypercholesterolaemia with a normal CCT formed the study population. Analyses of LV and RV volume (end-diastolic, end-systolic and stroke volumes), function (ejection fraction), LV mass and inter-rater reproducibility were performed with commercially available analysis software capable of automated contour detection. General linear model analysis was performed to assess statistical significance by age group after adjustment for gender and BSA. Bland–Altman analysis assessed the inter-rater agreement. The reference range for LV and RV volume, function, and LV mass was normalised to age, gender and BSA. Statistically significant differences were noted between genders in both LV mass and RV volume (P-value<0.0001). Age, in concert with gender, was associated with significant differences in RV end-diastolic volume and LV ejection fraction (P-values 0.027 and 0.03). Bland–Altman analysis showed acceptable limits of agreement (±1.5% for ejection fraction) without systematic error. LV and RV volume, function and mass normalised to age, gender and BSA can be reported from CCT datasets, providing additional information important for patient management.
State of the Art in Transfer Functions for Direct Volume Rendering
Ljung, Patric; Krü ger, Jens; Groller, Eduard; Hadwiger, Markus; Hansen, Charles D.; Ynnerman, Anders
2016-01-01
A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality, TFs also serve as a tool for encoding and utilizing domain knowledge and as an expression for visual design of material appearances. TFs also enable interactive volumetric exploration of complex data. The purpose of this state-of-the-art report (STAR) is to provide an overview of research into the various aspects of TFs, which lead to interpretation of the underlying data through the use of meaningful visual representations. The STAR classifies TF research into the following aspects: dimensionality, derived attributes, aggregated attributes, rendering aspects, automation, and user interfaces. The STAR concludes with some interesting research challenges that form the basis of an agenda for the development of next generation TF tools and methodologies. © 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
Interactive definition of transfer functions in volume rendering based on image markers
International Nuclear Information System (INIS)
Teistler, Michael; Nowinski, Wieslaw L.; Breiman, Richard S.; Liong, Sauw Ming; Ho, Liang Yoong; Shahab, Atif
2007-01-01
Objectives A user interface for transfer function (TF) definition in volume rendering (VR) was developed that allows the user to intuitively assign color and opacity to the original image intensities. This software may surpass solutions currently deployed in clinical practice by simplifying the use of TFs beyond predefined settings that are not always applicable. Materials and methods The TF definition is usually a cumbersome task that requires the user to manipulate graphical representations of the TF (e.g. trapezoids). A new method that allows the user to place markers at points of interest directly on CT and MRI images or orthogonal reformations was developed based on two-dimensional region growing and a few user-definable marker-related parameters. For each user defined image marker, a segment of the transfer function is computed. The resulting TF can also be applied to the slice image views. Results were judged subjectively. Results Each individualized TF can be defined interactively in a few simple steps. For every user interaction, immediate visual feedback is given. Clinicians who tested the application appreciated being able to directly work on familiar slice images to generate the desired 3D views. Conclusion Interactive TF definition can increase the actual utility of VR, help to understand the role of the TF with its variations, and increase the acceptance of VR as a clinical tool. (orig.)
State of the Art in Transfer Functions for Direct Volume Rendering
Ljung, Patric
2016-07-04
A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality, TFs also serve as a tool for encoding and utilizing domain knowledge and as an expression for visual design of material appearances. TFs also enable interactive volumetric exploration of complex data. The purpose of this state-of-the-art report (STAR) is to provide an overview of research into the various aspects of TFs, which lead to interpretation of the underlying data through the use of meaningful visual representations. The STAR classifies TF research into the following aspects: dimensionality, derived attributes, aggregated attributes, rendering aspects, automation, and user interfaces. The STAR concludes with some interesting research challenges that form the basis of an agenda for the development of next generation TF tools and methodologies. © 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Spicer, B.M.; Koutsoliotas, S.
1995-01-01
The excitation function for emission of 2.30 MeV gamma rays from the 4.51 MeV state of 27 Al formed in inelastic proton scattering has been measured for proton energies from 5.6 to 7.3 MeV. A resonance previously seen in both inelastic electron and proton scattering from 28 Si at 17.35 MeV has been observed as a resonance in the excitation function, as well as seven other resonances, all of which are narrow (i.e., less than 100 keV wide). It is suggested that these may represent fragments of 6 - strength in 28 Si. 6 refs., 1 tab., 2 figs
Energy Technology Data Exchange (ETDEWEB)
Vijarnsorn, Chodchanok [University of Alberta, Faculty of Medicine and Dentistry, Stollery Children' s Hospital, Edmonton, AB (Canada); Mahidol University, Siriraj Hospital, Bangkok (Thailand); Myers, Kimberley; Patton, David J. [Alberta Children' s Hospital, Section of Pediatric Cardiology, Department of Pediatrics, Department of Pediatrics, Calgary, AB (Canada); Noga, Michelle; Crawley, Cinzia; Tham, Edythe [University of Alberta, Faculty of Medicine and Dentistry, Stollery Children' s Hospital, Edmonton, AB (Canada)
2016-06-15
Standardized methods to evaluate atrial properties in single ventricles are lacking. To determine the feasibility of quantifying right atrial volumes and function in hypoplastic left heart using MRI. We studied 15 infants with hypoplastic left heart prior to Glenn surgery (mean age 4.2 months [standard deviation 0.3]) who underwent cardiac MRI with evaluation of atrial volumes and emptying fraction using monoplane two-chamber, monoplane four-chamber, and biplane methods, all of which were compared to the atrial short-axial oblique stack method. We compared atrial end-diastolic volume, end-systolic volume and emptying fraction among these methods. We analyzed reproducibility of the methods using Bland-Altman plots. Both four-chamber and biplane methods showed high correlations for atrial end-diastolic volume (r = 0.7 and r = 0.8, respectively; P < 0.01) and end-systolic volume (r = 0.8 and r = 0.9, respectively; P < 0.01) with small mean differences (-0.2 ± 2.9 standard deviation [SD] ml and -0.8 ± 1.6 ml, respectively, for atrial end-diastolic volume and -0.8 ± 1.5 ml and -0.9 ± 0.9 ml, respectively, for atrial end-systolic volume). The short-axial oblique method was the most reproducible, followed by the four-chamber method. MRI assessment of atrial volume and function is feasible in hypoplastic left heart and might provide further insight into single-ventricle mechanics. (orig.)
International Nuclear Information System (INIS)
Muto, Natalia Sayuri; Kamishima, Tamotsu; Harris, Ardene A.; Kato, Fumi; Onodera, Yuya; Terae, Satoshi; Shirato, Hiroki
2011-01-01
Purpose: To evaluate the relationship between renal cortical volume, measured by an automatic contouring software, with body mass index (BMI), age and renal function. Materials and methods: The study was performed in accordance to the institutional guidelines at our hospital. Sixty-four patients (34 men, 30 women), aged 19 to 79 years had their CT scans for diagnosis or follow-up of hepatocellular carcinoma retrospectively examined by a computer workstation using a software that automatically contours the renal cortex and the renal parenchyma. Body mass index and estimated glomerular filtration rate (eGFR) were calculated based on data collected. Statistical analysis was done using the Student t-test, multiple regression analysis, and intraclass correlation coefficient (ICC). Results: The ICC for total renal and renal cortical volumes were 0.98 and 0.99, respectively. Renal volume measurements yielded a mean cortical volume of 105.8 cm 3 ± 28.4 SD, mean total volume of 153 cm 3 ± 39 SD and mean medullary volume of 47.8 cm 3 ± 19.5 SD. The correlation between body weight/height/BMI and both total renal and cortical volumes presented r = 0.6, 0.6 and 0.4, respectively, p < 0.05, while the correlation between renal cortex and age was r = -0.3, p < 0.05. eGFR showed correlation with renal cortical volume r = 0.6, p < 0.05. Conclusion: This study demonstrated that renal cortical volume had a moderate positive relationship with BMI, moderate negative relationship with age, and a strong positive relationship with the renal function, and provided a new method to routinely produce volumetric assessment of the kidney.
Yang, Stephen Shei-Dei; Hsieh, Cheng-Hsing; Chiang, I-Ni; Lin, Chia-Da; Chang, Shang-Jen
2013-03-01
We compared safety and surgical outcomes in patients with different prostate sizes treated with diode laser enucleation of the prostate. From 2008 to 2012 consecutive patients with benign prostatic obstruction undergoing diode laser prostate enucleation at our institution were enrolled for analysis. A single surgeon performed diode laser prostate enucleation with an end firing, continuous wave diode laser (980 nm). Based on preoperative prostate volume on transrectal ultrasound, patients were stratified into 2 groups, including group 1-65 with less than 60 ml and group 2-55 with 60 ml or greater. Baseline and perioperative characteristics, and postoperative surgical outcomes were compared between the 2 groups. A total of 120 men with a mean ± SD age of 70.2 ± 9.0 years were enrolled for analysis. Compared with group 1 patients, those in group 2 had larger mean total prostate volume (85.0 ± 24.6 vs 40.9 ± 10.8 ml), longer mean operative time (117.7 ± 48.2 vs 60.7 ± 25.0 minutes), higher mean retrieved prostate weight (37.3 ± 16.1 vs 12.5 ± 7.3 gm) and a higher mean tissue retrieval ratio (74.4% ± 22.2% vs 58.8% ± 23.2%, p laser energy, voiding function improvements and surgical complication rates of diode laser prostate enucleation were comparable in patients with a larger vs smaller prostate. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Itopride for gastric volume, gastric emptying and drinking capacity in functional dyspepsia.
Abid, Shahab; Jafri, Wasim; Zaman, Maseeh Uz; Bilal, Rakhshanda; Awan, Safia; Abbas, Aamir
2017-02-06
To study the effect of itopride on gastric accommodation, gastric emptying and drinking capacity in functional dyspepsia (FD). Randomized controlled trial was conducted to check the effect of itopride on gastric accommodation, gastric emptying, capacity of tolerating nutrient liquid and symptoms of FD. We recruited a total of 31 patients having FD on the basis of ROME III criteria. After randomization, itopride was received by 15 patients while 16 patients received placebo. Gastric accommodation was determined using Gastric Scintigraphy. 13 C labeled octanoic breadth test was performed to assess gastric emptying. Capacity of tolerating nutrient liquid drink was checked using satiety drinking capacity test. The intervention group comprised of 150 mg itopride. Patients in both arms were followed for 4 wk. Mean age of the recruited participant 33 years (SD = 7.6) and most of the recruited individuals, i.e ., 21 (67.7%) were males. We found that there was no effect of itopride on gastric accommodation as measured at different in volumes in the itopride and control group with the empty stomach ( P = 0.14), at 20 min ( P = 0.38), 30 min ( P = 0.30), 40 min ( P = 0.43), 50 min ( P = 0.50), 60 min ( P = 0.81), 90 min ( P = 0.25) and 120 min ( P = 0.67). Gastric emptying done on a sub sample ( n = 11) showed no significant difference ( P = 0.58) between itopride and placebo group. There was no significant improvement in the capacity to tolerate liquid in the itopride group as compared to placebo ( P = 0.51). Similarly there was no significant improvement of symptoms as assessed through a composite symptom score ( P = 0.74). The change in QT interval in itopride group was not significantly different from placebo (0.10). Our study found no effect of itopride on gastric accommodation, gastric emptying and maximum tolerated volume in patients with FD.
Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S
1982-02-01
Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.
High frequency and pulse scattering physical acoustics
Pierce, Allan D
1992-01-01
High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r
Karlovets, Dmitry V; Serbo, Valeriy G
2017-10-27
Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
Ultrasound scatter in heterogeneous 3D microstructures: Parameters affecting multiple scattering
Engle, B. J.; Roberts, R. A.; Grandin, R. J.
2018-04-01
This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures. The scattering problem is formulated as a volume integral equation (VIE) displaying a convolutional Green-function-derived kernel. The VIE is solved iteratively employing FFT-based con-volution. Realizations of random microstructures are specified on the micron scale using statistical property descriptions (e.g. grain size and orientation distributions), which are then spatially filtered to provide rigorously equivalent scattering media on a length scale relevant to ultrasound propagation. Scattering responses from ensembles of media representations are averaged to obtain mean and variance of quantities such as attenuation and backscatter noise levels, as a function of microstructure descriptors. The computational approach will be summarized, and examples of application will be presented.
Energy Technology Data Exchange (ETDEWEB)
Yoneyama, Tomohide; Fukukura, Yoshihiko; Kamimura, Kiyohisa; Takumi, Koji; Umanodan, Aya; Nakajo, Masayuki [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Radiology, Kagoshima City (Japan); Ueno, Shinichi [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Surgical Oncology and Digestive Surgery, Kagoshima City (Japan)
2014-04-15
We aimed to develop and assess the efficacy of a liver function index that combines liver enhancement and liver volume to standard liver volume (LV/SLV) ratio on gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI. In all, 111 patients underwent a Gd-EOB-DTPA-enhanced MRI, including T1 mapping, before and 20 min after Gd-EOB-DTPA administration. We calculated the following Gd-EOB-DTPA-enhanced MRI-based liver function indices: relative enhancement of the liver, corrected enhancement of the liver-to-spleen ratio, LSC{sub N}20, increase rate of the liver-to-muscle ratio, reduction rate of T1 relaxation time of the liver, ΔR1 of the liver and K{sub Hep}; the indices were multiplied by the LV/SLV ratio. We calculated the correlations between an indocyanine green (ICG) clearance and the Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio, by using Pearson correlation analysis. There were significant correlations between all Gd-EOB-DTPA-enhanced MRI-based liver function indices and ICG clearance (r = -0.354 to -0.574, P < 0.001). All Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio (r = -0.394 to -0.700, P < 0.001) were more strongly correlated with the ICG clearance than those without multiplication by the LV/SLV ratio. Gd-EOB-DTPA-enhanced MRI-based liver function indices that combine liver enhancement and the LV/SLV ratio may more reliably estimate liver function. (orig.)
Tkachenko, S.; Baillie, N.; Kuhn, S. E.; Zhang, J.; Arrington, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Kalantarians, N.; Keppel, C. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lewis, S.; Livingston, K.; Lu, H.; MacCormick, M.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Strauch, S.; Tang, W.; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zana, L.; Zonta, I.; CLAS Collaboration
2014-04-01
Background: Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x . As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x . Purpose: The Barely Off-shell Nucleon Structure experiment at Jefferson Lab measured the inelastic electron-deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model-independent extraction of the neutron structure function F2(x ,Q2) in the resonance and deep-inelastic regions. Method: A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c and over a nearly 4 π angular range. For the extraction of the free-neutron structure function F2n, spectator protons at backward angles (>100∘ relative to the momentum transfer) and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Lab's CLAS spectrometer, with data taken at beam energies near 2, 4, and 5 GeV. Results: The extracted neutron structure function F2n and its ratio to the inclusive deuteron structure function F2d are presented in both the resonance and the deep-inelastic regions for momentum transfer squared Q2 between 0.7 and 5 GeV2/c2 , invariant mass W between 1 and 2.7 GeV/c2 , and Bjorken x between 0.25 and 0.6 (in the deep-inelastic scattering region). The dependence of the semi-inclusive cross section on the
Concentric layered Hermite scatterers
Astheimer, Jeffrey P.; Parker, Kevin J.
2018-05-01
The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.
Light Scattering Reviews, Vol 6 Light Scattering and Remote Sensing of Atmosphere and Surface
Kokhanovsky, Alexander A
2012-01-01
This is the next volume in series of Light Scattering Reviews. Volumes 1-5 have already been printed by Springer. The volume is composed of several papers ( usually, 10) of leading researchers in the respective field. The main focus of this book is light scattering, radiative transfer and optics of snow.
Study of the M23C6 precipitation in AISI 304 stainless steel by small angle neutron scattering
International Nuclear Information System (INIS)
Boeuf, A.; Caciuffo, R.G.M.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Melone, S.; Puliti, P.; Rustichelli, F.; Institut Max von Laue - Paul Langevin, 38 - Grenoble; Ancona Univ.; Coppola, R.
1985-01-01
The results of some small-angle neutron scattering (SANS) experiments on M 23 C 6 (M=Fe, Cr) carbide precipitation in AISI 304 stainless steel, aged at different temperatures during different times, are presented. The total volume fraction, the total surface of precipitates per unit sample volume and the size distribution functions of the M 23 C 6 carbides were determined. (orig.)
International Nuclear Information System (INIS)
Wellisch, J.P.
1994-02-01
This thesis presents the measurement of the structure function F 2 of the proton with the H1 detector at 10 GeV 2 2 2 and 10 -4 -2 . The analysis contains the data of the first year of the HERA operation. The applied integrated luminosity amounts to 22.5 nb -1 . Contrarily to earlier experiments of the deep inelastic scattering it is at H1 possible to apply also the hadronic final state for the reconstruction of the event kinematics. In this thesis ten methods for the reconstruction of the event kinematics are indicated and studied in the region Q 2 2 in detailed detector simulation on resolution, systematic effects, measurable kinematical range and sensitivity to radiation of photons from the electron. For H1 as most advantageous methods for the reconstruction of the event kinematics on the one hand the exclusive application of the electron information and on the other hand the combination of the measurement of the momentum transfer from energy and direction of the scattered electron with the measurement of the relative energy transfer y from the scattering of electron and quark have been proved. Thereby a new, for the range of small momentum transfers especially suited method, for the reconstruction of the scattering angle of the quark was indicated. A significant increasement of the structure function F 2 of the proton at small x. At large x the continuation to the results found in earlier measurements is continuous. At fixed x the structure function increases slowly in agreement with the predictions of QCD with increasing momentum transfer
Abi-Abdallah Rodriguez, Dima; Durand, Emmanuel; de Rochefort, Ludovic; Boudjemline, Younes; Mousseaux, Elie
2015-01-01
Simultaneous pressure and volume measurements enable the extraction of valuable parameters for left ventricle function assessment. Cardiac MR has proven to be the most accurate method for volume estimation. Nonetheless, measuring pressure simultaneously during MRI acquisitions remains a challenge given the magnetic nature of the widely used pressure transducers. In this study we show the feasibility of simultaneous in vivo pressure-volume acquisitions with MRI using optical pressure sensors. Pressure-volume loops were calculated while inducing three inotropic states in a sheep and functional indices were extracted, using single beat loops, to characterize systolic and diastolic performance. Functional indices evolved as expected in response to positive inotropic stimuli. The end-systolic elastance, representing the contractility index, the diastolic myocardium compliance, and the cardiac work efficiency all increased when inducing inotropic state enhancement. The association of MRI and optical pressure sensors within the left ventricle successfully enabled pressure-volume loop analysis after having respective data simultaneously recorded during the experimentation without the need to move the animal between each inotropic state. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
AR Moaref1
2008-03-01
Full Text Available Background: Right ventricular apical (RVA pacing has been reported to induce several deleterious effects particularly in the presence of structural heart disease but can also involve patients with normal left ventricular (LV function. Left atrial (LA enlargement is one of these effects, but the majority of studies have measured LA dimension rather than volume.Objective: The present prospective study was designed to assess the effect of RVA pacing on LA volume in patients with normal LV function.Patients and Methods: The study comprised 41 consecutive patients with LV ejection fraction ≥ 45% and LV end diastolic dimension ≤ 56 mm who underwent single-or dual- chamber pacemaker implantation in RVA and followed for LA volume measurement and pacemaker analysis at least during the ensuing 4.2 months. Results: In all, 21 patients were excluded from the study due to five spontaneous wide QRS complex (≥120msec, one recent acute coronary syndrome,one significant valvular heart disease, three pacing frequency <90%, eight death or losing follow up in three cases. In remaining 20 patients, LA volume ragned from 21 to 54 mm3 with mean of 37.3±9.7 mm3 prior to pacemaker implantation that increased to 31 to 103 mm3 (54.3±17.0 during follow-up (P<0.001.Conclusion: RVA pacing might lead to an increase in LA volume even in patients with normal LV function.
DEFF Research Database (Denmark)
Zsigmond, G.; Manoshin, S.; Lieutenant, K.
2007-01-01
Handling of polarization became very important in simulations of neutron scattering. One of the very comprehensive and open-source neutron simulation package, VITESS, has been intensely involved in polarized neutron simulations. Several examples will be shown here. Another similar package NISP also...... contains polarization tools. McStas has implemented an initial set of routines handling polarization, as our examples will also show....
Directory of Open Access Journals (Sweden)
P. Guio
Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.
Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function
Directory of Open Access Journals (Sweden)
P. Guio
1998-10-01
Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function
Correlation of neurocognitive function and brain parenchyma volumes in children surviving cancer
Reddick, Wilburn E.; White, Holly A.; Glass, John O.; Mulhern, Raymond K.
2002-04-01
This research builds on our hypothesis that white matter damage and associated neurocognitive symptoms, in children treated for cancer with cranial spinal irradiation, spans a continuum of severity that can be reliably probed using non-invasive MR technology. Quantitative volumetric assessments of MR imaging and psychological assessments were obtained in 40 long-term survivors of malignant brain tumors treated with cranial irradiation. Neurocognitive assessments included a test of intellect (Wechsler Intelligence Test for Children, Wechsler Adult Intelligence Scale), attention (Conner's Continuous Performance Test), and memory (California Verbal Learning Test). One-sample t-tests were conducted to evaluate test performance of survivors against age-adjusted scores from the test norms; these analyses revealed significant impairments in all apriori selected measures of intelligence, attention, and memory. Partial correlation analyses were performed to assess the relationships between brain tissues volumes (normal appearing white matter (NAWM), gray matter, and CSF) and neurocognitive function. Global intelligence (r = 0.32, p = 0.05) and global attentional (r = 0.49, p attentional deficits, whereas overall parenchyma loss, as reflected by increased CSF and decreased white matter, is associated with memory-related deficits.
Implication of volume changes in uranium oxides: A density functional study
International Nuclear Information System (INIS)
Szpunar, B.; Szpunar, J.A.; Milman, V.; Goldberg, A.
2013-01-01
In severe nuclear accident scenarios (in air environments and high temperatures) UO 2 fuel pellets oxidise to produce uranium oxides with higher oxygen content, e.g., U 4 O 9 or U 3 O 8 . As a first step in investigating the microstructural changes following UO 2 oxidation to hexagonal high temperature phase of U 3 O 8 , density functional quantum mechanical calculations of the structure, elastic properties and electronic structure of U 3 O 8 have been performed. The calculated properties of hexagonal phase of U 3 O 8 are compared to those of the orthorhombic pseudo-hexagonal phase which is stable at room temperature. The total energy technique based on the local density approximation plus Hubbard U as implemented in the CASTEP code is used to investigate changes in the lattice constants. The first-principles calculations predict a 35-42% increase in volume per uranium atom as a result of the transformation from UO 2 to U 3 O 8 , in agreement with experimental data. The implications of this prediction on the linear expansion and fragmentation of fuel are discussed. (authors)
MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.
2007-01-01
A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.
DEFF Research Database (Denmark)
Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.
1988-01-01
methods is that they are bandwidth-limited. A crucial point in the analysis of data is, therefore, to specify accurately the wavelength bandwidth limitation and to determine the surface autocorrelation function within this bandwidth. The authors present a number of scattering measurements obtained using...... a triple-axis perfect-crystal X-ray diffractometer and the results of an autocorrelation function analysis. Furthermore, they present some measurements of integrated reflectivity, which they believe provide evidence for microroughness in the range from a few angstroms to tens of microns...
Energy Technology Data Exchange (ETDEWEB)
Schantz, Daryl I. [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); University of Manitoba, Variety Children' s Heart Centre, Winnipeg, MB (Canada); Dragulescu, Andreea [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); Memauri, Brett [University of Manitoba, Department of Radiology, St. Boniface General Hospital, Winnipeg, MB (Canada); Grotenhuis, Heynric B. [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); Wilhelmina Children' s Hospital, Utrecht (Netherlands); Seed, Mike; Grosse-Wortmann, Lars [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada)
2016-10-15
Assessment of cardiac chamber volumes is a fundamental part of cardiac magnetic resonance (CMR) imaging. While the effects of inter- and intraobserver variability have been studied and have a recognized effect on the comparability of serial cardiac MR imaging studies, the effect of differences in hydration status has not been evaluated. To evaluate the effects of volume administration on cardiac chamber volumes. Thirteen healthy adults underwent a baseline cardiac MR to evaluate cardiac chamber volumes after an overnight fast. They were then given two saline boluses of 10 ml/kg of body weight and the cardiac MR was repeated immediately after each bolus. From the baseline scan to the final scan there was a significant increase in all four cardiac chamber end-diastolic volumes. Right atrial volumes increased 8.0%, from 61.1 to 66.0 ml/m2 (P<0.001), and left atrial volumes increased 10.0%, from 50.0 to 55.0 ml/m2 (P<0.001). Right ventricular volumes increased 6.0%, from 91.1 to 96.5 ml/m2 (P<0.001), and left ventricular volumes increased 3.2%, from 87.0 to 89.8 ml/m2 (P<0.001). Hydration status has a significant effect on the end-diastolic volumes of all cardiac chambers assessed by cardiac MR. Thus, hydration represents a ''variable'' that should be taken into account when assessing cardiac chamber volumes, especially when performing serial imaging studies in a patient. (orig.)
International Nuclear Information System (INIS)
Schantz, Daryl I.; Dragulescu, Andreea; Memauri, Brett; Grotenhuis, Heynric B.; Seed, Mike; Grosse-Wortmann, Lars
2016-01-01
Assessment of cardiac chamber volumes is a fundamental part of cardiac magnetic resonance (CMR) imaging. While the effects of inter- and intraobserver variability have been studied and have a recognized effect on the comparability of serial cardiac MR imaging studies, the effect of differences in hydration status has not been evaluated. To evaluate the effects of volume administration on cardiac chamber volumes. Thirteen healthy adults underwent a baseline cardiac MR to evaluate cardiac chamber volumes after an overnight fast. They were then given two saline boluses of 10 ml/kg of body weight and the cardiac MR was repeated immediately after each bolus. From the baseline scan to the final scan there was a significant increase in all four cardiac chamber end-diastolic volumes. Right atrial volumes increased 8.0%, from 61.1 to 66.0 ml/m2 (P<0.001), and left atrial volumes increased 10.0%, from 50.0 to 55.0 ml/m2 (P<0.001). Right ventricular volumes increased 6.0%, from 91.1 to 96.5 ml/m2 (P<0.001), and left ventricular volumes increased 3.2%, from 87.0 to 89.8 ml/m2 (P<0.001). Hydration status has a significant effect on the end-diastolic volumes of all cardiac chambers assessed by cardiac MR. Thus, hydration represents a ''variable'' that should be taken into account when assessing cardiac chamber volumes, especially when performing serial imaging studies in a patient. (orig.)
Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D
2017-09-01
Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.
Radiative heat transfer in strongly forward scattering media using the discrete ordinates method
Granate, Pedro; Coelho, Pedro J.; Roger, Maxime
2016-03-01
The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta
Sementa, L; Wijzenbroek, M; van Kolck, B J; Somers, M F; Al-Halabi, A; Busnengo, H F; Olsen, R A; Kroes, G J; Rutkowski, M; Thewes, C; Kleimeier, N F; Zacharias, H
2013-01-28
We present new experimental and theoretical results for reactive scattering of dihydrogen from Cu(100). In the new experiments, the associative desorption of H(2) is studied in a velocity resolved and final rovibrational state selected manner, using time-of-flight techniques in combination with resonance-enhanced multi-photon ionization laser detection. Average desorption energies and rotational quadrupole alignment parameters were obtained in this way for a number of (v = 0, 1) rotational states, v being the vibrational quantum number. Results of quantum dynamics calculations based on a potential energy surface computed with a specific reaction parameter (SRP) density functional, which was derived earlier for dihydrogen interacting with Cu(111), are compared with the results of the new experiments and with the results of previous molecular beam experiments on sticking of H(2) and on rovibrationally elastic and inelastic scattering of H(2) and D(2) from Cu(100). The calculations use the Born-Oppenheimer and static surface approximations. With the functional derived semi-empirically for dihydrogen + Cu(111), a chemically accurate description is obtained of the molecular beam experiments on sticking of H(2) on Cu(100), and a highly accurate description is obtained of rovibrationally elastic and inelastic scattering of D(2) from Cu(100) and of the orientational dependence of the reaction of (v = 1, j = 2 - 4) H(2) on Cu(100). This suggests that a SRP density functional derived for H(2) interacting with a specific low index face of a metal will yield accurate results for H(2) reactively scattering from another low index face of the same metal, and that it may also yield accurate results for H(2) interacting with a defected (e.g., stepped) surface of that same metal, in a system of catalytic interest. However, the description that was obtained of the average desorption energies, of rovibrationally elastic and inelastic scattering of H(2) from Cu(100), and of the
Schantz, Daryl I; Dragulescu, Andreea; Memauri, Brett; Grotenhuis, Heynric B; Seed, Mike; Grosse-Wortmann, Lars
2016-10-01
Assessment of cardiac chamber volumes is a fundamental part of cardiac magnetic resonance (CMR) imaging. While the effects of inter- and intraobserver variability have been studied and have a recognized effect on the comparability of serial cardiac MR imaging studies, the effect of differences in hydration status has not been evaluated. To evaluate the effects of volume administration on cardiac chamber volumes. Thirteen healthy adults underwent a baseline cardiac MR to evaluate cardiac chamber volumes after an overnight fast. They were then given two saline boluses of 10 ml/kg of body weight and the cardiac MR was repeated immediately after each bolus. From the baseline scan to the final scan there was a significant increase in all four cardiac chamber end-diastolic volumes. Right atrial volumes increased 8.0%, from 61.1 to 66.0 ml/m2 (PHydration status has a significant effect on the end-diastolic volumes of all cardiac chambers assessed by cardiac MR. Thus, hydration represents a "variable" that should be taken into account when assessing cardiac chamber volumes, especially when performing serial imaging studies in a patient.
Facilitating the design of multidimensional and local transfer functions for volume visualization
Sereda, P.
2007-01-01
The importance of volume visualization is increasing since the sizes of the datasets that need to be inspected grow with every new version of medical scanners (e.g., CT and MR). Direct volume rendering is a 3D visualization technique that has, in many cases, clear benefits over 2D views. It is able
Energy Technology Data Exchange (ETDEWEB)
Castro, A., E-mail: acastro@bifi.es [Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modelling (ZCAM), University of Zaragoza, 50018 Zaragoza (Spain); Isla, M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain); Martinez, Jose I. [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, ES-28049 Madrid (Spain); Alonso, J.A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain)
2012-05-03
Graphical abstract: Two trajectories for the collision of a proton with the Lithium tetramer. On the left, the proton is scattered away, and a Li{sub 2} molecule plus two isolated Lithium atoms result. On the right, the proton is captured and a LiH molecule is created. Highlights: Black-Right-Pointing-Pointer Scattering of a proton with Lithium clusters described from first principles. Black-Right-Pointing-Pointer Description based on non-adiabatic molecular dynamics. Black-Right-Pointing-Pointer The electronic structure is described with time-dependent density-functional theory. Black-Right-Pointing-Pointer The method allows to discern reaction channels depending on initial parameters. - Abstract: We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behavior of a proton with the Li{sub 4} cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.
Dukart, Juergen; Bertolino, Alessandro
2014-01-01
Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality--an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.
Weatherford, C. A.; Brown, F. B.; Temkin, A.
1987-01-01
In a recent calculation, an exact exchange method was developed for use in the partial-differential-equation approach to electron-molecule scattering and was applied to e-N2 scattering in the fixed-nuclei approximation with an adiabatic polarization potential at low energies (0-10 eV). Integrated elastic cross sections were calculated and found to be lower than experiment at energies both below and above the Pi(g) resonance. It was speculated at that time that improved experimental agreement could be obtained if a correlated target representation were used in place of the uncorrelated one. The present paper implements this suggestion and demonstrates the improved agreement. These calculations are also extended to higher energies (0-30 eV) so asd to include the Sigma(u) resonance. Some discrepancies among the experiments and between experiment and the various calculations at very low energy are noted.
Patscheider, Hannah; Lorbeer, Roberto; Auweter, Sigrid; Schafnitzel, Anina; Bayerl, Christian; Curta, Adrian; Rathmann, Wolfgang; Heier, Margit; Meisinger, Christa; Peters, Annette; Bamberg, Fabian; Hetterich, Holger
2018-07-01
The aim of this study was to assess subclinical changes in right ventricular volumes and function in subjects with prediabetes and diabetes and controls without a history of cardiovascular disease. Data from 400 participants in the KORA FF4 study without self-reported cardiovascular disease who underwent 3-T whole-body MRI were obtained. The right ventricle was evaluated using the short axis and a four-chamber view. Diabetes was defined according to WHO criteria. Associations between glucose tolerance and right ventricular parameters were assessed using multivariable adjusted linear regression models. Data from 337 participants were available for analysis. Of these, 43 (13%) had diabetes, 87 (26%) had prediabetes, and 207 (61%) were normoglycaemic controls. There was a stepwise decrease in right ventricular volumes in men with prediabetes and diabetes in comparison with controls, including right ventricular end-diastolic volume (β = -20.4 and β = -25.6, respectively; p ≤ 0.005), right ventricular end-systolic volume (β = -12.3 and β = -12.7, respectively; p ≤ 0.037) and right ventricular stroke volume (β = -8.1 and β = -13.1, respectively, p ≤ 0.016). We did not observe any association between prediabetes or diabetes and right ventricular volumes in women or between prediabetes or diabetes and right ventricular ejection fraction in men and women. This study points towards early subclinical changes in right ventricular volumes in men with diabetes and prediabetes. • MRI was used to detect subclinical changes in right ventricular parameters. • Diabetes mellitus is associated with right ventricular dysfunction. • Impairment of right ventricular volumes seems to occur predominantly in men.
Experimental heat capacity of solid hydrogen as a function of molar volume
International Nuclear Information System (INIS)
Krause, J.K.
1978-01-01
Constant volume heat capacity measurements have been made on six solid hydrogen samples with low orthohydrogen concentrations. The measurements extend from approximately 1.5 K to the melting line, with molar volumes ranging from 22.787 cm 3 /mole to 16.193 cm 3 /mole. Although clustering of the ortho molecules was observed, the low temperature heat capacity anomaly due to the orthohydrogen pairs could be described quite well by the assumption of a fixed distribution. The data were corrected to obtain a lattice heat capacity which on extrapolation to T = 0 yielded Debye temperatures and a volume dependent Grueneisen parameter. A modified Mie-Grueneisen approximation was used to define a volume and temperature dependent Grueneisen parameter which was used to calculate the equation of state, P(V,T), and isothermal bulk modulus, B/sub T/(V,T), for the six isochores. An extrapolation of the equation of state to T = 0 and P = 0 by two different methods yields a molar volume which, when compared with other determinations, gives a recommended value of 23.20 +- 0.05 cm 3 /mole. A rapid increase in the conversion rate of orthohydrogen to parahydrogen was observed at approximately theta/sub o/12. The molar volumes along the melting curve also have been determined directly for the first time in this volume range. These results have been used to show that a low temperature Lindemann melting relation is only approximately valid for solid hydrogen to 50 K
Morphology and function: MR pineal volume and melatonin level in human saliva are correlated.
Liebrich, Luisa-Sophie; Schredl, Michael; Findeisen, Peter; Groden, Christoph; Bumb, Jan Malte; Nölte, Ingo S
2014-10-01
To investigate the relation between circadian saliva melatonin levels and pineal volume as determined by MRI. Plasma melatonin levels follow a circadian rhythm with a high interindividual variability. In 103 healthy individuals saliva melatonin levels were determined at four time points within 24 h and MRI was performed once (3.0 Tesla, including three-dimensional T2 turbo spin echo [3D-T2-TSE], susceptibility-weighted imaging [SWI]). Pineal volume as well as cyst volume were assessed from multiplanar reconstructed 3D-T2-TSE images. Pineal calcification volume tissue was determined on SWI. To correct for hormonal inactive pineal tissue, cystic and calcified areas were excluded. Sleep quality was assessed with the Landeck Inventory for sleep quality disturbance. Solid and uncalcified pineal volume correlated to melatonin maximum (r = 0.28; P < 0.05) and area under the curve (r = 0.29; P < 0.05). Of interest, solid and uncalcified pineal volume correlated negatively with the sleep rhythm disturbances subscore (r = -0.17; P < 0.05) despite a very homogenous population. Uncalcified solid pineal tissue measured by 3D-T2-TSE and SWI is related to human saliva melatonin levels. The analysis of the sleep quality and pineal volume suggests a linkage between better sleep quality and hormonal active pineal tissue. © 2013 Wiley Periodicals, Inc.
Lin, Kun-Ju; Liao, Chien-Hung; Hsiao, Ing-Tsung; Yen, Tzu-Chen; Chen, Tse-Ching; Jan, Yi-Yin; Chen, Miin-Fu; Yeh, Ta-Sen
2009-02-01
Preoperative portal vein embolization is increasingly employed for those with hepatocellular carcinoma and cirrhosis to gain a volume-shifting effect. However, the alterations of histologic architecture and hepatocyte function of future liver remnant (FLR) remain unexplored. Portal vein ligation (PVL) was performed in cirrhotic and noncirrhotic rats. Regeneration indices that include the DNA synthesis index, restituted liver mass, and the redistributed volume ratio were measured. The indocyanine green 15' retention test (ICG-R15), histologic changes, total Knodell score, and activated hepatic stellate cells (HSCs) were measured before and after PVL. Tc-99m sulfur-colloid liver single photon emission computed tomography (SPECT) and diisopropyl iminoacetic acid (DISIDA) SPECT were conducted. The redistributed volume ratio of cirrhotic rats was less than noncirrhotic rats (63% vs 80%, P baseline (6.0 +/- 4.1% vs 15.8 +/- 4.6%, P baseline. The redistributed volume ratio of noncirrhotic and cirrhotic rats based on 99mTc sulfur-colloid SPECT were 79% and 64%, respectively. The clearance T(1/2) of FLR in cirrhotic rats based on DISIDA SPECT was decreased compared with baseline (5.2 +/- 1.9 min vs 8.6 +/- 3.1 min). The regenerated functional liver mass of cirrhotic rats after PVL is less than noncirrhotic rats, whereas the hepatocyte function of FLR in cirrhotic rats is improved relevant to tissue remodeling.
Small angle neutron scattering
International Nuclear Information System (INIS)
Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.
1976-09-01
A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope
International Nuclear Information System (INIS)
Menezes, Welton A.; Filho, Hermes Alves; Barros, Ricardo C.
2014-01-01
Highlights: • Fixed-source S N transport problems. • Energy multigroup model. • Anisotropic scattering. • Slab-geometry spectral nodal method. - Abstract: A generalization of the spectral Green’s function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S N ) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup, slab-geometry S N problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, we describe in this paper a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method’s accuracy
Directory of Open Access Journals (Sweden)
Ross E. Whitfield
2016-01-01
Full Text Available The ability of the pair distribution function (PDF analysis of total scattering (TS from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3 has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS. While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½, whereas it was not apparent in the PDF.
Whitfield, Ross E.; Goossens, Darren J.; Welberry, T. Richard
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF. PMID:26870378
International Nuclear Information System (INIS)
Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.
2004-01-01
The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)
Donne, A. J. H.
1994-01-01
Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is
Functional changes in CSF volume estimated using measurement of water T2 relaxation
Piechnik, S.K.; Evans, J.; Bary, L.H.; Wise, R.G.; Jezzard, P.
2009-01-01
Cerebrospinal fluid (CSF) provides hydraulic suspension for the brain. The general concept of bulk CSF production, circulation, and reabsorption is well established, but the mechanisms of momentary CSF volume variation corresponding to vasoreactive changes are far less understood. Nine individuals
Hurwitz, Barry E; Coryell, Virginia T; Parker, Meela; Martin, Pedro; Laperriere, Arthur; Klimas, Nancy G; Sfakianakis, George N; Bilsker, Martin S
2009-10-19
The study examined whether deficits in cardiac output and blood volume in a CFS (chronic fatigue syndrome) cohort were present and linked to illness severity and sedentary lifestyle. Follow-up analyses assessed whether differences in cardiac output levels between CFS and control groups were corrected by controlling for cardiac contractility and TBV (total blood volume). The 146 participants were subdivided into two CFS groups based on symptom severity data, severe (n=30) and non-severe (n=26), and two healthy non-CFS control groups based on physical activity, sedentary (n=58) and non-sedentary (n=32). Controls were matched to CFS participants using age, gender, ethnicity and body mass. Echocardiographic measures indicated that the severe CFS participants had 10.2% lower cardiac volume (i.e. stroke index and end-diastolic volume) and 25.1% lower contractility (velocity of circumferential shortening corrected by heart rate) than the control groups. Dual tag blood volume assessments indicated that the CFS groups had lower TBV, PV (plasma volume) and RBCV (red blood cell volume) than control groups. Of the CFS subjects with a TBV deficit (i.e. > or = 8% below ideal levels), the mean+/-S.D. percentage deficit in TBV, PV and RBCV were -15.4+/-4.0, -13.2+/-5.0 and -19.1+/-6.3% respectively. Lower cardiac volume levels in CFS were substantially corrected by controlling for prevailing TBV deficits, but were not affected by controlling for cardiac contractility levels. Analyses indicated that the TBV deficit explained 91-94% of the group differences in cardiac volume indices. Group differences in cardiac structure were offsetting and, hence, no differences emerged for left ventricular mass index. Therefore the findings indicate that lower cardiac volume levels, displayed primarily by subjects with severe CFS, were not linked to diminished cardiac contractility levels, but were probably a consequence of a co-morbid hypovolaemic condition. Further study is needed to address
Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction
Energy Technology Data Exchange (ETDEWEB)
Santhosh Kumar, S; Rajasekharan, T [Powder Metallurgy Group, Defence Metallurgical Research Laboratory, Kanchanbagh PO, Hyderabad-500 058 (India); Seshu Bai, V [School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046 (India); Rajkumar, K V; Sharma, G K; Jayakumar, T, E-mail: dearsanthosh@gmail.co [Non-Destructive Evaluation Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chennai-603 102 (India)
2009-09-07
Aluminum alloy matrix composites have emerged as candidate materials for electronic packaging applications in the field of aerospace semiconductor electronics. Composites prepared by the pressureless infiltration technique with high volume fractions in the range 0.41-0.70 were studied using ultrasonic velocity measurements. For different volume fractions of SiC, the longitudinal velocity and shear velocity were found to be in the range of 7600-9300 m s{sup -1} and 4400-5500 m s{sup -1}, respectively. The elastic moduli of the composites were determined from ultrasonic velocities and were analysed as a function of the volume fraction of the reinforcement. The observed variation is discussed in the context of existing theoretical models for the effective elastic moduli of two-phase systems.
Saranathan, Vinodkumar; Forster, Jason D; Noh, Heeso; Liew, Seng-Fatt; Mochrie, Simon G J; Cao, Hui; Dufresne, Eric R; Prum, Richard O
2012-10-07
Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology.
International Nuclear Information System (INIS)
Blanco, Angel I.; Chao, K.S. Clifford; El Naqa, Issam; Franklin, Gregg E.; Zakarian, Konstantin; Vicic, Milos; Deasy, Joseph O.
2005-01-01
Purpose: We investigated the factors that affect salivary function after head-and-neck radiotherapy (RT), including parotid gland dose-volume effects, potential compensation by less-irradiated gland tissue, and functional recovery over time. Methods and Materials: Sixty-five patients with head-and-neck tumors were enrolled in a prospective salivary function study. RT was delivered using intensity-modulated RT (n = 45), forward-planning three-dimensional conformal RT (n = 14), or three-dimensional conformal RT with an intensity-modulated RT boost (n = 6). Whole salivary flow was measured before therapy and at 6 months (n = 61) and 12 months (n = 31) after RT. A wide variety of dose-volume models to predict post-RT salivary function were tested. Xerostomia was defined according to the subjective, objective, management, analytic (SOMA) criteria as occurring when posttreatment salivary function was s ] = 0.46, p s = 0.73), stimulated saliva flow at 12 months (R s = 0.54), and quality-of-life score at 6 months (R s = 0.35) after RT. Conclusion: Stimulated parotid salivary gland dose-volume models strongly correlated with both stimulated salivary function and quality-of-life scores at 6 months after RT. The mean stimulated saliva flow rates improved from 6 to 12 months after RT. Salivary function, in each gland, appeared to be lost exponentially at a rate of approximately 5%/1 Gy of mean dose. Additional research is necessary to distinguish among the models for use in treatment planning. The incidence of xerostomia was significantly decreased when the mean dose of at least one parotid gland was kept to <25.8 Gy with conventional fractionation. However, even lower mean doses imply increased late salivary function
Polaron scattering by an external field
International Nuclear Information System (INIS)
Kochetov, E.A.
1980-01-01
The problem of polaron scattering by an external field is studied. The problem is solved using the stationary scattering theory formalism based on two operators: the G Green function operator and the T scattering operator. The dependence of the scattering amplitude on the quasi particle structure is studied. The variation approach is used for estimation of the ground energy level
DEFF Research Database (Denmark)
McNeil, A.; Jonsson, C.J.; Appelfeld, David
2013-01-01
, or daylighting systems. However, such tools require users to provide bi-directional scattering distribution function (BSDF) data that describe the solar-optical performance of the CFS. A free, open-source Radiance tool genBSDF enables users to generate BSDF data for arbitrary CFS. Prior to genBSDF, BSDF data.......We explain the basis and use of the genBSDF tool and validate the tool by comparing results for four different cases to BSDF data produced via alternate methods. This validation demonstrates that BSDFs created with genBSDF are comparable to BSDFs generated analytically using TracePro and by measurement...
Small angle neutron scattering
Directory of Open Access Journals (Sweden)
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia
2017-04-12
Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection with a large cohort of young adult participants (N = 257). Consistent with some previous human studies, we found that parental care in childhood alone had little association with the hippocampal volume in adulthood. However, when parental overprotection was low, parental care was positively correlated with offspring hippocampal volume, whereas there was no association between parental care and offspring hippocampal volume when parental overprotection was high. Thus, an interaction exists between parental care and overprotection in human's hippocampal development, which contributes to the elucidation of the complex relationship between brain structure and environmental factors.
International Nuclear Information System (INIS)
Kohno, M.
1983-01-01
We report fully consistent calculations of the longitudinal and transverse response functions of the inclusive quasi-elastic electron scattering on 12 C in the Hartree-Fock approximation. The distorted wave for the outgoing nucleon is constructed from the same non-local Hartree-Fock field as in the ground-state description. Thus the orthogonality and Pauli principle requirements are naturally satisfied. The theoretical prediction, based on the standard density-dependent effective interaction (GO force), shows a good correspondence to the experimental data. Since the calculated response functions automatically satisfy the relevant sum rule, this work illuminates the well-known puzzle concerning the longitudinal part, which remains to be solved. We study the energy-weighted sum rules and discuss effects beyond the mean-field approximation. Meson-exchange-current contributions to the transverse response function are also estimated and found to be small due to cancellations among them. (orig.)
International Nuclear Information System (INIS)
Brand, J.; Cederbaum, L.S.
1996-01-01
An extension of the fermionic particle-particle propagator is presented that possesses similar algebraic properties to the single-particle Green close-quote s function. In particular, this extended two-particle Green close-quote s function satisfies Dyson close-quote s equation and its self energy has the same analytic structure as the self energy of the single-particle Green close-quote s function. For the case of a system interacting with one-particle potentials only, the two-particle self energy takes on a particularly simple form, just like the common self energy does. The new two-particle self energy also serves as a well behaved optical potential for the elastic scattering of a two-particle projectile by a many-body target. Due to its analytic structure, the two-particle self energy avoids divergences that appear with effective potentials derived by other means. Copyright copyright 1996 Academic Press, Inc
Directory of Open Access Journals (Sweden)
Shravya Keerthi G, Hari Krishna Bandi, Suresh M, Mallikarjuna Reddy N
2013-10-01
Full Text Available Objectives: we found only effects of at least a short term practice extended over a period of a few days to weeks of pranayama (alternate nostril breathing rather than acute effects of unilateral right nostril breathing (suryanadi pranayama. Keeping this in mind the present study was designed to test the hypothesis that 10 min. of right nostril breathing have any immediate effect on ventilatory volumes and capacities in healthy volunteers. Methodology: Forced vital capacity (FVC, Forced expiratory volume in the first second (FEV1, Forced expiratory volume percent (FEV1/FVC%, Peak expiratory flow rate (PEFR, Forced expiratory flow25-75% (FEF25-75%, Maximum voluntary ventilation (MVV, Slow vital capacity (SVC, Expiratory reserve volume (ERV, Inspiratory reserve volume (IRV and Tidal volume (TV were recorded before and after Surya Nadi Pranayama. Results & Conclusion: There was a significant increase in FVC (p<0.0001, FEV1 (p<0.0007, PEFR (p<0.0001, FEF25-75% (p<0.0001, MVV (p<0.0001, SVC (p<0.0001, ERV (0.0006, IRV (p<0.0001 and TV (0.0055 after suryanadi pranayama. The immediate effect of suryanadi pranayama practice showed alleviation of ventilatory capacities and volumes. Any practice that increases PEFR and FEF25–75% is expected to retard the development of COPD’s. The increase in PEFR, vital capacities and flow rates by suryanadi pranayama practice obviously offers an increment in respiratory efficiency and it can be advocated to the patients of early bronchitis and as a preventive measure for COPD.
International Nuclear Information System (INIS)
Santoso, B.
1976-01-01
Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)
Directory of Open Access Journals (Sweden)
Scott D. Packard
2003-07-01
Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.
Al Shehri, Abdullah M; El-Tahan, Mohamed R; Al Metwally, Roshdi; Qutub, Hatem; El Ghoneimy, Yasser F; Regal, Mohamed A; Zien, Haytham
2014-08-01
To test the effects of pressure-controlled (PCV) and volume-controlled (VCV) ventilation during one-lung ventilation (OLV) for thoracic surgery on right ventricular (RV) function. A prospective, randomized, double-blind, controlled, crossover study. A single university hospital. Fourteen pairs of consecutive patients scheduled for elective thoracotomy. Patients were assigned randomly to ventilate the dependent lung with PCV or VCV mode, each in a randomized crossover order using tidal volume of 6 mL/kg, I: E ratio 1: 2.5, positive end-expiratory pressure (PEEP) of 5 cm H2O and respiratory rate adjusted to maintain normocapnia. Intraoperative changes in RV function (systolic and early diastolic tricuspid annular velocity (TAV), end-systolic volume (ESV), end-diastolic volume (EDV) and fractional area changes (FAC)), airway pressures, compliance and oxygenation index were recorded. The use of PCV during OLV resulted in faster systolic (10.1±2.39 vs. 5.8±1.67 cm/s, respectively), diastolic TAV (9.2±1.99 vs. 4.6±1.42 cm/s, respectively) (prights reserved.
International Nuclear Information System (INIS)
Trapp, Marcus
2010-01-01
Incoherent elastic and quasi-elastic neutron scattering were used to measure membrane and protein dynamics in the nano- to picosecond time and Angstrom length scale. The hydration dependent dynamics of DMPC model membranes was studied using elastic and quasi-elastic neutron scattering. The elastic experiments showed a clear shift of the temperature of the main phase transition to higher temperatures with decreasing hydration level. The performed quasi-elastic measurements demonstrated nicely the influence, hydration has on the diffusive motions of the head lipid groups. Different models are necessary to fit the Q-dependence of the elastic incoherent structure factor and show therefore the reduced mobility as a result of reduced water content. In addition to temperature, pressure as a second thermodynamic variable was used to explore dynamics of DMPC membranes. The ordering introduced by applying pressure has similar effect to decreased hydration, therefore both approaches are complementary. Covering three orders of magnitude in observation time, the dynamics of native AChE and its complexed counterpart in presence of Huperzin A was investigated in the range from 1 ns to 100 ps. The mean square displacements obtained from the elastic data allowed the determination of activation energies and gave evidence that a hierarchy of motions contributes to the enzymatic activity. Diffusion constants and residence times were extracted from the quasi-elastic broadening. (author) [fr
Sergiievskyi, Volodymyr P; Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel
2014-06-05
Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by 2-3 orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canonical to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justification to empirical partial molar volume corrections that have been proposed recently.
DEFF Research Database (Denmark)
Vejbjerg, Pernille; Knudsen, Nils; Perrild, Hans
2008-01-01
The aim of the study was to investigate whether the influence of smoking on thyroid volume and function changes in relation to a higher iodine intake in the population. The study comprised a total of 8,219 individuals each examined in one of two separate cross-sectional studies performed before (n...... = 4,649) and after (n = 3,570) a mandatory iodization of salt in year 2000 in two areas with established mild and moderate iodine deficiency. Participants answered questionnaires regarding life style factors and a thyroid ultrasonography was performed. Blood samples were analysed for serum thyroid...... of smoking on thyroid volume seems to be dependent on iodine intake, whereas the effect on function seems mainly to depend on other factors....
Energy Technology Data Exchange (ETDEWEB)
Ma, L; Braunstein, S; Chiu, J [University of California San Francisco, San Francisco, CA (United States); Sahgal, A [Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario (Canada)
2016-06-15
Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive an EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.
DEFF Research Database (Denmark)
Kjølby, Birgitte Fuglsang; Mikkelsen, Irene Klærke; Pedersen, Michael
2009-01-01
of an AIF voxel including the relaxation properties of blood and tissue. Artery orientations parallel and perpendicular to the main magnetic field were investigated and AIF voxels were modeled to either include or be situated close to a large artery. The impact of partial volume effects on quantitative...... perfusion metrics was investigated for the gradient echo pulse sequence at 1.5 T and 3.0 T. It is shown that the tissue contribution broadens and introduces fluctuations in the AIF. Furthermore, partial volume effects bias perfusion metrics in a nonlinear fashion, compromising quantitative perfusion...
Evaluating the scattered radiation intensity in CBCT
Gonçalves, O. D.; Boldt, S.; Nadaes, M.; Devito, K. L.
2018-03-01
In this work we calculate the ratio between scattered and transmitted photons (STRR) by a water cylinder reaching a detector matrix element (DME) in a flat array of detectors, similar to the used in cone beam tomography (CBCT), as a function of the field of view (FOV) and the irradiated volume of the scanned object. We perform the calculation by obtaining an equation to determine the scattered and transmitted radiation and building a computer code in order to calculate the contribution of all voxels of the sample. We compare calculated results with the shades of gray in a central slice of a tomography obtained from a cylindrical glass container filled with distilled water. The tomography was performed with an I-CAT tomograph (Imaging Science International), from the Department of Dental Clinic - Oral Radiology, Universidade Federal de Juiz de Fora. The shade of gray (voxel gray value - VGV) was obtained using the software provided with the I-CAT. The experimental results show a general behavior compatible with theoretical previsions attesting the validity of the method used to calculate the scattering contributions from simple scattering theories in cone beam tomography. The results also attest to the impossibility of obtaining Hounsfield values from a CBCT.
Engelmann, Péter; Hayashi, Yuya; Bodó, Kornélia; Ernszt, Dávid; Somogyi, Ildikó; Steib, Anita; Orbán, József; Pollák, Edit; Nyitrai, Miklós; Németh, Péter; Molnár, László
2016-12-01
Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline
2013-01-01
Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.
Cardona, Manuel
2007-01-01
This is the ninth volume of a well-established series in which expert practitioners discuss topical aspects of light scattering in solids. It reviews recent developments concerning mainly semiconductor nanostructures and inelastic x-ray scattering, including both coherent time-domain and spontaneous scattering studies. In the past few years, light scattering has become one of the most important research and characterization methods for studying carbon nanotubes and semiconducting quantum dots, and a crucial tool for exploring the coupled exciton--photon system in semiconductor cavities. Among the novel techniques discussed in this volume are pump--probe ultrafast measurements and those which use synchrotron radiation as light source. The book addresses improvements in the intensity, beam quality and time synchronization of modern synchrotron sources, which made it possible to measure the phonon dispersion in very small samples and to determine electronic energy bands as well as enabling real-time observations...
Scattering of light and other electromagnetic radiation
Kerker, Milton
1969-01-01
The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan
International Nuclear Information System (INIS)
Stirling, W.G.; Perry, S.C.
1996-01-01
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs
International Nuclear Information System (INIS)
Le Maitre, Amandine; Hatt, Mathieu; Pradier, Olivier; Cheze-le Rest, Catherine; Visvikis, Dimitris
2012-01-01
Over the past few years several automatic and semi-automatic PET segmentation methods for target volume definition in radiotherapy have been proposed. The objective of this study is to compare different methods in terms of dosimetry. For such a comparison, a gold standard is needed. For this purpose, realistic GATE-simulated PET images were used. Three lung cases and three H and N cases were designed with various shapes, contrasts and heterogeneities. Four different segmentation approaches were compared: fixed and adaptive thresholds, a fuzzy C-mean and the fuzzy locally adaptive Bayesian method. For each of these target volumes, an IMRT treatment plan was defined. The different algorithms and resulting plans were compared in terms of segmentation errors and ground-truth volume coverage using different metrics (V 95 , D 95 , homogeneity index and conformity index). The major differences between the threshold-based methods and automatic methods occurred in the most heterogeneous cases. Within the two groups, the major differences occurred for low contrast cases. For homogeneous cases, equivalent ground-truth volume coverage was observed for all methods but for more heterogeneous cases, significantly lower coverage was observed for threshold-based methods. Our study demonstrates that significant dosimetry errors can be avoided by using more advanced image-segmentation methods. (paper)
International Nuclear Information System (INIS)
Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van; Smits, Marion; Lugt, Aad van der; Groot, Marius de; Vrooman, Henri A.; Mattace Raso, Francesco U.; Niessen, Wiro J.; Veen, Frederik M. van der; Prins, Niels D.
2017-01-01
Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Papma, Janne M.; Koudstaal, Peter J.; Swieten, John C. van [Erasmus MC - University Medical Center Rotterdam, Department of Neurology, Rotterdam (Netherlands); Smits, Marion; Lugt, Aad van der [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Groot, Marius de; Vrooman, Henri A. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Mattace Raso, Francesco U. [Erasmus MC - University Medical Center Rotterdam, Department of Geriatrics, Rotterdam (Netherlands); Niessen, Wiro J. [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Rotterdam (Netherlands); Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, Rotterdam (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Veen, Frederik M. van der [Erasmus University Rotterdam, Institute of Psychology, Rotterdam (Netherlands); Prins, Niels D. [VU University Medical Center, Alzheimer Center, Department of Neurology, Amsterdam (Netherlands)
2017-09-15
Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. (orig.)
International Nuclear Information System (INIS)
Fdida, Nicolas; Blaisot, Jean-Bernard
2010-01-01
Measurement of drop size distributions in a spray depends on the definition of the control volume for drop counting. For image-based techniques, this implies the definition of a depth-of-field (DOF) criterion. A sizing procedure based on an imaging model and associated with a calibration procedure is presented. Relations between image parameters and object properties are used to provide a measure of the size of the droplets, whatever the distance from the in-focus plane. A DOF criterion independent of the size of the drops and based on the determination of the width of the point spread function (PSF) is proposed. It allows to extend the measurement volume to defocused droplets and, due to the calibration of the PSF, to clearly define the depth of the measurement volume. Calibrated opaque discs, calibrated pinholes and an optical edge are used for this calibration. A comparison of the technique with a phase Doppler particle analyser and a laser diffraction granulometer is performed on an application to an industrial spray. Good agreement is found between the techniques when particular care is given to the sampling of droplets. The determination of the measurement volume is used to determine the drop concentration in the spray and the maximum drop concentration that imaging can support
Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu
2009-06-01
Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.
Molar volume of eutectic solvents as a function of molar composition and temperature☆
Institute of Scientific and Technical Information of China (English)
Farouq S. Mjalli
2016-01-01
The conventional Rackett model for predicting liquid molar volume has been modified to cater for the effect of molar composition of the Deep Eutectic Solvents (DES). The experimental molar volume data for a group of commonly used DES has been used for optimizing the improved model. The data involved different molar compositions of each DES. The validation of the new model was performed on another set of DESs. The average relative deviation of the model on the training and validation datasets was approximately 0.1%while the Rackett model gave a relative deviation of more than 1.6%. The modified model deals with variations in DES molar com-position and temperature in a more consistent way than the original Rackett model which exhibits monotonic performance degradation as temperature moves away from reference conditions. Having the composition of the DES as a model variable enhances the practical utilization of the predicting model in diverse design and process simulation applications.
Inelastic light scattering in crystals
Sushchinskii, M. M.
The papers presented in this volume are concerned with a variety of problems in optics and solid state physics, such as Raman scattering of light in crystals and disperse media, Rayleigh and inelastic scattering during phase transitions, characteristics of ferroelectrics in relation to the general soft mode concept, and inelastic spectral opalescence. A group-theory approach is used to classify the vibrational spectra of the crystal lattice and to analyze the properties of idealized crystal models. Particular attention is given to surface vibrational states and to the study of the surface layers of crystals and films by light scattering methods.
Shravya Keerthi G, Hari Krishna Bandi, Suresh M, Mallikarjuna Reddy N
2013-01-01
Objectives: we found only effects of at least a short term practice extended over a period of a few days to weeks of pranayama (alternate nostril breathing) rather than acute effects of unilateral right nostril breathing (suryanadi pranayama). Keeping this in mind the present study was designed to test the hypothesis that 10 min. of right nostril breathing have any immediate effect on ventilatory volumes and capacities in healthy volunteers. Methodology: Forced vital capacity (FVC), Forced ex...
Energy Technology Data Exchange (ETDEWEB)
Silva Lino, Jorge Luiz da
1995-12-31
In this work, we present a formulation called the C-Functional to study collisions of low-energy positron by molecules. This formalism is based on the Schwinger Multichannel Method for positrons which although being a quite general method (it is applicable to polyatomic molecules and include polarization and multichannel coupling) is limited to the use of trial wavefunctions consisting only of square integrable basis functions (Gaussian Cartesian Function). In principle this is not a problem, considering that the Schwinger type of methods require a good description of the scattering wavefunction only in the region where the potential is non-zero. However, there exist some situations (long range potentials) where the SMC has consequences. The C-functional (CF) consists in writing the wavefunctions as a sum of a plane-wave plus a combination of trial functions (where the combination is variationally determined). The basic difference between the 2 cases (SMC and CF) is the presence in the CF amplitude of the First (FBA) and Second Born terms. Aiming the preservation of important features of the SMG, we have developed general codes (applicable to polyatomic targets) to evaluate these terms. To illustrate the CF method we show elastic cross sections ti He and H{sub 2}. (author) 36 refs., 46 figs., 19 tabs.
International Nuclear Information System (INIS)
Choi, Don Kyoung; Choi, See Min; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun; Park, Bong Hee
2015-01-01
We aimed to evaluate the performance of various GFR estimates compared with direct measurement of GFR (dGFR). We also sought to create a new formula for volume-based GFR (new-vGFR) using kidney volume determined by CT. GFR was measured using creatinine-based methods (MDRD, the Cockcroft-Gault equation, CKD-EPI formula, and the Mayo clinic formula) and the Herts method, which is volume-based (vGFR). We compared performance between GFR estimates and created a new vGFR model by multiple linear regression analysis. Among the creatinine-based GFR estimates, the MDRD and C-G equations were similarly associated with dGFR (correlation and concordance coefficients of 0.359 and 0.369 and 0.354 and 0.318, respectively). We developed the following new kidney volume-based GFR formula: 217.48-0.39XA + 0.25XW-0.46XH-54.01XsCr + 0.02XV-19.89 (if female) (A = age, W = weight, H = height, sCr = serum creatinine level, V = total kidney volume). The MDRD and CKD-EPI had relatively better accuracy than the other creatinine-based methods (30.7 % vs. 32.3 % within 10 % and 78.0 % vs. 73.0 % within 30 %, respectively). However, the new-vGFR formula had the most accurate results among all of the analyzed methods (37.4 % within 10 % and 84.6 % within 30 %). The new-vGFR can replace dGFR or creatinine-based GFR for assessing kidney function in donors and healthy individuals. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Choi, Don Kyoung; Choi, See Min; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun [Sungkyunkwan University School of Medicine, Department of Urology, Samsung Medical Center, Seoul (Korea, Republic of); Park, Bong Hee [The Catholic University of Korea College of Medicine, Department of Urology, Incheon St. Mary' s Hospital, Seoul (Korea, Republic of)
2015-11-15
We aimed to evaluate the performance of various GFR estimates compared with direct measurement of GFR (dGFR). We also sought to create a new formula for volume-based GFR (new-vGFR) using kidney volume determined by CT. GFR was measured using creatinine-based methods (MDRD, the Cockcroft-Gault equation, CKD-EPI formula, and the Mayo clinic formula) and the Herts method, which is volume-based (vGFR). We compared performance between GFR estimates and created a new vGFR model by multiple linear regression analysis. Among the creatinine-based GFR estimates, the MDRD and C-G equations were similarly associated with dGFR (correlation and concordance coefficients of 0.359 and 0.369 and 0.354 and 0.318, respectively). We developed the following new kidney volume-based GFR formula: 217.48-0.39XA + 0.25XW-0.46XH-54.01XsCr + 0.02XV-19.89 (if female) (A = age, W = weight, H = height, sCr = serum creatinine level, V = total kidney volume). The MDRD and CKD-EPI had relatively better accuracy than the other creatinine-based methods (30.7 % vs. 32.3 % within 10 % and 78.0 % vs. 73.0 % within 30 %, respectively). However, the new-vGFR formula had the most accurate results among all of the analyzed methods (37.4 % within 10 % and 84.6 % within 30 %). The new-vGFR can replace dGFR or creatinine-based GFR for assessing kidney function in donors and healthy individuals. (orig.)
AUTHOR|(CDS)2067425; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; Görtz, S; Gracia, G; De Groot, N; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Grosse-Perdekamp, M; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Rodríguez, M; Rondio, Ewa; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K
1997-01-01
We present a new measurement of the virtual photon proton asymmetry $A_1^{\\rm p}$ from deep inelastic scattering of polarized muons on polarized protons in the kinematic range $0.0008 1$ GeV$^{2}$. A perturbative QCD evolution in next-to-leading order is used to determine $g_1^{\\rm p}(x)$ at a constant $Q^2$. At $Q^{2} = 10$ GeV$^{2}$ we find, in the measured range, $\\int_{0.003}^{0.7} g_{1}^{\\rm p}(x){\\rm d}x = 0.139 \\pm 0.006~({\\rm stat})\\pm 0.008~({\\rm syst)} \\pm 0.006~({\\rm evol})$. The value of the first moment $\\Gamma_{1}^{\\rm p} = \\int_{0}^{1} g_{1}^{\\rm p}(x){\\rm d}x$ of $g_{1}^{\\rm p}$ depends on the approach used to describe the behaviour of $g_{1}^{\\rm p}$ at low $x$. We find that the Ellis-Jaffe sum rule is violated. With our published result for $\\Gamma_{1}^{\\rm d}$ we confirm the Bjorken sum rule with an accuracy of $\\approx 15\\%$ at the one standard deviation level.
Energy Technology Data Exchange (ETDEWEB)
Vakili, Masoud [Cincinnati U.
1997-01-01
Data from the CCFR E770 Neutrino Deep Inelastic Scatter- ing (DIS) experiment at Fermilab contain large Bjorken x, high $Q^2$ events. A comparison of the data with a model, based on no nuclear effects at large $x$, shows an excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the model's deficit. Adding higher momentum tail due to the formation of "quasi-deuterons" makes the agreement better. Certain models based on "multi- quark clusters" and "few-nucleon correlations" predict an exponentially falling behavior for $F_2$ as $F_2 \\sim e^{s(x -x_0)}$ at large $x$. We measure a $s$ = 8.3 $\\pm$ 0.8 for the best fit to our data. This corresponds to a value of $F_2$($x = 1, Q^2 > 50) \\approx 2$ x $10^{-3}$ in neutrino DIS. These values agree with results from theoretical models and the $SLAC$ $E133$ experiment but seem to be different from the result of the BCDMS experiment
International Nuclear Information System (INIS)
Levelut, C.; Faivre, A.; Pelous, J.; Durand, D.
1999-01-01
Complete text of publication follows. An experimental investigation of the relaxational processes related to the glass transition in several glass formers with more or less complex molecular architecture is presented. This inelastic neutron scattering study concentrates on the region around 1.1 to 1.5 T g where the two relaxation processes usually identified in most glass formers, the α and the β relaxations, are expected to merge or cross. A recent study comparing the dynamics of Sorbitol and Maltitol (two low molecular and complementary glasses) seems to show that the way on which the α and β processes merge depends on the differences in the chemical architecture of these polyols [1]. In the present work, linear diols, three-arm-star triols and crosslinked polyurethanes, synthesized from the latter are studied. This work is an extension of a previous study of the relaxational processes in cross-linked polyurethanes [2]. For such series of samples of similar chemical composition but with increasing complexity in the architecture, the influence of the molecular complexity on the type of merging between α and β processes is tested. This allows to discuss the α-β cross-over on molecular level. (author)
Directory of Open Access Journals (Sweden)
Ibrahim Khalil
2016-05-01
Full Text Available Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS with graphene produces the graphene–AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene–Au nanocomposites. The paper highlights the graphene–gold nanoparticle (AuNP as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.
International Nuclear Information System (INIS)
Hermet, P; Veithen, M; Ghosez, Ph
2009-01-01
Nonlinear optical susceptibilities and Raman scattering spectra of the ferroelectric phases of BaTiO 3 and PbTiO 3 are computed using a first-principles approach based on density functional theory and taking advantage of a recent implementation based on the nonlinear response formalism and the 2n+1 theorem. These two prototypical ferroelectric compounds were chosen to demonstrate the accuracy of the Raman calculation based both on their complexity and their technological importance. The computation of the Raman scattering intensities has been performed not only for the transverse optical modes, but also for the longitudinal optical ones. The agreement between the measured and computed Raman spectra of these prototypical ferroelectrics is remarkable for both the frequency position and the intensity of Raman lines. This agreement presently demonstrates the state-of-the-art in the computation of Raman responses on one of the most complex systems, ferroelectrics, and constitutes a step forward in the reliable prediction of their electro-optical responses.
Energy Technology Data Exchange (ETDEWEB)
Mang, Joseph Thomas [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory
2009-01-01
We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.
International Nuclear Information System (INIS)
Davis, A.B.; Marshak, A.; Cahalan, R.F.
2001-01-01
We survey radiative Green function theory (1) in linear transport theory where numerical procedures are required to obtain specific results and (2) in the photon diffusion limit (large optical depths) where it is analytically tractable, at least for homogeneous plane-parallel media. We then describe two recent applications of Green function theory to passive cloud remote sensing in the presence of strong three-dimensional transport effects. Finally, we describe recent instrumental breakthroughs in 'off-beam' cloud lidar which is based on direct measurements of radiative Green functions with special attention to the data collected during the Shuttle-based Lidar In-space Technology Experiment (LITE) mission.
Wave propagation and scattering in random media
Ishimaru, Akira
1978-01-01
Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an
InN{0001} polarity by ion scattering spectroscopy
International Nuclear Information System (INIS)
Walker, M.; Veal, T.D.; McConville, C.F.; Lu, Hai; Schaff, W.J.
2005-01-01
The polarity of a wurtzite InN thin film grown on a c-plane sapphire substrate with GaN and AlN buffer layers has been investigated by co-axial impact collision ion scattering spectroscopy (CAICISS). Time of flight (TOF) spectra of He + ions scattered from the surface of the InN film were taken as a function of the incident angles of the primary 3 keV He + ions. From the TOF spectra, the polar angle-dependence of the In scattered intensity was obtained. Comparison of the experimental polar-angle dependence of the In CAICISS signal intensity with simulated results for the various volume ratios of (0001)- and (000 anti 1)-polarity domains indicated that the InN film is approximately 75% In-polarity and 25% N-polarity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Neutron Inelastic Scattering Study of Liquid Argon
Energy Technology Data Exchange (ETDEWEB)
Skoeld, K; Rowe, J M; Ostrowski, G [Solid State Science Div., Argonne National Laboratory, Argonne, Illinois (US); Randolph, P D [Nuclear Technology Div., Idaho Nuclear Corporation, Idaho Falls, Idaho (US)
1972-02-15
The inelastic scattering functions for liquid argon have been measured at 85.2 K. The coherent scattering function was obtained from a measurement on pure A-36 and the incoherent function was derived from the result obtained from the A-36 sample and the result obtained from a mixture of A-36 and A-40 for which the scattering is predominantly incoherent. The data, which are presented as smooth scattering functions at constant values of the wave vector transfer in the range 10 - 44/nm, are corrected for multiple scattering contributions and for resolution effects. Such corrections are shown to be essential in the derivation of reliable scattering functions from neutron scattering data. The incoherent data are compared to recent molecular dynamics results and the mean square displacement as a function of time is derived. The coherent data are compared to molecular dynamics results and also, briefly, to some recent theoretical models
Applications of inverse and algebraic scattering theories
Energy Technology Data Exchange (ETDEWEB)
Amos, K. [Qinghua Univ., Beijing, BJ (China). Dept. of Physics
1997-06-01
Inverse scattering theories, algebraic scattering theory and exactly solvable scattering potentials are diverse ways by which scattering potentials can be defined from S-functions specified by fits to fixed energy, quantal scattering data. Applications have been made in nuclear (heavy ion and nucleon-nucleus scattering), atomic and molecular (electron scattering from simple molecules) systems. Three inverse scattering approaches are considered in detail; the semiclassical WKB and fully quantal Lipperheide-Fiedeldey method, than algebraic scattering theory is applied to heavy ion scattering and finally the exactly solvable Ginocchio potentials. Some nuclear results are ambiguous but the atomic and molecular inversion potentials are in good agreement with postulated forms. 21 refs., 12 figs.
Kuppermann, Aron
2011-05-14
The row-orthonormal hyperspherical coordinate (ROHC) approach to calculating state-to-state reaction cross sections and bound state levels of N-atom systems requires the use of angular momentum tensors and Wigner rotation functions in a space of dimension N - 1. The properties of those tensors and functions are discussed for arbitrary N and determined for N = 5 in terms of the 6 Euler angles involved in 4-dimensional space.
Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing
2017-07-01
The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.
International Nuclear Information System (INIS)
Caillon, J-C.; Labarsouque, J.
1997-01-01
So far, the non-relativistic longitudinal and transverse functions in electron quasi-elastic scattering on the nuclei failed in reproducing satisfactorily the existent experimental data. The calculations including relativistic RPA correlations utilize until now the relativistic Hartree approximation to describe the nuclear matter. But, this provides an incompressibility module two times higher than its experimental value what is an important drawback for the calculation of realistic relativistic RPA correlations. Hence, we have determined the RPA response functions of nuclei by utilising a description of the relativistic nuclear matter leading to an incompressibility module in agreement with the empirical value. To do that we have utilized an interaction in the relativistic Hartree approximation in which we have determined the coupling constants σ-N and ω-N as a function of the density in order to reproduce the saturation curve obtained by a Dirac-Brueckner calculation. The results which we have obtained show that the longitudinal response function and the Coulomb sum generally overestimated when one utilizes the pure relativistic Hartree approximation, are here in good agreement with the experimental data for several nuclei
Electron Scattering on deuterium
International Nuclear Information System (INIS)
Platchkov, S.
1987-01-01
Selected electron scattering experiments on the deuteron system are discussed. The main advantages of the electromagnetic probe are recalled. The deuteron A(q 2 ) structure function is analyzed and found to be very sensitive to the neutron electric form factor. Electrodisintegration of the deuteron near threshold is presented as evidence for the importance of meson exchange currents in nuclei [fr
Kelly, Philip A; Viding, Essi; Puetz, Vanessa B; Palmer, Amy L; Mechelli, Andrea; Pingault, Jean-Baptiste; Samuel, Sophie; McCrory, Eamon J
2015-11-01
While maltreatment is known to impact social and emotional functioning, threat processing, and neural structure, the potentially dimorphic influence of sex on these outcomes remains relatively understudied. We investigated sex differences across these domains in a large community sample of children aged 10 to 14 years (n = 122) comprising 62 children with verified maltreatment experience and 60 well-matched nonmaltreated peers. The maltreated group relative to the nonmaltreated comparison group exhibited poorer social and emotional functioning (more peer problems and heightened emotional reactivity). Cognitively, they displayed a pattern of attentional avoidance of threat in a visual dot-probe task. Similar patterns were observed in males and females in these domains. Reduced gray matter volume was found to characterize the maltreated group in the medial orbitofrontal cortex, bilateral middle temporal lobes, and bilateral supramarginal gyrus; sex differences were observed only in the supramarginal gyrus. In addition, a disordinal interaction between maltreatment exposure and sex was found in the postcentral gyrus. Finally, attentional avoidance to threat mediated the relationship between maltreatment and emotional reactivity, and medial orbitofrontal cortex gray matter volume mediated the relationship between maltreatment and peer functioning. Similar mediation patterns were observed across sexes. This study highlights the utility of combining multiple levels of analysis when studying the "latent vulnerability" engendered by childhood maltreatment and yields tentative findings regarding a neural basis of sex differences in long-term outcomes for maltreated children.
International Nuclear Information System (INIS)
Mermaz, M.C.
1984-01-01
Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative
Light Scattering by Ice Crystals Containing Air Bubbles
Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.
2014-12-01
The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.
Energy Technology Data Exchange (ETDEWEB)
Yuan, Xueming [Beijing Univ. of Chemical Technology (China); Duan, Yonghao [Beijing Univ. of Chemical Technology (China); He, Lilin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Seema [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Simmons, Blake [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Gang [Beijing Univ. of Chemical Technology (China); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-02-08
A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.
Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse
2014-09-28
Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.
Aaron, F D; Andreev, V; Backovic, S; Baghdasaryan, A; Baghdasaryan, S; Barrelet, E; Bartel, W; Behrend, O; Belov, P; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Britzger, D; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bylinkin, A; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Ceccopieri, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cvach, J; Dainton, J B; Daum, K; Delcourt, B; Delvax, J; De Wolf, E A; Diaconu, C; Dobre, M; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Egli, S; Eliseev, A; Elsen, E; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, S; Glazov, A; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Grebenyuk, A; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C.W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Huber, F; Jacquet, M; Janssen, X; Jonsson, L; Jung, A W; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kostka, P; Kraemer, M; Kretzschmar, J; Kruger, K; Kutak, K; Landon, M P.J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Lendermann, V; Levonian, S; Lipka, K; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Makankine, A; Malinovski, E; Marage, P; Martyn, H U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Mudrinic, M; Muller, K; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nikitin, D; Nowak, G; Nowak, K; Olsson, J E; Osman, S; Ozerov, D; Pahl, P; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pirumov, H; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Radescu, V; Raicevic, N; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rusakov, S; Salek, D; Sankey, D P.C; Sauter, M; Sauvan, E; Schmitt, S; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, I; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, A; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sykora, T; Thompson, P D; Toll, T; Tran, T H; Traynor, D; Truol, P; Tsakov, I; Tseepeldorj, B; Tsurin, I; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas, A; Vazdik, Y; von den Driesch, M; Wegener, D; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zohrabyan, H; Zomer, F
2011-01-01
A measurement is presented of the inclusive neutral current e\\pm p scattering cross section using data collected by the H1 experiment at HERA during the years 2003 to 2007 with proton beam energies Ep of 920, 575, and 460 GeV. The kinematic range of the measurement covers low absolute four-momentum transfers squared, 1.5 GeV2 < Q2 < 120 GeV2, small values of Bjorken x, 2.9 \\cdot 10-5 < x < 0.01, and extends to high inelasticity up to y = 0.85. The structure function FL is measured by combining the new results with previously published H1 data at Ep = 920 GeV and Ep = 820 GeV. The new measurements are used to test several phenomenological and QCD models applicable in this low Q2 and low x kinematic domain.
AUTHOR|(CDS)2067425; Arik, E; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; Björkholm, P; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Golutvin, I A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiryushin, Yu T; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rock, S E; Rodríguez, M; Rondio, Ewa; Ropelewski, Leszek; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Seitz, R; Semertzidis, Y K; Sergeev, S; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zamiatin, N I; Zhao, J
1998-01-01
We present the final results of the spin asymmetries $A_1$ and the spin structure functions $g_1$ of the proton and the deuteron in the kinematic range $0.0008
Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S
2016-05-04
The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.
Borden, Brett; Luscombe, James
2017-10-01
Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus a sound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations and the special functions introduced. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well.
International Nuclear Information System (INIS)
Kwiecinski, J.
1996-01-01
The perturbative QCD predictions for the small x behaviour of the nucleon structure functions F 2L (x,Q 2 ) and g 1 (x,Q 2 ) are summarized. The importance of the double logarithmic terms for the small x behaviour of the spin structure function g 1 (x,Q 2 ) is emphasized. These terms correspond to the contributions containing the leading powers of α s ln 2 (1/x) at each order of the perturbative expansion. In the non-singlet case they can be approximately accounted for by the ladder diagrams with quark (antiquark) exchange. We solve the corresponding integral equation with the running coupling effects taken into account and present estimate of the effective slope controlling the small x behaviour of the non-singlet spin structure function g 1 (x,Q 2 ) of a nucleon. (author)
Pan, M M; Zhang, H S; Sun, T Y
2017-05-30
Objective: To evaluate the value of forced expiratory volume in 6 seconds (FEV(6)) in the evaluation of pulmonary function in Chinese elderly males. Methods: Pulmonary function tests of elderly who had received regular physical examination in Beijing Hospital from July 2003 to April 2015 were analyzed on subjects with the following characteristics: aged 60 years or older, completion of bronchial dilation test and able to exhale for at least six seconds. The included subjects were divided into 2 groups: 60-function in the study population was evaluated. Results: A total of 475 elderly men aged 60 years or older were enrolled, with a mean age of (77.13±9.53) years. Totally there were 269 subjects in 60-accounted for 56.6%; 206 subjects were in ≥80 years group, which accounted for 43.4%. There were 292 subjects with irreversible airflow obstruction, accounting for 61.5%. In all the included subjects, FEV(6) was significantly correlated with FVC and post-bronchodilator FEV(1)/FEV(6) was significantly correlated with post-bronchodilator FEV(1)/FVC( r =0.971, 0.978; both P function middle group, a total of 73 cases, which included 20 cases ≥80 years old. The proportion of middle group among ≥80 years group was significantly less than that of the 60-function middle group, FEV(1)/FEV(6) or FEV(1)/FVC had no correlation with inspiratory capacity or residual volume/total lung capacity (all P >0.05). Conclusions: FEV(6) and FEV(1)/FEV(6) are strongly correlated with FVC and FEV(1)/FVC, and there is excellent agreement between FEV(1)/FEV(6) and FEV(1)/FVC. FEV(6) is simple, easy to operate and with less influencing factors, which can be used as a valid alternative for FVC in diagnosing airflow obstruction in elderly males.
Directory of Open Access Journals (Sweden)
Natalia Dłużniewska
2018-01-01
Conclusion: Exercise intolerance in adults with repaired ToF is markedly depressed. The decreased exercise capacity is correlated with impaired RV function and may be associated also with LV dysfunction, which suggests right-to-left ventricular interaction.
International Nuclear Information System (INIS)
Braby, L.A.; Metting, N.F.; Wilson, W.E.; Ratcliffe, C.A.
1988-01-01
Since the damage which initiates detrimental effects occurs in a small site (semiconductor junctions, or biological cell nuclei), these differences in spatial distribution of ionization maybe the relevant factor controlling the effectiveness of different radiations. Again, when the appropriate cross section data are available Monte Carlo methods can be used to simulate the positions of all ionizations and excitations produced by a typical charged particle. This calculated track structure must interact with the biological or electronic entity in which it occurs to produce the effect. However, we do not know the mechanisms of this interaction and thus cannot specify which characteristics of the charged particle track are responsible for the relevant damage. From track structure we can obtain the spectrum of energy deposition in small volumes which may be relevant to the processes of concern. This has lead to a new approach to dosimetry, one which emphasizes the stochastic nature of energy deposition in small sites, known as microdosimetry. 6 refs., 4 figs
Sundgot-Borgen, J
1996-06-01
This study examined clinical and subclinical eating disorders (EDs) in young Norwegian modern rhythmic gymnasts. Subjects were 12 members of the national team, age 13-20 years, and individually matched nonathletic controls. All subjects participated in a structured clinical interview for EDs, medical examination, and dietary analysis. Two of the gymnasts met the DSM-III-R criteria for anorexia nervosa, and 2 met the criteria for anorexia athletica (a subclinical ED). All the gymnasts were dieting in spite of the fact that they were all extremely lean. The avoidance of maturity, menstrual irregularities, energy deficit, high training volume, and high frequency of injuries were common features among the gymnasts. Ther is a need to learn more about risk factors and the etiology of EDs in different sports. Coaches, parents, and athletes need more information about principles of proper nutrition and methods to achieve ideal body composition for optional health and athletic performance.
Heat strain, volume depletion and kidney function in California agricultural workers.
Moyce, Sally; Mitchell, Diane; Armitage, Tracey; Tancredi, Daniel; Joseph, Jill; Schenker, Marc
2017-06-01
Agricultural work can expose workers to increased risk of heat strain and volume depletion due to repeated exposures to high ambient temperatures, arduous physical exertion and limited rehydration. These risk factors may result in acute kidney injury (AKI). We estimated AKI cumulative incidence in a convenience sample of 283 agricultural workers based on elevations of serum creatinine between preshift and postshift blood samples. Heat strain was assessed based on changes in core body temperature and heart rate. Volume depletion was assessed using changes in body mass over the work shift. Logistic regression models were used to estimate the associations of AKI with traditional risk factors (age, diabetes, hypertension and history of kidney disease) as well as with occupational risk factors (years in farm work, method of payment and farm task). 35 participants were characterised with incident AKI over the course of a work shift (12.3%). Workers who experienced heat strain had increased adjusted odds of AKI (1.34, 95% CI 1.04 to 1.74). Piece rate work was associated with 4.24 odds of AKI (95% CI 1.56 to 11.52). Females paid by the piece had 102.81 adjusted odds of AKI (95% CI 7.32 to 1443.20). Heat strain and piece rate work are associated with incident AKI after a single shift of agricultural work, though gender differences exist. Modifications to payment structures may help prevent AKI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Gomez, Humberto
2016-06-01
The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.
Electromagnetic scattering theory
Bird, J. F.; Farrell, R. A.
1986-01-01
Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.
DEFF Research Database (Denmark)
Loland, L.; Bisgaard, H.
2008-01-01
BACKGROUND: The aim of the study was to evaluate the feasibility of lung function measurements by the raised volume rapid thoracoabdominal compression (RVRTC) technique during bronchial methacholine challenge in young infants. METHOD: Four hundred two healthy infants were tested at 1 month of age....... The mean acceptability rating among parents was 8 on a scale from 1 to 10, with 13% rating test, with the actual lung function testing accounting for half the time. CONCLUSION: This very comprehensive experience with standardized measurements of lung...... was successfully measured in 87% by transcutaneous oxygen pressure. No serious adverse events were observed during testing or after discharge from the clinic. The methacholine dose range was appropriate as PD could be determined in the majority of infants. FEV(0.5) values in 21% of infants dropped > 40% during...
International Nuclear Information System (INIS)
Stinchcomb, T.G.; Roeske, J.C.
1995-01-01
Microdosimetry is the study of the stochastic variation of energy deposited within sub-cellular targets. As such, the size and shape of the critical target (i.e. cell nucleus) are essential when considering microdosimetric quantities. In this work, a microdosimetric analysis examines the expected cell survival as a function of the size and shape of the cell nucleus under conditions of irradiation emitting alpha particles. The results indicate that, in general, cell survival is relatively insensitive to changes in the shape of the cell nucleus when the volume is held constant. However, cell survival is a strong function of the variation in the size of the target. These results are useful when analysing the results of cell survival experiments for alpha particle emitters. (Author)
Energy Technology Data Exchange (ETDEWEB)
Cansu, Aysegul, E-mail: drcansu@gmail.com; Kupeli, Ali; Kul, Sibel; Eyuboglu, Ilker; Oguz, Sukru; Ozturk, Mehmet Halil; Dinc, Hasan
2014-07-15
Purpose: To investigate the relationship between renal function and total renal volume-vascular indices using 3D power Doppler ultrasound (3DPDUS). Materials and methods: One hundred six patients with hypertensive proteinuric nephropathy (HPN) (49 male, 57 female) and 65 healthy controls (32 male, 33 female) were evaluated prospectively using 3DPDUS. Total renal volume (RV), vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated using Virtual Organ Computer-aided Analysis (VOCAL). The estimated glomerular filtration rates (GFRs) of the patients with HPN and the control group were calculated. The patients with HPN were divided into two groups on the basis of GFR, normal (≥90) or reduced (<90). Differences between groups were compared using ANOVA. Correlations between GFR, renal volume and vascular indices were analyzed using Pearson's correlation analysis. Significance was set at p < 0.05. Results: The mean total RV, VI, FI and VFI values in the reduced GFR, normal GFR and control groups were RV (ml): 234.7, 280.7 and 294.6; VI: 17.6, 27.6 and 46.8; FI: 79.1, 88.7 and 93.9 and VFI: 7.1, 12.7 and 23.8. There were statistically significant differences between the groups (p < 0.001). Total RVs and vascular indices exhibited significant correlations with estimated GFR (r = 0.53–0.59, p < 0.001) Conclusion: Three-dimensional power Doppler ultrasound is a reliable predictive technique in renal function analysis.
Mitsui, Yosuke; Sadahira, Takuya; Araki, Motoo; Wada, Koichiro; Tanimoto, Ryuta; Ariyoshi, Yuichi; Kobayashi, Yasuyuki; Watanabe, Masami; Watanabe, Toyohiko; Nasu, Yasutomo
2018-04-01
Contrast-enhanced CT is necessary before donor nephrectomy and is usually combined with a Tc-99m-mercapto-acetyltriglycine (MAG3) scan to check split renal function (SRF). However, all transplant programs do not use MAG3 because of its high cost and exposure to radiation. We examined whether CT volumetry of the kidney can be a new tool for evaluating SRF. Sixty-three patients underwent live donor nephrectomy. Patients without a 1.0 mm slice CT or follow-up for volumetry was analyzed at 1, 3, and 12 months post nephrectomy. Strong correlations were observed preoperatively in a Bland-Altman plot between SRF measured by MAG3 and either CT cortex or parenchymal volumetry. In addition, eGFR after donation correlated with SRF measured by MAG3 or CT volumetry. The correlation coefficients (R) for eGFR Mag3 split were 0.755, 0.615, and 0.763 at 1, 3 and 12 months, respectively. The corresponding R values for cortex volume split were 0.679, 0.638, and 0.747. Those for parenchymal volume split were 0.806, 0.592, and 0.764. Measuring kidney by CT volumetry is a cost-effective alternative to MAG3 for evaluating SRF and predicting postoperative donor renal function. Both cortex and parenchymal volumetry were similarly effective.
Invariant imbedding equations for linear scattering problems
International Nuclear Information System (INIS)
Apresyan, L.
1988-01-01
A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation
Davis, Timur D.
2011-12-01
In the development of new medicinal products, poor oral bioavailability, due to the low solubilities of many active pharmaceutical ingredients (APIs), is increasingly a barrier for treatments to be administered using tablet or capsule formulations and one of the main challenges facing the pharmaceutical industry. Non-crystalline phases such as the amorphous and nanostructured states can confer increased solubility to a drug, and therefore, have recently garnered a lot of interest from pharmaceutical researchers. However, little is known about local ordering in non-crystalline pharmaceuticals due to the lack of reliable experimental probes, hindering the clinical application of these compounds. The powerful tools of crystallography begin to lose their potency for structures on the nanoscale; conventional X-ray powder diffraction (XRPD) patterns become broad and featureless in these cases and are not useful for differentiating between different local molecular packing arrangements. In this thesis, we introduce the use of high energy X-rays coupled with total scattering pair distribution function (TSPDF) and fingerprinting analysis to investigate the local structures of non-crystalline pharmaceutical compounds. The high energy X-rays allow us to experimentally collect diffuse scattering intensities, which contain information about a sample's local ordering, in addition to the Bragg scattering available in conventional XRPD experiments, while the TSPDF allows us to view the intra- and inter-molecular correlations in real space. The goal of this study was to address some fundamental problems involving fingerprinting non-crystalline APIs using TSPDF in order to lay the groundwork for the proper use of the technique by the pharmaceutical community. We achieved this by developing the methodology as well as the exploring the scientific implications. On the methodology side, we introduced PDFGetX3, a new software program for calculating TSPDFs that simplifies the procedure
Functional Significance of Iron Deficiency. Annual Nutrition Workshop Series, Volume III.
Enwonwu, Cyril O., Ed.
Iron deficiency anemia impairs cognitive performance, physical capacity, and thermoregulation. Recent evidence suggests that these functional impairments are also evident in subclinical nonanemic iron deficiency. Very little is known about the relevance of the latter to the health of blacks, who have been shown to have the highest prevalence of…
Functional requirements for onboard management of space shuttle consumables, volume 1
Graf, P. J.; Herwig, H. A.; Neel, L. W.
1973-01-01
A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support.
International Nuclear Information System (INIS)
Mandyla, Spyridoula P.; Tsogas, George Z.; Vlessidis, Athanasios G.; Giokas, Dimosthenis L.
2017-01-01
Highlights: • A new method has been developed to determine gold nanoparticles in water samples. • Extraction was achieved by cloud point extraction. • A nano-hybrid assembly between AuNPs and dithiol-coated quantum dots was formulated. • Detection was accomplished at pico-molar levels by second-order light scattering. • The method was selective against ionic gold and other nanoparticle species. - Abstract: This work presents a new method for the sensitive and selective determination of gold nanoparticles in water samples. The method combines a sample preparation and enrichment step based on cloud point extraction with a new detection motif that relies on the optical incoherent light scattering of a nano-hybrid assembly that is formed by hydrogen bond interactions between gold nanoparticles and dithiotreitol-functionalized CdS quantum dots. The experimental parameters affecting the extraction and detection of gold nanoparticles were optimized and evaluated to the analysis of gold nanoparticles of variable size and surface coating. The selectivity of the method against gold ions and other nanoparticle species was also evaluated under different conditions reminiscent to those usually found in natural water samples. The developed method was applied to the analysis of gold nanoparticles in natural waters and wastewater with satisfactory results in terms of sensitivity (detection limit at the low pmol L −1 levels), recoveries (>80%) and reproducibility (<9%). Compared to other methods employing molecular spectrometry for metal nanoparticle analysis, the developed method offers improved sensitivity and it is easy-to-operate thus providing an additional tool for the monitoring and the assessment of nanoparticles toxicity and hazards in the environment.
Energy Technology Data Exchange (ETDEWEB)
Mandyla, Spyridoula P.; Tsogas, George Z.; Vlessidis, Athanasios G.; Giokas, Dimosthenis L., E-mail: dgiokas@cc.uoi.gr
2017-02-05
Highlights: • A new method has been developed to determine gold nanoparticles in water samples. • Extraction was achieved by cloud point extraction. • A nano-hybrid assembly between AuNPs and dithiol-coated quantum dots was formulated. • Detection was accomplished at pico-molar levels by second-order light scattering. • The method was selective against ionic gold and other nanoparticle species. - Abstract: This work presents a new method for the sensitive and selective determination of gold nanoparticles in water samples. The method combines a sample preparation and enrichment step based on cloud point extraction with a new detection motif that relies on the optical incoherent light scattering of a nano-hybrid assembly that is formed by hydrogen bond interactions between gold nanoparticles and dithiotreitol-functionalized CdS quantum dots. The experimental parameters affecting the extraction and detection of gold nanoparticles were optimized and evaluated to the analysis of gold nanoparticles of variable size and surface coating. The selectivity of the method against gold ions and other nanoparticle species was also evaluated under different conditions reminiscent to those usually found in natural water samples. The developed method was applied to the analysis of gold nanoparticles in natural waters and wastewater with satisfactory results in terms of sensitivity (detection limit at the low pmol L{sup −1} levels), recoveries (>80%) and reproducibility (<9%). Compared to other methods employing molecular spectrometry for metal nanoparticle analysis, the developed method offers improved sensitivity and it is easy-to-operate thus providing an additional tool for the monitoring and the assessment of nanoparticles toxicity and hazards in the environment.
International Nuclear Information System (INIS)
Luttrell, S.P.; Wada, S.; Webber, B.R.
1981-01-01
We calculate the leading order Wilson coefficient functions of the four-quark operators in the current product expansion. The process dependence of the contributions of the four-quark operators is given, and it is argued that they are likely to be negative. It is also argued that the spin (n) dependence of the ratio of the four-quark term to the twist-two terms is linear in n (or at most proportional n log n), though the number of independent four-quark operators grows like n 2 . (orig.)
International Nuclear Information System (INIS)
Leader, Elliot
1991-01-01
With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees